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Abstract 

 

In recent years, transition metal oxides have drawn extensive attention because of their wide 

application in electronic, memory, battery, informatics, and optoelectronics devices. In this 

dissertation, we have studied two different types of oxide materials which are technologically 

important: LiMO2 (M = Co, Mn, Ni), has served as cathode materials in the rechargeable battery, 

and LiNbO3, has wide application in ferroelectric devices such as electronics, non-volatile 

memories, and thin film capacitors. LiMO2 was synthesized and characterized to understand the 

correlation between capacity fading and thermal stability relating to the microstructures. Our 

results showed that delithiated (charged) LiCoO2, forms a metastable LiCo2O4 spinel phase 

during the ageing process, and eventually decomposes to Co3O4 over time. These two phases 

were identified from their magnetic responses. Paramagnetic behavior is observed in the starting 

material without indication of any magnetic ordering prior to heat treatment. Heat treatment of 

delithiated materials progressively changes the magnetic nature of the compounds. After short 

term heat treatment of delithiated LiCoO2, spin-glass-like or geometrically frustrated behavior is 

observed that suggests the formation of metastable spinel phase LiCo2O4 in the lattice. After 

long-term annealing, pronounced strong antiferromagnetic (AFM) ordering is observed 

consistent with the formation of Co3O4.  The thermal stability of LiCoO2 was compared with 

LiMn1/3Ni1/3Co1/3O2.  The result showed that, unlike LiCoO2, LiMn1/3Ni1/3Co1/3O2 does not 

decompose.  However, selected area electron diffraction (SAED) and the bright field images 

from transmission electron microscopy studies revealed significant microstructure changes in the 

delithiated material and thermally aged products. In another system, Li[Ni1−xMnx]O2 (x = 0.3, 

0.5, 0.7), the cation ordering was successfully monitored to understand the Li/Ni disorder for 
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different compositions. This eventually determines the electrochemical capacity of these 

cathodes. The results on the starting materials revealed that the manganese-rich composition has 

more Li/Ni disorder compared to the other compositions. The Li/Ni disorder was detected by 

powder X-ray Diffraction, magnetic studies, as well as SAED studies. From the SAED studies, it 

was found that Li/Ni disorder creates  x  R30º type cation ordering in the transition metal 

layers. For delithiated materials this ordering was found to be suppressed indicating that the 

extraction of lithium occurs from the transition metal layer rather from the lithium layer. 

In another study, the ferroelectric properties of LiNbO3 nanoparticles were studied as a 

function of shape. By employing a solvothermal method, cube- and sphere-like ferroelectric 

LiNbO3 nanoparticles were prepared by decomposition of the single-source precursor, LiNb(O-

Et)6, in the absence of surfactants. X -ray diffraction showed that the LiNbO3 nanoparticles were 

rhombohedral (R3c) with a = 5.145(3) Å, c = 13.867(3) Å for nanocubes and a = 5.139(3) Å, c = 

13.855(3) Å
 
for nanospheres. Ferroelectric properties for these nanoparticles were also confirmed 

by piezoresponse force microscopy (PFM) and Raman spectroscopy. From PFM measurements, 

it was observed that both sets of particles exhibited polarization switching at room temperature 

with static d33 coefficient values of 17 pm/V for cube-like and 12 pm/V for spherical LN 

nanoparticles.  
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Chapter 1                                                                                  

Introduction and background 

1.1 Lithium ion rechargeable batteries  

Rechargeable lithium-ion batteries (LIBs) are essential power sources for consumer 

electronic devices such as cellular telephones, digital cameras, camcorders, and laptop computers 

[1]. Because of their high energy density, relative low weight, and high capacity, lithium 

batteries are also being used in energy storage devices for electric and hybrid electric vehicles 

(HEVs), electric vehicles (EVs), biomedicine, and space [1-3]. Mankind's total power 

consumption is currently 14 TW and is projected to roughly triple by 2050 [4, 5]. At present, oil 

represents 34% of the world's total primary energy source. It accounts for 40% of the total CO2 

emission and is a major cause of geopolitical instability. Since the majority of oil is used for 

automobile applications, a transition to an electrified road transportation system should be a 

prominent replacement [6].  The invention of hybrid Evs has been significant, and this will be 

accelerated as plug-in hybrid vehicles are converted to pure EVs [2.6]. A major technical hurdle 

for the complete electrification of road transportation is the insufficient storage capacity of 

current batteries, severely limiting the range of practical EVs. It has been found that, the EVs can 

reduce the daily consumption of gasoline by one fourth, which eventually will reduce the United 

State’s dependency on the foreign oil to a greater extent [6]. Due to the high storage capacity, 

LIBs are the perfect candidate to be used in HEVs and EVs.  Despite their success, lithium ion 

batteries are still under investigation with the aim to improve safety, increasing the energy 

density and life span while reducing costs [7]. Designing batteries with higher specific energy, 

higher capacity, and longer lifetime requires deeper understanding of the relationship between 

materials properties and performance in an electrochemical cell. The working principle of Li-ion 
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batteries involves Li ions extraction from and insertion into intercalation compounds at both 

electrodes [1, 2]. The layered LiMO2
 
(M = transition metal ions) is the current leading cathode 

material although there are other cathode materials being used for LIBs, such as LiFePO4 

(olivine structure) [8]. Additionally graphitic carbon, for an example, is the material of choice for 

the anode.  After a certain number of charge discharge cycles the layered structure of the cathode 

material is (LiMO2) compromised, which prevents the movement of Li ions [9]. In the charge-

discharge cycles, there is always a possibility of degradation of the cathode material in a variety 

of ways, such as fracture on the material surfaces, and significant microstructure changes.  These 

structural instabilities decrease the capacity of the electrode and thereby limit the lifetime of the 

battery. With respect to battery safety, chemical processes that produce heat or result in 

irreversible phase transformations are important and need to be well studied. These problems 

need to be completely resolved in order to have a high energy density, greater safety, and longer 

life span for LIBs application in HEVs and EVs. Therefore, a better understanding of structure-

property-relationships within cathode materials is critical to improve the properties of 

rechargeable batteries.  

 1.2 Working principle of LIBs 

LIBs are the electrochemical power sources that convert chemical energy into electrical 

energy. These are secondary cells or accumulators, which are rechargeable several times, unlike 

the single-use primary cells [1]. The characteristic feature of an electrochemical cell is its use for 

generating electric current. This current is the movement of electrons in the external circuit, 

which is generated by the electrochemical processes at the two different electrodes, cathodes and 

anodes. In addition to the electronic current, the charge is transported between the positive and 

negative electrode by ions. A schematic showing the working unit of LIBs is given in Figure 1.1. 
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Typically the smallest working unit in a battery is the electrochemical cell, consisting of a 

cathode and an anode separated by an electrolyte and a separator. The electrolyte conducts ions 

but is an insulator to electrons. The cathode is generally a metal oxide LiMO2 (where M = Co, 

Mn, Ni) and the anode is graphite. In the charged state, the anode contains a high concentration 

of intercalated lithium ions while the cathode is depleted of lithium. In an alternative way, when 

the LIB is charged by using an external current source, the lithium ions present in the LiMO2 

cathode move to the anode by diffusing thru the electrolyte. This makes the LiMO2 cathode 

lithium deficient and anode as lithium rich. This process is also called as delithiation [1, 2, 10] 

since lithium is extracted from the cathode. At cathode, the chemical reaction can be written as: 

LiMO2 → Li1-xMO2   + x Li
+
+ x e

- 
(x < 1) 

During the discharge, lithium ions leave the anode and migrate through the electrolyte to the 

LiMO2 cathode, while its associated electron is collected by the current collector to power an 

electric device. This process is called lithiation [1, 2, 10] since the cathode gains lithium ions. 

The chemical reaction at the anode during discharging can be written as: 

LiC6    → Li
+
 +e

-
 +C6 
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Figure 1.1 Schematic of a state-of-the art lithium ion battery (the separator, shown as a red line, 

separates metal oxide cathodes and graphite anode). 

1.3 Cathodes for LIBs  

Cathode materials for LIBs include lithium-metal oxides such as LiCoO2, LiMn2O4, and 

Li(NixMnyCoz)O2, vanadium oxides, olivines such as LiFePO4.  Layered oxides containing cobalt 

and nickel are the most studied materials for lithium-ion batteries. They show a high stability in 

the high-voltage range, but cobalt has limited availability in nature and is toxic, which is a 

tremendous drawback for mass manufacturing. Manganese offers a low-cost substitution with a 

high thermal threshold and excellent rate capabilities but limited cycling behavior because of the 

dissolution of manganese during charge discharge processes. Therefore, mixtures of cobalt, 

nickel, and manganese are often used to combine the best properties and minimize the 

drawbacks. Vanadium oxides have a large capacity and excellent kinetics, however, due to 

lithium insertion and extraction, the material tends to become amorphous, which limits the 
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cycling behavior. Olivines are nontoxic and have a moderate capacity with low fade due to 

cycling, but their conductivity is low.  

Since layered cathode materials (LiMO2) are the more promising cathode materials for 

LIBs, our research has focused on this particular type cathode material. Cathode materials are an 

important aspect of battery research, since 50% of the production cost for a lithium ion cell 

depends on the cathode material processing (see Figure 1.2) [6]. The cathode materials under 

investigation include LiCoO2, binary compounds in the system LiNiO2-LiMnO2 [LiNi1-xMnxO2 

(x= 0.3, 0.5, 0.7)] and ternary LiMn1/3Ni1/3Co1/3O2. In the following section we will describe the 

crystal structures of these three different types of cathode materials. 

 

 

Figure 1.2 Pie chart of the battery manufacture cost   
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1.3.1 LiCoO2 as a cathode material 

LiCoO2
 
is the most used active cathode material for commercial lithium ion batteries. It 

has been first suggested as intercalation compound for rechargeable Li-ion batteries by 

Mizushima et al. [11, 12]. Depending on synthesis temperature, two crystallographic forms of 

LiCoO2 are observed: at low temperatures around 350 °C a cubic spinel structure is formed that 

converts to a trigonal layered lattice around 750 °C (space group 166, m3R  also called 

hexagonal form). The layered lattice shows better electrochemical performance compared to the 

material with the cubic spinel lattice. The crystal structure of layered LiCoO2 is similar to the α-

NaFeO2 type structure which can be described by space group m3R  with lithium and cobalt ions 

in octahedral 3a and 3b sites respectively, separated by layers of cubic close packed oxygen ions 

[13]. The unit cell of the layered form consists of three slabs of edge sharing CoO6 octahedra 

separated by interstitial layers of Li (Figure 1.3). The unit cell of LiCoO2 is hexagonal and the 

phase is called the O3 phase. The O3 phase represents; the alkali metal ion which is Li resides in 

the octahedral interstitial sites and there is …ABC…ABC… stacking arrangement of the layers. 

This arrangement is shown in the Figure 1.4. 

 



7 

 

 

Figure 1.3 Crystal structure of LiCoO2 where lithium ions (indigo spheres) are present in 

between CoO6 octahedra. 
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 Figure 1.4 ABC arrangements in the LiCoO2 hexagonal unit cell. 

 

In the fully lithiated state LiCoO2 remains in layered structures with hexagonal unit cell. With 

removal of Li from the layered crystal lattice (during charging) nonstoichiometric Li1-xCoO2
 

compounds are formed that take on different crystallographic structures depending on Li-content.  

After 50% of lithium removed from the parent structure the structure changes from hexagonal to 

monoclinic [14]. This reduces the experimental electrochemical capacity (maximum achievable 

is 140 mAh/g) of LiCoO2 compared to the theoretical capacity (280 mAh/g).  Structural 

considerations limit the amount of Li removed from the hexagonal lattice to 0.5, which in turn 

limits the achievable capacity to 140 mA/g compared to the theoretical capacity of 270 mAh/g. 
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Despite this drawback, LiCoO2 has still been considered one of the most promising cathode 

materials for LIBs.  

1.3.2 LiCo0.33Mn0.33Ni0.33O2 as a cathode material 

Over the last few years the ternary transition metal oxide LiNi1/3Mn1/3Co1/3O2 has 

developed into a strong candidate for applications in high power rechargeable LIBs, due to its 

superior thermal stability and reversible capacity compared to its LiCoO2 counterpart [15, 16, 

17]. It has a high reversible capacity of 160 mAh/g in the cut-off voltage range of 2.5-4.4V and 

200 mAh/g in 2.8-4.6V which makes this material a very promising cathode for high power and 

high energy Li-ion batteries to be used in HEVs [18].  LiNi1/3Mn1/3Co1/3O2 is iso-structural to 

LiCoO2. It crystallizes in m3R space group with lithium ions in the 3a site and Co, Mn and Ni in 

the 3b sites. The unit cell is hexagonal with lithium ions present in between the octahedra of the 

transition metal ions (Figure 1.5). Since in LiNi1/3Mn1/3Co1/3O2 there are three transition metal 

ions in the transition metal layers in contrast to the single transition metal ion of LiCoO2, cation 

ordering among the transition metal ions can cause changes in the parent structure of 

LiNi1/3Mn1/3Co1/3O2 [19]. This ordering happens when there is an interchange between Li
+
 and 

Ni
+2

 in between their respective crystallographic sites. Since the radius of Li
+
 is very similar to 

that of Ni
+2

 there is always a chance of Li
+
/Ni

+2 
interchange [20]. This is also termed as Li/Ni 

disorder. This disorder always decreases electrochemical activity and opens up the possibility of 

different cation orderings.  This cation ordering can be visible as superstructures in X-ray 

diffraction and in selected area electron diffraction patterns. The crystal and the electronic 

structures of LiNi1/3Mn1/3Co1/3O2 have been investigated by theoretical and experimental 

methods in order to understand the formation of superstructures. One of the most well studied 

superstructures is  x  R30
o
 in plane ordering. Experimental evidence for in-plane ordering 
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has been observed by Yabuuchi et al, [18] who reported superlattice reflections in the pristine 

material corresponding to  x  R30
o
 in plane unit cell with a P3112 space group. This 

ordering can be seen when one cation is surrounded by two other cations in the transition metal 

layers. In this case the Co, Ni, Mn cations are a ahex distance from each other. This ordering 

decreases the electrochemical activity since the diffusion of Li ions occurs easily. 

 

 

Figure 1.5 Crystal structure of LiCo1/3Mn1/3Ni1/3O2 where lithium ions (green) are present in the 

layers of octahedra of transition metal ions (Co, Mn, Ni are randomly oriented)  

 

1.3.3 LiNi1-xMnxO2 as a cathode material 

Over the past few years layered lithium-insertion cathode materials have been 

investigated to find alternatives to LiCoO2 in order to compensate for its structural instability in 
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the extensively charged state (Li1-xCoO2; x ≥ 0.5) [ 21-23]. Layered LiNiO2, which is 

isostructural with LiCoO2, was investigated as possible replacement. Although LiNiO2 is cheaper 

than LiCoO2 and has high rechargeable capacity, it is difficult to reproduce LiNiO2 batches with 

the ideal m3R  layered structure. In this material the presence of Li ions in the TM layers lowers 

the electrochemical activity of the cathode material and its poor thermal stability in the charged 

state prohibits its practical use [24]. It has been seen that doping of manganese ions in the parent 

LiNiO2 structure dramatically increases the thermal stability of cathode material in the 

composition LiNi1-xMnxO2 (x = 0.5). The LiNi0.5Mn0.5O2 is a promising, inexpensive and 

nontoxic alternative to LiCoO2 and LiNiO2. This material forms a solid solution between LiNiO2 

and LiMnO2 to produce an ideal layered structure when the ratio between Ni and Mn is exactly 

1:1. The layered compound adopts the α-NaFeO2 structure with space group m3R . In this lattice 

where Li ions resides in the 3a position and transition metal ions present at 3b sites in a random 

order with cubic closed packed oxygen layers [25]. First principle calculations and X-ray 

absorption near-edge fine structure (XANES) results on LiNi0.5Mn0.5O2 shows that Ni ion is in 

+2 state, which is electrochemically active ion, and Mn ion remains +4 during the whole 

electrochemical reaction and this contributes to the stability of this compound [26]. However due 

to very similar ionic radius of Ni
+2

 and Li
+
 ions there is always possibility of interchanging of 

nickel and lithium ions between their crystallographic sites. The exchange of lithium ions with 

the transition metal ions in the trigonal lattice creates two distinct crystallographic α and β site, 

leading to the a √3ahex x √3ahex supercell [27, 28]. This introduces long range in-plane ordering 

among the transition metal ions in the transition metal layers. The evidence of this ordering was 

reported from electron diffraction analysis and can be categorized in two types. Those are in the 

hexagonal (√3ahex x √3ahex R30° type ordering) and monoclinic unit cell (C2/m ordering).  Long 
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range order within the TM layer can be observed when 2 or more species are present. In the case 

of Li2MnO3 (Li[Li1/3Mn2/3]O2), a honeycomb structure is formed that has been described in 

literature as C2/m. Here superlattice reflections divide the distance between fundamental 

reflections into three, corresponding to a threefold increase of the unit cell dimensions with 

respect to distances between oxygen atoms in the O3 structure. The large difference in atomic 

scattering factors between Li and Mn leads to strong superlattice reflections. Similarly 

superlattice reflections corresponding to a threefold increase of the in-plane unit cell can be 

observed when the three cation species are ordered in a regular arrangement within the transition 

metal layer as described by Ohzuku et al. [29] in a trigonal lattice (P3112). Here the small 

difference in atomic scattering factor should result in lower intensity of the observed superlattice 

reflections. In the case of LiNi0.5Mn0.5O2 the √3ahex x √3ahex R30
o 

in plane ordering results from 

Li/Ni exchange where the replacement of some Ni with Li in the TM layer introduces local 

variations of cations arrangement as described by Meng et al. [28]. The two crystal structures are 

often used to describe how the cation arrangements differ in the oxygen stacking. If the structure 

constitutes a trigonal lattice (P3112), there is abc.. abc… stacking and the superstructure can be 

termed as √3ahex x √3ahex R30
o
 ordering and if the structure constitutes a monoclinic lattice 

(C2/m), there is ab.. ab.. stacking present and the reflections can be identified by monoclinic 

reflections.  The difference between these two stacking sequences is shown in Figure 1.6.    
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Figure 1.6 Difference between the monoclinic reflections and the √3ahex x √3ahex R30
o
 ordering 

based on their stacking sequences. The triangle in (b) shows the three fold symmetry and the line 

in (c) shows the mirror plane symmetry.     

