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Abstract

An experimental investigation of the electronic transport properties of bismuth telluride

nanocomposite materials is presented. The primary transport measurements are electrical

conductivity, Seebeck coefficient and Hall effect. An experimental apparatus for measur-

ing Hall effect and electrical conductivity was designed, constructed and tested. Seebeck

coefficient measurements were performed on a commercial instrument. The Hall effect and

Seebeck coefficient measurements are two of the most important tools for characterizing

thermoelectric materials and are widely used in the semiconductor industry for determining

carrier types, carrier concentration and mobility. Further, these transport parameters are

used to determine the thermal to electrical conversion efficiency of a thermoelectric mate-

rial. The Boltzmann transport equation was used to analyze the Seebeck coefficient, carrier

mobility and electrical conductivity as a function of carrier concentration for eleven samples.

The relationship between the electronic transport and material/composite composition is

discussed.

Bismuth, bismuth telluride, Boltzmann equation, carrier concentration, conductivity, elec-

tronic transport, figure of merit, mobility, Seebeck coefficient, semiconductor.



Chapter 1

INTRODUCTION

1.1 Overview

Thermoelectric materials are materials that can convert heat to electrical energy or, the

converse of this effect, use electrical current to move heat. The materials are used in variety

of power generation and solid state cooling devices. [1] A measure of a material’s ability

convert heat to electrical energy (or vice versa) is the “figure of merit” Z given by

Z =
S2σ

κ
, (1.1.1)

where S is the Seebeck coefficient, σ is the electrical conductivity and κ is the total thermal

conductivity (sum of the electronic and lattice thermal conductivities). The figure of merit is

related to the efficiency for power generation and the coefficient of performance for refrigera-

tion. High efficiency or high coefficient of performance require high Z. Multiplying Z times

the absolute temperature T gives a dimensionless figure of merit ZT; ZT>1 is required for

most practical applications. Not surprisingly, in the thermoelectric field of physics, charac-

terization of materials requires accurate measurements of the Seebeck coefficient, electrical

conductivity, and thermal conductivity.
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Clearly, a good thermoelectric material requires both a high Seebeck coefficient and a high

electrical conductivity. Both the Seebeck coefficient and the electrical conductivity are sen-

sitive functions of the carrier concentration n. In semiconductor materials the electrical

conductivity increases with increasing carrier concentration. Unfortunately, the Seebeck co-

efficient decreases with increasing carrier concentration. Much thermoelectric research is

aimed at optimizing the value of by adjusting the carrier concentration. The carrier concen-

tration is determined from a fourth measurement, the Hall effect. This thesis experimen-

tally investigates the electronic transport in bismuth telluride, Bi2Te3, and nanocomposites

formed from Bi2Te3. The primary topics of the thesis are the design, construction and test-

ing of a Hall effect measurement system, Hall effect measurements and the analysis of the

relationship between S, σ and n for a series of Bi2Te3 nanocomposites

1.2 The Hall Effect

Eighteen years before anyone understood what an electron was or that they existed, back

when current was thought to be an incompressible fluid, Edwin Hall, while working on his

dissertation, discovered that when applying a current along thin gold leaf attached to a glass

slide, there was no voltage read perpendicular to the current, but when the gold leaf slide

was placed between the poles of a magnet, a transverse voltage appeared. [2]

He believed that this phenomenon to be a new electromotive force that appeared at right

angles to the primary electromotive force. This new force was labelled by him as the trans-

verse electromotive force, and he found that it was proportional to the product of current

per area and magnetic field.It was more famously known later as the Lorentz Force.

Consider a stream of electrons confined to the dimensions of a solid with velocity, ~v, in the

x-direction as shown in Fig. 1.1. An applied magnetic field in the z-direction will deflect

the flow of electrons into the y-direction causing an unbalanced charge distribution within

the solid, creating an electric field Ey. Eventually as the charges build up on the side of the

solid that is being deflected towards, the forces from the magnetic and electric fields balance

2



and the charges are no longer deflected and a steady-state exists.[3] This is the Hall effect.

Measurement of this transverse potential difference along with the electrical conductivity

provides a way to measure the carrier concentration and carrier type in a semi-conductor or

conductor.

Figure 1.1: The Lorentz force demonstrated in a Hall bar geometry.

The underlying principle of the Hall effect is a potential difference that is created when a

current carrying material is placed with the current perpendicular to a magnetic field. This

causes a deflection in the current and in turn causes an electric potential to appear. This

difference in potential and deflection of electrons are caused by the Lorentz Force given by

~F = q(~E + ~v × ~B). (1.2.1)

Consider a current passing through a material in the x-direction, as shown in Fig. 1.2. An

applied magnetic field oriented in the z-direction causes an electric field to build up in the

y-direction due to the deflection of charge carriers. This build up of electric field is called

the Hall voltage and is equal to the electric field times the width w of the strip.

VH = Eyw (1.2.2)

3
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Figure 1.2: The basic wire setup for the Hall bar geometry

When there is no magnetic field the Hall voltage measured across the sample from V+ to

V- is nearly zero. If all wires and contacts are placed perfectly the voltage measured could

be zero, but in practice it is just very close to zero.

As before, ~E is the electric field, v is the velocity of the electrons, q is the charge of an

electron, and ~B is the applied magnetic field. The right-hand rule can be used to find the

direction of the magnetic force that is acting on the electron. To get the basic equations

of the Hall effect from the Lorentz force, the electric and magnetic field components of the

force must be equal. The force due to the magnetic field ~B is

~FB = q(~v × ~B). (1.2.3)

When measuring the Hall effect, the velocity of the electrons and the magnetic field are

perpendicular resulting in ~v × ~B = vB

FB = qvdB, (1.2.4)
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where vd is the electron drift velocity within a solid due to the electrical current flowing

through the solid. The force due to the electric field E is

FE = qE . (1.2.5)

Now we can equate the two and extract an expression of the electric field in terms of the

applied magnetic field:

FE = FB

qE = qvdB

E = vdB

(1.2.6)

This field equation is similar to the relationship between the electric field and magnetic field

for electromagnetic radiation, E = cB, with c being the speed of light. Next the drift velocity

is defined as the ratio of current density to carrier concentration and electric charge:

vd =
J

ne

J =
I

A

vd =
I

neA

(1.2.7)

with A being the cross-sectional area of the sample. Equations 1.2.6 and 1.2.7 can be

combined to produce the Hall voltage:

VH =
IBw

neA
=
IB

ent
(1.2.8)

with t being the thickness of the sample from Fig. 1.2. When measuring the carrier con-

centration it is good to keep in mind that there are two types of charge carriers: holes and

electrons, or p-type and n-type, respectively. These carrier types can be determined by the

sign of the Hall coefficient RH defined as

5



RH =
VHt

IxBz

. (1.2.9)

The sign of RH indicates whether the material is p-type (+ sign) or n-type (- sign). In n-type

materials the carriers are electrons donated by impurity atoms that are capable of giving up

extra electrons to the primary material. This act of doping raises the carrier concentration.

For example, in silicon, phosphorous acts as a donor creating n-type silicon. Silicon, a group

14 element, has four valance electrons, and phosphorous, a group 15 element, has five valance

electrons. The four electrons from each silicon atom are able to form covalent bonds while

the last fifth electron from phosphorous is unpaired and forms a weak bond, allowing it to

move freely, giving extra negative charge carriers.

When describing p-type materials, it is correct to assume an opposite response to that of n-

type materials. P-type semiconductors can be considered as acceptor material. This means

that when a dopant is present in the primary material there is a lack of bond with the

host material, or a missing bond. Silicon and aluminium are good examples of this. When

aluminum is used as a dopant, the four electrons from silicon are only able to form three

covalent bonds with the three electrons from the aluminum, thus creating a hole. This hole

is able to attract electrons from the closest neighboring atoms. One electron from a neighbor

moves into the hole, which now on the neighboring atom. The process is repeated. This can

create the illusion of the hole traveling around the material carrying current and therefore

acting as a charge carrier. [4]

Narrow-gap semiconductors like bismuth telluride are often doped by forming off-stoichiometric

compounds, like Bi2−xTe3+x. In this case, excess Te (a group 16 element) has six valance

electrons paired with bismuth (a group 15 element with five valance electrons), resulting in

a p-type material. Similarly, excess bismuth will result in an n-type material. The number

of charge carriers is

n =
1

RHq
. (1.2.10)
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Along with knowing the type of carrier, the Hall coefficient and the resistivity can produce a

value for the mobility of the carriers. The fundamental equation for electrical conductivity

can be written

σ = qnµe, (1.2.11)

where µe is the carrier mobility. Mobility is the ability of an electron to move through a

semiconductor or metal when in the presence of an electric field. The intrinsic or conductivity

mobility appears in the equation above. We can use the Hall effect to measure a related

quantity, the Hall mobility µH . Combining Eq.1.2.11 with Eq. 1.2.10 yields

σ = q

(
1

RHq

)
µH =

µH
RH

(1.2.12)

or

µH = σRH . (1.2.13)

The importance of mobility stems from its use in building electronic devices. When the

carrier mobility of a semiconductor is high, the material is able to carry a higher current

allowing the device material to have a greater time response. When the material is in the

presence of a small or low electric field the velocities of the electrons are proportional to the

mobility, meaning when the mobility is higher a low electric field electron velocity is able to

produce a higher time response. This higher response time means that semiconductors with

high mobility may be used in high frequency applications.

These properties of the Hall effect are important for the characterization of semiconductors.

Semiconductors have become more important as more and more applications are found.

Semiconductors can be excellent thermoelectric materials when they are heavily doped to

have carrier concentrations resembling those of metals.[5] Some of the best thermoelectric

semiconductors are those from the group 15 elements (bismuth and antimony) combined

with group 16 elements (tellurium and sellenium). [6]

7



1.3 Thermoelectrics

In 1821 the Seebeck effect was discovered by T.J. Seebeck when he noticed that a compass

needle was deflected when a metal was heated with a heat gradient. He called the effect

thermomagnetism. Oersted later redefined it when he observed that an electric current is

able to produce a magnetic field and gave it the correct name of thermoelectricity. [7]

Thermoelectric devices can convert electrical energy into a temperature gradient. The ap-

plication of this cooling or heating effect remained minimal until the development of semi-

conductor materials. With the advent of semiconductor materials came the capability for a

wide variety of practical thermoelectric refrigeration methods. [8]

1.3.1 Properties of Thermoelectric Materials

If a temperature gradient is established across a semiconductor material, a voltage is created

by the change in temperature. This voltage is the Seebeck voltage. When this voltage is

compared to the temperature gradient, the Seebeck coefficient S can be determined:

S =
∆V

∆T
. (1.3.1)

With V being the voltage from the temperature gradient and T the temperature. This is

the basis of thermoelectric power generation.

