
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-20-2011

One Time Password Scheme Via Secret Sharing Techniques One Time Password Scheme Via Secret Sharing Techniques

Christopher Miceli
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Miceli, Christopher, "One Time Password Scheme Via Secret Sharing Techniques" (2011). University of
New Orleans Theses and Dissertations. 1330.
https://scholarworks.uno.edu/td/1330

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1330&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1330?utm_source=scholarworks.uno.edu%2Ftd%2F1330&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

One Time Password Scheme Via Secret Sharing Techniques

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans

 in partial fulfillment of the
 requirements for the degree of

Master of Science
in

Computer Science
Information Assurance

by

Christopher Miceli

B.S. Louisiana State University, 2009

May, 2011

ii

© 2011, Christopher Miceli

iii

Acknowledgments
This work would not have been possible without the guidance of Dr. Golden Richard and Dr. Kenneth

Holladay who promoted my ideas and pushed my curiosity. I would also like to thank the members of

my committee for their proofreading and other contributions: Dr. Daniel Bilar and Dr. Jaime Niño. The

computer science departments at both The University of New Orleans and Louisiana State University

provided a solid foundation of education that promoted this research. Specifically, I would like to thank

Dr. Hartmut Kaiser, for his profound mentoring abilities and Dr. Shantenu Jha, for his ability to push me

to research.

iv

Table of Contents

Abstract .. vi

Introduction .. 1

Background ... 1

One Time Passwords ... 1

Secret Sharing ... 6

Verifiable Secret Sharing ... 8

Proactive Secret Sharing ... 10

Proposed OTP solution using Secret Sharing Techniques ... 13

Motivation... 13

Overview ... 14

Detail ... 15

Setup ... 15

Use .. 15

Update... 16

Verification .. 16

Worked Example ... 18

Setup ... 18

Use .. 19

Update with Verification ... 19

Security Analysis ... 21

Proposed OTP Scheme Proof Outline ... 21

Proposed OTP Scheme Proof .. 22

Update Procedure Proof Outline .. 22

Update Procedure Proof ... 23

Verification Procedure Proof Outline ... 26

Update Procedure Proof ... 26

Implementation .. 27

Communication ... 27

v

Storage Requirements .. 28

Computational Requirements ... 29

Random Source and Distribution .. 31

Comparison to other OTP solutions .. 31

Disadvantages ... 31

Communication ... 31

Advantages .. 32

Security ... 32

Computation ... 33

Future Work .. 34

Conclusion ... 34

Bibliography .. 36

Appendix ... 38

C Library .. 38

PAM Module ... 39

Android Application .. 39

Vita .. 41

vi

Abstract
Many organizations today are seeking to improve security by implementing multi-factor authentication,

i.e. authentication requiring more than one independent mechanism to prove one’s identity. One-time

passwords in the form of hardware tokens in combination with conventional passwords have emerged

as the predominant means in high security environments to satisfy the independent identification

criteria for strong authentication. However, current popular public one-time passwords solutions such

as HOTP, mOTP, TOTP, and S/Key depend on the computational complexity of breaking encryption or

hash functions for security. This thesis will present an efficient and information-theoretically secure one-

time password system called Shamir-OTP that is based upon secret sharing techniques.

Shamir secret sharing, Proactive secret sharing, Verifiable secret sharing, one-time password, multi-

factor authentication, password

1

Introduction
This thesis’s goal is to introduce a one-time password system that has been derived from techniques

initially developed to implement secret sharing. The advantages and disadvantages of such a system will

be described and compared to other current password systems. An appendix is included that describes

multiple implementations and how to use them.

Background
Before being presented, a background of prerequisite topics will be given independently and then

combined into a functional password system.

One Time Passwords

One-time passwords are passwords that are only valid for a single or small number of transactions. This

contrasts with conventional passwords which are valid for many transactions as users are reluctant to

voluntarily change passwords frequently. Since OTPs are only valid for a limited number of uses, an

attacker has a smaller window of time to gain access to resources guarded by such a password because

any previously stolen passwords will likely have become invalid. As with traditional passwords, one-time

passwords are vulnerable to man-in-the-middle attacks [1]. By observing the OTP before it is successfully

received by the authenticator, an attacker has a valid password. Because of this undesirable property,

both OTPs and conventional passwords must travel securely.

Typically, the one-time password is generated by a hardware device that the person desiring to be

authenticated carries to promote use across many physically distant domains. The hardware implements

an algorithm that generates passwords in a specific manner that the authenticator knows. The hardware

device will often display the password on a small screen for a user to type into the authenticator.

In this hardware based approach, if the hardware or computer that generates the passwords were

stolen, the thief would be able to authenticate himself just by reading the numbers on the display.

2

Because of this reason, one-time passwords are often one part of a multi-factor authentication (MFA)

system where two or more independent factors of authentication are used to identify a user. The three

factors consistently considered possible for authentication are something the user knows, something

the user has, and something the user is. Others methods such as someone you know have also been

suggested [2]. The static password satisfies the something you know factor. Being able to enter a valid

OTP implies that you have the password generator; the something you uniquely have factor is satisfied.

Implementing this strategy alleviates the fear of a lost password generator falsely authenticating a

malicious entity.

With the increase in the popularity of mobile cellular phones and personal digital assistants (PDAs),

there have been some attempts to use these devices as a physical OTP generating device. In this case,

the phone or PDA will satisfy the something you uniquely have factor of authentication and the

password it generates shows this. Initially, when these devices were limited in capabilities, the OTP

would be sent to the device as a text-message that the user would then be able input into the system

for authentication. Electronically authenticating for the bank JPMorgan Chase uses this approach along

with a traditional password [3]. As more capable mobile operating systems and devices began to

appear, most modern mobile phones and PDAs are able to generate the OTP themselves and can

completely replace a dedicated hardware device or a text-messaging solution. Recently Google has been

utilizing this approach to enable MFA for all accounts that opt-in [4].

Algorithms generating temporary passwords can be time-based or mathematical-based. Time-based

algorithms generate passwords that are valid for a set period of time before automatically updated by

the algorithm (often a hardware device). Technically, a one-time is a misnomer as a password can be

used multiple times as long as it is within one time period. A hardware device of this type typically

always displays a password, and the password is constantly changing. The length of time that an OTP is

3

valid is an important security parameter in these schemes because one password is valid until the time

period expires and then updated. If a password is infrequently updated, an attacker has a longer

window for exploitation. As the period length grows, the security of OTPs approaches that of

conventional passwords. For example, an eavesdropper could capture the OTP that has just been

generated as it travels across a network. Once captured, the attacker has the entire lifetime of the

password for unauthorized access.

