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I. The Composition of Inshore Bycatch 

Abstract 

 In Lake Pontchartrain Basin, commercial fishing in estuarine habitats impacts many non-

target species collected as bycatch.  I investigated the bycatch assemblages collected by 

commercial vessels and compared these to assemblages collected by typical fishery-independent 

methods.  I compared assemblages using analysis of similarity (ANOSIM) and determined 

important species by weight and abundance using similarity percentages analyses (SIMPER).  I 

also examined differences in size-class distributions by gear type using density kernel plots and 

Mann-Whitney U tests.  The two gear types collected significantly different assemblages 

(ANOSIM R = 0.522, p = 0.001) and gear type explained more composition differences than 

other factors such as month, daytime, or location.  Fishery-independent gear underestimated the 

importance of many species.  Although fishery-independent data are invaluable for monitoring 

assemblage dynamics, fishery-independent gear collects different assemblages than commercial 

gear.  Larger fishes of important species were caught less often in bycatch, but completely absent 

from fishery-independent gear.  

 

 

Keywords:  fishery, shrimp, bycatch, assemblage, gear type, Lake Pontchartrain 
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Introduction 

The incidental take of non-target fishes by the shrimping industry, or “bycatch,” has long 

been recognized as a potential threat to the health of Louisiana’s fisheries.  Worldwide the 

highest rates of discarding have been attributed to shrimp trawl fisheries, (Alverson et al., 1994; 

Bergmann et al., 2002a).  The impacts of repeatedly dragging trawl nets, in particular, over water 

bottoms both in the continental shelf and the deep ocean are among the most severe ecological 

impacts upon marine ecosystems (Engel and Kvitek, 1998).  Any particular area of the shelf can 

repeatedly dragged many times a year, reducing the structure of bethic habitats as clear-cutting 

destroys forests (Watling and Norse, 1998).  Here I focus only on shrimping’s impact to the fish 

assemblages in southeastern Louisiana.   

The first local attempt to describe the problem was Gordon Gunter’s “Studies of the 

destruction of marine fish by shrimp trawlers in Louisiana,” written at the dawn of the motorized 

shrimp fishery in Louisiana (Gunter, 1936).  The author lamented the destruction but gave up 

hope of studying the problem, much less solving it (Gunter, 1936).  Despite concerns generated 

by Louisiana conservationists, the shrimping industry continued to grow into the 1950s and 

beyond, even after catches had reached a plateau (Anonymous, 2007).  Later, in the 1980s, 

bycatch of endangered sea turtles became a hot-button issue among national environmental 

groups.  These concerns led to federal regulation of fishing gears and mandatory gear changes 

such as turtle excluder devices (TEDs) and bycatch reduction devices (BRDs).  Shrimpers in 

Texas and Louisiana famously blockaded shipping channels to protest the national TED 

regulation, which they saw as unnecessary for their region, which was sparsely populated by sea 

turtles compared to the Atlantic and Florida coasts where the TEDs were invented (Margavio et 
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al. 1996).  Since these conflicts, shrimpers have been using wing nets, usually reserved for 

shallow-water shrimping, more often (Anonymous, 2007).  Beyond the fact that no TED is 

required in the bag end of wing nets, this change will predictably alter which nekton species are 

impacted most by bycatch mortality. 

Chesney et al. (2000) explained the need for directed research on the effects that these 

anthropogenic changes have on Louisiana’s fisheries.  In particular, they emphasized the 

necessity for research on the ecosystem impacts of bycatch in order to find ways to reduce these 

impacts or channel them in constructive ways.   Since 1972, Louisiana’s fisheries have proven 

resilient to the chronic disturbance industrial-scale shrimping imposes—but that resilience does 

not exclude changes in the assemblage of fishes: 

“Bycatch mortality probably has a significant structuring effect on nekton 

populations and community structure, but it may not have a significant impact on total 

system secondary productivity because bycatch is generally consumed within the 

system…This redistribution of the benthic food chain undoubtedly affects community 

structure in heavily trawled ecosystems.” (Chesney et al., 2000). 

 

           The best available data, sampled directly from commercial vessels, comes from a 1993 

Louisiana Department of Wildlife and Fisheries (LDWF) technical report on bycatch in the 

shrimp fishery.  A major finding of this report distinguished the gear types (wing net and trawl) 

in their average fish: shrimp (F: S) ratios (Adkins, 1993).  Although the averages reported in 

Chesney et al., (2000) convey the idea that the amount of bycatch is very regular, the ratio varies 

markedly per catch (Adkins, 1993)  Although annual statistics of the shrimp fishery show F:S of 

4:1 or 9:1, 56% of individual tows (n=104) in the Adkins report yielded F:S ratios below 1.5:1, 

with an overall geometric mean of 1.24:1 (Adkins, 1993). 
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 Such variability suggests that science could benefit the industry and conservation alike by 

determining which shrimping methods avoid the relatively few trips that result in the vast 

majority of the bycatch.  Because the industry is diverse and the natural variability of bycatch is 

great, monitoring studies that explore and explain this variability are needed.   Monitoring 

studies are a standard practice  for determining bycatch (Diamond, 2003; Brewer et al., 2006; 

Holst and Revill, 2009).  To conduct a representative monitoring study, two questions should be 

addressed: 1. where and when should sampling occur? and 2. how much sampling is enough?  

Knowing how variable the differences in assemblages and F:S ratio are between different kinds 

of hauls would allow us to place Louisiana’s current monitoring efforts in context as well as 

inform managers how to design new monitoring programs appropriately.  Similarly, comparing 

commercial hauls to scientific hauls may allow us to predict which species are regularly missing 

from the smaller scientific nets.  By studying the variability of commercial fish catches, we can 

determine how to improve our monitoring programs to prioritize highly variable aspects.  For 

example, if catches differ widely over the year, monitoring cannot take place during a single 

season.  We can also judge whether it is reasonable to expect that we can predict whether these 

missing species show up in bycatch. 

 The fact that over half of individual catches have a low F:S ratio has inspired researchers 

to survey bycatches on commercial vessels in the hope of finding environmental or geographical 

causes of high F:S ratios (Diamond, 2003).  These researchers are motivated to discover ways of 

improving the general ratio.  For example, Gunter (1936) claimed that the destruction of fishes 

was worse from late spring into the fall while Adkins (1993) wrote that ratios of offshore catches 

were larger than those inshore.  Shrimpers’ hypotheses vary considerably, but they commonly 

report that, “It’s different every day.”  How bycatch and F: S ratios differ among areas, days, or 
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boats on the same day will influence future scientific monitoring efforts.  Changes in the 

geography of shrimping activity may also influence the annual F:S ratio, should there be 

significant differences between F:S ratios offshore and inshore.  But if the behavior of the fishery 

were changed to reduce bycatch without altering its catches of shrimp, the objections to “wild” 

shrimp fisheries as wasteful would lessen in comparison to objections raised to industrial shrimp 

aquaculture, with its attendant mangrove deforestation, chemical pollution, and negative public 

health effects (Barraclough and Finger-Stich, 1996; Lewis et al., 2003).  How such objections 

would be weighted is the topic of ecological economics and outside the scope of this study.   

To inform this debate, I gathered data to understand how bycatch generated by the 

shrimping industry negatively impacts the fish assemblages of the Lake Pontchartrain Basin.  My 

first objective was to compare the bycatch of the inshore fishery to the shrimp fishery of 

Louisiana as a whole.  To accomplish this I compared F:S ratios from commercial gears to 

statewide data, collected both inshore and offshore in past studies.  While it is common to see 

arithmetic means of these ratios published as the “average” ratio of pounds of fish to pounds of 

shrimp caught (Adkins, 1993; Diamond, 2003), I calculated the arithmetic mean alongside the 

geometric mean and the median, because these metrics are respectively mathematically correct 

(Douglas, 2004), and more representative of the ratio “on average.” 

 My second objective was to compare the bycatch assemblage by gear type and to discern 

species differences between fishery-dependent and fishery-independent gears, and between two 

types of commercial gears.  To accomplish this, I conducted an ANOSIM of catches among the 

three gear types (Clarke and Warwick, 2001). 

My third objective was to assess the temporal variability in bycatch compostion so that 

future fishery independent or fishery dependent sampling efforts can be designed to capture the 
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most information with the least effort (Borges et al., 2004).  By comparing the similarity or 

length-frequency of catches from month to month, agencies can determine how often to sample 

from commercial or scientific vessels.  I also compared the length-frequency of size classes of 

important species between hauls on a single trip to compare the length-frequency of catches from 

haul to haul on a single trip.  
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Materials and Methods 

Study Location 

 All collections were made within the inshore area of the Lake Pontchartrain Basin, which 

includes LDWF Zone 1, from the Pearl River to the Mississippi Birdfoot Delta, and particularly 

the passes at the Rigolets and in the Mississippi River Gulf Outlet (MRGO; Figure 1.1).  This 

area contains Lake Borgne, Lake Pontchartrain, and Lake Maurepas.  From June to October 2007 

and 2008, I periodically collected data aboard commercial shrimping vessels (Diamond, 2003).  I 

solicited shrimpers at docks during and between the brown and white shrimp (Farfantepenaeus 

aztecus and Litopenaeus setiferus) seasons.  I made eight day-long trips on local shrimp vessels 

and later conducted my own fishery-independent sampling in the same regions for comparative 

purposes (Barret et al. 1978; Figure 1.1).  Every location I sampled was related to a local 

maximum in tidal amplitude, because shrimpers seek areas of strong tidal flow to maximize their 

collection efforts. 

 

Sampling Methods and Data Analyses  

 F:S ratios were compared using simple scatterplots.  The F:S ratios of 104 samples from 

the statewide shrimp fishery were reported by Adkins (1993).  The ratios of the samples 

collected from the inshore Lake Pontchartrain Basin shrimp fishery (section 12.1 by Adkins’ 

schema) could be compared using histograms, because the data are summarized by gear type. 

 It should be noted that current fishery-independent monitoring samples by LDWF do not 

take tide into account and thus may not be comparable to the efforts of shrimpers.  With this in 

mind, I compared data taken from commercial vessels with those by fishery-independent vessels 

by re-sampling these same areas with a standard “scientific” 4.9 m otter trawl as operated by 
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LDWF (Barret et al. 1978) during active tidal periods in order to see what differences exist 

between these “commercial” samples and “scientific” monitoring samples.  I refer to these 

commercial samples as “trawl” or “wing net” samples depending on what gear was deployed 

during each fishing trip.  

 

Figure 1.1 Passes sampled during sampling efforts on commercial vessels. 

Modifying (Bergmann et al 2002a), I recorded location, tow duration, gear used, and 

estimated total weight per tow.  A GPS unit (Garmin GPS 76) was used to determine location 

during the entire time period of most commercial samples; location and time were recorded when 

the nets were lowered and taken up.  Commercial vessels generally dragged or pushed nets at 2 

knots or less.  Typically nets were lowered and then raised after about an hour.  At this point, the 

catch was dumped unto a section of the deck for the purpose of sorting the shrimp from the 

fishes, using common plastic baskets (Figure 1.2).  I separated the fishes from the shrimp, then 

weighed baskets of catch before placing the fishes on ice in ice chests for later processing in the 
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laboratory.  If I ran out of room in the ice chests, I weighed the bycatch after it was separated, 

before throwing it overboard.  From these unsaved samples, I have kept voucher specimens of 

species previously uncaught on that day.  Other species, such as cownose rays (Rhinoptera 

bonasus) were unwelcome onboard commercial vessels and were often thrown overboard 

immediately.  For these, I estimated size and weight based upon previous fishery-independent 

data collected by the Nekton Research Laboratory (NRL) at the University of New Orleans.  

