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ABSTRACT 

This study was aimed at the development of novel CB1 cannabinoid receptor 

antagonists that may have clinical applications for the treatment of cannabinoid 

and psychostimulant addiction. The rationale for the design for our target was to 

incorporate a bioisosteric 1,2,3-triazole ring into the vicinal diaryl group revealed 

in the prototypical antagonist/inverse agonist SR141716 (Rimonabant) that was 

presumed to interact with a unique region in the CB1 receptors. Based  on  our  

preliminary  results  we  identified  a  novel  series  of  1,2,3-triazole  ester and 

keto derivatives as lead compounds for biological evaluation. Here in the design 

rationale, synthesis and CB1 receptor affinity for a series of 4,5-diaryl-1-

substituted-1,2,3-triazoles of ester and ketones is described. These derivatives 

were synthesized via a one-pot regiospecific click/acylation reaction sequence 

from 1-azido-2,4-dichlorobenzene and commercially available arylacetylenes. 

From the structure-activity studies the 5-(4-chlorophenyl) congeners exhibited the 

most potent CB1 receptor affinities relative to other 5-(substituted-phenyl) 
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moieties. The 1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-propylcarbonyl-1,2,3-

triazole (31a) was found to be the most potent (Ki = 4.6 nM) CB1 receptor ligand 

of the series and exhibited high CB1 selectivity (CB2/CB1  = 417).  

N
N

N

O

O

Cl
Cl

Cl
31 a  

The triazole ester 31a was further characterized as a cannabinoid antagonist 

in locomotor-activity studies by blocking the locomotor-reducing effects of 

cannabinoid agonist WIN55,212-2. In addition, unlike the prototypical 

cannabinoid antagonist SR141716A (Rimonabant), the triazole ester 31a did not 

exhibit increased activity in locomotor activity studies, thus indicating the 

potential for a neutral antagonist profile.  

Keywords: Cannabinoids; CB1-antagonist; Drug abuse therapeutics; 

Rimonabant; Click Reactions; 1,2,3-triazoles; 
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1. INTRODUCTION 

Drug addiction is a complex illness. Drug abuse and addiction to various 

psychostimulants like morphine, cocaine marijuana etc. is a global problem. Marijuana 

and other psychostimulants, like cocaine and methamphetamine, are leading illicit drugs 

of abuse. The economic cost of illicit drug abuse and addiction is a tremendous burden 

to the United States health care system, costing billions of dollars annually. In addition, 

the devastating effect of drug addiction on individuals and families and society is equally 

significant. The problem is enhanced further by the fact that currently there is no 

effective pharmacotherapy available for the treatment of addiction to these illicit drugs. 

The development of new medications for the treatment of marijuana and 

psychostimulant abuse is extremely important to the welfare of the United States and 

rest of the world.1  

To date, great advances have been made in understanding the biological and 

pharmacological mechanisms of illicit drugs. Approaches to the development of 



 2 

pharmacotherapy have focused on the monoamine-regulated circuitry in the central 

nervous system. Exploration of dopaminergic and sertonergic transmission has 

revealed tremendous amounts of information important to understanding mechanisms 

of psychostimulants abuse. However, direct modulation of these neurological systems 

has been unsuccessful in producing sustainable therapeutic effects. Thus, no effective 

therapeutics is currently available to treat this complex illness. 

Figure 1. Specific regions of brain govern specific functions. 1 

 

The path to drug addiction begins with the act of taking drugs. Over time, a person's 

ability to choose not to take drugs is compromised. As illustrated in Figure 1 certain 
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parts of the brain govern specific functions. Information is relayed from one area of the 

brain to other areas through complex circuits of interconnected neurons through a 

process called "neurotransmission." The Figure 1 also highlights the pathway 

connecting these structures.  

Figure 2. The Reward Pathway.1 

 

The reward pathway shown in Figure 2 is important for understanding the effects of 

drugs on the brain. This pathway is rich with monoamine regulated circuitries which gets 

activated by the rewarding stimulus like personal accomplishments, food, water, 

exercise etc.  
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When the reward pathway is activated by a rewarding stimulus, information travels 

from the Ventral Tegmental Area or VTA (in blue), to the nucleus accumbens (purple) 

and then up to the prefrontal cortex which is the area of judgement. Consequently, a 

person experiences a feeling of reward. This pathway is important for the survival of an 

organism as it provides motivation to repeat these processes. 

Figure 3. Normal signaling communication.1 

 

How this communication actually occurs can be seen in Figure 3. These brain regions 

talk among themselves by a process called neurotransmission involving a variety of 

chemical substances called neurotransmitters like dopamine, serotonin etc. When 
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presynaptic terminal receives a signal, dopamine is released by the presynaptic neuron 

into the gaps between two nerve cells called synapse. The dopamine then binds with 

specialized proteins called dopamine receptors on the post-synaptic neurons, thereby 

sending the signal forward. 

After the electrical impulse has been propagated forward to the postsynaptic neuron 

causing the information in form of action impulse to travel further, dopamine is 

transported back to the presynaptic neuron by another specialized protein called 

dopamine transporter or DAT. This regulates the concentration level of dopamine in the 

synapse area. 

