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Abstract

Rapid advances in high-throughput data acquisition technologies, such as microarrays

and next-generation sequencing, have enabled the scientists to interrogate the expression lev-

els of tens of thousands of genes simultaneously. However, challenges remain in developing

effective computational methods for analyzing data generated from such platforms. In this

dissertation, we address some of these challenges. We divide our work into two parts. In

the first part, we present a suite of multivariate approaches for a reliable discovery of gene

clusters, often interpreted as pathway components, from molecular profiling data with repli-

cated measurements. We translate our goal into learning an optimal correlation structure

from replicated complete and incomplete measurements. In the second part, we focus on the

reconstruction of signal transduction mechanisms in the signaling pathway components. We

propose gene set based approaches for inferring the structure of a signaling pathway.

First, we present a constrained multivariate Gaussian model, referred to as the

informed-case model, for estimating the correlation structure from replicated and complete

molecular profiling data. Informed-case model generalizes previously known blind-case model

by accommodating prior knowledge of replication mechanisms. Second, we generalize the

blind-case model by designing a two-component mixture model. Our idea is to strike an

optimal balance between a fully constrained correlation structure and an unconstrained one.

Third, we develop an Expectation-Maximization algorithm to infer the underlying correlation

structure from replicated molecular profiling data with missing (incomplete) measurements.

We utilize our correlation estimators for clustering real-world replicated complete and in-

complete molecular profiling data sets. The above three components constitute the first part

of the dissertation. For the structural inference of signaling pathways, we hypothesize a

directed signal pathway structure as an ensemble of overlapping and linear signal transduc-

xix



tion events. We then propose two algorithms to reverse engineer the underlying signaling

pathway structure using unordered gene sets corresponding to signal transduction events.

Throughout we treat gene sets as variables and the associated gene orderings as random.

The first algorithm has been developed under the Gibbs sampling framework and the second

algorithm utilizes the framework of simulated annealing. Finally, we summarize our findings

and discuss possible future directions.

Keywords Replicated data, incomplete data, correlation, covariance matrix, multivariate

Gaussian mixture models, expectation-maximization (EM) algorithm, gene sets, Gibbs sam-

pling, signaling pathways, signal transduction, discrete optimization, simulated annealing.
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Chapter 1

Background and Introduction

1.1 Molecular Profiling Measurements

Rapid advances in high throughput data acquisition platforms, such as microarrays [46, 82,

128] and next generation sequencing [99, 133], are bringing about a revolution in our un-

derstanding of biological complexity. It has become clear that genes do not function alone

but through complex biological pathways. Characterization of such intricate pathways can

provide deep insights into the biomolecular interaction and regulation mechanisms, which

pose several challenges to biology and genetics. Using traditional approaches, which mainly

focussed on one gene at a time, it was not feasible to survey the concerted activities of

multiple genes simultaneously. Emergence of high throughput technologies have enabled the

researchers to interrogate the expression profiles of tens of thousands of genes in a single

experiment. An enormous amount of data generated by such platforms can be accessed from

public repositories and databases, e.g. National Center for Biological Technology (NCBI)

Gene Expression Omnibus (GEO) [15], the European Molecular Biology Lab (EMBL) Ar-

rayExpress [115] and the Saccharomyces Genome Database (SGD) [54]. This has created

substantial interest among researchers in the development of effective methodologies for a

better understanding of fundamental cell functions and genetic causes of human diseases.

1.1.1 Microarray Experiments

Microarrays have become a standard tool for gene expression measurement in the biomedical

community. Using microarray chips, it is now possible to capture the genome-wide picture
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of an organism under different conditions. Microarrays are useful in a wide range of research

areas such as gene screening [120,137], drug discovery [56,63] and pathway analysis [39,112,

113]. Some of the more familiar techniques used in the analysis of microarray data include

detection of differentially expressed genes [27, 60, 124], gene clustering [93, 94, 152], sample

classification and biomarker discovery [108, 153] and gene network inference [7, 20, 88, 155].

However, the outcome of any of these analyses is directly affected by the quality of gene

expression profiles under study. In general, the measurements generated from microarray

platforms are contaminated with excessive noise, which may be introduced at various stages

of a microarray experiment.

There are a sequence of steps involved in acquiring gene expression profiles using

microarray technology, which we briefly describe below:

Chip Manufacturing: A microarray is made of a solid surface on which strands of polynu-

cleotide, also known as probes, are attached or synthesized in fixed locations. Two popular

gene expression microarrays are: spotted or cDNA microarrays [128] and oligonucleotide

chips (Affymetrix GeneChips) [82]. In cDNA microarrays, probes are mechanically printed

on the slide and each probe, which is a cDNA fragment, represents one gene. In the case of

Affymetrix chips, probes are directly synthesized on the array. Each probe on a Affymetrix

chip is a DNA oligonucleotide. A set of sibling probes, referred to as a probe set, is used to

represent one gene.

Sampling and Labeling: A microarray experiment begins with the isolation of RNAs from the

subject cells. In cDNA microarrays, RNAs are extracted from both control and experimental

samples. RNAs are reverse transcribed into cDNAs. By in vitro transcription cDNAs are

converted to cRNAs, which are then labeled using fluorescent dyes of two different colors

(usually red and green). The labeled transcripts are called targets. Affymetrix microarrays,

on the other hand, are single channel platforms which use only one sample per chip.

Hybridization: The basic principles used in microarrays are: (1) DNA and RNA specifically

bind to their complementary sequence and (2) the binding occurs in proportion to the abun-
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Figure 1.1: Illustration of cDNA (Left) and Affymetrix (Right) microarray technologies. Figure
reused by permission from Mcmillan Publishers Ltd: Leukemia [138], copyright 2003.
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dance of a sequence. Hybridization is the process by which the labeled targets bind to the

probes on the array. After hybridization, microarray is washed to eliminate the portions of

unused targets.

Scanning and Imaging: The washed microarray is illuminated using a laser light that causes

the labeled targets to emit fluorescence. The emitted fluorescence is scanned and stored as

an image which consists of a grid of spots, one for each probe.

Data Acquisition: The image is transformed into numerical values to obtain raw intensities

for each probe. Before the raw data can be used for analysis, it is preprocessed using

background correction and normalization. Background correction is used to correct the

processing effects on the array and make adjustments for cross-hybridization (non-specific

bindings). Normalization is used for reducing the within or between array variations. After

this step, a matrix comprising of relative or absolute mRNA abundance levels is obtained,

which is used for bioinformatics analysis.

Fig. 1.1 demonstrates a step-by-step procedure used in both cDNA and Affymetrix

microarray experiments. It is worth mentioning here that the methodologies developed in

this dissertation are not restricted to microarray data. They are applicable to other molec-

ular profiling data, such as proteomics data. In the following chapters, however, we have

illustrated the performance of our methods using molecular profiling measurements gener-

ated from Affymetrix microarray technology. Compared with other microarray platforms,

Affymetrix microarrays are often preferred due to a number of reasons:

• Affymetrix microarray is a single-color oligonucleotide array, which results in a simpli-

fied experimental design.

• As opposed to using a single long probe, Affymetrix microarrays use a set of short

sibling probes for representing a gene. This leads to an increased sensitivity and

specificity.

• The probes in a probe set are randomly spread across an Affymetrix microarray. As a
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result, the effect of localized artifacts is reduced.

• Affymetrix microarrays have increased throughput and reproducibility.

• A wide range of computational tools are easily available for analyzing Affymetrix mi-

croarray data.

1.1.2 Replicated Molecular Profiling Data

Replication is commonly used in biomedical experiments to account for the inherent vari-

ability and noise in data. The necessity and benefit of replication is more pronounced for

high throughput experiments, where data are often exposed to excessive noise. Even in the

case of more accurate next-generation deep sequencing data [134], there still exist multiple

sources of uncertainty deriving from fragmentation bias, base calling, short-read aligning and

short-read counting based on the error-prone genome annotation [99].

The following two types of replications are commonly used in high throughput experi-

ments: biological replication and technical replication [10]. Biological replication corresponds

to the type where measurements from multiple cases are considered, e.g. samples collected

from different breast cancer patients. In technical replication, multiple replicates of the same

biological replicate are used, e.g. replicated spots representing the same gene on a chip or

different aliquots of the same sample used in different chips. Biological replication is useful

to measure the variability across population, whereas technical replication is employed for

estimating measurement level variability.

The replication mechanism used in underlying experimental design may be either

blind or informed to the data analysts. A good example of the former is the Affymetrix

GeneChip [82], where 11 perfect match probes are designed against the 3-prime end of mRNA

to interrogate the abundance level of the same gene, although a mixture of gene isoforms can

exist. For this reason they are general-sense replicates with blind replication mechanism and

large internal variation. A good example of the latter is the Illumina hybridization-based
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Figure 1.2: Correlation structures (Left) and molecular profiling data (Right) corresponding
to a pair of genes, each with 4 replicated measurements. The upper panels represent the
correlation structure and molecular profiling data with blind replication mechanism, whereas
the lower panels correspond to the ones with informed replication mechanism. In the case
of informed replication mechanism 2 biological replicate and 2 technical replicates nested
within each biological replicates are used for a gene. Figure reused from [4].
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BeadArray [46] and deep sequencing based Genome Analyzer II [134], where 6−12 samples of

whole-genome gene expression are simultaneously profiled for each chip/run. Both biological

replicates and/or technical replicates can be used for each chip/run. For this reason they can

be treated as narrow-sense replicates with informed replication mechanisms. In many cases,

replicates with blind mechanism can be nested within the ones with informed mechanism,

and vice versa [70].

Both blind and informed replication mechanisms must be considered for a robust

pattern analysis of replicated molecular profiling data. For instance, Fig. 1.2 presents two

gene sets with the same number of replicated measurements but with different replication

mechanisms. As demonstrated in the figure, the corresponding true correlation structures

capture the replication mechanisms and are different from each other. In addition to diverse

replication mechanisms used in experimental design, high throughput molecular profiling

data may also be incomplete, i.e. data may contain a small to large percentage of missing

values [81]. Incompleteness may arise due to various reasons such as sample contamina-

tion, cross-hybridization, high background noise combined with low signal. In some high

throughput molecular profiling experiments such as mass-spectrum, the ratio of missing val-

ues can be as high as 30%. Clearly, incomplete replicated measurements present obstacles

for further data analysis. It is necessary to design computational frameworks for a reliable

pattern discovery from replicated complete and incomplete measurements with both blind

and informed replication mechanisms [1, 4, 158, 161].

1.2 Pathway Analysis

Molecular profiling measurements generated from microarray experiments are usually in

the form of large matrices of gene expression levels measured under different conditions.

These measurements only act as a source for investigating biological complexity, they do not

themselves reveal the whole picture of this complexity. A follow-up data analysis must be

performed to uncover gene interaction and regulation patterns underlying molecular profiling
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data. However, gaining biological insights from genome-wide measurements is challenging

due to the complexity of biological systems (large number of biomolecules p) and availability

of an insufficient amount of data that estimate the complex dependency structure (small

sample size N), a problem referred to as the curse of dimensionality [49]. Therefore, an

initial characterization of molecular profiling data is required to organize genes into smaller

groups on the basis of their expression profiles. Individual gene groups are then analyzed for

their potential role in biological pathways.

Pathway-level analysis is the key to make biological inferences and hypothesis from

molecular profiling data. A biological pathway represents the biological reactions and biomolec-

ular interaction mechanisms within a cell. In recent years, many annotated biological path-

ways and tools for their analysis have become increasingly available due to rapid advance-

ments in high-throughput data acquisition methods [30,57,68,140,145]. However, our current

knowledge about the signal transduction activities in a cell, which affects gene expressions

via downstream transcription factors, is quite limited. For example, the signaling pathway

structures available from public databases may not represent a complete picture of under-

lying signal transduction events among genes that are already known to be related to the

pathway. There might exist additional mechanisms among genes present in the pathways.

Moreover, the pathways in databases are often generic, whereas scientists are many times

interested in learning context-specific signaling pathway structures. We categorize signal-

ing pathway analysis into the following two subproblems: (1) which genes are related to a

signaling pathway and (2) how the genes within a pathway interact with each other.

1.2.1 Structure of Signaling Pathways

Structural study of signaling pathways is important to improve our understanding of fun-

damental cell functions, e.g. growth, metabolism, differentiation and apoptosis, which are

driven by simultaneous action of several cascades of reactions from the cell surface to the

nucleus [6]. According to the central dogma of molecular biology, genetic information is
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encoded in double stranded DNA. The information stored in DNA is transferred to single

stranded messenger RNA (mRNA) to direct protein synthesis. Signal transduction activities

in a pathway are the primary mean to control the passage of biological information from

DNA to mRNA with mRNA directing the synthesis of proteins.

A signaling pathway comprises of several overlapping signal transduction events among

a set of biomolecules (usually proteins) upstream of transcription factors. Signal transduc-

tion events in a pathway are triggered by the binding of external ligands (e.g. cytokine

and chemokine) to the transmembrane receptors. This binding results in sequential acti-

vations of signaling molecules, such as cytoplasmic protein kinase, to lead to a biological

end point (transcription factor). Since activation of signaling pathways affects gene expres-

sions via transcription factors, it is necessary to understand signal transduction mechanisms

upstream of transcription factors.

In an abstract sense, the structure of a signaling pathway can be described as a di-

rected graph, where each node represents a protein and a directed edge represents the passage

of information from one node to another node. Inference of such directed network topologies

is a major challenge in systems biology [24, 122]. Some of the popular pathway databases

that comprise of manually curated pathway maps representing our current knowledge on

biological networks include KEGG (www.genome.jp/kegg), BioCarta (www.biocarta.com)

and NCBI BioSystems (www.ncbi.nlm.nih.gov/biosystems). For a more comprehensive

list of web-accessible biological pathway and network databases, we refer to [12].

1.2.2 Identification of Signaling Pathway Components

For inferring the structure of a signaling pathway, it is first necessary to identify the set

of genes that comprise the pathway. Gene clustering [93, 94, 152] is often one of the first

steps used in the identification of pathway components. Gene clustering is a simple data

partitioning approach for organizing genes in different groups, where genes within a group

share functional similarities. Compared with other similar approaches, results from gene
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clustering are often easier to interpret. Another advantage of gene clustering is its applica-

bility in the absence of any prior knowledge about data, such as the functions of individual

genes. Some of the popular gene clustering algorithms include: Hierarchial clustering [34],

K-means clustering [48] and model-based clustering [90].

A number of other supervised and unsupervised learning algorithms used in the iden-

tification of pathway components are differential expression analysis [27, 60, 124], matrix

factorization schemes [17, 72], co-expression networking combined with network partition-

ing [19, 155, 156] and others [52, 142]. Gene lists obtained by an application of any of the

aforementioned approaches represent candidate pathway components. The candidate gene

lists are statistically tested for their biological significance using over-representation analy-

sis [33, 71] to identify gene ontology terms that are over-represented in the candidate list or

functional class scoring [140,145] which incorporates functional indicators of the genes. This

process leads to the discovery of signaling pathway components.

In general, the discovery of biologically meaningful pathway components is highly

dependent on the computational approach used in their identification. Since the choice of

an approach is often problem specific, a more crucial issue is the use of a reliable metric

which can be employed to learn the dependencies among genes in a pathway and can be

easily accommodated by diverse pathway learning techniques. Indeed, correlation is one

such measure that captures the functional relationships among genes and facilitates the

identification of pathway components.

Correlation is at the core of many supervised and unsupervised pattern analyses ap-

proaches. In unsupervised learning, many gene clustering algorithms group genes on the

basis of their correlation structure [34, 55, 151, 152]. Correlation structure is also employed

by many gene networking algorithms to determine the presence or absence of network edges,

which is a strong indicator of the functional relevancy between a pair of genes. However,

similar to the case of high-dimensional molecular profiling data, it is difficult to draw mean-

ingful conclusions from genome-scale co-expression networks, which may be too broad or
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abstract of a representation for a particular biological process of interest. Therefore, learn-

ing a finer level of detail from large-scale biological networks is often of more interest to the

scientists. As a result, co-expression networking is followed by an application of network

clustering [69, 84, 156] or community detection algorithms [5, 73, 78, 105–107, 111]. The re-

sulting subnetworks are interpreted as functional modules or signaling pathway components.

In terms of supervised learning, the performance of various model-based classification meth-

ods [49], e.g. linear and quadratic discriminate analysis, relies on an accurate estimate of

the population correlation structure. These analyses may further be used to learn pathway

components and context-specific gene networks in disease groups [39, 103].

1.3 Previous Works and Current Challenges

In this dissertation, we develop methodologies to address two major problems in compu-

tational systems biology: (1) estimation of an optimal correlation structure which plays a

crucial role in the identification of pathway components and (2) reconstruction of signaling

pathway structures demonstrating the signal transduction activities in the pathway compo-

nents.

1.3.1 Correlation-Based Discovery of Pathway Components

As discussed earlier, estimation of an optimal correlation structure is essential for a reliable

discovery of pathways from molecular profiling data. However, the existing approaches

for inferring population correlation structure do not automatically accommodate replicated

measurements. Often, a data preprocessing step of averaging over replicated measurements

followed by the estimation of bivariate correlation, such as Pearson correlation coefficient,

is used [59, 151, 152]. Averaging is not completely satisfactory since it creates a strong bias

while reducing the variance among replicates of diverse magnitudes. Averaging may also

lead to a significant amount of information loss. For example, useful information including

weak patterns and opposite patterns may cancel out by averaging over replicates.
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In one-gene-at-a-time analyses for detecting differentially expressed genes between

categorical phenotypes (e.g. healthy versus cancer tissues), replicates are sufficiently ex-

ploited by using Analysis of Variance (ANOVA) type methods, e.g. [70, 147]. However,

this type of analysis identifies differentially expressed genes between two phenotypes or ex-

perimental conditions without considering the complicated regulatory relationships among

genes, which is often reflected in gene-gene correlation structure. Correlation-based analysis,

e.g. hierarchical clustering [34, 55], differential correlation [132] and co-expression network-

ing [16, 18, 19, 85, 88, 116, 125, 149, 155, 156], are viable multi-gene approaches to decipher

underlying gene regulatory mechanisms and to infer functional modules or pathway com-

ponents. With few exceptions, the existing clustering and networking algorithms do not

explicitly accommodate replicated measurements. Commonly, replicates are averaged (e.g.

weighted [59], un-weighted or something in between [151]) or, for Affymetrix data, sum-

marized (e.g. RMA [64], GCRMA [150], MAS5 [58] and Model-Based Expression Index

(MBEI) [81]). The averaging and summarizing are necessary since the mean of the repli-

cates is one of the primary interests in one-gene-at-a-time analysis.

In multi-gene clustering and networking analysis, the primary interest is often to esti-

mate a scale-free correlation structure among genes that does not depend on the abundance

level of each individual replicate (Fig. 1.3). Expression patterns derived from low abundance

profiles can be just as important as those derived from high abundance ones. Averaging or

summarizing over replicates of diverse magnitude might wipe out important patterns of low

magnitude and/or cancel out patterns of similar magnitude. The averaging or summariz-

ing procedure, originally targeted for differential expression analysis, becomes a nuisance in

gene clustering and networking analysis. The situation is even worse when the replication

mechanisms used in underlying experimental design is available a priori or the replicated

measurements contain a small to large percentage of missing values.

With few exceptions, e.g. [93, 94, 158], the existing gene clustering and networking

algorithms do not appropriately accommodate replicated and/or incomplete measurements.
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Figure 1.3: Correlation is scale-free. The 4 pairs of non-replicated simulated profiles have the same
correlation of 0.6, but differ vastly in their relative magnitude. Figure reused from [161].
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The increased power of detecting hidden patterns in data is achieved by sufficiently exploiting

the replicates, which has been demonstrated using infinite Bayesian mixture models [93,94]

and parsimonious (or blind-case) multivariate Gaussian models [158]. In the infinite mixture

model approach, authors used both an elliptical model that allows within-replicate variation

across difference samples to be different and a spherical model that does not. The authors

showed that approaches using information about the within-replicate variability (elliptical

and spherical models [94]) generally outperform the averaging or summarizing approaches. In

the parsimonious multivariate Gaussian models, authors proposed a parsimonious correlation

model [158] that shares a similar spirit to the Bayesian elliptical or spherical model approach

[94] in that both approaches explicitly consider each replicate, individual variability and their

relationships.

Nevertheless, none of the two approaches are ready to analyze replicated and/or

incomplete molecular profiling data with a prior known experimental design information.

Therefore, it is necessary to design new computational paradigms for an accurate estimation

of the correlation structure that allows biomedical researchers to sufficiently exploit repli-

cated complete and incomplete measurements with or without prior knowledge of replication

mechanism. This, in turn, is expected to give rise to a reliable discovery of pathway com-

ponents (Fig. 1.4). It is one of the two major contributions of this dissertation to

address this challenge.

1.3.2 Reconstruction of Signaling Pathway Structures

Reconstruction of signaling pathway structures is essential to decipher complex regulatory

relationships in living cells. Characterization of complicated interaction patterns in sig-

naling pathways can provide insights into biomolecular interaction and regulation mecha-

nisms. Consequently, there have been a large body of computational efforts for reconstruct-

ing signaling pathway structures using Probabilistic Boolean Networks (PBNs) [135, 136],

Bayesian Networks [37, 130], Mutual Information Networks [7, 19, 96], Graphical Gaussian
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Figure 1.4: Gene clustering and networking using replicated molecular profiling data. The left
block represents 4 replicated molecular profiles, in which the magnitude of each molecular profile
(one color curve) differs significantly from the others. The middle block displays a scale-free corre-
lation matrix of 4 replicated gene expression profiles. The right side block shows five popular gene
clustering and networking algorithms. Figure reused from [161].
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Models [32, 75, 125, 126] and other approaches [38, 143, 144, 148, 155].

Although the existing approaches are useful, they often represent a phenomenological

graph of the observed data. For example, a parent set of each gene in Bayesian networks

indicates statistically causal relationships. In addition, the accuracy of a learned Bayesian

network is determined by the choice of the number of parents for each node, a metric used

to score a structure and other parameters set to alleviate the non-trivial computational bur-

dens associated with Bayesian network inference. Mutual information networks, graphical

Gaussian models and boolean networks are computationally tractable even for large signal-

ing pathways, however the co-expression criteria used in mutual information networks and

graphical Gaussian models only models a possible functional relevancy, whereas the use of

boolean functions in boolean networks may lead to an oversimplification of the underlying

gene regulatory mechanisms. Moreover, the aforementioned approaches do not explicitly

consider signal transduction events characterizing a signaling pathway. Signal transduction

events refer to directed linear cascades of reactions from the cell surface to the nucleus and

form the basic building blocks of a signaling pathway. It is, therefore, necessary to design

computational approaches for the structural inference of signaling pathways by incorporating

signal transduction mechanisms.

With few exceptions in the field of communication networks, the existing network in-

ference approaches do not explicitly accommodate signal transduction events. The frequency

method in [118] assumes a tree structure in the paths between pairs of nodes (genes). How-

ever, the method is subjected to fail in the presence of multiple paths between the same

pair of nodes. The cGraph algorithm presented in [76] adds weighted edges between each

pair of nodes that appear in some set of gene co-occurrence and so the networks inferred by

this approach might contain a large number of false positives. The EM approach [119, 157]

treats permutations of genes in a signal transduction as missing data and infers a network by

assuming a linear arrangement of genes along with a prior knowledge of two end nodes. It is

also difficult to incorporate prior knowledge about regulator-target pairs in the approaches
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Figure 1.5: Representation of a gene set compendium as binary discrete data and vice versa.

mentioned above.

A central aspect of developing such network reconstruction approaches is to under-

stand the structure of signaling pathways, which are an ensemble of several overlapping

signal transduction events with a linear arrangement of genes in each event. Overlapping

arises from simultaneous participation of genes in many biological processes. In the present

context, we refer to the set of genes in a signal transduction event as an information flow

gene set (IFGS). Thus, an IFGS only reflects which genes participate in a signal trans-

duction event, but not their ordering. The underlying signaling pathway structure can be

reconstructed by inferring the order of genes in each IFGS.

An IFGS can also be interpreted as a discrete set of genes expressed in an experi-

ment, whereas an IFGS compendium comprises of many overlapping gene sets corresponding

to different experiments. With this understanding, an IFGS based approach can be com-

pared with other network inference algorithms which accommodate discrete measurements,

such as Bayesian networks [26, 37, 130] and mutual information networks [7–9, 19]. Fig.

1.5 sketches the equivalence between an IFGS compendium and binary discrete molecular

profiling measurements obtained by considering the presence (expressed) or absence (not
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expressed) of genes in a gene set. However, an IFGS approach may be more suitable for

capturing higher order signal transduction mechanisms as opposed to pairwise interactions

or causal interactions. Compared with other network inference approaches which utilize con-

tinuous molecular profiling data, an IFGS approach may be more robust to noise and may

facilitate data integration from multiple data acquisition platforms.

It is also worth mentioning the difference between the concept of an IFGS presented

here and a gene signature used in the literature. A gene signature usually corresponds to a

set of genes with combined pattern of expression downstream of transcription factors and is

often linked to a given biological state of interest. An IFGS, on the other hand, represents a

set of molecules (usually proteins) in a signaling pathway upstream of transcription factors

which participate in a signal transduction event in the pathway. Moreover, IFGSs related

to a signaling pathway indicate the existence of an underlying structure, whereas a gene

signature may only correspond to a set of functionally relevant genes without suggesting

the presence of a structure. Gene signature based analysis has received much attention in

recent years. The relative advantages of working with gene signatures in bioinformatics

analyses have been adequately demonstrated [112, 113, 121, 140]. They have also been used

to dissect drug mechanism of action and to find transcriptional connections among genes,

drugs and diseases [63, 77]. However, signaling pathway structure inference by sufficiently

exploiting gene sets corresponding to signal transduction mechanisms, a promising area of

bioinformatics research, remains underdeveloped. It is the second major contribution

of this dissertation to address this challenge.