Because some boats keep blue crabs (Callinectes sapidus) for sale, I weighed these after each 

tow, before they were thrown on ice.  Every time the nets were lifted, the following water quality 

data are collected with a handheld YSI 85 multi-meter:  temperature (oC), salinity (PSU), 

dissolved oxygen (mg/L), percent dissolved oxygen, and conductivity (mS/cm). 

 

 
Figure 1.2.  The separation and weighing process for a small catch.  This captain kindly allowed 
me room. 
 

To compare fish assemblages caught with different gear, I returned to the same area 

within two weeks, but in a smaller vessel, fishing with a 4.9 m (16’) “test” otter trawl (Barret et 

al. 1978), referred to here as the “scientific” trawl.  I followed the standard scientific protocol 

and fished the net in a zigzag fashion for 10 minutes at 2 knots, three times over the area sampled 
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previously by the commercial shrimper.  Shrimp were separated from fishes and the whole 

sample weighed and placed on ice in an ice chest with the fishes.  For each 10-minute sample, 

the same water quality data were taken with a handheld YSI 85 multi-meter. 

 To process assemblage collections, fishes were returned to the laboratory on ice or frozen 

for later processing.  According to LDWF protocol, samples were separated by species, and 

smallest and largest standard lengths (SL) recorded.  Up to fifty total lengths (TL) for each fish 

species, from individuals randomly selected from the sample, were recorded.  Samples were 

weighed by species.  This is the standard procedure for processing LDWF ‘trawl’ samples.  The 

largest and smallest fish from each species were selected to ensure the 50 lengths randomly 

sampled captured the range.  

 I used an analysis of similarity (ANOSIM) to compare assemblages by gear type, 

location, month, as well as day versus night (Clarke and Warwick 2001).  This non-parametric 

multivariate approach tests for significant differences in the species compositions of different 

samples.  Given that the gear types sample different parts of the water column, at different times 

of day, and that shrimpers fishing with wing nets fish at more similar tidal periods than trawlers, 

it is expected that the type of gear used will affect the fish assemblage caught.  From previous 

fishery-independent studies in the Lake Pontchartrain Basin (Schieble et al. 2002), time of day 

(day versus night) affects the catch rate of certain species, due to changes in the effectiveness of 

the gear as well as behavioral differences among species.  In cases of significant assemblage 

differences, I conducted the SIMPER (similarity percentages) routine to calculate both average 

similarity and dissimilarity among groups (Clarke and Warwick, 2001).  This routine determines 

which species are the major drivers of the observed assemblage changes. 
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 The paired commercial and scientific samples were compared using ANOSIM to 

determine significant differences between the two basic gear types: 3 m versus 10 m trawl nets.  

To conduct an ANOSIM of the effect of gear type on assemblages caught, I transformed the 

abundance and weight data matrices with a fourth root transformation (Bergmann et al., 2002a).  

I used this more severe transformation over the square root transformation due to both the 

differences in sampling effort between commercial and scientific methods, as well as the low 

sample size. 

I used the SIMPER analysis to determine which species were the most significant drivers 

of the differences among gear types.  Scientific samples were also compared to regular 

monitoring samples taken monthly in similar areas, to determine whether sampling during the 

tides used by shrimpers had a significant effect in separating the assemblages. 

Because the different gear employ nets of different sizes, I expected the lengths of the 

species caught to be different among the three gear types.  Lengths sampled randomly from each 

sample were not expected to be normally distributed, given that there may be different size 

classes within a single sample.  Each commercial haul lasts approximately an hour’s time 

between the lowering and lifting of nets.  Each scientific haul lasts ten minutes.  Samples from 

each haul were weighed by species and an SL range taken.  Fifty TLs were taken randomly 

among the individuals of each species to represent the lengths of that each species each hour. 

         When individual total lengths of these important species are plotted, the lengths are 

often bimodal and do not follow a normal distribution.  Therefore, detecting differences among 

gear types requires a non-parametric test.  I assessed this by constructing density plots and using 

a Mann–Whitney U test, a non-parametric test for assessing whether two independent samples of 
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observations come from the same distribution (Holst and Reville, 2008).  I examined differences 

among gear types for four of these important species. 

Samples taken during the same trip were compared to determine the basic differences in 

assemblages caught at the smallest time scale.  Throughout a single day or night, shrimpers 

collect the same species in a haul.  I tested whether or not the catch is composed of the same size 

classes to determine whether or not a sample from one hour-long tow is representative of size 

classes caught the entire trip.  The same density plots and Mann-Whitney U tests were used to 

display and test for differences in the lengths of one species, white trout, C. arenarius, among 

hours.   
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Results 

Over two years, I collected 63 vertebrate and one squid species (brief squid, Lolliguncula 

brevis) representing 29,480 specimens.  These were collected during 21 trips on commercial 

vessels and 35 scientific sampling efforts (Table 1.1).  In addition to these, I was present for the 

bycatch of one Malaclemys terrapin, a diamondback terrapin that was immediately released 

upon its removal from the net.  All collections were made in the natural and artificial passes that 

connect Lake Pontchartrain to Lake Borgne and the Gulf of Mexico (Fig. 1.1).  Samples 

collected in the MRGO were from trawling vessels, whereas both commercial gear types were 

used in the Rigolets.  Fewer samples were taken in the later months of the L. setiferus season, 

due to the arrival of hurricanes Gustav and Ike in the fall of 2008.  Due to the irregular nature of 

sampling from commercial vessels, sampling the same area with scientific gear did not always 

occur.  One species, the sharksucker (Echeneis naucrates), was collected only once.  I also 

collected specimens of the shrimp eel (Ophichthus gomesi) although this species was not found 

in historical fish surveys of the region (Thompson and Verret in Stone, 1980; O’Connell et al., 

2004).  Both of these species were collected by commercial wing net samples fished at night. 

           

F:S ratios 

           From 7 commercial and 13 scientific field efforts (trips) for which F:S ratios were 

recorded in the field, there were 5 individual commercial trawl hauls, 19 individual commercial 

wing net hauls, and 26 individual scientific otter trawl hauls.  ‘Hauls’ are defined as the catch 

from the entire time a cod end is released into the water until the time it is pulled up.  Of the 26 

scientific hauls, 8 caught no shrimp and are excluded from this analysis.  Generally, commercial 

nets were down and actively fishing for approximately an hour, except for an initial part of the 
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trip as the captain “tested” the waters for shrimp.  Scientific hauls were ten minutes each.  Due to 

limited storage space on deck, not all hauls that were weighed were sampled for assemblage data 

and, due to periodic equipment failure, not all assemblage samples were weighed in the field.  

 As previously stated, geometric mean was calculated alongside arithmetic mean and 

median, in order to represent the differences between the types of “average.” 

For the commercial gear samples, F:S of the 19 wing net samples was consistently lower 

than F:S of the 5 trawl samples (Figure 1.3).  Summarized by gear type, the scientific trawl had a 

total ratio of 1.3, the commercial trawl 2.0, and the wing net a ratio of 0.5.  For the scientific 

trawl (n = 18), the mean F:S was 9.85, the geometric mean 2.85, and the median 4.28.  For the 

commercial trawl (n = 5), the mean F:S was 1.95, the geometric mean 1.33, and the median 2.05.  

For the wing net hauls (n = 19), the mean F:S was 0.69, the geometric mean 0.51, and the median 

0.48.   

 

Figure 1.3 F:S versus shrimp weight for commerical hauls (~1 hour each) for this study and 
Adkins (1993). (a) Ratios from this study.  Squares represent ratios from commerical trawl nets 
and triangles represent wing nets.  (b) Ratios from Adkins (1993).  Diamonds represent both 
trawl (n = 71) and wing nets (n = 34), for a total of 104 samples. 
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Because Adkins’ (1993) F:S data are summarized in his report, I could not tell which 

catches were from wing nets and which from a commercial trawl.   The total number of these 

ratios for the mixed gear types (wing net (n=34) and trawl (n=71)) was 104.  The mean F:S was 

3.21, the geometric mean 1.24, and the median 1.29.  To compare my own data to Adkins’ 

report, I combined the ratios from both commercial gear types in my study, for a total of 24.  The 

mean F:S for mixed commercial gear (wing net (n=19) and trawl (n=5))  was 0.95, the geometric 

mean 0.62, and the median 0.56.  These numbers are lower than those of the statewide study, 

although the summarized nature of Adkins’ (1993) data makes them difficult to compare. 

 

Catch composition differences between commercial and scientific gear  

           I collected 53 species and 21,641 specimens from 8 field efforts (trips) and 29 sampling 

efforts (hauls) on commercial vessels (Table 1.2).   Specimens of the two penaeid shrimp species 

targeted by the commercial shrimpers (brown, F. aztecus and white, L.setiferus) typically 

occurred in the fish assemblage samples despite our best efforts to sort them out.  Most but not 

all captains retained the specimens of C. sapidus for sale at the dock or for personal 

consumption.  Other invertebrates, including isopods (Isopoda), mud crabs (Rithropanopeus 

harrisii), grass shrimp (Palaemontes sp)., and mantis shrimp (Stomatopoda), were present but 

have been excluded from this analysis because their weight and number were markedly small in 

catches, although they may be quite abundant in the area. 

 Because C. sapidus was retained on most of the commercial vessels, sampling C. sapidus 

in the field was irregular. That species has consequently been excluded from the following data 

analysis, although it played a large role in the bycatch.  With the exclusion of cownose rays 

(Rhinoptera bonasus), fishes that occurred in one third or more of the hauls comprised 92% of 
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the weight and 99% of individuals in all hauls.  The three most abundant species were Atlantic 

croaker (Micropogonius undulatus), bay anchovy (Anchoa mitchilli), and white trout (Cynoscion 

arenarius), comprising 73% of the total number of fishes.  The three heaviest species were M. 

undulatus, C. arenarius, and gulf menhaden (Brevoortia patronus), comprising 62% of the total 

weight.
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Table 1.1. Descriptions of 23 field efforts (trips) for the current bycatch survey, 2007-2008.  Included are temperature (oC), salinity 
(ppt), the number of the pair (one scientific effort for every commercial effort), the month of the effort, whether it took place in the 
day or night, the approximate location, the number of species, the number of individual fish, and the total Weight of the  
fishescollected, in kilograms. 
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92% of the weight and 99% of individual specimens.  Three species, C. nebulosus, B. marinus, and A. felis, are noticeably larger on 
average (Mean Weight -grams).  “t” signifies “trace”  percent of the total weight, below 1 percent. 

 
 
Table 1.3.  Species from scientific hauls that occurred more than 25% of each haul.  These 12 species comprise 90% of the weight and 
98% of individuals caught by the smaller (16’ / 4.9 m) otter trawl net.  Note that Brevoortia patronus, which makes up 13% of the 
weight and is caught 83% of the time in commercial hauls, does not make this list.  The marine catfish species B. marinus and A. felis 
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have the largest average weight. “t” signifies “trace”  percent of the total weight, below 1 percent. 
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Using the 4.9 m “scientific” trawl, I collected 6,993 specimens representing 32 fish 

species and one squid species (L. brevis) from 13 trips and 30 hauls (Table 1.3).  Each trip 

consisted of multiple hauls.  Again, invertebrates such as C. sapidus and R. harrisii have been 

omitted from the analysis.  Fishes that occurred in one quarter or more of the samples comprised 

90% of the weight and 97.8% of individuals in all samples (Table 1.3).  The three most abundant 

species were A.mitchilli, M. undulatus, and C. arenarius, comprising 89.6% of the total number 

of fishes.  The three heaviest species were hardhead catfish (A. felis), M. undulatus, and A. 

mitchilli, comprising 74.6% of the total weight of fishes. 

