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Nomenclature 
 

A Projected pipeline area 

b Damping parameter 

    Added mass coefficient 

   Drag coefficient 

    Hydrodynamic mass coefficient 

   Water depth, same as WD 

    Differential drag force (Morison) 

D  Pipe diameter 

E Young’s modulus 

EI  Flexural rigidity of steel pipe  

    Effective tension force 

      Static component of the effective tension force 

      Dynamic component of the effective tension force 

g Gravitational acceleration = 9.81 m/s
2
 

   Significant wave height 

I Moment of inertia 

k On the sea bottom: pipe subgrade modulus, in the free span: zero 

KC  Keuligan Carpenter number 

L Unsupported length 

    Torque 

m Mass per length of the pipeline 

    Variance of wave spectrum, zeroth order moment 

    First order moment 

P Pressure 

    Distributed load on pipeline not due to motion in the static plane 

   Distributed load on pipeline not due to motion perpendicular to the static plane 

s  Curve length from the touch-down point, positive upwards 

    Response spectrum 

    Sea spectrum 

       Dynamic stress response spectrum 



 v  

T  Period 

    Mean wave period 

t  Time 

   Steel wall thickness of pipe 

     Dynamic bending deflections in the static plane 

     Dynamic bending deflections perpendicular to the static plane 

    Vessel motion component tangential to the pipe 

     Axial pipe motion relative to the vessel 

V Water particle velocity 

   External flow velocity lateral to the pipe in the static plane 

   External flow velocity lateral to the pipe perpendicular to the static plane 

WL  Wave length 

z Depth 

   Gradient 

  Strain 

   Poisson’s ratio 

   Frequency 

   Encounter frequency 

   Velocity potential 

  Static inclination angle of pipeline  

    Static curvature of pipeline 

   Specific mass of sea water = 1025 kg/m
3
 

   Circumferential pipe stress 

     Bending pipe stresses 

    Equivalent pipe stress 

    Wave amplitude 

      Derivative along pipe length, 
 

  
 

     Derivative on time, 
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Abstract 
 

Subsea pipelines are used extensively throughout the world’s oceans to transport oil and gas 

from offshore facilities to land, often hundreds of miles. These pipelines range in diameter from 

three to sixty inches and are installed in deeper depths every year, currently as deep as 2,900 

meters. Pipeline construction and installation costs are a large percentage of offshore projects 

and thus, methods toward reducing costs is an imperative objective. With pipeline installation 

projects taking place in harsher environments, vessel operability is vital. This work presents an 

improved method for determining limiting criteria for pipelay operations to more effectively plan 

and execute offshore projects. This improvement is based on the consideration of total effective 

pipeline stresses as the limiting criterion rather than the traditionally used limiting pitch angle. 

Limiting sea curves based on a sample dynamic pipeline analysis are shown and their 

incorporation in workability planning is discussed. 
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Section 1 - Introduction 
 

1.1. Background 

The offshore construction industry has progressed rapidly in the last 30 years as the World’s 

increased demand for petroleum products has necessitated the exploration of deeper water. 

Today, subsea oil fields are being constructed in water depths of nearly 3,000 meters due to large 

advancements in subsea equipment and the vessels which install it. At depths of this magnitude, 

the ocean presents challenges not existing closer to the surface, including drift currents, 

temperature changes, and extreme terrain.  

Purpose-built vessels have been constructed for the use of installing pipelines and are 

catered to a specific component of subsea construction, such as rigid pipelines, flexible 

flowlines, umbilicals, or data communication cables. Designs have progressed from flat-bottom 

deck barges equipped with a truss-type stinger to large semisubmersible hulls with adjustable 

towers to construct deeper offshore. As the industry progressed into harsher environments, a 

need became apparent for either optimized hull forms or more advanced lay systems, both of 

which have been the subject of much research over the last few decades.  

Today, offshore construction vessels are equipped with bilge keels, anti-roll tanks, motion-

suppression tanks, mooring lines, and heave compensation devices to help reduce the movement 

of suspended pipe loads. However, the addition of these new variables into the modeling of ship 

dynamics makes it increasingly difficult to make accurate estimates for project planning. 

Traditionally, offshore pipelay operations have been restricted based on prevailing 

environmental conditions, such as the significant wave height, HS, and mean wave period, TM. 

However, these restrictions are generated using idealized wave conditions (single-peak wave 

spectrum) and vessel Response Amplitude Operators (RAOs) which may be over or under-

estimated. Great inaccuracy exists, specifically in roll where non-linear damping makes it 
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difficult to calibrate a hydrodynamic model. Most offshore environments are not correctly 

analyzed using these RAOs, particularly where the ocean environment is multidirectional in sea 

and swell which is often the case in areas offshore West Africa and Brazil [9]. 

This thesis extends previous efforts to utilize real-time weather data to make improved 

assessments as to the specific capability of a pipelay vessel. This is done by deriving an 

analytical method for computing an “instantaneous” response spectrum of a dynamic multi-body 

system (vessel, stinger, and pipeline) and using it to make more accurate predictions about 

specific pipelay operations using a dynamic perspective.  

1.2. Previous Work 

Two types of pipeline analysis exist: static and dynamic. A static pipeline installation 

analysis checks the pipe laying vessel and the capabilities of its equipment. It is used to set the 

stinger departure angle, roller heights, initial tension, and determine stresses/strains within the 

pipe. A dynamic pipeline analysis accounts for vessel dynamics along with wave and current 

action on the suspended pipeline. Clauss et al. [1] introduced a numerical procedure for 

analyzing the dynamic stresses in offshore pipelines introduced by a complex ocean 

environment. Previously, only static analyses had been considered. This procedure was later 

extended to the determination of limiting sea states for pipeline operations using hydrodynamic 

modeling software. The results of this analysis dictate in what environment a pipeline can be 

safely installed. Without this data, offshore projects rely on the judgment of the vessel 

superintendent who works for the contractor and therefore may have reasons other than pipeline 

stresses affecting his judgment on whether or not to lay down a pipeline. 

In addition, the stochastic ocean environment is impossible to predict and thus, naval 

architects must make assumptions to provide any realistic approximation of an offshore model. 

Typically, this involves the use of weather reports of a target area recorded from several 
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preceding years or decades. A vessel model can be analyzed in the proposed environment and 

estimates of the ship’s motion are made. By setting some basic operating criteria such as limiting 

the vessel pitch to 1.5 degrees single-amplitude in a 3-hour time window, the vessel operator 

may have an idea of how one ship can perform a task compared with another. Workability 

analysis is a useful tool in comparing two vessels performing the same operation in identical 

environments, but is rather poor in estimating how often a ship can work in a short time window.  