However, drugs of abuse like cocaine can interfere in this normal communication. As 

illustrated in Figure 4, cocaine binds to the dopamine transporter and thus inhibits the 

reuptake of dopamine from the synapse, back to the presynaptic neuron resulting in 

buildup of dopamine concentration in the synapse.  

This causes a continuous stimulation of the postsynaptic neuron which leads to 

increased number of impulses being received by the nucleus accumbens to activate the 
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reward system. With continued use of psychostimulants, the body relies on this drug to 

maintain the rewarding feelings and the person is no longer able to feel the positive 

reinforcement of natural rewards like food and water. 

Figure 4. Inhibition of dopamine re-uptake.1 

 

The reward feelings associated with marijuana are similar to the ones mediated by 

cocaine. The principle active chemical in marijuana is Δ9- tetrahydrocannibol or Δ9-THC 

(3). This psychoactive constituent has high lipid solubility and low water solubility. When 

someone smokes marijuana, Δ9-THC rapidly passes from the lungs into the 

bloodstream, which carries the chemical to the brain. Δ9-THC has analgetic and 
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neuroprotective properties with equal affinity for the two subtypes of the cannabinoid 

receptor. Δ9-THC acts upon specific sites in the brain, called cannabinoid receptors 1 

(CB1), kicking off a series of cellular chain-reactions that ultimately increases dopamine 

concentration in the synapses and leads to the “high” that users experience when they 

smoke marijuana.  

Figure 5. Δ9-THC Binding to CB-Receptors.1  

 

As shown in Figure 5, Δ9-THC binds to the CB receptors (magenta) on the 

neighboring terminal, which sends a signal to the presynaptic neuron and hence 

controls the release of dopamine. In 2010, approximately 29 million people aged 12 or 
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older were identified as illicit drug users according to the National Household Survey on 

Drug Use and Health.1  

The three major illicit drugs derived from plants are, opium, coca and cannabis. 

Morphine has been isolated from opium early in the 19th century and 

structure elucidated in the 1920s by Robert Robinson. Cocaine was isolated from coca 

leaves in the middle of the 19th century and its structure was described by Richard 

Willstatter in the last decade of the 19th century. It is believe that the cannabinoids 

represent a medicinal treasure trove which waits to be discovered. 

Now cocaine may be the most powerful psychostimulant but marijuana is the most 

popular and common drug of abuse in the world. It is made up of dried parts of the 

Indian hemp plant Cannabis sativa L. and its street names are hashish, bhang, pot, 

ganja, weed, grass, 420 and so on. Marijuana smoke has a pungent and distinctive, 

usually sweet-and-sour odor. It has a fast onset and the psychostimulant effects last for 

up to three hours.  

Marijuana users represented 77% of those classified with illicit drug dependence or 
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abuse.  Cannabis  (marijuana)  is  one  of  the  most  commonly  abused  recreational  

drugs  self- administered by smoking. For centuries marijuana have been used for 

medicinal and recreational purposes. Cannabis has been used by various civilizations 

as a therapeutic agent with advances as an analgesic, nausea, appetite stimulation and 

a host of other medical applications.  

Historical evidence suggests that in 12,000 B.C. Emperor Shen Nung was the first to 

recognize that cannabis had potential medicinal properties, which was used as an 

analgesic. In India, the effects of smoking cannabis have been associated with faith 

(Bhaang) and were used as anesthetics and aphrodisiacs.66 Marijuana is considered as 

therapeutic in several diseases and conditions like-Alzheimers, pain attenuation in AIDS 

and multiple sclerosis patients etc and 16 states including Washington DC have laws 

permitting the use of marijuana as treatment (Table 1). Cannabinoid-based medications 

include synthetic compounds, such as dronabinol (Marinol®) and nabilone (Cesamet®), 

which are FDA approved for treatment of vomiting and nausea. Sativex spray for 

relieving pain in cancer and Multiple sclerosis patients has been approved in several 
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countries.  

Table 1. Timeline for Cannabinoids and Receptor System. 

2,000 BC to 

1,800 AD   

Medicinal Cannabis used in Ancient China, Egypt, India, ancient 

Greeks. 

800 AD to 

1,800 AD 

Medical Cannabis was used extensively in the medieval Islamic 

World 

1800-1900 Medical Cannabis commonly used entire world as primary pain 

reliever until the invention of aspirin. 

1925 England bans cannabis with Dangerous Drugs Act, and non-

medicinal cannabis made illegal in Britain. 

1927 Canada bans all forms of cannabis. 

1937 Even though there are 28 cannabis pharmaceuticals on the 

American market, Cannabis banned in US with federal law, the 1937 

Marijuana Tax Act. 

1964 THC, tetra hydro cannabinol, the psycho-active component of 

cannabis, isolated by Raphael Mechoulam at Weizmann Institute in 

Israel 

1970 Marijuana fully outlawed in US by Controlled Substances Act of 

1970. 

1975 Munson shows anti cancer effects of cannabis in Lewis Lung 

Tumors. 