The most dominant species by weight and by number in all hauls was M. undulatus while 

C. arenarius was collected in 100% of commercial and scientific hauls.  The dominant species 

that showed the most change among sampling types were Gulf menhaden, B. patronus, and 

gafftopsail catfish, B. marinus (by weight), and A. mitchilli (by abundance).  The gafftopsail 

catfish, B. marinus, was almost exclusively caught in commercial trawl hauls.  Gulf menhaden, 

B. patronus, was almost exclusively captured by commercial wing net hauls.  Bay anchovy, A. 

mitchilli, was almost exclusively captured in wing net and scientific hauls. 

 

ANOSIM Results 

           For the ANOSIM, I separated hauls into those caught in wing nets, those caught in larger 

(>10 m) commercial trawls, and those caught in smaller (4.9 m) scientific trawls.  Gear type was 

the factor that explained most of the variance among hauls (Table 1.4, a and b).  The global test 

found significant differences (R = 0.522. p < 0.05), and all pairwise differences were significant 

(p < 0.05). Differences between samples grouped by location were globally significant 

(ANOSIM, R=0.247, p=0.014), although location differences explained less dissimilarity than 
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gear type differences (Table 1.4a).  Among the four locations, only pairwise differences between 

locations in the different passes (Rigolets and MRGO) were significant (Table 1.4c).  

Differences between samples taken during the day and those taken at night were significant 

(ANOSIM, R = 0.211, p = 0.015), but since all commercial trawl trips took place in the day, and 

all wing net trips took place at night, these differences are confounded with gear type.  

Differences between months were not significant (ANOSIM, R = 0.154, p = 0.083).  The lowest 

stress two-dimensional representation of the dissimilarity matrix (stress = 0.16) exhibits a clear 

grouping of haul assemblages by gear type (Figure 1.4, Figure 1.5).  Other factors did not 

separate the hauls as well. 



21 
 

Table 1.4.  (a) Global one-way ANOSIMs for 4th root transformed abundance data from the four different scenarios.  Most differences 
are significant at p < 0.05. (b) Global and Pairwise ANOSIM for the same data by the three gear types.  All differences are significant 
at the p < 0.05 level. (c) Table 1.6.  Global and Pairwise ANOSIM for the same data by four locations.  Only differences between the 
passes are significant at the p < 0.05 level. 
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Figure 1.4.  MDS plot of 4th root-transformed abundance data by trip for 21 trips.  Assemblages group by gear type more strongly than 
by time or location, or time of day.  MDS for 4th root-transformed weight data was similar. 

 

Figure 1.5.  MDS plot of 4th root-transformed abundance data by Trip and Gear for 21 trips, by Location(a), Time of Day(b), and 
Month(c).  The MDS plot for 4th root-transformed weight data showed similar groupings
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    SIMPER Results 

           SIMPER analysis showed that dissimiliarities between gear types were driven by multiple 

species, in both analyses by weight and by abundance.  That is, in none of the comparisons did 

just one species drive the observed differences.  In only one analysis did a single species, B. 

patronus, drive more than 10% of differences.  Below, I describe in detail the five most 

important species for each of six analyses. 

 Four species (B. marinus, cutlassfish [Trichiurus lepturus], white trout (C. arenarius), 

and M. undulatus, were collected in larger numbers in the commercial trawl than in the scientific 

trawl, while A. mitchilli were caught in lower numbers (Table 1.5.a).  The commercial trawl also 

captured heavier samples of the first four species, along with spot (Leiostomus xanthurus;  Table 

1.5.b). 

Differences between the scientific samples and the wing net samples were driven by an 

increase in B. patronus in the commercial samples, by abundance and by weight.  White trout (C. 

arenarius), M. undulatus, and threadfin shad (Dorosoma petenense) also increased by number 

and by weight in the wing nets (Table 1.6).  In the analysis by abundance, A. mitchilli increased 

in number in wing nets, while C. nebulosus was more important in the analysis by weight (Table 

1.6.b). 

Differences between the two commercial gear types (commercial trawls and wing nets) 

were driven by similar species.  By abundance, more A. mitchilli and B. patronus were caught in 

wing nets, while more B. marinus, A felis, and M. undulatus were caught in commercial trawl 

samples (Table 1.7.a).   In the analysis by weight, the increase in A. mitchilli and decrease in M. 

undulatus in wing net samples were less important than the increase of L. xanthurus and T. 

lepturus (Table 1.7.b). 
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Table 1.5. SIMPER results for the pairwise comparison of assemblages caught in the commercial 
trawl and the scientific trawl samples. 

 

Table 1.6. SIMPER results for the pairwise comparison of assemblages caught in the scientific 
trawl and the commercial wing net samples. 
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Table 1.7. SIMPER results for the pairwise comparison of assemblages caught in the two 
commercial gear types, the wing net and the commercial trawl samples.  Note that this pairwise 
comparison was not significant by weight. 

 

 

Table 1.8  Minimum and Maximum Standard Lengths (mm) for species by gear types. 

 

 

Obvious changes in size class between gear types 

         Among the dominant species collected, there were differences in size classes by gear type 

(Table 1.8).  While there were no obvious differences in the range of sizes (SL) of A felis and B. 

marinus, B. patronus, C. arenarius, and M. undulatus (the most commonly caught species) were 
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markedly smaller (by ~50 mm) in the scientific trawl.  Anchoa mitchilli collected in scientific 

nets had a slightly (~20 mm) smaller minimum size than those collected with commercial trawl 

gear.  Trichiurus lepturus exhibited the largest discrepancy in the maximum size:  commercial 

gears caught fish over 400 mm larger than scientific gear. 

 

Evaluating changes in size class with density kernel plots and U tests 

         As stated, each commercial haul lasts approximately an hour’s time between the lowering 

and lifting of nets.  Each scientific haul lasts ten minutes.  Samples from each haul were weighed 

by species and an SL range taken.  Fifty TLs were taken randomly among the individuals of each 

species to represent the lengths of that each species each hour. 

         When individual total lengths of these important species are plotted, the lengths are often 

bimodal and do not follow a normal distribution.  Therefore, detecting differences among gear 

types requires a non-parametric test.  I chose the Mann-Whitney U test to examine differences 

among gear types for four of these important species.
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Figure 1.6. Density kernel plots for B. marinus TLs, for all gear(a), and by gear, commercial 
trawl(b), wing net(c), and scientific trawl (“4.9m”) (d). There are only a few lengths for the wing 
net samples.  Note the irregular scales of the plots. 
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Figure 1.7.  Density kernel plots for B. patronus TLs, for all gear(a), and by gear, commercial 
trawl(b), wing net(c), and scientific trawl (“4.9m”) (d).  There are only two lengths for the 
scientific trawl samples.  Note the irregular scales of the plots. 
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Figure 
1.8.  Density kernel plots for C. arenarius  TLs, for all gear(a), and by gear, commercial trawl(b), 
wing net(c), and scientific trawl (“4.9m”) (d).  Note the irregular scales of the plots. 
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Figure 1.9.  Density kernel plots for M. undulatus  TLs, for all gear(a), and by gear, commercial 
trawl(b), wing net(c), and scientific trawl (“4.9m”) (d).  Note the irregular scales of the plots. 
 
Table 1.9  Results of  Mann-Whitney U tests, assessing whether the TLs sampled from different 
gear (“Sci.,” “Trawl,”, and “Wing net”) are from the same distribution. 
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 Density kernel plots are a way to represent probability density functions of random 

variables that do not follow a normal distribution (Rosenblatt, 1956; Parzen, 1962).  These plots 

for B. marinus, B. patronus, C. arenarius, and M. undulatus show that there were fewer 

specimens of the larger sizes collected in the smaller scientific nets.  The distribution of lengths 

in the catch varied enough that, with enough samples, small differences were significant in many 

cases (Mann-Whitney U test, p < 0.05). 

Although the size range of specimens collected is the same among gear types, there were 

significant differences between B. marinus collected by scientific versus commercial gear (Table 

1.11; Figure 1.6).  The scientific trawl caught young of year (YOY) and an occasional larger 

specimen, while the commercial trawl collected all size classes, from the young of year to sizes 

near the maximum recorded for this species.  The number of collections from commercial wing 

nets was small enough to fall within the larger ranges.   

For B. patronus, there were limited numbers caught in scientific nets, a unimodal 

distribution in the commercial trawl, and a bimodal distribution in the wing net samples (Table 

1.11, Figure 1.7).  Wing net samples showed two size classes, with a break at about 170 mm.  

Although sample size was limited, size differences were not significant (p < 0.05) between the 

commercial and scientific trawl.  Fish caught in wing net samples were significantly larger (p < 

0.05) than fish in commercial trawl samples, however.   

          Throughout all hauls, C. arenarius appeared most often, but the lengths of the fish were 

significantly different among all groups (Table 1.11, Figure 1.8).  The scientific trawl collected 

many smaller individuals (< 100 mm) that the commercial gears did not collect.  The commercial 

trawl also collected larger individuals (> 200 mm) than the wing nets.  
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           Among the four species analyzed, M. undulatus had the most consistent, unimodal 

distribution, from 100 mm to 150 mm, but differences between the scientific trawl and the 

commercial gear types were still significant.  Even though there was no significant difference (p 

= 0.11) between the two commercial gear types, the commercial trawl collected larger 

individuals than the wing nets (Table 1.11, Figure 1.9). 

 

Changes in size class within a commercial trip 

           Each commercial haul lasts approximately an hour’s time between the lowering and 

lifting of nets.  Samples from each haul were weighed by species and an SL range taken for each 

species.  Fifty TLs were taken randomly among the individuals of each species to represent the 

lengths of that each species each hour.  Two trips, 001 and 008, were chosen to represent their 

gear type, trawl and wing net, respectively.  Cynoscion arenarius was chosen as a model species 

because of its ubiquity, but also because it showed significant differences in TL among gear 

type.   

            When the density kernel plots are examined, the most difference, if any, between hauls 

on the same trip are between the numbers of the larger size classes (Figure 1.10).   Overall, there 

seems to be little difference between one hour or the next, or between the sample from one hour 

and the aggregate of samples for all hours (2 hours total for trip 001, 4 hours total for trip 008).  

This visual analysis is confirmed by Mann-Whitney U tests.  Although there may be fewer 

specimens in the larger size classes, no difference was significant (p < 0.05, Table 1.12).
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Figure 1.10  Density kernel plots of TL distribution for two consecutive hours (a,b) and both 
combined (c) in a commercial trawl and wing net (d,e and f).  Note the differences in scale for 
each chart. 
 
Table 1.10  Results of  Mann-Whitney U tests, assessing whether the TLs sampled from different 
hours are from the same distribution.  No differences are significant (p < 0.05). 
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Discussion 

Gear type drives the changes in species caught in inshore bycatch more than any other 

factor—which is pertinent to (re)interpreting previous analyses of bycatch based upon fishery 

independent work, as well as predicting the impact on the system as fishery practices change.  

Previous work, based on fisheries-independent shrimp population monitoring with a scientific 

otter trawl, related changes in CPuE of shrimp to changes in bycatch species (Baltz and Chesney, 

1995).  Although this previous study found a low correlation of shrimp CPuE with B. patronus, 

this study has shown that B. patronus is underrepresented in the gear used in that study.  Other 

species like M. undulatus, C. arenarius, and D. petenense were also found to be more important 

in commercial hauls than scientific hauls.  The importance of these species should be further 

emphasized.   

Because gear type is so important, F:S ratios from this study and the summarized Adkins 

(1993) data are incomparable.  Although F:S ratios are lower in this study, and expected to be 

lower inshore than over all state waters, my result could be attributed to the higher proportion of 

wing net hauls in my combined commercial data.  Because bycatch is generally lower in wing 

net hauls, the higher proportion of wing nets in my combined data could explain the lower F:S 

ratios.  The F:S ratios in this study also do not include weights of C. sapidus, a significant part of 

bycatch in Louisiana waters (Adkins, 1993; Baltz and Chesney, 1995), although this bycatch 

species is often brought to market in Lake Pontchartrain, rather than discarded.  The exclusion of 

this species could also lower the F:S ratios enough to confound a statistical analysis of the 

present data.   