Related to the Seebeck effect is the Peltier effect. This effect was named after Jean-Charles

Peltier and was discovered in 1834. Peltier discovered that if a current flows through specific

materials a temperature gradient is created at two junctions of the material. This means that

if a current passes through two thermoelectric materials, one side of the material will heat

up while the other side cools down. This is the ground work for developing thermoelectric

cooling devices.

8



1.3.2 Thermoelectric Applications

When talking about thermoelectric applications, it is important to mention that most appli-

cations involve a thermoelectric module. This module could be a small or large device that

has thermoelectric elements and contains two different types of thermoelectric materials.

One material is an n-type material and the other is a p-type, often called a “unicouple.”

One unicouple is shown in Fig. 1.3. A module consists of alternating n- and p-type ther-

moelectric elements. The combination of both carrier type semiconductors means that the

heat is carried in one direction only due to each material having a different free electron

density at the same local temperature. These modules usually a have symmetrical number

of each carrier type. The change in temperature between n- and p-type occurs when the

current moves to a different carrier type. Current transferring to the n-type material causes

the material to be heated since the n-type material has excess electrons. When the current

transfers to the p-type material, the semiconductor that is lacking free electrons, is cooled.

These materials changing temperature causes the cold side of the module to become colder

and the hot side to become hotter.[1]

In Figure 1.3 only a small part of a thermoelectric module is shown. This basic setup is

replicated several times to make the full module.

These modules are used in many cooling applications. Probably one of the biggest appli-

cations is for cooling electronic devices. Since the current is already present to power the

device, it is relatively easy to incorporate a module to cool the heat-producing electronics.

Cooling the device can help eliminate thermal noise in the circuitry and improve the accuracy

of the electronic instruments.

9
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Figure 1.3: Basic configuration of a thermoelectric generator. The black connecting bars
are solder which electrically connect the two carrier types, this allows flow of the current

throughout the module which is created by the heat being supplied at the top. [5]

The number of thermoelectric modules used as refrigerators and air conditioners has in-

creased over the past few years. Refrigerators and air conditioners have been converting

from the chlorofluorocarbon (CFC) type of air cooling to thermoelectric cooling. One of the

main reasons is that the CFC’s released into the atmosphere has been linked to damaging

effects for the upper atmosphere.
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Chapter 2

BACKGROUND THEORY

In this chapter, the theory behind electronic transport will be explained, as well as the

supporting topics associated with it: Hall effect, Seebeck effect, conductivity, and the

Weidermann-France Law. All the transport equations described can be derived from the

Boltzmann transport equation.

2.1 Electronic Transport Theory

The derivation presented here follows Arabshahi and Sarlak. [9] The Boltzmann transport

equation is analogous to Schroedinger’s equation but describes the variation of the electronic

distribution function f over time. f is also called the probability of occupation of states.

The Boltzmann transport equation is a robust and widely applicable equation used to derive

all of the transport parameters.[10]

The Boltzmann transport equation is [10]

df

dt
=
∂f

∂t

∣∣∣∣
coll

, (2.1.1)

which states that the change in distribution function with respect to time equals the change

in distribution function due to collisions. The equation can be expanded as
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∂f

∂t
+
∂f

∂~p

d~p

dt
+
∂f

∂~r

d~r

dt
=
∂f

∂t

∣∣∣∣
coll

. (2.1.2)

The expansion is in terms of momentum and position because the end result of a transport

equation is to know the velocity of the carriers as a function of position. Note that d~p/dt

is the electric force and d~r/dt is the velocity ~v of electrons. Although this is a complete

equation, when considering scattering and a relaxation time approximation must be used.

That is, we assume the time derivative of the distribution function is proportional to the

deviation of the distribution function from the equilibrium distribution function f0

∂f

∂t

∣∣∣∣
coll

= −f − f0
τ

. (2.1.3)

This is the relaxation time approximation where τ is the relaxation time. Equation 2.1.2

becomes
∂f

∂t
+ ~v · ∇f + q~E · ∂f

∂~p
=
f0 − f
τ

(2.1.4)

In the above equation, ∂f
∂t

= 0 because the change in time of the distribution function is much

smaller than the change in space of the distribution function, or ∂f
∂t
<< ∂f

∂r
. Furthermore,

in the Fermi-dirac distribution, f0, the electric field variation is small and the temperature

gradient within the solid is negligible so the change in the equilibrium is small, making

f = f0. Also the change in distribution with respect to time can be re-written as

∂f0
∂~p

=
∂f0
∂E

dE

d~p
= ~v

∂f0
∂E

. (2.1.5)

Since ~p = m~v and E = p2/2m, the derivative of energy with respect to momentum is the

velocity.

The Boltzmann equation with the time relaxation approximation is

~v · [∇f0 + q~E ∂f0
∂E

] =
f0 − f
τ

, (2.1.6)
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where f0 is the Fermi-Dirac distribution

f0(~k) =
1

e
E(~k)−µ
kBT + 1

. (2.1.7)

Now equation 2.1.6 can be simplified. Starting with the derivative of the Fermi-Dirac distri-

bution, and using the chain rule the term becomes

∂f0
∂E

=
df0
dη

∂η

∂E
=
df0
dη

1

kBT
;
df0
dη

= kBT
∂f0
∂E

, (2.1.8)

where η is the location of the Fermi energy level with respect to the conduction band. The

change in distribution in space is

∇f0 =
df0
dη
∇η = kBT

∂f0
∂E

. (2.1.9)

Then

∇η =
1

kBT
(∇E(~k)−∇µ)− E − µ

kBT 2
∇T = − 1

kBT
∇µ− E − µ

kBT 2
∇T (2.1.10)

and

∇f0 = −∂f0
∂E

(∇µ+
E − µ
T
∇T ). (2.1.11)

Equation 2.1.6 is now expanded to

~v · [−∇µ− E − µ
T
∇T + q ~E]

∂f0
∂E

=
f0 − f
τ

. (2.1.12)

The electric field can also be written as

~E = −∇φe (2.1.13)
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Where φe is the electric potential. Then equation 2.1.12 becomes

~v · [−∇µ− E − µ
T
∇T − q∇φe]

∂f0
∂E

=
f0 − f
τ

. (2.1.14)

Now that the electric field is in terms of a potential, the electrochemical potential can be

defined to be just the sum of the chemical potential µ and the electrostatic potential φe:

Φ = µ+ qφe.

Equation 2.1.14 is solved for the first order distribution:

f = f0 − τ~v · [−∇Φ− E − µ
T
∇T ]

∂f0
∂E

. (2.1.15)

The gradients in equation 2.1.15 are applied in the x-direction

f =f0 − τv cos θ[− dµ
dX
− E − µ

T

dT

dX
+ qEx]

∂f0
∂E

= f0 − τv cos θ[− dΦ

dX
− E − µ

T

dT

dX
]
∂f0
∂E

.

(2.1.16)

The charge flux and energy flux are now calculated. These two values will help in deriving the

Seebeck coefficient and the conductivity. When calculating these flux values, a distribution

of electrons f is considered within a small range of energies for the electrons. These small

distribution of electrons and energies are associated with the density of states, thus the

number of electrons is fD(E)dE. Since the electrons that are being considered are inside

a solid, they will have an equal probability to move in any direction. This direction can be

defined as a solid angle, dΩ, from a point of origin. The probability that an electron will

move within the solid angle of a sphere is dΩ/4π. The movement of electrons in the solid

causes a flux of charges equal to qv cos θ and an energy flux of Ev cos θ. The charge flux and

energy flux are

Jx =

2π∫
φ=0

dφ

4π

π∫
θ=0

sin θ cos θdθ

∞∫
E=0

(fD(E))(qv)dE (2.1.17)
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and

JEx =

2π∫
φ=0

dφ

4π

π∫
θ=0

sin θ cos θdθ

∞∫
E=0

(fD(E))(Ev)dE. (2.1.18)

Substituting the charge flux into equation 2.1.16 will result in

Jx =

2π∫
φ=0

dφ

4π

π∫
θ=0

sin θ cos θdθ

∞∫
E=0

f0D(E)(qv)dE

+

2π∫
φ=0

dφ

4π

π∫
θ=0

sin θ cos2 θdθ

∞∫
E=0

D(E)(τqv2[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE

(2.1.19)

JEx =

2π∫
φ=0

dφ

4π

π∫
θ=0

sin θ cos θdθ

∞∫
E=0

f0D(E)(Ev)dE

+

2π∫
φ=0

dφ

4π

π∫
θ=0

sin θ cos2 θdθ

∞∫
E=0

D(E)(τEv2[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE

(2.1.20)

The first term in equations 2.1.19 and 2.1.20 both equal zero when integrated, so that

Jx =
1

3

∞∫
E=0

D(E)(τqv2[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE (2.1.21)

and

JEx =
1

3

∞∫
E=0

D(E)(τEv2[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE. (2.1.22)

v can be removed by using the kinetic energy

E =
1

2
mv2 (2.1.23)
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resulting in

Jx =
2q

3m

∞∫
E=0

D(E)(τE[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE (2.1.24)

and

JEx =
2

3m

∞∫
E=0

D(E)(τE2[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE. (2.1.25)

Separating terms for the electrochemical potential, equation 2.1.25 can be written as two

integrals:

JEx =
2

3m

∞∫
E=0

D(E)(τE2[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE

=
2

3m

∞∫
E=0

D(E)(τE(E − µ)[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE

+ µ
2

3m

∞∫
E=0

D(E)(τE[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE

=
2

3m

∞∫
E=0

D(E)(τE(E − µ)[
dµ

dX
+
E − µ
T

dT

dX
− qEx]

∂f0
∂E

)dE +
µJz
q

=
2

3m

∞∫
E=0

D(E)(τE(E − µ)[
dΦ

dX
+
E − µ
T

dT

dX
]
∂f0
∂E

)dE +
µJz
q

(2.1.26)

When the temperature is at zero kelvin (T=0K) the energy flux will be reduced to

JEx =
µJx
q

(2.1.27)

The thermal energy is the difference in energy flux at T = 0K and when T 6= 0K:
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Jqx = JEx(T )− JEx(T = 0)

=
2

3m

∞∫
E=0

∂f0
∂E

D(E)E(E − EF )τ(
dΦ

dX
+
E − µ
T

dT

dX
).