1.4 Outline of Dissertation

The goal of this dissertation is to develop novel methodologies for inferring gene association

and regulation patterns from molecular profiling data. The work presented here is composed

of two parts. The first part presents a sequence of multivariate approaches leading to a

reliable discovery of gene clusters, often interpreted as pathway components, from replicated
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molecular profiling data. Our approach is to learn an optimal correlation structure from both

replicated complete and incomplete molecular profiling data (Fig. 1.4). In the second part,

we address the problem of inferring the structure underlying a signaling pathway component.

We develop algorithms by treating gene sets corresponding to signal transduction activities

in a signaling pathway as the basic building blocks of the underlying structure (Fig. 1.5).

In Fig. 1.6, we sketch a flowchart of the problems considered in this dissertation. In

Chapters 2 and 3, we develop two generalized multivariate correlation estimators for pattern

discovery from replicated and complete molecular profiling data. In Chapter 2, specifically,

we present a correlation estimator by explicitly taking into account the prior knowledge of

replication mechanisms. We further generalize this correlation estimator in Chapter 3 by

designing a finite mixture model. Chapter 4 deals with the problem of inferring correlation

structure from replicated and incomplete molecular profiling data. We consider replicated

and incomplete measurements with either blind or informed replication mechanisms and

develop an EM algorithm to estimate the correlation structure. In Chapters 5 and 6, we

present two gene set based algorithms to infer underlying signaling pathway structure in a

given pathway component. Chapter 5 presents a sampling based approach by employing

the Gibbs sampling framework, whereas Chapter 6 presents a search strategy under the

framework of simulated annealing. Finally, in Chapter 7, we summarize our findings and

discuss future works.
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Figure 1.6: An outline of dissertation.
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Chapter 2

Learning Correlation Structures from Replicated and

Complete Molecular Profiling Data I

2.1 Introduction

Estimation of an optimal correlation structure is crucial in the pattern analyses of replicated

molecular profiling data. Many of these analyses facilitate the identification of pathway com-

ponents, such as gene clustering [34, 93, 94, 151, 152], co-expression networking [20, 125, 155]

combined with network partitioning [5,69,105–107,156] to discover network modules. With

few exceptions [93, 94, 158], however, the current approaches for estimating the correlation

structure from molecular profiling data do not automatically accommodate replicated mea-

surements. Often, a preprocessing step of summarizing or averaging over replicated mea-

surements is used to reduce the multivariate structure of replicated data into a bivariate

one [151, 152]. Bivariate data fits into the framework of pairwise correlation analysis, e.g.

Pearson’s correlation, which is simple in approach and is achievable at a very low com-

putational cost. However, summarizing or averaging may lead to a significant amount of

information loss due to diverse magnitudes of replicated measurements. The situation is

worse when the experimental design that explains the replication mechanism of molecular

profiling data is known a priori but this information is not exploited in the pattern analysis.

Therefore, it is necessary to develop computational methods by exploiting each replicate

individually and utilizing the prior knowledge of replication mechanisms.
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In this chapter1, we present a generalized multivariate model for estimating the corre-

lation structure of a gene set with replicated and complete molecular profiling measurements.

The proposed model, referred to as the informed-case model, generalizes previously known

parsimonious or blind-case correlation estimator [1,4,158] by accommodating prior knowledge

of replication mechanisms. In many cases, prior knowledge of the number of biological and

technical replicates used in underlying experimental design may be known. A straightforward

application of blind-case model, which does not distinguish between biological replicates of

a gene, may not exploit all underlying information within data. Informed-case model, on

the other hand, explicitly incorporates a prior known replication mechanisms in its setting

and considers different parameters for different biological replicates of a gene.

Throughout this chapter, we follow and extend the path of blind-case approach. The

main reasons are as follows: (1). blind-case model presents a parsimonious multivariate

correlation estimator and a closed-form formula for each pair of genes, which successfully

alleviates the computational burden derived from dimensionality. Other approaches, such

as infinite Bayesian mixture models [93, 94], often represent a computationally daunting

task, especially for high dimensional data with an increased number of genes and replicates.

(2). blind-case model uses a scale-free correlation structure to separate the estimate of

correlation between replicates (the primary interest) from the estimate of within-replicate

variability (nuisance). These advantages make the blind-case approach more suitable than

infinite Bayesian mixture models for analyzing replicated measurements with large within-

replicate variability. However, neither of them are ready to analyze replicated molecular

profiling data with a prior known experimental design.

2.2 Notations

Throughout this chapter, G1, . . . , Gk denote arbitrary biomolecules with glij as their respec-

tive abundance levels in the ith replicate (row) and jth sample (column), for l = 1, . . . , k,

1Published work [161]. Reused with permission. Copyright, IEEE. All rights reserved.
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where the abundance levels are measured over n independent samples. Further, we as-

sume that ml replicated measurements are available for Gl in each sample, l = 1, . . . , k.

The jth column of the given replicated data set is written as Zj = (Zj1, . . . , Zjk)
T =

(g1j1, . . . , g
1
jm1

, . . . , gkj1, . . . , g
k
jmk

)T , j = 1, 2, . . . , n, and is assumed to be an independently

and identically distributed sample from a multivariate normal distribution with
∑k

l=1ml

random variables.

2.3 The Existing Blind-Case Approach

2.3.1 The Model

We first review the existing blind-case model for estimating the correlation structure of a gene

set with replicated and complete measurements. Blind-case model was introduced in [158]

and further studied in [1,4]. In this model, each replicate is treated individually as a random

variable and data are assumed as random samples from a multivariate Gaussian distribution,

which we denote by N(µB,ΣB). We designate the model as ‘blind’ since it imposes a fixed

number of correlation parameters in the underlying correlation structure. The parameters

for the blind-case model are defined as

µB =









µB
g1em1

...

µB
gk
emk









(2.1)

where µB
gi

is a scalar and emi
= (1, . . . , 1)T is a vector of size mi × 1, for i = 1, . . . , k. The

correlation matrix ΣB is of size
∑k

i=1mi ×
∑k

i=1mi and is given by
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ΣB =






















1 . . . ρ11 . . . ρ1k . . . ρ1k
...

. . .
...

...
. . .

...

ρ11 . . . 1 . . . ρ1k . . . ρ1k
...

. . .
...

...
. . .

...

ρk1 . . . ρk1 . . . 1 . . . ρkk
...

. . .
...

...
. . .

...

ρk1 . . . ρk1 . . . ρkk . . . 1






















=









ΣB
g1g1

. . . ΣB
g1gk

...
...

...

ΣB
g1gk

T
. . . ΣB

gkgk









. (2.2)

In Eq. 2.2, ΣB
gigj

represents a submatrix of size mi × mj , which is defined in terms of a

single correlation parameter ρij . When i = j, the parameters ρij ’s correspond to within-

molecular correlation. Otherwise, they represent between-molecular correlations. Due to

the symmetric nature of a correlation matrix, we assume ρij = ρji. From a practical point of

view, between-molecular correlations are more important. Within-molecular correlations, on

the other hand, are indicative of data quality. Higher values of within-molecular correlations

represent cleaner data.

2.3.2 Parameter Estimation

For estimating model parameters from replicated measurements, blind-case approach fol-

lows the path of maximum likelihood estimation. Maximum likelihood estimates (MLEs)

are frequently used in parameter estimation problems when the underlying distribution is

multivariate normal [21]. In such cases, MLEs often have some optimal properties. For

example, the MLEs of mean vector and correlation matrix become asymptotically efficient.
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When n >
∑k

i=1mi, the likelihood function can be written as

L(µB,ΣB) =

n∏

j=1

N(Zj |µB,ΣB) =
1

(2π)
1
2
(
∑k

i=1 mi)n|ΣB| 12n
e[−

1
2

∑n
j=1 (Zj−µB)

T
ΣB−1

(Zj−µB)].

(2.3)

The MLE’s are obtained by maximizing L with respect to µB and ΣB. This is achieved by

solving

dL/dµB
gl
= 0, (2.4)

for l = 1, . . . , k and

dL/dΣB = 0, (2.5)

where L = logL. This leads to

µ̂B
gl
=

1

n

1

ml

n∑

j=1

ml∑

i=1

glij (2.6)

for l = 1, . . . , k. Thus, the MLE of µB is

µ̂B =









µ̂B
g1
em1

...

µ̂B
gk
emk









. (2.7)

The MLE of ΣB is given by

Σ̂B =
1

n

n∑

j=1

(Zj − µ̂B)(Zj − µ̂B)T . (2.8)

Since the parameters ρ̂ij ’s may not be tractable in practice, they are estimated using

ρ̂ij = Avg(Σ̂B
ij), i, j = 1, . . . , k. (2.9)

Eqs. 2.6-2.9 give the MLEs of parameters for the blind-case model. In the case of two
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biomolecules, the representation of blind-case model in Eq. 2.1 and Eq. 2.2 coincides with

the one presented in [158], which is defined in terms of two within-molecular and one between

molecular correlation parameters.

Blind-case model is simple in approach and is especially useful in the case of repli-

cated measurements with no prior knowledge of underlying replication mechanisms. Since

the MLEs of model parameters are represented in closed-forms, blind-case approach also

benefits from a much reduced computational load than other multivariate approaches, such

as infinite Bayesian mixture models [93, 94]. However, blind-case model suffers from two

major limitations. First, it may simplify the correlation structure of a gene set with many

pairwise gene correlation structures (Eq. 2.2) and second, the model may be overly con-

strained for some replicated data, e.g. data with a prior known replication mechanism. To

overcome these issues, it is necessary to consider a more relaxed multivariate model.

2.4 Informed-Case Approach

2.4.1 The Model

In this section, we design a multivariate model for estimating the correlation structure from

replicated and complete molecular profiling measurements corresponding to a gene set with

a prior known replication mechanism. For simplicity, we illustrate the model for the case of 2

genes G1 and G2, where 3 biological replicates with 2 technical replicates nested within each

biological replicate are available for both G1 and G2. Throughout we assume that data are

independently and identically distributed samples from a multivariate normal distribution

N(µI ,ΣI). In the above specified case, Zj’s follow a 12-variate normal distribution with

µI =
(
µ1
g1
, µ1

g1
, µ2

g1
, µ2

g1
, µ3

g1
, µ3

g1
, µ1

g2
, µ1

g2
, µ2

g2
, µ2

g2
, µ3

g2
, µ3

g2

)T
, (2.10)

a 12×1 vector defined in terms of 6 parameters. The correlation matrix ΣI is of size 12×12

with 16 parameters and is given by
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ΣI =








































1 ρtt ρ12g1 ρ12g1 ρ13g1 ρ13g1 ρ11g1g2 ρ11g1g2 ρ12g1g2 ρ12g1g2 ρ13g1g2 ρ13g1g2

ρtt 1 ρ12g1 ρ12g1 ρ13g1 ρ13g1 ρ11g1g2 ρ11g1g2 ρ12g1g2 ρ12g1g2 ρ13g1g2 ρ13g1g2

ρ21g1 ρ21g1 1 ρtt ρ23g1 ρ23g1 ρ21g1g2 ρ21g1g2 ρ22g1g2 ρ22g1g2 ρ23g1g2 ρ23g1g2

ρ21g1 ρ21g1 ρtt 1 ρ23g1 ρ23g1 ρ21g1g2 ρ21g1g2 ρ22g1g2 ρ22g1g2 ρ23g1g2 ρ23g1g2

ρ31g1 ρ31g1 ρ32g1 ρ32g1 1 ρtt ρ31g1g2 ρ31g1g2 ρ32g1g2 ρ32g1g2 ρ33g1g2 ρ33g1g2

ρ31g1 ρ31g1 ρ32g1 ρ32g1 ρtt 1 ρ31g1g2 ρ31g1g2 ρ32g1g2 ρ32g1g2 ρ33g1g2 ρ33g1g2

ρ11g1g2 ρ11g1g2 ρ21g1g2 ρ21g1g2 ρ31g1g2 ρ31g1g2 1 ρtt ρ12g2 ρ12g2 ρ13g2 ρ12g2

ρ11g1g2 ρ11g1g2 ρ21g1g2 ρ21g1g2 ρ31g1g2 ρ31g1g2 ρtt 1 ρ12g2 ρ12g2 ρ13g2 ρ12g2

ρ12g1g2 ρ12g1g2 ρ22g1g2 ρ22g1g2 ρ32g1g2 ρ32g1g2 ρ21g2 ρ21g2 1 ρtt ρ23g2 ρ23g2

ρ12g1g2 ρ12g1g2 ρ22g1g2 ρ22g1g2 ρ32g1g2 ρ32g1g2 ρ21g2 ρ21g2 ρtt 1 ρ23g2 ρ23g2

ρ13g1g2 ρ13g1g2 ρ23g1g2 ρ23g1g2 ρ33g1g2 ρ33g1g2 ρ31g2 ρ31g2 ρ32g2 ρ32g2 1 ρtt

ρ13g1g2 ρ13g1g2 ρ23g1g2 ρ23g1g2 ρ33g1g2 ρ33g1g2 ρ31g2 ρ31g2 ρ32g2 ρ32g2 ρtt 1








































,

(2.11)

where the parameters ρijg1g2 and ρijg1 (or ρijg2) represent intermolecular and intramolecular

correlation between the ith and jth biological replicates, respectively. In general, the technical

replicates of a biological replicate are highly correlated. Therefore, we use a single parameter

ρtt to represent the correlation between the technical replicates of a biological replicate. We

keep this parameter same across all biological replicates of the two genes. However, the

model can be made more flexible by assuming this parameter to be different for different

biological replicates. It is easy to see that ΣI in Eq. 2.11 is composed of several 2 × 2

matrices, each of which are defined in terms of a single correlation parameter. We denote

these blocks by Σrs
uv for u, v ∈ {g1, g2}, r, s ∈ {1, 2, 3}, where ρijg1g1 = ρijg1 , Σ

ij
g1g1

= Σij
g1

and

so on. The representation in Eq. 2.11 can be naturally extended to the case of a gene set

with a given number of biological replicates and nested technical replicates.
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2.4.2 Parameter Estimation

Let us consider the case of Jm1 and Jm2 biological replicates for the genes G1 and G2,

respectively. Further, we assume that the number of technical replicates nested within

the jthm1
biological replicate is Ijm1

, 1 ≤ jm1 ≤ Jm1 and within jthm2
biological replicate is

Ijm2
, 1 ≤ jm2 ≤ Jm2 , where

Jm1∑

j=1

Ijm1
= m1 and

Jm2∑

j=1

Ijm2
= m2. (2.12)

As in the case of blind-case model, we derive the MLEs of µI and ΣI by maximizing L(µI ,ΣI).

The MLEs are given by (see Appendix A.1 for mathematical proofs)

µ̂
jm1
g1 =

1

Ijm1n

n∑

k=1

∑j
l=1 I

l
m1∑

i=
∑j

l=1 I
l−1
m1

+1

g1ik, 1 ≤ jm1 ≤ Jm1 (2.13)

and

µ̂
jm2
g2 =

1

Ijm2n

n∑

k=1

∑j
l=1 I

l
m2∑

i=
∑j

l=1 I
l−1
m2

+1

g2ik, 1 ≤ jm2 ≤ Jm2 (2.14)

This leads to

µ̂I [1] µ̂I [2]

µ̂I =

(
︷ ︸︸ ︷

µ̂1
g1
, . . . , µ̂1

g1
︸ ︷︷ ︸

, . . . , µ̂
Jm1
g1 , . . . , µ̂

Jm1
g1

︸ ︷︷ ︸
,

︷ ︸︸ ︷

µ̂1
g2
, . . . , µ̂1

g2
︸ ︷︷ ︸

, . . . , µ̂
Jm2
g2 , . . . , µ̂

Jm2
g2

︸ ︷︷ ︸

)T

(2.15)

I1m1
times I

Jm1
m1 times I1m2

times I
Jm2
m2 times

The MLE of ΣI is

Σ̂I =
1

n

n∑

j=1






(Z
[1]
j − µ̂I [1])(Z

[1]
j − µ̂I [1])T (Z

[1]
j − µ̂I [1])(Z

[2]
j − µ̂I [2])T

(Z
[2]
j − µ̂I [2])(Z

[1]
j − µ̂I [1])T (Z

[2]
j − µ̂I [2])(Z

[2]
j − µ̂I [2])T






29



=






Σ̂I
g1

Σ̂I
g1g2

Σ̂IT

g1g2 Σ̂I
g2




 (2.16)

where Z
[1]
j and Z

[2]
j represent the parts of Zj containing the measurements for G1 and G2,

respectively. In Eq. 2.16, the block Σ̂I
g1g2

presents intermolecular correlations between differ-

ent biological replicates of the genes G1 and G2. It comprises of the sub-blocks Σ̂ij
g1g2

, each

of which is defined in terms of ρ̂ijg1g2. The value of ρ̂ijg1g2 is obtained by averaging the entries

in Σ̂ij
g1g2 .

2.4.3 Model Summarization

If we use the method of averaging, as done in Eq. 2.9, to obtain an estimate of ρ̂ from the

block Σ̂I
g1g2

in Eq. 2.16, the correlation estimate obtained from the informed-case model

coincides with the one from blind-case model (see Appendix A.2 for a mathematical proof).

Thus, the method of averaging ρ̂ = Avg(Σ̂I
g1g2) undermines the experimental design infor-

mation. It is, therefore, necessary to consider methods other than averaging for accessing

the level of pairwise correlation. We adapt two likelihood ratio test based methods [11] to

distinguish between the performance of the blind-case and informed-case models.

Method 1

We first test the hypothesis that intermolecular correlation between G1 and G2 vanishes.

This means, for the parameters µ (µI or µB) and Σ (ΣI or ΣB), we test the hypotheses

H0 : Z ∈ N(µ,Σ0) against Hα : Z ∈ N(µ,Σ),

where Σ and Σ0 have the following forms

Σ =






Σg1 Σg1g2

ΣT
g1g2

Σg2




 and Σ0 =






Σg1 0

0 Σg2




 . (2.17)
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The summarization statistic for testing the correlation structures of Σ0 and Σ is given by

Ψ = −2 log(∧) (2.18)

where

∧ =
|Σ̂0|−n/2 exp(−1

2

∑n
j=1(Zj − µ̂)T Σ̂−1

0 (Zj − µ̂))

|Σ̂|−n/2 exp(−1
2

∑n
j=1(Zj − µ̂)T Σ̂−1(Zj − µ̂))

. (2.19)

Using Eq. 2.19, we obtain the summarization statistics ΨB = −2 log∧B and ΨI = −2 log∧I

for the blind-case and informed-case models, respectively. Under null hypothesis, the two

statistics follow an asymptomatic chi-square distribution with 1 and Jm1Jm2 degrees of free-

dom, respectively [11]. We compare the performance of blind-case and informed-case model

in terms of Φ = − log2 P , where P stands for P -value calculated from chi-square distribution.

A lower value of P or a higher value of Φ is indicative of better model performance.

Method 2

In this method, we calculate the difference, ΨI−ΨB, of the two likelihood ratio test statistics

and compare it to a chi-square distribution with Jm1Jm2−1 degrees of freedom. Small values

of P , e.g. P < 0.05, indicate a better performance of the informed-case model compared

with the blind-case model.

It is clear from the above discussions that the correlation structure for the informed-

case model (Eq. 2.11) is a generalization of the structure for the blind-case model (Eq. 2.2).

In the case of unknown replication mechanisms, informed-case correlation estimator reduces

to blind-case estimator.

2.5 Results

2.5.1 Parameter Settings

We use Φ to compare the performance of the blind-case and informed-case correlation es-

timators. As molecular profiling measurements vary in terms of the number of replicates,
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sample size and data quality, we consider different combinations of these parameters in our

simulation studies. In particular, we use the following setting:

• Number of simulations(N): number of simulations is set at 1000.

• Sample size(n): corresponding to small, medium and large sample sizes, we consider

n = 20, 30, 40 and 50.

• Number of biological (b) and nested technical (t) replicates: we set b = 3 with t = 1

or t = 2, b = 4 with t = 2 or t = 3. So, the total number of replicated measurements

(m1 = m2 = m) available for a gene are 3, 6, 8 and 12, respectively.

• Intermolecular and intramolecular correlations ρijg1g2 , ρijg1 , ρijg2: correlation values are

set at three different levels low(L) (range 0.2-0.3), medium(M) (range 0.3-0.5) and

clean(H) (range 0.5-0.6).

• We write ‘LLL’, ‘LMH’ etc. to denote the range of the true correlation values that we

use to simulate replicate data sets. The first letter in the triplet represents the range

of intermolecular correlation ρijg1g2 and the remaining two letters represent the ranges

of intramolecular correlations ρijg1 and ρijg2, respectively.

2.5.2 Performance Evaluation

In Fig. 2.1, we used a typical experimental design of three biological replicates (b = 3)

with two technical replicates nested within each biological replicate (t = 2) and set the

sample size at n = 20, 30, 40 and 50. The horizontal axes in Fig. 2.1 represent the

true range of correlation parameters (ρijg1g2, ρ
ij
g1
, ρijg2) that we used to simulate data. For a few

combinations, however, we could not simulate data as the corresponding correlation matrices

were not positive definite. The vertical axes represent Φ (− log2 P values) calculated for each

blind-case and informed-case model, averaged over 1000 simulations. We use adjacent bars
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Figure 2.1: Comparison of the blind-case model (B) and the informed-case model (I) using
two methods outlined in Section 2.4.3. The simulated data has three biological replicates
(b = 3) with two technical replicates (t = 2) nested within each.
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to demonstrate the performances of the informed case (I) and the blind case correlation

estimators (B), for a fixed combination of (ρijg1g2 , ρ
ij
g1, ρ

ij
g2).

Clearly, in the lower panels of each of the four blocks in Fig. 2.1, higher Φ values are

observed for the informed-case model. This indicates a better performance of the informed-

case model compared with blind-case model. We further tested the statistical significance

of the model performances using Method 2 described in Section 2.4.3. In the upper panels

of each of the four blocks in Fig. 2.1, we have plotted the Φ values calculated by comparing

ΨI −ΨB to a chi-square distribution with Jm1Jm2 − 1 degrees of freedom. This comparison

also demonstrated an overall better performance of the informed-case correlation estimator

in the case of replicated measurements with known experimental design.

In Fig. 2.2, we tested the model performances by fixing the sample size at n = 20

and setting the numbers of biological and technical replicates at b = 3, t = 1, b = 3, t = 2,

b = 4, t = 2 and b = 4, t = 3. Both the methods outlined in Section 2.4.3 demonstrated an

overall better performance of the informed-case model in comparison to the blind-case model.

Moreover, we observed that the contrast between the two models were more pronounced for

the small number of replicates: e.g. b = 3, t = 1, which decreased as the values of b and t

increased. Fig. 2.1 and Fig. 2.2 show that the informed-case model outperforms blind-case

model the most when the true intermolecular correlation is medium to high, regardless of the

data quality. This feature makes the informed-case model particularly useful for predicting

functional relationships, which is more meaningful when the biomolecules have medium to

high intermolecular correlation.

2.6 Discussion

In this chapter, we presented a generalized multivariate model to summarize correlation from

replicated and complete molecular profiling data with a prior known replication mechanisms.

Since replicated measurements generated from high throughput platforms often have diverse

magnitudes, it is necessary to exploit each replicate individually and utilize prior knowledge
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Figure 2.2: Comparison of the blind-case model (B) and the informed-case model (I) with increas-
ing number of biological and technical replicates. Sample size is fixed at n = 20.
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of replication mechanisms. Traditional bivariate correlation estimators, typically, employ a

method of averaging over replicated measurements, which may lead to a significant amount

of information loss. In the proposed approach, we treated each replicate as a random variable

by assuming that data were random samples from a multivariate normal distribution. The

underlying correlation structure was designed to explicitly accommodate prior knowledge

of replication mechanisms. We evaluated the performance of our approach by generating

replicated data sets with different data quality and between-molecular correlations. The

proposed correlation estimator benefits from an easily manageable computational complexity

due to the closed-form representations of the MLEs of model parameters. In our analyses,

it took only a few seconds to compute the summarization statistics from 1000 different runs

of informed-case estimator on a standard desktop computer.
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Chapter 3

Learning Correlation Structures from Replicated and

Complete Molecular Profiling Data II

3.1 Introduction

The blind-case and informed-case models presented in the previous chapter estimate the

correlation structure from replicated molecular profiling data by imposing constraints on

the model parameters. In the case of two genes, for instance, the blind-case correlation

structure is defined in terms of three parameters, one within-replicate correlation parameter

for each gene and one between-replicate correlation for the gene pair. Informed-case model,

on the other hand, introduces more parameters in the correlation structure by assigning

different parameters for different biological replicates of the same gene. Such constrained

correlation structures, although useful, may suffer from the following limitations: (1) Con-

strained representations may oversimplify the true correlation structure of a gene set with

many pairwise or between-biological replicate correlation structures. (2) Both blind or in-

formed correlation structures may be overly constrained for some data. It is not feasible to

design an informed correlation model that will fit for any replicated molecular profiling data.

It has been shown in recent researches that the correlation structure underlying molecular

profiling data, without simplification, can be estimated reasonably well using shrinkage ap-

proaches [125,126,159]. Therefore, it is desirable to develop a flexible approach to adaptively

determine the correlation structure of a gene set with replicated and complete measurements.
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In this chapter1, we focus on this problem.