The first principle calculations [27], which show the phase diagram of LiCoO2-LiNiO2-

LiMnO2, indicate that the nickel rich phases in LiNi1-xMnxO2 are a solid solution of layered 

LiNiO2 and LiNi0.5Mn0.5Os whereas the manganese-rich phases may be considered as a solid 

solution of layered LiNi0.5Mn0.5O2 and rhombohedral LiMnO2. These systems have been studied 

in order to understand the structural changes in this composition range and to predict the 

ordering among the cations present in the TM layers. It has been reported that a change in the 

ratio between nickel and manganese ion changes the oxidation state of the nickel and manganese 

and that this plays an important role in cation ordering in the transition metal layers.  

(a) 

(b) 

(c) 



14 

 

1.4 Multiferroic materials.   

 The quest for fabricating various multifunctional devices still remains a challenging issue 

among the scientific community. These devices are particularly important in various electronics, 

memory devices, informatics, optoelectronics, etc. One group of important multifunctional 

materials is the multiferroics [30]. According to the original definition put forward by Schmid, 

multiferroics are materials that are simultaneously (ferro)magnetic and ferroelectric, and/or 

ferroelastic [31]. These materials attract attention not only because of the interesting fundamental 

physical phenomena in these but also their promise for applications in advanced practical 

multifunctional materials [32]. Ferromagnetic materials have been used for a long time for data 

storage and magnetic field sensors because of their spontaneous magnetization, on the other 

hand, ferroelectric materials have been used in computer random access memory, medical 

ultrasound machines, high quality infrared cameras, fire sensors, etc. because of their 

spontaneous electrical polarization, which can be switched by the application of electric field. In 

case of multiferroics, both of these properties can be experienced by a single material system due 

to the coupling between the spin (ferromagnetic) and the charge (ferroelectric) [33]. This 

connection between magnetism and electricity has a tremendous impact on the technology when 

the materials are in nanoscale. The most recent breakthrough is the invention of spintronics 

devices, where changes in conductivity can be experienced by the change in spin state of a 

material (discovery of giant magnetoresistance). In the case of multiferroics, the magnetic 

properties of a material can be tuned by the application of electric field or vice-versa [34]. This 

class of materials has many potential applications such as in multiple state memory elements, in 

which data is stored both in electric and magnetic polarizations. In the past several decades there 

have been extensive studies involving multiferroics that contain well-studied BaTiO3 as a 

ferroelectric material [35]. Besides BaTiO3 there are other ferroelectric materials under 
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investigation.  In this present research, we wish to investigate the ferroelectric properties of 

LiNbO3, a well-known ferroelectric material with a spontaneous polarization of 70 μC/cm
2
 

having high Curie temperature of 1483 K [36, 37]. LiNbO3, with its distorted perovskite 

structure, has been widely used in modulators, wave guides, high-density storage and second 

harmonic generators. Even though there are more reports investigating the physical properties of 

LiNbO3, not many reports can be found on the study of synthesis and ferroelectric properties of 

this material in the nanoscale.  

1.5 LiNbO3 as a ferroelectric material 

A ferroelectric is an insulating system with two or more discrete stable or metastable 

states of different nonzero electric polarization within zero applied electric field; this is referred 

to as “spontaneous” polarization. For a system to be considered ferroelectric, it must be possible 

to switch between these states with an applied electric field (E), which changes the relative 

energy of the states through the coupling of the field to the polarization (P). Another way to 

define a ferroelectric material is one that undergoes the high-temperature phase change from a 

dielectric to a ferroelectric. The defining property of ferroelectricity is the switching between 

different metastable states by the application and removal of an electric field [38]. The 

mechanism of switching is understood to take place on scales longer than a unit-cell, and 

generally to require the growth and shrinking of domains through the motion of domain walls. 

Ferroelectric materials have domains and show a hysteretic response of both polarization and 

electric displacement to an applied electric field. As a result, they can find applications in data 

storage. They can also find applications as capacitors because their concentration of electric flux 

density results in high dielectric permeabilities. Ferroelectric materials are also used in 

electromechanical transducers and actuators [38]. 
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  Early work on ferroelectric materials focused primarily on Rochelle salt, 

KNa(C4H4O6)·4H2O [39, 40]. Although studies of Rochelle salt were pivotal in establishing 

many of the basic properties of ferroelectric materials, the complex structure and large number of 

ions per unit cell made it difficult to elucidate a coherent theory of ferroelectricity from the 

results of experiments on this material. The most widely studied and widely used ferroelectrics 

today are perovskite-based oxides, ABO3. The cubic perovskite structure consists of a small 

cation, B, at the center of an octahedron of oxygen anions, with large cations, A, at the unit cell 

corners. Below the Curie temperature, there is a structural distortion to a lower-symmetry phase 

accompanied by the shift off-center of the small cation [33, 38]. The spontaneous polarization 

derives largely from the electric dipole moment created by this shift. The comparatively simple 

perovskite structure and the small number of atoms per unit cell have made detailed theoretical 

studies of perovskite ferroelectrics possible and resulted in a good understanding of the 

fundamentals of ferroelectricity. 

 Any lattice of oppositely signed point charges is inherently unstable. Ionic materials are 

stable because of short-range repulsions between adjacent electron clouds. The existence or 

absence of ferroelectricity is determined by a balance between these short-range repulsions, 

which favor the non-ferroelectric symmetric structure, and additional bonding considerations, 

which might stabilize the ferroelectric phase. Even in ferroelectric materials, the short-range 

repulsions dominate at high temperature, resulting in the symmetric, unpolarized state. As the 

temperature is decreased, the stabilizing forces associated with the polarization of the ions as 

they are displaced become stronger than the short-range repulsive ionic interactions, and the 

polarized state becomes stable, even in the absence of an applied field. 
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 LiNbO3 and related materials are ferroelectric oxides with a trigonal paraelectric 

structure. While this structure can, in principle, be obtained through a distortion of the cubic 

perovskite structure, the necessary distortion is quite large, so that these compounds do not revert 

to the cubic perovskite phase at high temperatures, and the cubic perovskite structure is not an 

appropriate high-symmetry reference structure. Thus, it is often not considered a perovskite, 

though it is crystallographically the same as R3c BiFeO3 differing only in the values of the 

structural parameters. As for the perovskites, the R3c structure is composed of oxygen octahedra 

containing the Nb atoms and surrounded by the Li atoms. However, relative to the perovskite 

structure, the oxygen octahedra have been rotated around [111], so that the Li atoms only have 6 

oxygen first neighbors, rather than twelve as in the cubic perovskite structure [41]. The low-

temperature R3c ferroelectric phase is obtained from the paraelectric R3c phase by displacements 

of the cations along the [111] direction, breaking the mirror-plane symmetry and resulting in a 

nonzero spontaneous polarization. For LiNbO3, the paraelectric–ferroelectric transition occurs at 

1483 K, with a spontaneous polarization of 71 μC/cm
2
 at room temperature [36, 37]. The crystal 

structure of LiNbO3 is shown in Figure 1.7 
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Figure 1.7 Crystal structure of LiNbO3 (a and b). In b the distorted NbO6 octahedra along [111] 

direction is shown which is the cause of generation of ferroelectricity in LiNbO3   

 

 

 

 

(a) 
(b) 



19 

 

1.6 Transmission electron microscopy 

In 1931, while conducting research for his masters at the Technical College of Berlin, 

Ernst Ruska and Max Knoll design the first Transmission Electron Microscope (TEM) [42]. The 

initial designs were able to magnify specimens up to seventeen times greater than that of a light 

microscope. One of the major historical limitations of TEM was that electrons were largely 

unable to pass through thick specimens; until the diamond knife and ultra-microtome were 

designed in 1951 it was largely impossible to utilize this instrument to full capacity.  While the 

theoretical upper limit of the transmission electron microscope is estimated to be as high as 

10,000 times that of a light microscope, limitations in the equipment used lowers the real limit. 

Combined with difficulty in preparing specimens, it is realistically only possible to resolve an 

object to about 0.025nm. A transmission electron microscope is similar in design to an ordinary 

light microscope with one key difference: instead of using light, it uses electrons. Using a 

cathode ray tube or filament (a source to generate highly excited electrons) in a vacuum, 

electrons are accelerated toward a given specimen by creating a potential difference. A series of 

magnets and metal apertures are used to focus this steam of electrons into a monochromatic 

beam, which allow the electrons to collide with the specimen, interact depending on the density 

and charge of the material, and form the image by following the simple ray optics theory. The 

detail of image formation and obtaining electron diffraction will be discussed in the following 

section. 

1.6.1 Formation of image by Transmission electron microscope 

As discussed, the TEM is constructed similarly in principle to the light microscopes. In 

case of TEM these are composed of various magnetic lenses. A cathode, called the source, is 

heated by applying high voltage and this leads to the emission of electrons.  These electrons are 

then accelerated by an anode. The electron beam is diverged and focused exactly on the 
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specimen material by a lens called a condenser lens. Two condenser lenses are present in a TEM. 

The purpose of having two condenser lenses is to focus the electron beam to a very small spot of 

3 - 5 μm in a diameter. This is the essential condition for formation of high intensity in a TEM. 

The electron beam from the specimen passes through the objective aperture and the image is 

formed by this objective lens. The total magnification of the image is obtained by multiplication 

of the individual enlargements of series of all lenses. While collecting an image, one can 

encounter various lens defects such as astigmatism, chromatic aberration and spherical 

aberration. If astigmatism is present, then the point will not be imaged as a point but as a small 

line. The astigmatism can be corrected by using stigmators, which are present in the form of 

auxiliary coil pairs and can be excited for astigmatism correction. Chromatic aberrations can be 

subsidized by suitable stabilization of the high voltage. However spherical aberrations cannot be 

corrected easily. In general, spherical aberrations determine the resolution limit of a microscope 

[41].       

1.6.2 Theory of formation of image and electron diffraction in TEM. 

In case of crystalline material, the wave nature of the electron has to be considered. 

According to Huygen-Fresnel principle, all the atoms serve as a source of secondary waves 

radiating in all spatial directions. Due to the periodic arrangement in the crystal lattice, periodic 

path difference can occurred between the two consecutive scattering centers. The path 

differences produce the phase differences. When the phase differences between two neighboring 

waves are exactly one wavelength that results the maximum possible constructive interference, 

called Bragg diffraction [43]. Mathematically, the Bragg equation can be written as 

nλ = 2dsinθ 
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where,  nλ= path difference of an integral multiple of wavelength of first and second lattice 

planes and 2θ = angle between the incident ray and the diffracted ray. 

When electrons incident on the lattice planes of the material are diffracted, the simple 

Bragg law applies. The diffracted beams through the angle 2θ are focused by the objective lens 

to a diffraction spot in the back focal plane and which is projected by a projected lens to the 

viewing screen. The ray diagram is shown in the Figure 1.9.   

                                         

Figure 1.8 The ray diagram of (a) formation of image and (b) electron diffraction in TEM. 

 

1.7 Magnetic properties of materials 

Magnetic properties of inorganic compounds can be classified into many different 

categories. Six common ones are paramagnetic, ferromagnetic, diamagnetic, antiferromagnetic, 

ferrimagnetic and spin glass-type. Magnetic behavior is always present in the transition metal 

(a) 
(b) 
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ions which have unpaired d and f electrons.  Depending upon the spin orientation of the unpaired 

electrons the magnetic behavior is changed. In case of paramagnetic materials, the spins of the 

unpaired electrons are randomly oriented in to different directions. Here the overall magnetic 

moment is zero. If the unpaired electrons are aligned parallel to a particular direction, the 

material is called ferromagnetic and it has magnetic moment which can be tuned by applying an 

external magnetic field. If the spins of the unpaired electrons are antiparallel then the material 

posses the antiferromagnetic behavior. Ferrimagnetic materials possess the unpaired electrons 

those are antiparallel to each other but with unequal numbers in the two directions. Spin glass- 

type magnetic behavior is seen in materials where the antiferromagnetic arrays is disrupted or 

frustrated by stronger ferromagnetic coupling. Different magnetic behavior is shown in the 

Figure 1.10.      

 

 

Figure 1.9 Schematic of different magnetic properties depending upon their spin orientation. 
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Magnetic properties of a material can be explained on the basis of the susceptibility value. The 

magnetic susceptibility is the ratio of magnetization to the magnetic field. The magnetic 

susceptibility is sometimes field dependent and temperature dependent which generally 

categorizes different magnetic materials.  

The molar susceptibility of a paramagnetic material is always explained by Curie law 

which is 

χ=C/T,S 

where C is the Curie constant and T is the absolute temperature. If the magnetic behavior is more 

complex compared to the simple paramagnetic system, then the Curie law is modified to the 

Curie-Weiss law and it is expressed as: 

χ=C/(T-Θ), 

where Θ is Weiss constant. 

These equations can be used to determine the number of unpaired electron present in the 

particular paramagnetic transition metal ion species. From the linear fit on the plot of inverse 

magnetic susceptibility (1/χ) vs. temperature (T) one can get the value of Curie constant and 

consequently the effective magnetic moment can be calculated by using the formula μeff = .  

This effective magnetic moment can be compared to the theoretical effective magnetic moment 

by taking different number of unpaired electrons present in the transition metal ion species. Since 

the number of unpaired electron corresponds to the oxidation state of ions and spin value (S). 

The theoretical effective magnetic moment can be calculated by using the equation                        

μeff  = (g
2
S(S+1))

1/2
 where g has a value of 2 for the electron which has no spin orbit coupling.    



24 

 

1.8 Scope of this research 

This dissertation presents the research on oxide materials for lithium-ion rechargeable 

batteries and oxide material which serves as a ferroelectric application in electronic devices. 

These are technically significant materials we are looking to investigate the structure-property- 

correlations by employing various characterization techniques. In chapter 2-4, the research 

focuses on the investigating the thermal stability and cation ordering in LiMO2 (M=Co, Mn, Ni) 

cathode materials. We are interested in studying the structural degradation of these cathode 

materials after charging process in the fundamental level and monitoring the thermal stability. 

Thermal stability is an important aspect since this determines the safety of the lithium-ion 

batteries. We also study cation ordering in order to get the deeper understanding in 

microstructures of these oxide cathode materials after charge and discharge cycles. Studying 

cation ordering helps to determine the mechanism of capacity fading in cathodes and their 

degradation. In Chapter 5, which deals with the ferroelectric research, efforts are given to 

synthesize the ferroelectric nanoparticles of different shape to monitor the ferroelectricity as a 

function of shape. Determining the ferroelectric property of nanoparticles would give the idea of 

the critical size after which a ferroelectric material changes to paraelectric.          
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Chapter 2                                                                                                                                                 

Comparison of magnetic properties in LixCoO2 and its 

decomposition products LiCo2O4 and Co3O4 

 

Abstract 

Thermal stability of cathode material in the charged state is an important aspect for the safety of 

rechargeable batteries. It is well known that layered LixCoO2 decomposes to a mixture of 

LiCoO2 and Co3O4 at elevated temperatures. However, not many experimental evidences exist 

on intermediate phases those may form during the decomposition. Using magnetic measurements 

we show that it is possible to distinguish between the spinels LiCo2O4 and Co3O4 and thereby 

follow the decomposition reaction of LixCoO2. We characterize the magnetic behavior of 

thermally aged LixCoO2 (x = 0.98, 0.76, 0.55) with increasing annealing time. Our results reveal 

the appearance of magnetic ordering in the thermally degraded products. The detailed analysis 

illustrates that the formation of Co3O4 is preceded by the formation of a metastable LiCo2O4 

phase. 
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2.1 Introduction 

Layered LiCoO2 is extensively used as a positive electrode material for Li-ion batteries   

[1-2]. This compound crystallizes in the α-NaFeO2 type structure described by space group R m 

with lithium and cobalt ions in octahedral 3a and 3b sites, respectively, separated by layers of 

cubic close packed oxygen ions. In the fully lithiated state, LiCoO2 behaves like an insulator 

with a wide band gap of 2.7 eV [3,4]. LiCoO2 has a high operating voltage vs. a lithium electrode 

and a large specific capacity of 140 mAh/g [2]. Deintercalation and reinsertion of lithium during 

repeated cycling through the composition range 0.5 ≤ x ≤ 1 in LixCoO2 leaves the layered 

structure intact [5]. At elevated temperature, the under-stoichiometric phase LixCoO2 converts to 

a mixture of layered LiCoO2 and Co3O4 with evolution of oxygen [6]. Alternatively, the 

decomposition of layered LixCoO2 can proceed via formation of the ideal LiCo2O4 spinel as 

suggested by First Principle Investigations [7]. This reaction in the technologically relevant Li 

concentration range takes place without oxygen release. In earlier studies by single crystal 

electron diffraction we observed the formation of the ideal spinel LiCo2O4 on the surface of aged 

LixCoO2 particles and in LixCoO2 after long term annealing [8,9]. Here we explore the 

application of magnetic measurements to distinguish between the two possible decomposition 

products Co3O4 and LiCo2O4 in thermally aged LixCoO2.  