1980-2000  Cannabis research banned in US (de facto). 

1985 FDA approves Marinol drug, a pure THC drug 

1990 Endo-cannabinoid CB1 receptors cloned and found in brain 

1992 First endo-cannabinoid isolated by Hanuš and Devane in Raphael 

Mechoulam's lab at the Hebrew University in Jerusalem. This new 

substance is named Anandamide. 

Table 1 Contd 
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1993 Endo-cannabinoid CB2 receptors cloned and found in the immune 

system. 

1998 Di Marzo's in Naples Italy group found that cannabinoids 

(anandamide) inhibit breast cancer cell proliferation. 

1999 Marinol (THC) was rescheduled from Schedule II to III of the 

Controlled Substances Act. 

2000 Guzman's group in Spain found that cannabinoids inhibit the growth 

of C6 glioma cells. 

2005 Sativex approved in Canada. Sativex is a whole cannabis plant 

extract, mouth spray approved for multiple sclerosis patients to 

alleviate neuropathic pain and muscle spasticity 

2006 Cannabindiol found useful as anti-psychotic drug São Paulo, Brasil. 

SR141716A (Accomplia), approved by European Union as CB1 

antagonist for obesity treatment. 

2007 Sean D. McAllister - Cannabidiol inhibits aggressive breast cancer 

cells. 

2008 Acomplia, Rimonabant (also known as SR141716) first CB1 

receptor blocker suspended from the UK market because of adverse 

effects of suicidality, depression. This agent blocks the endo-

cannabidiol receptors. 

2009 Two components of cannabis plant identified. THC which is 

psychoactive, and the non-psychoactive Cannabidiol "CBD" 

represents up to 40% of extracts of the medical cannabis plant. 

Cannabidiol relieves convulsion, inflammation, anxiety, nausea, and 

inhibits cancer cell growth. Cannabidiol as effective as atypical 

antipsychotics in treating schizophrenia.  

2010 10 million people arrested for marijuana since 1967. In the US, 16 

states approved medical use of cannabis. 

 Moreover these cannabinoids seem to be unaffected by the mechanism of stubborn 
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bugs like methicillin-resistant Staphylococcus aureus.. Recently, in Jan 2012, Cannabis 

Science, a pioneering U.S. biotech company developing pharmaceutical cannabis 

products shared photographs from a cancer patient’s tumors healing.71 Although 

cannabis was a medicinal plant for thousands of years, its medical use was suppressed 

and banned throughout most of the 20th century.  Banned in England, Canada and the 

US in the 1930's, medical cannabis represents the first casualty in a war against 

natural medicine waged by the pharmaceutical industry.  While banned in the US, there 

have been major scientific breakthroughs in Israel, Spain, Italy and Brazil over the last 

two decades.  These breakthroughs have made cannabis "the wonder drug of the 21st 

century". 

The greatest cannabis researcher is unquestionably Raphael Mechoulam from Isreal, 

also known as the father of cannabis research. He discovered THC in 1964, the psycho-

active component of cannabis. Mechoulam also discovered the first endogenous endo-

cannabinoid in 1992, Anandamide, a sanskrit word translated as "bliss".  

Even though marijuana has gone a full spectrum from being the scourge of the youth 
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to recreational and spiritual drug and then to medicinal properties, there is no doubt that 

marijuana abuse and its addiction and other cannabis related disorders are becoming a 

major public health issue. In 2006, 25% of Americans age 12 and over abused 

marijuana at least once prior to the year of being surveyed. According to 2010 statistics, 

29 million people had taken marijuana and more than 15 million were new users in 

2009. According to the NIDA, a study showed that 10.9% of 8th graders, 23.9% of 10th 

graders, and 32.4% of 12th graders had abused marijuana at least once in the year 

prior to being surveyed.  

One of the major concerns is that most of the users are young adults for whom 

marijuana acts as a gateway drug for even harder drugs (39%, including 

methamphetamine and cocaine abuse). Today, there has been little deviation among 

these trends of marijuana and psychostimulant abuse. However, the development of 

effective medications for the treatment of illicit drug abuse has been elusive.  

Hence, there a common pattern among the psychostimulants pathway. Unlike the 

normal circumstances where information flow is controlled1, the cocaine and marijuana 
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intakers feel the high because of the constant stimulations being received by the 

nucleus accumbens to activate the reward system. This is depicted in Figure 6. With 

continued use of these psychostimulants the body starts to rely on them for maintaining 

the feelings of reward and the person is no longer able to feel the positive 

reinforcements of natural stimuli causing the craving and dependence problems also. 

Figure 6. Comparison of normal (A) and abused neuron (B).1  

 

 The psychoactive and physiological effects of marijuana intoxication include 

increased heart rate, lowered blood pressure, impairment of short term and working 

memory, impairment of coordination and perception, distortions of perception, Impairs 

coordination and balance, along increase in anxiety, paranoia and panic attacks.1 
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Research clearly demonstrates that marijuana has the potential to cause problems in 

daily life or make a person's existing problems worse. Long term abuses besides 

addiction are mental disorders like schizophrenia and depression, lung disorders as well 

as risk of cancer.  