Finite mixture models [36, 90, 91] enable us to estimate such an optimal correlation

structure from a mixture of finite number of pre-specified correlation models. The approach

assumes that data are independently and identically distributed samples from a mixture

of a finite number of distributions with different parameters. Mixture models are often a

preferred optimizing tool for solving a wide range of problems when the exact model of

the data is hard to discern. Due to their sound mathematical base and interpretability

of results, mixture model based approaches have been applied to solve problems in many

scientific domains, e.g. [93,94]. we design a two-component finite mixture model by shrinking

the correlation structure of a gene set between a model with a constrained set of parameters

and the one without any constraints. The proposed mixture model naturally generalizes

the constrained model, given by either blind-case or informed-case estimators, presented in

Chapter 2. Throughout this chapter, we assume that the constrained component is given by

the blind-case estimator.

3.2 Notations

Let G1, . . . , Gk denote arbitrary biomolecules with glij as their respective abundance levels in

the ith replicate (row) and jth sample (column), for l = 1, . . . , k, where the abundance levels

are measured over n independent samples. We assume that ml replicated measurements are

available for Gl in each sample, l = 1, . . . , k. The jth column of the given replicated data

set is written as Zj = (Zj1, . . . , Zjk)
T = (g1j1, . . . , g

1
jm1

, . . . , gkj1, . . . , g
k
jmk

)T , j = 1, 2, . . . , n.

Data are assumed to be independently and identically distributed samples from a mixture

of multivariate normal distributions with
∑k

l=1ml random variables.

1Published work [1]. Reused with permission. Copyright, IEEE. All rights reserved.
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3.3 Finite Mixture Model Approach

3.3.1 The Model

In the mixture model approach [36, 90], the density of a sample Zj is modeled as mixture

of a finite number of component densities. In this chapter, we consider the case of two

component densities f1(Zj) and f2(Zj) with mixture proportions π1 and π2, respectively.

For j = 1, . . . , n, this is expressed as

f(Zj,Θ) = π1 f1(Zj) + π2 f2(Zj), (3.1)

where Θ denotes the set of all parameters in the mixture model and π1 + π2 = 1.

We consider a mixture of two multivariate normal distributions and denote the pa-

rameters for the ith component by θi = {µi, Σi}, i = 1, 2. Thus, we have

fi(Zj ; θi) =
1

(2π)
1
2
(
∑k

l=1 ml)n|Σi|
n
2

e{−
1
2
(Zj−µi)

TΣ−1
i (Zj−µi)} (3.2)

for i = 1, 2, j = 1, . . . , n. We further assume that the first component in the mixture is

given by the blind-case (Section 2.3.1) model presented in Chapter 2. This means (µ1,Σ1)

is (µB,ΣB). The parameters for the second component in the mixture model are free from

any constraints.

In the mixture model approach, the posterior probability (τi) that Zj is sampled from

the ith component of the mixture is estimated using an EM algorithm [29, 90]. Each Zj is

considered a sample from a model for which it has higher posterior probability of belonging.

For example, the samples Zj’s satisfying τ̂1(Zj) >= τ̂2(Zj) follow the parameter structure

of the first component density in the mixture. Here, τ̂i denotes the value of τi, i = 1, 2,

estimated using EM algorithm. In the above case, the observations Zj’s with ẑ1j = 1 are

sampled from the first component, where ẑj is an estimate of the component indicator vector

39



zj , j = 1, . . . , n. It is defined as

ẑij = (ẑj)i =







1 if τ̂i(Zj) >= τ̂h(Zj), h ∈ {1, 2}, h 6= i,

0 otherwise

(3.3)

3.3.2 Unconstrained EM Algorithm

We first discuss the unconstrained EM algorithm which has been used in the literature to

perform model based clustering [90]. EM is an iterative procedure which involves two steps:

the E step and the M step. Under the EM framework, the observed data (Zj’s in this case)

are assumed to be incomplete. The observed Zj’s together with unobserved component-

indicator vectors zj ’s, represent complete data, j = 1, 2, . . . , n. The E and M steps are

described below:

E Step: At the (k + 1)th iteration, the E-step computes the conditional expectation of the

complete data log likelihood. Complete data log likelihood is given by

logLc(Ψ) =
2∑

i=1

n∑

j=1

(zij log πi + zij log fi(Zj; θi)). (3.4)

The conditional expectation is expressed as

Q(Ψ;Ψ(k)) =

2∑

i=1

n∑

j=1

τi(Zj; Ψ
(k))[log πi + log fi(Zj ; θi)]. (3.5)

In Eq. 3.5, the symbol τi(Zj ; Ψ
(k)) represents the posterior probability that Zj belongs to

either first or the second component in the mixture. It is computed using

τi(Zj; Ψ
(k)) =

π
(k)
i fi(Zj; θ

(k)
i )

∑2
h=1 π

(k)
h fh(Zj; θ

(k)
h )

, (3.6)

for i = 1, 2.
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M Step: At the (k+1)th iteration, the M-step updates the parameter estimates by maximizing

Q(Ψ;Ψ(k)) with respect to Ψ. The updating rules are given below:

πk+1
i =

1

n

n∑

j=1

τi(Zj; Ψ
(k)) (3.7)

µk+1
i =

∑n
j=1 τ

(k)
ij Zj

∑n
j=1 τ

(k)
ij

(3.8)

Σk+1
i =

∑n
j=1 τ

(k)
ij (Zj − µ

(k+1)
i )(Zj − µ

(k+1)
i )T

∑n
j=1 τ

(k)
ij

(3.9)

for i = 1, 2, where

τ
(k)
ij = τi(Zj; Ψ

(k)) (3.10)

for each i = 1, 2 and j = 1, · · · , n.

EM algorithm iteratively proceeds between the E-step and the M-step until conver-

gence. For a more detailed discussion on this topic, we refer to [90].

3.3.3 Constrained EM Algorithm

The unconstrained EM algorithm does not guarantee the convergence of the sequence of

parameters {Ψk} towards the MLE Ψ̂ for the following reasons

• The generated sequence of log-likelihood values may not be bounded.

• The log-likelihood function may converge to a point of local maximum, which makes

the estimation of parameters dependent on the initial guess.

Problems in using unconstrained EM algorithm and their remedies have been reported and

investigated in numerous researches [50, 61, 62, 91]. It has been observed that by imposing

bounds on the eigenvalues of the component correlation matrices Σi, i = 1, 2, various prob-

lems associated with the convergence of EM algorithm can be significantly reduced. In this

chapter, we use the constrained EM algorithm from [61] which addresses the above conver-
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gence problems by making the eigenvalues of the component correlation matrices lie in a

certain interval. The numerical studies presented in [61] demonstrate the convergence of the

log-likelihood function to the right maximum in majority of the cases by using constrained

EM algorithm. Moreover, the number of successful cases of convergence is higher than that

from unconstrained EM algorithm.

The constrained EM algorithm [61] reformulates the constraints considered in [50].

Let a and b be two strictly positive constants satisfying a/b ≥ c, with c ∈ (0 1]. If the

eigenvalues of two component correlation matrices satisfy a ≤ λj(Σi) ≤ b for i = 1, 2, j =

1, 2, . . . ,
∑k

l=1ml, then the condition λmin(Σ1Σ
−1
2 ) ≥ c imposed in [50] is also satisfied and

leads to a constrained (global) maximization of the likelihood. Here λmin stands for the

smallest eigenvalue. As every symmetric matrix A admits a spectral decomposition A =

SDST , where D is the diagonal matrix formed by the eigenvalues of A and S is an orthogonal

matrix whose columns are standardized eigenvectors. In each iteration of the constrained

EM algorithm, the eigenvalues of the updated correlation matrices are bound to lie in the

interval [a b]. If an eigenvalue is smaller than a, it is replaced by a and if it is is greater

than b, it is replaced b, without changing the matrix of eigenvectors obtained from spectral

decomposition.

3.3.4 Correlation-Based Clustering

A model estimating the correlation structure can be tested for its performance in revealing

feature associations through cluster analysis. The estimated correlation structure can un-

dergo the process of hierarchical clustering equipped with correlation distance metric. In

the case when the class labels of data are a priori available, the clustering results can be

validated by computing Minkowski Scores [65].

Let CS denote a matrix with CS
ij = 1 if the ith and jth feature vectors belong to the

same cluster in the solution S obtained by hierarchial clustering and 0 otherwise, and T be

the corresponding matrix for the true solution. Then, the Minkowski score corresponding to
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the result S is defined as

Minkowski score =
‖CS − T‖

‖T‖ (3.11)

In model comparisons, a lower Minkowski score implies a better clustering result.

3.4 Simulations

3.4.1 Simulation Settings

We compare the two-component mixture model and a constrained model comprising of a

single component in estimating the true correlation structure. We assume that the first

component in the mixture model and constrained model used for comparison are given by

the blind-case model (Eq. 2.2). We use mean squared error (MSE)

MSE =
1

N

N∑

l=1

(
∑

i

∑

j

(Σij − Σ̂
(l)
ij )

2)

as our criteria to evaluate the model performances. Here Σ and Σ̂ denote the true and

estimated correlation structures, respectively, where Σ = π1Σ1+π2Σ2 with πi and Σi, i = 1, 2

as true mixture proportions and the component correlation matrices, respectively. N is the

total number of simulations and Σ̂(l) is the lth estimate of Σ. After the convergence of EM

algorithm, µ̂1 and Σ̂1 are assigned their constrained structure, as presented in Eq. 2.1 and

Eq. 2.2, by averaging their component blocks. For instance, the first m1 entries in µ̂1 are

replaced by their average. However, µ̂2 and Σ̂2 remain the same as obtained using EM.

The convex combination of Σ̂1 and Σ̂2, with estimated mixture proportions as coefficients,

determines Σ̂. This means Σ̂ = π̂1Σ̂1 + (1− π̂2)Σ̂2.

We show that mixture model outperforms the constrained model by considering re-

alistic combinations of various parameters. In particular, we set

• Number of simulations (N): we fix the number of simulation at N = 1000.
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Figure 3.1: Comparison of the mixture model and the blind-case model in terms of MSE
ratio, where MSE ratio = MSE from the blind-case model/MSE from the mixture model.

• Number of samples (n): we set the number of samples at n = 20.

• Number of genes (k): it is the number of genes which form replicated data. It is set

at four different values k = 2, 3, 4 and 8.

• Number of replicates (ml): as most genome-wise data have a few replicates due to high

experimental costs, we set ml = m = 4, for l = 1, . . . , k.

• Correlation parameters (ρij) (see Section 2.3.1): in the case of a constrained model

(blind-case model in this case), within-molecular correlation (ρii) and between-molecular

correlation (ρij) values are set at three different levels, low(L)(0.2-0.3), medium(M)(0.3-

0.5) and clean(H)(0.5-0.6).

• We consider different combinations of the correlation parameters to simulate data and

express it by writing the pairs (L,M), (M,H) etc., where the first entry corresponds

to the range of between-molecular correlation and the second entry denotes within-

molecular correlation range.
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3.4.2 Performance Evaluation

In Fig. 3.1, we compare the model performances in terms of MSE ratio, which is the ratio

of MSE from the blind-case model over the one from mixture model. In the figure, the

horizontal axis represents the range of true correlation parameters and the vertical axis

represents MSE ratios. Ratios greater than 1 indicate that mixture model outperforms the

blind-case model. We compared the two estimators by varying the range of correlation

parameters from (L,L) to (H,H) and setting the number of genes at k = 2, 3, 4 and 8. In

Fig. 3.1, almost all examined MSE ratios are greater than 1 which indicates the superior

performance of the mixture model approach compared with blind-case model in estimating

the population correlation structure. As the blind-case model is an increasing function of the

number of feature vectors in replicated data [158], MSE ratio decreases with increase in the

number of genes. For a few combinations of parameters, simulations could not be preformed

as the corresponding correlation matrices were not positive definite.

3.5 Real-world Data Analysis

3.5.1 Data

The model performances were evaluated using two publically available replicated data sets

• spike-in data from Affymetrix (http://www.affymetrix.com) and

• yeast galactose data from [152] (http://expression.washington.edu/publications/

kayee/yeunggb2003/).

Affymetrix has made spike-in data sets available as benchmark to compare different

probe set expression summarization methods, such as RMA [64] and GCRMA [150]. We use

spike-in data as benchmark to compare the estimated correlation structure with the nominal

correlation structure. Spike-in data consists of the expression levels of 16 genes, each with

16 replicated measurements. For spike-in data, nominal pairwise correlation values can be
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obtained from known probe-level intensities. As a special case, we compare the pairwise

correlations estimated from the mixture model and blind-case model with the nominal cor-

relation. The yeast galactose data contains the expression levels of 205 genes, each with

4 replicated measurements. Yeast data set was used to test the clustering performance of

models, which could be assessed from the class labels of genes available a priori. Indeed,

the 205 genes were previously classified into four functional groups [152]. The correlation

structures estimated using the blind-case model and mixture model were used to perform

hierarchial clustering by employing correlation as a distance metric. Clustering performance

of each model was assessed in terms of Minkowski score.

3.5.2 Estimation of Correlation Structure

In the following steps, we summarize the procedure to choose the initial values in EM algo-

rithm

• For the unconstrained component, the initial mean vector is chosen as the sample mean.

For the constrained component, the sample mean is given a constrained structure by

averaging its component blocks.

• For the unconstrained component, the initial correlation matrix is obtained by com-

puting all pairwise Pearson’s correlations. For the constrained component, we use a

constrained structure obtained by averaging the component blocks of unconstrained

correlation structure.

• Values of a and b are taken to be the minimum and maximum eigenvalues of the initial

correlation matrices, respectively.

In Fig. 3.2, we compare the squared error values in estimating pairwise correlations

from the mixture model and blind-case model using spike-in data set. Here, the x-axis

represents different probe pairs and the y-axis denotes the squared error values from the two

models. It was observed that in almost 82% cases, mixture model showed a lower squared
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Figure 3.2: Comparison of the squared error values in estimating all pairwise correlations
using the mixture model and the blind-case model, for spike-in data
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Figure 3.3: Comparison of the correlation structures estimated using the mixture model
and the blind-case model with the nominal correlation structure, for selected probe sets in
spike-in data
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error in estimating pairwise correlation than the blind-case model. Further, the performance

of mixture model could be enhanced up to 89% by discarding a couple of probes from the

analysis.

As dimension is often an issue in estimating the correlation structure, we considered 10

selected probe sets from spike-in data and compared the two correlation structures estimated

using mixture model and blind-case model with the nominal correlation structure. In Fig.

3.3, we have plotted the squared error values in estimating the correlation structure. It

is clear from Fig. 3.3 that in almost all the cases, the squared error values in the case of

mixture model were lower than the ones from the blind-case model.

3.5.3 Cluster Analysis

Fig. 3.4 demonstrates the model performances in terms of Minkowski score for 150 different

subsets of the yeast data, each of which correspond to 60 randomly selected probe sets.

In Fig. 3.4, the x-axis denotes the index of the selected subset and the y-axis plots the

Minkowski scores from the blind-case model and mixture model. A better performance of

the mixture model was supported by lower Minkowski scores compared with the constrained

model, in almost 73% cases.

Thus, we claim that our two-component mixture model based approach leads to (1) a

better estimation of the true correlation structure possessing lower squared error values and

(2) better clustering results with lower Minkowski score, in comparison to the one component

blind-case model.

3.6 Discussion

We adopted a two-component mixture model approach to estimate the correlation structure

of a gene set from replicated and complete molecular profiling data. We assumed that data

are independently and identically distributed samples from a mixture of two multivariate

normal distributions, one with a constrained and the other with an unconstrained param-
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Figure 3.4: Performance of the blind-case model and the mixture model in clustering yeast
data. Each index corresponds to a data set with 60 randomly selected probe sets.

eter structure. In our analyses, the constrained component in the mixture was given by

the blind-case model. Simulation and real-world data analysis showed that mixture model

based estimator possessed an overall lower (mean) squared error in estimating correlation

structure and lower Minkowski score in clustering, than the constrained model given by

the first component in the mixture. This clearly indicates that the two-component mixture

model proposed in this chapter is better in estimating the overall correlation structure from

molecular profiling data. Apart from clustering, our approach can be used in various analysis

techniques for pattern discovery which require a reliable estimation of correlation including

gene association networks, classification methods, e.g. linear and quadratic discriminant

analysis.
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Chapter 4

Learning Correlation Structures from Replicated and

Incomplete Molecular Profiling Data

4.1 Introduction

In Chapters 2-3, our focus was on a correlation based pattern discovery from replicated

and complete molecular profiling data. However, the expression profiles generated from

high throughput experiments are not only replicated, they often contain a small to large

percentage of missing values [81]. For replicated and incomplete molecular profiles of diverse

magnitude, missing value imputation by sample mean or median could be strongly biased

by high ratios of missing values and/or low data quality. The commonly used k-nearest

neighbor data imputation algorithm [146] often fails when a missing column has no neighbor

with complete measurements. There is an urgent need to develop new approaches to fully

exploit the replicated and incomplete genome-wide measurements. In this chapter1, we

present a generalized multivariate approach, developed under the Expectation-Maximization

framework, to estimate the underlying correlation structure from replicated and incomplete

molecular profiling data with either blind-case or an informed-case replication mechanisms.

4.2 Notations

Throughout this chapter, G1, . . . , Gk denote arbitrary biomolecules with glij as their re-

spective abundance levels in the ith replicate and jth sample, for l = 1, . . . , k, where the

1Published work [161]. Reused with permission. Copyright, IEEE. All rights reserved.

50



abundance levels are measured over n independent samples. Further, we assume that ml

replicated measurements are available for Gl in each sample, l = 1, . . . , k. The jth column

of the given data Zj = (Zj1, . . . , Zjk)
T = (g1j1, . . . , g

1
jm1

, . . . , gkj1, . . . , g
k
jmk

)T , j = 1, 2, . . . , n,

and is assumed to be an independently and identically distributed sample from a multi-

variate normal distribution, given by either blind-case N(µB,ΣB) or informed-case model

N(µI ,ΣI), with
∑k

l=1ml random variables. Other notations related to the two models are

borrowed from Chapter 2.

4.3 EM Algorithm

In this section, we present a novel EM algorithm to estimate the underlying correlation

structure from replicated and incomplete molecular profiling data. Without loss of generality,

we assume that data are sampled from a multivariate normal distribution with informed-

case correlation structure. The algorithm for the blind-case follows as a particular case. For

simplicity, we present our algorithm in the case of two genes G1 and G2. Recalling from

Chapter 2, the mean vector µI for the informed-case model is defined in terms of the scalars

µi
g1 and µi

g2, and ΣI is defined in terms of the correlation parameters ρijg1g2 , ρ
ij
g1 and ρijg2, where

i and j represent indices for the biological replicates of the genes G1 and G2, respectively.

It is well-known that the sufficient statistics for the multivariate normal distribution

are,

T1 =

n∑

j=1

Zj (4.1)

and

T2 =

n∑

j=1

ZjZ
T
j = ZZT (4.2)

where Z = (Z1, Z2, . . . , Zn) is the matrix comprising of all samples. We utilize the above

statistics in the E and M steps of the proposed EM algorithm.
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4.3.1 The E Step

Without loss of generality, we can assume that column Zi, 1 ≤ i ≤ r has missing values, for

a fixed number r, 1 ≤ r ≤ n. We denote a missing entry by prefixing it with the letter M .

Let us consider a particular case where a column Zj with missing values is of the form

Zj = (Mg11j , . . . ,Mg1I1m1
j , g

1
(I1m1

+1)j , . . . , g
1
m1j,Mg21j , . . . ,Mg2I1m2

j , g
2
(I1m2

+1)j , . . . , g
2
m2j)

T

= (MGj
1, cG

j
1,MGj

2, cG
j
2)

T (4.3)

for 1 ≤ j ≤ r. In this illustration we have assumed that replicated measurements corre-

sponding to the first biological replicate in the two genes G1 and G2 are missing, which

can be generalized to the case of columns with missing values in any location. Here MGj
1

represents the segment with missing entries corresponding to the first biological replicate,

in the jth sample of G1. Further, cGj
1 represents the ‘complementary’ segment in the jth

sample of G1 with no missing entries. A similar explanation holds good for MGj
2 and cGj

2.

For random initial guesses µI (0) and ΣI (0), in the (t + 1)th iteration, the E-step com-

putes the expected value of T1 and T2 in the presence of observed data Zobs and current

estimate of parameters µI (t) and ΣI (t) as follows

E(T1|Zobs, µ
I (t)) = E(

r∑

j=1

Z
(t)
j ) +

n∑

j=r+1

Z
(t)
j

= A(t) +
n∑

j=r+1

Z
(t)
j (4.4)
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where

A(t) =












rµ1
g1

(t)
e(I1m1

)

∑r
j=1 cG

j
1

rµ1
g2

(t)
e(I1m2

)

∑r
j=1 cG

j
2












where e(p) denotes p-length vector (1, 1, . . . , 1)T . Computationally, A(t) is obtained as below:

• Replace all missing entries corresponding to jthm1
biological replicate in G1 by µ

jm1(t)
g1 ,

for 1 ≤ jm1 ≤ Jm1 .

• Replace all missing entries corresponding to jthm2
biological replicate in G2 by µ

jm2(t)
g2 ,

for 1 ≤ jm2 ≤ Jm2 .

• Sum up the first r columns to form A(t).

Further, the columns imputed above are used to form the matrices M ′
j
(t), j = 1, 2, . . . , r, as

follows

• Form the matrices M
(t)
j = Z

(t)
j Z

(t)T
j , j = 1, 2, . . . , r.

• In M
(t)
j , replace the entries µ

jm1(t)
g1 ×µ

km1 (t)
g1 by µ

jm1 (t)
g1 ×µ

km1 (t)
g1 + ρ

jm1km1 (t)
g1 for gene G1,

where 1 ≤ jm1 , km1 ≤ Jm1 . An analogous modification is done for gene G2.

• Replace the entries µ
jm1 (t)
g2 × µ

jm2 (t)
g2 by µ

jm1(t)
g2 × µ

jm2 (t)
g2 + ρ

jm1 jm2 (t)
g1g2 , for 1 ≤ jm1 ≤ Jm1

and 1 ≤ jm2 ≤ Jm2 .

• Matrices obtained fromM
(t)
j after making above replacements areM ′

j
(t), j = 1, 2, . . . , r.

Then,

E(T2|Zobs, µ
I(t),ΣI(t)) = E(

r∑

j=1

Z
(t)
j Z

(t)T
j |Zobs, µ

I (t),ΣI (t)) +
n∑

j=r+1

Z
(t)
j Z

(t)T
j

=

r∑

j=1

M ′
j
(t)

+

n∑

j=r+1

Z
(t)
j Z

(t)T
j . (4.5)
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If we write the matrix M ′
j
(t) as

M ′
j
(t)

=






M ′
j
(t)

g1
M ′

j
(t)

g1g2

M ′
j
(t)T

g1g2
M ′

j
(t)

g2






then in case of Equation 4.3, we have

M ′
j
(t)

g1
=






(1− ρ
11(t)
g1 )EI1m1

+R
11(t)
g1 e(I1m1

)e(I1m1
)
T µ1

g1

(t)
e(I1m1

) cG
j
1

T

cGj
1 µ1

g1

(t)
eT(I1m1

) cGj
1 cGj

1

T






M ′
j
(t)

g2
=






(1− ρ
11(t)
g2 )EI1m2

+R
11(t)
g2 e(I1m2

)e(I1m2
)
T µ1

g2

(t)
e(I1m2

) cG
j
2

T

cGj
2 µ1

g2

(t)
eT(I1m2

) cGj
2 cGj

2

T






and

M ′
j
(t)

g1g2
=






(µ1
g1

(t)
µ1
g2

(t)
+ ρ11g1g2

(t)
) e(I1m1

)e(I1m2
)
T µ1

g1

(t)
e(I1m1

) cG
j
2

T

cGj
2 µ1

g1

(t)
eT(I1m1

) cGj
1 cGj

2

T




 .

where EI1m1
and EI1m2

are identity matrices of order I1m1
and I1m2

, respectively and

R11(t)
g1

= µ1
g1

(t)
µ1
g1

(t)
+ ρ11g1

(t)

R11(t)
g2

= µ1
g2

(t)
µ1
g2

(t)
+ ρ11g2

(t)
.

It is important to specify here that, only the blocks M ′
j
(t)

g1g2
participate in estimating corre-

lation.
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4.3.2 The M Step

For complete case, the MLE of µI is µ̂I =
∑n

j=1 Zj/n, and the MLE of Σ is Σ̂I = n−1ZZT −

µ̂I µ̂IT . Since, the E step makes the data complete, we write

µI (t+1)
= E(

n∑

j=1

Zj|Zobs, µ
I (t))/n = (A(t) +

n∑

j=r+1

Zj)/n (4.6)

and,

ΣI (t+1)
= n−1E(T2|Zobs, µ

I (t),ΣI (t))− µI (t+1)
µI (t+1)T

= n−1{
r∑

j=1

M ′
j
(t)

+
n∑

j=r+1

ZjZ
T
j } − µI (t+1)

µI (t+1)T

. (4.7)

The next iterates of parameters are obtained by averaging the component blocks Σij
uv, u, v ∈

{g1, g2} (see Eq. 2.11) containing the measurements for the ith and jth biological replicate

in ΣI (t+1)
and component blocks of µI (t+1)

as follows

ρij
(t+1)

g1g2
= Avg(Σij(t+1)

g1g2
)

ρij
(t+1)

g1
= Avg(Σij(t+1)

g1
)

ρij
(t+1)

g2
= Avg(Σij(t+1)

g2
) (4.8)

and

µi(t+1)

g1 = Avg(µI(t+1)
∑i

l=1 I
l−1
m1

+1
, . . . , µI(t+1)

∑i
l=1 I

l
m1

)

µi(t+1)

g2 = Avg(µI(t+1)
∑i

l=1 I
l−1
m2

+1
, . . . , µI(t+1)

∑i
l=1 I

l
m2

). (4.9)
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In the special case of the parsimonious model, we have

ρ(t+1) = Avg(ΣB
g1g2

(t+1)
)

ρ(t+1)
g1

= Avg(ΣB
g1

(t+1)
)

ρ(t+1)
g2

= Avg(ΣB
g2

(t+1)
) (4.10)

and

µ(t+1)
g1

= Avg(µB(t+1)

1 , . . . , µB(t+1)

m1
)

µ(t+1)
g2

= Avg(µB(t+1)

m1+1 , . . . , µ
B(t+1)

m1+m2
) (4.11)

The algorithm iterates between the E andM steps until ‖µI (t)−µI (t+1)‖+‖ΣI (t)−ΣI (t+1)‖ (or

‖µB(t) − µB(t+1)‖+‖ΣB(t) −ΣB(t+1)‖ for blind case estimator) is smaller than a pre-specified

constant. This gives the MLE’s µ̂I and Σ̂I (or µ̂B and Σ̂B). The informed case estimator (or

blind case estimator) quantifies ρ̂ by averaging Σ̂I
g1g2

(or Σ̂B
g1g2

).