(2.1.28)

Combining terms under the same integral simplifies equation 2.1.24 to

Jx = L11(−
1

q

dΦ

dX
) + L12(−

dT

dX
) (2.1.29)

and

Jqx = L21(−
1

q

dΦ

dX
) + L22(−

dT

dX
), (2.1.30)

where

L11 = −2q2

3m

∞∫
E=0

∂f0
∂E

D(E)EτdE, (2.1.31)

L12 = − 2q

3mT

∞∫
E=0

∂f0
∂E

D(E)E(E − µ)τdE, (2.1.32)

L21 = TL12, (2.1.33)

L22 = − 2q

3mT

∞∫
E=0

∂f0
∂E

D(E)E(E − µ)2τdE, (2.1.34)

The equations have now been set up to derive each of the different transport equations that

are more familiar. To derive the different equations such as electrical conductivity, Seebeck

coefficient and carrier concentration some basic initial conditions must be used.
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2.1.1 Electrical Conductivity

The electrical conductivity is defined as a measure of the ability of a given substance to

conduct electric current, equal to the reciprocal of the resistivity of the material.

To derive the conductivity from the Boltzmann transport equation, equation 2.1.28 is sim-

plified using intial conditions for conductivity: no temperature gradient and no carrier con-

centration gradient. That is dT
dX

= 0 and dµ
dX

= 0, and the equation then becomes

Jx = L11(−
1

q

dΦ

dX
) = L11(−

1

q

dµ

dX
+ Ex) = L11Ex. (2.1.35)

From Ohm’s law in basic electromagnetic theory [11], the charge density is equal to the

conductivity times the electric field

~J = σ~E . (2.1.36)

Solving for σ produces

σ =
Jx
Ex

= L11 = −2q2

3m

∞∫
E=0

∂f0
∂E

D(E)EτdE. (2.1.37)

The partial derivative with respect to energy is non-zero only when the energy is close to

the chemical potential
∂f0
∂E

= δ(E − µ), (2.1.38)

So that

− 2q2

3m

∞∫
E=0

δ(E − µ)D(E)EτdE =
2q2

3m
D(E)µτ

∣∣∣∣
E=µ

=
2q2

3m
DFµτF . (2.1.39)

τF is the scattering mean free time of Fermi electrons. τF is an electron’s energy level near

that of the Fermi energy. The chemical potential can be reduced to just the kinetic energy

with the Fermi velocity. The Fermi level, also called the chemical potential, is equivalent
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to the Fermi energy at T=0. Equation 2.1.39 can then be reduced using µ = EF = 1
2
mv2F ,

where vF is the Fermi velocity, to give

σ =
q2

3
DFv

2
F τF . (2.1.40)

The conductivity can be simplified more if the Fermi density DF is replaced by the carrier

concentration

n =

∞∫
E=0

f0(E)D(E)dE =

∞∫
E=0

f0(E, T = 0)D(E)dE =

EF∫
E=0

D(E)dE

=

EF∫
E=0

1

2π2

(
2m

~2

)2/3

E1/2dE =
1

3π2

(
2m

~2

)2/3

E
3/2
F =

2

3
DFEF ≈

2

3
DFµ.

(2.1.41)

Equation 2.1.39 and 2.1.41 can be combined to form the familiar form of the electrical

conductivity

σ =
q2

m
nτF (2.1.42)

2.1.2 Weidemann-Franz Law

The Wiedemann-Franz Law relates the electrical conductivity to the electrical component

of the thermal conductivity. Assuming a mobility of

µe =
q

m
τF , (2.1.43)

then with equation 2.1.42 the conductivity in terms of mobility is easily calculated to be

σ = nqµe. (2.1.44)
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Combining electrical conductivity and thermal conductivity ke (derived from the Boltzmann

transport equation in Arabshahi [9]):

ke
σ

=
1
3
vF

2τFCe
e2

m
nτF

=
mCevF

2

3ne2
. (2.1.45)

Here Ce is the electron specific heat obtained from the derivation of thermal conductivity

transport equation:

Ce =
1

2
π2nkBT/TF =

1
2
π2nkBT
mvF 2

2kB

=
π2nkB

2T

mvF 2
. (2.1.46)

If the previous two equations are combined then the ratio of thermal to electrical conductivity

is reduced to

ke
σ

=
mvF

2

3ne2
π2nkB

2T

mvF 2
=
π2kB

2T

3e2
. (2.1.47)

The Lorentz number is now defined to be

L =
π2kB

2

3e2
= 2.45× 10−8(WΩ/K2), (2.1.48)

and finally the Wiedemann-Franz law is obtained:

ke
σ

= LT. (2.1.49)

2.1.3 Seebeck Effect

Unlike the case for conductivity, calculating the Seebeck coefficient requires a non-zero tem-

perature gradient. It is defined as the measure of the magnitude of an induced thermoelectric
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voltage in response to a temperature difference across that material. This temperature gra-

dient is assumed to be along the X-axis of the sample. In this set up a voltage can be

measured across the sample caused by the temperature gradient. Since there is no applied

voltage, the charge flux is zero, Jx = 0, and

Jx = L11(−
1

q

dΦ

dX
) + L12(−

dT

dX
) = 0. (2.1.50)

Accordingly, the change in electric potential divided by the temperature gradient is,

dΦ

dX
dT

dX

= −qL12

L11

. (2.1.51)

The voltage across the sample is ∇V = ∇Φ/q = ∇(µ+qφ) and dV = dΦ/q, and the Seebeck

coefficient is

S =

dV

dX
dT

dX

= −1

q

dΦ

dX
dT

dX

=
L12

L11

=
1

qT

( ∞∫
E=0

∂f0
∂E
D(E)E(E − µ)τdE

∞∫
E=0

∂f0
∂E
D(E)EτdE

)

=
1

qT

(
µ−

∞∫
E=0

∂f0
∂E
D(E)E2τdE

∞∫
E=0

∂f0
∂E
D(E)EτdE

)
.

(2.1.52)

For the density of states of a solid, the free-electron density of states can be applied to

describe the functions in the conduction and valence bands. [12] That is,

D(E) =
Ω(2m)3/2

2π2~3
E1/2, (2.1.53)

where Ω is the volume.

To proceed further the relaxation time τ must be defined. τ depends on the energy of

electrons according to a simple power law
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τ = τ0E
r, (2.1.54)

where r is a constant whose value depends on the types of scattering mechanisms involved.

τ0 is a constant that is independent of energy. r can have values such as −1/2 for acoustical

phonon scattering or 0 for neutral impurity scattering.

Combining the relaxation time definition and the density of states with the Seebeck coefficient

equation yields

S =
1

qT

(
µ−

∞∫
E=0

∂f0
∂E
D(E)E2τdE

∞∫
E=0

∂f0
∂E
D(E)EτdE

)
=

1

qT

(
µ−

∞∫
E=0

∂f0
∂E
E2+r+1/2τdE

∞∫
E=0

∂f0
∂E
E1+r+1/2τdE

)
. (2.1.55)

The integrals of equation 2.1.55 can be simplified to

∞∫
E=0

∂f0
∂E

ErdE = f0E
r

∣∣∣∣∞
0

− r
∞∫

E=0

f0E
r−1dE = −r

∞∫
E=0

f0E
r−1dE. (2.1.56)

Equation 2.1.55 now reduces to

S =
1

qT

(
µ−

(r + 5/2)
∞∫

E=0

f0E
r+3/2τdE

(r + 3/2)
∞∫

E=0

f0Er+1/2τdE

)
. (2.1.57)

This can be simplified by changing the energy E to the reduced energy E = ζkBT

∞∫
E=0

f0(E, µ)EndE = (kBT )n+1

∞∫
0

f0(E, ζ)ζndζ = (kBT )n+1Fn(η), (2.1.58)

where the Fermi-Dirac integral is
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Fn(η) =

∞∫
0

f0(ζ, η)ζndζ. (2.1.59)

The values for this integral can be found in Appendix A. This equation will be used to

measure the relation between the Seebeck coefficient and carrier concentration. Fermi-Dirac

integrals can be calculated with the help of built-in functions in Mathematica or MATLAB,

but these tabulated values work well, too. The rest of the derivation will be for the purpose

of calculating via computer. The nearly final form of the Seebeck coefficient is

S = −kB
q

(
η −

(r + 5
2
)Fr+ 5

2

(r + 3
2
)Fr+ 5

2

)
. (2.1.60)

For a non-degenerate semiconductor the chemical potential is located a distance from the

conduction or valence band larger than 3kBT . If the distance is larger than that of the

reduced energy ζ minus the location of the Fermi level with respect to the conduction band

η is greater than three (ζ − η > 3), the integral then becomes

Fn(η) =

∞∫
0

f0(ζ, η)ζndζ =

∞∫
0

1

exp(ζ − η) + 1
ζndζ =

∞∫
0

1

exp(ζ − η)
ζndζ

= exp(η)

∞∫
0

exp(−ζ)ζndζ = exp(η)Γ(n+ 1),

(2.1.61)

where the gamma function, a useful tool for integration of problems with an exponential

function and a linear function, is

Γ(n+ 1) =

∞∫
0

exp(−ζ)ζndζ = nΓ(n). (2.1.62)
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Substituting in the Gamma function the Seebeck coefficient is given by

S = −kB
q

(
η −

(r + 5
2
)exp(η)Γ(r + 5

2
)

(r + 3
2
)exp(η)Γ(r + 3

2
)

)
. (2.1.63)

2.2 Hall Effect

Beginning again with the Boltzmann transport equation the Hall coefficient RH may be

derived. The Hall effect derivation follows Harrison, Solid State Theory.[10] Start with the

basic relationship

~F · 1

~
∇kf(~k) =

∂f

∂t
. (2.2.1)

In this case the force is due to both the applied electrical and magnetic fields, ~F here is the

Lorentz force,

~F = q(~E + ~v × ~B), (2.2.2)

so that

q(~E + ~v × ~B) · 1

~
∇kf(~k) =

∂f

∂t
. (2.2.3)

Assuming the relaxation time approximation τ equation 2.2.3 becomes

(
q(~E + ~v × ~B)

)
·
(

1

~
∇kf(~k)

)
=
f − f0
τ

(2.2.4)

and
∂f0
∂E

~v ·
(
− q~E − q~v × ~B

)
+
∂f1
∂~p
·
(
− q~E − q~v × ~B

)
+
f1
τ

= 0 (2.2.5)

Now the equation 2.2.5 can be simplified using the fact that the divergence of the curl is

zero ~v · (~v × ~B) = 0 and that ∂f1
∂~p
· (−q~E) is a second order term and can be neglected.