The study begun with layered LiCoO2 that was subjected to chemical delithiation before 

annealing at 350°C for increasing lengths of time. The magnetic behavior of perfectly 

stoichiometric LiCoO2 is determined by Co
+3

 ions in low spin configuration (t2g
6 

eg
0 

; S= 0) as 

shown by magnetic susceptibility measurements, muon spin rotation spectroscopy (μ+SR), X-ray 

absorption and X-ray emission spectroscopy [10-12] . Hence no local spin moment is expected in 

perfectly stoichiometric LiCoO2. A slight increase in measured susceptibility is however 
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observed at temperatures below 60 K indicating spin state transitions in Co
+3 

ions [11]. Upon 

lithium deintercalation from LiCoO2, the compound remains paramagnetic while Co
+3

 ions are 

oxidized to Co
+4

 for charge compensation introducing magnetic moment in LixCoO2 (x < 1) 

[1,11]. Some authors have observed an anomaly in lithium deficient materials around 175 K 

where the linear increase in susceptibility with decreasing temperature is interrupted and a wide 

minimum begins before the susceptibility (χ) increases again at lower temperatures [1,10,11,13]. 

The origin of this phenomenon is not fully understood yet; spin dimerization of Co
+4

 ions, charge 

ordering, spin state transitions, or presence of small amounts of an impurity phase are considered 

to be the possible mechanisms [10,11,13].  

The reaction products of thermal decomposition, LiCo2O4 and Co3O4, both belong to the 

family of AB2O4 spinels (Space group: m3Fd ) where the A and B ions occupy tetrahedral 8a 

and octahedral 16d interstitial sites respectively [14]. In LiCo2O4 the tetrahedral 8a sites are 

occupied by Li ions (Li
+
) whereas in Co3O4 tetrahedral sites are occupied by Co

+2
 ions. The 

octahedral 16d sites are occupied by a mixture of Co
+3/+4

 in LiCo2O4 and by Co
+3

 in case of 

Co3O4 [15-16]. The presence of nonmagnetic Li
 
ions or magnetic Co

+2
 ions in A sites affects the 

magnetic behavior of these compounds and is used here to distinguish between LiCo2O4 and 

Co3O4. In Co3O4 the super-exchange interaction between Co
+2

 ions in tetrahedral sites separated 

by Co
+3

 ions in octahedral sites and oxygen results in antiferromagnetic (AFM) ordering at low 

temperature along the path A-O-B-O-A [15]. A similar superexchange interaction is not possible 

in LiCo2O4 where Co is in +3/+4 oxidation state. Here the tetrahedral site is occupied by an 

alkali metal ion and interactions between Co ions are either direct or via oxygen in the form of 

90
o 

Co-O-Co bonding [16]. The magnetic behavior of AB2O4 systems, where A is a non-

transition element and B is a transition element, has been classified as geometrically frustrated at 
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low temperatures reflecting short range ordering of magnetic ions [14,17,18]. Here the corner 

(vertex) sharing tetrahedral magnetic lattice sites (octahedral 16d sites) satisfy the condition of 

magnetic frustration as it is impossible to align the spins at the corners of a regular tetrahedron in 

a mutually antiparallel manner – hence two spins are always frustrated [19]. While the magnetic 

behavior of Co3O4 has been investigated in the past, no detailed reports could be found on 

LiCo2O4. The structure of LiCo2O4 and Co3O4 spinels are presented in Figure 2.1. 

              

        

Figure 2.1 Structure of AB2O4 spinels: (a) LiCo2O4 and (b) Co3O4. The arrows show the nature 

of interaction (90 degree and 180 degree, respectively) between cobalt ions.  

(a) 

(b) 
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2.2 Experimental 

LiCoO2 was prepared following a poly acrylic acid (PAA) -assisted sol-gel method 

modified the procedure as described in this report [20]. The required amounts of lithium and 

cobalt nitrate salts were dissolved in distilled water at a cationic ratio of 1:1, PAA was added as a 

chelating agent. The pH of the aqueous solution was set to 1 - 2 by drop wise addition of HNO3, 

and then the solution was stirred for 24 hours at room temperature before being evaporated to 

dryness at 70 
°
C – 80 

°
C. The obtained precursor was ground thoroughly and calcined in air at 

750 
°
C for 10h to form LiCoO2 powder. Chemical delithiation was carried out under argon 

atmosphere at room temperature using solutions of NO2BF4 in acetonitrile in different 

concentrations. The reaction was carried out by adding NO2BF4 solution drop wise over 90 

minutes to the LiCoO2 suspensions followed by additional 90 minutes of stirring to obtain 

LixCoO2 (x = 0.98, 0.76, 0.55). Portions of the delithiated products were annealed at 350 
°
C in air 

for 40 minutes and for 24 hours.  

2.3 Characterization  

For the starting material and its delithiated compounds, quantitative analysis of Co and Li 

content was carried out through Inductive Coupled Plasma Mass Spectrometry (ICP-MS). For 

the starting material, the cobalt oxidation state was determined by idometric titration following 

the procedure published by Conder et al. [21].  X-ray diffraction (XRD) data were collected with 

an X’pert PRO diffractometer (Panalytical Instruments) operated at 40 kV voltage and 40 mA 

current using Cu-Kα radiation. Silicon powder was mixed into the LixCoO2 powders as an 

internal standard. Phase determination was carried out by comparison between experimental and 

simulated powder diffraction patterns obtained with the software “Powder cell” and with unit 

cells published in the literature [5]. Magnetic measurements were performed under field cooling 
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(FC) and zero field cooling (ZFC) conditions with a superconducting quantum interface device 

(SQUID) magnetometer (MPMS-XL-7: Quantum Design) in the temperature range between 5 K 

- 300 K under magnetic field, H = 10 kOe. The Curie constant, the Weiss constant, and the 

effective magnetic moment, μeff, of all powders were determined from the plot of inverse 

susceptibility versus temperature in the temperature region 180 - 300 K. 

2.4 Results and Discussion 

2.4.1 Starting material and delithiated LixCoO2 

The composition of each sample was calculated from the amount of Li and Co measured 

by ICP and the total amount of dissolved specimen. The resulting chemical formulae are listed in 

the first column of Table 1. For simplicity we omit the slight discrepancy in Co content in the 

following text and refer to the specimens by their Li content only. X-ray powder diffraction 

pattern of the virgin and delithiated LixCoO2 (x = 0.98, 0.76, 0.55) powders are shown in Figure 

2.2. All spectra can be indexed completely in the α-NaFeO2 type structure with R m space group. 

The clear splitting of the (006)/(102) and (108)/(101) doublet peaks indicates that the synthesized 

material has layered character that is maintained after delithiation [5]. With decreasing lithium 

content in the delithiated material, the position of the (003) peak shifts to smaller angles, that is 

in agreement with an expansion of the lattice along the c axis caused by increased electrostatic 

repulsion between CoO2 slabs [5,22]. The lattice parameters and c/a ratios are given in the Table 

1. The value of c/a ratio is maintained in case of all delithiated materials (4.99) which indicates 

that the compounds have no spinel phase present as an impurity. 
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Figure 2.2 X-ray diffraction spectra of LixCoO2 (x=1.03, 0.98, 0.76, 0.55) before heat treatment. 

 

 

Table 2.1 Effective magnetic moment and Weiss constant of starting and delithiated materials. 

Sample 

(ICP 

composition)  

c-lattice 

parameter 

(A
o
) 

a-lattice 

parameter 

(Å) 

c/a ratio Effective 

magnetic 

moment (μB) 

Weiss 

constant θ 

(K) 

Li1.03Co1.02O2 14.05 2.82 4.99 0.08  0.03 -239 

Li0.98Co1.02O2 14.10 2.85 4.99 0.73  0.08 

 

-264 

Li0.76Co1.01O2 14.28 2.86 4.99 1.49  0.03 -98 

Li0.55Co1.01O2 14.38 2.88 4.99 1.73  0.02 -177 
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The temperature dependence of the magnetic susceptibility of the starting material and its 

delithiated products are shown in Figure 2.3.  All samples show paramagnetic behavior at higher 

temperature (T ≥180 K) consistent with Curie Weiss  behavior, identical responses are observed 

under field cooling (FC) and under zero-field- cooling (ZFC) as we reported in the previous 

report [23]. The anomaly in magnetic susceptibility observed by other authors [1,10,11] in 

delithiated materials at 175 K is absent here. Below 50 K the magnetic susceptibility increases 

with decreasing the temperature in the delithiated powders. This trend is very small in Li0.98CoO2 

but pronounced for lithium contents x = 0.76 and x = 0.55. A non-monotonic behavior is 

observed in the magnetic response upon cooling (χ of Li0.76CoO2 is less than χ of Li0.55CoO2 at T 

= 5 K, see Figure 2.3).  

 

Figure 2.3 Temperature dependence of magnetic susceptibility χ of LixCoO2 before heat 

treatment and inset shows the variation of inverse molar susceptibility with the temperature (FC 

mode). 
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This may be due to the presence of more antiferromagnetic character in Li0.55CoO2 as compared 

to Li0.76CoO2. Generally, the increased magnetic moment at low temperature in LixCoO2 is 

attributed to spin state transitions in Co-ions [1,10,11,13]. Even in pure stoichiometric LiCoO2, a 

small magnetic moment and an increase of magnetic susceptibility has been observed at low 

temperatures [24]. In Table 1, the effective magnetic moment values (along with the 

experimental uncertainties) of each specimen obtained from the linear plot of inverse molar 

magnetic susceptibility (1/χ) vs. temperature (T) in the region of 180 K-300 K (plot of inverse 

molar magnetic susceptibility with temperature is given in inset of Figure 2.2) is listed together 

with the determined magnetic constants. Below we compare the experimental data to theoretical 

effective magnetic moments that were calculated for appropriate amounts of Co
4+

 in high spin 

(HS), low spin (LS) and intermediate spin (IS) state (S= 
5
/2, 

1
/2, 

3
/2) with the goal to determine 

the spin states of cobalt ions at room temperature for each specimen composition.   

The composition of the starting material is slightly over-stoichiometric (Li1.03CoO2) 

indicating an imbalance between the number of Co
+3

 ions and Li
+
 ions that must be compensated 

for. Several models have been proposed for the distribution of cations and the resulting Co 

oxidation states in Li1+xCoO2. In the simplest approach, the overall charge balance of the 

compound requires the presence of some Co
+2

 ions [10]. In case excess Li occupies Co sites, 

nearby Co
3+

 ions could be oxidized to Co
+4

 for charge balance within the Co-O-slabs [10] or 

excess Li may be compensated for by the formation of Co and oxygen vacancies which can be 

described as Liinterslab[Co1-t□t][O2- ], where □ stands for vacancy. In the latter case the presence 

of Co
2+

 ions in low spin configuration has been suggested [25]. Alternatively, if excess lithium 

occupies cobalt sites, the oxidation state Co
+3

 could be maintained through formation of nearby 

oxygen vacancies [26]. Co
+3

 ions adjacent to oxygen vacancies could then experience shifts in 
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relative energy levels of the 3d electrons that enable spin state transitions from non magnetic low 

spin to magnetic intermediate spin state. In our case idometric titration of the starting material 

yields an average Co oxidation state to Co
+2.97

, this is in agreement with the presence of Co
+2

 

ions. Experimentally we determined an effective magnetic moment of 0.08µB for the starting 

material, which is identical to the theoretical value of 0.05 µB resulting from the presence of 0.03 

Co
+2

 in low spin state (μtheo= 0.05 µB). The combined results of magnetic measurement and 

chemical composition confirm that Co
+2

 is present in overstoichiometric Li1+xCoO2 and support 

to the hypothesis that Co and oxygen vacancies form in the presence of excess lithium within the 

Co-O slabs.  

 Here it is reasonable to explain the spin state transitions in Co ions due to shifts in 

relative energy levels of the 3d electrons. In previous experiments by convergent beam electron 

diffraction (CBED) it was found that LiCoO2 expands parallel to the c-direction when cooled 

with liquid N2 (77 K) [27]. This expansion likely reduces the distortion of CoO6 octahedra in the 

layered structure and thereby minders the crystal field splitting between t2g and eg orbitals [28]. 

Assuming the expansion continues with further decrease in temperature, spin state transitions of 

cobalt ions from nonmagnetic low spin to magnetic intermediate spin states can be facilitated.  

During chemical delithiation, a maximum of 0.48 Li is removed in Li0.55CoO2. Formally 

the removal of lithium is compensated for by oxidation of Co
+3 

(LS) to Co
+4

 introducing 

unpaired spins those give rise to magnetic moments regardless of the spin state (Co
+4

 : high spin 

S = 
5
/2, intermediate spin S = 

3
/2, low spin S = 

1
/2). In Li0.76CoO2 and Li0.55CoO2, the 

experimental determined effective magnetic moments are in close agreement with theoretical 

values obtained for appropriate amounts of Co
4+

. Considering 0.24 Co
+4

 ions in high spin state in 

Li0.76CoO2 yields a theoretical value μeff(theo) of 1.48 μB which compares to an experimental value 
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of 1.49 μB. Similarly the experimental effective magnetic moment of 1.73 μB in Li0.55CoO2 is 

best described by 0.45 Co
+4

 ions in intermediate spin state that corresponds to a theoretical value 

μeff(theo) of 1.74 μB. In the literature, Co
+4

 ions in LixCoO2 are reported to be HS for Li 

concentrations between x = 1.00 and 0.70 [11] or to change from high spin state at lithium 

concentrations above x  > 0.9 to low spin state for Li concentrations between approximately 0.8 

and 0.7 [10]. In the latter study, a further decrease in magnetic moments is measured below x = 

0.65 which is attributed to a change in localization of unpaired spins. 

The agreement between theoretical and experimental values is less satisfactory in the case 

of Li0.98CoO2. Here the experimentally determined effective magnetic moment is 0.731 μB while 

the highest possible theoretical effective moment caused by 0.02 Co
+4

 ions in high spin state is 

only μeff(theo) = 0.18 μB. The large discrepancy suggests that other effects contribute to the 

observed magnetic behavior in Li0.98CoO2, such as charge disproportionation of Co
+3

 or surface 

effects. Charge disproportionation is possible in LiCoO2 with Li content is near 1 where Co 

should be in the +3 oxidation state but may be considered to fluctuate due to thermal vibrations 

or Li diffusion [11].  

2.4.2. Short and long term annealed LixCoO2 

The XRD patterns of the annealed powders are shown in Figure 2.4. where the lithium 

concentrations LixCoO2 (x = 0.98, 0.76, 0.55) of the delithiated powders are marked at the right 

side of the graphs and “(a)” or “(b)” stand for annealing times of 40 minutes and 24 hours 

respectively (T= 350 ºC). The c and a lattice parameter for annealed specimens are given in 

Table 2. A comparison between the graphs shows the appearance of the prominent spinel (220) 

peak at 2θ ~ 31
o
 for the material which has low lithium content and after long time annealing. 

The positions of most spinel peaks partially overlap with those of the layered phase and therefore 
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are not easily detected. The (220) peak is unique to the cubic phase and is therefore used as an 

indicator for its presence. In Figures 2.4 and 2.6., the variation of magnetic susceptibility () 

with temperature T is shown for 40 minutes annealing time and for 24 hours annealing time, 

respectively. In both figures the susceptibility values (T) are identical under FC and ZFC over 

most of the temperature range, but start to diverge below a transition temperature around 25 to 

30 K. In the short term annealed powders, the FC curve continues to increase monotonously at a 

slightly lower rate below the transition temperature whereas a stronger decrease of slope is 

observed in the ZFC curve, indicating transitions in the arrangement of spin states in Co ions. In 

the literature,  a comparable small hysteresis between FC and ZFC is associated with spin-glass-

like behavior or with geometrically frustrated ordering of magnetic ions in the lattice [29]. In the 

present case we speculate that an intermediate ideal or inverse LiCo2O4 spinel phase forms 

during the transformation of the delithiated layered powders to a mixture of layered LiCoO2 and 

Co3O4 [7]. In the ideal spinel octahedral 16 d sites are occupied by Co
+3

 and Co
+4

 ions, while Li 

is located on tetrahedral 8a sites. Thus clusters of unpaired spins of Co
+4

 ions may form that are 

frustrated geometrically in plane or between the planes. Anderson first proposed that weak 

interactions may result from a cation-anion-cation angle of 90
o 
[30]. In LiCo2O4 there is a 90

°
 Co-

O-Co interaction which may be the cause of short range ordering resulting in magnetic 

frustration in the lattice. In the case where a 40 minute annealing time is insufficient for 

complete ordering of Li and Co into tetrahedral and octahedral sites, short range magnetic 

interaction could be present between Co
4+

 ions in tetrahedral sites in adjacent layers or between 

Co
4+

 in tetrahedral and octahedral sites. In a study on the lithiated spinel Li2Co2O4 and its 

delithiated product LiCo2O4, no diverging magnetic behavior has been reported in ZFC and in 

FC indicating a lack of magnetic ordering [16]. In that case the starting material was Li2Co2O4 
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with Li in 16c and Co in 16d sites. Therefore a comparison of the present data to the literature 

gives rise to the speculation that, in the present study, Co ions occupy both tetrahedral and 

octahedral sites. 