As many vessels began carrying Motion Recording Units (MRU) as part of dynamic 

positioning (DP) systems, classification society, Det Norske Veritas, (DNV), began to allow for 

the use of real time weather data in the execution of marine operations [4]. Legras and Wang [9] 

proposed that the use of real-time measurement of vessel motion could be used to improve the 

determination of limiting criteria in offshore crane operations. Using the MRU data, they 

proposed that more accurate RAOs could be generated for the lifted object than using office-

based hydrodynamics software operating under numerous assumptions. The usage of real-time 

ship motion data alleviates these concerns as all variables are captured at a given instant. Legras 

and Wang focused only on a single degree of freedom, heave, and lacked an analytical method 

for computing added mass and damping coefficients of subsea equipment.  

Valen [14] investigated the operational limits further using DNV Recommended Practices 

[4] and an industry standard hydrodynamics software. He noted that performing time domain 

simulations based on real-time data can increase operational limits but are still limited by 

inaccuracies in the added mass and damping of the lifted equipment as well as external factors, 

such as extreme forecasts, scheduling, or equipment malfunctions. Expanding this methodology 

to pipelay analysis is not illogical. Clauss et al. [3] concluded that “a real-time pipe stress 
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analysis based on measured vessel motions during the pipe laying process seems to be a feasible 

application.” 

1.3. Proposed Work 

This work presents a new method for determining limiting criteria for pipelay operations to 

more effectively plan and execute these projects in the dynamic ocean environment. This 

improvement is based on the use of real time wave elevation data along with modeling of the 

hydrodynamic effects involved in a pipelaying operation. Results using a commercially available 

hydrodynamics software suite are presented and used within a program to compute the timely 

operational limits.  
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Section 2 – Problem Setup 
 

2.1. Ideal Flow Theory 

The use of ideal flow theory to investigate sea keeping can provide quick, qualitative 

understanding of a system compared with detailed testing at the model scale or solving the 

Reynold’s Averaged Navier-Stokes (RANS) equations in a Computational Fluid Dynamics 

(CFD) solver. Commercially available ideal flow solvers provide accurate estimates for most 

linear systems. 

The common assumptions made in ideal flow theory are that the fluid is incompressible, 

irrotational, and inviscid, and that the conservation of mass is not violated. These assumptions 

are not all that unreasonable, but the boundary layer of a ship does contain viscosity.  

Using the Divergence Theorem, the continuity equation for an incompressible (constant-

density) fluid is: 

                             (1) 

 

where      is the divergence. The equation states that the flux of matter across a volume boundary 

is equal to the generation of matter within the volume. A fluid without particle rotation is: 

                              (2) 

 

where   is the unknown scalar velocity potential which is to be solved. An irrotational fluid is 

also inviscid by nature. 

Substituting (2) into (1) gives the well-known Laplace equation. 

                           (3) 

 

which is a linear second-order partial differential equation.  

 

From (3), Bernoulli’s equation provides pressures if the velocities and potentials are known. 

 
 

 
 

  

  
 

 

 
                            (4) 
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The velocity potential,  , is found by satisfying the boundary conditions, and the 

velocities by taking its gradient. Then, once the pressure, P, is computed from (4), the 

hydrodynamic forces are found by integrating over the body’s surface in the direction of interest 

[12]. Hydrodynamic software packages, such as WAMIT, MOSES, and Octopus have built-in 

solvers for these forces based on 2-D strip theory or 3-D diffraction/panel methods.  

Ship motions can be characterized using a transfer function which normalizes the 

response by a wave with unit amplitude. From the linear assumption, these Response Amplitude 

Operators provide a basis by which comparisons can be made from one system to another. 

        
     

  
                  (5) 

 

where       is the system response for a particular frequency of encounter. 

 

The set of motion RAOs, six in all, describe the system motion for each degree of 

freedom (DOF): surge, sway, heave, roll, pitch, and yaw. The function, by nature, incorporates 

external factors, including restoring forces and moments, added mass, and damping. It represents 

the response of a system to a unit excitation. Beyond motion, transfer functions can be used to 

represent any physical property, including dynamic pipeline stress and are determined in a 

similar fashion to motion RAOs. 

2.2. Sea Spectra Derivation 

Irregular ocean seas can be modeled using a series of superimposed regular sinusoidal 

waves which, combined, contain a specific amount of energy based on height and frequency. The 

amount of energy in a single sinusoidal wave is: 

  
 

 
    

                    (6) 

Summing all of the waves gives the total energy in a unit area: 

 

   
 

 
     

  
                     (7) 
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An energy density spectrum is the frequency distribution of energy for a particular 

environment and typically takes the shape of a Rayleigh distribution. Significant research has 

produced a set of well recognized spectra characterized by height and frequency. Some of these 

are the ISSC, Bretschneider, JONSWAP, and Pierson-Moskowitz spectra. These functions are 

empirical in nature but closely resemble target environments stemming from decades of 

observation. For example, the ISSC spectrum is defined as: 

     
     

 

  
   

 
             

                      (8) 

 

While these functions can be shown to be good tools for predicting a system’s response 

in a specific environment, this work will focus on using real-time data to derive an energy 

density spectrum to more accurately analyze the system in its current environment. 

To create an estimate of the energy density spectrum from a time series of wave data, a 

wave probe is dropped near the vessel and its motion is recorded. A spectrum can be computed 

using a Fast Fourier Transform (FFT) of the time series. In theory, the transform is done for an 

infinitely long time series. 

       
       

  
 

 

  
      

 

 
       

                (9)  

 

However, in reality an infinite time series is not practical so the energy density spectrum is 

approximated as below. 

       
 

  
       

                 (10) 

 

In addition to the inaccuracy arising from a discrete time sample, the Fourier transform in 

(10) is only an approximation of the Fourier integral. Subsequently, the energy density spectrum 

derived from a time series can look a bit ragged with some frequencies containing significantly 

different energy than those adjacent to it. 
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To achieve a more “Rayleigh-type” distribution, the spectrum can be smoothed by 

splitting the full time series into equal length subsections, estimating the spectrum for each, and 

then averaging them together. Other, more advanced mathematical methods of smoothing are 

available. For example, the Hanning window method using raised cosine filters with overlapping 

windows rather than adjacent samples [13]. With      windows overlapping to the midpoints, 

the cosine filter is applied: 

       
 

 
         

  

 
                 (11) 

The FFT is then performed on each time window with signal          and the results for 

all windows are averaged to create the final smoothed spectrum. 