There is substantial evidence indicating that the cannabinoid system can modulate 

dopaminergic transmission indirectly and thus mediate the effects of cannabis and 

psychostimulants on the reward and pleasure circuitry of the brain.2-5 Studies have 

shown that the prototypical cannabinoid antagonist SR141716A (1) attenuated the 

effects of Δ9 - tetrahydrocannabinol (3, Δ9 - THC) and cannabis in animals and human 

subjects.6,7 The diarylpyrazoles 1 and 2 (AM251) have been shown to be potent and 

selective CB1 receptor ligands that inhibit the effects of typical cannabinoid agonists 

such as 3 and WIN55,212-2 (4) (Figure 7).8,9 The pharmacological profile of 1 has been 

reported to include inverse agonist activity.10  

The inverse agonist activity of 1 has been characterized by inhibition of [35S]GTPγS 

binding, a decrease in K+ ion currents and antagonism by CB1 agonists.11 CB1 
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antagonists have been shown to block the effects of  Δ9-THC (3)8 and appear to be 

devoid of abuse liability.9 

Figure 7. Cannabinoid Antagonists and Agonists. 
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The pyrazole 1 was the first compound reported to be both an antagonist in vitro and 

to be sufficiently potent in vivo to precipitate a withdrawal syndrome in cannabinoid-

tolerant animals.12,13  
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In 1963, the structure and stereochemistry of cannabidiol (CBD) and Δ9-THC (3) were 

first determined. Unlike Δ9-THC, cannabidol (CBD) is not psychoactive and possess 

medical benefits such as relieving convulsion, inflammation, anxiety and nausea.  It is 

an allosteric antagonist  at  the  brain  cannabinoid  receptor that  alters psychoactive  

effects  of  Δ9-THC and  is  selective  for  central  nervous  system  (CNS) cannabinoid 

receptor subtype (CB1 subtype) over receptor subtypes found in the immune system 

(CB2 subtype).   

Cannabinol (CBN) is the main product in the degradation of Δ9-THC and is found to 

be mildly psychoactive and has the same affinity at CB2 as cannabidol (CBN).67 

Currently, there are no effective treatments  for  marijuana abuse and development of 

new medications for treatment of marijuana abuse is essential. There is urgency for the 

development of pharmacotherapies to treat marijuana addiction while understanding the 

mechanism of marijuana action on the central nervous system (CNS). The physiological 

and behavioral effects of cannabinoids have been studied extensively and it has been 

suggested that a cannabinoid antagonist could be useful as treatment for marijuana 
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abuse.  

The development of CB1 antagonists for psychostimulant addiction has been the 

subject of several studies with cocaine and methamphetamine.14 This approach is 

based upon the fundamental mechanisms of psychostimulant neurobiology and 

neurochemistry. The mesocorticolimbic dopamine system, which includes neurons of 

the ventral tegmental area (VTA) and corresponding projections into the nucleus 

accumbens, amygdala, and prefrontal cortex, is believed to be the primary region of the 

brain that mediates the effects of psychostimulants (for e.g. cocaine and 

methamphetamine) and is closely associated with reward mechanisms.15-17  

Cannabinoid receptors also are located in these regions, and cannabinoid agonists 

have been shown to elevate extracellular dopamine levels in these regions.18 Drugs that 

elevate dopamine levels in the striatum, (e.g. cocaine, methamphetamine) typically 

exhibit potent abuse potential. As such, CB1 receptor antagonists are proposed to have 

potential utility as psychostimulant therapeutics in that they may mediate the abuse 

liability via inhibition of dopaminergic activity in the reward circuitry of the brain.4,5 In vivo 
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characterization of CB1 antagonists/inverse agonists with psychostimulants has 

produced some promising results for future development as psychostimulant 

therapeutics.14  

The antagonist SR141716A (1) has been shown to reduce rat cocaine-primed and 

cue-induced reinstatement of responding when reinforced by cocaine.19 It was also 

found that SR141716A (1), reduced the motivational effects of cocaine in mice under 

progressive ratio conditions. 

In 2006, European Union approved the use of SR141716A (1) for the purposes of 

weight control and treatment of obesity. At that time SR141716A (1), which was 

developed by Sanofi Aventis, blocked the same chemical receptors that trigger the 

munchies in marijuana smokers. Brand named as Acomplia, with its hydrochloride salt 

is called Rimonobant. It was launched in European market and at that time it was 

heralded as a possible new treatment for smoking cessation and metabolic disorders 

that can lead to heart attacks. The CB1 antagonist AM251 (2) has been reported to 

reduce self-administration of methamphetamine in rats while both 1 and 2 have been 
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reported to be effective in reducing reinstatement of methamphetamine-seeking 

behavior.20,21  

Despite these encouraging results, the inverse agonist activity exhibited by 

SR141716A (1) is thought to be deleterious for the development of drug abuse 

medication. Inverse agonists typically elicit pharmacological responses opposite to 

agonists and thus are not ideally suited for the treatment of drug addiction due to 

potential dysphoric side effects associated with these drugs. These include increased 

nociceptive sensitivity, decreased food intake and body weight, disruption of operant 

behavior and potential nausea in humans.22-25 The side effects suggests that a CB1 

antagonist with inverse agonist profiles may have limited use as a medication.26,27 This 

was the case with the diet drug, Rimonabant® (a.k.a. Zimulti®, SR141716A, 1). 