4.4 Simulations

4.4.1 Simulation Settings

We demonstrate the performance of EM algorithm using both blind-case (Eq. 2.2) and

informed-case (Eq. 2.11) models. We use mean squared error (MSE) to judge the perfor-

mance of various correlation estimation methods. MSE in estimating ρ is defined as

MSEρ =

N∑

i=1

(ρ̂− ρ)2/N,

where N is total number of simulations, ρ represents true intermolecular correlation and ρ̂

is the MLE of ρ estimated using any of the following methods.

56



Multivariate Methods

We use the following methods, each of explicitly consider each replicate:

• EM: Estimates ρ̂ using the iterative EM algorithm introduced in Section 4.3 for in-

complete replicated data.

• Mean: Imputes missing data in a row, by row mean and estimates ρ̂ using the blind-

case (Eq. 2.2) and informed-case correlation estimators (Eq. 2.11).

• Med: Imputes missing values in a row, by row median and estimates ρ̂ using the

blind-case (Eq. 2.2) and informed-case correlation estimators (Eq. 2.11).

• KNN: Imputes missing values using k-nearest neighbor algorithm [146] and estimates

ρ̂ using the blind-case (Eq. 2.2) and informed-case correlation estimators (Eq. 2.11).

(See Appendix A.3).

Bivariate Methods

We used the methods based on averaging or summarizing over replicated measurements:

• MeanPear: Imputes missing values in a row, by row mean and computes Pearson’s

correlation by averaging over replicates.

• MeanWtd: Imputes missing values in a row, by row mean and computes Standard

Deviation (SD)-weighted correlation [59] (see Appendix A.4).

• MedPear: Imputes missing values in a row, by row median and computes Pearson’s

correlation by averaging over replicates.

• MedWtd: Imputes missing values in a row, by row median and computes SD-weighted

correlation.

• Pear: Uses complete data set and computes Pearson’s correlation by averaging over

replicates.
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• Wtd: Computes SD-weighted correlation from complete data set.

We set other parameters as follows:

• Number of simulations N = 1000.

• Sample size as n = 20.

• We assume m1 = m2 = m. Number of replicates m = 4 for the blind-case model

and m = 6 for the informed-case model. For the informed-case model, 6 replicated

measurements corresponding to a biomolecule are obtained by generating data sets

with 3 biological replicates and 2 technical replicates nested within each.

• Intramolecular correlations ρg1 (or ρijg1) and ρg2 (or ρijg2) are set at three different levels

low(L)(0.1− 0.3), medium (M)(0.3− 0.5) and clean(H)(0.5 − 0.6).

• Intermolecular correlation values ρ (or ρijg1g2) are set at three levels low(L)(0.2 − 0.3),

medium(M)(0.3 − 0.5) and clean(0.5− 0.6).

• The triplet ground truth LLL, MHL etc. represent the range of true correlations (ρ,

ρg1 and ρg2) or (ρ
ij
g1g2 , ρ

ij
g1 and ρijg2) used to simulate data.

• Percentage of missing data is set at 6 different levels, 5%, 10%, 15%, 20%, 25% and

30%.

• Initial guesses of parameters µi
g1 and µj

g2 are obtained by averaging data corresponding

to ith and jth biological replicate in G1 and G2 respectively. For the blind-case, it

corresponds to the average of all measurements in G1 and G2 respectively.

• ρijg1g2 , ρ
ij
g1

and ρijg2 (or ρ, ρg1 and ρg2) are assigned arbitrary initial values in the range

0.1-0.3, since real-world data are often noisy.
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• A simulation runs until

2m∑

i=1

(µ
(t)
i − µ

(t+1)
i )2 +

2m∑

i=1

2m∑

j=1

(Σ
(t)
ij − Σ

(t+1)
ij )2 < 10−20,

where Σ and µ represent correlation matrix and mean vector for either blind-case or

informed-case estimator.

4.4.2 Performance Evaluation

We first analyzed the performance of EM algorithm with increasing data quality and per-

centage of missing values using both blind-case (Eq. 2.2) and informed-case (Eq. 2.11)

models. Fig. 4.1 demonstrates these two prospects. In Fig. 4.1, horizontal axis represents

the combinations (ρ, ρg1 , ρg2) (blind-case) or (ρ
ij
g1g2

, ρijg1, ρ
ij
g2
) (informed-case) used to generate

data. In Fig. 4.2, horizontal axis represents the percentage of missing values ranging from

5% to 30%. The vertical axis in the two figures plots MSE values. It is clear from Fig. 4.1

and Fig. 4.2 that the performance of EM algorithm is not sensitive to the percentage of

missing data when the intermolecular correlation is low. As the intermolecular correlation

increase, MSE increases and is more sensitive to the percentage of missing values. However,

the EM algorithm is not sensitive to the data quality when the intermolecular correlation is

fixed. The insensitivity to data quality when intermolecular correlation is fixed makes the

EM algorithm a robust approach to an array of real-world bioinformatics problems.

In Figs. 4.3-4.4 and Figs. 4.5-4.6, we compare the performance of EM with three

other multivariate models: Mean, Med and KNN in terms of MSE ratio i.e. the ratio of

MSE from Mean, Med or KNN over MSE from EM. A ratio more than 1 indicates better

performance of EM method. Figs. 4.3-4.4 correspond to the blind-case model and Figs.

4.5-4.6 correspond to the informed-case model for data sets with 5%, 10%, 15%, 20%, 25%

and 30% missing values. For data sets with more than 15% missing values, simulation

problems occur with KNN method because the kth nearest neighbors does not often exist,
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Figure 4.1: Performance of the EM algorithm with increasing data quality. Upper Panel:
Blind-case model; Lower Panel: Informed-case model.

60



5% 10% 15% 20% 25% 30%
0

0.02

0.04

0.06

0.08

0.1

0.12

M
S

E

 

 
LLL
LMM
LHH
MLL
MMM
MHH
HMM
HHH

5% 10% 15% 20% 25% 30%
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
S

E

 

 
LLL
LMM
LHH
MLL
MMM
MHH
HMM
HHH

Figure 4.2: Performance of the EM algorithm with increasing percentage of missing values.
Upper Panel: Blind-case model; Lower Panel: Informed-case model.
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which exemplifies limitations of the popular KNN algorithm. In the figures, the horizonal

axis represents data quality and vertical axis represents MSE ratios. From the first block in

Fig. 4.5, it is clear that EM outperforms KNN for all qualities of data under consideration.

With 10% missing values, although the performance of KNN increases, in 50% cases EM

performs better than KNN, as demonstrated in the second block. Also, we observe an

increase in the performance of EM in comparison to Mean and Med. A similar conclusion is

carried over to the case of 15% missing values. Thus, we conclude that performance of EM

in comparison to Mean and Med increases with increasing percentage of missing values (Fig.

4.6). As simulation problems occur with KNN for more than 15% missing values and EM

either outperforms or performs almost equivalently as KNN for up to 10% missing values,

EM is a better choice among multivariate models to calculate correlation from data sets with

small to large percentage of missing measurements.

In Figs. 4.7-4.8 and Figs. 4.9-4.10, we present the performance of all blind-case

and informed-case multivariate and bivariate models in terms of MSE values, for different

percentage of missing data. The horizontal axis represents various multivariate and bivariate

methods used for comparison and vertical axis denotes the MSE values from each method for

different data quality. From the figures, we conclude the following: the overall performance

of multivariate models is significantly better than the bivariate models; EM remains to be

the best performed method for noisy data regardless of percentage of missing values.

4.5 Read-world Data Analysis

4.5.1 Data

We performed real-world data analysis to further confirm our claims in the preceding section.

We tested the performance of various models on two replicated data sets which we considered

in Chapter 3:

• spike-in data from Affymetrix (http://www.affymetrix.com),

62



LLL LMM LHH MLL MMM MHH HMM HHH
0.95

1

1.05

1.1

1.15

Data Quality

M
S

E
 R

at
io

5% Missing Data

 

 

KNN/EM
Mean/EM
Med/EM

LLL LMM LHH MLL MMM MHH HMM HHH
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Data Quality

M
S

E
 R

at
io

10% Missing Data

 

 

KNN/EM
Mean/EM
Med/EM

LLL LMM LHH MLL MMM MHH HMM HHH
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Data Quality

M
S

E
 R

at
io

15% Missing Data

 

 

KNN/EM
Mean/EM
Med/EM

Figure 4.3: Blind-case Model: Comparison of the EM algorithm with other multivariate
models, KNN, Mean and Med in terms of MSE ratio (n=20 and m=4). Percentage of
missing values is in the range 5%-15%.
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Figure 4.4: Blind-case Model: Comparison of the EM algorithm with other multivariate
models, KNN, Mean and Med in terms of MSE ratio (n=20 and m=4). Percentage of
missing values is in the range 15%-30%.
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Figure 4.5: Informed-case Model: Comparison of the EM algorithm with other multivariate
models, KNN, Mean and Med in terms of MSE ratio (n=20 and m=6). Percentage of missing
values is in the range 5%-15%.
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Figure 4.6: Informed-case Model: Comparison of the EM algorithm with other multivariate
models, KNN, Mean and Med in terms of MSE ratio (n=20 and m=6). Percentage of missing
values is in the range 15%-30%.
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Figure 4.7: Performance of all blind-case multivariate and bivariate models for different
percentage of missing values. Percentage of missing value is in the range 5%-15%.
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Figure 4.8: Performance of all blind-case multivariate and bivariate models for different
percentage of missing values. Percentage of missing value is in the range 15%-30%.

68



0

0.1

0.2

H
H

H

5% Missing Data

0

0.1

0.2

H
M

M

0

0.05

0.1

M
H

H

0

0.1

0.2
M

M
M

0

0.2

0.4

M
LL

0

0.05

0.1

LH
H

0

0.05

0.1

LM
M

EM KNN Mean Med MeanWtd MedWtd Wtd MeanPear MedPear Pear
0

0.1

0.2

LL
L

0

0.1

0.2

H
H

H

10% Missing Data

0

0.1

0.2

H
M

M

0

0.05

0.1

M
H

H

0

0.1

0.2

M
M

M

0

0.2

0.4

M
LL

0

0.05

0.1

LH
H

0

0.05

0.1

LM
M

EM KNN Mean Med MeanWtd MedWtd Wtd MeanPear MedPear Pear
0

0.1

0.2

LL
L

0

0.1

0.2

H
H

H

15% Missing Data

0

0.1

0.2

H
M

M

0

0.05

0.1

M
H

H

0

0.1

0.2

M
M

M

0

0.2

0.4

M
LL

0

0.05

0.1

LH
H

0

0.05

0.1

LM
M

EM KNN Mean Med MeanWtd MedWtd Wtd MeanPear MedPear Pear
0

0.1

0.2

LL
L

Figure 4.9: Performance of all informed-case multivariate and bivariate models for different
percentage of missing values. Percentage of missing value is in the range 5%-15%.
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Figure 4.10: Performance of all informed-case multivariate and bivariate models for different
percentage of missing values. Percentage of missing value is in the range 15%-30%.
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• yeast data (http://expression.washington.edu/publications/kayee/yeunggb2003).

We used Affymetrix spike-in data set as benchmark, for which the nominal correla-

tion structure is available, to compare the performances of different models in estimating

correlation. The correlation matrix Σ̂ estimated using different approaches is compared with

the nominal correlation matrix Σ in terms of MSE values defined as

MSEΣ =
1

m2

2m∑

i=1

2m∑

j=1

(Σij − Σ̂ij)
2.

Correlation matrix from a model possessing smaller MSE is closer to the nominal correlation

matrix. We randomly removed 5%− 30% values from spike-in data to compare correlation

estimates.

Yeast data set [60], which contains about 8% missing values, was used to test the

clustering performance of models. In Chapter 3, we used an imputed version of this data.

From the yeast data, we randomly removed data points to make the percentage of missing

values vary from 10%, 15%, 20%, 25% to 30%. As mentioned in Chapter 3, the 205 genes in

the yeast data were previously classified into four functional groups [152].

4.5.2 Estimation of Correlation Structure

In Fig. 4.11, we compared the performances of multivariate models with EM in terms of

their MSE ratios, which is the ratio of MSE from a multivariate method over EM. A ratio

more than one indicates the better performance of em method. Clearly, from Fig. 4.11, for

almost all the cases, MSE ratios are more than one, indicating the superior performance

of EM among multivariate models. The real-world data analysis results presented in Fig.

4.11 are also consistent to the ones obtained in simulation studies in that the EM algorithm

performs particularly well for replicated molecular profiling with moderate to high percentage

of missing values. Fig. 4.12 presents an overall picture of model performances in terms of

MSE values. Consistent to what was claimed in our simulation studies, multivariate models
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Figure 4.11: Performance of all multivariate models in Affymetrix spike-in data analysis in
terms of MSE ratio.
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outperform bivariate ones with EM possessing an overall lower MSE, where we checked the

model performances for 5% to 30% missing values.

4.5.3 Cluster Analysis

Using yeast data, we calculated a 205 by 205 cophenetic matrix T to represent the exter-

nal knowledge, where T (i, j) = 1 if gene i and gene j are in the same cluster, T (i, j) = 0

otherwise. Similarly, for each bivariate and multivariate method, we performed hierarchical

clustering by setting the number of the clusters as 4 and calculated a 205 by 205 cophenetic

matrix CS. We used these matrices to compute the Minkowski Score defined in Eq. 3.11.

Smaller value of the score indicates that clustering is more consistent to the external knowl-

edge. In Figure 4.13, we observed a steady increase in the performance of EM algorithm,

reflected by decrease in the Minkowski score, with increasing percentage of missing values.

The hierarchical clustering based on EM algorithm performed the best with more than 20%

missing values. It further substantiated one of our conclusion that EM algorithm was par-

ticularly suitable for calculating correlation matrix from data set with high percentage of

missing values.

4.6 Discussion

In this chapter, we presented an EM algorithm to estimate the correlation structure from

replicated and incomplete molecular profiling data sets. Our approach was based on the

assumption that data were random samples from a multivariate Gaussian distribution with

a correlation structure given by either blind replication mechanism or informed replication

mechanism. Simulation results proved that in most cases the performance of EM algorithm

was superior in comparison to other multivariate and bivariate models we considered. In

particular, the performance of EM is not sensitive to the data quality when the intermolec-

ular correlation is fixed and the performance of the EM is not sensitive to the percentage

of missing values when the intermolecular correlation is low. The intuitive explanation of
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Figure 4.13: Performance of all multivariate and bivariate models in yeast galactose data
analysis for different percentage of missing data.

the former is that the MSE is calculated using intermolecular correlation parameters. When

they are fixed within a small range, according to Eq. 4.5, the off-diagonal blocks (inter-

molecular correlation parameters) are not sensitive to variations in the two diagonal blocks

(intramolecular correlation parameters, data quality). The intuitive explanation of the latter

is low intermolecular correlation between G1 and G2 means random data, and EM treats

missing data as random. Therefore, the MSE calculation based on intermolecular correlation

parameters is not sensitive to the percentage of missing values.

We also performed real-world data analysis, which confirmed an overall better per-

formance of our approach to the competing ones. Indeed, we tested our approach using

Affymetrix spike-in data set by introducing 5%−30% missing values. The lower MSE values

produced by our approach showed that the correlation values estimated by our approach

are closer to the nominal correlation values, which are a priori known for the chosen data

set. We also used our approach to perform hierarchial clustering with yeast data set. We

observed an increase in the clustering performance of EM given by lower Minkowski score,
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with increasing percentage of missing values. Thus, our simulation and real-world data anal-

ysis results strongly support the use of EM to analyze replicated and incomplete molecular

profiling data.

EM was run on a standard desktop computer. The computational complexity of EM

was manageable for the chosen set of parameters. In case of incomplete data, EM algorithm

utilizing the blind-case model runs faster than the one using informed-case estimator due to

lesser number of parameters present in the former estimator. If k is the average number of

iterations required by EM algorithm in one simulation, the complexity of blind case estimator

is O(knm), where m is the total number of replicated measurements for each biomolecule.

The number of iterations in the EM algorithm varies with percentage of missing data, which

on an average is 20−25 iterations. Due to the small value of k and the fact that sample size

n is kept small in omics experiments for high experimental costs, the algorithm based on

blind case estimator is very efficient. The computational complexity of EM algorithm using

informed case estimator is O(knb2 + kt2), where b and t are the number of biological and

technical replicates in each biomolecule, respectively. With the chosen set of parameters,

results from EM algorithm in one simulation, using both the estimators could be obtained

in less than a minute, however the computational complexity of EM using informed case

estimator increases quadratically with increase in the number of biological and technical

replicates.
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Chapter 5

Reconstructing Signaling Pathway Structures: A

Sampling-Based Approach

5.1 Introduction

In Chapters 2-4, we presented a sequence of multivariate approaches for inferring an optimal

correlation structure from high-throughput replicated complete and incomplete molecular

profiling data. An accurate estimate of the correlation structure plays a crucial role in

various supervised and unsupervised pattern analyses, such as gene clustering [93, 94, 152],

inference of gene association networks [19, 20, 125, 126, 155] and gene classification [49, 153],

which facilitate the identification of signaling pathway components. In recent years, a wide

range of computational tools for analyzing the statistical significance of a gene cluster or

a list of differentially expressed genes have become increasingly available due to rapid ad-

vancements in high-throughput data acquisition methods [42,56,92,114,140,145]. Although,

novel signaling pathway components are revealed by such data analyses techniques, chal-

lenges remain in explicitly demonstrating the underlying signal transduction mechanisms in

the pathways. In this chapter1, we specifically focus on the structural inference of signal-

ing pathways, which refers to learning a directed network topology underlying a signaling

pathway component.

The structural inference of signaling pathways is important for a better understand-

ing of fundamental cell functions, e.g. growth, metabolism, differentiation and apoptosis [6].

1Work accepted for publication. Reused from [2].
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Consequently, there have been a wide range of computational efforts for inferring both di-

rected and undirected network topologies. Some of them include Boolean or Probabilistic

Boolean networks [66, 135, 136], Bayesian networks [37, 130], ARACNE [88], CLR [35], MR-

NET [96] and Relevance Networks or RNs [19]. However, the aforementioned approaches

primarily focus on statistical causal interactions or pairwise similarities and so the learned

networks need not represent signal transduction mechanisms. A few attempts made towards

the inference of communication networks from co-occurrence data also find applications in

biomedical field [119,157]. However, significant advantages of exploiting signal transduction

mechanisms, which form the basic building blocks of a signaling pathway, are yet to be

demonstrated.

We hypothesize a signaling pathway structure as an ensemble of several overlapping

signal transduction events with a linear arrangement of genes in each event. We denote these

events as Information Flows (IFs). An Information Flow Gene Set (IFGS) contains the genes

of the given IF. IFs form the building blocks of a signaling pathway and uniquely determine

its structure. The true signaling pathway structure can be reconstructed by inferring the

order of genes in each IFGS and combining the inferred IFs into a single unit.

We begin with a compendium of IFGSs related to the pathway. Each IFGS can be in-

terpreted as a discrete set of genes expressed in an experiment, whereas an IFGS compendium

comprises of many overlapping IFGSs corresponding to different experiments. Overlapping,

which arises from simultaneous participation of genes in many signal transduction events,

reflects the interconnectedness among gene sets. We aim to exploit the overlapping among

IFGSs to uncover the underlying signal transduction mechanisms.

Since there exist L! different gene ordering permutations for an IFGS with L com-

ponent genes, the number of signaling pathway structures consistent with a compendium of

m IFGSs is of the order of L!m. Neither all network structures are equally likely, nor it is

always computationally feasible to find the most likely structure by exhaustive enumeration.

In other words, if we treat the ordering of genes in each IFGS as a random variable, which has
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a sampling space of size L!, it might not be practical to sample directly from the joint distri-

bution of IFGSs with a sampling space of size L!m. As a result, our goal of signaling pathway

structure inference can be translated into drawing samples of signaling pathway structures

sequentially from the joint distribution of IFGSs and summarizing the most likely structure

from the sampled structures. To achieve this goal, we propose a stochastic algorithm, Gene

Set Gibbs Sampler (GSGS), developed under the Gibbs sampling framework [40,41]. GSGS

treats the ordering of genes in each IFGS as a random variable, and sequentially samples

signaling pathway structures from the joint distribution of IFGSs.

5.2 Concepts and Notations

We define an information flow (IF) as a directed linear path from one node (usually protein)

to another node in a signaling pathway structure, which does not allow self transitions or

transitions to a previously visited node. An information flow gene set (IFGS) contains the

genes of a given IF. Thus, an IFGS and an IF comprise of the same set of genes, however,

an IFGS lacks gene ordering information present in the corresponding IF. The length of an

IFGS or an IF refers to the number of genes present in it. Clearly, there exist L! different

gene ordering permutations for an IFGS of length L. Throughout, we assume that L ≥ 3.

IFs of length 2 represent the edges in a signaling pathway structure. We use them to serve

as prior knowledge.

Let us consider a compendium of m overlapping IFGSs X1, X2, . . . , Xm, which we use

to infer the underlying signaling pathway structure. We first infer IFs from the IFGSs Xi,

followed by combining the IFs to represent a single structure. Assuming that the length ofXi

is Li, we define a random variable Θi to represent the ordering of genes in Xi. The sampling

space of Θi is the set of Li! gene ordering permutations. We write (Xi,Θi) to associate an

ordering to the IFGSXi. The notationsX is used for a given IFGS compendium and we write

all IFGSs and their associated orderings together as (X,Θ), where X = (X1, . . . , Xm) and

Θ = (Θ1, . . . ,Θm). The notations are suffixed with −i to consider all but the ith component,
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e.g. X−i, (X,Θ)−i etc., for i ∈ {1, . . . , m}. We will also utilize the instantiations of (X,Θ)

to construct vectors of size n×1 and matrices of size n×n, where n is the number of distinct

genes among m IFGSs. Suffixing such vectors or matrices with −i means that they have

been constructed without involving the ith IF. As the sampling space of Θi is of size Li!,

it follows that the sampling space of the joint distribution P (X,Θ) is the set of
∏m

i=1 Li!

permutations. A sampling space of size
∏m

i=1 Li! can be computationally intractable even

for moderate values of Li and m. As a result, our goal of signaling pathway structure

inference can be translated into drawing signaling pathway samples sequentially from the

joint distribution P (X,Θ) of IFGSs and summarizing the most likely structure from the

sampled pathway structures. Our approach is to develop a Gibbs sampling like algorithm to

sequentially sample gene orderings for each IFGS by conditioning on the remaining of the

network structures, with a much reduced sampling space of size Li!.

5.3 Joint Distribution of IFGSs

We consider IFGSs as random samples from a first order Markov chain model, where the

state of a node is only dependent on the state of its previous node. From a given set of m

IFs (ordered paths), the two model parameters, initial probability vector π and transition

probability matrix Π, are estimated by treating each IF as a Markov chain. If there are n

distinct genes across m IFs, we define

π = (
c1
m
, . . . ,

cn
m
) (5.1)

where cl is the total number of times lth gene appears as the first node among m IFs, for

each l = 1, . . . , n. If crs is the total number of times rth gene transits to sth gene (i.e. there

is edge from r to s) among m IFs, then

Π = [prs]n×n (5.2)
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where prs = crs/
∑n

s=1 crs, r, s = 1, . . . , n. Thus, Π captures the overlapping signaling

mechanisms among IFs.

The parameters π and Π can be estimated individually for each of the
∏m

i=1 Li! collec-

tions of IFs. Each collection of IFs is an instantiation of all possible collections and represents

a candidate signaling pathway structure. The parameters π and Π estimated for a collection

can be used to calculate its likelihood. The likelihood of a collection of IFs is the product of

the likelihoods of m individual IFs in it. The likelihood of each IF can be can be computed

by treating it as a first order Markov chain and using the parameters π and Π. For example,

we compute the likelihood of the IF z → y → x as

P(z → y → x) = P (z)× P (y|z)× P (x|y). (5.3)

The likelihood values calculated for all
∏m

i=1 Li! collections of IFs can be normalized to denote

the joint distribution of IFGSs. However, exhaustive computation of
∏m

i=1 Li! likelihood

values to choose the most likely structure might be computational infeasible, which serves

as motivation for the proposed GSGS approach. The computational tractability of GSGS

lies in sequentially sampling an order for each IFGS Xi by conditioning on the orders of the

remaining IFGSs, with a much reduced sample space of size Li! as compared to
∏m

i=1 Li!.