One implementation difficulty of time-based passwords is that the clock of the password generator must

be synchronized with the clock of the authenticator or else a user may be wrongfully denied

authentication. Another concern when utilizing a time-based OTP is clock drift. Clock drift is the

phenomena where different clocks do not run at the same speed and after some time, will not have the

same time value at the same point in time, even if they did previously. Often, the way to reduce

problems with clock drift is to have periodic clock resynchronization or have the authenticator accept a

range of passwords, say two time periods, reducing the security of the system. SecurID is a proprietary

commercial system by RSA Security that uses hardware devices to generate passwords that change

every thirty or sixty seconds [5].

For a concrete example of one such time-based one-time password algorithm, the public algorithm

Time-based One-Time Password (TOTP) is described.

Setup

 Establish a shared secret integer between the authenticator and the user

 Agree upon a time step and an initial time

Authentication

 The user calculates ⌊
()

⌋

4

 The user sends the authenticator () where HOTP is a OTP generation algorithm based

upon cryptographic hash functions described below

The authenticator is able to verify that the password is valid as any password generated outside of the

current time step since will differ. Also, since the shared key is present, the authenticator can be sure

the password was generated by someone in possession of the shared key [6].

Mathematical-based generate passwords that do not have values based on time; instead they are

generated algorithmically each time a password is desired. The authenticator and client’s algorithms are

in step with each other. In many cases, this involves a counter that is incremented each round. Every

time a client is successfully authenticated, the authenticator will only accept the next OTP generated by

the algorithm. Unlike time-based OTPs, mathematically-based OTPs are valid for only one use and are

not vulnerable to the attack described above in which a password is used twice within one period. Also,

clock synchronization and drift are not a concern. One area of concern is if a mathematical-based

password is stolen, it can be valid indefinitely, as long as the real user does not attempt to authenticate,

thus advancing the password the authenticator is expecting.

Implementation issues for these algorithms include keeping the authenticator and client’s algorithms

synchronized. For example, suppose a client’s hardware device presented a password and the user of

this device is unable to correctly enter that number to the authenticator. If the user indicated to the

hardware prematurely that the password was accepted, the user has no way of retrieving the old

password that the authenticator is waiting for. To combat this, often implementations have the

authenticator accept a window of passwords and adjust this window based on the last valid password

entered. S/Key and hash-based OTP (HOTP) are two popular forms of mathematical-based password

generators.

5

For a concrete example, S/Key, sometimes known as Lamport’s scheme, is a popular OTP solution

developed to authenticate dumb terminals on Unix-like operating systems [7]. The password generation

is based off a cryptographic hash function.

Setup

 Establish a secret key

 Apply a cryptographic hash function () to times

 Discard

 The authenticator stores () while the clients stores () * +

Authentication

 To be authenticated the time, the user provides () * +

 The authenticator computes (()) and compares it the stored value on the server:

 ()

 If the result matches the stored value, discard the stored value and store ()

For simplicity, the output of the hash function can be mapped to simple English words to facilitate input

into a terminal. This is an example of a solution that has a finite number of uses before re-initialization

of the system must take place. Most implementations forbid this re-initialization from being done

remotely.

Other more modern schemes such as the HOTP do not have this re-initialization limitation. HOTP is built

upon hashed-based message authentication codes (HMAC) and often uses the Secure Hash Algorithm

(SHA-1) for cryptographic hashing [8]. HOTP is published by the Initiative for Open Authentication

(OATH). Conceptually, HOTP calculates the SHA-1 based HMAC keyed with a shared secret on a counter.

The steps to compute a given password with HOTP are:

6

 Establish a shared secret

 Initialize a counter to zero

 Define as an HMAC calculated with SHA-1

 Let be a function that selects 4 bytes in a standard manner

 A client wishing to be authenticated sends (())

 If the authenticator’s value matches the clients, then the client is authenticated

 Both parties increment

As in the case with S/Key, the result is often too large to be entered into a keypad or other device by a

client. Instead of transforming the result into words as in S/Key, HOTP simply calculates the remainder

when divided by the maximum value (). Many other systems based

upon this approach exist. One could swap out HMAC with the Data Encryption Standard (DES) algorithm,

the Advanced Encryption Algorithm (AES), or any other encryption mechanism. HOTP’s sister standard in

OATH, Time-based One Time Password (TOTP), replaces the counter with the current time, thus

converting the mathematical-based HOTP into a time-based OTP.

Secret Sharing

Secret sharing is a mechanism that allows a secret to be divided into multiple shares, such that when a

certain amount of these shares are combined, the secret can be obtained. For notation, a scheme that

divides a secret into shares and requires shares to reconstruct the secret is called a ()-

threshold scheme. An attacker possessing shares should have low probability of successfully

reconstructing , but anyone in possession of shares should efficiently be able to construct with

probability 1 [9]. Simple secret sharing schemes can be divided into two phases, dealing of the secret

and reconstruction of the secret.

7

Secret Sharing was described in 1979 independently by Shamir and Blakley and has since triggered

numerous papers describing properties and uses of secret sharing schemes. The canonical use of secret

sharing schemes is to distribute a long term key, such as a private key to a major bank, in a manner that

prevents a single break-in from compromising the entire system. Recently this mechanism has been

used to distribute the long term key signing key of the Domain Name System Security Extensions

(DNSSEC) root zone with a ()-threshold scheme [10]. In the event of the necessity to generate this

key, 5 of these 7 individuals will have to meet at a base in the United States.

For a concrete implementation of such schemes, this paper will discuss the version presented by Shamir.

Shamir's original secret sharing scheme is the most popular scheme and is often used in most academic

examples and papers on the subject. This scheme works by a dealer defining a polynomial of degree

where the polynomial evaluated at 0 is the secret. The shares are the polynomial evaluated at other

unique points.

 Establish a shared secret

 Define ()

 where is the threshold value

 The set of shares is {(()) * +} where is the number of shares to be made

To reconstruct the secret from only the shares, use the Lagrange polynomial to interpolate the

polynomial from the given points. Once the polynomial has been reconstructed, the shared secret is the

function evaluated again at 0.

 Given a set of shares of size , define to be the input to the constructed polynomial above

and to be the output of the constructed polynomial for share

 Compute ∑

 where is the index of each share

 Compute the secret by ∑

8

Shamir’s scheme is information-theoretic secure. By this, we formally mean that every possible secret is

equally likely after having viewed up to shares. This prevents an attacker from having a reduced

amount of secrets to guess by observing some of the shares, but not shares, that have been

compromised. This will be shown later.

Verifiable Secret Sharing

In a conventional secret sharing scheme, a corrupt dealer can deal invalid shares to participants or

malicious users may present an invalid share in an attempt to gain information about the secret. With

these capabilities, a dealer can restrict which sets of shares that can actually reconstruct the correct

secret. There are attacks where an attacker who was not dealt a share initially presents invalid shares to

other participants to prevent them from being able to reconstruct the secret and simultaneously

allowing the attacker to recreate the secret [11].