2.3. Statistical Properties of a Spectrum 

Statistics of a spectrum are computed to determine various properties of the environment 

which are valid by assuming that a Rayleigh probability distribution exists. The average of the 

1/n
th

 highest amplitudes can be derived as: 

  
  
             

   

 
                           (12) 

From (12), the significant, 1/3
rd

 highest wave amplitude can be found: 

  
  
                        (13) 

 

where    is the variance of the process and the area under the spectral density curve found 

through integration over frequency,  . 

           
 

 
                (14) 

 

Higher order spectral moments can be found by adding an additional term to (14).  

 

          
   

 

 
               (15) 

Of course, the wave height is the double amplitude and thus, the significant wave height is: 



   

9 

  
  
                        (16) 

Of interest in this work are statistics over a 72-hour time window, the maximum span of 

forecast review permitted by DNV [4]. Assuming a low mean wave period of 5 seconds, about 

50,000 waves would pass a global point in 72 hours. It is subsequently useful to define the 

1/50,000
th

 multiplier as: 

  
                                      (17) 

The mean period of the spectrum is found using the spectral moments: 

 

     
     

     
                (18) 

 

As always, the standard conversion between period and frequency is: 

 

  
  

 
                 (19) 

 

Statistics based on a Rayleigh distribution are strictly only valid if a single crest and 

trough exist between each zero up-crossing point. While not entirely unreasonable, actual 

environments rarely contain this property exactly. If the spectrum is broader or narrower, the 

results can be scaled as in Michel [10]. A spectral broadness parameter can be defined as: 

     
  

 

    
                   (20) 

Then, the multipliers from (12) can be corrected: 

  
                  

    
  

 
               (21) 

2.4. System Response Spectra 

The response spectrum is then generated by multiplying the square of the RAO by the 

energy density spectrum. The response spectrum describes how the system behaves in the 

specific environment described by the wave energy density spectrum.  

                                                        (22) 
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Equation (22) follows the same statistical laws as the wave spectrum. Typically, specific 

motions are of interest in offshore pipelay operations such as the maximum, 1/1000
th

, pitch. 

Excessive pitch angle causes the pipe profile to change, increasing bending stresses in the 

pipeline. If these stresses exceed certain allowable limits, the pipeline can fail requiring removal 

and re-installation or underwater repair, both costly events. Thus, offshore contractors closely 

monitor the vessel motion and cease operations when pre-defined limits are exceeded. 

Because pipelay operations take place at relatively slow speeds, this work will not 

consider the effects of forward speed on encounter frequency. However, it is not unreasonable to 

expand this method to include forward speed for operations such as flexible cable deployment 

where forward speed may be non-negligible. 

The same method for estimating the energy density spectrum for an environment as in 

(10) can be used with vessel motion data to derive the ship response energy density spectrum. 

This is preferred over using wave data and theoretically computed RAOs due to the full capture 

of all hydrodynamic effects including added mass, damping, and mooring line forces. Using a 

motion recording unit (MRU) installed onboard primarily for use in dynamic positioning 

systems, vessel motions can be recorded in real-time and converted to a vessel response 

spectrum through a Fourier transform. This can likewise be done for pipe stresses if time series 

data from a pipeline or roller load sensor is available. With a real-time capture of the response 

spectrum, more accurate predictions can be made into the dynamics of an object suspended from 

a moving vessel such as a pipeline or subsea equipment unit. Legras and Wang [9] discuss this 

method in greater detail. Unfortunately, response data for pipeline stress is not as readily 

available as time series weather data from buoys and therefore, this work will focus on using 

wave data applied to the hydrodynamic model. 
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2.5. Pipeline Stress 

Offshore pipelines have specific criteria which must be considered during their 

installation, primarily bending and axial stress limits. If pre-determined values are exceeded, the 

pipeline can fail, causing extensive underwater repair operations. Significant research has been 

published on dynamic bending stresses in offshore pipelines, namely by G.F. Clauss et al. [1, 2, 

3].  Their work considered, for the first time, the dynamic effects encountered by laying pipelines 

using a moving foundation. Previously, all analysis had considered only static stresses of a rod 

element. Their research [2] considered the complex manner in which the lay vessel, stinger, and 

pipe interact with each other in the ocean environment and produced a method for determining 

limiting sea states. To proceed, the system is briefly described. 

 Offshore pipelines are utilized extensively throughout the world to transport oil and gas 

products to be refined at onshore facilities. Sections of steel pipe are welded together onboard the 

lay vessel one-by-one, through a series of welding and coating stations. Toward the exit point 

from the ship, a tension device grips the pipeline to prevent it from buckling under its own 

weight as it is suspended from the ship to the seabed. This tension also serves to reduce bending 

in the sag-bend region, that closest to the sea bed. To reduce bending stresses near the top of the 

pipeline (overbend), two lay methods are used: S-lay and J-lay. Typically, S-lay is used in 

shallower water (less than about 300 meters) where J-lay is used in deeper water. The difference 

lies in the shape the pipe creates as it is paid-out from the ship. S-Lay is relatively parallel to the 

water surface at the stern and is supported by a fixed or articulated stinger. J-Lay is much closer 

to perpendicular to the water surface at departure which effectively eliminates the over-bend 

stresses near the top of the pipe although requires substantially more tension to support the pipe. 

Figures 1 and 2 show a sample of both configurations (Source: Lee [8]). 
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Figure 1: S-Lay Configuration   

         

 
Figure 2: J-Lay Configuration 

 

Clauss et al. [2] expanded on their previous work to incorporate more realistic boundary 

conditions to capture the oscillations in the pipe and the effects of rollers and tensioners 

supporting the pipe on the ship. It was proposed that the dynamic analysis of pipelay is based on 

two differential equations for lateral deflections and one relation between the tension force 

oscillations and the motion of the tension machine. 

    
                   

  
 

                                (23) 

    
                   

  
 

                        
          (24) 

    
 

  
                

  
  

   
  

 
   

 

   
            (25) 

Sagbend 

Overbend 

Sagbend 

Stinger 

Tensioner 
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This set of equations has some particular values of interest, such as     , the static tension 

force and      which is the pipeline angle at each location, s.     is the dynamic tension force 

obtained from averaging the tensile equation (25) over the unsupported span, L: 

          
        

  
  

   
  

 
                          (26) 

Figure 3 presents the problem setup and coordinate system from Clauss et al [2]. 

 

 
Figure 3: Pipelay problem setup 

 

        and         are the lateral deflections of the pipe due to dynamic loads and 

       is the dynamic motion of the tensioner.      and      together comprise the total effective 

tension force. 