5.4 Conditional Distribution of IFGSs

In GSGS, we begin by assigning randomly selected orders to each IFGS. We update the

orderings by sampling an order for each IFGS conditioned on the known orders of remaining

m − 1 IFGSs. To sample an order for Xi from the conditional distribution, we leave Xi

out. From the remaining m− 1 IFs, we then compute the initial probability vector π−i and

transition probability matrix Π−i by following the procedure described in Eq. 5.1 and Eq.

5.2. Next, we calculate the likelihoods of all possible orders Θj
i , j = 1, . . . , Li! for Xi by

conditioning on the orders of remaining m−1 IFGSs. The normalized conditional likelihood
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for the jth order for Xi is given by

Lj
i =







Pj
i

∑Li!
j=1 P

j
i

if
∑Li!

j=1P
j
i 6= 0,

1
Li!

otherwise

(5.4)

where

Pj
i = P((Xi,Θi = Θj

i )|(X,Θ)−i), (5.5)

where Pj
i represents the conditional likelihood of the jth order and is computed by decom-

posing it into the product of conditional probability terms. For example, we compute the

conditional likelihood of z → y → x corresponding to IFGS Xi = {x, y, z} as

P((Xi,Θi = z → y → x)|(X,Θ)−i) = P (z)× P (y|z)× P (x|y), (5.6)

where each term on the right of Eq. 5.6 is conditioned on (X,Θ)−i and is available from

π−i and Π−i. The Lj
i values, for j = 1, . . . , Li!, can now be used to sample an order for

Xi from the conditional distribution using inverse Cumulative Density Function (CDF) [40].

The CDF of the conditional distribution P ((Xi,Θi)|(X,Θ)−i) is defined as

F ((Xi,Θi = Θj
i )|(X,Θ)−i)) =

j
∑

k=1

Lk
i (5.7)

for each j = 1, . . . , Li!. By sampling a number u ∼ U(0, 1) and letting F−1(u) = v, we get a

randomly drawn order v for Xi from the conditional distribution (Eq. 5.7).

5.5 Gene Set Gibbs Sampler (GSGS)

In Algorithm 5.1, we present the Gene Set Gibbs Sampling (GSGS) approach, which leads to

the reconstruction of signaling pathways from IFGSs. If prior knowledge of some edges (an

IF of length 2) is available, we augment them with unordered IFGSs as directed pairs and
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Algorithm 5.1 Gene Set Gibbs Sampler

1: Input: X = (X1, . . . ,Xm), where Xi’s, i = 1, . . . ,m, represent IFGSs, E = (E1, . . . , Ee),

where Ek’s, k = 1, . . . , e, represent prior known directed edges (optional), burn-in state B and

number of samples N to be collected after burn-in state

2: Output: m information flows (Xi, Θ̂i), i = 1, . . . ,m

3: At t = 0, randomly choose an order Θ
(0)
i for Xi from Li! permutations, i = 1, . . . ,m

4: for t = 1, . . . , B +N do

5: Θ = (Θ
(t−1)
1 , . . . ,Θ

(t−1)
m )

6: for i = 1, . . . ,m do

7: Leave Xi out

8: Use the remaining IFs, including those present in E, to estimate the two Markov chain

parameters.

9: Calculate the conditional likelihoods Lj
i ’s (Eq. 5.4) of Li! permutations by treating Xi as

a first order Markov chain

10: Sample an order Θ
(t)
i for Xi from the inverse cumulative distribution

F ((Xi,Θi)|E, (X,Θ)−i) (Eq. 5.7)

11: Update the order information for Xi

12: end for

13: end for

14: Return Θ̂i = mode(Θ
(B+1)
i , . . . ,Θ

(B+N)
i ), i = 1, . . . ,m.

keep the direction of genes in each of them fixed during the execution of GSGS. Algorithm

5.1 outputs a list of most frequently occurred IFs among sampled IFs (Step 14 in Algorithm

5.1). To reconstruct a signaling pathway, we start with an empty network of distinct genes

present in the input list and infer the most likely signaling pathway by joining IFs present

in the output of Algorithm 5.1.

5.6 Description of the Case Studies

5.6.1 Case Study I: Using the E. coli and In silico Networks

Data

We obtained two gold standard directed networks, In silico network [95,139] from DREAM2

and E. coli network [86,87,117] from DREAM3 network challenges in the DREAM initiative.
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Availability of gold standards allowed us to assess the performance of GSGS using true IFGSs

derived from the underlying networks. Both E. coli and In silico networks comprised of 50

nodes with 62 and 37 true edges, respectively. From the E. coli and In silico networks,

two collections of IFGSs were derived by a direct application of the algorithm presented

in Appendix A.7. The algorithm finds unordered IFGSs from a directed network by first

finding all IFs (linear paths) in the network and then randomly permuting the order of genes

in each IF. There were a total of 125 and 57 IFGSs of length ≥ 3 for the E. coli and In silico

networks, respectively, which served as input for GSGS. A given percentage of true edges

were used to serve as prior knowledge. This study allows us to test: if IFGSs are sampled

from the true signaling pathway structure, how well GSGS and other existing approaches

can infer the underlying signal transduction mechanisms?

IFGSs as Binary Discrete Data

Note that a gene set compendium is essentially a binary discrete data set and vice versa. A

gene set represents a set of genes expressed in an experiment and so it naturally corresponds

to a vector (sample) of binary values obtained by considering the presence (1) or absence

(0) of genes in the set. Similarly, genes expressed in a sample of experimental measurements

discretized into binary levels, correspond to a gene set. Thus, a gene set and a binary discrete

sample represent the same underlying data in two different forms. Keeping this in mind,

our approach can be compared with existing network inference approaches accommodating

discrete measurements, such as Bayesian networks [26,37,100] and mutual information (MI)

based network inference methods ARACNE [88], CLR [35], MRNET [96] and RNs [19, 20].

Comparative Analysis

In this case study, we compared the performance of GSGS with a number of popular MI

based network inference approaches [19,35,88,96] with a primary emphasis on two Bayesian

network approaches, K2 [26] and MCMC (Metropolis-Hastings or MH) [100]. The main
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reasons are the following:

• From methodology point of view our method infers the most probable linear struc-

ture(s) using likelihood scores calculated from the products of conditional probabilities.

It is essentially in the same sprit as Bayesian network approaches, while fundamentally

different from other approaches which are based on calculating pairwise similarity.

• Both GSGS and Bayesian network approaches take discrete data and infer a directed

network. The equivalence between gene sets and binary discrete data makes the com-

parison between GSGS and Bayesian network approaches very fair.

• Most of the other network inference algorithms, e.g. ARACNE, CLR, MRNET and

RNs also discretize continuous data to estimate pairwise similarities, however they are

suitable for inferring undirected networks.

A brief description of the aforementioned network inference algorithms has been presented

in Appendix A.5 and Appendix A.6, respectively. To compare the performance of GSGS

with these approaches, inputs were generated as follows. From the same underlying network,

e.g. the E. coli network,

• We generate IFGSs by a direct application of the algorithm Network2GeneSets [2]

presented in Appendix A.7. The IFGSs serve as input for GSGS, whereas the equivalent

binary discrete data is used as input for K2, MH and MI based approaches.

• As BN and MI based approaches also accommodate continuous measurements, we

generate continuous data inputs for these approaches using Bayes Net Tool Box (BNT)

[101, 102].

Performances were evaluated in terms of total number of predicted edges and F-Score (F).

A list of performance measures used in this dissertation is as follows:

• Sensitivity (r) = TP/(TP+FN)
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• Specificity (s) = TN/(TN+FP)

• Precision or Positive Predictive Value (p) = TP/(TP+FP)

• F-Score (F) = 2pr/(p+r)

where TP = number of true positives, TN = number true negatives, FP = number of false

positives, and FN = number of false negatives. An increased number of predicted edges

indicate the presence of many false positives, whereas a small number of predicted edges

correspond to decreased sensitivity. Total number of predicted edges together with F-Score,

reveal an algorithm’s performance in predicting true and false positives in a detailed manner.

We used the standard K2 and MH approaches implemented in BNT [101, 102]. The

existing implementations were modified to incorporate prior knowledge. Using BNT, we gen-

erated continuous measurements from the Gaussian distribution with sample size 20, 30, 40

and 50. In this case, we used the BIC scoring function. Maximum number of parents allowed

for a node in K2 was set at 3. In MH, the burn-in state was set at 500. Number of samples

collected after burn-in state was set at 500. For summarizing a network from the sampled

ones, an edge present in at least 50% of the networks was declared as true edge. However,

we did not observe a significant difference on increasing or decreasing this cut-off. In the

case of binary discrete data, both BIC and Bayesian scoring were used. All other parameters

were set at default.

We used ARACNE, CLR, MRNET and RN implemented in the R package MINET

[97]. In case of continuous data, number of samples was set at 50. Spearman estimator was

used to estimate pairwise similarity. In case of discrete data empirical mutual information

estimator was used. The MI cut-off applied to an inferred network was set at 0.05. All other

parameters were set at default. For example, the DPI parameter eps used in ARACNE was

set at the default value 0.
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5.6.2 Case Study II: Using the E. coli Data Sets

Data

In our second study, we evaluated the performance of GSGS using 4 benchmark E. coli data

sets available from DREAM3 network challenges in the DREAM initiative [86,87,117]. The

first two data sets comprise of 50 genes and 51 samples, whereas the remaining two data sets

contain 100 genes and 101 samples. The corresponding gold standard networks comprise of

62, 82, 125 and 119 edges, respectively. We derived 4 IFGS compendiums from each of the

4 E. coli data sets by declaring the top 10% of the measurements in each data set as 1 and

the remaining measurements as 0. This discretization resulted in IFGSs of different lengths

across different samples. In each compendium, we considered IFGSs with lengths in the

range 3−9. The resulting compendiums comprised of 47, 45, 45 and 49 IFGSs, respectively.

Comparative Analysis

We tested the performance of Bayesian network and MI based methods using E. coli data

in both, continuous and binary equivalent forms. The performance were measured in terms

of F-Scores.

5.6.3 Case Study III: Pathway Reconstruction in Breast Cancer Cells

In this study, we analyzed the performance of GSGS by reconstructing a breast cancer signal-

ing pathway from genes present in the ERBB signaling pathway in KEGG database [67,68].

However, no prior knowledge about the structure of the ERBB signaling pathway avail-

able in KEGG was assumed. The ERBB signaling pathway is a directed network of 87

genes and plays an important role in breast cancer signaling [109]. For example, dysregula-

tion/mutation in the epidermal growth factor receptor (EGFR) and ERBB2 (HER2) have

been known to promote angiobenesis and metastasis in breast cancer [83, 104].

For network inference, we collected 299 samples of breast cancer patients from Affymetrix
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HG-U133 plus 2.0 platform. We mapped all 87 genes participating in the ERBB signaling

pathway to the annotation table for Affymetrix HG-U133 plus 2.0 platform, and considered

gene expression levels corresponding to exactly one probe set with the highest average mea-

surement among 299 samples for each of them. This resulted in a data set with 87 rows

(genes) and 299 columns (samples). IFGSs were derived by discretizing the measurements

into binary levels using R package infotheo. In our study, we chose the equalwidth method

to discretize numerical measurements. In a majority of samples (∼ 66%), the number of

expressed genes were found in the range 3 − 7. To compromise between time to reach an

appropriate burn-in state and overlapping among gene sets, we considered such samples to

form a compendium of 197 IFGSs.

5.7 Performance Evaluation

5.7.1 Using IFGSs Derived from the E. coli and In silico Networks

We first analyze the performance of GSGS using the IFGS compendiums derived from the E.

coli and In silico networks. Using GSGS we collected a total of 500 networks after burn-in

state which we fixed at 500. All results were averaged from 100 independent runs of GSGS.

These parameter were chosen after performing a burn-in state analysis, where we treated

sensitivity, specificity and PPV as parameters. A detailed procedure to perform this analysis

has been presented in Appendix A.10.

It is worth mentioning here that P (Xi,Θi) may not always be unimodal. A reason

which might lead to such a situation is very poor overlapping between Xi and other IFGSs

in the compendium. As the discovery of IFGSs depends on the quality of molecular profiling

data, it is necessary to test the robustness of GSGS by accommodating real-world under-

sampling and over-sampling scenarios. Therefore, we first performed a sensitivity analysis

by varying the amount of overlapping among IFGSs. The multi-modal problem is further

addressed by incorporating an increasing percentage of prior knowledge and testing if the
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algorithm approaches towards the unique true structure.

Fig. 5.1 demonstrates the effect of removing and adding IFGSs to the input of

Algorithm 5.1. In Fig. 5.1, x-axis represents the percentage of gene sets present in the

input, where 20% means that 80% of the gene sets were randomly removed from the original

list of IFGSs, and 120% means that 20% of randomly sampled gene sets were added to the

list. The figure presents the performance of our approach in terms of the total number of

predicted edges. In blocks (a)-(f), the number of edges identified by GSGS (Solid Line)

remains close to the ground truth (dashed line). We also observe the positive effect of

incorporating prior knowledge. As the percentage of prior knowledge increases (block (a) to

block (f)), difference between the ground truth and prediction decreases. In particular, our

approach does not produce a large number of false positives in the presence of redundant

gene sets.

To further validate the preceding statement, in Table 5.1, we present the F-Scores

for the GSGS approach with increasing percentage of gene sets (rows) and prior knowledge

(columns). We observe that the F-Scores increase with an increase in the percentage of

prior knowledge (values in a row), and these scores remain close on removal or addition of

gene sets (values in a column) demonstrating an impressive robustness to under-sampling

and over-sampling. This observation strongly supports the applicability of GSGS in the

real-world scenarios, where we often do not observe all gene sets or the observed gene sets

are redundant.

In Fig. 5.2 and Fig. 5.3, we plot the results from a comparative study in terms of

total number of predicted edges using both discrete (left) and continuous (right) data. In

the figures dashed line represents the ground truth. It is clear that the number of edges

predicted by GSGS remains closer to the ground truth as compared to K2 and MH. In most

of the cases, the number of edges predicted by K2 and MH are much higher than the ground

truth, indicating an increased number of false positives in the inferred networks.

Fig. 5.4 and Fig. 5.5 plot the F-Scores from different approaches with increasing

88



20% 60% 100% 140% 180%
0

20

40

60

0% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

60

20% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

60

 40% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

60

60% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

60

80% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

60

100% Prior Knowledge

 

 

(a)

(c)

(e)

(b)

(d)

(f)

20% 60% 100% 140% 180%
0

20

40

0% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

20% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

40% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

60% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

80% Prior Knowledge

 

 

20% 60% 100% 140% 180%
0

20

40

100% Prior Knowledge

 

 

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.1: Sensitivity analysis for the GSGS approach with increasing percentage of prior knowl-
edge. Network: E. coli (Upper Panel) and In silico (Lower Panel). In blocks (a)-(f), the x-axis
represents the percentage of gene sets present in the input and the y-axis plots the total number
of edges predicted by GSGS (Solid Line). The dashed line plots correspond to the ground truth.
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0% 20% 40% 60% 80% 100%
20% 0.430 0.648 0.748 0.844 0.926 1
40% 0.496 0.680 0.792 0.865 0.937 1
60% 0.513 0.677 0.790 0.883 0.943 1
80% 0.468 0.665 0.780 0.860 0.947 0.999
100% 0.457 0.595 0.719 0.824 0.923 0.999
120% 0.459 0.590 0.704 0.825 0.913 0.996
140% 0.450 0.579 0.722 0.805 0.909 0.999
160% 0.422 0.564 0.691 0.803 0.913 0.991
180% 0.434 0.550 0.679 0.786 0.897 0.984
200% 0.425 0.546 0.676 0.778 0.877 0.974

0% 20% 40% 60% 80% 100%
20% 0.311 0.526 0.690 0.797 0.905 1
40% 0.376 0.581 0.720 0.825 0.907 1
60% 0.448 0.596 0.737 0.818 0.918 1
80% 0.461 0.611 0.720 0.824 0.936 1
100% 0.431 0.597 0.725 0.807 0.917 1
120% 0.448 0.591 0.715 0.790 0.913 0.999
140% 0.412 0.555 0.686 0.788 0.900 0.992
160% 0.414 0.539 0.661 0.762 0.884 0.995
180% 0.403 0.499 0.644 0.745 0.867 0.989
200% 0.372 0.497 0.612 0.717 0.858 0.982

Table 5.1: F-Scores calculated for the GSGS approach with increasing percentage of gene sets
in the input (Row) and prior knowledge (Column). Networks: E. coli (Left Panel) and In silico

(Right Panel).
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Figure 5.2: Network: E. coli. Comparison of the GSGS approach with K2 and MH in terms of the
total number of predicted edges with increasing percentage of prior knowledge. Left Panel: Using
discrete measurements; Right Panel: Using continuous data with different sample size. The dashed
line represents the ground truth.

percentage of prior knowledge. In both the figures, x and y axis represent the percentage

of prior knowledge and F-Scores, respectively. We observe that F-Scores for GSGS is sig-

nificantly higher than K2 and MH using both discrete (upper) and continuous (lower) data.

Further, the impact of incorporating prior knowledge on F-Score is more prominent in case of

GSGS than K2 and MH, specially on using continuous data where F-Scores for K2 and MH

remain much lower than GSGS even in the presence of a large amount of prior knowledge.

We also compared GSGS with four other MI based approaches, ARACNE, CLR, MR-

NET and RN, without using prior knowledge. The four approaches have been implemented

in the R package MINET [97]. As MI networks are undirected, we treated the true underly-

ing networks as well as the networks inferred by GSGS as undirected in the comparison. The

F-Scores calculated using both discrete and continuous data are presented in Table 5.2. We

observed a significantly better performance of GSGS in comparison to MI network inference

methods.
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Figure 5.3: Network: In silico. Comparison of the GSGS approach with K2 and MH in terms
of the total number of predicted edges with increasing percentage of prior knowledge. Left Panel:
Using discrete measurements; Right Panel: Using continuous data with different sample size. The
dashed line represents the ground truth.

In Figure 5.6, we provide more detailed evidences of the superior performance of GSGS

using both In silico and E coli networks. In Figure 5.6, two left panels represent the true

topologies of the two networks, and two right panels represent the topologies reconstructed

using GSGS. In each reconstructed network, blue edges represent true positives and gray

edges represent false positives. A high level of accuracy is observed in both the reconstructed

networks.

5.7.2 Using IFGSs Derived from the E. coli Data Sets

We applied GSGS to infer signaling mechanisms using the IFGS compendiums derived from

E. coli data sets. Using each compendium, we collected 500 samples after a burn-in state

set fixed at 500. We tested the performance of Bayesian network and MI based methods

using the given continuous data sets and binary equivalent data. In each case, we observed

a very low sensitivity value by using Bayesian network methods. In addition, we could not
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Figure 5.4: Network: E. coli. Comparison of the GSGS approach with K2 and MH in terms of F-
Scores. Upper Panel: Using discrete measurements; Lower Panel: Using continuous measurements
with different sample sizes.
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Figure 5.5: Network: In silico. Comparison of the GSGS approach with K2 and MH in terms of F-
Scores. Upper Panel: Using discrete measurements; Lower Panel: Using continuous measurements
with different sample sizes.
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GSGS CLR ARACNE MRNET RN
E.coli 0.79 0.40 0.18 0.18 0.25

In silico 0.83 0.72 0.75 0.68 0.33

GSGS CLR ARACNE MRNET RN
E.coli 0.79 0.39 0.54 0.47 0.30

In silico 0.83 0.41 0.63 0.59 0.40

Table 5.2: Performance comparison of GSGS with four other pair-wise similarity based network
reconstruction approaches in terms of F-Scores. Upper and lower panels correspond to using discrete
and continuous data, respectively. For continuous data sample size is 50.

discover any structure in several cases. Therefore, we compared the performance of GSGS

with MI based approaches. We inferred MI networks using continuous data as we could not

discover a structure in some cases by using discrete data.

In Fig. 5.7, we plot the performance of GSGS and MI based network inference

methods in terms of the F-Score ratio, which is the ratio of the F-Score from GSGS and the

one from MI based methods. A ratio more than 1 indicates a better performance by GSGS.

As shown in Fig. 5.7, we observed a higher F-Score using GSGS, compared with MI based

network inference methods.

5.7.3 Using IFGSs Related to the ERBB Signaling Pathway

In our final case study, we used GSGS to infer a signaling pathway structure from the IFGS

compendium derived using breast cancer molecular profiling data. The IFGS compendium

comprised of genes participating in the ERBB signaling pathway in KEGG [67,68]. No prior

knowledge about the structure of ERBB signaling pathway available from KEGG was as-

sumed. Using GSGS, we sampled 4500 networks after a burn-in state fixed at 500. The com-

putational complexity of GSGS was easily manageable for the derived IFGS compendium.

To validate the performance of GSGS, we utilized the structure of ERBB signaling pathway

available from KEGG. As the direction of an information flow is from an upper layer (lower

index layer) to a lower one (higher index layer) in the hierarchial representation of a pathway,
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Figure 5.6: A proof of principle study. Left panels show two gold standard networks, E. coli

(Upper) and In silico (Lower). Right panels show the corresponding predicted networks by GSGS,
E. coli (Upper) and In silico (Lower). On the right panels, the blue edges correspond to true
positives and gray edges represent false positives. Figures were generated using Cytoscape [131].
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Figure 5.7: Comparison of GSGS with the contemporary MI based network inference methods
using four benchmark E. coli data sets available from the DREAM initiative.

we collected genes lying in different layers of the ERBB signaling pathway in KEGG, which

have been presented in Table 5.3. Considering the noise, i.e. which genes were recognized in

each IFGS by data discretization and under-sampling among IFGSs, at the very minimum

we expect larger number of edges from a gene in an upper layer to a gene in the lower layer.

Indeed, it was found that ∼ 60% of the inferred edges follow this hierarchy, i.e. no parent

came from a lower layer. In ∼ 20% of the edges a parent and child node came from the same

layer. It is likely that genes lying in the same layer are expressed together in many IFGSs, as

they often share a common regulator. Overall, the performance of GSGS depends on purity

of input data, like any other inference method.

In the upper panel of Fig. 5.8, we present a few reconstructed signaling events. It

can be easily verified that each IF in the figure follows the hierarchy presented in Table

5.3. For example, corresponding to the IFGS {ARAF, ELK1, KRAS}, GSGS predicted an

IF KRAS → ARAF → ELK1, where KRAS came from Layer 6, ARAF from Layer 7 and

ELK1 from Layer 10. We further analyzed the inferred structure to identify linear signaling

events reported in KEGG. In the lower panel of Fig. 5.8, we present a partial view of the
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Figure 5.8: Upper Panel: Example of information flows inferred by GSGS. Genes in each
information flow follow the hierarchy presented in Table 5.3; Lower Panel: A partial view of
the network formed by genes in the neighborhood of ERBB2 and ERBB3. Each information
flow follows the hierarchy presented in Table 5.3.
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Genes

Layer1 EFG, TGFA, AREG, EREG, BTC, HBGEF,
ERBB2, NRG1, NRG2, NRG3, NRG4

Layer2 EGFR, ERBB3, ERBB4
Layer3 SRC, CBL, CBLB, CBLC, NCK1, NCK2

PLCG1, PLCG2, STAT5A, STAT5B, SHC1,SHC2,
SHC3, SHC4, CRK, CRKL

Layer4 PTK2, PAK1, PAK2, PAK3, PAK4, PAK6, PAK7
CAMK2A, CAMK2B, CAMK2D, CAMK2G, PRKCB

PRKCA, PRKCG, GRB2, ABL1,ABL2
Layer5 MAP2K4, MAP2K7, SOS1, SOS2, GAB1
Layer6 MAPK8, MAPK9, MAPK10, NRAS, HRAS, KRAS, PIK3R2

PIK3CA, PIK3R3, PIK3R5, PIK3CB, PIK3CD, PIK3R1, PIK3CG
Layer7 JUN, ARAF, BRAF, RAF1, AKT1, AKT2, AKT3
Layer8 MAP2K1, MAP2K2, BAD, MTOR, CDKN1A, CDKN1B, GSK3B
Layer9 MAPK1, MAPK3, E1F4EBP1, RPS6KB1, RPS6KB2
Layer10 ELK1, MYC

Table 5.3: Genes arranged in different layers in the hierarchial representation of the ERBB
signaling pathway available from the KEGG database.

reconstructed structure formed in the neighborhood of genes ERBB2 and ERBB3. Each edge

in the figure follows the hierarchy presented in Table 5.3. Additionally, a red edge means

that a linear signaling event between parent and child node has already been recognized in

the ERBB signaling pathway structure in KEGG. For example, there exists a linear signal

transduction from KRAS to ELK1 via ARAF, and from ERBB3 to ELK1 via KRAS and

BRAF in the structure available from KEGG. Green edges correspond to a pair of nodes

coming from the same layer in Table 5.3. Black edges represent a pair of nodes, where parent

and child node come from an upper and lower layer, respectively, however, a linear signaling

between them has not been reported in the pathway structure available from KEGG. Such

edges can be viewed as predictions. Overall, the interaction mechanisms presented in Fig.

5.8 support the use of GSGS for inferring signaling pathway structures.
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5.8 Discussion

In this chapter, we proposed a new sampling based approach, GSGS, to infer the most likely

signaling pathway structure from a probability distribution of sampled signaling pathway

structures. To achieve our goal, we utilized a compendium of overlapping gene sets related

to the given pathway. We first assessed the performance of GSGS by deriving gene sets from

two gold standard networks: E. coli and In silico available from the DREAM initiative. Our

approach was shown to have significantly better performance in terms of both F-Score and

total number of predicted edges than the Bayesian network approaches K2 and MCMC, and

mutual information approaches ARACNE, RN, CLR and MRNET. Robustness of GSGS

against under-sampling or over-sampling of gene sets was proved by performing sensitivity

analysis. Our conclusions were further validated by testing the performance of the afore-

mentioned approaches on 4 E. coli data sets available from DREAM. Finally, we applied

GSGS to reconstruct a network in breast cancer cells, and verified it using database knowl-

edge available from KEGG. Overall, our analyses favor the use of GSGS approach in the

inference of complicated signaling pathway structures.