− q∂f0
∂E

~v · ~E − q∂f1
∂~p
· (~v × ~B) +

f1
τ

= 0. (2.2.6)
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Solving for the first-order term f1 is impossible, but if the equation is analysed, it can be

noted that when considering a steady state problem it is possible to solve for the first-order

term. In a steady state problem, the Boltzmann equation is reduced to

f1 =
∂f0
∂~p
· τ ~F . (2.2.7)

Noting that ∂f0
∂~p

= ∂f0
∂E

∂E
∂~p

= ∂f0
∂E
~v from equation 2.1.5 makes Eq. 2.2.7

f1 = τ

(
− ∂f0
∂E

)
~v · ~F . (2.2.8)

Reverting back to the original problem, equation 2.2.6., the first partial term is similar to

that of the steady state problem, while the second partial term is the magnetic field term

and is there to rotate the distribution. Equation 2.2.7 can be substituted into 2.2.6 if the

electric field is replaced by a general vector ~G the distribution function is

f1 = qτ
∂f0
∂E

~v · ~G. (2.2.9)

This is able to help solve the first partial term but the derivative of f1 with respect to

momentum, ~p, for the second partial term is

∂f1
∂~p

= qτ

[ ~G
m

∂f0
∂E

+
∂2f0
∂E2

(~v · ~G)~v

]
. (2.2.10)

Equation 2.2.10 can be combined with 2.2.6 to form

0 =− q∂f0
∂E

~v · ~E − q2τ
[ ~G
m

∂f0
∂E

+
∂2f0
∂E2

(~v · ~G)~v

]
· (~v × ~B) + q

∂f0
∂E

~v · ~G

= −q∂f0
∂E

~v · ~E − q2τ
[ ~G
m

∂f0
∂E

]
· (~v × ~B) + q

∂f0
∂E

~v · ~G.
(2.2.11)
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The second order partial derivative term goes to zero because it results in a divergence of a

curl. Also each of the ∂f0
∂E

cam ne dropped out of the equation along with the charge, q and

τ tp equal

0 = −~v · ~E − qτ

m
~G · (~v × ~B) + ~v · ~G. (2.2.12)

The equation above can be rearranged to yield

0 = ~v ·
(
~E +

qτ

m
~G× ~B − ~G

)
. (2.2.13)

For this to be true, the total electric field would have to be

~E = ~G− qτ

m
(~G× ~B). (2.2.14)

Now when the magnetic field is non-existent only the first term is left so ~E = ~G. Ohm’s law,

~J = σ ~E, allows the identification of the vector ~G as ~G = ~J/σ. Substituting yields

~E =
J

σ
+

qτ

mσ
( ~B × ~J), (2.2.15)

this shows that in the presence of a magnetic field, the electric field has two components,

one in the direction of ~J and one in the direction of ~B × ~J . Using Fig. 1.2,

Ex =
Jx
σ

(2.2.16)

and

Ey =
qτ

mσ
BzJx (2.2.17)
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or

Ey
BzJx

=
qτ

mσ
= RH =

µH
σ

(2.2.18)

with the mobility identified as µH = qτ
m

.

This is the Hall coefficient, a constant that is able to determine the carrier type of the

material, whether it is n-type or p-type based on the sign of the charge term, q, (q = −e)

for n-type or electrons and (q = +e) for p-type or holes. n is the carrier concentration of the

material.

n =
1

|RH |e
(2.2.19)

2.3 Scattering Parameter “r”

The scattering parameter, r, was talked about in section 2.1.2, but was glossed over. This

parameter is a number of either -1/2, 0, 1/2, 3/2 that defines the type of scattering that

occurs in a solid. The values focused in this paper is 0 and -1/2 corresponding to acoustic

phonon scattering (-1/2) and neutral impurity scattering (0). [13] These equations are

derived above the Seebeck coefficient section and the electrical conductivity section.

S = −kB
q

(
η −

(r + 5
2
)Fr+ 5

2

(r + 3
2
)Fr+ 5

2

)
(2.3.1)

n =
NV

2π2

(
2kBTmd

~2

)3/2

F1/2(ζ
∗) (2.3.2)
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Equation 2.3.2 is the carrier concentration from the conductivity section. Here Nv is the

number of valleys in the semiconductor and the equation is easily defined when the integral

in Eq. 2.1.41 is replaced by the Fermi-integral. Then Eq. 2.3.2 is easily calculated.
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Chapter 3

EXPERIMENTAL SETUP

The experiments presented here are performed to accurately characterize newly synthesized

thermoelectric compounds. We use instruments both built and acquired to measure the

properties of carrier concentration, Seebeck coefficient, mobility, and conductivity. Resistiv-

ity and the hall coefficient are obtained.

There are two main experimental set ups to be discussed along with the appropriate guide-

lines needed to perform them. First is the Hall effect apparatus built to measure the carrier

concentration, mobility, and conductivity. The second machine used for characterization is

the ULVAC ZEM3. The ZEM3 is able to measure resistivity, Seebeck coefficient, power fac-

tor and figure of merit. Among all these properties we only need the Seebeck coefficient and

the conductivity from the Hall measurement for characterizing the electrical components of

a thermoelectric material.

3.1 Samples

There are several stages to the sample synthesis and preparation for measurement in the

ZEM-3 and Hall effect instruments. First a sample is synthesized as a powder, then the

powder form is put into a laboratory hot press. After the powder is solidified to a certain

hardness, the solid sample is then cut into rectangular blocks approximately 3mm x 3mm

29



x 10mm. These blocks are the basic sample dimensions used for measurements in both the

ZEM and Hall effect devices.

3.2 Hall Effect

3.2.1 Geometry

When measuring the Hall effect two sample geometries are often used, the Hall bar and

the Van der Pauw geometries. Each has advantages and disadvantages. The most common

geometry for research is the Hall bar geometry shown in Fig. 3.1. The Hall bar geometry

uses a long narrow rectangular sample, with the simplest lead placement being a 4 point

contact. In the 4-contact set up there are two leads passing a current across the long axis

of the sample, while two voltage leads are placed on the side of the sample directly across

from one another, as accurately as possible.

Figure 3.1: Hall effect geometry for a rectangular bar sample. [14]

For calculating the Hall coefficient RH after the data have been collected with the Hall bar

geometry, for the 4 contact bar geometry

RH =
tV24
I56B

, (3.2.1)
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Here the V24 means that the voltage is read from points 2 and 4 from Figure 3.1, while at

the same time current is passing through points 5 and 6, I56. While the 4 contact bar is by

far the easiest to implement in any system, it is not the most accurate and can have trouble

in determining resistivity and whether or not the sample is inhomogeneous or anisotropic.

The 6 contact and 8 contact bar are suited for measuring these values. For the 6 point the

Hall coefficient is

RH,34 =
t(V+ − V−)34
eI56(B+ −B−)

(3.2.2)

RH,12 =
t(V+ − V−)12
eI56(B+ −B−)

(3.2.3)

Equations 3.2.2 and 3.2.3 are then averaged and the real value of the Hall coefficient is

determined.

RH =
RH,34 +RH,12

2
, (3.2.4)

If the values of RH,34 and RH,12 differ by more than 10% then the sample is in fact anisotropic.

Equations 3.2.2 and 3.2.3 can be adapted for the 8 contact bar with an addition of RH,56.[14]

We use a non-standard 5 contact geometry for measure the Hall voltage and resistivity.

Equation 3.2.1 is used to measure the Hall coefficient. A 5 contact geometry is similar to

the 4 contact geometry except for the fact that with 5 points of contact, a resistivity can

also be measured. Fig 3.2 shows the wire configuration.
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Figure 3.2: Sample with 5 contacts and silver paste contacts.

The Van der Pauw geometry shown in Fig. 3.2 is the most popular in industry due to

the fact that the measurements require fewer geometrical constraints. If the sample has a

uniform thickness, homogeneity, and contains no holes in it, then the Van der Pauw method

works. Nearly any shape can be used. Drawback to the Van der Pauw method is the fact

that because of the fact that the contacts are not on the circumference of the sample, it is

impossible to accurately measure magnetoresistance and the current flow is not as precise

as that of the Hall bar geometry. Methods can be used to reduce the error caused if the

contacts are of finite size and not sufficiently close to the circumference, such as using a

“clover” leaf design shown in Figure 3.3.

The Van der Pauw calculations are as follows, where each field is a sum of the positive and

negative magnetic field values:
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Figure 3.3: Hall effect geometry for the Van der Pauw method.[14]

V13 = V13,P − V13,N

V24 = V24,P − V24,N

V31 = V31,P − V31,N

V42 = V42,P − V42,N

(3.2.5)

Once again voltage is read from the two points labelled but the current is passed from the

two points that aren’t labelled so for V13 the current is I24. These voltages are the voltage

measured when the magnetic field is in the positive direction minus the voltage measure

when the field is in the negative direction. There must be four voltage measurements for the

Van der Pauw to ensure

VH =
V13 + V24 + V31 + V42

8
(3.2.6)

And as before the Hall coefficient is able to be calculated with the Hall voltage.

RH =
tVH
BI

(3.2.7)
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Because of the layout of the voltages and currents measured, the time required to take the

measurement for the Van der Pauw method is increased when compared to the Hall bar.

This is because of the switching required to pass the current and measure the voltage for 8

different orientations with positive and negative field values.

3.2.2 Hall Equipment

Figure 3.4: Hall effect system designed, built and programmed for our lab.

The equipment used here is pieced together for our specific purposes, which include: Lake

Shore 455 DSP Gaussmeter, a Lake Shore 370 AC Resistance Bridge, a Lake Shore 3708

Pre-Amplifier Scanner, a GMW Electromagnet, and a GMW System 8500 Magnet Power

Supply. The Lake Shore 370 AC Resistance Bridge was chosen because of the range of sample

resistance runs from 2mΩ to 2MΩ.

All instruments are connected to a computer via a General Purpose Interface Bus, GPIB.

GPIB is a standard among most automatic test instruments allowing easy to use programs,

such as Labview, for programming the instruments.
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GMW System 8500
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Figure 3.5: Basic elements in a working setup to measure the Hall effect.

The Lake Shore 370 AC Resistance Bridge is the main instrument of the Hall effect apparatus.

This device has two modes: voltage excitation mode and current excitation mode. For

measuring the Hall effect, the current must be controlled so the latter mode is used. This

mode is able to pass a current from 3.16 pA (pico-Amps) to 31.6 mA (milli-Amps), with 21

preset levels in between. When in current excitation mode, each amperage has associated

voltages that can be measured. The voltage being measured is determined by a range of

resistances. For example, when 10 mA is set, you then simultaneously set the resistance

range to fine tune the voltage that is being measured. Since the current is a preset value, the

instrument displays values of resistance instead of voltage even though its the voltage that

really is being measured. Ohm’s law, V = IR, will provide the measured voltage. These

preset amperage and resistance ranges are found in Appendix D.