In general, I found the geometric mean of F:S ratios is more informative for analyzing 

individual trips, although it was often lower than the median F:S and the summarized F:S of each 
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commercial gear type.  The arithmetic mean was always the highest of these metrics, due to the 

extreme right skew of the distribution of the ratios.  While this number appears to reflect the 

annual bycatch ratio caught (Adkins, 1993; Diamond, 2003), and so is still useful, the 

distribution of the data is such that an arithmetic mean, although technically an “average,” does 

not represent the typical F:S ratio, or the most common one.  If by “average” we understand the 

“typical” bycatch ratio, the “average F:S ratio” would be better represented by the median ratio 

or the geometric mean, which is the mathematically appropriate mean for an “average” of a 

series of ratios (Douglas, 2004).     

 

Implications for fishery monitoring studies 

There are many factors that influence the species composition of bycatch (Rochet and 

Trenkel, 2005), but this study focused primarily on gear type, location, and time of year.  Gear 

type was significant.  Between types of commercial licenses, this is due to the differences in the 

depth of water fished between wing nets (top) and trawl (bottom) (Gido and Matthews, 2000; 

Bergmann et al., 2002b), but perhaps also to the time of day fished—wing nets are deployed at 

the falling tide, as larger shrimp rise to the surface of the water to catch the tide out of the 

estuary.  Trawl boats are less limited in times available to be fished; but generally, they tow 

during the day, as shrimp lay along the bottoms of the lakes and passes.  This study confounded 

time of day and depth of the water column as factors, because these factors are largely integrated 

as a function of gear types.  Between the scientific trawl and commercial gear, the differences are 

largely a function of size and depth, because this method was deployed during day and during 

the night to match commercial samples.   
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Within one pass, changing location does not significantly change the assemblage caught, 

but between the two passes, location was significant.  This result is relevant to any decision of 

how to distribute fishery monitoring efforts across the space of the inshore fishery.  Limited 

resources necessitate prioritizing any monitoring effort for capturing a more representative 

sample of the fishery as a whole.  More variation will be captured by spreading efforts among 

vessels with different gear types in different passes than distributing efforts among vessels with 

different gear types in different locations within the same pass.   

In this study, I was unable to observe significant population differences among bycatch 

hauls within a single trip.  All trips taken were day trips and lasted less than 24 hours.  

Assemblage differences among hauls on the same trip were also similar (unpublished data).  This 

makes sense, given that captains will often change the duration of the trip based on how many 

shrimp are “running” in a given night.  Captains will not set their nets for long periods unless 

they hear of good results from their fellows or see plenty of shrimp in “test” hauls.  After hauls 

have begun, captains will cease with long hauls after the number of shrimp drop below a certain 

number.  Given this fishing behavior, the most likely differences will be found between the first 

and final hauls.  This study found no differences.  Because captain, shrimp, and fishes all will 

generally change behavior with the tide, especially during wing net trips, it is likely that hauls 

within a trip will be similar.  This result confirms the basic result of several other studies in 

European trawl fisheries (Tamsett et al., 1999; Allen et al., 2002; Borges et al., 2004; Borges et 

al., 2005). 

A similar conclusion can be made about the differences between vessels in the same 

location in the same day (or night) of fishing.  Because captains often make decisions based on 

informal reports from other captains, over radios and at the dock, fishery activity is often 
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aggregated in time and space.  During this study, there were nights when captains who generally 

fished other passes in the region came into the Lake Pontchartrain Basin on word of good 

fishing.  Captains of commercial and recreational vessels often ask the NRL vessel for reports on 

the location and amount of shrimp and fish caught by the monitoring vessel.  There are trips 

when the monitoring vessel has caught a large amount of marketable shrimp in the scientific net, 

although there were no captains working the passes.   

Future monitoring efforts could take advantage of this conclusion by sampling fewer 

hauls per trip, saving time and effort at the bench for sampling more trips per gear and more 

passes or areas.  Because wet weight per species is much simpler to measure than number of 

individuals, future analysis of fish assemblages could be based on wet weight rather than number 

of individuals to save time on the boat and at the bench.   

 

Effect of gear size on bycatch composition and implications for monitoring 

Different gear catch different fishes, but different gear, by the nature of their different 

sizes, often catch a different size-class distribution of a given species (Howell and Langan, 1987; 

Rochet and Trenkel, 2005).  The different sizes of net and mesh play a role in selecting for size 

classes for fishes caught (Kulka,1998; Rochet and Trenkel, 2005).  It follows that a scientific net, 

4.9 m wide–which only opens to 2.5-3.5 m underwater (Thompson and Verret, 1979)—will 

catch only the smaller and slower individuals of an assemblage.  The commercial nets are larger 

nets:  wing nets are generally paired sets ~4 m or more on a side, spread widely on a frame; 

commercial trawl nets more than 10 m (Adkins, 1993).  The smaller mesh is designed to catch 

smaller fishes, but it does not follow that a larger mesh will allow the smaller fishes to pass in all 

cases.  As the catch gets heavier or the time fished gets longer and the full bag of the shrimp net 
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clogs the mesh, smaller individuals cannot escape the press of flesh amassed in a bag end.  Mesh 

size has been found to influence the amount, diversity, and length composition of bycatch 

(Rochet and Trenkel, 2005). 

The simplest interpretation of metabolic theory would predict fewer individuals of larger 

size class for a given species in a given place and time (Kaspari, 2004).  The larger size classes 

(150-250 mm) not caught in the scientific trawl are the same ones that are more variable over 

time in commercial catches.  If the goal of a monitoring study is to examine these larger size 

classes, sub-sampling should be stratified by size class to capture more of the larger individuals.  

For example, a population model of B. marinus may determine that the population’s growth is 

determined by the number of the largest males, since large males can brood more eggs in their 

mouths.  In order to get an accurate evaluation of how shrimping activity affects the population 

as a whole, scientific trawl methods would be insufficient—not only because this species is 

underrepresented as bycatch in scientific trawl samples across all size classes, but particularly 

because the smaller nets are particularly bad for capturing the larger individuals critical to the 

population analysis.   

Although size class distributions are variable, within one trip they remain stable.  This is 

an unstated assumption of several reports on bycatch (Adkins, 1993, Diamond, 2003), which 

have subsampled bycatch for obvious logistical reasons.  Although sampling aboard commercial 

vessels may still require that an observer ride for the entire trip, the knowledge that the size class 

distribution of a particular species is generally stable, or varies only at the larger size classes, can 

allow more effort to be made for collecting other data, like F:S ratios, over the whole course of 

the trip.  For example, Adkins (1993) subsampled haphazardly from a haul during an ongoing 

trip into a container of uniform volume, then disembarked the vessel.  Because this quicker 
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method allows monitoring of multiple trips in a night, over several vessels or passes, it is a more 

effective way to sample the whole fishery than the methods presented here.  Diamond (2003) 

subsampled hauls randomly, collecting fewer fishes than this study while staying on the vessel 

for the entire duration (Diamond, 2003).  Both of these methods also require much less time at 

the bench.  This study demonstrates that they were correct in subsampling a single haul to 

characterize a trip, unless they were especially interested in the catches of the larger individuals 

of a particular species or of larger species caught as bycatch.  

For sub-adults of estuarine-dependent species, we expect size class distributions to shift 

over the months of sampling, as individuals grow over the course of the summer before exiting 

the colder shallow waters in the winter.  This has been observed in sampling data and 

documented in other monitoring studies (Gido and Matthews, 2000).  Time differences vary with 

season, and may not be relevant because the inshore fishery shuts down for the coldest part of the 

year, at one seasonal extreme.  And although time differences were not observed in this study, 

such temporal shifts are not necessarily made invisible by the size selectivity of the commercial 

gear.  Future efforts with more repeated samples by gear and by pass could answer this question 

better than this limited study. 

 

Gear type, time of day, and unique species 

The new species not caught by previous NRL sampling or by Thompson and Verret 

(1979) were collected in wing nets at night.  In the 1950s, Dr. Royal Suttkus sampled extensively 

at night in the Lake Pontchartrain Basin and collected both sharksucker (Echeneis naucrates) and 

Atlantic midshipman (Porichthys porosissimus) (Thompson and Verret, 1979).  Although 

bycatch mortality may be important to their individual populations in the Basin, these species are 
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not numerically or ecologically important within the bycatch assemblage.  This example, though, 

demonstrates the importance of gear type in determining which species are caught. 

Ultimately, the differences between the gear demonstrate the necessity of monitoring 

commercial vessels, or at least sampling with commercial gear from scientific vessels, in order to 

determine ecosystem, assemblage, and population scale impacts of the the bycatch assemblage 

killed by the shrimping fishery.  That assemblage composition and even population of a given 

species remain consistent within a trip indicates that one or two hauls per trip is sufficient to 

represent the trip.  The fact that location is not significant within one pass indicates that the 

spatial scale of a monitoring effort can be per pass and the lack of significance in the changes 

between months indicate that sampling per gear and per pass should take a higher priority over 

taking multiple samples in a single month.  This knowledge will allow a monitoring program to 

sample the natural variation most effectively. 

 

Predicting ecosystem, assemblage, and population changes with fishery changes 

           If inshore shrimpers are using wing nets more often than offshore shrimpers, and using 

wing nets more often over time, the changes in the assemblages caught have ecosystem, 

community, and population-level implications.  At the ecosystem scale, less fish biomass will be 

caught and killed as bycatch as the shrimp fishery changes to proportionally more wing nets.  

The assemblage caught, though more diverse, will shift away from the less resilient families of 

fishes like Ariidae and Sciaenidae, and toward more resilient, lower trophic level families like 

Engraulidae and Clupeidae (Baltz and Chesney, 1995).  Although these populations may be 

resilient, smaller individuals are more likely to die (Davis, 2002). 
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						     At the population level, species caught less will suffer lower mortality due to the lowered 

catch, but species that benefit from discards, such as gulls, brown pelicans (Pelicanus 

occidentalis; Anderson et al., 1980; Duffy, 1983; Croxall, 1987), dolphins (Tursiops truncatus; 

Fertl and Leatherwood, 1997), bull sharks (Carcharinus leucas;  Tuma, 1976; Curtis, 2008), blue 

crabs (Hughes and Seed, 1981, Laughlin, 1982), and marine catfish (Darnell, 1959; Levine in 

Stone et al., 1980) may find this high quality food less available.  These changes will be 

accelerated by the reduction of all shrimping effort as fewer and fewer boats operate in Louisiana 

waters (Anonymous, 2008, Figure 1.11).  

          There is also evidence from European fisheries that nets “pushed” across the top of the 

water column are less damaging to ecosystems, because they avoid the trawl’s damaging of 

epifauna and infauna on the water bottom, to the point of changing the structure of the benthic 

community (Hall, 1999; Cryer et al., 2002).  A European analogy to wing nets is the Scottish 

Seine, discussed as a possible “sustainable” fishing method with fewer impacts than “on-bottom” 

trawl fisheries (Fuller and Cameron, 1998; Arkley, 2008).   

           Although the inshore of the Lake Pontchartrain Basin is primarily a soft-bottom system, a 

ban on bottom trawling for shrimp was instituted as part of a campaign to lower human impacts 

on the Lake and on the common Rangia clams (Rangia cuneata) in particular.  A larger, more 

geographically extensive Rangia population would circulate more water through the local 

biosphere more quickly and lower the suspended sediment in the Lake more quickly (Poirrier et 

al., 2008; Poirrier et al., 2009; Wong et al., 2010).   