Verifiable secret sharing (VSS) solves these problems by guaranteeing that even if the dealer is malicious

and delivers corrupt shares to some participants or some participants present an invalid share, there is a

well-defined secret all participants will reconstruct. These schemes often provide a mechanism for

detecting an invalid share with high probability. Thus, a dealer or malicious participant is unable to

present an invalid share without being caught. This is usually accomplished by having the dealer commit

to some information pertaining to the secret and publically release it. Then any participant can verify the

share they received independently by using the public information and the information that they

received. Since the information is public, the participant can be assured that everyone is using the same

information to verify their shares and was not dealt bad information.

Paul Feldman proposed a popular VSS scheme based on homomorphic encryption [12]. The scheme is

non-interactive, meaning bidirectional communication between the participant and the dealer of the

shares is not required. The scheme is not information-theoretic secure as it leaks information about the

9

secret – a non-computationally bound adversary can learn the secret by observing information related

to the VSS procedure. The scheme does have the property that an infinitely powerful dealer is unable to

generate an incorrect share.

A VSS scheme devised by Pedersen is considered the dual of Feldmen’s in the sense that it is in non-

interactive and information-theoretically secure [13]. However, in this scheme, if the dealer is not

computationally bound, then he is capable of generating corrupt shares. Pedersen shows the

impossibility of achieving a system which is simultaneously information-theoretic non-interactive and

one in which a non-computationally bound dealer cannot cheat. This means that while maintaining non-

interactivity, a verifiable secret sharing scheme either allows non-computationally bounded attackers to

learn information about the secret or allows non-computationally bounded dealers to cheat, but not

both.

Conceptually, Pedersen’s scheme will share a secret using Shamir's secret sharing scheme but also have

the dealer commit to each share while each participant verifies these commitments.

 Chose and large primes such that

 Define the unique subgroup of order , and a generator of

o It can be tested if an element by

 The dealer wishes to share an

 Chose a such that nobody knows ()

 Define () as

 Chose a random

 publishes a commitment to the secret ()

 constructs a second polynomial of degree : () ∑ (
)

10

 broadcasts () for * + and are the coefficients of () used to

distribute the secret

 computes () for * +

 sends participant (()) for * +

 Each participant verifies their share () for * + by (()) ∏

o For clarity:

 ()
 ()

 ()

 ()

 () ()

 ()

The dealer commits to the secret with () and subsequently commits to the material that generated

the share with (). This information, along with other public information such the shares, reveals

no information about the secret but allow participants to verify their share is a portion of the secret.

Proactive Secret Sharing

Generally, secret sharing schemes are designed to protect long term secrets, but if more than shares

were compromised over this long period of time, the secret is no longer safe. Thus there is a need to

protect the shares over a long period of time. Proactive secret sharing (PSS) is a modification to the

typical secret sharing scheme that allows shares to be updated periodically [14]. A PSS takes a set of

shares and updates them such that attempting to reconstruct the secret with both non-updated and

updated shares fails. PSSs allows up to shares to be leaked within each period between updates. If

an attacker gathers or more shares from the same period, the secret is still compromised as in

traditional secret sharing. Stated differently, more than shares can be revealed as long as no more

than of those shares are from the same period . This has the effect of reducing the lifetime of the

secret to the length of the period chosen. This makes the length of the period an important security

11

parameter. As this length reaches infinity, the scheme becomes less effective, but as the period

approaches 0, precious resources are spent constantly updating the shares.

A PSS scheme presented by Herzberg et. al. uses a modified Shamir secret sharing scheme that requires

all participants for * + to update the shares every period. The scheme works with Shamir’s

scheme presented above, but after each period is expired, an update process takes place. The update

process involves each participant creating a random polynomial whose free coefficient is 0 (i.e ()

). Each participant distributes this polynomial evaluated at certain values such that at the end, each

share has been updated correctly by every participant’s function. The update process for a normal

Shamir secret sharing scheme is:

 Each participant for * + generates a degree polynomial () where

 ()

 sends () securely

 updates his share by ∑

 Old shares and update information are deleted

This scheme clearly shows that the original constructed polynomial () will be replaced with ()

 () (). Since zero was the free coefficient for the polynomials constructed by every

participant, the new polynomial evaluated at 0 is still the original secret: () () ()

 (). An attacker attempting to contribute one or more previously compromised shares that have

since been updated will cause the entire reconstruction process to fail as a different polynomial will be

reconstructed.

This PSS is vulnerable to a man-in-the-middle attack that could lead to a denial of service. An attacker

could realize that an update process was initiated by listening for update material from any participant

and replacing the update material with their own. This technique corrupts the share that is being

12

updated and prevents it from being able to participant successfully in future reconstructions of the

secret.

To corrupt the share, the attacker just needs to send update material that differs from the polynomial

value that was intended for the victim. As the victim’s share replaces the previous version, the share is

permanently corrupted. One or more attackers could repeat this kind attack to a total of

participants. This would destroy the possibility of recreating the secret as there are not enough valid

shares to meet the threshold value required.

For demonstration purposes, if the attacker was a malicious participant, by constructing a

polynomial () () , the participant could destroy the secret and prevent successful

reconstruction of the secret. An example of such a corruption is presented below.

 Participant is malicious

 generates a degree polynomial () where ()

 sends () for * +

If the malicious participant is successful in having any of the other participants accept the corrupted

update material, the secret not be able to be successfully reconstructed if that participant participates.

The attacker will have successfully launched a denial of service attack on the scheme without violating

any security principles.

In this scheme, there is no method to detect this attacker. VSS schemes such as the one presented

above may be utilized to commit to update material. Participants would not reconstruct the secret when

there is an invalid share present nor would they update their share if the update information was

invalid. The prevention of this attack could also be facilitated by normal cryptographic utilities such as

asymmetric encryption; however this is not information-theoretically secure.

13

Proposed OTP solution using Secret Sharing Techniques
Using secret sharing, verifiable secret sharing, and proactive secret sharing, I will present a

mathematical-based OTP solution that is information-theoretically secure. The solution requires three

phases: dealing, reconstruction, and update.

Motivation
The idea of using a shared secret as a form of authentication is nothing new as many schemes use this

already. For instance, static passwords rely on a shared secret between the authenticator and the user

wishing to be authenticated. Using a portion of a shared secret could also be a method of

authentication.

The most important property that arises when using only the portion of a secret as an authentication

mechanism is that the portion is information-theoretic secure. This means that the secret that has been

split is not revealed when seeing only one portion as long as the threshold is greater than one. This is

great for environments like the Internet that require information to be publically viewable to many

users. For this property to be useful the secret must have some intrinsic value that the share does not or

else an eavesdropper would be satisfied capturing the share. Also, since the secret is not available on

any one computer, stealing the secret is more difficult. Once again, this is not important unless the

secret has some value besides authentication, such as a Social Security Number. The property of

information-theoretic secure shares was the driving motivation for investigating the use of secret

sharing for authentication.