Although never approved by the FDA,28 Rimonabant® was withdrawn from European 

markets due to concerns over suicidality and an increased risk of other psychiatric 

disorders.29  

In lieu of these potential side effects, it is our aim to develop a novel CB1 receptor 
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antagonist that was devoid of any inverse agonist activity and that essentially acted as a 

neutral antagonist. Herein we describe the design, synthesis, structure and cannabinoid 

efficacy of a series of novel 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles which has led to 

the discovery of a new neutral CB1 antagonist. 

2. THE ENDOCANNABINOID SYSTEM 

The endocannabinoid system is a physiological system that is believed to regulate 

body weight, glucose and lipid metabolism, and tobacco dependence. The health 

implications of the endo-cannabinoid system are staggering.  Cannabinoids act as a 

bioregulatory mechanism for most life processes. A few of the Medical Uses of 

Cannabinoids are, Relieves Chronic Pain; Reduces need for narcotics in chronic pain or 

Narcotics Addiction; Anti-Cancer (Breast, Colon, Pancreas, Brain-Glioma); Relieves 

Post Traumatic Stress Disorder, Phobias; Relieves Nausea and Vomiting associated 

with Chemotherapy; Improves Appetite in Wasting Syndromes; Relieves Migraine 

Headache; Relieves Glaucoma; Relieves Bladder incontinence; Used as Anti-

convulsant; Used as Anti-depressant; Used as Atypical anti-psychotic; Used for Bi-Polar 
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Syndrome; Used for Multiple Sclerosis, ALS. 

 The endocannabinoid system consists of three components: cannabinoid receptors, 

their endogenous ligands (endocannabinoids), and the enzymes, proteins, and 

transporters involved in the synthesis and degradation of endocannabinoids.30 

The research on cannabinoid receptors was stimulated by the identification of the 

chemical structure of Δ9-tetrahydrocannabinol (3, Δ9-THC), the major active component 

of marijuana. Although, the central and peripheral actions of marijuana have been 

studied for over half a century and marijuana has been used in medical and recreational 

applications throughout the ages, it has taken many years to understand the action 

mechanisms of cannabinoid receptors. The effects of Δ9-THC have been assumed to be 

mediated by the binding of this drug to a certain type of receptors located throughout 

the body, defined as cannabinoid receptors. Endocannabinoids are endogenous 

compounds that bind to and functionally activate the same receptors Δ9-THC binds to. A 

tremendous number of studies have contributed to the comprehension of the 

endocannabinoid regulation and function. Unlike many other neuromodulators or 
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hormones, endocannabinoids are not synthesized in advance or stored in vesicles. 

They are released “on demand” by Ca2+-induced enzymatic cleavage from their 

phospholipid precursors in cell membranes.31  

To date, five endocannabinoids have been identified. Anandamide (AEA, 6) was the 

first endogenous ligand identified and reported in the early 1990’s. Anandamide 

together with 2-arachidonoyl glycerol (2-AG, 7) are the two most studied 

endocannabinoids.32 Anandamide and 2-arachidonoyl glycerol are biosynthesized “on 

demand” from their membrane lipid precursors, N-arachidonoyl-

phosphatidylethanolamine (N-ArPE) and sn-1-acyl-2-arachidonoylglycerols (DAGs) 

respectively.33  

Most of the proteins involved in the metabolism of  Anandamide  and  2-arachidonoyl  

glycerol  have  been  fully  characterized,  especially  the enzymes responsible for their 

biosynthesis and degradation. However, the route for the synthesis and inactivation of 

Virodhamine (8), N-arachidonoyldopanime (NADA, 9), and noladin ether (10) still 

remains unclear. The cannabinoids have wide ranging effects on various systems 
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including mood, cognition and reward, immune, gastrointestinal and reproduction, sleep, 

neuroprotection, bone and cardiovascular function, in addition to apetite, lipid and 

carbohydrate metabolism. 

Figure 8. Endocannabinoids. 
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The orexigenic effect of the endocannabinoids is mediated via activation of AMP-

activated protein kinase (AMPK). AMPK plays a central role in the control of energy 

homeostasis both at an individual cellular level and that of the whole body via its 

appetite stimulating effects in the hypothalamus. It seems that cannabinoids interact 

with a number of hormonal systems and possibly mediate their effects.  
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Initially, it was thought that the endocannabinoid system acted solely centrally 

through its effects on appetite and food intake. Widely prevalent presence of CB1 

receptor centrally supports this. Also, central administration of anandamide into the 

nentromedial nucleus causes hyperphagia in rats. However, the endocannabinoids not 

only act centrally but also peripherally in the control of energy balance and metabolism. 