The Lake Shore 3708 Scanner is an subsidiary unit for the Lake Shore 370. The 3708 is an

eight channel pre-amplifier scanner where one side interfaces with the Lake Shore to provide

channels to measure and scan while the other end is able to have active connections to and

from the samples being measured. This scanner card is able to provide eight simultaneous

attached connections to the material being measured. This is done by “nulling” out the inac-

tive channels allowing for clear and precise measurement without interference from different

channel configurations.
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The Lake Shore 455 DSP Gaussmeter is part of the system used solely for measuring accurate

readings of the magnetic field. In figure 3.3 the gaussmeter probe or gauss probe should go

in between the poles of the GMW magnet. The maximum and minimum fields able to be

read by the High Sensitivity probe is listed in Appendix A.

The final instruments needed are the GMW magnet and GMW power supply. The magnet

has a maximum field output of 1.2 T when the poles are at a distance of 7 cm apart. The

poles of the magnet are 10 cm in diameter.

The magnetic field is a DC field. The current to the sample is AC. The Lake Shore 370

produces a precision AC current (13 Hz) and measures a potential difference. It typically

reports the value as a resistance or V/I.

3.2.3 Samples in Hall Effect Apparatus

Once ohmic contact annealing took place the sample was moved to the apparatus for mea-

surement. Sample leads are soldered to the pre-existing wires from the resistance bridge and

mounted firmly on the sample stage and the stage placed within the uniform magnetic field.

The sample is oriented with the current being perpendicular to the magnetic field which

produces a voltage that is perpendicular to both current and magnetic field. The Lake Shore

370 performs the switching between resistivity and hall measurements.

Once the sample is within the magnetic field, data is taken while sweeping the field from

-0.5 Tesla to 0.5 Tesla. Positive and minus values of the magnetic field must be taken in

order to cancel out any extra voltage later from the leads being misaligned. The instruments

and data taken are controlled by National Instruments Labview programming and provides

seamless integration of the different instruments.
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Figure 3.6: Sample stage to be placed within the magnetic field. A is the sample be-
ing measured. B is the wiring harness for cables that are connecting the 6 point Hall

measurement to the Lake Shore 3708 Scanner

3.2.4 Ohmic Contact Fabrication

The process of measuring the Hall effect starts with applying reliable and uniform ohmic

contacts to the material. One of the most common methods is to use a silver paste, PELCO

High Performance Silver Paste, to adhere five ohmic contacts to the sample. The Silver Paste

is a one part epoxy used for temperature ranges from cryogenic to 1200K. The PELCO High

Performance Silver Paste was applied under a microscope to ensure a contact as small as

possible to have minimal ohmic dependence.
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After the contacts are set in place they are annealed at 300K for two hours and then at

360K for two more hours. These samples were prepared for the Hall Bar geometry with a

five point contact to accurately measure the Hall voltage and resistivity simultaneously. All

measurements were made at 300K.

3.2.5 Hall Data Analysis

Data from the Lake Shore 370 is in an un-averaged raw form. The first calculation is averaged

over all values to prevent large variances. This is done in Labview.

- 0 . 6 - 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6
1 0

2 0

3 0

F i e l d  ( T e s l a )

Re
sis

tan
ce

 (O
hm

s)

Equation y = a + b*x
Adj. R-Square 1

Value Standard Error
Data with Offset Intercept 20 2.48191E-16
Data with Offset Slope -20 8.19749E-16

- 1 0

0

1 0

Resistance with offset compensation

D a t a  w i t h o u t  o f f s e t  c o m p e n s a t i o n

D a t a  w i t h  o f f s e t  c o m p e n s a t i o n
Equation y = a + b*x
Adj. R-Square 1

Value Standard Erro
Data without Offset Intercept 0 8.26041E-16
Data without Offset Slope -20 2.66257E-15

Figure 3.7: Example data for adjustment of the offset voltage that occurs with misaligned
voltage wires.

Data is tabulated using Origin 8.0. Generally the initial data will contain an offset voltage

caused by imperfect wire placement on the sample. This can be corrected using the zero

field voltage measured when the field was swept from -0.5 Tesla to 0.5 Tesla. This results

in the voltages passing through zero when the magnetic field is turned off. This effect is

illustrated in Figure 3.5. When the leads are misaligned the Hall voltage is then
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VH =
RHIBz

d
+ V0. (3.2.8)

When the voltage is plotted versus the magnetic field, a straight line should be produced.

Noise from vibrations, grounding problems, and the magnetic field’s uniformity being unsta-

ble can cause large variations in the values. If the data is plotted and it does not follow linear

dependence then the sample could have a magneto-resistant properties or be magnetic.

In Figure 3.5 are two lines of data from a typical measurement. The offset compensation

is the voltage found at 0.0 Tesla. Correcting the voltage provide an accurate measurement

for the Hall effect without error from the wire placement. The slope of the line times the

thickness will give the Hall coefficient RH = VHd
BzIx

.

To ensure that the instruments were correctly calibrated, a stainless steel Standard Reference

Material (SRM) was used to reproduce the resistivity measured by the National Bureau of

Standards and National Institute of Standards and Technology (NIST). The stainless steel

was SRM 1461 and a table of values can be found in Appendix G.

3.3 ZEM Equipment

For the Seebeck coefficient measurements, the ZEM-3 from ULVAC Technologies, Inc. was

used. This instrument is able to measure the Seebeck coefficient and resistivity simultane-

ously. It can measure samples of length 6 mm to 22 mm in both rectangular prism and

cylindrical shapes. For Bi2Te3 pure and nano-composite materials, 10 mm long prisms were

used for the Seebeck measurement. The instrument is controlled via computer to automate

measurement with temperature ranging from room temperature to 800◦C. Measurements

are performed under an inert atmosphere of helium gas.

The Seebeck coefficient measurement uses a static DC method, while measuring the electrical

resistance uses a standard four point method.
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Bismuth has a melting point of 271.4◦C. In the ZEM-3, the Bi2Te3 pure and nano-composite

materials were measured from room temperature to 150◦C to ensure that no bismuth nano-

particles would melt and possibly enter the Bi2Te3 matrix.

Figure 3.8: ZEM3 sample stage with probes in place.

In Figure 3.6 a sample is shown mounted in the ZEM3 with the temperature and current

probes in place. The sample is held in place by pressure contacts on the top and bottom. A

furnace is then brought into place and the sample is secured inside the furnace. A vacuum is

produce and inert gas fills the chamber to ensure no contamination from the air. The probes

measure the voltage when a current is passed through the sample and when the sample has

a temperature gradient on its long axis. These two different voltages are the conductivity

and the Seebeck coefficient respectively. The instrument is controlled via Labview.
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Chapter 4

RESULTS

4.1 Structure of Bi2Te3/Bi Nanocomposite

Experimental results for electronic transport measurements discussed in Chapter 2 and 3

are described in this section. Results have been published in Advanced Energy Materials,

”Enhancement in thermoelectric figure of merit in nano-structured Bi2Te3 with semimetal

nanoinclusions”.[13]

4.2 Electronic Transport Measurements

As listed in Table 4.1, eleven different samples were investigated. Varying fractions of Bi

nanoparticles (0-7%) were dispersed into the Bi2Te3 matrix. In addition, off-stoichiometric

Bi2−xTe3+x was synthesized to produce nanostructured materials with different carrier con-

centration for comparison. Measurements of the Hall coefficient, resistivity, and the Seebeck

coefficient were taken. Several different sample sets were made for more in depth comparison.

In batch I of the bismuth telluride, we have a single sample of just the bismuth telluride

matrix accompanied by two nanocomposite samples of 3% and 5% bismuth nano-inclusions.

Batch II consists of a similar grouping, but the percentage of bismuth nano-inclusions were

increased to 5% and 7%. The third grouping in the table is the off-stoichiometric contribu-

tions with varying degrees of ratio between bismuth and tellurium but no nano-inclusions
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Table 4.1: Table of Measured and Calculated Values

Sample Name Hall Coefficient Resistivity Carrier Carrier Seebeck
Concentration Mobility Coefficient

(cm3/C) (Ω · cm) (×1019/cm3) (cm2/V · s) (µV/K)
RH ρ n µe S

Bi2Te3 - I −3.78× 10−1 5.20× 10−3 1.652 72.607 178
Bi/Bi2Te3(3%Bi NC) −2.92× 10−1 4.35× 10−3 2.653 54.044 167
Bi/Bi2Te3(5%Bi NC) −2.03× 10−1 2.76× 10−3 3.08 73.297 171

Bi/Bi2Te3 - II −4.13× 10−1 1.96× 10−3 1.51 210.82 182
Bi/Bi2Te3(5%Bi NC) −1.12× 10−1 1.58× 10−3 5.571 70.955 138
Bi/Bi2Te3(7%Bi NC) −1.14× 10−1 1.44× 10−3 5.462 79.5 139

Bi1.95Te3.05 −2.88× 10−1 3.65× 10−3 2.169 78.755 159
Bi1.85Te3.15 −2.51× 10−1 2.67× 10−3 2.489 93.893 156
Bi1.75Te3.25 −1.83× 10−1 2.50× 10−3 3.415 73.084 150

Bi1.95Te3.05(3%Bi NC) −1.68× 10−1 2.63× 10−3 3.707 63.978 141
Bi1.95Te3.05(5%Bi NC) −1.48× 10−1 2.51× 10−3 4.213 59.031 126

are considered with the lower ratio bismuth to tellurium samples. Only two bismuth nano-

inclusion percentages (3% and 5%) were included in the synthesis for the smallest change in

ratio.

The Hall effect measurements show an increase in carrier concentration in the Bi/Bi2Te3

nanocomposite and Bi2−xTe3+x samples (for 3%, 5%, and 7% Bi nano-inclusions) compared

to the matrix phases. The carrier mobility of the 3%Bi/Bi2Te3 nanocomposite decreases

compared to the matrix while it again increases for 5%Bi/Bi2Te3 nanocomposite.
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Figure 4.1: Carrier concentration / mobility vs. Composition. The points connected
by a line are of the same set. We see a trend of increasing carrier concentration with a

decrease in mobility based on the composition.

In Figure 4.1 the carrier concentration versus composition and carrier mobility versus com-

position is shown at room temperature (300K). It can be seen that with an increasing carrier

concentration the carrier mobility decreases in agreement with equation 1.2.11. One anomaly

exists in the data with the 5% bismuth telluride nanocomposite. It has a is slightly larger

than the 3% bismuth telluride nanocomposite. This is explained by slight variations in ball-

milling, manual mixing procedures, and hot-pressing conditions result in small deviations in

stoichiometry and consequently deviations in electronic transport.
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Figure 4.2: Plot of Conductivity vs. Temperature. Data was taken on the ZEM3.