Another property of using partial secrets as authentication is their distributed nature. For instance, a

password could be broken up among many people and only when so many are together can

authentication of a group be established. The often used example of launching a nuclear missile

depending on multiple high ranking officials comes to mind.

14

Despite these obvious uses, there has not been any research into using secret shares strictly as an

authentication mechanism nor a periodic/temporary authentication mechanism as is the case with one-

time passwords. If the share was just delivered to the authenticator as proof of identify, secret sharing

authentication provides no additional protection to traditional passwords. However, used in an OTP

system with changing shares, the properties listed above can be realized. Often time, the techniques

used to construct this secret sharing based OTP come from research that had completely different

visions in mind. For example, the papers that describe updating secrets in a proactive manner had in

mind preventing long term shared secrets, such as private keys, from being compromised. In the case of

an OTP system, updating shares is a great way to generate new passwords. Verifiable secret sharing was

intended to prevent malicious dealers from preventing certain participants from being able to

successfully reconstruct the secret but has in the case of a password system validating update material.

Overview
The user and an authenticator will agree on a shared secret, like a conventional password. This shared

secret will then be split using a ()-threshold scheme (2 shares requiring both shares to reconstruct

the split secret). The user receives a share and the authenticator receives the other share. Under normal

situations, this process can be happen via the distribution of a smart card or other physical contact. If an

encrypted connection is utilized, the theoretical solution can be compromised unless an information-

theoretic secure encryption mechanism is used. Using the share as the password, the user presents this

to the authenticator. The authenticator uses his share and the user’s share to reconstruct the secret and

compare it to the stored secret. If the secret is successfully reconstructed, the user is successfully

authenticated. After successful authentication, both parties use proactive secret sharing to update the

shares and unlike traditional proactive schemes, the secret is updated as well. Both parties should

invalidate the old shares and secret by securely deleting the material.

15

Detail
Expanding on the overview above is a detailed description. The secret sharing techniques verifiable

secret sharing and proactive secret sharing have been tailored to suit an OTP solution. The entire

solution will be proven to be information-theoretic secure in later sections. The setup involves an OTP

generator, which produces passwords, and authenticator, which verifies password, sharing and

communicating information.

Setup

A password generator and authenticator need to setup a shared secret as per Shamir’s classic paper.

Since most of the variables are updated during the update procedure, they will be designated with

superscripts describing the interval in which they are valid. For example, the polynomial () is valid

only for the first password (before the first password is used).

 The generator and authenticator agree on two large primes and such that divides

o will be used in the verification section later

 The generator and authenticator agree on a field of order

 Agree on a shared secret

 The authenticator constructs a polynomial with coefficients ()

 where

 The generator accepts the share
 ()

 securely

 The authenticator saves the share
 ()

 securely

Use

The password for the generator to present to the user who is to enter it into the authenticator is the

generator’s share.

 The user enters
 as her password where represents the current interval

16

 The authenticator uses
 and

 to reconstruct the polynomial ()

 via

interpolation

 The authenticator computes ()
 and compares to the stored secret

Update

The update process changes the last used password into the next. The transformation uses proactive

secret sharing to prevent information about the secret being leaked from previous passwords.

 The generator picks
 in to construct

 ()

 The authenticator picks
 in to construct

 ()

 The generator computes

 () and

 ()

 The user enters
 to the authenticator

 The authenticator computes

 () and

 ()

 The authenticator presents
 to the user to enter into the generator

 The generator constructs the a share

 The authenticator constructs a new share

 Both parties update the secret

 Both parties delete securely all invalid information

Any future verification operates as described above.

Verification

Currently, an attacker is able to perform a denial of service attack by sending corrupted update material

that destroys shares. This was described on the general description of proactive secret sharing. To

prevent this, digital signatures may be used. By having the authenticator and generator sign their update

material they can accept the update material with the confidence the signing algorithm provides.

Similarly a keyed hash function keyed with the secret may also be used for authentication as non-

17

repudiation is not needed. However, unless the mechanism is information theoretic secure, this would

still present a vulnerability to an attacker with unlimited computational ability. By breaking the

asymmetric cryptographic scheme or producing collisions in the hash function, an attacker could corrupt

a participant of the OTP scheme’s generated OTP. To correct this denial-of-service vulnerability,

verifiable secret sharing should be used.

Verifiable secret sharing (VSS) is a technique that often uses bit-commitment schemes to ensure that

shares in a secret sharing scheme are valid. Presented below is a modified version of the update scheme

above that uses Pedersen's information-theoretic VSS scheme to commit to the update material.

Conceptually, the generator commits to the update material using the secret. The authenticator is able

to verify the update material because the authenticator is in possession of the secret. The same process

works for the authenticator desiring to commit to the update information intended for the generator.

The outline presented below is in the case of the generator creating information for the authenticator to

verify its update material. The reverse situation will be outlined afterwards.

 Define as the unique cyclic subgroup of
 order where was agreed upon during

initialization.

o It can be tested if an element is contained in by

 Choose such that nobody knows (). Store these values at initialization time

 The parameters and are parameters defining the system

 The generator wishes to share

 ()

 Define a function as ()

 The generator constructs a polynomial of degree 1:
 ()

 for

 The generator outputs a commitment to the secret
 (

)

 The generator outputs
 (

)

18

 The generator outputs
 () and

 The authenticator verifies
 is valid by checking whether (

 ())

 (
)

 is

true.

o For clarity of the steps:
 (

)

 (

) (

)

 ()
 () (

 ())

The same process outlined above when altered slightly can be used when the authenticator is

generating material for the generator to verify. The authenticator would follow the steps, generating a

random polynomial
 () and sharing

 (
)

 (

),
 and

 (). The

verification of this material by the generator would be accomplished by checking

whether (

 ())

 . Note the differences that
 () is evaluated at 1 instead of 2 and

that verification does not exponentiate
 . Once the update material has been verified, then both

parties can update their shares as shown above without worry of corruption.

Worked Example
A worked example is presented below for clarity. This example offers little security as the field chosen is

small and brute forcing the current password is feasible.

Setup

 The generator and authenticator agree two large primes 23 and 11, note that 11 divides

 The generator and authenticator agree on a field

 Both agree on a shared secret

 The authenticator constructs a polynomial () over

 The generator accepts the share
 () () securely

 The authenticator saves the share
 () ()

 Let * +, the unique cyclic subgroup of of order

19

 The authenticator and generator agree on and

Use

The generator uses the share as the one-time password.