 

Table 2.2 Effective magnetic moment and Weiss constant of delithiated materials after heat 

treatment at 350
o
C for (a) 40 min and (b) 24 hrs. 

Sample 

 

Effective magnetic 

moment (μB) 

Weiss constant θ 

(K) 

Li0.98CoO2(a) 1.06  0.07 -440 

Li0.98CoO2(b) 1.08  0.05 -301 

Li0.76CoO2(a) 1.51  0.02 -69 

Li0.76CoO2(b) 1.56  0.01 -78 

Li0.55CoO2(a) 1.79  0.01 -46 

Li0.55CoO2(b) 1.90  0.02 -78 
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Figure 2.4 X-ray diffraction spectra of LiXCoO2 (x= 0.98, 0.76, 0.55) after heat treatment at 

350
o
C (a): 40 minutes, (b) 24 hours. The symbol # shows the Si peaks and * shows the (220) 

reflection from spinel phase. 
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Figure 2.5 Temperature dependence of the magnetic susceptibility χ in LixCoO2 subjected to 

heat treatment at 350 °C for 40 minutes; inset shows the variation of inverse molar susceptibility 

with the temperature (FC mode). 

 

After 24 hours of annealing time the (T) curves, as shown in Figure 2.5, diverge more 

pronouncedly under FC and ZFC with the stronger effect observed under ZFC. In Figure 2.5 it 

can be seen clearly that below the transition temperature of about 30 K the χFC and χZFC curves 

bifurcate strongly towards lower susceptibility values. This type of magnetic behavior can be 

referred to as AFM nature of a material below the Néel temperature TN [31]. The experimentally 

determined effective magnetic moments μeff from the linear plot of inverse molar magnetic 

susceptibility vs. temperature in the region of T = 180 K - 300 K of the annealed powders are 

listed in Table 2.4 together with the obtained magnetic constants (plot of inverse molar magnetic 

susceptibility with temperature is given in the inset of Figure 2.4 and Figure 2.5). Comparison 
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shows that μeff increases as the lithium content decreases, or increases with annealing time for a 

given composition, indicating an increase in the number of magnetic ions. The effective 

magnetic moments (along with experimental uncertainties) and the Curie-Weiss temperatures 

reported in Table 2.4 are significantly different than the values reported by other authors [31,32]. 

This difference can be explained as follows. In the literature the effective magnetic moment and 

Curie-Weiss temperature values correspond to pure LiCo2O4 [32] or pure Co3O4 [31] materials.  

 

Figure 2.6 Temperature dependence of magnetic susceptibility χ of   LixCoO2   after heat  

treatment at 350 °C for 24 hours and inset shows the variation of  inverse molar susceptibility 

with the temperature (FC mode). 

 

But, in the present study, the materials contain both the spinel and layered LiCoO2 phase. It is 

well known that the thermal decomposition of LixCoO2 eventually leads to the formation of 
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Co3O4 thereby increasing the number of Co
+2

 ions that contribute to the observed magnetic 

behavior [7,6]. In the normal spinel Co3O4, Co
+2

 and Co
+3

 ions occupy tetrahedral 8a sites and 

octahedral 16d sites respectively. The role of the Jahn-Teller active Co
+2

 ion in the magnetic 

behavior of Co3O4 has been discussed in detail by Roth [15]. The spin state of Co
+3

 and Co
+2

 

ions are low spin (S = 0) and high spin (S = 
3
/2), respectively. During cooling, Co3O4 undergoes 

long-range antiferromagnetic ordering as spin states of Co
+2

 ions on A sites that are tetrahedrally 

surrounded by four nearest neighbors in A sites align in anti-parallel fashion. Additionally 

superexchange interaction between Co
+2

 ions on 8a sites through Co
+3

 ions on 16d sites and 

oxygen atoms via the path A-O-B-O-A contributes to the observed magnetic moment [15,29] . 

The TN value for the AFM transition observed here is T ~ 30 K which is in agreement with value 

reported for Co3O4 spinel [31]. In an earlier investigation combining magnetic measurements and 

electron-energy-loss spectroscopy, we found evidence that during the continued decomposition 

of LixCoO2 small amounts of CoO were formed that further add to the detected magnetic 

moment [9]. 

2.5. Conclusions 

Magnetic studies of LixCoO2 (x = 0.98, 0.76, 0.55) were conducted before and after heat 

treatment under zero field and field cooling to elucidate the nature of the spinel phase that forms 

in addition to the layered LiCoO2 phase. The results show that the LiCo2O4 phase is formed 

before the end product Co3O4 is observed. Prior to heat treatment paramagnetic behavior is 

observed without indication of magnetic ordering down to 5 K. Heat treatment of delithiated 

materials progressively changes the magnetic nature within the compounds. After short term heat 

treatment of LixCoO2 spin-glass-like or geometrically frustrated behavior is observed that 

suggests the formation of metastable spinel phase in the lattice. After long-term annealed 
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pronounced antiferromagnetic ordering is observed which is in agreement with the formation of 

Co3O4. At the same time the effective magnetic moment increases with annealing time due to 

introduction of Co
+2 

ions resulting from formation of Co3O4 phase.  
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Chapter 3 

Microstructure and Magnetic Behavior of Compounds in the Solid 

Solution System Li[Ni1-xMnx]O2 (x = 0.3, 0.5, 0.7) 

 

Abstract 

Layered transition metal oxides containing more than one transition element are considered for 

applications in electric vehicles. In these compounds new and improved properties may result 

from the combination of element specific properties. At the same time the arrangement of 

species within the transition metal layer is one aspect that may affect the Li intercalation 

behavior and hence the electrochemical properties. Here we present a microstructural study on a 

series of Li[Ni1-xMnx]O2 compounds where the oxidations state and arrangement of transition 

metal (TM) ions are characterized by SQUID magnetometry and selected area electron 

diffraction (SAED) Our results show that in-plane long-range ordering increases with Mn 

content and that Li/Ni interchange takes place in all powders but seems to be highest in Mn rich 

compositions. During chemical delithiation Li is removed from the TM layers leading to a 

decrease in percentage of long range ordering. 
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3.1 Introduction 

The need for Li-insertion compounds with high power and energy density motivates 

efforts to replace the layered Li-insertion compounds LiCoO2 and LiNiO2 with layered 

compounds of the solid solution system LiCoO2- LiNiO2- LiMnO2. It is known that LiCoO2 is 

structurally instable when more than 0.5 Li is removed.  And for LiNiO2, with a high 

rechargeable capacity, is difficult to synthesize reliably without interchange of Li and Ni 

between their respective layers [1-5]. The presence of Ni ions in the Li layers lowers the 

electrochemical activity of LiNiO2 and its poor thermal stability in the charged state prohibits its 

practical usage [1, 6, 7]. Substituting manganese ions for Ni in the parent LiNiO2 dramatically 

increases the thermal stability making LiNi0.5Mn0.5O2 a promising, inexpensive alternate positive 

electrode material to both LiCoO2 and LiNiO2 [8-10]. LiNi0.5Mn0.5O2 is isostructural to LiNiO2, 

it has m3R  symmetry (space group 166), with Li in 3a sites and transition metal ions in 3b sites 

separated by cubic closed packed oxygen layers [11]. First principles calculations and X-ray 

absorption experiments (XANES) of LiNi0.5Mn0.5O2 showed that Ni and Mn are in the +2 and +4 

state respectively in the as synthesized state [12]. During electrochemical cycling Ni is the active 

ion while Mn remains in the +4 state contributing towards the stability of this compound. 

However due to the very similar ionic radii of Ni
+2

 and Li
+
 ions there is always the possibility of 

interchanging nickel and lithium ions between their crystallographic sites. This exchange has 

been linked to the formation of long range in-plane ordering in form of √3ahex x √3ahex supercells 

in the TM layer [13-15]. A variation of the nickel to manganese ratio will change the oxidation 

state of nickel or manganese ions which may affect the electrochemical behavior [16]. XANES 

experiments confirmed the presence of Ni
+3

 in the nickel rich compound LiNi1-xMnxO2 (0 ≤ x ≤ 

0.5) [16]. At the same time different long range order schemes in the TM layer can be envisioned 

that do not require the exchange of Li and Ni ions between their respective layers. At Ni:Mn 
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ratios of 1:2, a honeycomb like long range order is feasible resulting in superlattice reflections 

corresponding to the √3ahex x √3ahex supercells observed in LiNi0.5Mn0.5O2 (assuming a sufficient 

difference between the atomic scattering factors of the two elements). This arrangement is 

observed in the TM layer of Li2MnO3 where a monoclinic unit cell is used to describe ordering 

between Li and Mn ions (C2/m symmetry, but ABAB stacking along c-axis as compared to ABC 

in LiCoO2) [17].  

In this chapter, the microstructure of LiNi1-xMnxO2 having Ni to Mn ratios of 1:2, 1:1 and 2:1 

(x = 0.3, 0.5, 0.7) are characterized to monitor the possible ordering mechanisms in the Ni rich 

and Mn rich compounds. Single crystal electron diffraction patterns were used to characterize 

long-range ordering and magnetic measurements to investigate the oxidation states of transition 

metal ions as well as magnetic interactions between them. While magnetic data is available on 

Ni-rich compositions LiNi1-xMnxO2  (0 ≤ x ≤ 0.5) no information could be found on the Mn-rich 

side of the binary phase diagram LiNiO2-LiMnO2 [16]. In first part of this work, the pristine 

materials were characterized and in the second part, lithium deficient phases were studied in 

order to understand the structural changes after lithium deintercalation. 

3.2 Experimental 

LiNi1-xMnxO2 (x = 0.3, 0.5, 0.7) was prepared following a modified co-precipitation 

method reported in literature [11]. Appropriate amounts of NiNO3.6H2O and MnNO3.4H2O were 

weighed according to the respective molar ratios and dissolved in water to obtain clear solutions 

of 2 molar concentrations. After stirring for 10 - 15 minutes 100 ml of 2 M NaOH and 100 ml of 

2 M NH4OH were added and the mixtures were stirred in air for 24 hr at a temperature T ~ 40- 

50 
o
C. In the case of LiNi0.3Mn0.7O2 the solutions were stirred under Ar atmosphere. The 

precipitates were filtered, dried over night, and ground to obtain precursors. The required amount 
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of LiOH∙H2O was added, the mixture was ground and pre-sintered at 873 °C for 12 hrs, followed 

by annealing at 1173 °C in air for 12 hrs. The as synthesized powders were chemically 

delithiated under Argon atmosphere at room temperature by using solutions of NO2BF4 (source: 

Sigma Aldrich, assay ≥ 95%) in acetonitrile as delithiating agent. The reaction was carried out by 

drop-wise addition of NO2BF4 solution over 90 minutes to LiNi1-xMnxO2 suspensions, followed 

by an additional 90 minutes of stirring.  

3.3 Characterization 

Quantitative analysis of Mn, Ni and Li content were carried through Inductive Coupled 

Plasma Mass Spectrometry (ICP-MS). The morphology of the obtained powders was observed 

by scanning electron microscopy (SEM) using a JEOL JSM Scanning Electron Microscope. X-

ray diffraction spectra (XRD) were collected with an X’pert PRO diffractometer (Panalytical 

Instruments) operated at 40 kV and 40 mA current using Cu-Kα radiation. Silicon powder was 

used as an internal standard. Phase determination was carried out by comparing experimental 

spectra to simulated powder diffraction spectra obtained with the software “powder cell” and 

using unit cells published in literature [18]. Single crystal electron diffraction patterns were 

obtained using a JEOL 2010 Transmission Electron Microscope (TEM) operated at 200 kV. For 

comparison, electron diffraction patterns were simulated using the software desktop 

microscopist. Field cooled (FC) and zero field cooled (ZFC) magnetic measurements were 

performed on a superconducting quantum interface device (SQUID) magnetometer (MPMS-XL-

7: Quantum Design) between 5 K and 300 K under a magnetic field H = 10 kOe. Magnetic 

moment versus magnetic field (M-H) curves were obtained at 5 K. 
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3.4 Results and discussion 

3.4.1 Starting material 

The compositions of the synthesized compounds obtained from ICP measurements are 

Li1.02Ni0.69Mn0.29O2, Li0.99Ni0.50Mn0.52O2 and Li1.02Ni0.30Mn0.70O2 confirming that the targeted 

Ni:Mn ratios have been realized. In Figure 3.1 comparison of the particle morphologies 

illustrates that large octahedral particles ( 2 μm) form in the Ni-rich material (LiNi0.7Mn0.3O2) 

whereas smaller irregularly shaped particles are observed in LiNi0.5Mn0.5O2 and LiNi0.3Mn0.7O2. 

The X-ray diffraction spectra of the synthesized powders are shown in Figure 3.2. All materials 

can be indexed in the α-NaFeO2 structure and exhibit typical characteristics of a layered 

material: clear splitting of (006)/(012) and (108)/(110) doublets and an intensity ratio I003 /I104 

larger than one [3, 19]. The approximate c and a lattice parameter estimated from (003) and 

(110) peak positions take on the largest and smallest values in LiNi0.5Mn0.5O2 and LiNi0.3Mn0.7O2 

respectively (a = 2.88 Å,
 
c = 14.33 Å compared to

 
a = 2.86 Å, c = 14.28 Å). The increase in 

lattice parameters with decreasing Ni-content observed between LiNi0.7Mn0.3O2 and 

LiNi0.5Mn0.5O2 is in agreement with observations published by Kobayashi et al. [16]. In the Mn 

rich small additional diffraction peaks are observed in the 2-theta range of 20
o 

- 35
o
. In the Mn-

rich compound, these are in agreement with superstructure peaks resulting from in plane ordering 

in a √3ahex x √3ahex supercell that can be indexed either in a monoclinic unit cell (C2/m) or in a 

trigonal unit cell (P3112) [17,20]. The positions of the superstructure peaks are marked by dots in 

Figure 3.2. The presence of superstructure peaks were in agreement with the analysis of single 

crystal electron diffraction patterns where maximum long range ordering was observed for 

manganese-rich phase presented below. Before discussing the single crystal diffraction data the 

results of magnetic measurements are presented in order to assign the oxidation states of 

transition metal ions. 
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Figure 3.1 Scanning electron micrographs of LiNi1-xMnxO2: (a.) x = 0.3 (b), x = 0.5, (c) x = 0.7.  