The ratio of bismuth to tellurium in Bi2−xTe3+x results in variation of the conductivity

and Seebeck coefficient. When adding tellurium to the system, the electrical conductivity

increases. In single crystal Bi2Te3 with no doping, the carrier type is p, but with this

nano-structured stoichiometric compound Bi2Te3 it is measured as n-type. [15] Milling con-

ditions and densification temperatures must be taken into account when studying electrical

conductivity and the Seebeck coefficient of mechanically alloyed materials. When bismuth

nano-inclusions are added to the Bi2Te3 the results show an increased carrier concentration

and an increase in electrical conductivity when compared to the Bi2Te3 pure samples.

The conductivity in Fig. 4.2 shows that when Bi2Te3 has bismuth nano-inclusions the

conductivity is increased. That is, for the 5% and 7% nano-composites, the conductivity

doubled when compared to the base, while the 3% increased by a small margin and was

similar to the base at high temperatures. In the off-stoichiometric with decreasing bismuth
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concentration, the conductivity decreased and then increased, but all had a similar trend

in temperature. The off-stoichiometric nano-composites also saw a similar effect as the

Bi2Te3 nano-composites, with an increase in conductivity when bismuth nano-inclusions

were incorporated.
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Figure 4.3: Plot of Seebeck Coefficient vs. Temperature.

Fig. 4.3 shows the Seebeck coefficient for the bismuth telluride nano-composites. Here the

data shows that with an increase in bismuth nano-inclusions the Seebeck coefficient changes

slightly but not as much as the conductivity. This can be attributed to the bismuth nano-

inclusions increasing the conductivity but not affecting the Seebeck coefficient, meaning an

overall higher ZT for a thermoelectric material.
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4.3 Electron Filtering Results
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Figure 4.4: The Pisarenko plot of Seebeck coefficient vs. carrier concentration shows the
dotted line is the prediction from basic transport theory of r=-1/2 and r=0, the trend of

samples clearly show a dependence on some other type of scattering parameter.

The Pisarenko plot, Figure 4.4, is a relationship of carrier concentration n vs the Seebeck

coefficient S and the scattering parameter r determines the trend of a theoretical model for

Seebeck coefficient vs. carrier concentration. Equation 2.3.1

S = −kB
q

(
η −

(r+ 5
2
)F
r+5

2

(r+ 3
2
)F
r+5

2

)

and 2.3.2

n = NV
2π2

(
2kBTmd

~2

)3/2

F1/2(ζ
∗)
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are calculated using the Fermi-integral table located in Appendix A and the values of r = 0

and r = −1/2 for the scattering parameter to produce the dotted lines of theoretical values.

NV is the number of degenerate valleys, md is the density of states effective mass, and ζ∗ is

the reduced Fermi energy. All these values can be found in Appendix B. Once calculated,

a table can be made of values correlating the measured data plotted against the theoretical

values of carrier concentration and Seebeck coefficient. r = 0 and r = −1/2 are used to

represent acoustic phonon scattering and neutral impurity scattering.

Figure 4.4 is plotted assuming a parabolic density of states and power-law dependence for

the relaxation time, τ found in chapter 2.

Figure 4.4 shows the theoretical values of Seebeck coefficient vs. carrier concentration. It can

be seen that the sample data does not follow the trend of the transport theory for standard

bulk crystalline materials. They clearly must follow a different scattering parameter. This

is evidence for low-energy electron filtering in the nano-composites.
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Chapter 5

CONCLUSIONS

5.1 Conclusion

The experiments and techniques shown in this paper are the basics of electronic transport

and are widely used in research. The Hall effect and Seebeck effect are excellent tools

for characterizing semiconductor materials. These ideas carry over to the thermoelectric

industry for ways of creating more efficient thermoelectric materials to be used in different

applications.

The Hall effect is one of the mostly widely used experimental technique for semiconductors

because of its ability to accurately determine carrier information. The effect outlined in this

paper is evidence for that. When measuring the carrier concentration and mobility we are

able to confirms the theory of enhancing the ZT of a thermoelectric.

The ZEM3 was utilized to measure the Seebeck coefficient of the Bi2Te3 samples, cut into

rectangular prism, from room temperature (300K) to 423K. These samples were then mea-

sured in a Hall effect apparatus built from Lakeshore and GMW equipment. All samples

measured in the Hall apparatus were done at room temperature and provided values of the

Hall coefficient, carrier concentration, resistivity, and mobility.

Results show that increasing the carrier concentration without drastically changing the See-

beck coefficient will produce thermoelectric materials with a higher ZT. Nano-structured
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Bi2Te3 with semi-metal bismuth nano-inclusions described here have shown evidence of a

low-energy electron filtering effect. This effect is able to increase the ZT by increasing the

carrier concentration but not changing the Seebeck effect.
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Appendix A

FERMI INTEGRAL VALUES

η F−1/2 F0 F1/2 F1 F3/2

-2 0.21919 0.12693 0.11459 0.13101 0.17580
-1.8 0.26278 0.15298 0.13863 0.15893 0.21367
-1.6 0.31393 0.18390 0.16740 0.19253 0.25945
-1.4 0.37352 0.22042 0.20170 0.23286 0.31467
-1.2 0.44235 0.26328 0.24241 0.28112 0.38111
-1 0.52114 0.31326 0.29050 0.33865 0.46085

-0.8 0.61038 0.37110 0.34699 0.40695 0.55625
-0.6 0.71033 0.43749 0.41294 0.48766 0.66999
-0.4 0.82094 0.51302 0.48941 0.58255 0.80506
-0.2 0.94179 0.59814 0.57747 0.69350 0.96479
0 1.07213 0.69315 0.67809 0.82247 1.15280

0.2 1.21086 0.79814 0.79218 0.97143 1.37300
0.4 1.35662 0.91302 0.92051 1.14238 1.62954
0.6 1.50787 1.03749 1.06369 1.33727 1.92679
0.8 1.66299 1.17110 1.22221 1.55798 2.26928
1 1.82037 1.31326 1.39637 1.80628 2.66167

1.2 1.97851 1.46328 1.58632 2.08380 3.10867
1.4 2.13609 1.62041 1.79206 2.39205 3.61502
1.6 2.29197 1.78390 2.01348 2.73236 4.18544
1.8 2.44526 1.95297 2.25036 3.10594 4.82462
2 2.59528 2.12692 2.50241 3.51383 5.53714

2.2 2.74154 2.30507 2.76928 3.95693 6.32752
2.4 2.88374 2.48681 3.05058 4.43604 7.20015
2.6 3.02170 2.67161 3.35890 4.95181 8.15931
2.8 3.15539 2.85900 3.65479 5.50483 9.20915
3 3.28485 3.04855 3.97687 6.09556 10.35370
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Table A.1: Fermi-Integral Values

η F2 F5/2 F3 F7/2 F4

-2 0.26627 0.44455 0.8053 1.5650 3.2345
-1.8 0.32408 0.54162 0.9819 1.9090 3.9471
-1.6 0.39416 0.65954 1.1967 2.3281 4.8157
-1.4 0.47900 0.80264 1.4578 2.8383 5.8741
-1.2 0.58151 0.97608 1.7750 3.4589 7.1631
-1 0.70513 1.18597 2.1598 4.2133 8.7321

-0.8 0.85386 1.43954 2.6262 5.1294 10.6406
-0.6 1.03234 1.74527 3.1904 6.2408 12.9601
-0.4 1.24588 2.11308 3.8720 7.5873 15.7765
-0.2 1.50052 2.55444 4.6937 9.2162 19.1926
0 1.80309 3.08259 5.6822 11.1837 23.3309

0.2 2.16116 3.71261 6.8685 13.5556 28.3369
0.4 2.58316 4.46164 8.2884 16.4092 34.3830
0.6 3.07826 5.34894 9.9830 19.8344 41.6723
0.8 3.65642 6.39600 11.9991 23.9356 50.4432
1 4.32833 7.62661 14.3898 28.8329 60.9745

1.2 5.10535 9.06691 17.2148 34.6643 73.5903
1.4 5.99949 10.74543 20.5409 41.5868 88.6657
1.6 7.02331 12.69308 24.4423 49.7786 106.6324
1.8 8.18990 14.94311 29.0009 59.4401 127.9849
2 9.51280 17.53113 34.3067 70.7962 153.2857

2.2 11.00594 20.49501 40.4578 84.0970 183.1721
2.4 12.68359 23.87484 47.5608 99.6198 218.3621
2.6 14.56031 27.71286 55.7307 117.6701 259.6599
2.8 16.65089 32.05334 65.0912 138.5827 307.9621
3 18.97031 36.94250 75.7744 162.7227 364.2625
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Appendix B

BI2TE3 SOLID STATE CONSTANT VALUES

Table B.1: General properties of Bi2Te3

Property Symbol Value Temperature

Hexagonal Unit a (4.3835± 0.0005)× 10−10m 20◦C
cell dimensions c (30.487± 0.001)× 10−10m 20◦C
Density ρd (7.8587± 0.0002)× 103kgm−3 27◦C
Elastic constants c11 6.46×1010Nm−2 27◦C

c12 3.58×1010Nm−2 27◦C
c33 4.73×1010Nm−2 27◦C
c44 2.5×1010Nm−2

c13 not determined
c14 not determined

Specific heat (high T) 1.507×104 + 54.4T − 0.130T 2JK−1kg–mole−1 up to 550◦C
Specific heat (low T) 0.84±0.37T + 2.33× 106(T/θD)3JK−1kg–mole−1 below 2.3K
Latent heat of fusion (1.21 + 0.04)× 108Jkg–mole−1

Debye Temp. θD 155.5 + 3K 0K
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Table B.2: Electrical, optical, and thermal properties of Bi2Te3

Property Symbol Value T

Carrier mobility
electrons µn 0.120m2V −1s−1 293K
holes µp 0.051m2V −1s−1 293K

Temperature dependence of mobility
electrons µnαT

−1.68

holes µpαT
−1.95

Density-of-states effective mass:
electrons mn

∗ 0.37m 77K
mn
∗ 0.58m 293K

holes mp
∗ 0.51m 77K

mp
∗ 1.07m 293K

Exponent in scattering law r -0.5
Refractive index 9.2
Lattice thermal conductiviy: λL
perpindicular to c-axis 1.5Wm−1K−1 300K
parallel to c-axis 0.7Wm−1K−1 300K
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Appendix C