A reduction in trawling effort has been modeled for the entire Gulf of Mexico by Walters 

et al., (2006).  A “counterintuitive” result of the modeling effort was a reduction (by benthic 

predators) of vulnerable juvenile populations of red snapper (Lutjanus campechanus), B. 
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patronus, and red drum (Sciaenops ocellatus), significant players in the ecosystem and 

commercially important species.   

The basic cause of these negative impacts is very simple: Ecosim indicates that shrimp 
trawling has had a very large negative impact on abundances of some benthic predatory 
fish, particularly the catfishes. When bycatches are reduced, these species increase 
several-fold in abundance, and cause high predation mortality on a variety of juvenile fish 
(and older menhaden). We initially dismissed this scenario as obviously too extreme. But 
on reflection, it warns us that abundances of many species in the current Gulf ecosystem 
have developed in the face of massive shrimp trawling, and it is quite possible that some 
species have even benefited from the impacts of that trawling. Catfish are particularly 
abundant in coastal Florida where inshore trawling has been banned.  
  
      (Walters et al., 2006).    

 
Elsewhere, I have confirmed the rising abundance of the more predatory gafftopsail catfish in the 

inshore waters of the Lake Pontchartrain Basin, coincident with a drop in overall shrimping 

effort (Figure 1.11), as well as a ban in the Lake itself on commercial trawl gear.  My current 

results on the differences in bycatch composition among three gear types offers a similar 

explanation.  Even though trawling has not been banned inshore (in most areas), the popularity 

of the wing net gear type, one that does not typically kill catfish species, may have led to the 

same result.  In the following chapter I have described the diet of these catfish (B. marinus and 

A. felis), but only in the inshore areas where L. campechanus do not occur.  In this study, I found 

B. patronus in catfish stomachs and it is possible that juvenile S. ocellatus are part of the 

unidentifiable fishes.   But whether the biomass of the system balances in favor of these catfishes 

at the expense of our commercially important fishes is a question only imperfect systems models, 

currently based upon ‘inference chains based upon untested assumptions’ can answer.  
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Figure 1.11. (from LDWF website (http://www.wlf.state.la.us/) Number of licenses by year for 
several parishes around Lake Pontchartrain (right axis), as well as a total for all parishes adjacent 
to the Lake Pontchartrain Basin (Pontchartrain; left axis)
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II. Diet Shifts in Opportunistic Foragers:  gafftopsail catfish 

(Bagre marinus) and hardhead catfish (Ariopsis felis) 

Abstract 

 In Lake Pontchartrain Basin (LPB), commercial fishing impacts non-target species 

collected as bycatch.  Species such as the gafftopsail (Bagre marinus) and hardhead catfishes 

(Ariopsis felis) may consume carcasses discarded from fishing vessels; To test that these 

catfishes exploit discarded bycatch, I examined gut contents of catfishes collected near 

shrimping activity during and between the shrimp seasons.  I collected catfishes with 250 m 

gillnets.  Specimens were transported on ice to the laboratory, measured; then gut items were 

identified and weighed.  Based on gut contents of 363 B. marinus and 138 A. felis, I found an 

increase in occurrence of fishes in catfish diets by area and during the shrimp seasons.  Weight of 

fishes in catfishes’ diets also increased significantly during the shrimp seasons (t-test, p = 0.05).  

Graphical analysis of diet categories provides additional evidence for a shift in catfish diet up the 

trophic scale while shrimpers are fishing the area. 

 

 

 

 

 

Keywords:  Gut Content, diet, marine catfish, Ariopsis felis, Bagre marinus, bycatch
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Introduction 

 Estuarine food webs can be markedly altered by shrimping activity, with commercial 

shrimpers serving as the de facto “keystone predator” (Condrey and de Silva, 1998; Chesney et 

al., 2000; Bozzano and Sarda, 2002).  Those species most affected by shrimping can be 

identified by monitoring bycatches.  Fishes and invertebrates living on the water bottom are 

brought to the surface, largely dead (Davis, 2002).  Tertiary predators and larger fishes become 

the “prey” of the fisherman as bycatch and are discarded to become food for scavengers and 

detritivores (Andrew and Pepperell, 1992; Fonds and Groenewold, 2000; Bozzano and Sarda, 

2002; Bergman et al., 2002; Furness et al., 2007).  While fishing can reduce the populations of 

some organisms, other species killed can be less sensitive, such that any negative effect on their 

population is outweighed by the benefits they receive from the new source of food, or the fishing 

gear’s killing of their predators (Polis and Strong, 1996; Bergmann et al., 2002b).   

 Some ecological players benefit from these fishing activities.  It is obvious to any 

observer aboard a day-fishing vessel that the gulls, terns, pelicans, and dolphins that follow 

working boats in flocks and pods benefit from the large amounts of dead and near-dead fishes 

discarded from shrimping vessels. Less obvious are the sharks, crabs, and other invertebrate 

scavengers that benefit from bycatch discards that sink through the water column to the seafloor 

(Hughes and Seed, 1981; Laughlin, 1982; Rothlisberg et al., 1992; Ramsay et al., 1998).  Those 

species that benefit from discards have been identified in clearer waters with cameras, a method 

unavailable to researchers working in the turbid waters of the Lake Pontchartrain Basin 

(Bozzano and Sarda, 2002, Bergmann et al., 2002b).   
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Bird species benefit from discards 

 Discards from trawl fisheries in European waters are utilized by many different seabird 

species (Bozzano and Sarda 2002).  This body of research has shown that individuals of certain 

species that are confirmed to eat discards may not pass on the benefit at the population level—

this is known as the “junk food hypothesis” (JFH, Grémillet et al., 2008).  Discards usually do 

not comprise the majority of bird diets, even if they fulfill a large amount of a population’s 

energy requirements (Catchpole et al., 2006).  Discards, at times, can only partially compensate 

for the larger destruction of forage fish populations by fishing vessels.  It has also been valuable 

for bird researchers to examine which individuals within a population utilize the discards, as 

there may be differences in the diets of breeding and non-breeding individuals, or sick and hale 

birds (Votier et al., 2008; Votier et al., 2010).  This kind of food source may be more important 

in winter, when food is scarce, than summer. 

 More relevant to this study is the fact that scavenging birds are the first wave of scavengers 

behind fishing vessels and select certain species of discarded catch (Garthe et al., 1996) to the 

point that those species become unavailable to scavengers farther away from the vessel.  In one 

study of the English Nephrops lobster fishery, birds such as the Fulmar (Fulmarus glacialis), the 

Northern gannet (Morus bassanus), the Great skua (Catharacta skua), the Common gull (Larus 

canus), the Lesser black-backed gull (Larus fuscus), the Herring gull (Larus argentatus), the 

Great black-backed gull (Larus marinus), and the Black-legged kittiwake (Rissa tridactyla) were 

found to consume up to 57% of individual discarded fishes behind trawling vessels (Catchpole et 

al., 2006).  This rate was considered artificially high for the system in which it was conducted, 

because the trawling vessels normally discard the bycatch in large dumps, instead of one fish at a 

time.  In the Lake Pontchartrain shrimp fishery, however, discards are usually thrown overboard 
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gradually while shrimp are sorted from fish and crabs.  Such a steady release of discards would 

give Louisiana’s scavenging pelican and gulls ample opportunity to take discards.  

 As I have shown, gear type affects bycatch composition (Chapter 1), but the type of gear 

fished can also mean a different community of scavengers, if that gear type is associated with a 

time of day.  During the operation of wing net vessels, in the dark of night, no birds were seen 

following the trail of discards for a meal.  And yet, the carcasses were removed by some 

organism.   

 

Invertebrate scavengers benefit from discards 

 Another important group of benthic scavengers are the arthropods (Bergmann et al., 

2002b).  In the Nephrops trawl fishery, arthropods have been shown to be important and rapid 

consumers of discarded fish flesh on the bottom of the sea and are attracted to the passing of the 

trawl net along the bottom of the sea (Kaiser and Spencer, 1994; Bergmann et al., 2002b).  The 

most important arthopod to the waters of Lake Pontchartrain is the blue crab, Callinectes 

sapidus. a populous and voracious scavenger (West and Williams, 1986).  It is common sense 

that this arthropod scavenger consumes discarded bycatch, because many blue crab fishermen 

(who are often also shrimp fishermen or at least share a dock) in Lake Pontchartrain use 

“Pogies,” discarded Gulf menhaden (Brevoortia patronus) as bait for crab traps (pers. obs.).  

This large arthopod may also be crucial to further decomposition of the carcasses, as it can easily 

tear skin that can keep smaller arthropods from consuming the meat (Monaghan and Milner 

2008).  Invertebrates such as crabs have been shown to attract their own predators to discarded 

fish by proxy—the arthropod predators can track the population of scavengers to the discards, or 
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may be attracted to the discards themselves, but eat other scavengers because the ‘free meal’ has 

brought predator and prey together (Bergmann et al., 2002b) 

  

Animal carcasses as a biomass vector 

 Some systems, such as newly formed streams in Alaska, are dependent upon the 

movement of fish upriver to cycle nutrients into oligotrophic habitats.  Salmon run upstream to 

spawn and die in streams otherwise depauperate of large sources of biomass.  Once the salmon 

run reaches the headwaters, smaller scavengers are dependent upon larger predators, such as 

bears, to begin the deconstruction of the carcasses (Monaghan and Milner, 2008).  In deepwater 

systems below the photic zone, scavengers can be specialized to respond quickly to falling 

carcasses, as this kind of heterotrophic nutrient flux must replace the regular primary production 

available to shallow water dwellers (Cryer et al., 2002). 

 Louisiana’s fisheries are second only to Alaska in productivity and the most productive in 

the northern Gulf of Mexico.  The combined bycatch of Louisiana’s fisheries is more than the 

targeted catches of the other states combined (Chesney et al., 2000).  Much of this biomass 

turnover can be attributed to the shrimp fishery, which can discard two to four pounds of fishes 

for every pound of shrimp caught annually (Adkins 1993). There are many ways that this large 

input of dead animals can affect the food web of the LPB.  Even without visual methods, or 

much prior research, we can predict which species are likely to benefit from discarded bycatch 

and develop sampling methods to accurately assess their diets relative to fishing activity.  Such 

quantitative assessments are important for tracking ecosystem changes over time, as the activity 

of the shrimp fishery declines. 
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The importance of marine catfishes in Lake Pontchartrain 

 In the LPB, two likely benefactors of discards are the gafftopsail catfish (Bagre marinus) 

and the hardhead catfish (Ariopsis felis).  My own preliminary analysis of fishery-independent 

data collected by the Nekton Research Laboratory (NRL) from 2000-2008 for the Lake 

Pontchartrain Basin (LPB) has shown that, in regard to biomass, B. marinus and A. felis rank 

among the heaviest species by wet weight (Figure 2.1).  These species are caught regularly in 

strike gillnets, a method whereby a gill net is set, then circled with the vessel to scare fishes into 

the net.  Although they are caught regularly throughout the sampling season and are larger than 

average fishes, these two species are not taken regularly in the scientific otter trawl that is the 

normal gear for most fish monitoring studies in these and other waters (Table 2.5).  When 

weight-by-species is summed over all gear types in the 2000-2008 data, B. marinus and A. felis 

rank first and fourth heaviest, respectively.  So even though they are not caught by the most 

common method, their abundance and large weight in gill nets is enough to outrank B. patronus, 

the species expected to be the heaviest (Darnell, 1958; Kaspari, 2004).  From an ecosystem 

perspective, they rival other more abundant species like B. patronus, bay anchovy (Anchoa 

mitchilli), and Atlantic croaker (Micropogonius undulatus), key players in the local fish 

assemblage.  These marine catfishes are also opportunistic feeders whose adult forms are large 

enough to consume the sizes of fish caught as bycatch and discarded dead from shrimping 

vessels.  Given the ecological importance of these two marine catfish species and their 

opportunistic feeding behavior (Darnell, 1961; Levine in Stone et al., 1980; USFWS, 1983), I 

expected that these two catfish species consume a significant portion of fishes discarded as 

bycatch.  Previous studies of gut contents of Lake Pontchartrain fishes have revealed that fishes 

make up an important component of predator diets (Darnell, 1958; Darnell, 1961; Levine in 
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Stone et al., 1980).  Darnell analyzed the contents of 34 fish species, 17 of which had fishes in 

tracts above trace amounts (Darnell 1958).  Eight species had large amounts of fish in their diet:  

longnose gar (Lepisosteus osseus), crevalle jack (Caranx hippos), bull shark (Carcharinus 

leucas), white trout (Cynoscion arenarius), southern flounder (Paralichthys lethostigma), 

speckled trout (Cynoscion nebulosus), ladyfish (Elops saurus), and needlefish (Strongylura 

marina).  These species were dependent upon fishes for over 60% of their diet (by volume).  A 

1980 diet survey reported 20 of 41 with fishes above trace amounts, and seven of 41 species with 

fish-dependent diets (> 60% fishes by percent occurrence).  These seven species are bull shark 

(C. leucas), freshwater drum (Aplodinotus grunniens), black drum (Pogonias cromis), southern 

flounder (P. lethostigma), red drum (Sciaenops ocellatus), speckled trout (C. nebulosus), and 

gafftopsail catfish (B. marinus; Levine in Stone et al., 1980). 