It has been suggested that cannabinoids increase weight by methods other than solely 

stimulating appetite.31 A human study showed an increase in caloric intake and weight 

gain in volunteers who smoked cannabis when compared with controls. It was seen 

that, although the weight of participants continued to increase throughout the study, the 

increased food intake subsided after just a few days.  

3. CANNABINOID RECEPTORS  

The identification of the cannabinoid receptors was stimulated by the desire to 

understand the pharmacological and biochemical effects of the psychoactive effects of 

Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component of cannabis. It 

was believed that the effects of Δ9-tetrahydrocannabinol (Δ9-THC) are mediated by 
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occupation of receptors located throughout the body. 

Two major types of Cannabinoid (CB) - receptors have been identified to date: CB1 

and CB2. Though their crystal structures are still not known, they have been cloned and 

their amino acid sequences have been compared with each other and several other 

transmembrane proteins. Both the CB1 cannabinoid receptor  and  the  CB2  

cannabinoid  receptors  share  the  similar  signaling sequence. The recreational effects 

of psychostimulants are primarily caused by CB1-receptors. Cannabinoid receptors  

(CB1, CB2) belong to the Class A, rhodospin-like  family  of  G protein-coupled  

receptors (GPCRs).  

The cannabinoid receptors signals primarily through the inhibitory G proteins Gi and 

Go, to a less extend via Gs and Gq/11 with certain agonists. The CB2 receptors 

expressed by immune cells, including macrophages, are responsible for the anti-

inflammatory and immunosuppressive effects of cannabinoids.38 CB2 receptors are 

present in atherosclerotic lesions and exogenous cannabinoid compounds reduce the 

progression of atherosclerosis in ApoE-null mice by a mechanism that is sensitive to co-
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administration of a CB2 receptorselective antagonist.38 Although the existence of protein 

receptors for Δ9-tetrahydrocannabinol (Δ9-THC) had been indicated for a long time,  

Howlett et al.32, for the first time, provided definitive evidence for a cannabinoid 

receptor. Upon the binding of cannabinoid ligands on cannabinoid receptors, the 

cannabinoid receptors were stimulated which leads to the activation of adenyl  acyclase, 

the activation of mitogen-activated protein kinases, the inhibition of certain voltage-

gated calcium channels and the activation of G protein-linked inwardly rectifying 

potassium channels.  

A binding assay was developed and established that cannabinoid receptor CB1 

inhibited adenylyl cyclase via a pertussin toxin protein and also to inhibit N-type Ca2+ 

channels facilitating activation of a G-protein-regulated voltage dependent K+ channels. 

In contrast, the CB2R, while also inhibiting adenylate cyclase via a pertussin toxin Gi/o 

protein, apparently do not regulate either Ca2+ or K+ ion channels.34 The modulation of 

ion channels by CB2 cannabinoid receptors is more variable than that of CB1 

cannabinoid receptors. 
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 4. CB1 RECEPTOR LIGANDS 

Cannabis is obtained from the Indian hemp Cannabis Sativa L. and contains a variety 

of natural cannabinoids. Cannabinoids are terpenophenolic compounds with a structural 

relationship similar to (-)-trans-∆9-tetrahydrocannabinol (∆9-THC) 3 or compounds with 

the ability to bind to cannabinoid receptors. To date, at least 66 cannabinoids have been 

isolated from the cannabis plant. The most prevalent natural cannabinoids that have 

been studied extensively are Δ9-THC (3), cannabidiol (CBD), and cannabinol (CBN) 

(Figure 9).67 

Figure 9. Plant Cannabinoids. 
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The CB1 receptor is pharmacologically activated upon small molecule occupation of 

the binding sites. Based on structural features, cannabinoid receptor ligands fall into 

four classes32:  
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1. “Classical” Cannabinoids typified by tetrahydrocannabinol (Δ9-THC,);  

2.  “Non-classical” cannabinoids (e.g. CP55,940, 5); 

3.  “Aminoalkylindoles” (e.g. WIN55212-2, 4); 

4.  “Endocannabinoids” (e.g. anandamide, 6). 

Natural “classical” cannabinoids are dibenzopyran derivatives. Synthetic 

“nonclassical” cannabinoids are bicyclic and tricyclic analogs of Δ9-THC (3). However, 

eicosanoids “endocannabinoids” have a completely different structure. These ligands  

typically  exhibit  low  nanomolar  binding  affinity  for  CB1  receptors  and generally do 

not exhibit significant differential in binding affinity between the two subtypes of the 

cannabinoid receptors, CB1 and CB2. Of these ligands, anandamide (6, Figure 7) has 

been reported to exhibit selectivity for CB1 (Ki = 61 nM) over CB2 (Ki = 1930 nM).  