As far as we know, GSGS is original in the following aspects: (1). It offers a unique

gene set based approach for the reconstruction of directed signaling pathway structures

(2). The ordering of genes in each gene set is treated as a random variable to capture the

higher order interactions among genes participating in signal transduction events. In most

of the existing approaches, individual genes are treated as variables (3). The problem of

signaling pathway structure inference is cast into the framework of parameter estimation for

a multivariate distribution. (4). The true signaling pathway structures are modeled as a

probability distribution of sample signaling pathway structures.

Previously proposed Nested effects models (NEMs) [89] also utilize discrete measure-

ments for inferring a directed structure by constructing it from smaller building blocks.

However, a major difference between NEMs and GSGS lies in the fact that NEMs treat
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binary effect reporters as random variables, whereas GSGS considers the ordering of genes

in IFGSs as random variables. NEM approach builds sub-models by independently scoring

all pairs or triplets of genes. An edge in a sub-model is defined in terms of a subset relation

between phenotypic profiles of two genes. GSGS, on the other hand, infers gene ordering

in a gene set by utilizing the overlapping among all of the remaining gene sets, which more

naturally captures the higher order interaction mechanisms. GSGS further benefits from al-

lowing a building block of larger size and explicitly accommodating linear signal transduction

mechanisms in its settings, which characterize a signaling pathway structure.

The worst case time complexity of GSGS is Nm(m+n+ML), where N is the number

of sampled pathways, m is the number of IFGSs, n is the number of distinct genes, L is the

length of the longest gene set in the input and M = L!. As longer gene sets (L ≥ 10) are less

likely to correspond to linear information flows, the complexity arising from ML could be

managed by appropriately selecting the length of gene sets in each experiment. It is worth

mentioning here that GSGS benefits from a much reduced computational load, both in terms

of speed and memory requirements, in comparison to Bayesian network approaches, e.g. BN

inference using sampling based Metropolis-Hastings approach. Indeed, the complexity of

GSGS is driven by the number of possible orderings for IFGSs, which is comparatively much

smaller than the number of neighbors of a network generated at each stage of Metropolis-

Hastings approach. Complexity of Metropolis-Hastings approach is often unmanageable even

for a network of small size as a large number of neighboring structures need to be stored for

sampling the next structure.
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Chapter 6

Reconstructing Signaling Pathway Structures: A

Discrete Optimization Approach

6.1 Introduction

In the previous chapter, we presented a sampling algorithm to infer signaling pathway struc-

tures from gene sets related to the pathways. Since we hypothesized gene sets as discrete mea-

surements emitted from latent signaling pathway structures, another way to approach this

problem of combinatorial nature is to utilize discrete optimization based search techniques.

In many practical situations, search algorithms rather than sampling based approaches may

be advantageous for a variety of reasons, such as simple computational framework, easy

implementation and reduced computational burdens. In this chapter1, we utilize the frame-

work of simulated annealing [74], a widely used search algorithm for addressing discrete

optimization problems.

Simulated annealing or SA [74] is a global search algorithm and has its root in the field

of metallurgy, where a metal is heated and then cooled down slowly so that the atoms gradu-

ally configure themselves in states of lower internal energy, refining the crystalline structure

of the metal. Compared with other global search algorithms such as genetic algorithm [53]

and tabu search [43], SA is easier to understand and to implement without sacrificing per-

formance. Since genetic algorithm is a population based search method and tabu search is a

memory based heuristic, each iteration of SA runs faster than the two approaches. SA also

1Work under review. Reused from [3].
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requires a small number of user-specified parameters. In the past, SA has inspired various

bioinformatics researches [13, 23, 45].

Similar to Chapter 5, we utilize a compendium of IFGSs related to a signaling pathway

component and propose a gene set based simulated annealing algorithm, GSSA, by treating

IFGSs as the basic building blocks of a signaling pathway. The proposed algorithm mimics

the physical process of heating and then cooling down a substance slowly to obtain a strong

crystalline structure, by annealing gene sets to infer signaling cascades characterizing the

optimal signaling pathway structure. Throughout, we treat unordered gene sets as random

variables and their orders as random.

6.2 Notations

We denote an information flow gene set (IFGS) introduced in Chapter 5 by Xi and an

information flow (IF) by (Xi,Θi), where Θi represents an instantiation of gene orderings in

Xi, i = 1, . . . , m. We denote an IFGS compendium and a signaling pathway structure by

X and (X,Θ), respectively, where X = (X1, . . . , Xm) and Θ = (Θ1, . . . ,Θm). We construct

a signaling pathway structure (X,Θ) by combining the IFs (Xi,Θi) into a single unit. The

length of an IFGS Xi, which is the number of genes present in Xi, is denoted by Li.

6.3 A Discrete Optimization Problem

Since there exist Li! different gene ordering permutations for the IFGS Xi, a total of
∏m

i=1 Li!

distinct signaling pathway structures can be constructed fromX . To locate the true signaling

pathway structure, we formulate the following discrete optimization problem

min
(X,Θ)∈F

X

E(X,Θ) (6.1)

where E(X,Θ) is the energy of the structure (X,Θ) and FX is the feasible set containing the

set of candidate signaling pathway structures. Thus, the true signaling pathway structure can
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be inferred by (1) defining the energy E(X,Θ) (2) defining the feasible set FX of candidate

signaling pathway structures such that the true structure has the lowest energy among the

candidates and (3) searching for the true signaling pathway structure in FX.

6.4 Energy of a Signaling Pathway Structure

We propose a novel function to score a candidate signaling pathway structure by treating

IFGSs as random samples from a first order Markov chain model. The score of a signaling

pathway structure (X,Θ) is interpreted as its energy and is defined as

E(X,Θ) = −
m∑

i=1

log ℓ(Xi,Θi), (6.2)

where ℓ(Xi,Θi) stands for the likelihood of IF (Xi,Θi). Indeed, we compute the likelihood

of (X,Θ) as

L(X,Θ) =

m∏

i=1

ℓ(Xi,Θi). (6.3)

Since log function is monotonically increasing, searching for a structure with the maximum

likelihood is equivalent to seeking a structure with the minimum energy. Each likelihood

term ℓ(Xi,Θi) is computed using the estimates of two Markov chain parameters, the initial

probability vector π and the transition probability matrix Π, which we defined in Section

5.3. Recalling from Section 5.3, the likelihood of an IF, say x → y → z is computed as

ℓ(x → y → z) = P (x)× P (y|x)× P (z|y), (6.4)

where prior and conditional probability terms in the above equation are known from π and

Π. The energy of a structure (X,Θ) can now be computed using Eq. 6.2.
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Algorithm 6.1 Gene Set Simulated Annealing

1: Input: IFGSs Xi, i = 1, . . . ,m, cooling schedule constant c, number of jumps J .
2: Output: The reconstructed signaling pathway structure.

3: Initialization: At k = 0, randomly select a feasible structure (X,Θ
(0)

). Let BestNetwork =

(X,Θ
(0)

) and BestEnergy = E(X,Θ
(0)

).
4: for k = 1, . . . , J do

5: Randomly choose a network (X,Φ) from the neighborhood of (X,Θ
(k−1)

), where Φ =
(Φ1, . . . ,Φm)T .

6: if E(X,Φ) < E(X,Θ
(k−1)

) then

7: Θ
(k)

= Φ
8: if E(X,Φ) < BestEnergy then

9: BestNetwork = (X,Φ)
10: BestEnergy = E(X,Φ)
11: end if

12: else

13: Draw a Bernoulli sample with probability of TRUE as min{1, exp(E(X,Θ
(k−1)

) −
E(X,Φ)/Tk)}.

14: if TRUE then

15: Θ
(k)

= Φ
16: end if

17: end if

18: end for

19: Return BestNetwork.

6.5 Feasible Signaling Pathway Structures

Not all
∏m

i=1 Li! signaling pathway structures, which can be constructed from X, exhibit

the topological properties of real-world biological networks. To eliminate random structures

from the search space, we only consider candidates which possess certain low-level topological

properties such as the degree distribution of underlying structure. The degree distribution

of underlying signaling pathway structure, say (X,Θ), is a weighted asymmetric adjacency

matrix W obtained by counting the number of occurrences of directed edges between all gene

pairs among m IFs (Xi,Θi), i = 1, . . . , m. Note that except for the pair of terminal nodes,

the incoming and outgoing degrees of all intermediate nodes in an IF is 1. Since we consider

(X,Θ) as a set of information flows, it can be easily verified that structures obtained by

randomly permuting the orders of intermediate nodes in each IF (Xi,Θi), i = 1, . . . , m, also

have degree distribution W . Such structures preserve the marginal degree distributions of
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genes and form the feasible set FX of size
∏m

i=1(Li − 2)!. In simulation studies, W can be

obtained from the true signaling cascades. In real-world studies, it can be approximated by

using database knowledge.

6.6 Justification of the Energy Function

We design and perform an empirical statistical test to show that the true signaling pathway

structure has the lowest energy in the feasible set. Given the true signaling pathway structure

(X,Θ), we randomly select N feasible structures and compute the empirical P -value M/N ,

where M is the number of structures with energy lower than that of (X,Θ). The true

signaling pathway structure has the lowest energy if the empirical P -value is zero. We also

perform the above test for a randomly selected feasible structure and expect the empirical

P -value to vary in the interval [0 1].

6.7 Gene Set Simulated Annealing (GSSA)

For the search procedure, we define the neighborhood of a signaling pathway structure (X,Θ)

as the set of
∑m

i=1(Li − 2)! structures obtained by randomly permuting the orders of Li − 2

intermediate genes in the ith IF (Xi,Θi), keeping the remaining m − 1 IFs in (X,Θ) fixed,

for each i = 1, . . . , m. This definition justifies the term ‘neighbor’ as only one IF in the given

structure is perturbed at a time. Moreover, if we start our search from a feasible structure,

the algorithm is guaranteed to take jumps within the feasible set of candidate structures

having the same degree distribution as the true signaling pathway. The above definition

also satisfies all the properties of a neighborhood presented in [44]. We choose the standard

cooling schedule, which at the kth stage is defined as

Tk =
c

log(k + 1)
, k = 1, 2, . . . , (6.5)
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where c > 0 is constant and is referred to as cooling schedule constant. The choice of c is

often problem specific. Indeed, a small value of c may lead SA to get trapped in a local

solution, whereas a large value may slow down its speed of convergence. The above cooling

schedule has been used to study the convergence properties of a general simulated annealing

approach [47]. The probability with which the algorithm accepts a move from a current

structure (X,Φ) to a neighboring structure (X,Ψ) is called the acceptance probability [25]

and is defined as

min{1, exp(E(X,Φ)− E(X,Ψ)/T )} (6.6)

where T represents the current temperature value, which at the kth iteration is given by

Eq. 6.5. Note that the algorithm may accept to move to a worse point in order to avoid

getting trapped in a local solution. In Algorithm 6.1, we present the pseudo-code of GSSA.

Algorithm 6.1 takes an IFGS compendium as input and returns a list of IFs, which are

combined to represent the optimal signaling pathway structure.

6.8 Description of the Case Studies

6.8.1 Case Study I: Using Signaling Pathway Structures in KEGG

Data

We first performed a proof-of-principle study to validate the performance of GSSA in in-

ferring the true signaling mechanisms. In this study, we considered a compendium of gene

sets sampled from the true signaling pathway structure. We developed a path sampling algo-

rithm (see Appendix A.8) for obtaining a collection of true IFs from a given signaling pathway

structure. The IFGSs were simulated by randomly permuting the locations of intermediate

genes within each IF by keeping the pair of terminal nodes fixed. We applied this algorithm

individually on 120 non-metabolic pathways in the KEGG database [67,68] resulting in 120

IFGS compendiums. From each compendium, we pruned IFGSs of lengths 2 and 3. Such
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IFGSs represented true edges and true IFs, respectively. Further, we only used compendi-

ums which contained at least 5 IFGSs. Using this procedure, we obtained 83 non-empty

IFGS compendiums comprising of IFGSs sampled from KEGG. Since each compendium was

derived from a specific KEGG pathway structure, IFGSs in a given compendium shared the

same pathway membership. In the derived compendiums, the number and lengths of IFGSs

varied in the ranges of 5− 723 and 4− 13, respectively. These compendiums served as input

to GSSA.

Comparative Analysis

We considered two Bayesian network approaches: K2 [26] and Metropolis-Hastings or MH

[100] implemented in BNT [101]. We used both BIC and Bayesian scoring functions to infer

Bayesian networks. In the case of K2, the maximum number of parents allowed for a node

was set at 3. In each run of MH, the first 1000 samples were collected for a manageable

computational complexity, and the structure giving the highest F-Score was selected for

comparison. Results were averaged from 10 independent runs of each algorithm.

We also compared GSSA with MI based approaches. Binary discrete data correspond-

ing to an IFGS compendium served as input to MI based algorithms. In the comparison,

we treated the true signaling pathway structure and the one inferred by GSSA as undi-

rected. To infer MI networks, we used ARACNE [88], C3NET [8], CLR [35], MRNET [96]

and RN [19] approaches implemented in the C3NET [8] and MINET [97] packages available

from R/Bioconductor. We used the empirical MI estimator to estimate mutual information

matrix. We did not observe a significant difference by employing other estimators defined

for discrete random variables. The final normalized network was compared with the true

structure at several threshold values. For each algorithm, the structure maximizing the F-

score was considered as the inferred structure. We observed an overall better performance

of ARACNE, when the DPI threshold parameter ǫ was set at 0 [97]. Therefore, we set ǫ = 0

in Case Study I.
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6.8.2 Case Study II: Using E. coli Data Sets

We also compared the performance of various approaches using 4 benchmark E. coli data

sets, considered in Section 5.6.2. These data sets are available from DREAM3 network

challenges in the DREAM initiative [86,87,117]. Since we do not know the parameters that

maximize the performance of a network inference algorithm in real-world studies, we used a

standard procedure to infer the underlying network from each of the 4 data sets.

To infer MI networks, we applied copula transform on each data set for a stable

estimation of mutual information [8]. We did not observe a significant difference in the

performance of MI based algorithms without using copula transform. We used the empir-

ical Gaussian estimator implemented in the C3NET package [8, 9] to estimate the mutual

information matrix (MIM). MIM was given as input to CLR and MRNET. We used a MI

threshold on the resulting matrix to remove non-significant edges. We set the MI threshold

as the average of values in the upper triangular part of the inferred matrix. In the case of

ARACNE and C3NET, we first used a MI threshold on MIM. The resulting matrix served

as input to both ARACNE and C3NET. MI threshold was set as the average of values in

the upper triangular part of MIM, which is also the default cut-off used in C3NET package.

The DPI threshold parameter for ARACNE was set at 0.1 [8].

In the case of GSSA, we considered 4 IFGS compendiums derived in Section 5.6.2,

which comprised of 47, 45, 45 and 49 IFGSs, respectively. For each compendium, we used

GSSA to explore the search spaces formed by considering all possible gene orderings of gene

sets present in it.

In the case of Bayesian network methods, we applied K2 and MH on both continuous

and discretized E. coli data sets at different settings of parameters.

Comparative Analysis

We tested the performance of GSSA, Bayesian network and MI based methods using the

above parameter settings. Performances were measured in terms of F-score (Section 5.6.1).
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6.8.3 Case Study III: Pathways Reconstruction in Breast Cancer Cells

In this study, we showcase two context-specific signaling pathways, ERBB and PMOM

(Progesterone-mediated oocyte maturation), activated in breast cancer. We considered 87

genes participating in the ERBB signaling pathway and 35 genes in the giant connected

component (GCC) of the PMOM pathway from the KEGG database. We analyzed 299

clinical breast cancer tissue gene expression profiles from the Affymetrix HG-U133 plus 2.0

platform considered in Section 5.6.3. This resulted in two data sets of size 87 × 299 and

35× 299 corresponding to the genes in the two pathways. To derive IFGS compendiums, we

discretized each data set using binary labels.

Specifically, we derived two IFGS compendiums, Compendiums I and II, correspond-

ing to the genes in the ERBB and PMOM pathways, respectively, with a minimum of 4

component genes in each IFGS. As the majority of IFGSs (∼ 90% in Compendium I and

∼ 94% in Compendium II) were comprised of 4−9 genes, such samples provided a good com-

promise between the overlapping among IFGSs and the time for convergence. This resulted

in two compendiums with 204 and 96 IFGSs, respectively. We assigned the end nodes for

each context-specific IFGS using the hierarchial representation of genes in different layers of

the generic ERBB and PMOM pathway structures in the KEGG database. The hierarchial

representation of a signaling pathway can be visualized using Cytoscape [131]. Within each

IFGS, a gene lying in the upper most and a gene in the lower most layer were considered

as the two end nodes. It is worth mentioning here that layering information accounts for

the gene orderings at a very crude level because (1) The derived IFGSs do not necessarily

correspond to signaling events already reported in KEGG (2) No prior knowledge of edges

in the two KEGG structures was used. Lists of genes in the two compendiums along with

their hierarchial arrangements in the different layers of the two KEGG pathways have been

presented in Table 6.1.
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Genes
Layer1 EGF, TGFA, AREG, EREG, BTC, HBGEF,

ERBB2, NRG1, NRG2, NRG3, NRG4
Layer2 EGFR, ERBB3, ERBB4
Layer3 SRC, CBL, CBLC, CBLB, NCK1, NCK2

PLCG1, PLCG2, STAT5A, STAT5B, SHC1, SHC2,
SHC3, SHC4, CRK, CRKL

Layer4 PTK2, PAK1, PAK2, PAK3, PAK4, PAK6, PAK7
CAMK2A, CAMK2B, CAMK2D, CAMK2G, PRKCB

PRKCA, PRKCG, GRB2, ABL1,ABL2
Layer5 MAP2K4, MAP2K7, SOS1, SOS2, GAB1
Layer6 MAPK8, MAPK9, MAPK10, NRAS, HRAS, KRAS, PIK3R2

PIK3CA, PIK3R3, PIK3R5, PIK3CB, PIK3CD, PIK3R1, PIK3CG
Layer7 JUN, ARAF, BRAF, RAF1, AKT1, AKT2, AKT3
Layer8 MAP2K1, MAP2K2, BAD, MTOR, CDKN1A, CDKN1B, GSK3B
Layer9 MAPK1, MAPK3, EIF4EBP1, RPS6KB1, RPS6KB2
Layer10 ELK1, MYC

Genes
Layer1 HSP90AA1, HSP90AB1, PLK1, SPDYA, SPDYC
Layer2 MOS, CDK2, CDC25A, CDC25B, CDC25C
Layer3 MAP2K1
Layer4 MAPK1, MAPK3
Layer5 RPS6KA1, RPS6KA2, RPS6KA3, RPS6KA6
Layer6 BUB1, PKMYT1
Layer7 MAD1L1, MAD2L1, MAD2L2
Layer8 FZR1
Layer9 ANAPC1, ANAPC2, ANAPC4, ANAPC5, ANAPC7,

ANAPC10, ANAPC11, ANAPC13, CDC16, CDC23, CDC26, CDC27

Table 6.1: The hierarchial arrangement of 87 genes from the ERBB signaling pathway (Upper
Panel) and 35 genes from the PMOM pathway (Lower Panel) available from the KEGG
database [67, 68]. These representations can be visualized using Cytoscape [131].

6.9 Performance Evaluation

6.9.1 Using IFGSs Derived from Signaling Pathway Structures in KEGG

We began by examining that the true signaling pathway structure has the lowest energy in

the feasible set. We considered two collections of feasible structures. The first collection
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Figure 6.1: Left Panel: Empirical P-Values computed for true signaling pathway structures
(Left) and randomly selected feasible pathway structures (Right) corresponding to 83 IFGS
compendiums derived from the KEGG pathways; Right Panel: Energy values computed by
varying the initial structure and cooling schedule constants for a total of 2 × 105 jumps.
The IFGS compendium was derived from the generic vascular smooth muscle contraction
pathway in KEGG.

comprised of all 83 signaling pathway structures constructed from the true IFs. The second

collection contained 83 randomly selected structures, one from each of the 83 feasible sets.

The left panel of Fig. 6.1 presents the empirical P -values calculated for each structure in the

two collections, where we fixed N = 1000 (see Methods). We observed that the empirical

P -value for each of the 83 true structures was always zero while it fluctuated in the interval

(0 1) in the case of randomly selected feasible structures. This justified the choice of the

energy function used in our algorithm.

Since the computational complexity of GSSA was quite manageable for the derived

compendiums, we fixed the number of jumps in a single run of GSSA at 2 × 105. Based

on our experiments, we chose to fix c = 10 throughout to compromise between the problem

of getting stuck in a local solution and the time needed for convergence. Fig. 6.1 (Right

Panel) presents the energy values from five independent runs of GSSA with different cooling

schedule constants and different initial structures randomly chosen from the feasible set. It

can be observed from Fig. 6.1 that at a later stage, the energy values obtained using c = 10
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Figure 6.2: The performance of GSSA in reconstructing true signaling cascades and signal-
ing pathway structures corresponding to 83 IFGS compendiums derived from the KEGG
database.

are very close to the ones calculated from other settings.

We summarize the performance of GSSA in terms of F-Score averaged over 10 inde-

pendent runs. Fig. 6.2 demonstrates the performance of GSSA in reconstructing the true

signaling mechanisms using each of the 83 IFGS compendiums. On the left side of Fig. 6.2,

we have plotted the number of structures among 83 reconstructed structures, with a certain

minimum F-Score. On the right, we consider the proportion of signaling cascades accu-

rately inferred by our algorithm in each compendium. The feasibility and validity of GSSA

is evident from the high F-Scores and the high proportion of accurately inferred signaling

cascades.

In Fig. 6.3, we present the results from a comparative study performed using each

of the 83 IFGS compendiums. We observe a significantly better performance of GSSA in

recovering the true structure compared with the Bayesian network and MI based approaches.

Fig. 6.3 demonstrates the strength of GSSA in inferring signal cascading mechanisms.

In Fig. 6.4, we present a signaling pathway structure inferred by our approach.

Structures on the upper and lower panels correspond to the true and inferred signaling

pathway structures, respectively. The black (solid) and blue (dashed) edges represent true
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Figure 6.3: Comparison of GSSA with the Bayesian network approaches K2 and MH using
BIC and Bayesian score functions (Left Panel) and with MI based approaches (Right Panel).

positives and false positives, respectively. Fig. 6.4 demonstrates high precision and recall in

the structure reconstructed by GSSA, resulting in a high F-Score.

6.9.2 Using IFGSs Derived from the E. coli Data Sets

Since we observed very low sensitivity values using Bayesian network methods, we present

the result from comparison between GSSA and MI based methods. In Fig. 6.5, we plot the

performance of GSSA and MI based network inference methods in terms of the precision

ratio, which is the ratio of the precision from GSSA and the one from MI based methods.

A precision ratio more than 1 indicates a better precision by GSSA. For each E. coli data

set, we observed a higher precision from GSSA, compared with MI based network inference

methods.

6.9.3 Using IFGSs Related to the ERBB and PMOM Signaling Pathways

We inferred two breast cancer specific signaling pathway structures using the derived com-

pendiums. To evaluate the performance of GSSA, we first utilized the structures of ERBB
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Figure 6.4: An example showcasing the performance of GSSA in recovering the true structure
using the IFGS compendium derived from the GnRH signaling pathway in KEGG database.
Structures on the upper and lower panels represent true and inferred signaling pathways,
respectively. The black (Solid) and blue (Dashed) edges represent true positives and false
positives, respectively. Figures were generated using Cytoscape [131].
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and PMOM signaling pathways in the KEGG database [67,68]. Considering that the direc-

tion of an information flow is often from an upper layer to a lower one in the hierarchial

representation of a signaling pathway, and the real-world gene sets correspond to partially

observed signaling events, at the minimum we expected a larger number of inferred edges

between genes in upper layers to genes in lower layers in the hierarchial representation of the

two KEGG pathway structures. Indeed, we verified that nearly 76% and 89% of the inferred

edges follow this hierarchy, i.e. no parent came from a layer lower than the one for its child.

This observation indicates that for a vast majority of inferred signaling mechanisms, the flow

of information was from an upper layer to a lower one.

In the upper panel of Fig. 6.6, we present a few reconstructed signal transduction

events which correspond to complete or partial linear signal cascades already reported in

the ERBB and PMOM pathway structures in the KEGG database. In the lower panel

of Fig. 6.6, we present a partial view of the two reconstructed signaling pathways with

solid edges representing complete or partial linear signal cascades already reported in the

ERBB and PMOM signaling pathways in the KEGG database, whereas dashed edges follow

the hierarchy of these structures and can be viewed as predictions. While the figures do

not attempt to portray a comprehensive view of signaling pathways, GSSA algorithm has

the potential to uncover biologically relevant mechanisms that have not been previously

considered or understood.

ERBB/HER family receptors play important roles in many types of cancer including

breast cancer. Dysregulation/mutation in the epidermal growth factor receptor (EGFR)

and ERBB2 (HER2) have been known to promote angiobenesis and metastasis in breast

cancer [83,104]. Some known signaling cascades that contribute to breast cancer progression

include RAF/MEK/ERK and PI3K/PDK1/AKT signaling pathways that regulate apoptosis

and cell cycle. These signaling events are reflected in the edges depicted in the upper left

panel of Fig. 6.6. For instance, in breast cancer ERBB2/HER2 receptor can constitutively

activate the PI3K/PDK1/AKT cascade and the downstream effector, the mammalian target
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Figure 6.5: Comparison of GSSA and the MI based methods in terms of precision ratio,
which is the ratio of the precision from GSSA and the one from MI based methods. We used
4 E. coli benchmark data sets available from the DREAM initiative.

of rapamycin (MTOR). This known signaling cascade is conformed as a direct action between

ERBB2/HER2 and MTOR in the lower left panel of Fig. 6.6.