Table 2.1  The sum of weight (kg) for the four heaviest species in 2000 – 2008 fisheries-
independent monitoring data.  The gill net is the gear type that captures the large majority of the 
total weight for these four species. 

 

 

 

 

 

 



50 
 

Table 2.2  Gear Type biases for three different gear types, soak gill nets, strike gill nets, and trot 
line.  Although the hooks on the trot line were average size, this gear caught larger individuals 
that what appeared in either gill net gear type. 

 

Unfortunately these earlier studies failed to include any results of how bycatch discards 

affect diets or comment on whether their diet data could have been affected by a higher 

availability of carcasses as food during the shrimp season.  In these studies, analysis has been 

limited to percent volume and percent occurrence of each type of content by species (Darnell, 

1958; Darnell, 1961; Levine in Stone et al., 1980; Hyslop, 1980), and occasionally extended to 

display geographical variance of diets for selected species.  In his report on the diet of M. 

undulatus, Levine (1980) showed an increase in percent occurrence of fishes in the diet from 

west to east (Levine in Stone et al. 1980), but only conducted this kind of analysis for species 

with a large number of specimens.  Any study design looking at changes in percent occurrence 

over time should also account for some natural spatial variation as well.  Because of their 

importance as abundant and large secondary (or tertiary) consumers in Lake Pontchartrain, 

examining the marine catfishes’ diets can show to what degree the higher availability of fish 

carcasses affects the biomass of fishes generally throughout the system. 

 To understand how bycatch impacts the fish assemblages of the LPB, I examined how 

discarded fishes benefit local populations of B. marinus and A. felis, by looking for evidence of 

discarded fish remains in catfish diets.  Marine catfish collected during times of high shrimping 

activity should have more bycatch-associated prey items in their guts than individuals collected 
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during times from areas with limited shrimping activity.  As I was unable to access fishery effort 

data collected by the Louisiana Department of Wildlife and Fisheries (LDWF), I used the 

temporal designation of the shrimp seasons as a proxy for fishery effort.  Should these effort data 

become available, the diet data collected should be sufficient for a more rigorous test of this 

hypothesis.  I tested this hypothesis by comparing percent occurrence of non-Anchoa fishes in 

the diets of the marine catfishes during and between the shrimp seasons, by comparing 

generalized linear models with a logistic regression by the models AICc values.   Anchovies 

were excluded as “fish” because they were not as common in much of the bycatch in an earlier 

study, and because the catfishes prey upon them whether or not they are bycatch. The three areas 

of the LPB sampled were, west to east, Lake Pontchartrain west of the causeway bridge 

(“WLP”), Lake Pontchartrain east of the causeway bridge (“ELP”), and Lake Borgne, including 

sections of the MR-GO (“LBN”). These three areas acted as blocks that control for the natural 

spatial variation of fishes in fish diets in Lake Pontchartrain (Levine in Stone et al., 1980). 

  Logistic regression using generalized linear models with binomial error structure were 

constructed to test whether shrimping season is as important a factor as temporal season, area, or 

species in determining the likelihood of fishes in the catfish guts. Welsh’s T-tests were used to 

determine if, given a catfish had eaten fish, whether or not this fish content was heavier during 

the shrimp seasons than between.   

Lastly, because diet composition as a whole should shift, I examined the diets with 

multivariate methods to determine which components were driving the shift. Higher-trophic-

level items like fishes should appear more important during the shrimp seasons, and lower-

trophic-level items like vegetation (algae or vascular plants) should appear less important. 
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Materials and Methods 

Study Location 

          My study area is Lake Pontchartrain and Lake Borgne, within LDWF Zone 1.  To account 

for spatial variability in marine catfish diets, I divided Lake Pontchartrain and Lake Borgne into 

three sections, referred to as “WLP, ELP, and LBN” (Figure 2.1).  In western Lake Pontchartrain 

(WLP), west of the Causeway Bridge, no trawling is allowed, although many boats with 

wingnets still work in Pass Manchac.  Eastern Lake Pontchartrain (ELP), the area of lowest 

shrimping activity, reaches from the western end of the Rigolets and Chef Menteur passes west 

to the Causeway Bridge.  Lake Borgne (LBN) includes these passes and areas east to the Biloxi 

Marshes.  I attempted to obtain a similar number (>30) of each species in each of the three 

sections, during and between shrimping seasons. 

 

Sampling Methods and Data Analyses  

          I sampled during the initial brown shrimp (F. aztecus) season (May to mid-July), the off 

season in between (mid-July to mid-August), and the longer white shrimp (L. setiferus) season 

(mid-August to December in both 2007 and 2008).  The marine catfish migrate out of the Lake 

as the temperature decreases below 20oC (Muncy and Wingo 1983), so no samples could be 

taken after October each year.  I took samples from the trawl and strike gillnet sets that are part 

of monthly NRL monitoring efforts and recorded which section they occurred within, as well as 

the distance from known shrimping activity.  I also supplemented these samples with “soak” 

gillnet sets, in order to achieve a more balanced sampling design.  Here, “soak” gillnets are 

gillnets fished as a passive gear set out over an hour or more.  Other specimens came from a 

concurrent bycatch survey from commercial vessels or a preliminary trotline survey, although 
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these were not included in the statistical analysis due to probable gear artifacts (Eustis, 

unpublished data).  A gut content survey of B. marinus and A. felis was conducted using fishes 

caught in either gillnet soaks or gillnet strikes (in which the net is circled thrice with a fast boat, 

driving fishes into the net).  Specimens extracted from the net were either kept on ice or frozen 

until such time as they were weighed and measured and their stomachs extracted.  Once the 

stomachs were opened, gut contents were weighed as a whole, separated into identifiable 

components, then each separately weighed.  After weighing, components were placed into a 

graduated cylinder partially filled with water to determine their separate and entire volume by 

water displacement.  Special care was taken for fish specimens found in the gut: they were 

identified, photographed, and lengths measured however possible.  As space and resources 

permitted, voucher specimens were preserved in 10% formaldehyde for future reference. 

    Anchovies were excluded as “fish” because they were not as common in much of the 

bycatch in an earlier study, and because the catfishes prey upon them whether or not they are 

bycatch. The three areas of the LPB sampled were, west to east, Lake Pontchartrain west of the 

causeway bridge (“WLP”), Lake Pontchartrain east of the causeway bridge (“ELP”), and Lake 

Borgne, including sections of the MR-GO (“LBN”). These three areas acted as blocks that 

control for the natural spatial variation of fishes in fish diets in Lake Pontchartrain (Levine in 

Stone et al., 1980). 

 These data were used to determine percent occurrence and percent weight of fishes in the 

guts of the marine catfish, as well as to compare the data of the present study with previous 

studies (Levine in Stone et al., 1980; Darnell, 1961).   

 Logistic regression, regression with binomial error structure, is appropriate when testing 

whether or not different sample populations have the same mean ratio of some value.  Here, I use 
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logistic regression to determine the significance of the effect of shrimp season on the ratio of 

occurrence to total tracts sampled, or the percent occurrence (Hyslop 1980).  Different models 

list different effects as factors.  Under a multiple working hypothesis paradigm, the importance 

of any effect of shrimp season is shown by a lower AICc for the models with “season” as a 

variable.  (To clarify, “season” here does not represent a strictly temporal category, related to 

temperature and other climate cycles, but a factor defined by whether or not the shrimp season 

was open at the time the marine catfish individuals were captured).  The test of whether or not 

shrimp season is more important an effect than natural temporal variation, is whether that model 

alone has the lowest AICc.  Ultimately, the model with the lowest AICc is the one that is best 

supported by the data, given the limitations of the data.    

The marine catfish should have larger portions of fish by weight in their guts during 

shrimp season, so I tested this by comparing the average weight of fish in the guts of each 

species, when the guts did contain fish, with a t-test (Welsh’s t-test, a t-test without assuming 

similar variance about the means).  Should the means be significantly different, then the 

estimated means give us some idea of the true increase in importance of fishes in catfish diets. 

Additionally, multidimensional scaling (MDS) plots using diet data summarized by 

species, season, and area were examined for changes in the diet as a whole, as well as changes in 

the relative importance of selected diet items in different places and times.  As before, data were 

4th root transformed and analyzed in PRIMER-e software (Clarke and Warwick, 2001). 
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Figure 2.1 Three areas of Lake Pontchartrain Basin (WLP, ELP, LBN),with Soak (dark) and 
Strike (light) locations for 250 m LDWF gillnets, 2007-2008 (adapted from Garmin). 
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Results 

 Gut content was analyzed for 449 B. marinus and 149 A. felis.  Of these samples, 86 B. 

marinus and 11 A. felis were excluded due to the fact that they were caught in gear (trotline, long 

line, or trawl) that could affect the amount of fish in their stomachs.  The remaining 363 B. 

marinus and 138 A. felis were caught in gillnet soaks or strikes.  Compared to Levine (1980), the 

total percent occurrence was lower for each species (Figure 2.3).  For B. marinus, percent 

occurrence of fishes shifted from ~60% in 1980 to ~30%, for A. felis, ~40% to ~15%.   

 

Increases in percent occurrence  

 I summarized occurrence of non-Anchoa fishes in catfish guts over all catfish stomachs 

of a given species examined in a given area and season status (either “on” or “off,” although 

there are technically four “seasons,” two “on” and two “off”), and standardized the amount of 

times a non-Anchoa fish was found in a stomach by dividing by the number of samples in that 

division (Fig. 2.2).   

  For B. marinus, the preliminary results show an increase in the percent occurrence of 

fishes in catfish stomachs in the Lake Borgne area for all time periods, and an increase during the 

shrimp seasons for all areas.  Thus, the probability that a gafftopsail catfish is eating a larger fish 

is higher during the shrimp seasons, as well as higher toward Lake Borgne and the passes (Figure 

2.2).  For A. felis, there is a similar result, although the low numbers of fish caught in WLP give 

an impression that there is a great increase in percent occurrence during the shrimp season there. 
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(a) (b)  

Figure 2.2.  Percent Occurrence of non-Anchoa fishes in catfish guts for two species, (a) A. felis 
and (b) B. marinus, displayed by area and season, with a summary for all areas in the fourth 
column.  The locations are displayed from west to east (upriver to downriver, pass to gulf).  The 
numbers above each bar represent the number of samples.  