 

(a) 

(b) 

(c) 
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In Figure 3.3 temperature dependence of the molar magnetic susceptibility is shown for 

experiments under field cooling (FC) and zero field cooling (ZFC). All the materials show 

paramagnetic behavior at high temperatures (T ≥ 150 K) and an increase in magnetic 

susceptibility in the lower temperature region. The FC and ZFC curves are identical for 

LiNi0.5Mn0.5O2 and for the Mn-rich compound. In the case of the Ni-rich composition the FC and 

ZFC curves bifurcate at T = 30 K indicating the presence of magnetic frustration in the lattice 

which can be classified as  

 

Figure 3.2 X-ray diffraction pattern of LiNi1-xMnxO2 (x = 0.3, 0.5, 0.7) before chemical 

delithiation 
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Figure 3.3 Variation of molar magnetic susceptibility versus temperature for LiNi1-xMnxO2 

before chemical delithiation 

 

spin-glass-like behavior or geometrical frustration [21]. Spin-glass-like behavior has been 

observed in LiNiO2 has been linked to the presence of Ni
+2

 ions in the lithium layer [22].  The 

effective magnetic moments were calculated for each compound from a plot of inverse 

susceptibility versus temperature in the temperature region 150 - 300 K (see Table 1). The 

experimental values were compared to theoretical values based on combinations of Ni
3+

/Mn
3+

 

(all three compounds), Ni
+2

/Ni
+3

/Mn
+4

 (Ni-rich) or Ni
+2

/Mn
+3

/Mn
+4

 (Mn-rich) ions in high- and 

low-spin configurations. The best fit between experimental and theoretical effective magnetic 

moment for each composition is listed in Table 1. It can be seen that LiNi0.5Mn0.5O2, 

LiNi0.7Mn0.3O2, and LiNi0.3Mn0.7O2 are best represented as LiNi0.5
+2

Mn0.5
+4

O2, 

LiNi0.3
+2

Ni0.4
+3

Mn0.3
+4

O2 and LiNi0.3
+2

Mn0.4
+3

Mn0.3
+4

O2, respectively. In the case of 

LiNi0.5Mn0.5O2 and the Ni-rich compound LiNi0.7Mn0.3O2 the results are in agreement with 
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literature reports based on theoretical and EXAFS studies [15,16]. However no reports could be 

found for the Mn-rich material. The experimental effective magnetic moment for Mn-rich 

material is 3.06µB
 
which is close to the theoretical effective magnetic moment value resulting 

from 0.3 mol of Ni
+2

, 0.3 mol of Mn
+4

 and 0.4 mol of Mn
+3 

(high spin). A model assuming 0.3 

mol of Ni
+3

 (high spin) and 0.7 mol of Mn
+3 

(high spin) can be rejected as the X-ray diffraction 

and the electron diffraction analysis (below) reveal a high percentage of long range ordering 

involving among the Li
+
 ions and Ni

+2 
ions and/or Mn

+4
 ions. Taking the assigned charges into 

account the magnetic frustration in the nickel rich material can be explained as follows. The 

nickel rich material contains Ni
2+

 and Ni
3+

 ions along with Mn
4+

 ions. The ionic radius of Ni
2+ 

(0.69 Å) is very much similar to the Li
+
 ion (0.76 Å) opening a possibility of interchange 

between Ni
2+

 ions present in the transition metal (TM) layer and Li
+
 ion in lithium layer. Based 

on the Goodenough’s theory, the presence of Ni
2+

 ions in the lithium layer then introduces 

antiferromagnetic coupling with Ni
3+

 ions in the TM layer via 180
o
 exchange interaction along 

the Ni
2+

-O-Ni
3+

 path as well as ferromagnetic coupling with Mn
4+

 ions in the TM layer via a 

180
o
 Ni

2+
-O-Mn

4+
 path [23]. These interactions create magnetic frustration between Ni

+2
, Ni

+3, 

and Mn
4+

 in the triangular lattice among these ions (Figure 3.5) which is seen in magnetic 

susceptibility versus temperature curve (Figure 3.3). The effect of competing ferro- and anti- 

ferromagnetic interactions can also be seen the magnetization curves collected at 5 K where 

hysteresis behavior is observed for LiNi0.5Mn0.5O2 and for the Ni rich material, see Figure 3.4. 
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Figure 3.4 Magnetic moment (M) and Field (H) plots of LiNi1-xMnxO2 

 

 

Figure 3.5 Magnetic model explaining the magnetic frustration in Ni rich compound. 
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The hysteresis behavior for LiNi0.5Mn0.5O2 is due to the strong 180
o 

Ni
+2 

(lithium layer)-O-Ni
+2 

(TM layer) ferromagnetic coupling present in this material as reported by several authors [16, 

24]. In the case of Ni-rich material the hysteresis is less pronounced than in LiNi0.5Mn0.5O2 

which indicates the presence of AFM interaction present in the lattice. In case of the Mn-rich 

compound (LiNi0.3Mn0.7O2) purely paramagnetic behavior is observed without any hysteresis 

character. 

Table3.1 Comparison between experimental and theoretical magnetic moment of starting 

material (best fit of theoretical values shown). 

 

Starting material  

composition µexp  Model µtheo 

Li1.02Ni0.69Mn0.29O2 3.54 µB 0.3Ni
+2

, 0.4Ni
+3

, 0.3Mn
+4

 3.56 µB 

Li0.99Ni0.50Mn0.52O2 3.11 µB 0.5Ni
+2

, 0.5Mn
+4

 3.35 µB 

Li1.02Ni0.30Mn0.70O2 3.06 µB 0.3Ni
+2

, 0.4Mn
+3

, 0.3Mn
+4

 3.14 µB 

 

Single crystal electron diffraction patterns were taken from 15 particles of each material 

and were classified into the following categories: 

O3 - Diffraction patterns showing no superlattice reflections are assumed to represent random 

TM arrangement and are labeled O3 type patterns following the notation for LiCoO2 in a 

trigonal unit cell (space group 166), an example is shown in Figure 3.6a. The reflections in these 

patterns are called fundamental reflections. When TM and Li ions are arranged in an ordered 

fashion within the oxygen framework additional (superlattice) reflections may appear. 
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Figure 3.6 Example of electron diffraction pattern showing O3 (a) and spinel reflections (b). 

 

Spinel - In a cubic spinel (space group 225) TM and Li ions occupy layers of interstitial sites in 

alternating ratios of 1:3 assigned to lattice sites 16d and 8a in superlattice reflections are 

observed halfway between fundamental reflections, an example is shown in Figure 3.6b.  

√3ahex x √3ahex R30
o
 type of ordering and C2/m - Long range order within the TM layer 

can be observed when 2 or more species are present. In case of Li2MnO3 (Li[Li1/3Mn2/3]O2) a 

honeycomb structure is formed that has been described in literature in a C2/m notation [25]. Here 

superlattice reflections divide the distance between fundamental reflections into three, 

corresponding to a threefold increase of the unit cell dimensions with respect to distances 

between oxygen atoms in the O3 structure. The large difference in atomic scattering factor 

between Li and Mn lends a strong intensity to the observed superlattice diffractions. Similarly 

superlattice reflections corresponding to a threefold increase of the in-plane unit cell can be 

observed when three species are ordered in a regular arrangement within the TM layer as 
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described by Ohzuku et al. in a trigonal lattice (P3112) [20]. Here the small difference in atomic 

scattering factor should result in lower intensity of the observed superlattice reflections. In the 

case of LiNi0.5Mn0.5O2 the √3ahex x √3ahex R30
o 

in plane ordering results from Li/Ni exchange 

where the replacement of some Ni with Li in the TM layer introduces local variations of cations 

arrangement as described by Meng et al. [13]. The two crystal structures used to describe the 

cation’s arrangement differ in the oxygen stacking that is cubic close packed in the trigonal 

model compared to hexagonal close packed (AB stacking) in the monoclinic structure. The 

oxygen lattice in the monoclinic structure is slightly distorted, which is accounted for by the 

monoclinic angle. Only patterns that unambiguously fit into the monoclinic category are labeled 

C2/m. Examples for the monoclinic structure and √3ahex x √3ahex R30
o
 type ordering are shown 

in Figure 3.7 a,b. 

  

Figure 3.7 Example of electron diffraction pattern showing monoclinic (a) and √3ahex x √3ahex 

R30
o
 type ordering reflections (b). 

 

A summary of the analysis results is presented in Table 2. Comparison shows that the Ni-

rich system does not show in-plane ordering (14 out of 15 particles indexed as O3) whereas the 
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highest percentage of in-plane ordering is observed in the Mn-rich compound (10 out of 15 

particles). Small amounts of spinel phase and O3 type diffraction patterns are found in 

LiNi0.5Mn0.5O2 and in the Mn-rich compound, and in LiNi0.5Mn0.5O2 a small amount of the 

monoclinic phase was observed. The absence of long range order in the Ni-rich system is in 

contrast to the exchange of Ni
2+

 and Li
+
 ions between their respective layers. It is concluded that 

the extent of Ni
+
 /Li

+
 exchange is minor and the number of Li-ions in the TM layer is insufficient 

to create a √3ahex x √3ahex R30
o
 type long range in-plane ordering. This argument is supported by 

results published by Kobayashi et al. who studied the Ni-rich side of the series LiNi1-xMnxO2 (x= 

0.1-0.5). The authors confirmed that the least Ni/Li exchange is observed in nickel-rich material 

and that the amount of exchange increases with manganese ion content [16]. In LiNi0.5Mn0.5O2 

the interchange between Ni
2+

 in the TM layer and Li
+
 in the lithium layer creates the ordering 

between (Li
+
, Ni

2+
) and Mn

4+
 in the TM layer which generates the √3ahex x √3ahex R30

o 

superstructure as  
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Table 3.2: Classification of diffraction patterns obtained from the as-synthesized powders    

(15 particles analyzed per sample). 

 

Diffraction type LiNi0.7Mn0.3O2 LiNi0.5Mn0.5O2 LiNi0.3Mn0.7O2 

O3 14 (93%) 3 (20%) 2 (13 %) 

Spinel 1 (7%) 2 (13%) 3 (20%) 

monoclinic  2 (13%)  

√3ahex x √3ahex R30
o
  8 (54%) 10 (67%) 

 

previously reported by other authors [13]. In the Mn-rich compound long range in-plane ordering 

may be the result of a honeycomb arrangement formed of Ni and Mn ions comparable to the 

ordering observed in Li2MnO3. Alternatively it may involve Li/Ni interchange as described 

above for LiNi0.5Mn0.5O2. Assuming that superlattice reflections of sufficient intensity require 

the presence of Li in the TM layer it follows that the Li/Ni interchange is the highest in the Mn 

rich material where the largest percentage of in plane ordering is observed. This follows the trend 

mentioned above for a decrease in Li/Ni interchange in Ni-rich LiNi1-xMnxO2 (x = 0.1 - 0.5) [16]. 

A possible explanation for this behavior can be found from a comparison between electron 

densities around Ni
3+

 in Ni-rich compounds and Mn
3+

 in Mn compounds. The electron density of 

Mn
3+

 ions is higher than that of Ni
3+

 ions, resulting in higher repulsion between Mn
3+

 and Ni
2+

 

ions in the TM layer of manganese rich material. This may be the driving force for the higher 

Ni
2+

 / Li
+
 (lithium layer) exchange, which introduces the √3ahex x √3ahex R30

o
 in-plane ordering 

in LiNi0.3Mn0.7O2 observed here. The assumption that Li/Ni exchange plays a role in long range 
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ordering observed in the manganese-rich composition is confirmed by the high intensity of 

superlattice reflections observed in LiNi0.3Mn0.7O2 compared to those observed in LiNi0.5Mn0.5O2 

(compare Figure 3.8a to b). 

 

Figure 3.8 Example of electron diffraction pattern of starting material of LiNi0.5Mn0.5O2   (a) and 

LiNi0.3Mn0.7O2 (b) showing reflections having √3ahex x √3ahex type of   ordering (highlighted by 

arrows) 

 

3.4.2 Delithiated materials: 

During chemical delithiation about 0.12 - 0.14 Li was extracted from the synthesized 

powders and the resulting compositions measured by ICP are Li0.88Ni0.68Mn0.29O2, 

Li0.86Ni0.48Mn0.53O2, and Li0.87Ni0.31Mn0.65O2. The corresponding X-ray diffraction patterns in 

Figure 3.9 show the following trends: The intensities of superlattice peaks for delithiated Mn rich 

material are lower than those observed in the Mn-rich starting material, indicating that lithium 

ions have been extracted from the transition metal layers thereby reducing in long range 

ordering. In the Ni-rich material the splitting between (110) and (018) doublet has decreased and 

the (006) peaks has disappeared, corresponding to formation of some spinel phase. No major 

change was observed in the X-ray diffraction spectrum Li0.88Ni0.5Mn0.5O2. 
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A summary of the analysis of electron diffraction pattern taken from 15 particles of the 

delithiated compounds is given in Table 3.3. A comparison to the relative amounts observed in 

the starting material shows that the percentage of in-plane ordering has decreased in the Mn-rich 

compound and in Li0.87Ni0.5Mn0.5O2. Furthermore the intensity of superlattice diffractions in the 

Mn-rich compound is weak compared to the intensity observed in the starting material. This  

 

 

 

 

Figure 3.9 X-ray diffraction pattern of LiNi1-xMnxO2 (x = 0.3, 0.5, 0.7) after chemical 

delithiation 

indicates that less lithium is present in the transition metal layers compared to the starting 

material and that during chemical delithiation lithium is extracted from the TM layers. In the Ni-

rich material an increase in ordering is observed in the form of spinel formation and formation of 

a monoclinic phase. 
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Table 3.3 Classifications of diffraction patterns obtained from lithium deficient material in  

 the series LiNi1-xMnxO2 (x = 0.3, 0.5, 0.7) [15 particles of each analyzed]. 

 

Diffraction type Li0.88Ni0.68Mn0.29O2 Li0.86Ni0.48Mn0.53O2 Li0.87Ni0.31Mn0.65O2 

O3 8 (53%) 4 (27%) 3 (20%) 

O3+extra reflection - 1(6%) - 

Spinel 4 (27%) 3 (20%) 2 (13%) 

Monoclinic 3 (20%) 2 (13%) 3 (20%) 

√3ahex x  √3ahex R30
o
 - 5 (33%) 7 (47%) 

 

The magnetic behavior of the delithiated powders shows similar trends as the starting 

material, with the exception of the Ni-rich compound. Here the magnetic frustration behavior 

observed in the starting material has vanished after Li-extraction. In Figure 3.10 the variation of 

molar magnetic susceptibility values with the temperature is shown in FC and ZFC mode. The 

FC and ZFC curves are similar for all the materials showing paramagnetic behavior in the high 

temperature region (T ≥ 150 K) and increased magnetic susceptibility at lower temperature. The 

effective magnetic moments calculated from the plot of inverse susceptibility over temperature 

are given in Table 3.4. The values are lower than those measured in the starting material, see 

Table 3.1. To decide which ion compensates the charge upon Li-extraction in each compound 

we calculated the theoretical effective magnetic moment considering oxidation of Ni
2+

, Ni
3+

 or 
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Mn
3+

. The removal of 0.12 Li from LiNi
2+

0.5Mn
4+

0.5O2 requires either oxidization of (i) 0.12mol 

of Ni
+2

 to Ni
+3 

(HS/LS) or (ii) 0.06 mol Ni
+2

 are oxidized to Ni
+4

 (HS/LS). 

 

Table 3.4 Comparison between experimental and theoretical magnetic moment of delithiated 

materials (best fit of theoretical values shown). 

 

Delithiated material 

Li0.88Ni0.68Mn0.29O2 

 

2.50 µB 0.3Mn
4+

, 0.16Ni
2+

, 0.54Ni
3+

 (LS) 

0.3 Mn
4+

, 0.26Ni
3+

 (LS), 0.3Ni
2+

, Ni
4+

 (LS) 

2.55 µB 

2.46 µB 

Li0.86Ni0.48Mn0.53O2 3.05 µB 0.44Ni
2+

,0.06Ni
4+

,0.5Mn
4+

 3.08 µB 

Li0.87Ni0.31Mn0.65O2 

 

3.03 µB 0.17Ni
+2

, 0.13Ni
+3

(LS), 0.4Mn
+3

(LS),0.3Mn
+4 

0.235Ni
+2

, 0.065Ni+4(LS), 0.3Mn
+4

, 

0.4Mn
+3

(LS) 

2.99 µB 

2.96 µB 

 

The resulting compositions are (i) Li
+

0.88Ni
2+

0.38Ni
3+

0.12Mn
4+

0.5O2 and (ii) 

Li
+

0.88Ni
2+

0.44Ni
4+

0.06Mn
4+

0.5O2. A comparison between the experimentally determined effective 

magnetic moment (3.05µB) to the values determined for the two models shows that Ni
+2

 is 

oxidized to Ni
+4 

upon Li extraction from. Model (i) yields a theoretical effective magnetic 

moment of 3.22 µB compared to 3.08 µB for model (ii). Similar considerations for the Ni-rich 

and the Mn rich compounds do not yield unambiguous results. In the Ni-rich material an 

experimental effective magnetic moment of 2.50 µB is measured. This compares to a best 

theoretical value of 2.55 µB for oxidation of Ni
2+

 to Ni
3+

 (LS) or of 2.46 µB for oxidation of Ni
3+

 

to Ni
4+

. The oxidation of Ni
2+

 to Ni
4+

 can be excluded based on the larger discrepancies between 
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theoretical and experimental values (closest fit: 2.55 µB and 2.50 µB). For comparison in the Mn 

rich material the oxidation of Ni
2+

 to Ni
3+

 or to Ni
4+

 yields similar theoretical effective magnetic 

moments. 3.00 µB and 2.96 µB are calculated for Ni
2+

 (LS)  Ni
3+

 (LS) for  Ni
2+

 (LS)  Ni
4+

 

(LS) respectively compared to an experimental value of 3.03 µB. Here the oxidation of Mn
3+

 can 

be excluded. 

 

 

Figure 3.10 Variation of molar magnetic susceptibility versus temperature for LiNi1-xMnxO2   

 after chemical delithiation. 

 

3.5 Conclusions 

Compounds in the layered series LiNi1-xMnxO2 (x = 0.3, 0.5, 0.7) were synthesized and 

characterized by powder and single crystal diffraction methods as well as magnetic 

measurements with superstructure peaks were observed in the manganese rich phase. 