Clauss et al. [2] accounts for hydrodynamic damping in (23) and (24) as: 

    
  

 
         

          
                         (27) 

These equations are solved iteratively using the Galerkin method to produce a finite-

element-type problem using the system matrices for damping [B] and stiffness [C]. Finally, the 
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system is solved in the time domain resulting in the total longitudinal stresses (bending plus 

axial) given by:  

   
            

        
   

 

           
 

 

 
           

       
              (28) 

Clauss stated that dynamic amplification of pipe stresses is caused by vessel motions and 

surface wave loads on the pipe. Although his work only considered vessel motions, he noted that 

for rigid stinger operations, the wave loads could be neglected and for articulated stingers the 

effects were roughly 30% of the vessel motion loads. Another interesting result of this research 

was that the free span pipeline does not affect vessel motions anywhere except near the natural 

frequencies for heave and pitch due to the additional viscous damping terms in these degrees-of-

freedom.  

In shallow water S-Lay operations, buckling is not as concerning as longitudinal bending 

stresses, but should still be considered in the analysis. The critical buckling pressure on a circular 

pipe is: 

    
  

       
 

 
 
                 (29) 

where   is the Poisson’s ratio, E is the modulus of elasticity, and D/t is the diameter to wall 

thickness ratio of the pipe. 

For most flows, the circumferential stresses,   , are negligible when compared with the 

bending stresses,   , but they can be added together through the distortion energy hypothesis as 

in Clauss et al. [1] to determine the equivalent stress. 

                                    (30)  

 DNV [5] provides an “Offshore Standard” for pipeline installation and planning, DNV-

OS-F101. The document was written with the objective of ensuring pipeline systems are safe for 
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the public and the environment.  DNV states that “the operating limit conditions shall be based 

on stress and strain calculations,” and provides the table below for the Specified Minimum Yield 

Strength (SMYS) and Specified Minimum Tensile Strength (SMTS) for API grade pipes. This 

work will consider API X65 grade pipelines. 

Table 1: API Material Grades for Pipelines 

API 

Grade 

SMYS SMTS 

ksi MPa ksi MPa 

X42 42 290 60 414 

X46 46 317 63 434 

X52 52 359 66 455 

X56 56 386 71 490 

X60 60 414 75 517 

X65 65 448 77 531 

X70 70 483 82 565 

X80 80 552 90 621 

 

DNV [5] also provides criteria for the total allowable stress and strain in a pipe laying 

analysis, depending on the incorporation of dynamic loading in the model. These strains should 

include all effects of bending, axial forces, and local roller loads. 

Table 2: Allowable overbend strain 

Criterion X70 X65 X60 X52 

Static 0.270% 0.250% 0.230% 0.205% 

Static & Dynamic 0.325% 0.305% 0.290% 0.260% 

 

The sagbend has a slightly lower allowable limit, written in terms of equivalent stress: 

 

                             (31) 

 

Equation (31) applies to the combined static and dynamic loads and includes the 

longitudinal and circumferential stresses. The limit can be rewritten in terms of strain as: 

  
         

 
                 (32) 
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It should be noted here that the pipeline is allowed to exceed the yield stress in the 

overbend region, that is, near the vessel as the pipe exits the stern. The pipe profiles in Figures 1 

and 2, shown previously, indicate the significant bending experienced as the pipe becomes 

unsupported externally. 

For example, an X65 grade pipe has a total allowable strain,  , of 0.305% (Table 2) 

which is beyond the SMYS of the pipe (448 MPa / 65 ksi) from Table 1.  

         
 

 
 

 

           
                               (33) 

Thus, the pipe is yielding when the allowable limit is reached. 

2.6. Pipeline Hydrodynamics 

For slender tubular members with a characteristic dimension less than 
  

 
, where WL is 

the wave length, a strip theory approach to computing drag loads can be made. The Morison 

equation was developed in 1950 to estimate the wave loads on slender cylinder structures such as 

oil platform support legs. The equation is the sum of the linear inertia force from potential theory 

and the quadratic drag force from cross-flow on a strip of the cylinder [6]. 

                                  (34) 

       
 

 
     

 

 
                      (35) 

The first term in (35) is the inertia force composed from the Froude-Krylov force and the 

hydrodynamic mass force where    is the mass coefficient which depends on the cross-section 

of the pipe and accounts for added mass.  

                        (36) 

For potential flow theory,   =1 for a fixed cylinder in waves [12]. 
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The second term in (35) is the drag force where A is the projected cylinder area 

perpendicular to the flow. In the case of the pipeline, this is the water depth, WD, multiplied by 

the cylinder diameter, D. 

   
 

 
                            (37) 

 The flow velocity, u, can be found using linear wave theory [12] in which the particle 

velocity and acceleration as a function of depth and time are: 

           
  

 

     
  

  
       

     
     

  
 

                    (38) 

             
   

 

     
  

  
       

     
     

  
 

                   (39) 

 A current force can be applied by superimposing the current flow velocity to the particle 

velocity due to surface waves. 

                                                  (40) 

 Accumulating marine growth on submerged pipelines will increase the hydrodynamic 

drag and added mass coefficient due to a larger effective diameter, but is not necessary to 

consider for pipeline installation where the pipe is newly machined. For pipeline removal from 

the seafloor, the cross-sectional area  
 

 
    should be increased to account for the added growth. 

Equation (35) produces the inline drag force perpendicular to the cylinder axis, but 

ignores lifting forces due to vortex shedding. This flow phenomenon is not of major concern in 

pipelaying applications because of the relative small diameter of a pipeline and low Reynold’s 

number flows existing in pipelay installation [7]. Therefore, the Morison equation is sufficient to 

analyze the effects of the suspended pipeline during installation. 
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Figure 4: Pipeline drag coefficients (Source: DNV [5]) 

 

 DNV suggests that the drag coefficient,   , be determined from Figure 4 depending on 

the roughness of the pipe and the Keuligan Carpenter number, KC. 

     
  

 
                 (41) 

MOSES uses the smooth cylinder curve in Figure 4 and allows for manual input of a 

roughness factor to increase the drag effects from the pipe. The software applies Morison’s 

equation to the discretized pipeline model and computes the associated viscous drag and added 

mass forces. However, radiation damping is ignored on the pipe element as the slender 

assumption is made. The drag force is computed for each segment of the pipeline, 100 in all, and 

then combined into final components acting on the vessel system. 