CB1 receptor agonists inhibit cAMP production through inhibition of adenlyl cyclase, 

inhibit Ca+2 influx, activate K+ channels and activate MAP kinase pathways. One of the 

many indications of CB1 receptor agonists is to increase intracellular dopamine levels in 
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brain (striatum) similar to cocaine. It is believed that CB1 agonist modulation of 

dopamine levels in the central nervous system is responsible partially for the abuse 

liability observed for cannabinoid agonists. CB1 receptors are associated with pleasure, 

appetite stimulation, learning & memory, thoughts, concentration, sensory and time 

perception, coordinated movement, bone formation and indirectly modulate 

dopaminergenic transmission.  

The CB1 cannabinoid receptor agonists have a great variety of potential 

pharmacological applications including nausea, glaucoma, cancer, stroke, pain, 

cachexia, and neuronal disorders such as multiple sclerosis and Parkinson’s disease.41 

The role of CB1 receptors in these disease states and disorders, nature of the receptors 

active site, and the molecular interactions between the receptors and the ligands are not 

fully understood and are under intensive investigation. 

Synthetic cannabinoids are useful in the determination of structure-activity 

relationships (SAR) of the endocannabinoid system. There was a need to find new 

synthetic cannabinoids with an increase in therapeutic activity and limited adverse side 
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effects. In the 1980’s, Pfizer focused on these novel analgesic compounds. Early 

attempts at cannabinoid based analgesics and antiemetics led to the development of 

levonantradol (Figure 10). This cannabinoid compound was more potent than THC, 

easier to administer, but had too many side effects.  From these early studies, CP 55-

940 (5, Figure 7), a synthetic analog of Δ9-THC was created and lead to the important 

discovery of CB1 receptor in 1988. 

Figure 10. Synthetic cannabinoids. 
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The aminoalkylindole derivative, WIN-55212-2 (4) is also a potent cannabinoid 

receptor agonist.  This potent agonist has analgesic, anti-inflammatory and neuropathic 

properties. WIN-55212-2 (4) is a full agonist at the CB1 receptor with a higher affinity 

than Δ9-THC for the CB1 receptor. The in vitro SARs of WIN-55212-2 (4) led to the 

development of new agonists. Nabilone is a synthetic analogue of Δ9-THC and is 
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licensed for medical use. Nabilone mimics Δ9-THC (3) and is used therapeutically as an 

analgesic and antiemetic. This compound is not considered a narcotic by the World 

Health Organization (WHO) because it lacks the euphoric and recreational potential.  In 

1985, the U.S. Food and Drug Administration (FDA) approved nabilone for treating 

chemotherapy-induced nausea and vomiting, anorexia and as an appetite stimulant for 

AIDS patients.  

CP 55,940 (5) mimics the effects of Δ9-THC (3) and is a full agonist at both CB1 and 

CB2 receptors.  This synthetic analog allowed for radioligand binding assays that were 

not possible for Δ9-THC (3) due to the lipophilicity, which led to non-specific binding 

during in vitro experiments.  The development of this analog led to further advancement 

in the cannabinoid field and also pushed for the need of selective agonists and 

antagonists for CB1 and CB2 receptors. 

Among known cannabinoid receptor agonists there are several compounds exhibiting 

low efficacy agonist profiles in vitro and in vivo. Like the potent cannabinoid receptor 

ligand CP-55,940 (5) and WIN-55212-2 (4), they stimulated [35S]GTPγS binding but were 
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significantly less potent and hence they have been designated as partial agonists.4,18 

The partial agonists include tetrahydrocannabinol (Δ9-THC), BAY59-3704 (11), CB-25 

(12) and CB-52 (13).  

Figure 11. Cannabinoid receptor partial agonists. 
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CB2 is primarily involved in immune regulation- activation of this receptor results in 

suppression of immune system events like immune cell activation and proliferation, as 

well as production of some inflammatory mediators. It is not responsible for the 

psychoactive effects of THC. CB1 receptor agonists have been shown to increase 

intracellular dopamine levels in brain (striatum) similar to cocaine. It is believed that CB1 
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agonist modulation of dopamine levels in the CNS is responsible in part for the abuse 

liability observed for cannabinoids agonists.  

5. CB1 RECEPTOR ANTAGONISTS 

The CB1 cannabinoid receptor antagonists bind to CB1 receptors and block the 

effects of CB1 agonists. CB1 antagonists block stimulation of [35S]GTPγS binding and 

block the inhibition of adenylate cyclase activity. The CB1 cannabinoid antagonists have 

potential applications in the treatment of obesity and nicotine dependence. The CB1 

receptor antagonists known so far are diarylpyrazoles, or aminoalkylidoles or triazole 

drivatives.  

Rimonabant was the first potent and selective antagonist (inverse agonist) of CB1 

receptors. In vivo characterization of CB1 antagonists/Inverse agonists with 

psychostimulants has produced some promising results for future development as 

psychostimulant therapeutics.  

While studies with the CB1 ligand SR141716A did not have an effect on cocaine and 
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amphetamine self-administration, it has been shown to reduce rat cocaine-primed and 

cue-induced reinstatement of responding when reinforced by cocaine. It was also found 

SR141716A reduced the motivational effects of cocaine in mice under progressive ratio 

conditions. These results suggest that CB1 antagonists have potential utility in reducing 

relapse among cocaine abusers. The CB1 antagonist AM251 (2) has been reported to 

reduce self-administration of methamphetamine in rats at doses that did not affect food-

reinforced responding and also prevented reinstatement of extinguished 

methamphetamine seeking that was induced by re-exposure to a combination of 

methamphetamine and methamphetamine-associated cues.44,45  Also SR141716A (1) 

has been reported to be effective in reducing reinstatement of methamphetamine-

seeking behavior.  