In the lower left panel of Fig. 6.6, the reconstructed ERBB signaling pathway revealed

a previously unknown direct link from ERBB3 to ARAF. ARAF (A-Raf proto-oncogene

serine/threonine-protein kinase) is known to phosphorylate and activate MEK1 (MAP2K1)

and MEK2 (MAP2K2), leading to suppression of apoptosis in cancer cells [123]. However,

the possible role of ERBB3 as its upstream regulator is a novel implication that clearly

warrants further investigation. In addition, PI3K family members are known to be the

downstream targets of EGFR and ERBB2/HER2, but not ERBB3 [22]. Thus, the direct link

between ERBB2 and PI3K inferred by GSSA is in accordance with the previously established

results. The direct link between ERBB3 and PIK3R3, on the other hand, suggests a potential

role of ERBB3 receptor tyrosine kinase in breast cancer. A major clinical challenge of

breast cancer treatment is acquired resistance to hormone therapy as the tumor develops
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Figure 6.6: Upper Panel: Linear cascading events inferred by GSSA which correspond to
complete or partial linear signaling events already reported in the ERBB (Upper Left) and
PMOM (Upper Right) pathways in KEGG; Lower Panel: Partial view of the breast cancer
signaling pathways, ERBB (Lower Left) and PMOM (Lower Right), inferred by GSSA. A
solid edge represents that a complete or partial linear signaling event between parent and
child node has been recognized in the ERBB and PMOM structures in the KEGG database,
whereas dashed edges follow the hierarchial arrangements of these structures.
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alternative survival signaling such as enhanced cross-talk between the estrogen receptor (ER)

and ERBB1/ERBB2 [129]. Thus combinatorial therapeutic intervention targeting both ER

and ERBB2 (HER2) is currently under intensive clinical studies [79, 80, 110]. Revelation of

the novel link between ERBB3 and PI3K family proteins is significant because it represents

yet another adaptive pathway in breast cancer that needs to be fully understood in order to

develop more effective regimen blocking this survival signaling.

In the case of PMOM pathway (lower right panel of Fig. 6.6), we show a highlighted

role of the Fizzy protein (FZR1/CDC20) in breast cancer. It is an indication that the

ubiquitin ligase activity of the anaphase promoting complex (APC) plays an important role

in breast cancer progression. Previous studies have established an association between APC

and FZR1 [141] implicating FZR1 regulation of ANAPC isoforms 1, 2, 4, 5, 7, and 10. We

observe additional regulation mechanisms involving ANAPC 11 and 13, apparently in a way

specific to breast tumor tissues. The reconstructed PMOM signaling pathway also reveals a

novel direct action of mitogen-activated protein kinase 1 (MAPK1) upon FZR1. The MAP

kinase cascade is associated with the control of cell cycle progression, but in a manner that

is far upstream of FZR1-mediated APC. It is possible that this direct action may be a result

of the non-genomic signaling of progesterone [14] that rapidly and constitutively activates

the MAP kinase signaling cascade in breast cancers that are estrogen receptor (ER) positive

but progesterone receptor (PGR) negative.

If experimentally validated and mechanistically elucidated, the novel activation of

FZR1 by MAPK1 will have important outcomes in breast cancer research. For example,

studies can be designed to investigate if inhibiting the kinase can block FZR1-mediated

APC, and if any effector proteins are involved in this signaling cascade. Such studies can

be driven by hypotheses generated from GSSA-based reconstruction of signaling pathways,

and can lead to the discovery of new biomarkers as potential diagnostic, prognostic, or

therapeutic targets for breast cancer.
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6.10 An Alternative Approach: Gene Set Genetic Algorithm (GSGA)

The discrete optimization problem considered in Eq. 6.1 can also be addressed by utilizing

the frameworks of other popular search techniques, such as genetic algorithm (GA) [28,53,98].

We performed a preliminary study for the structural inference of signaling pathways under

the settings of GA, which we describe below.

GA is a population based search strategy, which starts from an initial population of

points (signaling pathway structures) from the feasible set. Points in the feasible set are

encoded as strings of symbols of equal lengths and are called chromosomes. GA proceeds it-

eratively, where a new population is created from the current population using the operations

referred to as cross-over and mutation. At each iteration, GA aims to create a population

with average objective function value, which is higher than the one for the previous popula-

tion. The objective function value of a chromosome is called its fitness. Various steps in the

proposed gene set based genetic algorithm, GSGA, are as follows:

Problem Formulation We formulate the discrete optimization problem in Eq. 6.1 as a max-

imization problem

max
(X,Θ)∈F

X

f(X,Θ) (6.7)

where f represents the fitness of a signaling pathway structure (X,Θ) and is defined as

f(X,Θ) =

m∑

i=1

log ℓ(Xi,Θi). (6.8)

The Representation Scheme We encode each signaling pathway structure in FX as a chro-

mosome. To do this, we first enumerate the orderings associated with each of the IFGSs

Xi, i = 1, . . . , m individually and label the corresponding IFs based on the enumeration. We

then concatenate the labels of the IFs which define the given signaling pathway structure.

For instance, if a signaling pathway structure is defined in terms of three IFGSs X1, X2

and X3, with lengths 5, 7 and 6, respectively, and the ordering index 4, 3 and 5 associated
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Algorithm 6.2 Gene Set Genetic Algorithm

1: Input: IFGSs Xi, i = 1, . . . ,m, population size s, cross-over probability pc, mutation proba-
bility pm, elitism proportion pe, number of generations J .

2: Output: The reconstructed signaling pathway structure.

3: Initialization: At k = 0, randomly select a population P (0) of size s from FX . If (X,Θ
(0)

) is

the structure with the maximum fitness in P (0), let BestNetwork = (X,Θ
(0)

) and BestFit =

f(X,Θ
(0)

).
4: for k = 1, . . . , J do

5: Let P (k) = {}.
6: if pe > 0 then

7: Put a total of ne chromosomes from P (k−1) with the first ne highest fitness values into
P (k), where ne = ⌊pe ∗ s⌋. Let C(k−1) be the set of the remaining chromosomes in P (k−1).

8: else

9: C(k−1) = P (k−1).
10: end if

11: Form a mating pool M (k−1) from C(k−1) using a tournament scheme.
12: Apply cross-over on the chromosomes in M (k−1) with probability pc. Update M (k−1).
13: Apply mutation on the chromosomes in M (k−1) with probability pm. Update M (k−1).
14: Include the chromosomes of M (k−1) into P (k).
15: if (X,Θ

(k)
) is the structure with the maximum fitness in P (k) and BestFit< f(X,Θ

(k)
) then

16: BestNetwork = (X,Θ
(k)

).

17: BestFit = f(X,Θ
(k)

).
18: end if

19: end for

20: Return BestNetwork and BestFit.

with the IFGSs, respectively, define the signaling pathway structure, then the chromosome

is recognized by the symbol 435. Each structure in FX can be encoded as a chromosome in

a similar way.

Mating Pool From a given population P (k), which is a set of signaling pathway structures,

we generate a mating pool M (k) using a tournament scheme. To do this, we randomly select

two chromosomes and put the chromosome with a better fitness value into the pool. If the

size of the population is s, we repeat the tournament s times.

Cross-over In cross-over, we select a pair of parent chromosomes from the mating pool and

exchange a pre-specified number of IFs between them. A given proportion of the chromo-

somes in M (k) go through cross-over.

Mutation In mutation, we take each chromosome from M (k) and randomly permute the
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Figure 6.7: Convergence of GSGA to the global solution using the IFGS compendium derived
from the E. coli network considered in Section 5.6.1.

ordering of each of the m IFs with a very small probability.

Elitism The mating pool M (k) obtained after applying cross-over and mutation represents

the new population or generation P (k+1). However, we can further restrict a pre-specified

proportion of the chromosomes, say a total of ne in number, with the first ne highest fitness

values in the current population to transfer to the next population, without going through

cross-over or mutation. This scheme is referred to as elitism.

GSGA iteratively repeats the above process starting from P (k+1), until a specified

number of generation is reached. GSGA has been presented in Algorithm 6.2.

In Fig. 6.7, we show the convergence of Algorithm 6.2 to the global solution, where

we used the IFGS compendium derived from the E. coli network considered in Section 5.6.1.

We set s = 50, pe = 0.25, pm = 0.01, pc = 0.25 and J = 1000.
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6.11 Discussion

In this chapter, we presented a simulated annealing algorithm to infer the optimal signaling

pathway structures from gene sets related to the pathways. By hypothesizing the underlying

signaling pathway structure as an ensemble of overlapping signaling cascades, we formulated

its reconstruction from gene sets corresponding to signaling cascades as a discrete optimiza-

tion problem. Throughout we treated gene sets as random samples from a first order Markov

chain model and their orders as random. We also presented a new energy function to measure

the optimality of a signaling pathway structure.

In Case Study I, performance evaluation using 83 gene set compendiums derived

from KEGG pathways demonstrated that GSSA could recover the underlying structures

more efficiently than other contemporary approaches. In Case Study II, reconstruction of

benchmark E. coli networks and in Case Study III, breast cancer specific reconstruction of

two signaling pathway structures from the KEGG database further proved the advantages

of using GSSA in real-world scenarios.

The worst-case running time of GSSA is O(JmL), where J is the number of jumps, m

is the number of IFGSs and L is the maximum length of an IFGS in the given compendium.

We refer to Appendix A.11 for a detailed discussion on the computational complexity of

GSSA. Overall, GSSA benefits from a manageable computational load compared with search

heuristics such as sampling based Meteropolis-Hastings algorithm used in the inference of

Bayesian networks. MI based algorithms are computationally more efficient that GSSA

and Bayesian network methods, however, they are suitable for inferring undirected pairwise

dependencies.

Gene set based reconstruction of signaling pathway structures offers a simple and

flexible approach with numerous possibilities of extension. For instance, we showed that the

problem discussed in this chapter can also be addressed by utilizing the framework of genetic

algorithm.
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Chapter 7

Conclusion and Future Works

In this dissertation, we presented a series of multivariate approaches for inferring gene inter-

action and regulation patterns from molecular profiling data. The overall work was composed

of two parts. In the first part, we presented models and algorithms leading to a reliable dis-

covery of gene clusters or pathway components. Our approach was to learn an optimal

correlation structure from replicated complete and incomplete molecular profiling data. In

the second part, we considered the problem of inferring signal transduction mechanisms in

a given pathway component. We addressed the problem by treating gene sets correspond-

ing to signal transduction activities as the basic building blocks of the underlying signaling

pathway structure. We comprehensively examined the performance of our approaches using

simulated and real-world data sets.

In particular, the presented research makes original contributions by addressing the

following challenges in systems biology:

Correlation-based pattern discovery from replicated molecular profiling data: Outcome of any

bioinformatics analysis is directly influenced by the quality of experimental data. It is well-

known that molecular profiling measurements produced by high throughput data acquisition

platforms are often contaminated with excessive noise. Replication is frequently used in such

cases to account for the noise and to achieve a reliable discovery of the underlying biomolec-

ular activities. However, the analysis of replicated molecular profiling measurements is chal-

lenging for the following reasons: (1) there often exists a large variation in the magnitudes

of replicated measurements (2) the replication mechanism used in underlying experimental

design may be known a priori, however, a data analysis method may fail to accommodate
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this information (3) in several cases, replicated measurements contain a small to large per-

centage of missing values. Therefore, it is necessary to develop effective methodologies for

gaining insights from both replicated complete and replicated incomplete molecular profiling

data.

The existing approaches to correlation estimation do not automatically accommodate

replicated measurements. Often, an ad hoc step of data preprocessing by averaging (either

weighted, unweighted or something in between) is used to reduce the multivariate structure

of replicated data into a bivariate one [59,151,152]. Averaging may create a strong bias while

reducing the variance among replicates of a gene. Averaging may also wipe out important

patterns of small magnitudes or cancel out opposite patterns of similar magnitudes, resulting

in a significant amount of information loss. Multivariate approaches must be designed to

sufficiently exploit each replicated measurement individually. This is the main motivation

behind Chapters 2-4 presented in this dissertation. Throughout these chapters, we treated

each replicate as a variable by assuming that data were independently and identically dis-

tributed samples from multivariate normal distribution(s). Specifically,

• In Chapter 2, we introduced an informed-case model [4, 161] for estimating the corre-

lation structure of a gene set with replicated and complete molecular profiling data.

Informed-case model generalizes previously known blind-case or parsimonious model

[1, 4, 158] by accommodating prior knowledge of replication mechanisms. Indeed, the

number of biological and technical replicates used in underlying experimental design

are known in many cases. While the blind-case model imposes the same correlation

parameter for different biological replicates of a gene, informed-case model allows them

to be different.

• In Chapter 3, we further generalized informed-case model by designing a two-component

mixture model [1, 4]. The underlying idea was to shrink the correlation structure of a

gene set with replicated and complete measurements between a constrained correlation

structure and an unconstrained one. The constrained correlation structure was the one
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given by blind-case model, whereas the unconstrained correlation structure was free

from any parameter constraints.

• For the estimation of correlation structure from replicated and incomplete molecular

profiling data, we developed an Expectation-Maximization (EM) algorithm in Chap-

ter 4 [161]. EM algorithm iterates between the E step and the M step until convergence.

The E step computes the expected values of the sufficient statistics for underlying multi-

variate normal distribution given by either blind-case or informed-case model, whereas

the M step updates the current estimates of the model parameters.

By utilizing correlation distance as metric, we used the above multivariate models and al-

gorithms for clustering real-world replicated data sets with both complete and incomplete

measurements. Gene clusters are often interpreted as pathway components, which comprise

of a group of molecules (usually proteins) upstream of transcription factors. Activation of a

pathway initiates sequences of signal transduction which affect gene expressions via down-

stream transcription factors. Inference of directed network topology representing signal

transduction activities in a pathway is a major challenge in systems biology. We developed

two novel algorithms to address this challenge.

Reconstruction of signaling pathway structures: We dealt with the problem of reconstructing

signaling pathway structures by utilizing a compendium of gene sets related to the pathway.

Indeed, the advent of systems biology has been accompanied by the blooming of network

reconstruction algorithms, many of which treat gene pairs as the basic building block of the

signaling pathways and reconstruct the underlying structure by simultaneously detecting

co-expressed gene pairs using molecular profiling data [19, 35, 88]. This type of approaches

enjoy simplicity and a much alleviated computational load but gene pairs do not represent

the entire signal transduction events. Other approaches heuristically search for the higher

scored network structure(s), such as bayesian networks [26, 37, 130]. Many network struc-

tures may be found to be statistically plausible, but similar to the gene pairs they do not

necessarily represent the real signal transduction mechanisms. Moreover, the computational
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load of searching for a higher scored network is prohibitively high [24,122] and a number of

assumptions on the network structures have to be made.

We hypothesized a signaling pathway structure as an ensemble of several overlapping

signal transduction events with a linear arrangement of genes in each event. Gene sets, in

our context, referred to sets of genes participating in directed chains of signal transduction.

We proposed to infer the true signaling pathway structure by inferring the order of genes

in each gene set and combining the inferred chains of signal transduction into a single unit.

Throughout, we treated unordered gene sets as random samples from a first order Markov

chain model and their orders as random. Our motivation of considering a gene set based

approach for the structural inference of signaling pathways falls into many categories. For

instance, a gene set based approach can more naturally incorporate higher order signaling

mechanisms as opposed to pairwise interactions. In comparison to continuous molecular

profiling data, gene sets are more robust to noise and facilitate data integration from multiple

data acquisition platforms. We proposed two novel gene set based algorithms to achieve our

goal. Particularly,

• In Chapter 5, we translated our goal of signaling pathway structure inference into

drawing samples of signaling pathway structures sequentially from the joint distribu-

tion of gene sets followed by summarizing the most likely structure from the sampled

structures. We developed a stochastic algorithm, Gene Set Gibbs Sampler (GSGS) [2],

under the Gibbs sampling framework [40,41] to achieve our goal. In the GSGS frame-

work, we sample a signaling pathway structure by sampling an order for each gene set

from a conditional distribution defined by the remaining gene sets in the compendium.

• In Chapter 6, we provided a search strategy, as opposed to sampling strategy used in

GSGS, for learning the optimal signaling pathway structure from gene sets [3]. We first

formulated the structural inference of signaling pathways from gene sets into a discrete

optimization problem and then presented a simulated annealing algorithm [74], GSSA,

to infer the ordering of genes in the gene sets. GSSA mimics the physical process
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of heating and then cooling down a substance slowly to obtain a strong crystalline

structure, by annealing gene sets to infer signaling cascades characterizing the optimal

signaling pathway structure.

The past decade has witnessed a significant progress in the computational inference

of biological networks. A variety of approaches in the form of network models and algorithms

have been proposed to understand the structure of biological networks at both global and lo-

cal levels. While the grand challenge in a global approach is to provide an integrated view of

the underlying biomolecular interaction and regulation mechanisms, a local approach focuses

on the study of fundamental domains representing functional units or biological pathways.

However, the existing computational approaches often rely on unrealistic biological assump-

tions and do not sufficiently exploit the potential of molecular profiling data available in

diverse forms. Gene set based approaches discussed in this dissertation offer a fresh perspec-

tive to explore the structural organization of biological networks with several possibilities

of extensions. In particular, our current study can be further extended in the following

directions:

Discovery of pathway components: A reliable discovery of pathway components is the first

major step towards understanding signal transduction mechanisms. This step relies on the

strength of a computational approach to fully exploit the complex dependency structure

underlying molecular profiling data. In this dissertation, we followed the path of correlation-

based patten discovery, which serves as a bridge between replicated complete and incomplete

molecular profiling measurements with diverse replication mechanisms and pathway identi-

fication from such measurements. The future advantages of our current study are at least

two fold. First, our study provides a strong motivation for exploiting replicated complete

and incomplete molecular profiling measurements with both blind and informed replica-

tion mechanisms in general bioinformatics frameworks. A key problem that may arise in

such cases is how to accommodate replicated measurements in different pattern analysis

approaches. Correlation-based patten discovery considered in this dissertation is one at-
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tempt in this direction. Second, the correlation estimators developed in this dissertation

may have a significant impact on the performance of other supervised and unsupervised

learning approaches for pathway identification, which rely on an accurate estimate of the

population correlation structure. In this dissertation, we focussed on correlation based gene

clustering, which is one of the possible ways to identify pathway components from large-scale

molecular profiling data. Depending on a problem scenario, other approaches, such as lin-

ear and quadratic discriminant analysis [49], co-expression networking [20, 155] and matrix

factorization [17,72], can be adapted to achieve this goal. In [154], for instance, the module

discovery problem has been addressed by combining the estimation of correlation structure

with matrix factorization. Our current study can be readily used in such frameworks to

further accommodate replicated complete and incomplete molecular profiling measurements

with diverse replication mechanisms.

Gene set based reconstruction of large co-expression networks: Co-expression networking is

frequently used in bioinformatics analyses for inferring functional associations among genes.

By considering correlation as the strength of gene-gene association, the correlation estimators

presented in this dissertation can be used for co-expression networking from replicated com-

plete and incomplete measurements with blind or informed replication mechanisms. How-

ever, another popular category of co-expression networks is represented by GGMs [125,126],

which utilize the inverse of an estimated correlation structure for inferring the strength of

direct associations, known as partial correlation, among genes. Since invertibility is an issue

in large p small N scenarios, shrinkage approaches [126] are typically employed for infer-

ring the gene associations. However, these approaches require an accurate estimation of the

shrinkage intensity from data, which may be problematic in the case of small sample size.

Our future studies will focus on developing dimension reduction methodologies for inferring

gene association networks from smaller GGMs corresponding to pathway components. In

the inference of smaller networks (partial correlation matrices), a related application of our

work could be to utilize the correlation estimators developed in Chapters 2-4, which can
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accommodate replicated complete and incomplete measurements corresponding to a gene

set with diverse replication mechanisms.

Establishing gene set based frameworks for the Bayesian network methods: Bayesian network

methods are widely used in the inference of directed networks. However, they suffer from

several issues including high computational cost, restriction of the acyclic nature of under-

lying network and the inference of statistical causal interactions as opposed to higher order

interactions. Gene set based approaches discussed in Chapters 5-6 offer a new research di-

rection for the structural inference of directed network topologies. Due to their inherent

flexibility, our approaches can not only be extended to the frameworks used in the inference

of bayesian networks, they can be more advantageous in terms of computational load and

simpler methodologies in capturing higher order interaction mechanisms. We discuss some

of the points below.

A well-known limitation in using bayesian network methods is huge computational

load associated with the inference procedure. In many formulations, inferring a Bayesian

network is an NP-hard problem, regardless of data size [24]. For example, the number of

different structures for a Bayesian network with n nodes, is given by the recursive formula

s(n) =
n∑

i=1

(−1)i+1

(
n

i

)

2i(n−i)s(n− i) = n2O(n)

(7.1)

[26,122]. Since s(n) grows exponentially with n, learning the network structure by exhaus-

tively searching over the space of all possible structures is infeasible even when n is small.

Therefore, a tractable inference of Bayesian network relies on heuristic search algorithms

such as K2 [26], MCMC [100], simulated annealing [69] and others [43, 53]. Even in this

case, a number of assumptions about the number of parents for each node, a metric used to

score a structure and other parameters must be made in order to to alleviate the non-trivial

computational burdens associated with bayesian network inference.

The existing frameworks for learning statistical causal interactions using bayesian net-
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work methods can be translated in terms of gene set based learning of signal transduction

events. As mentioned above, gene set based approaches benefit from incorporating higher

order interaction mechanisms in a more natural way, allow more flexibility in accommodat-

ing prior knowledge and much reduced computational burdens in several cases. Apart from

the two approaches GSGS and GSSA discussed in this dissertation, we illustrated in Sec-

tion 6.10 that gene set based learning of signaling pathways could also be extended to the

framework of GA. We observed from the computational complexity analysis performed in

Chapter 6 that gene set based GSSA approach benefitted from a manageable computational

complexity and significantly better performance than traditional Bayesian network methods.

In particular, we observed a much reduced computational load, both in terms of time and

memory requirements, compared with sampling based MH algorithm (see Appendix A.11).

The complexity of MH is often unmanageable due a large number of neighboring structures

of a sampled network.

Another major limitation associated with the inference of bayesian networks is the

acyclic nature of underlying topology. This limitation prohibits the inclusion of feedback

effects in the network structure, which are a common biological feature. Gene set based

approaches do not put such restrictions on the network structure. Although an individual

gene set is viewed as a loop-free Markov chain in these approaches, the structure inferred

by combining overlapping Markov chains is capable of accommodating loops. Use of the

first order Markov chains in unrolling a complicated network structure into smaller building

blocks also leads to a simpler computational framework.

It is clear from the above discussion that (1) gene set based approaches are able to

capture the signal transduction mechanisms characterized by Markov chains in the unrolled

network and (2) they allow the inference of cycles present in the network. A more impor-

tant observation is that both (1) and (2), i.e. unrolling a network and inferring a network

with cycles, take place in a single time slice. Since bayesian networks do not incorporate

cyclic behavior in a network, they are unfolded in time for inferring cyclic mechanisms and
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are referred to as dynamic bayesian networks. Dynamic bayesian network models, although

useful, suffer from an inevitable increase in the model size, large computational time and

memory requirements. Due to the advantages mentioned in (1) and (2) together with re-

duced computational load, gene set based approaches may have a significant impact in the

discovery of more complex interactions from time series data. For example, our gene set

based methodologies could be extended to the setting of dynamic bayesian networks for cap-

turing the temporal associations among gene sets. This study may be useful in the discovery

of non-linear patterns within a network, such as the ones obtained by connecting a gene set

in a time slice to a number of parent gene sets in the previous slice.

Finally, in the inference of Bayesian networks, it is possible to learn a group of equiv-

alent network structures representing the same joint probability distribution with the same

conditional dependence and independence relations but which differ in the direction of some

edges. This clearly presents an obstacle in learning the true topology. In gene set approaches,

such a situation will occur when either some or all genes in an IFGS have no overlapping

with the remaining IFGSs in the compendium or genes in an IFGS overlap with some of the

IFGSs in the compendium, however, this overlapping is very poor. In such cases, different

gene orderings of an IFGS will be equally likely. However, the above situations are less likely

to hold good in real-world scenarios because (1) the number of genes in a signaling pathway

is often in few hundreds. For instance, the maximum number of genes in non-metabolic

signaling pathways in the KEGG database is below 400 and (2) due to increasing database

knowledge, it may not be difficult to obtain a few hundred samples related to well-known

diseases. (1) and (2) will together lead to the discovery of overlapping IFGSs.