Comparison between theoretical models and experimentally determined effective magnetic 

moment indicates that Ni and Mn ions take on +2 and +4 oxidation states when present in a 1:1 
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ratio. In Ni-rich or Mn- rich compounds the extra Ni or Mn ions are observed in +3 oxidation 

states. Upon Li-extraction Ni
2+

 is oxidized to Ni
4+

 in LiNi0.5Mn0.5O2. In all as synthesized 

materials exchange between Li
+
 and Ni

2+
 is observed that results in in-plane √3ahex x √3ahex 

R30
o
 long range order in LiNi0.5Mn0.5O2 and in the Mn-rich compound but not in the Ni-rich 

compound. However the observed magnetic frustration in LiNi0.7Mn0.3O2 indicates that Ni
2+

 

ions are present in the Li layer here as well. After Li-extraction the magnetic frustration 

disappeared in the Ni-rich phase while the percentage of long range order decreased in 

LiNi0.5Mn0.5O2 and in the Mn-rich phase indicating that Li has been extracted predominantly 

from the TM layer.  
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Chapter 4                                                                                               

Magnetic properties and microstructural investigation of 

LiNi1/3Mn1/3Co1/3O2 and its aged products 

 

Abstract 

The performance of LiNi1/3Mn1/3Co1/3O2 depends largely on the distribution of transition metal 

ions over the available lattice sites within the layered rock salt structure. Despite of this, there is 

always a prediction that the Ni
+2 

ions and Li
+
 ions exchange their crystallographic sites due to 

very similar ionic radii which introduces in-plane ordering in the transition metal layers. This in-

plane cation ordering generally decreases the electrochemical activity in the battery. Here By 

using magnetic measurements and selected area electron diffraction studies, the cationic ordering 

was investigated in the LiNi1/3Mn1/3Co1/3O2 which was synthesized at 850 °C and also in its 

lithium deficient product before and after thermal ageing with respect to time in order to monitor 

the microstructural changes in these materials. The result showed that the change in morphology 

of the particles including the significant microstructure changes in the samples which was aged 

for linger time. In all the materials in-plane ordering was not detected in both magnetic and 

electron diffraction studies. 
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4.1 Introduction 

Over the last few years, the ternary transition metal oxide LiNi1/3Mn1/3Co1/3O2 has 

developed into a strong candidate for applications in high power rechargeable Li-ion batteries, 

due to its superior thermal stability and reversible capacity compared to its LiCoO2 counterpart.
1-

3
 It  has high reversible capacity of 160 mAh/g in the cut-off voltage range of 2.5 - 4.4 V and 200 

mAh/g in 2.8 - 4.6 V which makes this material very promising cathode for high power and high 

energy Li-ion batteries to be used in hybrid electric vehicles (HEVs).
4
 LiNi1/3Mn1/3Co1/3O2 

adopts the typical-α-NaFeO2 structure described by the R m space group which is formed by 

edge sharing MO6 octahedra [M= Co, Mn, Ni] separated by lithium ions occupying interstitial 

octahedral sites.
5
 The transition metal ions play significant roles towards the stability and 

electrochemical activity in this compound. Nickel (Ni
+2

) is the electrochemical active species, 

manganese (Mn
+4

) provides structural stability whereas cobalt (Co
+3

) supports ordering of 

lithium and nickel ions onto their respective lattice sites.  However, due to the similar ionic radii 

of Ni
+2

 (0.67 Å) and Li
+
 (0.76 Å) there is always a chance to exchange the crystallographic sites 

between these two ions.
6
  This is a significant drawback of this highly efficient cathode since this 

interchange between the lattice sites decreases the electrochemical activity
7
 because the Ni

+2 

present in the lithium sites oxidized to Ni
+3

 early before lithium removal and the Ni
+3

 distorts the 

lithium layers impeding the lithium diffusion.  The Li
+
/Ni

+2
 lattice site interchange eventually 

initiates the possibility of different cation ordering schemes in the transition metal layers which 

also affects the structural stability. Experimental evidence for in-plane ordering has been 

observed by Yabuuchi et al. who reported superlattice reflections in pristine material 

corresponding to   x  R30
o
 in plane unit cell.

4
 On the other hand, neutron diffraction and X-

ray powder diffraction data shows random distribution of Mn, Ni, Co over 3a sites in the R m 



70 

 

structure
8
. Furthermore the exchange of Li

+
 and Ni

+2
 ions between their respective 

crystallographic layers introduce local disorder that also decreases the electrochemical 

performance.
9
 Therefore, the cation ordering plays an important role to determine the 

electrochemical activity as well as stability of LiNi1/3Mn1/3Co1/3O2 materials. Although the 

previous literatures which describe the cation ordering in this material, but there are, still open 

questions regarding the cationic ordering in  this ternary cathode material which should be 

addressed in order to improve the structural stability as well as electrochemical activity. 

Previously, in one of our studies, we reported the systematic study on the cationic ordering in  

commercial LiNi1/3Mn1/3Co1/3O2 (ENAX Co, Japan, generation -1) which was produced at 1000 

o
C following the method described by Ohzuku et al.

1
 and charged to a high voltage of 5.2 V.

10
  

By using electron diffraction studies, we have investigated the cationic ordering before and after 

long-term ageing of this oxide cathode material. based on our observation, large variations in 

cation ordering was indentified in the pristine material and indications for grain growth  process 

within the examined particles (not the overall particle growth) after ageing was realized.
10

 Also, 

this inhomogeneous cation distribution in the pristine material converted to a mixture of O3 

phase and spinel phase after aging or charge to high voltage. Along with this some degree of 

√3ahex×√3ahex R30° in-plane ordering was observed in the starting material in the electron 

diffraction study. In our another study,
11

  the commercial LiNi1/3Mn1/3Co1/3O2 (ENAX Co, Japan, 

generation-2) which was also synthesized at 1000 °C following the procedure reported elsewhere 

4
 and underwent 520 charge discharge cycles between 3.0 and 4.3 V,  the long range ordering 

was detected in the starting material which was converted to the spinel phase after cycling . The 

mille feuille morphology was observed in the analyzed cycled particles which show the 

degradation of the cathode material after repeated cycling processes. To our speculation, the 
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synthesis procedures play an important factor to determine the microstructure of this 

LiNi1/3Mn1/3Co1/3O2 material. So, in the present study we want to investigate the 

LiNi1/3Mn1/3Co1/3O2 which is prepared by the sol- gel method at lower temperature compared to 

the starting material that we analyzed before in order to study the cation distribution in the 

stating material. Since studying thermal stability of LiNi1/3Mn1/3Co1/3O2 is another important 

aspect of this materials research, in next part, we analyze the cation ordering in the thermally 

aged products of lithium deficient material in order to understand how heat may affect the 

ordering of the transition metal ions in the lattice and changes the microstructure as well as 

particle morphology. We correlate the selected area electron diffraction studies and magnetic 

responses from these products to investigate the cation ordering as well as microstructural 

changes in these materials.  

Moreover, the magnetic characterization technique is a versatile and one of the most 

powerful techniques to study the structural complexity of layered cathode materials.
12

  The 

information on oxidation states of transition metal ions,
13

 cation ordering,
14-15

 stoichiometry of 

lithium ions
12

 can be deduced from the magnetic data of these oxide cathode materials. Earlier, 

there are many reports could be found those clearly demonstrate the magnetic characterization of 

LiCoO2 before and after lithium extraction since the lithium extraction changes the oxidation 

states of cobalt ions and hence, the magnetic response changes. 
16-18

 In one of our studies on 

LixCoO2 the magnetic tool was used to identify its thermally decomposed products such as 

Co3O4 and LiCo2O4 (Chapter 2).
19

 In our another study,
15

 (Chapter 3) the Ni
+2

/Li
+
 exchange was 

studied in the binary compounds LiNi1-xMnxO2 (x = 0.3,0.5,0.7) by using magnetic responses 

from these materials.  Although there are several studies reported
13,20,14

 describing the magnetic 

properties of the ternary LiNi1/3Mn1/3Co1/3O2 material, to our knowledge, no reports could be 
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found on the magnetic properties correlated to electron diffraction studies to study the cation 

ordering in this material and its aged products. Here we want to extend our studies on the 

magnetic behavior of ternary material LiNi1/3Mn1/3Co1/3O2 and also in lithium deficient material 

before and after ageing to study the cation ordering in these materials correlating the single 

crystal electron diffraction studies. In response of mixed transition material is strongly dependent 

on the cation ordering in the transition metal layers and  small amount of Ni
+2

 ions from 3b sites 

when replaces the Li
+
 in 3a site that generates the some degree of ferromagnetic ordering and can 

be detected by magnetic responses. Also, this Ni
+2

/Li
+
 exchange can be detected by the single 

crystal electron diffraction data where the superlattice reflection appears due to ordering in the 

transition metal layer.  

4.2 Experimental 

LiNi1/3Mn1/3Co1/3O2 was prepared by the hydroxide co-precipitation method following 

the modified procedure reported by Lue et al.
5
 Briefly, stoichiometric amounts of NiSO4·6H2O, 

CoSO4·7H2O and MnSO4·H2O with a Ni:Co:Mn ratio of 1:1:1 were dissolved in the distilled 

water separately to prepare 2 M
 
concentrated solutions. These solutions were mixed together and 

then stirred continuously for 1 h at 50 °C under argon atmosphere. 50 ml of aqueous NaOH and 

NH4OH solution were added to get precipitates maintaining pH of 10-11. The solution was 

stirred in argon atmosphere for 24 h at 50 °C. Then the precipitate was filtered, washed with 

water and kept in oven at 50 °C overnight to dry. The obtained precursor was mixed with 

stoichiometric amount of LiOH·H2O and thoroughly ground by a mortar. The powder was 

pressed into pellets and heated at 450 
o
C for 5 h followed by heated at 650

 
°C for 9 h. The 

disintegrated pellets were pressed again and calcined at 850 °C for 18 hrs and ground to obtain 

black LiNi1/3Mn1/3Co1/3O2 powder. Chemical delithiation was performed under argon atmosphere 
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at room temperature using the solution of NO2BF4 (source: Sigma Aldrich, assay ≥ 98%) in 

acetonitrile in a concentration ratio of oxide material: oxidant equal to 1:1.1. The reaction was 

carried out by drop wise addition of NO2BF4 for 90 minutes followed by additional stirring of 90 

minutes to produce Li1-xMn1/3Co1/3O2. Subsequently some portions of the delithiated powder 

were annealed in air at 70 °C for 30 days and 45 days.  

4.3 Characterization 

For the starting material and its delithiated compounds quantitative analysis of Co, Mn, 

Ni and Li content were carried out through Inductive Coupled Plasma Mass Spectrometry (ICP-

MS). X-ray diffraction spectra (XRD) were collected with an X’pert PRO diffractometer    

(Panalytical) operated at 40 kV voltage and 40 mA current using Cu-Kα radiation. Silicon 

powder was mixed into the powders as diffraction standard. Phase determination was carried out 

by comparison between experimental and simulated powder diffraction spectra obtained with the 

software “Powder cell” and using unit cells published in literature. Magnetic measurements were 

performed under field cooling (FC) and zero field cooling (ZFC) using a superconducting 

quantum interface design (SQUID) magnetometer (MPMS-XL-7: Quantum Design) in the 

temperature range between T = 5 K – 300 K under magnetic field H = 10 kOe. The plot of 

magnetic moment and magnetic field (M-H) curves were obtained by using same instrument at T 

= 5 K.  Transmission electron micrographs and selected area electron diffraction (SAED) 

patterns were obtained by using the JEOL 2010 Transmission Electron Microscope at the 

University of New Orleans operated at 200 kV. Experimental diffraction patterns were compared 

to patterns simulated with the software Desktop Microscopist.  
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4.4 Results and discussion 

Figure 4.1 represents x-ray powder diffraction patterns of starting material along with its 

delithiated products before and after heat treatment at 70 °C for 30 days and 45 days. The clear 

splitting of (006)/(102) and (108)/(110) doublets in the starting material shows the characteristics 

of layered structure. The value of I003/I104 is more than the value of 1.2 which indicates good 

layered structure of the starting material.  According to Dahn et al.,
21

 the R-factor 

(R=(I102+I006)/I101) indicates the hexagonal ordering in the layered cathode oxide materials, the 

lower the R- factor value the better the hexagonal ordering. The R-factor for the starting material 

was found out to be 0.391 which is significantly lower as compared to the values reported in the 

literature
5
 that shows the good hexagonal ordering in the as synthesized material.  The c and a 

lattice parameters are 14.135 Å and 2.84 Å, respectively, with c/a ratio of 4.97 which is in 

agreement with the values reported in literature.
5
 All the peaks in the starting material can be 

well indexed with the rhombohedral symmetry with R m space group (space group no. 166). 

After chemical delithiation the (003) peak shifts to the lower 2θ values resulting increasing in c 

lattice parameter compared to the starting material (see the inset of Figure 4.1). This is due to the 

induction of electrostatic  
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Figure 4.1  XRD of LiNi1/3Mn1/3Co1/3O2 (a) starting material, (b) delithiated material,                           

(c) delithiated and aged at 70 °C for 30 days and (d) delithiated and aged at 70 °C for 45 days. 

The inset shows the shifts of (003) peaks for different materials.  

 

repulsion among the MO2 (M = Co, Mn, Ni) slabs along c direction of the unit cell as lithium is 

extracted from the parent layered structure. The XRD line spacing between (108)/(110) doublets 

increases after deintercalation of lithium ions. Overall, there is no phase change was observed 

after lithium extraction. After thermal treatment of lithium deficient (delithiated) materials, the 

(003) peak shifts back towards the higher angle resulting decreasing in c lattice parameter 

compared to the delithiated material and this tendency is seen to be increased over the time of 

aging process (see the inset of figure 4.1) and the line spacing between (108) and (110) decreases 
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after thermal treatment of lithium deficient material.  Although the lattice parameters change in 

the materials before and after thermal aging of the lithium deficient material, the c/a ratios seem 

to be maintained for all the materials indicating that there is no major phase change has been 

occurred. 

The variation of magnetic susceptibility with the temperature under filed cooling (FC) 

and zero filed cooling (ZFC) for starting material, delithiated materials are shown in Figure 4.2.         

At higher temperature region (T ≥ 100 K), these materials show paramagnetic behavior obeying 

the Curie-Weiss law. The increase in magnetic susceptibility values were observed by cooling 

down the materials bellow 100 K. The maximum susceptibility value which was obtained at the 

low temperature (T = 2 K) region from the starting material is less than the value obtained from 

the lithium deficient material. This clearly suggests that the chemical delithiation process 

involves oxidation of Ni
+2 

(S = 1) to Ni
+3 

(S = 1/2) and/or Ni
+4 

(S = 0). To confirm the oxidation 

state of nickel ions after lithium extraction from the parent structures, the effective magnetic 

moments were calculated from the plot of inverse molar susceptibility vs. temperature in the 

temperature region 100 K - 300 K and those were compared with the theoretical effective 

magnetic moments calculated  



77 

 

 

Figure 4.2 Variation of magnetic susceptibility vs. temperature of LiNi1/3Mn1/3Co1/3O2   and 

delithiated material Li0.80Ni1/3Mn1/3Co1/3O2). 

by considering different oxidation states of transition metal ions. For the starting material the 

experimental effective magnetic moment was found to be 2.69 ± 0.01 μB where as, for the 

delithiated material it was 2.33 ± 0.10 μB. From the ICP measurement the actual composition of  

starting and lithium deficient material are found to be Li1±02Co0.33±02Mn0.33±02Ni0.33±02O2 and   

Li0.80±02Co0.31±02Mn0.34±02Ni0.34±02O2 respectively. For simplicity, while calculating for theoretical 

effective moments, the errors from ICP measurements were ignored. The experimental effective 

magnetic moment 2.69 μB for starting material was best explained by theoretical effective 

magnetic moment which was 2.77 μB by considering 0.33mols of Ni
+2  

(HS; S = 2), 0.33mols of 

Mn
+4

 (HS; S = 3) and 0.33 moles of Co
+3 

( HS; S = 0). Since delithiation process involves 

extraction of 20% lithium ion from the lattice, for charge compensation two processes may 

occur. First, the formation of 0.10 mol Ni
+2

 oxidizes to Ni
+4

 and the second one is, 0.14 mol of 
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Ni
+2

 oxidizes to Ni
+3

. The theoretical effective magnetic moments were calculated by using Mn
+4

 

(HS/LS), Co
+3 

(LS), Ni
+2

 (HS/LS), Ni
+3

 (HS/LS) and Ni
+4

 (HS/LS) and compared with the 

experimental effective magnetic moment. It has been found out that, the experimental effective 

magnetic moment is best described by the theoretical effective magnetic moment 1.76 μB  which 

was obtained by the composition Li0.80Co0.33
+3(LS)

Mn0.34
+4(HS/LS) 

Ni0.23
+2(HS/LS)

 Ni0.10
+4(LS)

O2. This 

clearly suggests that delithiation process involves the oxidation of Ni
+2 

to Ni
+4 

ions. It is evident 

that, the experimental effective magnetic moment value is slightly more than the theoretical 

effective magnetic moment value. Eventually, there is an anticipation of some fraction of Ni
+3

 

(HS/LS) is present in the lattice. The increase in the effective magnetic moment can also be due 

to the replacement of some amount of Li
+
 with Ni

+2
 in 3a site which generates the 180° strong 

interlayer superexchange between Mn
+4

(3b site)-O-Ni
+2 

(3a site)
  

which is strong enough to 

generate a ferromagnetic ordering by Goodenough’s rules.
22

 To investigate this effect, the plot of 

magnetic field (H) vs. Magnetic moment (M) were collected at T = 5 K which is given in Figure 

4.3. From this figure, it is observed that, the slope of the curve for the lithium deficient material 

is significantly different than the slope of the curve that obtained from the starting material. 

These observations may conclude that the saturation value for magnetic moment for the lithium 

deficient is more than the compared to the starting material. This indicates the presence of some 

degree of ferromagnetic interaction in the lithium deficient material. It is reasonable to argue that 

there is no hysteresis loop appears for this material to show the strong ferromagnetic ordering. 