The vessel hull model only has radiation damping applied, but no viscous damping which 

assumes that the hull is relatively smooth. The stinger model included with the S-Lay 

configuration contains Morison-type beam elements, and thus, Morison drag is applied to the 

stinger. 
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Two methods of solving for the hydrodynamic pressures on the hull area available: two 

dimensional diffraction theory and three dimensional diffraction theory. While the mathematics 

of these theories differs, they both compute the excitation force, added mass, and radiation 

damping for the hull as a function of frequency. For reference, Figure 5 shows the heave and 

pitch RAO functions as computed using 2-D and 3-D diffraction theory with 900 panels 

comprising the hull. Due to the sample lay-barge’s uniform cross-section, 2-D strip theory 

performs rather well compared with the more accurate 3-D diffraction/radiation method.  Using 

2-D theory, the analysis requires less computational time and achieves very accurate results. This 

work will consider strictly 2-D diffraction theory although it is always recommended to use 3-D 

diffraction theory when available or where required by detailed geometries. 

 

 
Figure 5: MOSES 2-D/3-D Diffraction RAO Comparison 
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Section 3 - Results 
 

3.1. Wave Energy Density Spectrum Creation 

In this section, a random wave signal is considered. The time series motion data is read into 

a brief subroutine which computes the FFT of the data into the frequency domain as described in 

(10).  The signal is for an actual sea state measured using a North Sea wave probe in light seas 

with moderate swell conditions.  

 
Figure 6: 1200 second time series Hs=1.75m Tm=12 sec (North Sea) 

 

 
Figure 7: Rough spectra Hs=1.75m Tm=12 sec (North Sea) 
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As shown in Figure 7, the spectrum is very ragged after the FFT is performed. To 

maintain better consistency with linear potential theory, it is preferred that the energy density 

spectrum have a Rayleigh-type distribution. After smoothing the rough spectrum through 

averaging, the spectrum is shown in Figure 8. 

 
Figure 8: Smoothed spectra Hs=1.75m Tm=12 sec (North Sea) 

 

Five cuts (m=5) of the 20 minute (1200 second) time series are sufficient to begin to see 

the Rayleigh distribution in the above figure. Additional cuts of the time series, to say m=10, 

will begin to lose some of the consistency with the actual sea state. Through integration of the 

spectrum and its moments, the accuracy of the smoothed spectrum is shown in the table below. 

Table 3: Spectrum smoothing analysis (North Sea) 

Increment m0 m1 Hs Tm 

(sec) (m
2
) (m

2
/sec) (m) (sec) 

Unsmooth 0.7694 0.3975 1.754 12.162 

Smooth m=5 0.7692 0.3985 1.754 12.128 

0.004 0.7673 0.3985 1.752 12.099 

0.02 0.7610 0.3927 1.745 12.175 

0.5 0.7459 0.3780 1.727 12.398 

1.0 0.7278 0.3720 1.706 12.291 
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It is still not practical to use all 250 frequency “bins” in the smoothed spectrum, so 

time/frequency increments are used to limit the amount of data for processing. This, of course, 

reduces some of the accuracy of the real-time wave data signal, but still maintains less than a 1% 

deviation and helps with computational efficiency. A 1.0 sec increment between bins seems to be 

sufficient and more closely follows a Rayleigh distribution for this surface elevation time series. 

A plot of all of the spectrum approximations is shown below in Figure 9. 

 
Figure 9: Comparison of frequency bin width on spectrum shape 

 

Data from numerous wave buoys throughout the World’s oceans are available for research 

purposes. The National Oceanic and Atmospheric Administration’s (NOAA) National Buoy 

Data Center (NDBC) database provides access to many of these buoys. Energy density spectra 

from two specific locations, the Gulf of Mexico and Middle Atlantic are shown in Figures 10 and 

11. The NDBC applies an FFT to the vertical displacement measurement obtained by the buoy. 

Then, RAO processing is performed on the transformed data to account for noise in the signal. It 

is from this transformation that non-directional spectral wave measurements are derived.  
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 The NDBC publishes the energy density spectrum every hour online, rather than the time 

series of surface elevation. Three different spectra over three hours from the same buoy are 

shown below from the Bay of Campeche in the Gulf of Mexico and the Middle Atlantic as well 

as their average.  

 
Figure 10: Energy Density Spectra, Buoy #NDBC-42055 Gulf of Mexico 

 

 
Figure 11: Energy Density Spectra, Buoy #NDBC-41041 Middle Atlantic 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

S
ζζ

(ω
) 

(m
2
-s

ec
)

Frequency, ω [rad/sec]

2100

2000

1900

AVG

0.0

0.4

0.8

1.2

1.6

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

S
ζζ

(ω
) 

(m
2
-s

ec
)

Frequency, ω [rad/sec]

2100

2000

1900

AVG



   

24 

As pipelay operations are considered by DNV to be weather restricted (taking place within 

72 hours of the last forecast), recent weather data can be used to predict operating quantities, 

such as motion or stress. As plotted in the figures above, an average spectrum can be estimated 

by taking the mean of all spectra of interest at each frequency. 

           
 

 
         
 
                 (42) 

Here, spectra from the six preceding hours are averaged together to be applied to the vessel 

system. As can be seen below, at the time of interest, the sea in the Middle Atlantic 

(NDBC#41041) has considerably more energy than in the Bay of Campeche, Gulf of Mexico 

(NDBC#42055).  

 
Figure 12: Averaged Energy Density Spectra (6 Hours) 

 

Table 4: Environment Comparison of NDBC Buoys 
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Time Hs Tm Hs Tm 

[UTC] [m] [sec] [m] [sec] 

1900 2.12 6.65 3.52 6.52 

2000 1.89 6.29 3.45 6.62 

2100 1.87 6.21 3.43 6.34 

AVG 2.04 6.56 3.49 6.55 
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For future project planning, buoy data can be obtained commercially or a method similar 

to this can be made if a research buoy in relative proximity to the project site is available. Of 

course, more than six hours should be considered for installation planning. Here, only near-

future events are estimated for operational decision-making. Also commercially available are 

wave scatter diagrams for regions of interest covering decades. The larger sample size helps to 

remove any unwanted effects from regional storms, currents, tides, etc. 

3.2. System RAOs 

The RAOs as described in (5) are computed using the hydrodynamic software suite, 

MOSES. Figure 13 presents the transfer functions of interest for pipelay operations in which the 

seas are coming from the bow, a 180 degree heading. This is typically the worst case for pipelay 

operations as the waves push the vessel aft causing the pipeline profile to compress, increasing 

the stresses in both the overbend and sagbend. For project planning, multiple headings must be 

considered with an even reoccurring frequency distribution as the pipelay vessel operator can 

rarely position the vessel optimally due to a strict pipeline route. 