It is clear from the above discussion that gene set based approaches hold strong

promises in the structural study of complex signal pathways. We believe that a transforma-

tion from the existing Bayesian network methods to gene set based frameworks is necessary

for broadening the scope from focusing only on pairwise interactions to the more general

signal cascading events.
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Seamless integration of pathway identification and structure inference: Identification of path-

way components and structural inference of a pathway component are problems of indepen-

dent interest in the field of computational systems biology. Therefore, it is necessary to

develop an automatic framework that integrates the two components in one place. For ex-

ample, the pathway components derived from molecular profiling data can be first utilized

to construct a large-scale network by inferring signaling pathway structures corresponding

to each component. The approaches GSGS, GSSA and GSGA discussed in this dissertation

can be used to infer individual signaling pathway structures. In the second step, network

modules can be identified by an application of community detection or network clustering

algorithms on the network constructed in the previous step. The set of modules found in the

second step can be used to iteratively update the set of pathway components in the previous

step and vice versa. We aim to sufficiently exploit molecular profiling data available from

diverse sources as well as prior knowledge from existing pathway databases. Overall, our

focus will be to develop an easy-to-use computational and visualization tool for a seamless

integration of pathway identification and structural inference of pathway components using

large-scale molecular profiling data. It is the hope that multivariate models and algorithms

presented in this dissertation will open a new avenue for the novel discovery of signaling

pathways and their underlying mechanisms.
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Chapter A

Appendix

A.1 Derivation of the MLEs µ̂I and Σ̂I

The likelihood function of a (m1 +m2)-variate normal family is given as

L(µI ,ΣI) =
1

(2π)n(m1+m2)/2|ΣI |n/2 e
− 1

2

∑n
j=1(Zj−µI)TΣI−1

(Zj−µI ). (A.1)

The log-likelihood function is therefore

L(µI ,ΣI) = nlog|ΣI |+
n∑

j=1

(Zj − µI)TΣI−1
(Zj − µI). (A.2)

The equation

∂L(µI ,ΣI)

∂µ
jm1
g1

= 0, 1 ≤ jm1 ≤ Jm1 (A.3)

leads to

ΣI−1
n∑

j=1

(Zj − µI)V = 0. (A.4)

where V is a 1× (m1 +m2) vector with Vt = 1, for
∑j−1

l=1 I
l
m1

< t ≤ ∑j
l=1 I

l
m1

, and 0

otherwise. Since
n∑

j=1

tr((Zj − µI)V ) =

n∑

j=1

V (Zj − µI) = 0

we have

µ̂
jm1
g1 =

1

Ijm1n

n∑

k=1

∑j
l=1 I

l
m1∑

i=
∑j

l=1 I
l−1
m1

+1

g1ik, 1 ≤ jm1 ≤ Jm1 . (A.5)
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Similarly,

µ̂
jm2
g2 =

1

Ijm2n

n∑

k=1

∑j
l=1 I

l
m2∑

i=
∑j

l=1 I
l−1
m2

+1

g2ik, 1 ≤ jm2 ≤ Jm2 (A.6)

Thus µI is estimated as

µ̂I =
(

µ̂1
g1, . . . , µ̂

1
g1, . . . , µ̂

Jm1
g1 , . . . , µ̂

Jm1
g1 , µ̂1

g2, . . . , µ̂
1
g2, . . . , µ̂

Jm2
g2 , . . . , µ̂

Jm2
g2

)T

(A.7)

To find Σ̂I , let us consider:

l(µI ,ΣI) =
n(m1 +m2)

2
ln2π − n

2
ln|ΣI | − 1

2

n∑

j=1

(Zj − µI)TΣ−1(Zj − µI)

=
n(m1 +m2)

2
ln2π − n

2
ln|ΣI | − 1

2

n∑

j=1

tr(Zj − µI)TΣ−1(Zj − µI)

=
n(m1 +m2)

2
ln2π − n

2
ln|ΣI | − 1

2

n∑

j=1

trΣ−1(Zj − µI)(Zj − µI)T

Thus,

∂l(µI ,ΣI)

∂ΣI
= −n

2

∂ln|ΣI |
∂ΣI

− 1

2

∂

∂ΣI

n∑

j=1

trΣI−1
(Zj − µI)(Zj − µI)T

= −n

2
ΣI−1

+
1

2
ΣI−1

n∑

j=1

(Zj − µI)(Zj − µI)TΣI−1
.

Now,

∂l(µI ,ΣI)

∂ΣI
= 0

leads to

Σ̂I =
1

n

n∑

j=1






(Z
[1]
j − µ̂[1])(Z

[1]
j − µ̂[1])T (Z

[1]
j − µ̂[1])(Z

[2]
j − µ̂[2])T

(Z
[2]
j − µ̂[2])(Z

[1]
j − µ̂[1])T (Z

[2]
j − µ̂[2])(Z

[2]
j − µ̂[2])T




 (A.8)

Equation A.7 and Equation A.8 give the closed form formulae for the MLE of µI and ΣI .
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A.2 Summarization of Correlation

We are interested in the sum
∑n

j=1(Z
[1]
j − µI [1])(Z

[2]
j − µI [2])T . It is easy to see that the sum

of elements in (Z
[1]
j − µI [1])(Z

[2]
j − µI [2])T is given by

(

m1∑

i=1

g1ij −
m1∑

i=1

µI [1]

i )(

m2∑

i=1

g2ij −
m2∑

i=1

µI [2]

i )T ,

which is equal to

(

m1∑

i=1

g1ij −m1µ
B
g1)(

m2∑

i=1

g2ij −m2µ
B
g2)

for the parameters µB
g1
and µB

g2
of the blind case estimator. The latter expression corresponds

to the sum of elements in (Z
[1]
j − µB[1]

)(Z
[2]
j − µB[2]

)T . This is true for each j = 1, . . . , n.

Thus, we get the same estimate of between-molecular correlation from two models, by the

method of averaging the cross-diagonal blocks in the estimated correlation matrix.

A.3 Missing Values Imputation Using K-Nearest Neighbors

The k-nearest neighbor algorithm used for missing data imputation is based on selecting

neighboring genes with similar expression profiles as the gene with missing measurements.

The information missing in a gene is gained from the neighboring genes where this informa-

tion is present. For instance, if the expression level of a gene is missing in an experiment,

the method seeks for k other genes, for which the expression levels in that experiment are

known. The nearness of genes is computed by using Euclidean distance as metric. The

missing value is then imputed by averaging the expression levels from k nearest neighbors.

The algorithm has been implemented in an R package impute which can be installed from

CRAN http://cran.r-project.org.
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A.4 SD-Weighted Correlation

Suppose we have n samples consisting of m1 replicated measurements corresponding to gene

X and m2 replicated measurements for gene Y . The mean and variance of gene X and Y in

the jth sample is defined as follows

Mean:

MG1(j) =

m1∑

i=1

g1ij/m1

MG2(j) =

m2∑

i=1

g2ij/m2

Variance:

S2
G1
(j) =

1

m1 − 1

m1∑

i=1

(g1ij −MG1(j))
2

S2
G2
(j) =

1

m2 − 1

m2∑

i=1

(g2ij −MG2(j))
2

for j = 1, . . . , n. Using standard deviation(SD) as a criterion to measure error, the SD-

weighted average expressions of genes G1 and G2 across all the samples are given by

MG1 =
n∑

j=1

MG1(j)

S2
G1
(j)

/
n∑

j=1

1

S2
G1
(j)

and

MG2 =
n∑

j=1

MG2(j)

S2
G2
(j)

/
n∑

j=1

1

S2
G2
(j)

.

The SD-weighted correlation coefficient [151] is defined as

ρG1G2 =

∑n
j=1

(
MG1

(j)−MG1

SG1
(j)

)(
MG2

(j)−MG2

SG2
(j)

)

√
∑n

j=1

(
MG1

(j)−MG1

SG1
(j)

)2 (∑n
j=1

MG2
(j)−MG2

SG2
(j)

)2
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A.5 Description of the Bayesian Network Methods

In principle, the K2 approach [26] begins by specifying an ordering of nodes involved in the

underlying network. Thus, initially each node has no parent. The algorithm incrementally

assigns a parent to a node whose addition increases the score of the resulting structure the

most. For the ith node, parents are chosen from the set of nodes with index 1, . . . , i−1. On the

other hand, the MH algorithm [100] starts with an initial directed acyclic graph (DAG) Gr0

and selects a network Gr1 uniformly from the neighborhood of Gr0. The neighborhood of a

network Gr is the collection of all DAGs which differ fromGr by addition, deletion or reversal

of a single edge. The algorithm accepts or rejects the move from Gr0 to Gr1 by computing an

acceptance ratio defined in terms of marginal likelihood ratio P (D|Gr1)/P (D|Gr0), where D

represents the given data. This procedure is iterated starting from the most recent network.

A specified number of networks are collected after burn-in state. For scoring a structure,

BNT provides Bayesian Information Criterion [127] and Bayesian score function [26], where

Bayesian score function is defined for discrete measurements. Both K2 and MH have been

implemented in the Bayes Net Tool Box (BNT) [101].

Here we define two Bayesian score functions Bayesian Dirichlet (BD) score from [51]

and K2 score presented in [26], and Bayesian Information Criterion (BIC score) [127].

BD score is defined as [51]

P (Gr,D) = P (Gr)
n∏

i=1

qi∏

j=1

Γ(N ′
ij)

Γ(Nij +N ′
ij)

ri∏

k=1

Γ(Nijk +N ′
ijk)

Γ(N ′
ijk)

, (A.9)

where n is the number of genes, ri represents the number of states of xi, qi =
∏

xj∈Pa(xi)
rj ,

Nijk is the number of times xi is in kth state and members in Pa(xi) are in jth state,

Nij =
∑ri

k=1Nijk, Nik =
∑qi

j=1Nijk, N
′
ijk are the parameters of Dirichlet prior distribution,

P (Gr) stands for the prior probability of the structure Gr and Γ() represents the Gamma

function.
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The K2 score is given by [26]

P (Gr,D) = P (Gr)

n∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk! (A.10)

We refer to [26, 51] for further readings on Bayesian score functions.

BIC score is defined as

Pr(Gr,D) = logP (D|Gr, θML)− 1

2
(

n∑

i=1

(ri − 1)qi) logN, (A.11)

where N is sample size and θML are parameter values obtained by likelihood maximization.

A.6 Description of the Mutual Information Methods

Description of various mutual information network inference methods used in this disser-

tation, available from the R packages MINET [97] and C3NET [8] is as follows. RN is

based on assigning to each pair of nodes a weight equal to their mutual information. This

is followed by eliminating non-significant mutual information values. Significant weights

are considered as true edges. ARACNE also first estimates mutual information between

each pair of nodes. It then eliminates the weakest edge among each triplet, if the differ-

ence between the two lowest weights is above a specified threshold eps. The CLR algo-

rithm is an extension of relevance network. Instead of considering the mutual information

I(Xi, Xj) between features Xi and Xj, it takes into account the score
√

(z2i + z2j ), where

zi = max(0, (I(Xi, Xj)−mean(Xi))/sd(Xi)) and mean(Xi) and sd(Xi) are, respectively, the

mean and the standard deviation of the empirical distribution of the mutual information

values I(Xi, Xk), k = 1, ..., n. The MRNET approach uses a MRMR (Maximum Relevance

Minimum Redundancy) feature selection procedure for each variable of the dataset. The

MRMR method starts by selecting the variable Xi having the highest mutual information

with the target Y . In the following steps, given a set S of selected variables, the criterion
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updates S by choosing the variable Xk that maximizes I(Xk, Y )−mean(I(Xk, Xi)), Xi ∈ S.

The weight of each pair (Xi, Xj) will be the maximum score between the one computed when

Xi is the target and the one computed when Xj is the target. The C3NET algorithm first

infers a RN. It keeps all maximum valued mutual information values for each row in the

matrix and sets the rest of the elements in the matrix zero.

A.7 Generation of All Linear Paths from a Network

Algorithm A.1 Network2GeneSets

1: Input: A directed acyclic graph with n nodes
2: Output: All IFGSs
3: for i = 1, . . . , n do

4: if node i has no children then

5: continue
6: else

7: add to Queue Q and the Linked List L all the directed pairs consisting of i and a child of
i

8: while Q is not empty do

9: Pop an information flow P from Q
10: if the last node in P , say k, has no children then

11: continue
12: end if

13: add to Q and L, all information flows obtained by appending each child of k to P
14: end while

15: end if

16: end for

17: Prune information flows in L of length 2 (prior knowledge)
18: Randomly permute orders of information flows in L and order of genes in each information flow
19: Return all IFGSs of length ≥ 3.

A.8 Generation of BFS Paths from a Network

After extracting networks from the KEGG database, IFs and IFGSs are sampled from

these networks. We describe the steps in Algorithms A.2 and A.3. The two algorithms are

for each network. This procedure has been modified from the vanilla Depth First Search

Algorithm. To sample IFs and IFGSs, Network2GeneSets (Algorithm A.1) is run on the

BFS-Forest F.
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Algorithm A.2 BFS-Forest

1: Input: A d× d adjacency matrix A.
2: Output: A d× d BFS-Forest adjacency matrix F .
3: Remove all self-transitions in A.
4: Find all of the roots of A and store them in a vector R.
5: if no roots then
6: Sort all vertices in descending order based on their out degree and store them in R.
7: end if
8: Initialize a d× d Boolean adjacency matrix F with all entries set to false.
9: Initialize a 1× d vector nV to keep track of the not visited vertices with all elements set

to true.
10: for each vertex r ∈ R do
11: if nV (r) is true then
12: set nV (r) to false.
13: BFS-Visit(r).
14: end if
15: end for
16: Return F .

Algorithm A.3 BFS-Visit

1: Input: A vertex r.
2: Output: The updated matrix F .
3: Initialize a queue Q with the vertex r at its head.
4: while Q is not empty do
5: Pop a vertex v from Q.
6: Find all of the neighbors N of v.
7: if N is empty then
8: continue
9: end if
10: for each neighbor n ∈ N do
11: if nV (n) is true then
12: set nV (n) to false.
13: Add n to Q.
14: set F (v, n) to true.
15: end if
16: end for
17: end while
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A.9 Accommodation of Discrete Inputs by GSGS and GSSA

Let us assume that there are m gene sets and n distinct genes in a given IFGS compendium.

Then, the input for GSGS and GSSA can be represented as an m× n matrix. If there are k

genes in the ith gene set, then the corresponding k locations in the ith row contain non-zero

indices representing these genes, and the remaining n − k locations are set to zero. Since

GSGS and GSSA only considers non-zero indices in a row (or genes present in a gene set),

for simplicity we use the first k locations in the ith row to place the non-zero indices and the

remaining n − k locations are set to 0. A matrix of this form can be be given as input to

GSGS and GSSA.

For Bayesian network and mutual information methods, we construct an m×n binary

data matrix corresponding to the given IFGS compendium. If there are k genes in the ith

gene set, then the corresponding k locations in the ith row of data are set to 1 and the

remaining n − k locations are set to 0. Depending on the platform, one may have to use

{1, 2} instead of {0, 1} as labels in the binary data matrix. Binary data matrix can be

accommodated by the Bayesian network methods K2 and MCMC implemented in the Bayes

Net Tool Box (BNT) [101].

Binary data can also be used to infer MI networks. For this, we use the functionalities

available in the packages C3NET [8] and MINET [97] available from CRAN/ Bioconductor.

For example, the MINET package provides functionalities to estimate mutual information

between discrete random variables. The MI estimators for discrete random variables imple-

mented in the package are: Empirical estimator, Miller-Madow corrected estimator, Shrink

entropy estimator and the Schurmann-Grassberger estimator. As described in [97], the fol-

lowing steps are involved in the inference of MI network from discrete data:

1. Estimation of mutual information matrix (MIM). Usage: mutinformation(dataset,

estimator), where dataset is discrete data set and estimator is the mutual infor-

mation estimator.
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2. Network inference using ARACNE/C3NET/CLR/MRNET/RN. Usage: aracne(mim,

eps), c3(mim), clr(mim), or mrnet(mim). Here eps is the threshold used when re-

moving an edge by ARACNE. MIM represents RN.

3. Normalization of the network (optional). Usage: net/max(net).

A.10 Burn-In State Analysis for GSGS

A burn-in state in Algorithm 5.1 refers to a stage after which we start collecting signaling

pathway samples. Samples collected after burn-in state are assumed to be drawn from the

joint distribution of IFGSs. To determine an appropriate burn-in state, we translated the

approach presented in [40, 41] in our framework to compute the ratio

R =
N−1
N

Wv +
1
N
Bv

Wv

(A.12)

for each of the three quantities Sensitivity, Specificity and PPV. Here, N is the total number

of pathways sampled after burn-in state, Wv is the averaged within-chain variance (within a

single run of GSGS) and Bv is between-chain variance (between multiple runs of GSGS).

Let us fix the burn-in state as B in a total of J(≥ 2) independent runs of GSGS. For

a parameter of interest X , Wv and Bv are defined as

Wv =
1

J

J∑

j=1

s2j and Bv =
N

J − 1

J∑

j=1

(xj − x)2,

where xj =
1

N

B+N∑

t=B+1

x
(t)
j , s2j =

1

N − 1

B+N∑

t=B+1

(x
(t)
j − xj)

2, j = 1, . . . , J, and x =
1

J

J∑

j=1

xj

If all the chains are stationary then the numerator and denominator in Eq. A.12 estimate

the variance of X . It is clear that
√
R → 1 as N → ∞. In practice, the choice of B and N is

acceptable if
√
R < 1.2. Otherwise, either B or N or both should be increased (see [40, 41]

for more details).
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In our simulation study, we treat Sensitivity, Specificity and PPV as three parameters

and compute R in each case. In Case Study I presented in Chapter 5, we considered every

kth network among 500 networks sampled after burn-in, for k = 2, . . . , 10. The computations

were based on 20 independent runs of GSGS. Under this setting,
√
R was found approxi-

mately equal to one, for each of the three quantities of interest. However, we did not observe

a significant change by summarizing sensitivity, specificity and PPV from all 500 networks.

It was also observed that there is no much variation in Wv calculated using the networks

sampled after burn-in state in different GSGS runs.

A.11 Computational Complexity Analysis of GSSA

In this section, we first derive the computational complexity of GSSA. We then present

numerical results comparing the performance of GSSA and Bayesian network methods in

terms of F-score and computational time. Let us write an IFGS compendium as an m × n

matrix, where m is the number of information flow gene sets (IFGSs) and n is the number

of distinct genes in the compendium. As described above, if there are k (k ≤ n) genes in the

ith gene set, then the first k locations in the ith row contain non-zero indices representing

these genes, and the remaining n − k locations are set to zero. The length of the ith IFGS

is the number of non-zero indices in the ith row. If L is the maximum length of IFGSs in

the compendium, then the computational complexity of GSSA in taking a total of J jumps

is O(JmL). We can derive the computational complexity of GSSA from Algorithm 6.1

presented in the main text.

We start with the computational complexity involved in calculating the energy of a signaling

pathway structure. It is the sum of:

1. The computational complexity of estimating the initial probability vector, which is

O(m). This is because we only need to count the frequency of genes appearing as the

first node among m Markov chains.
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2. The computational complexity of estimating the transition probability matrix, which

is O(mL + n) = O(mL). Indeed, we first compute the frequency counts of various

transitions among m Markov chains, followed by a normalization of each row in the

transition matrix. Moreover, n ≤ mL.

3. The computational complexity involved in computing the likelihood of a Markov chain,

which is O(L). For m chains, the complexity is O(mL).

Thus, the computational complexity of calculating the energy of a signaling pathway struc-

ture is O(mL). It can be observed from the pseudo-code in Algorithm 6.1 that the total

computational complexity of GSSA depends on the following computations:

Outside the loop (Before Step 4)

1. We need to calculate the lengths of IFGSs and the maximum of the lengths. As we only

consider non-zero indices in the given matrix, the worst case computational complexity

involved in these computations is O(mL+m) = O(mL).

2. At Step 3, we assign random gene orderings to each of the m gene sets and calculate

the energy of the resulting structure. The worst case complexity involved in each of

these computations is O(mL).

Thus, the total complexity before Step 4 is O(mL).

Inside the loop (Step 4 onwards)

To jump from jth to (j + 1)th network,

1. We need to consider the complexity involved in generating a network from the neigh-

borhood of jth network. Since this requires sampling an index i ∈ {1, . . . , m} and

permuting the order of genes in the ith IFGS, the worst case computational complexity

is O(L).
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2. We need to consider the complexity involved in calculating the energy of the neighbor-

ing network chosen for evaluation, which is O(mL).

Thus, the total computational complexity involved in (1) and (2) above is O(mL), and for

a total of J jumps it is O(JmL). As a result, the overall computational complexity outside

and inside the loop in Algorithm 1 is O(mL) +O(JmL) = O(JmL).

In Tables A.1-A.4, we present the computational time and performance of GSSA and

two Bayesian network methods K2 and MH using IFGS compendiums of different sizes. Un-

like MI based algorithms, both GSSA and Bayesian network methods use search strategies

for learning multivariate dependencies. Also, both GSSA and Bayesian network methods

infer directed network topologies. Therefore, it is relevant to compare GSSA and Bayesian

network methods in terms of performance and search time. MI based algorithms are com-

putationally more efficient than GSSA and Bayesian network methods. However, they are

suitable for inferring undirected pairwise dependencies among genes.

We use 4 IFGS compendiums among 83 compendiums used in Case Study I. For each

algorithm, we list the type of output, computational time and F-Score. As both GSSA and

MH depend on the number of jumps/samples specified by the user, we report the performance

of these approaches at iteration 103, 104, 105 and 2 × 105. We suffix the F-Score (F ) and

elapsed time (T ) accordingly. Since this is not applicable in the case of K2, we report the

final values of F (FF inal) and T (TF inal).

We observe from Tables A.1 - A.4 that GSSA benefits from manageable computa-

tional complexity and significantly better performance than Bayesian network methods. In

particular, GSSA has a much reduced computational load, both in terms of time and mem-

ory requirements, compared with sampling based MH algorithm. Note that both GSSA and

MH depend on the number of jumps/samples specified by the user. However, the complexity

of MH is often unmanageable due a large number of neighboring structures of a sampled

network. GSSA only needs to keep track of the best-so-far structure and can be run on a

standard desktop.
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Method Output Type F103 F104 F105 F2×105 or
FF inal

GSSA Directed 0.57 0.89 1 1
MH-BIC Directed 0.21 0.27 0.45 0.49

MH-BAYES Directed 0.11 0.16 0.17 0.21
K2-BIC Directed * * * 0.41

K2-BAYES Directed * * * 0.32

Method Output Type T103 T104 T105 T2×105 or
TF inal

GSSA Directed 0.02 0.18 1.9 3.7
MH-BIC Directed 0.52 5.1 51.22 103.68

MH-BAYES Directed 0.49 5.14 53.37 118.06
K2-BIC Directed * * * 0.07

K2-BAYES Directed * * * 0.10

Table A.1: Comparison of GSSA and the Bayesian network methods in terms of F-Score
(Upper Panel) and computational time (Lower Panel). We used IFGS compendium with 54
IFGSs. The lengths of IFGSs varied in the range 4− 8. Time is shown in minutes. Here ‘*’
means Not Applicable.

Method Output Type F103 F104 F105 F2×105 or
FF inal

GSSA Directed 0.69 0.91 1 1
MH-BIC Directed 0.09 0.22 0.30 0.34

MH-BAYES Directed 0.08 0.11 - -
K2-BIC Directed * * * 0.28

K2-BAYES Directed * * * 0.20

Method Output Type T103 T104 T105 T2×105 or
TF inal

GSSA Directed 0.03 0.32 3.2 6.5
MH-BIC Directed 2.6 25.15 244.15 499.59

MH-BAYES Directed 2.12 27.02 Out of
Memory

Out of
Memory

K2-BIC Directed * * * 0.22
K2-BAYES Directed * * * 0.27

Table A.2: Comparison of GSSA and the Bayesian network methods in terms of F-Score
(Upper Panel) and computational time (Lower Panel). We used IFGS compendium with
108 IFGSs. The lengths of IFGSs varied in the range 4 − 7. Time is shown in minutes.
Here ‘*’ means Not Applicable and ‘-’ indicates that F-Scores could not be observed due to
memory crash.
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Method Output Type F103 F104 F105 F2×105 or
FF inal

GSSA Directed 0.45 0.54 0.63 0.74
MH-BIC Directed 0.17 0.39 0.46 0.47

MH-BAYES Directed 0.09 0.14 - -
K2-BIC Directed * * * 0.51

K2-BAYES Directed * * * 0.61

Method Output Type T103 T104 T105 T2×105 or
TF inal

GSSA Directed 0.04 0.39 3.9 7.9
MH-BIC Directed 2.57 24.95 258.28 485.96

MH-BAYES Directed 2.22 21.11 Out of
Memory

Out of
Memory

K2-BIC Directed * * * 0.26
K2-BAYES Directed * * * 0.32

Table A.3: Comparison of GSSA and the Bayesian network methods in terms of F-Score
(Upper Panel) and computational time (Lower Panel). We used IFGS compendium with
195 IFGSs. The lengths of IFGSs varied in the range 4 − 10. Time is shown in minutes.
Here ‘*’ means Not Applicable and ‘-’ indicates that F-Scores could not be observed due to
memory crash.

Method Output Type F103 F104 F105 F2×105 or
FF inal

GSSA Directed 0.33 0.48 0.64 0.71
MH-BIC Directed 0.03 0.11 - -

MH-BAYES Directed 0.02 - - -
K2-BIC Directed * * * 0.30

K2-BAYES Directed * * * 0.24

Method Output Type T103 T104 T105 T2×105 or
TF inal

GSSA Directed 0.20 2.00 19.91 39.92
MH-BIC Directed 380.54 2472.71 Too long Too long

MH-BAYES Directed 367.52 Out of
Memory

Out of
Memory

Out of
Memory

K2-BIC Directed * * * 11.45
K2-BAYES Directed * * * 14.99

Table A.4: Comparison of GSSA and the Bayesian network methods in terms of F-Score
(Upper Panel) and computational time (Lower Panel). We used an IFGS compendium with
723 IFGSs. The lengths of IFGSs varied in the range 4 − 12. Time is shown in minutes.
Here ‘*’ means Not Applicable and ‘-’ indicates that F-Scores could not be observed due to
memory crash or large computational time.
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