 

 

Figure 2.3  Percent occurrence comparison between data adapted from Levine in Stone et al. 
1980, and the current study.  If the data collected in the 19980 study were collected during 
shrimping and between shrimping seasons, the comparison could be made between “all” of the 
current data and the Levine data.  If the Levine data were collected between shrimping seasons, 
“off” is the comparable dataset.  If all the Levine data were collected during shrimping activity 
“on” is the comparable dataset.  Note the increase in percent occurrence for non-Anchoa fishes 
increases from periods with no shrimping “off” to periods with shrimping “on.” 
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Analysis of multiple working hypotheses  

Model results show that the hypotheses for each species that include Season are better 

than the null model (y ~ location + error).  Coefficient estimates for these models are 

significantly positive for B. marinus and A. felis for the model percent occurrence (y) ~ location 

+ season + error (p < 0.06; Fig. 2.4).  The instance of shrimping increases the chance that a 

catfish will be eating a fish.   

For the multiple working hypothesis analysis, if any one of the models captures 80% of 

the weight (AICwi), it is considered that the balance of evidence is in favor of the validity of the 

particular hypothesis represented by that model, over the others (Table 2.1).  A model that 

separates the four seasons (“Sn”) captured the most weight (AICwi = 0.86, B. marinus and 

AICwi = 0.93, A. felis), indicating that there is temporal change among the four periods of time 

(two “Off” seasons and two “On” seasons, brown shrimp and white shrimp), as well as an 

increase of fishes in catfish diets during shrimping activity. 

(a) (b)
 

Figure 2.4  Coefficient estimates for locations other than ELP, and Shrimp season effect, for (a) 
B. marinus  and (b) A. felis  
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Table 2.3 Model results for three percent occurrence models for non-Anchoa fishes in (a) B. 
marinus  and (b) A. felis, and, 2007-2008. 

(a)  

(b)  
 

Preliminary model testing on 2007 B. marinus data, during a year without hurricanes to disrupt 

the effort of shrimpers, had showed that the model with Location and Season alone was selected 

by the data (AICwi=0.95; Table 2.2), over the model with month of the year as the driver   

 

Table 2.4 Results for three percent occurrence models for non-Anchoa fishes in B. marinus, 
2007-2008. 

 

 

Increases in percent importance 

Model testing confirms the increase in probability of any non-Anchoa fish as a diet item 

in marine catfish diets during the shrimp seasons.  In addition, among those marine catfish 

stomachs that had any fishes, the weight of fishes was heavier during the shrimp seasons.   

The weight of fishes as a diet item in B. marinus increased in a similar way, but the 

increase was significant.  The mean weight of fishes in catfish stomachs with fishes was 2.89 g 

between the shrimp seasons and 5.17 g during the shrimp seasons.  The mean weight of shrimp 

in gafftopsail stomachs with shrimp increased from 2.72 g between the seasons to 7.59 g during 

the shrimp seasons.  Although model testing for the occurrence of non-Anchoa fishes did not 
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show as important a shift in the probability of large fishes in B. marinus stomachs as in A. felis 

stomachs, the increased number of B. marinus samples between the seasons allowed for a 

stronger statistical test (Table 2.3.a).   

For A. felis, the mean weight of fishes in tracts with fishes was 2.44 g between the shrimp 

seasons and 4.33 g during the shrimp seasons.  The variance during the shrimp seasons was 

much greater; the number of tracts with fishes between the shrimp seasons was very low (n=4), 

as we may expect from the percent occurrence results.   Because of the low samples of A. felis 

with fishes in their stomachs, a Welsh’s T-test did not find this increase in importance by weight 

to be significant (p = 0.26), even though I expect that this increase is biologically significant 

(Table 2.3.b).  To examine the limits of the sampling method, I also present the change in 

importance by weight for shrimp in A. felis stomachs during and between the shrimp seasons.  

The mean weight of shrimp in catfish stomachs was 2.43 g between the shrimp seasons and 4.18 

g during the shrimp seasons, very similar to the increase in fish during the shrimp seasons. The 

Welsh’s T-test found this increase was also not significant (p = 0.22), although I expect the 

marine catfish to eat more and heavier shrimp during the shrimp seasons, which are open during 

the times when Penaeid shrimp are more abundant, more available, and heavier. 
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Table 2.5  Results of four t-tests comparing the weight of fish or shrimp in (a) B. marinus and (b) 
A. felis diets during vs. between Shrimp Seasons 
(a)t-Test: Two-Sample Assuming Unequal Variances; B.marinus diets during and between 
Shrimp Seasons 

 
(b) t-Test: Two-Sample Assuming Unequal Variances; A.felis diets during and between Shrimp 
Seasons 
 

 
 
 

 
Multidimensional scaling plots as evidence of diet shift 

The third source of evidence of a shift in marine catfish  diets up the trophic scale during 

shrimp seasons is a simple visual analysis of an MDS plot of the differences in relative 

importance of 16 categories of diet content among the six sectors (WLP, ELP, LBN, during and 

between seasons (“On” and “Off”).    

Results for B. marinus for these four diet categories (shrimp, fish, gray UOM, and 

vegetation) were less marked and showed more difference in the effect of shrimp seasons 

depending on the region (Figure 2.6).  There was a less obvious separation among the six diets 

when the 16 categories were considered.  For example, the diet of B. marinus caught between the 

seasons in Lake Borgne was very similar to the diets of B. marinus caught during the seasons in 

Eastern Lake Pontchartrain.  The general difference in the six diets was due to both geographic 

and shrimp season differences, but shrimp season seems to have changed the overall diet of B. 

marinus in the western part of Lake Pontchartrain differently than the other two regions.  Shrimp 
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were more important in Lake Borgne than in East Lake Pontchartrain, and more important in 

ELP than WLP.  Shrimp were more important during the shrimp seasons except within Lake 

Borgne, where there was a slight decrease in the relative importance of shrimp as a diet item.  As 

with A. felis, fishes were more important in B. marinus diets towards Lake Borgne, and more 

important during the shrimp seasons.  The exception is the western part of Lake Pontchartrain, 

where there was no apparent change in the relative importance of fishes.  There was a more 

ambiguous result for gray UOM for B. marinus than for A. felis; it was more important during 

the shrimp seasons in Lake Borgne, showed no change in ELP, and showed a decrease during the 

shrimp seasons in WLP.  As with A. felis, vegetation was less important during the shrimp 

seasons, only appearing during the shrimp seasons in stomachs from ELP.  

(b)                           (c)_(c) 
Importance of Shrimp in B. marinus Diet

WLP Of f

WLP On

ELP Of f

ELP On
LBN Off

LBN On
Stress: 0

Importance of Fish in B. marinus Diet

WLP Of f

WLP On

ELP Off

ELP On
LBN Of f

LBN On
Stress: 0

Importance of Vegetation B. marinus Diet

WLP Off

WLP On

ELP Off

ELP On
LBN Off

LBN On
Stress: 0

Importance of Grey UOM in B. marinus Diet

WLP Of f

WLP On

ELP Off

ELP On
LBN Off

LBN On
Stress: 0

 

Figure 2.5  MDS Plots of diets by relative weight for six categories of B. marinus samples.  
Bubble sizes are only relative to one another within a single box.  Arrows denote the direction of 
changes in relative importance larger than 3% between diets from the same location.  From left 
to right: Shrimp, Fish, Gray UOM, Vegetation 
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For A. felis, the six sectors separate cleanly along an axis of geographic differences as 

well as shrimp season differences (Figure 2.5) in all 16 diet categories.  Overall, the diets were 

separated more by geographic differences than by shrimp season differences.  When select 

categories of diet items are examined, the relative importance of shrimp season for each 

geographic area is revealed.  Shrimp are more important in Lake Borgne samples and during the 

shrimp seasons.  Shrimp were not an important diet item in stomachs of A. felis from WLP, 

neither during nor between shrimp seasons.  Fishes are more important in samples from Lake 

Borgne and more important to the diet of A. felis caught in Lake Borgne during the shrimp 

seasons.  Contrary to what I have presented in other analyses, fishes are more important between 

the shrimp seasons in the western part of Lake Pontchartrain.  An aggregate category—gray 

unidentified organic matter (“gray UOM”), which may be fish—was important during the shrimp 

seasons in all geographic areas.  Various vegetation types were important between the shrimp 

seasons, while discards are not available.  This is evidence that the diet of the fish changes 

during shrimp seasons.      
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Importance of Shrimp  in A. felis Diet

WLP Of f

WLP On

ELP Off

ELP On

LBN Off
LBN On

Stress: 0

Importance of Fish in A. felis Diet

WLP Of f

WLP On

ELP Of f

ELP On

LBN Of f
LBN On

Stress: 0

Importance of Grey UOM in A. felis Diet

WLP Off

WLP On

ELP Off

ELP On

LBN Of f
LBN On

Stress: 0

Importance of Vegetation in A. felis Diet

WLP Off

WLP On

ELP Off

ELP On

LBN Off

LBN On

Stress: 0

 

Figure 2.6  MDS Plots of diets by relative weight for six categories of A. felis samples.  In each 
figure, the three diets to the right (WLP On, ELP On. LBN On) represent the diet during shrimp 
season (“On”).  Bubble sizes are only relative to one another within a single box.  Arrows denote 
the direction of changes in relative importance larger than 3% between diets from the same 
location.  From left to right: Shrimp, Fish, Gray UOM, Vegetation. 
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Discussion 

Gut content analysis showed that the presence of shrimping and a more Gulfward 

location increase the chance that marine catfish eat large fishes.   Shrimping also changes the 

importance of fishes in marine catfish diets, as well as the relative importance of different diet 

items.  All three analyses supported a general hypothesis that these marine catfishes are 

switching their diets to exploit the discards that become available during the shrimp seasons, 

although the magnitude of the shifts differ between the species and among locations.   

 

Increase in percent occurrence 

The logistical regression showed that season and location are significant factors in 

determining percent occurrence of fishes in B. marinus and A. felis stomachs, although the 

natural seasonal differences are confounded with differences caused by shrimping effort by a 

model that uses a calendar proxy for shrimping effort.  The model that treated each shrimp 

season (Jan-Apr, May-Aug, Aug, Aug-Dec, the “Sn” variable) as having a separate effect on 

percent occurrence was the one best supported by the data.  This separate treatment can be 

explained either by natural variation in percent occurrence in marine catfish diets, but more 

likely variation in shrimping effort among the two shrimping seasons.  Because the model testing 

from both years (2007 and 2008) gave a different result than the model testing in 2007 alone, I 

speculate that hurricanes Gustav and Ike lowered actual shrimping effort during the white shrimp 

season in the later part of the year.  Fewer discards thus lowered the levels of larger fishes in 

catfish diets, obscuring a more clear result because of the reliance of a calendar proxy for fishery 

activity.  Regardless, shrimp season was not rejected as a significant factor in increasing the 



66 
 

occurrence of discard-size fish in catfish stomachs, so I conclude that the marine catfishes are 

taking advantage of these discards as a high quality food. 

 

Bagre marinus occurrence model results 

In a comparison of several generalized linear models with binomial error structure, the 

model that included location and shrimping season outperformed other models (including a 

model which included month as a random factor with an interaction term) in predicting percent 

occurrence of non-Anchoa fishes in B. marinus diets.  Should effort data become available, this 

study design is sufficient to test the importance of shrimping activity against the natural temporal 

and spatial variation in diet.  It is interesting to note that the same model run on 2007 data alone 

produced results that selected the model with shrimp season over the model with natural 

temporal variation as a factor.  The full model, which includes temporal variability, independent 

of shrimping season, as a factor in B. marinus diet may come to be supported by the data, should 

true effort data become available.  But, even without a control area, the model selection process 

removes doubt that the shift in diet is due only to background temporal and spatial variability in 

food availability.   This fish eats more non-Anchoa fishes during the shrimp season due to the 

shrimp season.   