 The generator presents
 as the user’s password

 The authenticator uses
 and

 to reconstruct the polynomial () via

interpolation

 The authenticator computes () () and compares it to the secret 3

Update with Verification

 The generator picks
 in to construct

 ()

 The generator computes

 () () and

 () ()

 The generator picks constructs a random polynomial
 () over

 The authenticator picks
 in to construct

 ()

 The authenticator computes

 () () and

 () ()

 The authenticator picks constructs a random polynomial
 () over

 The generator outputs

o

 ()

o

 ()

o

o
 () ()

 The authenticator outputs

o

 ()

o

 ()

o

20

o
 () ()

 To verify, the authenticator computes the following and compares the results for equality

o () ()

o
 (

)

 ()

 The authenticator computes the new share

 ()

 To verify, the generator computes the following and compares the results for equality

o () ()

o

 ()

 The generator computes the new share

 ()

 Both participants update their secret ()

 Both participants securely delete all invalid information

 The updated shares construct the correct secret 9 as demonstrated by

 ()

This process has been visualized in Figure 1 for understanding purposes. Next time the user wants to be

authenticated, the authenticator must check the newly updated secret instead of the original secret that

they agreed upon at initialization and use the updated shares to reconstruct this newer secret.

21

Figure 1: The functions involved in the update procedure. Note values have not been modulated into for visualization
purposes.

Security Analysis
The security of the proposed OTP solution depend on the security of Shamir's secret sharing scheme, the

security of proactive secret sharing, and the security of verifiable secret sharing (if it is used). Shamir's

secret sharing scheme is proven information theoretic secure as any set of shares less than the

threshold gives no information on the secret. By adapting the proof for general purpose secret sharing

to that of a scheme with a fixed number of shares (2) and a set threshold (2), showing the security

properties of the OTP scheme follows easily.

Proposed OTP Scheme Proof Outline
To show the security of the one-time password scheme, we need to show that by seeing a password, the

number of possible secrets (()) used in generating that password is unchanged. We show this by

establishing a one-to-one correspondence between the possible functions that could have generated

the observed password and all secrets that were initially possible. Since the functions that could have

generated the share we observed are related to all possible secrets in this correspondence, then any of

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5

f0(x)

δ10(z)

δ20(z)

f1(x)

22

these functions with unique secrets () could have resulted in the generation of the observed

password.

Proposed OTP Scheme Proof
Establish the one-time password scheme by sharing a secret between a generator and an

authenticator. Now suppose an eavesdropper observed the generator’s password generated by ().

Let the set represent all functions that could have resulted in generating this OTP.

 * () () +

 Now we establish a mapping between these functions and the secrets that they represent.

 by defining (()) ()

The first step to show a one-to-one correspondence in this case is to show that the size of and are

the same, more specifically they are both of size . is trivially of size . For , we first notice that

there are choices for the 0th coefficient which corresponds to (). By fixing each possible

coefficient along with the known (), is completely determined because () is a 1 degree

polynomial with 2 known values () and () and can be determined with polynomial interpolation.

Every function is unique because () differs for every function. By construction of where we defined

functions based on (), we can see this mapping is onto as is mapped by the function

where () . Since and are of the same size and the mapping is onto, the mapping is a one-

to-one correspondence.

Update Procedure Proof Outline
Proactive secret sharing is information-theoretically secure as long as seeing the publically exchanged

information does not give any information about the private information used to update the password

or the original secret. To show the security of the update mechanism, we use a similar approach as the

23

proof for the password scheme above. We need to show that by seeing the update material, the

number of functions that could have generated that update material still produce every possible value

for the unknown update information that is necessary in updating the password. We show this by

establishing a one-to-one correspondence between the number of functions capable of generating the

revealed update material and all possible values for the hidden material. This will show that seeing the

public update material does not give an advantage into determining the hidden update material as all

possible values for the hidden update material are still possible.

Update Procedure Proof
Establish the one-time password scheme by sharing a secret between an authenticator and a

generator. Now suppose the update phase generate the next password begins. The generator picks a

function ()

 and authenticator picks ()

 both over . As per the

update procedure, the generator shares () with the authenticator while the authenticator

shares () with the generator. Let an eavesdropper observe this update information in the form of

the ordered pair (() ()). An attacker needs to be able to determine () to calculate the next

password as the used password because the new password is () ()
 and () and

have already been observed. Let the set represent the set of all functions that could have generated

this pair.

 *() () () () () () ()
 +

Note that both these functions share the same value when evaluated at , but an eavesdropper does

not know this value as proven previously. Now we establish a mapping between these functions that

could have generated the observed update material and all the values that () could have initially

taken.

 defined by (()) (())

24

The first step in establishing the one-to-one correspondence is to show that the size of both sets is .

For , this is trivially true. For , since these functions are of degree 1, 2 points determine the function

by interpolation. That is, if we pick any 2 points, there is only 1 function of degree 1 that passes through

those points. So for the functions in which are the same when evaluated at zero, there are choices

for that point and all choices define unique functions since two unique points are defined for each

function. Thus there are functions pairs in and the size of is . To show that this relation is a one-

to-one correspondence, we only need to show that the mapping in onto (surjective) as both sets are of

order . Pick a number , let the function be the function such that () and ()

 (). Let the function be the function such that () and () (). Both and are

in due to our construction of the pairs in . Both sets are of size and the mapping is onto, thus the

mapping is a one-to-one correspondence.

Initially, an attacker has choices to guess what value is being added to the password. After seeing the

update material, there are still choices and thus an attacker has learned nothing about this value. A

similar proof can show that an attacker is unable to determine which value is being added to the

authenticator’s share. No information was learned about because no information was leaked about

the update material which could be used to interpolate . The strategy outlined in the proof however

shows how to enumerate all choices of hidden update material. By fixing the point where both update

functions have the same value (0) and taking one of the update values, the other value is determined

because the polynomial is of degree 1. This could be done for both update function, as well as the secret

splitting function (). An attacker could construct a table as below, but this information cannot be

used to determine anything, just enumerate possible values.

25

 () ()
 ()

 () ()
 ()

 ()

 (
)

 ()

Table 1: All possible hidden update material for each fixed secret.

This attack cannot be strengthened by observing many passwords and update material as all update

material is completely random each time. This table shows that by seeing all public information, an

attacker still the same number of possible guesses at the next password as before the this information

was revealed.

There should be some note about the secret and the method in which it is updated. Although the shares

are updated by adding random values, the secret is simply multiplied by 3 repeatedly. If 3 is not a

primitive root of the group in which the secret belongs, then the secret will cycle through some

subgroup of . Even if the secret does cycle through every element of the group, the secret is still

following a cycle and will have the same value at some future point of the scheme. Stronger yet, the

secret will have the same progression of values in the future.

This does not alter the security of the update mechanism. Although an attacker may be able to

determine that secret at some point in time is equal to a previous secret, no information about that

secret was leaked so that all secrets are still possible. An attacker is not able to use this knowledge in an

attempt to determine the private update material, essential for determining the next password. This is

because the shares and update material are chosen independently of the secret and can vary even if the

secret is not. Even if a problem were found regarding this issue, an implementation could be written to

26

require re-initialization when a secret would cycle or check the cycle length of a given secret and

determine if it is long enough for the lifetime of the authentication system.

Verification Procedure Proof Outline

This proof will be in the perspective of the generator creating verification material for the authenticator.