 
Figure 13: Vessel RAO curves at Pipe Exit, Heading = 180 deg (Head Seas) 
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A plot of the beam sea (90 deg heading) RAOs are presented in Figure 14 to show the un-

damped roll properties of the vessel. In reality, viscous damping is applied to the ship which 

decreases the peak of the roll RAO curve, but this has not been done here. In most pipelay 

vessels, roll is not a governing criterion as the pipe exit is located on centerline and subsequently, 

the vessel simply rolls about the pipe axis. For applications with an off-center pipe exit, roll 

should be considered, specifically the vertical excursion of the pipe. J-Lay operations also 

require the consideration of roll on the overbend stresses if the tower is exceedingly tall. 

However, the static overbend stresses are small or non-existent in this segment of the pipeline 

and can often be ignored for bending. 

 
Figure 14: Vessel RAO curves at Pipe Exit, Heading = 90 deg (Beam) 

 

MOSES contains a package for modeling and analyzing the dynamic amplification of 

stresses in a pipeline by solving the pipeline system for a given top tension, roller locations, and 
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rad/sec, due to the additional viscous damping terms in these degrees-of-freedom. However, its 

inclusion in the system model helps to more adequately capture hydrodynamic effects including 

Morison damping forces. 

3.3. Pipeline Models 

Two pipeline configurations were modeled for both J-Lay and S-Lay. Both models 

contain twelve catenary mooring lines and a 16 inch outer-diameter pipeline to capture damping 

and tension effects. In the J-Lay configuration, shown below, the pipe slopes down a tower at 

about 50 degrees above deck, held at the top by a tensioner, and restricted by two clamps in the 

tower. This case is shallow water for J-lay operations, but offers a good comparison of pipeline 

profiles to S-Lay shown following.  

 
Figure 15: Typical Lay Barge Pipelay Model in MOSES (J-Lay) 
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Figure 16: Pipe profile in 200 m water depth (J-Lay) 

 

 

 
Figure 17: Typical Lay Barge Pipelay Model in MOSES (S-Lay) 
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Figure 18: Pipe profile in 182 m water depth (S-Lay) 
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stinger containing a series of roller constraints allowing only vertical movement (i.e. liftoff). The 
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shorter (angled-down), the LOP will take less load, but the pipe will also experience more 
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pipelines react differently than smaller pipes and cannot handle as small a bending radius. 

Detailed pipeline mechanics and installation procedures will not be addressed here in this vessel 

dynamics study. There is, however, much technical material available on this subject [7, 8]. 

Here, the S-Lay model is considered for the purpose of explaining the method, but the 
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bending stresses go to zero and only small axial stress in the pipe remains. After lay down of the 

pipe at about 600 meters along the bottom, the bending stresses diminish rapidly, leaving only 

axial stress due to the applied tension force. 

 
Figure 19: Static longitudinal stress in pipeline (S-Lay) 

 

 Figure 19 depicts the large bending stresses located on the pipe support rollers on the 

vessel and stinger. The pipe model begins near 80 meters from the bow with relatively low 

longitudinal stress. Then, as the pipe spans the rollers, bending stresses increase until exiting the 

stinger at about 200 meters from the bow.  

For a brief comparison, a plot of the static longitudinal stresses in a J-Lay configuration is 

shown below. The stresses in this J-Lay example are on the order of half in S-Lay due to the 

absence of large local support reactions from rollers or a stinger. The J-Lay pipeline is supported 

by a single point, the tensioner, eliminating much of the local spike reactions shown in Figure 

19. As the water depth increases, sag bend stresses will begin to quickly rise which ultimately 

limits the capability of a lay vessel. Refinement of the roller heights, vessel trim, and stinger 

radius can lower the high stresses at these locations, but this model is sufficient to progress.   
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Figure 20: Static longitudinal stress in pipeline (J-Lay) 

 

3.4. Dynamic Pipeline Stress 

 The dynamic longitudinal stress component is linear from the assumptions made earlier 

with vessel dynamics. Figure 21 shows this assumption to be valid in the model with three 

significant wave heights with identical periods, directed from the bow. The stresses increase 

linearly with wave height along the entire pipe length. The dynamic axial stresses are 

approximately 30% of the total normal stress in the sag bend compared to only about 15% in the 

static case. Hence, axial stresses should carry extra consideration when pipelaying in marginal 

environments. 
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Figure 21: Dynamic longitudinal stress in pipeline, Tm = 5 seconds 

 

The ISSC irregular wave spectrum is used to demonstrate the linear properties of the 

pipeline stress analysis in the figure above, although this holds true for any spectrum. The stress 

curve for a 3 meter significant wave height is simply three times the one meter curve. To show 

the influence of the wave period, the dynamic stress is plotted for an ISSC spectrum with a one 

meter significant wave height and various mean periods (Figure 22). The upper most curve 

(blue) represents a mean period of 3 seconds, while the lowest curve (gray) shows the highest 

period checked, 25 seconds.  
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Figure 22: Dynamic longitudinal stresses, ISSC Hs=1m, Tm=3-25 sec 

 

The total longitudinal stress is found by superimposing the static and dynamic components. 

                                          (43) 

 

It is often important to know how the system will respond in a particular environment 

such as a field check by a vessel superintendent to determine if the vessel can begin or continue 

to work, or by a project planning team to predict the ship’s effectiveness in carrying out a 

specific operation.  

3.5. Limiting Sea State 

Offshore construction companies typically develop limiting sea state curves for specific 

vessel operations, such as heavy crane lifting, ROV lowering, or pipelaying. In most cases, only 

the hull is considered in the hydrodynamic model, although mooring lines and a stinger are also 

included in some instances. Specific software (e.g. Orcaflex) has been developed in the last three 

decades to assist pipeline engineers with determining the limiting sea states for pipelaying 

operations. Ship RAOs can be input from a hydrodynamic suite (e.g. MOSES or WAMIT) and the 

pipeline can be analyzed for the total stresses, both static and dynamic in specific environments.  
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In this work, the static stress curve presented in Figure 19 is combined with the dynamic 

stresses shown in Figure 22 to determine the limiting sea state using the linear assumption and 

superimposition. The allowable significant wave height for each period is determined by 

satisfying: 

                                                 (44) 

where            is conditional on the location along the pipe. The allowable stress is higher in 

the overbend (Table 2) than in the sagbend as the pipe reaches the seafloor (33). The dynamic 

stresses can be computed as an RAO (unidirectional regular waves with unit amplitude and 

single frequency) or using an irregular wave spectrum with a unit amplitude. The latter is 

considered more appropriate than regular wave analysis to find limiting sea states since moderate 

wave heights with random wave properties and directions are more likely to be encountered 

during pipeline installation. 