SEEBECK COEFFICIENT AND CARRIER CONCENTRATION VALUES

This appendix is for the values of the Seebeck coefficient and carrier concentration from

chapter two theory. The Seebeck coefficient used to calculate the values is

S = −kB
q

(
η −

(r + 5
2
)Fr+ 5

2

(r + 3
2
)Fr+ 5

2

)
(C.0.1)

and the carrier concentration

n =
N2/3

Vmd

2π2

(
2kBTmd

~2

)3/2

F1/2(ζ∗) (C.0.2)

The values were obtained by using step values of the reduced energy ζ = E
kBT

. These values

were ranging from 0.1 to 10 with step values of 0.1. Each column below, except carrier

concentration, are separated by the scattering parameter, r, values ranging from 0 to 1 in

half steps.
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Table C.1: Seebeck coefficient and carrier concentration values for pisarenko plot.

n S0 S1/2 S1 |S0| |S1/2| |S1|

0.91652 -237.743 -198.345 -157.541 237.7434 198.345 157.541
0.98998 -231.577 -192.438 -151.82 231.5772 192.4383 151.8195
1.06788 -225.553 -186.685 -146.262 225.5529 186.6847 146.2623
1.15034 -219.673 -181.086 -140.872 219.6731 181.0863 140.8716
1.23745 -213.94 -175.645 -135.649 213.9397 175.6446 135.6492
1.32928 -208.354 -170.361 -130.596 208.3539 170.3606 130.5959
1.42591 -202.917 -165.235 -125.712 202.9168 165.2347 125.7123
1.52738 -197.629 -160.267 -120.998 197.6288 160.2669 120.998
1.63375 -192.49 -155.457 -116.452 192.4898 155.4566 116.4525
1.74503 -187.499 -150.803 -112.074 187.4994 150.8026 112.0742
1.86125 -182.657 -146.303 -107.861 182.6565 146.3033 107.8613
1.9824 -177.96 -141.957 -103.812 177.9598 141.9568 103.8116
2.1085 -173.408 -137.761 -99.9221 173.4076 137.7606 99.92212
2.23952 -168.998 -133.712 -96.1898 168.9978 133.7121 96.18977
2.37544 -164.728 -129.808 -92.611 164.7281 129.8081 92.611
2.51624 -160.596 -126.045 -89.182 160.5957 126.0454 89.18197
2.66186 -156.598 -122.421 -85.8986 156.5978 122.4205 85.89861
2.81228 -152.731 -118.93 -82.7566 152.7313 118.9297 82.75662
2.96744 -148.993 -115.569 -79.7516 148.993 115.5691 79.75157
3.12728 -145.379 -112.335 -76.8789 145.3795 112.3347 76.87888
3.29176 -141.887 -109.223 -74.1339 141.8873 109.2227 74.13392
3.46081 -138.513 -106.229 -71.512 138.513 106.2288 71.51199
3.63436 -135.253 -103.349 -69.0084 135.253 103.3491 69.00838
3.81236 -132.104 -100.579 -66.6184 132.1035 100.5794 66.61842
3.99474 -129.061 -97.9158 -64.3375 129.0612 97.91582 64.33745
4.18143 -126.122 -95.3543 -62.1609 126.1223 95.35425 62.16089
4.37237 -123.283 -92.8908 -60.0842 123.2833 92.89082 60.08424
4.56748 -120.541 -90.5217 -58.1031 120.5408 90.52166 58.10309
4.76671 -117.891 -88.243 -56.2131 117.8912 88.24303 56.21314
4.96998 -115.331 -86.0513 -54.4102 115.3313 86.05125 54.41021
5.17723 -112.858 -83.9428 -52.6903 112.8577 83.94277 52.69026
5.3884 -110.467 -81.9141 -51.0494 110.4672 81.91414 51.04936
5.60343 -108.157 -79.962 -49.4837 108.1568 79.96201 49.48374
5.82225 -105.923 -78.0832 -47.9898 105.9232 78.08315 47.98977
6.04481 -103.764 -76.2745 -46.5639 103.7638 76.27445 46.56393
6.27104 -101.675 -74.5329 -45.2029 101.6754 74.53292 45.20289
6.50089 -99.6556 -72.8557 -43.9034 99.65557 72.85568 43.90342
6.7343 -97.7015 -71.24 -42.6625 97.70148 71.23995 42.66246
6.97121 -95.8106 -69.6831 -41.4771 95.81061 69.68308 41.47708
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Table C.2: Seebeck coefficient and carrier concentration values for pisarenko plot.

n S0 S1/2 S1 |S0| |S1/2| |S1|

7.21159 -93.9805 -68.1825 -40.3445 93.98052 68.18252 40.34447
7.45537 -92.2088 -66.7358 -39.262 92.20882 66.73584 39.26197
7.70251 -90.4933 -65.3407 -38.227 90.49325 65.34071 38.22703
7.95295 -88.8316 -63.9949 -37.2373 88.83161 63.99488 37.23725
8.20666 -87.2218 -62.6962 -36.2903 87.2218 62.69624 36.29032
8.46358 -85.6618 -61.4427 -35.3841 85.66182 61.44273 35.38406
8.72368 -84.1497 -60.2324 -34.5164 84.14972 60.23242 34.5164
8.98691 -82.6837 -59.0635 -33.6854 82.68365 59.06345 33.68538
9.25324 -81.2619 -57.934 -32.8891 81.26185 57.93404 32.88912
9.52261 -79.8826 -56.8425 -32.1259 79.88259 56.8425 32.12587
9.795 -78.5443 -55.7872 -31.394 78.54425 55.78722 31.39396

10.07037 -77.2453 -54.7667 -30.6918 77.24528 54.76666 30.69178
10.34868 -75.9842 -53.7794 -30.0179 75.98416 53.77936 30.01785
10.62989 -74.7595 -52.8239 -29.3708 74.75948 52.82391 29.37075
10.91399 -73.5699 -51.899 -28.7491 73.56985 51.89898 28.74912
11.20092 -72.414 -51.0033 -28.1517 72.41396 51.0033 28.1517
11.49066 -71.2906 -50.1357 -27.5773 71.29056 50.13566 27.57728
11.78319 -70.1984 -49.2949 -27.0247 70.19844 49.29491 27.02473
12.07847 -69.1364 -48.4799 -26.493 69.13644 48.47994 26.49296
12.37646 -68.1035 -47.6897 -25.981 68.10346 47.6897 25.98096
12.67716 -67.0985 -46.9232 -25.4878 67.09845 46.9232 25.48776
12.98052 -66.1204 -46.1795 -25.0125 66.12038 46.17948 25.01245
13.28653 -65.1683 -45.4576 -24.5542 65.1683 45.45763 24.55417
13.59515 -64.2413 -44.7568 -24.1121 64.24127 44.75678 24.11211
13.90636 -63.3384 -44.0761 -23.6855 63.3384 44.0761 23.68549
14.22015 -62.4588 -43.4148 -23.2736 62.45884 43.41482 23.27359
14.53648 -61.6018 -42.7722 -22.8757 61.60176 42.77217 22.87572
14.85533 -60.7664 -42.1474 -22.4912 60.7664 42.14743 22.49121
15.17668 -59.952 -41.5399 -22.1195 59.95199 41.53992 22.11946
15.50051 -59.1578 -40.949 -21.7599 59.15782 40.94899 21.75988
15.82681 -58.3832 -40.374 -21.4119 58.3832 40.37402 21.41192
16.15554 -57.6275 -39.8144 -21.075 57.62746 39.81439 21.07504
16.48669 -56.89 -39.2696 -20.7488 56.88998 39.26955 20.74877
16.82024 -56.1701 -38.739 -20.4326 56.17013 38.73896 20.43262
17.15617 -55.4674 -38.2221 -20.1262 55.46735 38.22208 20.12616
17.49446 -54.7811 -37.7184 -19.829 54.78106 37.71843 19.82895
17.8351 -54.1107 -37.2275 -19.5406 54.11072 37.22752 19.54061
18.17806 -53.4558 -36.7489 -19.2608 53.45583 36.74891 19.26075
18.52334 -52.8159 -36.2822 -18.989 52.81589 36.28216 18.98901
18.87091 -52.1904 -35.8269 -18.7251 52.19041 35.82685 18.72506
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Table C.3: Seebeck coefficient and carrier concentration values for pisarenko plot.

n S0 S1/2 S1 |S0| |S1/2| |S1|

19.22076 -51.5789 -35.3826 -18.4686 51.57894 35.38259 18.46856
19.57287 -50.981 -34.949 -18.2192 50.98103 34.949 18.21921
19.92723 -50.3963 -34.5257 -17.9767 50.39628 34.5257 17.97673
20.28382 -49.8243 -34.1124 -17.7408 49.82426 34.11236 17.74083
20.64262 -49.2646 -33.7086 -17.5113 49.26459 33.70863 17.51125
21.00362 -48.7169 -33.3142 -17.2878 48.71689 33.3142 17.28775
21.36682 -48.1808 -32.9288 -17.0701 48.1808 32.92876 17.07007
21.73218 -47.656 -32.552 -16.858 47.65596 32.55202 16.85801
22.09971 -47.1421 -32.1837 -16.6513 47.14205 32.18369 16.65134
22.46938 -46.6388 -31.8235 -16.4499 46.63875 31.8235 16.44986
22.84119 -46.1457 -31.4712 -16.2534 46.14573 31.47119 16.25338
23.21512 -45.6627 -31.1265 -16.0617 45.6627 31.12651 16.0617
23.59115 -45.1894 -30.7892 -15.8747 45.18937 30.78923 15.87466
23.96928 -44.7255 -30.4591 -15.6921 44.72547 30.45911 15.69209
24.34949 -44.2707 -30.1359 -15.5138 44.27072 30.13593 15.51381
24.73178 -43.8249 -29.8195 -15.3397 43.82486 29.81949 15.33969
25.11612 -43.3877 -29.5096 -15.1696 43.38766 29.50957 15.16958
25.50251 -42.9589 -29.206 -15.0033 42.95886 29.20598 15.00334
25.89094 -42.5382 -28.9085 -14.8408 42.53823 28.90852 14.84082
26.28139 -42.1256 -28.617 -14.6819 42.12555 28.61703 14.68192
26.67386 -41.7206 -28.3313 -14.5265 41.72061 28.33133 14.5265
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Appendix D