The same method can be used to prove the other situation. To prove the security of the verification

process, we need to show that by seeing

 () and

 () an attacker gains no knowledge of

 ()

 or
 ()

 . We have already shown that

 () gives no

information on the secret and is chosen independently from
 () so

 () does not yield any

information to an attacker. Similarly to proving secret sharing,
 () does not reveal any information on

the rest of
 (). Thus the security of verifiable secret sharing rests with showing that

 and

does not yield any information to an attacker attempting to determine the secret or generate material

that will result in share corruption. We will show this by showing that the function does not give any

information about its parameters.

Update Procedure Proof

We need to show that the operation () does not reveal information about . The

strategy to show this is to demonstrate that by fixing each possible x input to , all possible output

values in are possible for some . This will show that for each value outputted by , every possible

could have produced this value for some which is unknown to the attacker. Define a mapping

 as () for a fixed . We wish to show that this mapping is a 1-to-1

correspondence, a sort of permutation function of . We will first show that both sets are of the same

size. Then we will show that the mapping is onto. Trivially is of size . To determine the size of , we

first note that
 is a multiplicative group of prime power and is thus cyclic. The fundamental theorem

of cyclic groups states that for each divisor of the order of a cyclic group, there exists a unique cyclic

27

subgroup of order . Since is a divisor of , the order of
 , we can define be the unique such

subgroup of order that is proven to exist.

To show the mapping is onto, we need to demonstrate that for every , there exists such

that () . First we observe that is a generator of by construction. This means that we can

produce any element of by taking to some power. Similarly, which is fixed, is also some member

of that can be expressed as for some . So we can express () by () ,

which is simply some member of . Since we can generate any value of to be the sum of by

picking certain , we can generate any element of as is a generator.

We have shown that by picking certain , () can construct any member of , thus () is onto. Since

 () is onto and the codomain and domain are of the same size, () is a 1-to-1 correspondence. A

similar proof can be done to show that () does not reveal any information about . Since none of

the public information reveals insight into determining any of the private information, the verification

process does not weaken the scheme, but does prevent a certain denial-of-service attack.

Implementation

Communication
The biggest issue with implementing this OTP scheme is the communications required. The client

wishing to be authenticated has to give some information to the authenticator between each use. This is

not desirable as OTPs primary use case is as a personal identification number for bank machines and

other such physical authentication scenarios where communication is limited. One way an

implementation may deal with this issue is by generating a finite number of shares by following the

protocol above, and having the client wishing to be authenticated and the authenticator store all OTPs

and use the current OTP whenever authentication is desired. This is not unlike older methods of writing

sequences of numbers or words on a sheet of paper and crossing of used passwords. The information

28

theoretic advantages of the scheme still remain intact as an eavesdropper is unable to predict the next

OTP by seeing previous OTPs, unlike pseudo-random number generators or other OTP schemes.

As with most cryptosystems, distribution of secret keys is difficult. The same problems face the

proposed one-time password system. The secret material is the shared key, initial share, and any other

information needed for the verification process. Secure methods of secret material distribution would

be best achieved if accomplished by using physical contact to authenticate the user who will use the

system. This kind of situation would be common in a corporate environment where the one-time

password solution is utilized for physical access. If the distribution of the secret material were to happen

remotely or with poor authentication techniques of the user, then the whole system could be

compromised. Even if face-to-face or voice-based authentication mechanisms are used, attackers could

use social engineering techniques and care must be taken.

Storage Requirements
Avoiding communication by storing many OTPs can cause storage requirement issues, especially on

limited resource devices such as smart cards. The amount of storage required is dependent on the OTP

size and the number of stored OTPs for future use. Since these numbers are finite and fixed at system

setup, the amount of storage required is known in advance and simple to compute. In fact, the amount

of storage as OTPs are used decreases; however this does not appear to be advantageous to limited

resource devices. The amount of storage required is the size of the password multiplied by the number

of passwords. 128 bits is often used as a strong key space to prevent brute force attacks [15]. For one

authentication per day for a year, bits, or 45.5 kibibits, of storage are required. If

3 128 bit OTPs were generated daily for 80 years, only 10.7 mebibytes of storage are required.

29

If communication is possible and the storage of keys is not required, only nominal space is required for

the share, and other similar information. Unfortunately a device in this class of capabilities in

terms of communication is probably less resource constrained in terms of storage.

Computational Requirements
The OTP scheme consists of polynomial evaluation, polynomial interpolation, and basic arithmetic

operations. The evaluation of polynomials using Horner’s method uses multiplications and additions

for an -degree polynomial [16]. Polynomial interpolation such as Lagrange interpolation is not

computationally expensive, but since the proposed one-time password scheme only involves

interpolating and evaluating lines, Lagrange interpolation is not required. To construct a more efficient

interpolation method for lines, manipulate the point-slope formula (

) (). The

values and are always known as and respectively. By plugging in the values for these

variables, the formula to evaluate the line represented by two points at becomes () ,

which consists of only three addition operations. This formula was used to construct Table 1 above.

After initial setup, the use of the one-time password requires:

30

Process Operations Required Performed By

Addition Multiplication Authenticator Generator

Polynomial Interpolation 3 0 X

Polynomial Evaluation 2 2 X X

Polynomial Addition 4 0 X X

Table 2 : Computational requirement breakdown

The addition and multiplication operations to support the proposed scheme, however, must take place

on numbers larger than most current machine’s native word sizes, often 128 bits or more each. If

verifiable secret sharing is used to authenticate the update material, then more computation is

required. The polynomials () for both the authenticator and generator need to be evaluated once,

commitments to and computed, and the update material verified. These values differ for the

authenticator and generator.

Process
Reason Operations Required

Generator Authenticator Addition Multiplication Exponentiation

Evaluation () () 2 2 0

Commitment
 (

) (
) 0 2 4

 (
) (

) 0 2 4

Verification
 (
 () ()) (

 () ()) 0 2 4

 2 4 1

Total 4 12 13

Table 3 : Requirements for computing update shares when verification is used.

Table 3 shows that even with verification, the amount of computation is small and does not require

sophisticated operations.

31

 Random Source and Distribution
The proposed one-time password solution frequently requires random number for polynomial

construction. During initialization, one random number is needed to construct the secret sharing

polynomial. During update, two random numbers are needed to construct the update polynomials for

the authenticator and generator. If the update material is verified, two more random numbers are

required per round and two more random numbers at initialization time. So there needs to be at most

 bits of random information at initialization and bits per round for an bit password system.

As with all cryptographic systems, if the random number source is predictable in any way, then the

security of the system is compromised.

Comparison to other OTP solutions

Disadvantages

Communication

During the update phase of the proposed OTP solution, the authenticator and the entity being

authenticated need to exchange some update material. This can be implemented either interactively by

having the authenticator and authenticated entity communicate over a bidirectional channel or by

having the update material generated during the initialization phase and stored for later use.