Here we speculate that, in the present material the amount of Ni
+2

-Li
+ 

interchange is not enough 

to create a strong ferromagnetic ordering despite the slope change of M-H curve. This model also 

supports the single crystal electron diffraction data (see below) where no particles with long 

range ordering was observed keeping in mind that, the interchange of Li and nickel ions in their 
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respective crystallographic sites creates the long range ordering in the transition metal layers. 

The Curie temperature calculated from the plot of inverse magnetic susceptibility vs. temperature 

can be related to the percentage of Ni
+2

 ions is replaced by lithium in the transition metal layer as 

described by Zhang et al,
20

 The Curie temperature for the starting material and delithiated 

material was found to be -27K and -62K. The value of -27K for the starting material clearly 

confirms that the Ni
+2

-Li
+
 interchange is very minimal. This is also in agreement with the data 

calculated by Zheg et al. According to the authors in that report, the minimum value of Curie 

temperature was found to be -67 K where 1.2% of Ni
+2

-Li
+
 interchange was present in the 

starting material and it was increased with the increase in the interchange. In the present study, 

the Curie temperature obtained was lowest value suggesting the least Ni
+2

-Li
+
 intermixing in the 

starting material. This is also in agreement with the single crystal selected area electron 

diffraction data (see below) where no long range ordering is observed. The increase in the Curie 

temperature in the delithiated material indicates the some percentage of Ni
+2 

is replaced Li
+
 in 

the transition metal layers.  
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Figure 4.3 Magnetic moment (M) and magnetic field (H) of LiNi1/3Mn1/3Co1/3O2 materials 
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Figure 4.4 Variation of magnetic susceptibility vs. temperature of Li0.80Ni1/3Mn1/3Co1/3O2    after 

heat treated. 

The magnetic response from ternary LixNi1/3Mn1/3Co1/3O2 (x ≤ 1) is different compared to 

the “mono” atomic system LixCoO2 (x ≤ 1) and binary LiyNi1-xMnxO2 (y ≤ 1; x = 0.3, 0.5, 0.7) 

that we reported previously (see chapter 2 and 3). Here we want to compare these results briefly 

in order to understand the magnetic responses of these oxide materials before and after lithium 

extraction. In case of LixCoO2, the increase in magnetic susceptibility (and increase in effective 

magnetic moment) was observed at low temperature region (T ≤ 50K) by continuous lithium 

extraction from the starting material which is apparently paramagnetic over the temperature 

region T = 5 K - 300 K.
19,23

 Because, the lithium extraction process involves the change in 

oxidation state (increase in spin states) of Co
+3

(LS, S = 0) to Co
+4

(HS; S = 5/2 and/or LS; S = 

1/2). Since there in only one magnetic ion present in the lattice, no magnetic exchange 

interaction is expected in the “mono” atomic LixCoO2 system. However for binary and ternary 
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systems, the interaction between  magnetic ions (Co, Mn and Ni) is expected and the nature and 

strength of interaction always depend upon the oxidation state and the way the magnetic cations 

are aligned  through the oxygen anion (90 degrees or 180 degrees) based on Goodenough’s 

rule.
22

 In our study
15

 of the binary system LiyNi1-xMnxO2 (y ≤ 1; x = 0.3, 0.5, 0.7),  it was found 

that when the ratio of Mn ions to Ni ions are 1:1 there is a strong ferromagnetic coupling present 

due to the strong 180
 
ferromagnetic interaction between Ni

+2
 (in lithium layer)-O-Ni

+2 
(in TM 

layer), where as for Ni rich composition this ferromagnetic coupling was less pronounced and 

eventually for MN rich composition paramagnetic behavior is observed. The effective magnetic 

moments obtained in case of delithiated samples are less than as compared to the starting 

material since the lithium extraction process involves the change in oxidation state (decrease in 

oxidation states) of Ni
+2

 (LS/HS; S = 1) to Ni
+3 

(LS; S = 1/2) and/or Ni
+4

 (LS; S = 0). In case of 

ternary system LixNi1/3Mn1/3Co1/3O2 (x ≤ 1),      (in this present chapter), there are three transition 

metal ions present. The Mn
+4

 and Ni
+2

 ions are magnetically active where as Co
+3

 is not 

magnetically active in the fully lithiated state of the starting material. Here Ni
+2

/Li
+
 exchange do 

not occur so that the compound is paramagnetic. The magnetic susceptibility of the delithiated 

specimen is less compared to the starting material since the lithium extraction changes the 

oxidation states of (decrease in oxidation states) of Ni
+2

 (LS/HS; S = 1) to Ni
+3 

(LS; S = 1/2) 

and/or Ni
+4

 (LS; S = 0). This is similar to binary system since in both of these systems the Ni
+2

 is 

electrochemically active ions unlike the LixCoO2 systems where Co is electrochemically active 

ions.      

The variation of magnetic susceptibility with the temperature under filed cooling (FC) 

and zero filed cooling (ZFC) for delithiated material before and after heat treatment are shown in 

Figure 4.4. The effective magnetic moment of delithiated material after thermal treatment at      
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70 °C 30 d and 70 °C 45 d were found to be 2.38 ± 0.01 µB and 2.35 ± 0.05 µB and the Curie 

temperature was found to be -54K and -50K respectively.  The M-H curves for delithiated and 

aged materials follow the same trend in the slopes as in delithiated material. Over all there was 

no significant change in magnetic responses before and after thermal aging of lithium deficient 

material. This clearly suggests the better thermal stability of this material. In our earlier study
19,23

 

we found Co3O4 spinel formation after aging the Li1-xCoO2 product for longer time which was 

indentified from the magnetic data showing strong antiferromagnetic ordering at lower 

temperature. Here the strong antiferromagnetic ordering was not observed in the case of annealed 

samples. This is because; LiNi1/3Mn1/3Co1/3O2 material is more stable compared to the LiCoO2 

due to presence of Mn
+4 

ions present in the lattice. This prohibits the migration of magnetic ions 

to the tetrahedral sites which is the cause of the AFM ordering by 180°
 
superexchange interaction 

among the magnetic ions.   

In order to investigate the microstructural changes in these materials, single crystal 

selected area electron diffraction patterns were collected from randomly selected individual 

particles and each experimental pattern were simulated by theoretical pattern by considering O3, 

spinel and √3ahex×√3ahex R30° in-plane ordering  lattice and the summary is given in Table 4.1. 

The explanations of these lattices can be found elsewhere
15

. 22 particles were analyzed for 

starting material; out of which 20 particles (90%) were indexed as O3 phase, which means the 

TM ions are randomly distributed over 3a sites. A small fraction of the analyzed particles (2 out 

of 22: 10%) showed spinel phase. The morphology of the all particles was smooth across the 

edge of the particle surfaces. In Figure 4.5, the bright field image of one representative particle 

and the  
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Figure 4.5 Example of (a) bright field TEM image and (b) the corresponding selected area 

diffraction of LiNi1/3Mn1/3Co1/3O2 starting material which shows O3 ordering. 

   

Figure 4.6:  (a) Bright field TEM image showing the corroding edge and (b) the corresponding 

selected area electron diffraction of Li0.80Ni1/3Mn1/3Co1/3O2 which shows the faint {1-100} 

reflection (showed by arrow). 

 

 

 

(a) (b) 

(a) (b) 
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corresponding electron diffraction showing O3 phase are given as an example. Here this has to 

be noted that, in-plane ordering was not observed in the starting material which clearly suggests 

that the transition metals are randomly oriented in the transition metal layer which would show 

better electrochemical activity. In our previous report,
10

 some percent of particles those show the 

in plane  

 

 

 

  

Figure 4.7 (a) Bright field TEM image showing mille feuille morphology and (b) corresponding 

selected area diffraction of Li0.80Ni1/3Mn1/3Co1/3O2  after heat treatment for 70 °C 30 days. 

 

 

 

(b) 

(b) (a) 
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Figure 4.8 (a) Bright filed TEM image showing mille feuille morphology and (b) corresponding 

selected area diffraction of Li0.80Ni1/3Mn1/3Co1/3O2 after heat treatment at 70 °C for 45 days. The 

O3 reflection (marked in a circle), spinel reflection (marked as square) and forbidden reflection 

(marked as arrow) are highlighted. 

 

ordering with some degree of inhomogenety in the starting material  was found out where in this 

present work, this ordering was not present in the examined particles. This clearly establishes the 

fact that the synthesis process is one of the important factors to produce homogeneous starting 

material of LiNi1/3Mn1/3Co1/3O2 without having the in- plane ordering that occurs due to Li
+ 

-Ni
+2

 

interchange. Chemical extraction of lithium ion from the parent LiNi1/3Mn1/3Co1/3O2 structure 

produces more spinel phases in the expense of the O3 phase. Out of 20 particles analyzed 60%   

(12 out of 20) of particles were indexed as O3 phase whereas 20 % (4 out of 20) of the particles 

showed the spinel reflection. The chemical extraction did not introduce any significant 

microstructure changes. This observation differs from the observations in the chemically 

delithiated LixCoO2 where the removal of small amounts of lithium results in the appearance of 

(b) (a) 
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strong forbidden {1-100} reflection along [0001] zone axis direction. In LiCoO2, the Co-O-Co 

slabs glide in the (0001) plane upon lithium removal, which changes the stacking order and 

breaks the rhombohedral symmetry. In LiNi1/3Mn1/3Co1/3O2 very faint forbidden reflections were 

observed in 4 out of 22 particles (see Figure 4.6b) which clearly suggests the improved structural 

stability of the mixed TM compounds compared to the LiCoO2. However, the morphology of the 

particle was changed after chemical delithiation. As chemical delithiation is etching process, 

some of the particles were represented with corroded edges (see the Figure 4.6a). The appearance 

of forbidden reflection in lithium deficient material is may be due to stacking fault of the 

material
10

. 

In case of aged materials the particles retains O3 phase. The percentage of spinel 

reflections were increased by the expense of the O3 phase. The material which was aged for 

shorter days show 40% (8 out of 20) of particles those show O3 reflection and 60% (12 out of 

20) show spinel reflections. Over time, the O3 phase still remains almost similar that is 40% of 

the particles show O3 reflections. But, there were some percentage of particles (10%: 2 out of 

20) which show the spinel reflection as well as forbidden reflections with O3 reflections (see 

Figure 4.8b). This is only seen for the particles which were annealed for longer time. The 

intensity of the forbidden reflections was brighter compared to the delithiated material. For the 

starting material morphology of all particles were homogeneous. After delithiation the particles 

were corroded at the edges and after annealed mille feuille morphology (see Figure 4.7a 

highlighted in circle) was obtained. In our earlier reports,
11,26

 we also found the similar 

morphology changes for the particles obtained from cycled materials. So this type of morphology 

can take place during the aging of battery and do not require continuous lithium extraction. The 
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microstructural changes in the heat treated lithium deficient LiNi1/3Mn1/3Co1/3O2   material may 

trigger the capacity fade in this material and should be taken into consideration. 

Table 4.1 Classification of diffraction patterns obtained from LiNi1/3Mn1/3Co1/3O2 materials 

Materials Starting Delithiated Delithiated and 

aged at70 °C 

for 30 days 

Delithiated and 

aged at70 °C 

for 45 days 

O3 20/22 (90%) 12/20 (60%) 8/20 (40%) 8/20 (40%) 

Spinel 2/20 (10%) 4/20 (20 %) 12/20 (60%) 9/20 (45%) 

O3+forbidden 0 4/20 (faint) 

(20%) 

 1/20 (5%) 

O3+forbidden+Spinel 

 

0  

0 

  

2/20 (10%) 

Super lattice ordering 

 

0 0   

Total no. particles 

 

22 20 20 20 

 

4.5 Conclusion 

We investigated LiNi1/3Mn1/3Co1/3O2 material which was synthesized at 850
 
°C and found 

the absence of in-plane ordering increasing the homogeneity in the material. Lithium deficient 

material does not show any significant phase changes rather the morphology of the particle was 
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corroded. The aged product of thermal deficient material show least stable material among all the 

materials under investigation in this work since the prominent microstructure changes.    
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Chapter 5                                                                                               

Synthesis and ferroelectric response of cubic and spherical LiNbO3 

nanocrystals 

 

Abstract 

Methods have been developed for the shape-selective synthesis of ferroelectric LiNbO3 

nanoparticles.  Decomposition of the single-source precursor, LiNb(O-Et)6, in the absence of 

surfactants, can  reproducibly lead to either cube- or sphere-like nanoparticles.  X-ray diffraction 

shows that the LiNbO3 nanoparticles are trigonal (R3c) with a = 5.145(3) Å, c = 13.867(3) Å for 

nanocubes and a = 5.139(3) Å, c = 13.855(3) Å
 
for nanospheres.  Sample properties were 

examined by piezoresponse force microscopy (PFM) and Raman where both sets of 

nanoparticles exhibit ferroelectricity.  The longitudinal piezoelectric coefficients, d33, varied with 

shape where the largest value was exhibited in the nanocubes (17 pm/V for the cubes versus 12 

pm/V for spheres). 
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5.1 Introduction 

  For the past several decades, there has been considerable interest in the synthesis of 

ferroelectric materials due to their various applications in electronics, non-volatile memories, and 

thin film capacitors.
1-2

 Lithium niobate (LiNbO3, here after abbreviated as LN) is a well known 

ferroelectric material and due to its excellent piezoelectric and nonlinear optical properties, has 

been intensely studied for applications in holographic memories, second harmonic generation, 

and electrooptics.
3-6

 Further, LN crystals show a strong room temperature spontaneous 

polarization of 70C/cm
2
 that can persist up to the high ferroelectric transition temperature of 

1483 K, making it a promising candidate for a number of other applications as sensor arrays, 

piezoelectric antenna arrays.
7-8

  

 A variety of synthetic methods have been used to prepare bulk LN including sol-gel,
9
 molten 

salt synthesis,
10

 hydrothermal methods,
11

 combustion,
12

 and solvothermal methods.
13

 The 

physical properties of materials can be strongly dependent upon particle shape, size, and 

crystallinity as well as preparation methods and as such, there is always an interest in studying 

properties as a function of dimensions, morphology, and processing history. Recently 

nanoparticles of LN were prepared by using soft-chemical,
5
 sugar-PVA matrix,

14
 and solution-

phase methods.
15

 One report of the use of a single-source precursor, in combination with a 

surfactant, has been published and this method produced rod-like structures of aggregated LN 

nanoparticles.
15

   Despite the use of these various methodologies to prepare nanoscale LN, there 

have been no reports demonstrating effective shape control in the production of single crystalline 

nanoparticles. In this chapter, we present our study on the controlled synthesis of both cube- and 

sphere-like LN nanoparticles via the single-source precursor, LiNb(O-Et)6.  Both morphologies 

exhibit ferroelectric response with the cubic crystal demonstrating a larger piezoamplitude.   
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5.2 Experimental 

  LN nanoparticles were readily synthesized by a simple solvothermal approach.        

LiNb(O-Et)6 (Alfa Aesar, 5% w/v in ethanol), and 1,4-butanediol (Sigma-Aldrich, ≥ 99%), used 

without any further purification, were heated in an autoclave (Parr Instrument Model #4749). In 

typical syntheses, 3.5 mℓ (for cube-shaped particles) or 4.5 mℓ (for spherical particles) of 

LiNb(O-Et)6 solution were placed in a ~23 mℓ Teflon sleeve along with 2.5 mℓ of 1,4-

butanediol. The Teflon vessel was sealed in the stainless steel autoclave and heated in a furnace 

at     235 °C for 3d before being cooled down to room temperature naturally. The resulting white 

precipitate was collected by centrifugation, washed several times with ethanol, and dried in an 

oven at 70 °C.  

5.3 Characterization 

  The X-ray diffraction (XRD) patterns of samples were collected on a Philips X-pert PW 

3040 MPD X-ray powder diffractometer operated at 40kV and 40mA current with Cu Kα 

radiation. The transmission electron microscopy (TEM) was performed by using JEOL 2010 

electron microscope at accelerating voltage of 200kV. Raman spectra were collected at room-

temperature on a Thermo-Fisher DXR dispersive Raman spectrometer in a conventional 

backward geometry using the λ = 532 nm line with a spectral resolution of 3 cm
-1

. The laser was 

focused with an X50 long-focal-length objective to a spot of about ~2 μm. Measurements were 

taken with the relatively low power of the incident laser beam (1 mW), to avoid the overheating 

of the sample from the laser source. An Asylum Research MFP-3D atomic force microscope was 

employed to collect piezoelectric properties in a capacitor geometry, where the conductive AFM 

tip and the conductive substrate are the top and bottom electrodes, respectively. Individual LN 

nanoparticles were imaged by applying a small ac voltage with a drive amplitude of 40 mV and a 
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contact resonance frequency of 270 kHz between the tip and the conductive substrate. To avoid 

measurement-related artefacts and to compare the piezoelectric properties of LNO nanoparticles 

with different shapes, all measurements were carried out with the same conductive AFM tip and 

laser spot on the micro-cantilever. Local amplitude and phase hysteresis loops were collected by 

applying 22 V ac-voltage between the tip (top electrode) and conductive substrate (bottom 

electrode). 

5.4 Results and discussion 

Figure 5.1 presents the transmission electron microscopy (TEM) images of LN nanoparticles.  

Both cube-shaped (a-d) and sphere- shaped (e-f) nanoparticles can be obtained by this method. 