 

Ariopsis felis occurrence model results 

The comparison of models for A. felis shows an even split between the importance of 

shrimp season and temporal variability in the occurrence of fishes in the diet.  But the fact that 

location was ruled out is mainly a result of the fact that the over 60% of A. felis samples were 
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taken from the same location: Lake Borgne.  This species does not occur as frequently in Lake 

Pontchartrain as B. marinus. 

Comparison with data from Darnell (1959) and Levine (1980) showed a decrease in 

percent occurrence of fishes in diet for both species from 1959 or 1979 to 2007.  Although we do 

not know precisely where and when Darnell (1959) or Levine (1980) obtained their samples, a 

decrease is consistent with the hypothesis that the availability of shrimp discards drives the 

increase in percent occurrence, because shrimping activity around the State has declined since its 

peak in the early 1980s (Figure 2.7). 

The importance of fishes in marine catfishes’ diets also increased, both as a raw weight 

measure and by a percentage of the whole diet.  This increase was not statistically significant for 

A. felis, in this study, but the low sample size lowered the power of the statistical test to the 

extent that this test could not even show an increase in the importance of shrimp during the 

shrimp seasons.  As evidence, the increase in shrimp in A. felis diet during the shrimp seasons 

was just as likely as the increase in fish.  The A. felis likely feeds on more shrimp during the 

shrimp season, as I have shown with the B. marinus diet.  The increased weight of fishes in the 

diet is further evidence that this catfish feed on discards, because the length of the modal bycatch 

specimen (~150 mm) is larger than the small fishes (anchovies and juveniles, ~60 mm) B. 

marinus is usually assumed to catch (USFWS 1983; Fishbase, 2008).   
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Multidimensional scaling: a more complete snapshot of diet 

Multivariate analysis of several diet items also reveals a general pattern of increased 

quality of diet during the shrimp season.  Ariopsis felis has much less vegetation in its diet during 

than between the shrimp seasons.  This is likely due partially to the increase of the importance of 

shrimp and crabs during these times, but also to the increase in occurrence and importance of 

fishes in the species’ diet.  A post-hoc review of the multivariate data showed that gray UOM 

only occurred during the shrimp seasons.  From this, as well as other characteristics (primarily 

odor—the smell of rotten B. patronus), I infer that gray UOM is also fish (probably menhaden), 

although none of this material was counted as such in the previous statistical analyses.  The shifts 

in B. marinus diet are more complicated.  In ELP, overall diet differences are the smallest and for 

individual items there are only small increases.  In WLP, there is a large increase in the 

importance of shrimp and a decrease in the importance of vegetation, with no or only small 

changes in the importance of fish and gray UOM.  In Lake Borgne, there was an unexpected 

reduction in the importance of shrimp, increases in the importance of fishes and gray UOM, and 

an expected reduction in the importance of vegetation.   

Although B. marinus is more of a rover-predator and thus more able to take advantage of 

changes in availability of higher-quality food, the diet of A. felis is more affected by changes 

availability in food items, over space and time (Levine, S., 1980, Fishbase, 2008).  This may 

reflect a limitation in the study design, if B. marinus is shown to travel longer distances in the 

same amount of time than A. felis.  Overall, these changes in diet, away from vegetation, and 

toward higher-quality food, can help explain why these marine catfishes can achieve 

unexpectedly high stable isotope trophic signals comparable to the higher, tertiary predators 

(Levine, S., 1980; Williams and Martinez, 2004; Turner, pers. comm., Fishbase, 2008). 
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Comparison of marine catfishes as scavengers to other systems 

Many studies on bycatch have focused on more visible scavengers such as seabirds.  

These scavengers have been estimated to harvest as much as 57% percent of discards from 

daytime fisheries.  Many of these studies have determined by sight whether or not the scavengers 

individually benefitted from discards and by more intensive methods which sectors of the 

population benefitted more than others (Votier et al., 2010).   

For example, in Votier et al., (2010) breeding northern gannets (Morus bassanus), 

plunge-divers similar to pelicans, were found to travel farther for a engraulid fish impacted by 

trawling, because of its higher nutritional value; non-breeding gannets followed trawling vessels 

and ate the lower quality food.  Because their nutritional requirements were different, non-

breeding birds were healthy while breeding gannets suffered.  What effects this would have on 

the population as a whole would require population-level modeling and monitoring.  Different 

subpopulations and sizes of marine catfishes may similarly feed on discards in different ways 

and brooding males do not feed at all.   

Although feeding on fishery discards was found to be correlated with a lower body 

condition among some birds (Grémillet et al., 2008), there is confusion over whether or not a 

lower body condition is a cause or effect of eating discards.  Sick animals, being less able to 

pursue prey, may prefer their food pre-killed in order to save energy for survival.  And thus, 

discards may be sustaining animals that would otherwise starve.  On the other hand, discards can 

sometimes be less nutritive than the animals’ natural food.  In this case, eating discards can lead 

to an animal becoming sick.  Given that marine catfishes eat a higher quality and higher volume 

of food during shrimp seasons, this is not the case for marine catfish in Lake Pontchartrain.   
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Although birds are a major consumer of discards during the day, there is evidence that 

they do not feed on discards at night, which is when some trawls and all wing net shrimping 

occurs in the inshore of the Lake Pontchartrain Basin.  Therefore, although more than half of 

discards can be attributed to birds in some regions (Votier et al., 2010) , the amount may be 

much lower in Lake Pontchartrain Basin and will change as the ratio of wing net to commercial 

trawl activity changes.   

 

On the decomposition of discards and carcasses as a nutrient vector 

During the previous study of bycatch, although many fishes were caught (and caught 

while several other boats were operating in the vicinity), only once did a bycatch sample contain 

a previously killed fish carcass.  This fish was identified by the advanced progression of its 

decomposition in comparison to the other dead fishes in the catch, although it showed no signs of 

having been bitten or chewed and looked as though it had been crushed to death, just as all the 

other dead fishes.   

In addition to this, these kind of re-caught fish corpses are never caught in re-sampling 

efforts in the vicinity of shrimp trawls (pers. obs.).  One can assume, then, that the carcasses are 

removed and devoured by some scavenger or decomposed too quickly to be collected by the next 

trawler’s net.  Other studies have shown that many invertebrates as well as fishes are attracted to 

areas having been trawled (Bergmann et al., 2002a).  Opportunistic fishes such as gunards 

(Triglidae), although not normally classified as strict scavengers, were attracted to the path of the 

trawl and the food it provided, although researchers were not sure whether the fishes were 

attracted to the discards themselves or the invertebrates feeding on the discards, as a live prey 

item. 
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In a freshwater systems, carcasses were eaten by catfishes very quickly, in less than 24 h 

(Viosca, 1931; Schneider 1998).  These freshwater bullheads (Ameiurus sp.) were shown to be 

able to consume increasing percentages of their body weight as the temperature increased.  Our 

marine catfishes are also known to change their behavior with temperature and so their 

scavenging potential (Schneider, 1998) may change from brown shrimp season to white shrimp 

season, based on temperature.  

Even in oligotrophic, cold water streams, decomposition is rapid (Monaghan and Millner, 

2008).  Invertebrate and other scavengers could be the beginning of a process that decomposes 

the discards enough that they cannot be re-captured by the same nets that killed them.  Salmon 

carcasses have been shown to subsidize freshwater streams by relocating large amounts of 

protein upstream into rocky, oligotrophic systems.  These carcasses subsidize the streams to such 

an extent that the Salmon are viewed as “keystone species” (Monaghan and Millner, 2008).  

Furthermore, whole carcasses are not fully exploited by smaller detrivores, such as caddisflies 

(Trichoptera) unless the skin of the dead fish has been broken by a larger scavenger, such as a 

brown bear (Ursus arctos), weasel (Mustela sp.), or wolverine (Gulo gulo).  Similarly, the 

eastern bottlenose dolphin (Tursiops truncatus) may be important to the beginning of the 

decomposition cycle in the Lake Pontchartrain Basin by breaking larger carcasses discarded as 

bycatch into smaller pieces.  This process has many indirect effects, “enrich[ing] organic 

biofilms, stimulat[ing] microbial activity, and increas[ing] primary production downstream” 

(Monaghan and Millner, 2008).  Although fishes caught and discarded are not dying further 

upstream by biological imperative, the inshore shrimp fishery, and especially wing net boats, 

which “push” into a falling tide, relocates carcasses further upstream in the estuary.  This may 
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attract higher marine predators, such as dolphins, further inshore than normal, but also may 

augment the already active detritivorous activity of shallow estuarine waters.  

 Although this study was not designed to test this hypothesis, blue crab (Callinectes 

sapidus) may well be the dominant scavenger in Lake Pontchartrain and may benefit the most 

from discards.  Pots-as-traps are a method of learning which species are scavenging from fishery 

discards (Bergmann et al., 2002a).  The blue crab fishery in Lake Pontchartrain utilizes discards 

of B. patronus from shrimping activity, as a primary crab bait.  Therefore crab bycatch 

monitoring can tell us the rate of scavenging by species other than C. sapidus, because it is a 

measure of what is eating discarded B. patronus, a major element of shrimp bycatch that has 

sunk.   
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Summary 

If mortality due to shrimp bycatch has a significant structuring effect on both nekton 

populations and nekton community structure in the Lake Pontchartrain Basin, that effect will be 

modulated by the basic type of gear used by the shrimping industry.  This study has shown, 

albeit with a limited data set, that gear type differences change the “assemblage” caught in 

shrimper’s nets more than location or time of year.  

 The design of future bycatch monitoring research should account for gear type and 

prioritize it as a factor as much as sampling from boats in different passes and sampling during 

different times during the year.  Gear type and gear size also determines what size of fishes are 

caught for the dominant bycatch species.   

 If a redistribution of the estuarine food web affects fish assemblage in ecosystems with a 

high level of shrimping activity, we can discern a diet shift in some of the many species that 

could benefit from discards.  Although they have not been previously mentioned as benefactors 

of discards, this study has shown that the marine catfishes, B. marinus and A. felis have an 

increased chance of eating higher quality food and do eat higher amounts of higher quality food 

during the shrimp seasons.  These fishes benefit from discards, even as they would benefit from a 

reduction in use of the commercial trawl in the shrimp industry, the gear type that captures and 

kills them as bycatch.  
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Scott Eustis was born in New Orleans, Louisiana, on August 24, 1979.  He grew up under 

the oaks of Lakeview, next to the herons of City Park, and swung his first fishing pole into Crane 

Creek east of Necaise, Mississippi. Adventuring between the neglected New Deal cityscape of 

New Orleans and recovering Oak and Magnolia lowlands of coastal Mississippi taught him of 

the dogged resilience of the natural world to the slights of industrial humanity.   He graduated 

from Jesuit New Orleans Summa Cum Laude in May of 1997, after witnessing the many May 

floods during his high school career.  He escaped to study in Athens, Georgia, at the University 

of Georgia, and discovered the discipline of Ecology while pursuing studies of the English 

language, all in search of a solution to the problem of a sinking metropolis.  After graduating 

Magna Cum Laude with a double degree, he pursued laboratory, field, and course work in the 

foothills and mountains of North Georgia, until certain storms struck his home state after his 26th 

birthday in 2005.  Upon returning, he sought to study the estuarine system that housed his family 

for so many generations, and enrolled at the University of New Orleans to study the Lake 
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