Sometimes it is infeasible to require a bidirectional communication. An example of this situation could

be hardware tokens that do not have any input mechanism or networking capabilities. If the hardware

token were a programmable smart card or a computer program, this is less of a problem as input

mechanisms are available in these situations.

If the update material was generated at initialization time, then the OTP solution is only valid for a

predetermined number of uses. S/KEY also has a finite lifetime before a re-initialization period is

required. The specification requires that some secure method of re-initializing the secret be establishes

32

[7]. If such a re-initialization method is provided, there still must be storage for the pre-computed OTPs

because, unlike S/KEY, all OTPs are needed in advanced.

The amount of material that must be exchanged between each use depends on the size of the secret

material. Each round must exchange the password, the update material, and the verification material.

The password, update material, and some of the verification material is all of the same size. However,

some of the verification material, namely and can be bigger as they are restricted to being less

than in size instead of . Since and are chosen, the amount of difference can be controlled.

Assuming they are all less than bits in size, the scheme takes no more than bits of information in

each direction, bits of information in total each round. For normal symmetric security bit sizes

such as , this is bytes per round.

Advantages

Security

The proposed one-time password scheme is unique among one-time password schemes because of the

information theoretic properties. Most schemes typically use a keyed-hash or encryption algorithms on

a moving factor, typically a counter or timestamp. This technique does not provide security against an

attacker with unlimited computational power who could use the unlimited computational resources to

determine the moving factor by finding collisions with the hash algorithm or decrypting the password. In

either case, the secret material used to generate the password can be discovered and future valid

passwords can be generated. By using Shamir's secret sharing techniques, an eavesdropper gains no

knowledge of the secret material that the OTPs are based upon. Even with unlimited computational

power and previously utilized passwords, an attacker is unable to generate passwords that will be valid

in the future. The only attack on a future password is brute force, trying all possible passwords. This kind

of attack is very noisy and easily detectable by the authenticator. Systems such as SSH and other remote

33

logon systems prevent this by disallowing so many authentications in a set time period, and even

preventing the offending IP address from ever logging in.

The security is similar to one-time pads with a subtle difference, when attempting to decrypt a

ciphertext that was encrypted with a one-time pad, each possible decryption is likely. The same is true

for each future one-time password; however, the authenticator will tell an attacker if his guess is correct

or not. Attackers of one-time pads would have to guess based on the decryption whether the correct

key was used.

The S/KEY and mOTP schemes use cryptographic hash functions (CHF) as their building blocks. CHFs are

designed to prevent collisions, pre-image, and second pre-image attacks often by building upon hard

problems. This means that the output of a CHF reveals some information about the message being

hashed. Taking advantage of this leaked information is considered difficult now, but techniques to

determine this obscured secret may exist in the future. One-time passwords that rely on CHFs for

security in turn are revealing information that could be used to construct valid passwords for future use.

HOTP and TOTP are OTP solutions that are built upon Hash-based Message Authentication Code

(HMAC), a message authentication code built upon a CHF in such a way to mitigate extension attacks.

Despite HMAC's proven resistance to many modern attacks upon the CHF in which it is based, HMACs do

leak information about the underlying method used in the construction of the HMAC [17].

Computation

The proposed OTP scheme is very computationally inexpensive and readily available to install on smart

cards and other resource constrained devices. Although has functions are designed to be extremely

efficient, they still often require many rounds of inexpensive operations. Public key systems that are

used in authentication are extremely expensive computationally and require many bits of information.

34

As discussed earlier, the proposed scheme is computationally inexpensive and suitable for use in

resource constrained devices.

Future Work
The proposed password system is a first in the area of utilizing secret sharing techniques as an

authentication mechanism. There are variations to this scheme such as multiple participants using

multiple shares to authenticate a group that require additional research.

A hurdle to this password scheme adoption is implementation. The appendix outlines current

implementations of the scheme, but there needs to more implementations that will be adopted by large

corporations for the scheme to become a success. Future implementations may wish to consider

methods to improving the ease of use of the system. For instance, a current transaction requires typing

multiple unique hexadecimal numbers. This is not comfortable for most people. Translating the

passwords and other numbers into words as S/Key does may be worth looking into. As with any

authentication scheme, it should be well defined in a standard or presented in a manner to comply with

existing standards to promote multiple implementations that successfully operating together.

Conclusion
A one-time password scheme based upon techniques developed for secret sharing techniques has been

presented. The security of the system has been shown to be information-theoretically secure. This

means that by seeing previous rounds of the password system, an adversary seeing all public

information is unable to reduce the set of future possible passwords. This contrasts with previous

password systems where a computationally unbounded adversary is able to determine future

passwords. The computation and storage requirements of the passwords system have been shown to be

low enough for resource constrained devices to implement such a system, which is typical for one-time

password systems that are often implemented on a dedicated hardware token. Multiple

35

implementations of the system are described in the appendix and are demonstrations of the systems

practicality.

36

Bibliography
1. Schneier, Bruce. Two-Factor Authentication: Too Little, Too Late. Inside Risks. February 18, 2005, p.

27.

2. Fourth-factor authentication: somebody you know. Brainard, John, et al. New York, NY, USA : ACM,

2006.

3. What is an Identification Code? Chase. [Online] JPMorgan Chase. [Cited: March 18, 2011.]

https://www.chase.com/psmhelp/index.jsp?pg_name=ccpmapp/shared/help/page/EandA_activation_c

ode_HELP.

4. Advanced sign-in security for your Google account. The Official Google Blog. [Online] Google Inc.,

February 10, 2011. [Cited: March 03, 2011.] http://googleblog.blogspot.com/2011/02/advanced-sign-in-

security-for-your.html.

5. Cryptanalysis of the Alleged SecurID Hash Function (extended version). Biryukov, Alex, Lano, Joseph

and Preneel, Bart. s.l. : Springer-Verlag, 2003, Selected Areas in Cryptography, Proceedings SAC 2003,

LNCS 3006, pp. 130-140.

6. M'Raihi, D, et al. TOTP: Time-based One-time Password Algorithm. The Internet Engineering Task

Force. [Online] September 8, 2010. [Cited: November 29, 2010.] http://www.ietf.org/id/draft-mraihi-

totp-timebased-06.txt.

7. Haller, N, et al. A One-Time Password System. The Internet Engineering Task Force. [Online] February

1998. [Cited: November 29, 2010.] http://tools.ietf.org/html/rfc2289.

8. M'Raihi, D, et al. HOTP: An HMAC-Based One-Time Password Algorithm. The Internet Engineering

Task Force. [Online] December 2005. [Cited: November 29, 2010.] http://www.ietf.org/rfc/rfc4226.txt.

9. How to share a secret. Shamir, Adi. 11, New York : ACM, November 1979, Communications of the

ACM, Vol. 22, pp. 612-613.