The nanocubes typically have an edge length of 50-60 nm (based on ~100 particles, average 

length is 54.32 6.53nm), while the sphere-like particles have a sphere diameter of 40-60 nm 

(ave. dia ≈ 48.82 8.53nm). A high resolution TEM image (HRTEM) of a cube, along with its 

first Fourier transformation (FFT, see Figure 5.1d and its inset), show that it is highly crystalline 

with the facet oriented along (012) planes. Structural and phase characterization of LN 

nanoparticles were further performed by X-ray powder diffraction. From Figure 5.2, the 

nanoparticles can be seen to crystallize in the trigonal crystal system of the space group R3c 

(#161), this being the ferroelectric phase of LN. All the diffraction peaks are well matched with 

those from the reference (PDF file #20-0631).
16

 The refined lattice parameters are in agreement 

with the values reported in the literature
15

 and appear to be independent of nanoparticle shape (a 

= b = 5.145(3) Å, c = 13.867(3) Å for nanocubes; a = b = 5.139(3) Å, c = 13.855(3) Å
 
for 

nanospheres). Raman spectra in the wavelength range of 100-1000 cm
-1

 are shown in Figure 5.3.  
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Figure 5.1 TEM images of LiNbO3 nanoparticles. (a-d) cubic shaped particles (e-f) spherical 

shaped particles. (d) HRTEM of one single nanocube with its FFT transformation shown as inset. 
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Figure 5.2 XRD patterns of LiNbO3 nanoparticles (a) nanospheres and (b) nanocubes. The 

reference pattern (PDF file #20-0631) of LiNbO3 (trigonal crystal system, space group R3c) is 

given in (c).  

 

Peaks are observed at 156, 239, 370, and 433 cm
-1

 and are attributed to the E transverse optical 

(TO) phonon mode of LN. These peaks are also consistent with the hexagonal ferroelectric 

phase.
17

 The fundamental A1 TO modes were observed at 277 and 619 cm
-1

,
 
which also agree 

with values reported for ferroelectric LN single crystals.
18

 

  Piezoresponse force microscopy (PFM) was used to investigate the ferroelectric 

properties of LN nanoparticles. Standard PFM hysteresis (piezo-phase versus voltage, Figures 

5.4a and 5.4c), and butterfly curves (piezo-amplitude versus voltage, Figures 5.4b and 5.4d), for 

both LN nanocubes and nanospheres are shown in Figure 5.4. In the phase response curves 

(Figures 5.4a and 5.4c), the existence of intrinsic lattice polarization in both LN nanocubes and 
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nanospheres and 180
o
 switching can be observed, which indicates the existence of 180ᴼ

 
domains 

in the lattice.
19

 Such a domain change in voltage is generally associated with ferroelectric 

behavior.
20

 The maximum piezo-amplitude signal measured was approximately 0.4 nm for the 

nanocubes and 0.25 nm for spherical nanoparticles (see Figures 5.4b and 5.4d). From the linear 

portion of the piezoresponse amplitude signal, the longitudinal piezoelectric coefficients, d33, 

were calculated which are 17 pm/V for cube-like and 12 pm/V for spherical LN nanoparticles. (A 

= QVacd33, where A is piezo-amplitude, Q is the quality factor which accounts for the amplitude 

enhancement at tip-bias resonance and Vac is the voltage). 

 

 
Figure 5.3 Raman spectra of LiNbO3 nanoparticles. (a) nanospheres and (b) nanocubes. 

Transverse optical (TO) bands assignments, E TO and A1 TO, are shown.  

  The solvothermal method is a versatile technique for the production of metal oxide 

nanoparticles at low temperatures.  In this study it was found out that the particle shape could be 

tuned simply by changing the amount of precursor. For larger amounts of LiNb(O-Et)6, the 
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particles attain nearly spherical shape while with smaller amounts, cubic morphologies with 

well-defined edges were obtained.  In a solvothermal reaction, pressure is generated 

autogenously in the reaction vessel and is dependent on the total volume of the vessel, the filling 

factor of the vessel, and the molar volume of the liquids. When the volume of the liquid inside 

the vessel is increased, the pressure generated decreases according to the Peng-Robinson 

equation of state.
21

  So by decreasing the amount of precursor, the pressure generated in the 

reaction vessel increases so as to facilitate the nucleation and growth of the particle along a 

particular direction, effectively favouring the cubic morphology.  1,4-butanediol also appears to 

be critical for this synthesis; syntheses attempted with other polyol solvents (ethylene glycol, 

triethylene glycol) were not successful and we found that only 1,4-butanediol leads to the 

production of the LN.  It was also noted that three days reaction time was the minimum duration 

needed to form nanoparticles with definite shape. For example, the TEM image taken from a 

sample containing nanoparticles obtained after two days of reaction (Figure 5.5) showed only 

agglomerations of nanoparticles – those particles eventually grow during the aging time to 

produce nanocubes (Figure 5.1a).  The reaction temperature (T = 235 °C) also has an impact on 

the stabilization of LN. If the reaction is 

 

 

 

 

 

 



99 

 

 

Figure 5.4 (a) Phase and (b) amplitude responses from LN nanocubes, (c) phase and (d) 

amplitude responses from LN nanospheres. The double arrows in (a) and (c) highlight the 180
o
 

phase change with voltage. 
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carried out at T = 250 °C, for three days the secondary phase, LiNb3O8, is formed along with LN 

(Figure 5.6) and if the reaction temperature is 220 °C, then crystallization does not occur.  

 To investigate whether the LN nanoparticles were passivated with solvent species after their 

growth, FT-IR spectra were collected from neat 1,4-butanediol and then compared to that 

obtained from a solid sample containing  LN nanocubes (Figure 5.7). No evidence of 1,4-

butanediol can be observed in the spectrum. This is also consistent with the surfactant-free 

approach targeted in this synthesis. The possible route to produce LN nanoparticles may be 

thermal decomposition of LiNb(O-et)6 in the presence of 1,4-butanediol. During thermal 

decomposition, intermolecular rearrangement occurs to introduce the metal-oxide linkage (figure 

5.7I and II). Apparently removal of alcohol regulates the nucleation and growth of the particle to 

form seed like particles. This was confirmed by TEM image which was taken after two days of 

reaction shows the formation of seed like particles which eventually grow over the aging time to 

produce cubic shaped particles. This process is represented in Figure 5.8. So, the thermal 

temperature and the nature of solvent are the key to form LN nanocubes in this particular 

reaction. 
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Figure 5. 5 Bright field TEM image of LN particles taken after synthesis for 2 d at 235 °C.  

 

 

Figure 5.6  XRD pattern of LN nanoparticles after synthesis at 250 
o
C for 3 d shows formation 

of LiNb3O8 (highlighted by arrow mark). 
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           Figure 5.7 IR spectrum of LN nanocubes compared with 1,4-butanediol. 

 

  Figure 5.8 Mechanism of formation of LN nanoparticles. 

 

LN is a ferroelectric material with a high Curie temperature (Tc = 1483 K).  Below the Curie 

temperature, the material is rhombohedral with the R3c space group, and at higher temperature     

(> Tc), changes to c and .
22

 In the R3c ferroelectric phase, the cations are displaced along the 

[111] crystallographic direction, which breaks the mirror symmetry plane present in high 

temperature paraelectric phase to induce the spontaneous polarization in the lattice. The XRD 

patterns of the synthesized nanoparticles show that the materials crystallize in R3c phase, and 
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this was further confirmed by Raman phonon bands. The optical phonon modes obtained from 

Raman scattering are very sensitive to stoichiometry, strain, impurities as well as the crystal 

system of the materials
17

. The phonon modes observed for the LN cube-shaped nanoparticles are 

very similar to those of the spherical nanoparticles both in terms of position and relative intensity 

(Figure 5.3). The characteristic phonon peaks convincingly suggest that the ferroelectric phase 

(R3c) is stable in these nanoparticles,
17

 results which are consistent with the PFM response 

curves. Close examination of the local piezoelectric response in individual nanoparticles 

evidenced that the displacement observed in nanocubes is slightly higher than that measured in 

nanospheres.  This difference could be attributed to a greater crystallinity in nanocubes in 

tandem with the presence of better-defined facets in nanocubes than in spherical nanoparticles.
23

 

This is consistent with previous studies where researchers found that piezoelectric properties of 

nanostructured materials can depend on the crystallite size,
23

 crystal orientation,
24

 and 

geometry.
25,26

  

5.5 Conclusions 

  Lithium niobate nanoparticles with different morphologies were synthesized under 

solvothermal conditions by a simple surfactant-free route using a single-source precursor.  The 

shapes of the nanoparticles, nanocubes versus nanospheres, were tuned by simply changing the 

concentration of the precursor. Both sets of particles exhibit polarization switching at room 

temperature with static d33 coefficient values of 17 pm/V for cube-like and 12 pm/V for spherical 

LN nanoparticles. Work is ongoing to study ferroelectricity in these nanostructures, including the 

stability of the ferroelectric phase and the kinetics of the local polarization switching in 

individual nanocrystals. With controlled size and shape and predictable ferroelectric properties, 

these nanostructures will be attractive as building blocks for the design of complex structures, 
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such as in multiferroic nanoparticulate composites.  
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Chapter 6                                                                                                              

Conclusions 

The basic objective of this work was to identify structural instabilities and study the 

microstructure of layered cathode materials upon lithium deintercalation (charging) to obtain a 

deeper understanding of the change in crystal structure and particle morphology of these 

materials before and after charging. Heating experiments of the lithium deficient phases were 

performed to investigate thermal stability. Powder X-ray diffraction, single crystal electron 

diffraction, and imaging techniques in the transmission electron microscope were used to study 

the microstructure of these materials whereas magnetic measurements were used to investigate 

variations in cation ordering for LiMO2 (M = Co, Mn, Ni) cathode materials.   

  Different spinels phases, such as LiCo2O4 and Co3O4, were identified by using magnetic 

measurements and XRD and thereby it was possible to follow the decomposition of Li1-xCoO2 

cathode material. Magnetic studies of LixCoO2 (x = 0.98, 0.76, 0.55) were conducted before and 

after heat treatment under zero field (ZFC) and field cooling (FC) to elucidate the nature and 

pathways of the spinel phase that forms in addition to the layered LiCoO2 phase. The results 

showed that the LiCo2O4 phase is formed before the end product Co3O4 is observed. Prior to heat 

treatment paramagnetic behavior was observed without indication of magnetic ordering down to  

5 K. Heat treatment of delithiated materials progressively changed the magnetic nature within the 

compounds. After short term heat treatment of LixCoO2, spin glass-like or geometrically 

frustrated behavior was observed that suggested the formation of metastable spinel phase 

LiCo2O4 in the lattice. After long-term annealing, pronounced strong antiferromagnetic (AFM) 

ordering was observed which was in agreement with the formation of Co3O4. At the same time 

an increase in the effective magnetic moment occurred with annealing time due to introduction 
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of Co
+2 

ions resulting from formation of Co3O4 phase.  

  Homogeneous LiNi1/3Mn1/3Co1/3O2 was synthesized at 850 °C to avoid the cation 

ordering in the starting material. Also, we studied the behavior of lithium deficient products of 

this material before and after thermal ageing with respect to time. Our result showed that the 

change in morphology of the particles in long term aged product including the significant 

microstructure changes. The lithium deficient material did not show any prominent phase 

changes, rather the morphology of the particle was corroded. The aged products of thermal 

deficient material show prominent microstructure changes among all the materials under 

investigation here. From magnetic data and XRD data, no cubic spinel phase were detected in 

this material even after long term ageing; leading to the important conclusion that 

LiNi1/3Mn1/3Co1/3O2 is more stable compared to LiCoO2. Our speculation is that, the morphology 

changes in the lithium deficient material and aged products may be what leads to the capacity 

fading in this material.  

  In another project we have performed microstructural studies on a series of                

Li[Ni1−xMnx]O2 compounds where the oxidation states and arrangement of transition metal ions 

are characterized by SQUID magnetometry and single crystal electron diffraction, respectively. 

Compounds in the series LiNi1−xMnxO2 (x = 0.3, 0.5, 0.7) were synthesized in the layered 

structure (they form in different particle morphology) and characterized by powder and single 

crystal diffraction methods as well as magnetic measurements. Superstructure peaks were 

observed in the manganese-rich phase. Comparison between theoretical models and 

experimentally determined effective magnetic moments indicates that Ni and Mn ions take on +2 

and +4 oxidation states when present in a 1:1 ratio. In Ni-rich or Mn-rich compounds the extra 

Ni or Mn ions are observed in +3 oxidation states. Upon Li extraction, Ni
2+

 is oxidized to Ni
4+

 in 
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LiNi0.5Mn0.5O2. From SAED studies, exchange between Li
+
 and Ni

+2
 is observed that results in 

in-plane √3ahex×√3ahex R30° long range order in LiNi0.5Mn0.5O2 and in the Mn-rich compound 

but not in the Ni-rich compound. However, the observed magnetic frustration in LiNi0.7Mn0.3O2 

indicates that Ni
+2

 ions are present in the Li layer here as well by applying Goodenough rules of 

magnetic interaction among the transition metal ions. After Li-extraction, the magnetic 

frustration disappeared in the Ni-rich phase while the percentage of long range order decreased 

in LiNi0.5Mn0.5O2 and in the Mn-rich phase indicating that Li has been extracted predominantly 

from the transition metal layer. This project reveals the correlation of magnetic properties with 

the selected area electron diffraction studies in order to interpret the ordering among the 

transition metal ions in binary oxide cathode materials.  

  Shape dependent ferroelectric properties of LiNbO3 nanoparticles were studied. 

Nanoparticles with different morphologies were synthesized under solvothermal conditions by a 

simple surfactant-free route using LiNb(O-Et)6 as a single-source precursor.  The shapes of the 

nanoparticles, nanocubes versus nanospheres, were tuned by simply changing the concentration 

of the precursor. X-ray diffraction showed that the LiNbO3 nanoparticles were trigonal (R3c) 

with a = 5.145(3) Å, c = 13.867(3) Å for nanocubes and a = 5.139(3) Å, c = 13.855(3) Å
 
for 

nanospheres.  Ferroelectric properties for these nanoparticles were confirmed by piezoresponse 

force microscopy (PFM). Both sets of particles exhibited polarization switching at room 

temperature with static d33 coefficient values of 17 pm/V for cube-like and 12 pm/V for spherical 

LN nanoparticles. With controlled size and shape and predictable ferroelectric properties, these 

nanostructures will be attractive as building blocks for the design of complex structures, such as 

in multiferroic nanoparticulate composites.  
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Appendix 1                                                                                             

Synthesis and Ferroelectric properties of LiNbO3 hollow spheres. 

 

This project involved the exploration of novel synthetic techniques to produce 

ferroelectric LiNbO3 hollow spheres. The spheres were synthesized by a solvothermal method. 

The detailed synthesis procedure is given as follows. 

For the synthesis of LiNbO3 hollow spheres 2 mmol of lithium acetate dehydrate and 2 

mmol of niobium ethoxide and 9 ml 1,4-butanediol were placed in a 23 ml of Teflon vessel and 

2.5 mL of 1,4 butanediol was added as a solvent. The Teflon vessel was sealed in an autoclave 

(Parr Instrument Model #4749) and heated in a furnace at 220 °C for 5 days and subsequently 

cooled down to the room temperature naturally. The white precipitates were collected and 

washed with ethanol several times followed by drying in an oven at 70 °C overnight to get the 

white powder of lithium niobate.  

The FESEM and TEM images for hollow spheres are presented in Figure A1.1a and 

A1.1b respectively. The hollow nature of the all particles can be confirmed from TEM image, as 

the core of the spheres is brighter as compared to outer shell.  From these images it was found 

that the diameters of hollow spheres were about 1.5 μm. From TEM images it can be seen that 

the hollow spheres are formed by nanoparticles of different sizes.  The selected area electron 

diffraction (Figure A1.2b) taken from the corresponding particle (Figure A1.2a) shows the spot 

pattern corresponding to rhombohedral symmetry. The present work deals with surfactant free 

synthesis of LN hollow spheres which make the better accessibility of the surface of hollow 

spheres to enhance the property of these materials. The formation of LN phases most likely 

proceeds by ester elimination which occurs between acetate ligand of lithium acetate and 
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ethoxide ligand of niobium ethoxide to form the oxo-ligand. The ferroelectric response of 

LiNbO3 hollow spheres is confirmed by PFM (Figure A1.3) and Raman measurement (Figure 

A1.4). In PFM, the hysteresis behavior of phase vs. amplitude curve shows that the materials 

have ferroelectric behavior. The maximum amplitude obtained for these materials is 2.5 nm 

(Figure A1.5). In the Raman measurement all the TO modes corresponds to the R3c phase of 

LiNbO3 which is ferroelectric.      

.  

  

Figure A1.1 (a) FESEM image and (b) TEM image of LiNbO3 hollow spheres. 
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Figure A1.2 (a) TEM image and (b) corresponding SAED pattern of                                  

LiNbO3 hollow spheres. 

 

 

  

Figure A1.3 (a) Phase response and (b) amplitude response of LiNbO3 hollow sphere to 

the applied voltage in PFM measurement. 
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Figure A1.4 Raman measurements of LiNbO3 hollow spheres. 
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