LAKESHORE 370/3708 VOLTAGE RANGES

Table D.1: Lakeshore 370/3708 Voltage Range

6.32 mV 2.0 mV 632 µV 200 µV 63.2 µV 20 µV 6.32 µV 2.0 µV

31.6 mA
200 mΩ 63.2mΩ 20 mΩ 6.32 mΩ 2.0 mΩ 632 µΩ 200 µΩ 63.2 µΩ
200 nΩ 63 nΩ 40 nΩ 13 nΩ 10 nΩ 10 nΩ 10 nΩ 10 nΩ
100 µW 32 µW 10 µW 3.2 µW 1.0 µW 320 nW 100 nW 32 nW

10 mA
632 mΩ 200 mΩ 63.2 mΩ 20 mΩ 6.32 mΩ 2.0 mΩ 632 µΩ 200 µΩ
630 nΩ 200 nΩ 130 nΩ 40 nΩ 32 nΩ 32 nΩ 32 nΩ 32 nΩ
32 µW 10 µW 3.2 µW 1.0 µW 320 nW 100 nW 32 nW 10 nW

3.16 mA
2.0 Ω 632 mΩ 200 mΩ 63.2 mΩ 20 mΩ 6.32 mΩ 2.0 mΩ 632 µΩ

2.0 µΩ 630 nΩ 400 nΩ 130 nΩ 100 nΩ 100 nΩ 100 nΩ 100 nΩ
10 µW 3.2 µW 320 nW 320 nW 100 nW 32 nW 10 nW 3.2 nW

1.0 mA
6.32 Ω 2.0 Ω 632 mΩ 200 mΩ 63.2 mΩ 20 mΩ 6.32 mΩ 2.0 mΩ
6.3 µΩ 2.0 µΩ 1.3 µΩ 400 nΩ 320 nΩ 320 nΩ 320 nΩ 320 nΩ
3.2 µW 1.0 µW 320 nW 100 nW 32 nW 10 nW 3.2 nW 1.0 nW

316 µA
20 Ω 6.32 Ω 2 Ω 632 mΩ 200 mΩ 63.2 mΩ 20 mΩ 6.32 mΩ

20 µΩ 6.3 µΩ 4.0 µΩ 1.3 µΩ 1.0 µΩ 1.0 µΩ 1.0 µΩ 1.0 µΩ
1.0 µW 320 nW 100 nW 32 nW 10 nW 3.2 nW 1.0 nW 320 pW

100 µA
63.2 Ω 20 Ω 6.32 Ω 2 Ω 632 mΩ 200 mΩ 63.2 mΩ 20 mΩ
63 µΩ 20 µΩ 13 µΩ 4.0 µΩ 3.2 µΩ 3.2 µΩ 3.2 mΩ 3.2 µΩ

320 nW 100 nW 32 nW 10 nW 3.2 nW 1.0 nW 320 pW 100 pW
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Table D.2: Lakeshore 370/3708 Voltage Range cont.

31.6 µA
200 Ω 63.2 Ω 20 Ω 6.32 Ω 2.0 Ω 632 mΩ 200 mΩ 63.2 mΩ

200 µΩ 63 µΩ 40 µΩ 13 µΩ 10 µΩ 10 µΩ 10 µΩ 10 µΩ
100 nW 32 nW 10 nW 3.2 nW 1.0 nW 320 pW 100 pW 32 pW

10 µA
632 Ω 200 Ω 63.2 Ω 20 Ω 6.32 Ω 2.0 Ω 632 mΩ 200 mΩ

630 µΩ 200 µΩ 130 µΩ 40 µΩ 32 µΩ 32 µΩ 32 µΩ 32 µΩ
32 nW 10 nW 3.2 nW 1.0 nW 320 pW 100 pW 32 pW 10 pW

3.16 µA
2.0 kΩ 632 Ω 200 Ω 63.2 Ω 20 Ω 6.32 Ω 2.0 Ω 632 mΩ
2.0 m 630 m 400 µΩ 130 µΩ 100 µΩ 100 µΩ 100 µΩ 100 µΩ
10 nW 3.2 nW 1.0 nW 320 pW 100 pW 32 pW 10 pW 3.2 pW

1.0 µA
6.32 kΩ 2.0 kΩ 632 Ω 200 Ω 63.2 Ω 20 Ω 6.32 Ω 2.0 Ω
6.3 m 2.0 m 1.3 m 400 µΩ 320 µΩ 320 µΩ 320 µΩ 320 µΩ

3.2 nW 1.0 nW 320 pW 100 pW 32 pW 10 pW 3.2 pW 1.0 pW

316 nA
20 kΩ 6.32 kΩ 2.0 kΩ 632 Ω 200 Ω 63.2 Ω 20 Ω 6.32 Ω
20 m 6.3 m 4.0 m 1.3 m 1.0 m 1.0 m 1.0 m 1.0 m

10 nW 320 pW 100 pW 32 pW 10 pW 3.2 pW 1.0 pW 320 fW

100 nA
63.2 kΩ 20 kΩ 6.32 kΩ 2.0 kΩ 632 Ω 200 Ω 63.2 Ω 20 Ω
63 mΩ 40 mΩ 13 mΩ 6.0 mΩ 3.2 mΩ 3.2 mΩ 3.2 mΩ 3.2 mΩ
320 pW 100 pW 32 pW 10 pW 3.2 pW 1.0 pW 320 fW 100 fW

31.6 nA
200 kΩ 63.2 kΩ 20 kΩ 6.32 kΩ 2.0 kΩ 632 Ω 200 Ω 63.2 Ω
400 mΩ 130 mΩ 60 mΩ 20 mΩ 20 mΩ 10 mΩ 10 mΩ 10 mΩ
100 pW 32 pW 10 pW 3.2 pW 1.0 pW 320 fW 100 fW 32 fW

10 nA
632 kΩ 200 kΩ 63.2 kΩ 20 kΩ 6.32 kΩ 2.0 kΩ 632 Ω 200 Ω
1.9 Ω 600 mΩ 200 mΩ 200 mΩ 63 mΩ 63 mΩ 32 mΩ 32 mΩ

32 pW 10 pW 3.2 pW 1.0 pW 320 fW 100 fW 32 fW 10 fW
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Table D.3: Lakeshore 370/3708 Voltage Range cont.

3.16 nA
2.0 MΩ 632 kΩ 200 kΩ 63.2 kΩ 20 kΩ 6.32 kΩ 2.0kΩ 632 Ω
6.0 Ω 2.0 Ω 2.0 Ω 630 mΩ 600 mΩ 200 mΩ 200 mΩ 100 mΩ

10 pW 3.2 pW 1.0 pW 320 fW 100 fW 32 fW 10 fW 3.2 fW

1.0 nA
6.32 MΩ 2.0 MΩ 632 kΩ 200 kΩ 63.2 kΩ 20 kΩ 6.32 kΩ 2.0 kΩ

** 20 Ω 6.3 Ω 6.0 Ω 3.2Ω 2.0 Ω 630 mΩ 1.0 Ω
3.2 pW 1.0 pW 320 fW* 100 fW 32 fW 10 fW 3.2 fW 1.0 fW

316 pA
* 6.32 MΩ 2.0 MΩ 632 kΩ 200 kΩ 63.2 kΩ 20 kΩ 6.32 kΩ
* ** 60 Ω 19 Ω 20 Ω 6.3 Ω 3.0 Ω 3.2 Ω
* 320 fW 100 fW 32 fW 10 fW 3.2 fW 1.0 fW 320 aW

100 pA
* * 6.32 MΩ 2.0 MΩ 632 kΩ 200 kΩ 63.2 kΩ 20 kΩ
* * ** 200 Ω 63 Ω 60 Ω 32 Ω 20 Ω
* * 32 fW 10 fW 3.2 fW 1.0 fW 320 aW 100 aW

31.6 pA
* * * 6.32 MΩ 2.0 MΩ 632 kΩ 200 kΩ 63.2 kΩ
* * * ** 600 Ω 190 Ω 200 Ω 63 Ω
* * * 3.2 fW 1.0 fW 320 aW 100 aW 32 aW

10 pA
* * * * 6.32 MΩ 2.0 MΩ 632 kΩ 200 kΩ
* * * * ** 2.0 kΩ 630 Ω 600 Ω
* * * * 320 aW 100 aW 32 aW 10 aW

3.16 pA
* * * * * 6.32 MΩ 2.0 MΩ 632 kΩ
* * * * * ** 6.0 kΩ 1.9 kΩ
* * * * * 32 aW 10 aW 3.2 aW
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Appendix E

LAKESHORE 455 RMS OPERATION RANGE

Table E.1: The Lakeshore 455 DPS Gaussmeter operation ranges from the Lakeshore
455 manual for the High Sensitivity Probe (HSE).

Gauss Tesla Oersted Amp/meter

Range and Resolution Range and Resolution Range and Resolution Range and Resolution

35.000 kG 3.5000 T 35.000 kOe 2.8000 MA/m
3.5000 kG 350.000 mT 3.5000 kOe 280.000 kA/m
350.00 G 35.000 mT 350.00 Oe 28.000 kA/m
35.000 G 3.5000 mT 35.000 Oe 2.8000 kA/m
3.5000 G 350.000 µT 3.5000 Oe 280.00 A/m
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Appendix F

FIELD VS. GAP FOR GMW ELECTROMAGNET

This is the calibration curves done at the GMW facilities when shipped. It is done with 4

different size poles of 25mm, 50mm, 75mm, and 100mm. The poles used are 100mm.
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Figure F.1: This is the graph of pole distance vs. the magnetic field output.
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Appendix G

CRM STAINLESS STEEL

This table is from the Certificate Standard Reference Materials 1460, 1461, and 1462. The

stainless steel measured for this thesis is 1461 and was measured in bar form.[16] The value

measured with the instruments described here is: ρ = 773.85nΩ·m at 300K. When compared

to the values in the Certificate SRM, this value falls within 5% of the value below.

Table G.1: Table of thermal conductivity and electrical resistivity

T(K) λ(W ·m−1 ·K−1) ρ(nΩ ·m) T(K) λ(W ·m−1 ·K−1) ρ(nΩ ·m)

2 0.152 593 40 5.01 595
3 0.249 593 45 5.57 597
4 0.352 593 50 6.08 599
5 0.462 594 60 6.98 606
6 0.575 594 70 7.72 613
7 0.693 594 80 8.34 622
8 0.814 594 90 8.85 630
9 0.938 594 100 9.3 639
10 1.064 594 150 10.94 683
12 1.323 594 200 12.2 724
14 1.588 594 250 13.31 767
16 1.858 593 300 14.32 810
18 2.132 593 400 16.16 885
20 2.407 593 500 17.78 944
25 3.092 592 600 19.23 997
30 3.763 592 700 20.54 1045
35 4.404 593 800 21.75 1088
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