 Figure 23 presents the limiting sea state, HS, across the frequency range at which the 

longitudinal pipeline stress (bending plus axial) reaches the value allowed by DNV in the 

overbend or sagbend. The dynamic stresses are computed with an ISSC spectrum and a statistical 

multiplier of 1/50,000 as in equation (17). This represents that the pipeline stress should not be 

exceeded in 72 hours in a sustained environment. As a note of caution, in reality the environment 

is entirely stochastic and impossible to fully determine. Thus, it is possible for statistically 

improbable waves to arise in a specific environment resulting in exceeded pipe stresses.  

However, statistical theory maintains this should not happen and provides a reasonable basis 

from which to make decisions. Certain precautions should always be taken when operating in a 

marginal environment and factors of safety applied where desired. 
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Figure 23: Limiting sea state for pipeline stress (Head seas) 

 

 Figure 23 is better considered when paired with the traditional limiting sea state curve for 

pipelaying, that which governs pitch motion. The pipeline profile is highly dependent on vessel 

pitch angle and excessive deflection can cause bending or buckling failure in the pipeline. 

Operations are often governed by the maximum, 1/1,000
th

 pitch angle of 1.5 degrees, single 

amplitude. Of course, other statistical variations of this limit exist, but the concept is the same. 

The vessel shall not rotate beyond some maximum value which limits equipment and/or crew 

operability. 

 The limiting sea curve for vessel pitch is generated, again, using a unidirectional ITTC 

irregular wave spectrum across the frequency range. 

                                                 (45) 

 

   
                  

               
                (46) 

 

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

L
im

it
n

g
 S

ea
 H

ei
g

h
t,

 H
s 

(m
)

Frequency, ω (rad/sec)



   

36 

 
Figure 24: Limiting sea state curves for pipelay operations (Head seas) 

 

The lowest value of the two curves at each frequency is used to determine the composite 

limiting sea state using both the traditional vessel pitch criterion as well as the effective pipeline 

stress limit developed here. 

 
Figure 25: Composite limiting sea state curve (Head seas) 
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vessel pitch criteria. However, the limiting sea state values in this frequency range are unrealistic 

(9 meters, 6 second mean period). In the longer period, low frequency environments, (  = 0.3-

1.2 rad/sec) the traditional pitch limit seems to be overly conservative in limiting operations. The 

pipeline stresses actually permit a much higher allowable sea state. This is not to say that the 

pitch limit should be fully neglected as the pipe stress limit would actually permit up to a 7.0 

degree single amplitude pitch angle (14 degree double-amplitude) before allowable stresses were 

exceeded. Certainly, no offshore construction company would permit this, considering today’s 

safety standards. In reality, there are additional factors which limit operations including 

equipment and foundation design restraints and human factors such as human performance. 

These factors may limit operations prior to the pipeline stress being exceeded, but it is not 

unreasonable to suggest that the traditional curves may be overly restrictive for project planning 

and operability index forecasting or “workability.” 

3.6. Workability 

In planning any offshore project, it is necessary to predict the required length of time to 

complete the work. Workability analysis provides a good tool for estimating project duration as 

well as comparing two vessels with the same task. Downtime percentages are often used in 

lump-sum project bids to estimate the vessel day-rate and project cost. 

Composite limiting sea state curves for each heading of interest are used together with 

weather statistics shown in a wave scatter diagram at the specific offshore site of the proposed 

work. To estimate the total percentage of time the vessel is able to work at each heading, the 

wave percentages of occurrence are cumulatively added until the limiting sea state value is 

reached. For example, if the percentage of occurrence of the sea state with HS = 0.5-1.0 meters 

and TM = 4-5 seconds is 15% and this window is below the limiting sea curve, the vessel can 

work 15% of the time. Adding all of the percent of occurrence “boxes” and comparing them with 
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the limiting sea curve provides the overall workability for that heading. This is repeated for each 

heading as the limiting sea curves change with vessel orientation. The workability is usually 

referenced as a percentage, although the number of down days can also be reported per month or 

year. 

                                                        (47) 

This can be shown monthly, seasonally, or yearly depending on the information desired [11]. 

3.7. Real-time Analysis 

Earlier, a method was presented for analyzing a time series of wave elevation and 

converting the data into an energy density spectrum which could then be smoothed (Figure 8). 

From the statistical properties of the time series, the significant wave height (16) and mean wave 

period (18) can be determined and plotted against the limiting sea curves as shown below.  

 
Figure 26: Evaluation of sea state against limiting sea curves 

 

Comparing the actual sea state properties to the limiting curve allows the operator to 

quickly determine the safety of the vessel in the current environment. This method is typical 

throughout the offshore construction industry and is general maritime practice for vessel loading 

assessment.  
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Here, a more accurate method for predicting the response in the current environment is 

shown. This methodology was proposed by Legras and Wang [9] in accordance with DNV [4] 

for subsea crane operations, but is extended here for pipelaying. Using vessel MRU data directly 

and computing the pipe stresses is preferred over beginning with wave data and estimating the 

vessel response and pipe stresses, as one can be assured that all hydrodynamic properties of the 

vessel are properly captured. These include added mass, damping, line tensions, wind, and 

current. However, time series data is not always available, especially for pipeline stresses so this 

method will be presented beginning with wave data.  

Time series wave data can be applied to the model in the time domain if specific software 

(e.g. Orcaflex) is available. Solving the six-degree of freedom equation of motion is not simple, 

although it can be done using a finite-difference algorithm. Working in the frequency domain is 

more computationally efficient and is rather effective for linear systems. Here, the elevation time 

series is converted to the frequency domain through an FFT as previously described in (10).  

From the smoothed wave spectrum, the response spectrum is estimated by squaring the 

RAOs multiplied to the environment spectrum as in (22). The vessel pitch response is: 

                    
                (48) 
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Figure 27: Pitch response spectrum (North Sea) 

 

It is evident in the figure above that there is a sharp drop of “pitch-energy” around   = 

0.4 rad/sec resulting from a similar property of the energy density spectrum (Figure 8). This un-

Rayleigh-type distribution loses some of the statistical accuracy of the method which can result 

in skewed results. Progressing carefully, from the response spectrum in (48), statistical properties 

like the 1/1,000
th 

value can be obtained. 

                                      (49) 

The transfer function for the pipeline stress requires a bit more attention. The total stress 

is composed of both static and dynamic components, unlike motion which is purely dynamic. 

Therefore, the RAO of stress should consider only the dynamic component as a function of 

frequency, and the static component superimposed after the dynamic stress is computed. 