10. DNSSEC Root Key Split Among Seven People. Schneier on Security. [Online] July 28, 2010. [Cited:

March 03, 2011.] http://www.schneier.com/blog/archives/2010/07/dnssec_root_key.html.

11. A practical verifiable multi-secret sharing scheme. Zhao, Jianjie, Zhang, Jianzhong and Zhao, Rong. 1,

2007, Computer Standards & Interfaces, Vol. 29, pp. 138-141. 0920-5489.

12. A Practical Scheme for Non-interactive Verifiable Secret Sharing. Feldman, Paul. Washington, D.C. :

s.n., 1987, SFCS '87: Proceedings of the 28th Annual Symposium on Foundations of Computer Science,

pp. 427-438.

13. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. Pedersen, Torben. [ed.]

Joan Feigenbaum. s.l. : Springer Berlin / Heidelberg, 1992, Advances in Cryptology - CRYPT0' 91, Vol. 576,

pp. 129-140. 10.1007/3-540-46766-1_9.

37

14. Proactive Secret Sharing Or: How to Cope With Perpetual Leakage. Herzberg, Amir, et al. [ed.] Don

Coppersmith. s.l. : Springer Berlin / Heidelberg, 1995, Advances in Cryptology — CRYPT0’ 95, Vol. 963,

pp. 339-352. 10.1007/3-540-44750-4_27.

15. National Institute of Standards. Federal Information Processing Standards Publication 197. s.l. :

Federal Information Processing Standards, 2001. p. 51. 197.

16. Algorithms: Algorithm 337: calculation of a polynomial and its derivative values by Horner scheme.

Pankiewicz, W. 9, New York : ACM, September 1968, Communications of the AcM, Vol. 11, p. 633. 0001-

0782.

17. On the Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. Jongsung, Kim,

et al. s.l. : Springer Berlin / Heidelberg, 2006, Vol. 4116.

38

Appendix

C Library
A library implementing the proposed one-time password solution has been developed in hopes of

promoting its use. The library works on the basis of profiles. Each profile corresponds to a participant of

the authentication system, so every user has a profile that represents a relationship between a certain

authenticator and that user. If the user authenticates with more than one authenticator, they will have

multiple profiles. The same holds true for the authenticator. The authenticator has a profile for each

user that they authenticate. The library creates these profiles and loads them to compute the password,

verify the password, update the shares, and verify the shares. Documentation of the library is provided

digitally.

The library comes with example programs designed to be run as command line applications for simple

experimentation. A simple usage of these command line applications is as follows:

 A user would be given a profile generated by the authenticator:

o ./shamir-create-profile user-profile

 The authenticator would generate his share also:

o ./shamir-load-profile user-profile authenticator-profile

 The user could generate a password:

o ./shamir-generate-otp user-profile

 The authenticator could check the password :

o ./shamir-check-otp authenticator-profile otp

The last two commands require communication of the update and verification material. This is done via

standard input.

39

PAM Module
To allow authentication via native applications already written, a PAM module was written that utilizes

the C library described above. By providing a PAM module, applications such as login in environments

that use PAM are capable of utilizing the proposed scheme to authenticate users.

To use the PAM module, the pam module must be compiled and installed properly. Compilation

generates a shared library that in most distributions should be placed in /lib/security. This

process should be taken care of by the build system. Once properly installed, the application that wishes

to use the one-time password scheme for authentication must edit a configuration file specific for that

application that PAM uses. These configuration files are usually located in

/etc/pam.d/application where application is the name of the application. The file should

include a line that tells PAM to use the module.

auth required shamir_otp

For each user that wishes to be authenticated with the system, a configuration file must be placed in

/etc/init.d/

Android Application
Since most one-time password solutions require a hardware token, time to market is often very long. To

reduce the difficulty of introducing this one-time password system to a user base, an Android

application was written. Android is a mobile phone operating system that has become very popular

recently. The application allows the hardware token to be replaced by the user’s cell phone or other

Android device while still satisfying the something you have property of multi-factor authentication. The

application is straight forward to use, but is unable to provide the convenience of loading profiles from

files as the C library is. This just means that the user has to manually enter the contents of this file; this is

40

demonstrated in Figure 2. The actual presentation of the password from the generator to the user is

demonstrated in Figure 3.

Figure 2: The preparation of the generator for use in the password system.

Figure 3: The generation of a password along with update and verification material.

41

Glossary
Android - A mobile operating system based upon Linux and developed by Google Inc.

Hash chain - A successive application of a cryptographic hash function.

HMAC - Hash-based Message Authentication Code. An algorithm that computes a message

authentication code by utilizing cryptographic hash functions and a secret key.

Homomorphic encryption - A form of encryption where a specific algebraic operation performed on the

plaintext is equivalent to another (possibly different) algebraic operation performed on the ciphertext.

HOTP - HMAC-based One-Time Password. A one-time password algorithm specified by OATH that

utilizes a message authentication code and a counter to construct passwords.

Lagrange polynomial - The least degree polynomial that interpolates points using a technique named

after Joseph Lagrange.

Lamport’s scheme - See S/Key

MAC - Message Authentication Code. An piece of information used to authenticate and verify the

integrity of a message. MACs do not provide non-repudiation.

MFA - Multifactor authentication. Authentication that happens on two or more independent factors of

authentication.

mOTP - Mobile One-Time Password. A one-time password algorithm designed to be implemented on

mobile devices.

OATH - Open Authentication. A group that publishes documents specifying authentication mechanisms.

One-Time Password - A temporary password that is often used in a multi-factor authentication system.

PAM - Portable Authentication Module. A software library that allows applications to hand off the

process of authentication to a dedicated library.

Polynomial interpolation - The process of constructing a polynomial which goes exactly through given

points.

Proactive secret sharing - Secret sharing that utilizes certain techniques to allow shares to be updated in

such a way that prevents non-updated and updated shares from reconstructing the secret.

S/Key - A one-time password system developed for dumb terminals that uses a hash chain to construct

passwords.

Secret sharing - The act of creating multiple shares from an initial secret in such a way that the shares

can be combined to generate the secret.

42

Share - A portion of the secret that under some circumstances with other shares reconstruct that secret.

Threshold - The number of shares in a secret sharing scheme that are required to reconstruct the secret.

TOTP - Time-based One-Time Password. A one-time password algorithm specified by OATH that utilizes

a message authentication code and the current time to construct time-based passwords.

Verifiable secret sharing - Secret sharing that utilizes certain techniques to allow share receivers to

verify that the shares they are receiving are not corrupt or maliciously crafted.

43

Vita
The author was born in Covington, Louisiana. He obtained his Bachelor's degree in computer science

from Louisiana State University in 2009. He joined the University of New Orleans computer science

graduate program to pursue a Master's in Information Assurance and became a member of Dr. Richard's

research group in 2010.

	One Time Password Scheme Via Secret Sharing Techniques
	Recommended Citation

	tmp.1318624567.pdf.K2I0u