RAOs for both the sagbend and overbend should be derived separately as the allowable 

stress in each region is different. Only the maximum value of stress on either side of the 

curvature inflection point is needed for each frequency, although it is possible to generate a 

dynamic stress RAO for any specific node of interest. A plot of the longitudinal stress RAOs is 

shown in Figure 28.  
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Figure 28: Dynamic stress RAOs (Head seas) 

 

The RAO curves have an oscillatory shape due to the usage of the maximum stress value 

along the length of the pipe, rather than focusing on a single node. The overbend stresses are 

larger than the sagbend stresses in this case. Certainly, changing various parameters, such as pipe 

weight, tension, and the pipe supports will greatly change these curves. Typically, optimizing the 

static stresses is sufficient for developing an installation procedure although pipeline engineers 

may consider the dynamic stresses if warranted in a proposed environment or with large pipe 

sizes. 

 After computing the dynamic stress RAO curves, the stress response spectrum, 

        , is generated similar to the pitch response spectrum. 

                          
                (50) 

where             is the dynamic stress RAO computed using regular waves with unit 

amplitude,   =1 meter, at various frequencies.  
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Figure 29: Dynamic stress response spectrum (North Sea) 

 

Again, statistics can be used to determine the largest total stress expected in about 72 

hours, or 50,000 waves. 

                                               (51) 
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Table 5: Statistical response properties and assessment (North Sea) 

Pitch (1/1000) 3.04 deg 

Allowable (1/1000) 1.50 deg 

  103% Fail 

  

 

  

Sagbend Stress (1/50,000) 171 MPa 

Sagbend Allowable (1/50,000) 390 MPa 

Sagbend -56% Ok 

  

 

  

Overbend Stress (1/50,000) 451 MPa 

Overbend Allowable (1/50,000) 610 MPa 

Overbend -26% Ok 

 

Using the real-time data, the vessel pitch angle more than doubles the allowable value set 

forth in the traditional pipelay limit (103% exceedance). However, the total sagbend and 

overbend stresses, considering both static and dynamic effects, are each below the DNV 

allowable values in this sea-state. Figure 26 shows that this environment should produce pitch 

motion exceeding the allowable value by about double the limit, but still well within the pipe 

stress limiting sea state. The statistics in Table 5 above confirm that this is the case. 

The process is briefly shown again for the NDBC buoy in the Gulf of Mexico which 

contains averaged data over six hours, the minimum length of time recommended for making 

real-time predictions using statistics. The energy density spectrum is shown in the figure below 

and represents a sea state with significant wave height, Hs, of 2.04 meters and a mean period, TM, 

of 6.56 seconds ( =0.95 rad/sec). 
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Figure 30: Energy density spectrum (Buoy #NDBC-42055) and Pitch RAO 

 

The energy density spectrum shows a much greater similarity to a Rayleigh distribution 

indicating a good time sample from which to make statistical decisions. In Figure 30, the vessel 

pitch RAO is overlaid on the frequency range to note that the peak period of the sea state and the 

pitch RAO are not aligned on the same frequency. This leads to smaller vessel response. The 

response spectrums for the system, both for vessel pitch and effective stress are shown on the 

following page. The pitch response (Figure 31) is notably decreased for the Gulf of Mexico 

environment compared with the North Sea shown in Figure 27. 
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Figure 31: Pitch response spectrum, Buoy #NDBC-42055  

 

 

 
Figure 32: Dynamic stress response spectrum, Buoy #NDBC-42055  
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Again, the statistics of both response spectrums can be analyzed to assess the operability 

of the vessel. 

Table 6: Statistical response properties and assessment, Buoy #NDBC-42055  

Pitch (1/1000) 0.69 Deg 

Allowable (1/1000) 1.50 Deg 

  -54% Ok 

  

 

  

Sagbend Stress (1/50,000) 126 MPa 

Sagbend Allowable (1/50,000) 390 MPa 

Sagbend -68% Ok 

  

 

  

Overbend Stress (1/50,000) 370 MPa 

Overbend Allowable (1/50,000) 610 MPa 

Overbend -39% Ok 

 

Comparing the NDBC-42055 buoy’s recorded sea-state against the limiting sea curves 

(Figure 26) the pitch and stress responses are very accurate. All three components: pitch, 

sagbend stress, and overbend stress, are within the allowable values as confirmed in Figure 26. 

The limiting sea curves are generated under the premise of a Rayleigh distribution of energy 

across the frequency range. While this is never fully realized in the ocean, with a long enough 

time sample, the spectrum will eventually take a Rayleigh shape.  
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Section 4 - Conclusion 
 

As pipelines are laid in deeper water every year, improved operational limits become 

more critical to the success of pipelay projects. This work proposes that the use of real-time data 

can improve operational decision making for pipelaying vessel operators. To do so, the pipelay 

vessel follows a three step process. First, an adequate sample of the water surface elevation is 

obtained from a wave riding buoy placed by the lay-vessel. Then, a moderately trained user can 

adjust mooring lines, ballast water, project equipment loading, and pipe parameters to fully 

capture the actual vessel condition in the hydrodynamic model in MOSES or similar software. 

Finally, the recorded environment is applied to the model to obtain operational guidance as to the 

permissibility of pipeline stresses. By evaluating a model quickly in the frequency domain 

against the actual recorded sea conditions, a superintendent can make a more informed decision 

by considering the stresses imposed on a pipeline rather than simply stopping work if the vessel 

pitch limit is exceeded.  

 The consideration of dynamic pipeline stress should also be included in project planning 

workscopes as dynamic stresses can be significant and may lower the limiting sea curves used to 

predict the operability index, or workability, of the vessel. It was shown that at high frequencies, 

short periods, the pipeline may fail in bending before the vessel pitches more than 1.5 degrees. If 

pipeline stresses are ignored in the derivation of limiting sea curves, the pipe stresses can 

inadvertently be exceeded offshore in sea conditions with short periods. 

 An S-Lay configuration was analyzed in this work, although the method lends itself fully 

to other lay configurations including J-Lay. The S-Lay setup involves the added hydrodynamic 

effects of a stinger and requires attention be given to the overbend which is usually non-

concerning in J-Lay tower systems. However, deepwater J-Lay applications may involve greater 
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buckling influence and additional hydrodynamic effects, such as current induced vortex shedding 

which has not been addressed here. For these problems, usage of CFD RANS solvers is preferred 

to more accurately determine the drag coefficient to apply in the hydrodynamic pipeline model. 

In addition, deepwater installation usually imparts a smoother stress distribution on the pipe, but 

creates a wider tension oscillation envelope which must be considered. 

Here, industry recognized software was utilized to limit the focus to the applicability and 

validity of the method. Certainly, this work can be expanded to solve the dynamic pipe equations 

numerically and apply results from CFD analysis directly to the equations. However, the 

practical nature of this topic should always be forefront. 
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