These results indicate that CB1 antagonists can effect psychostimulant induced 

behavior and clearly support further investigation of CB1 antagonists as target for the 

development of novel pharmacotherapies for drug abuse.44 Although it has received 

less research attention, cannabinoid CB1 receptor antagonists have also been 
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proposed as treatments for methamphetamine. Cannabinoid CB1 receptor knockout 

mice are hyporesponsive to D-amphetamine on tests of locomotor activity, providing 

evidence for a role of CB1 receptors in amphetamine abuse.45  

Accordingly, cannabinoid CB1 receptor antagonists have been proposed as potential 

medications for the treatment of drug abuse. The cannabinoid CB1 receptor 

antagonist/inverse agonist Rimonabant has gone through clinical trials for the treatment 

of nicotine dependence, and preclinical studies suggest that CB1 receptor antagonists 

may also have utility in treating opioid and alcohol abuse. Recent evidence suggests 

that the endocannabinoid system of the brain is involved in both the maintenance of 

drug taking behavior and relapse to drug taking after a period of abstinence. 

In clinical trials, Rimonabant produced cardiovascular beneficial effects beyond that 

expected from weight loss alone and in one recent study employing intravascular 

ultrasonography, a reduction in the total volume of coronary atheromas. Rimonabant 

significantly reduces the development of atherosclerotic lesions in hyperlipidemic mice 

by exerting a number of anti-atherosclerotic effects including; reducing serum 
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cholesterol levels, reducing proinflammatory cytokines, inhibiting monocyte/macrophage 

proliferation and migration, and inducing reverse cholesterol transport in macrophages. 

However, the precise mechanisms by which Rimonabant exerts these anti-

atherosclerotic effects remain to be determined. CB1 antagonists have been shown to 

block the effects of Δ9-THC and appear to be devoid of abuse liability and CB1-

receptors are viable targets.5,45  

SR141716A or Rimonabant (1) was the first compound reported to be both and 

antagonist in vitro and to be sufficiently potent in vivo to precipitate a withdrawal 

syndrome in cannabinoid-tolerant animals. However currently available antagonist 

typically exhibit inverse agonist activity as well. Inverse agonists typically elicit 

pharmacological responses opposite to agonists and thus are not ideally suited for the 

treatment of drug addiction due to potential dysphoric effects associated with these 

drugs. These include increased nociceptive sensitivity, decreased food intake, 

decreased weight, disruption of operant behavior and potential nausea in humans. The 

side effects would undoubtly lead to low compliance and relapse among addicts.  
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Alternatively, neutral antagonists, since they possess no intrinsic activity, would be 

expected to exhibit diminished side effects and possess a better safety profile. As such 

neutral antagonists are good candidates for medication development. However, due to 

the limited availability of neutral antagonists, to our knowledge few studies have been 

performed with a neutral antagonist. The neutral antagonist LH21 (15) has been shown 

to demonstrate efficacy for the treatment of obesity.  

Recently LH-21 was also determined as a neutral CB1 receptor antagonist with poor 

brain penetration, in diet-induced obese rats. These results support the hypothesis that 

treatment with the peripherally neutral acting CB1 receptor antagonist, LH-21, may 

promote weight loss through modulation of visceral adipose tissue.27  

In lieu of lack of success with monoamine therapeutics, researchers have turned 

attention to alternative mechanisms to affect dopaminergic transmission and thus 

mediate the effects of psychostimulants on brain circuitry. To this end, it has been 

suggested that cannabinoid antagonists as potential medications for drug abuse have 

been subject of recent reviews and are discussed in more detail subsequently. 
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The development of CB1 antagonists for psychostimulant addiction is less 

straightforward and is rooted in the mechanisms of psychostimulant neurobiology and 

neurochemistry. Cannabinoid receptors are located in the regions along with 

mesocorticoloimbic dopamine system, the primary region of the brain that mediates the 

effects of psychostimulant (eg. cocaine and methamphetamine) and is closely 

associated with reward mechanisms.  

Cannabinoid agonists have been shown to elevate extracellular dopamine levels in 

these regions. Drugs that elevate dopamine levels in the striatum, (eg. cocaine and 

methamphetamine) typically exhibit potent abuse potential. As such, CB1 receptor 

antagonists are proposed to have potential utility as psychostimulant therapeutics in that 

they may mediate the abuse liability via inhibition of dopaminergic activity.  

6. CB1 ANTAGONIST AGAINST DRUG ABUSE 

Molecular  and  neurobiological  studies  on  the  basis  of  the  physiological  and 

neurobehavioral effects of marijuana and cannabinoids have lagged behind other 
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natural addictive drugs such as cocaine, opium and tobacco. Behavioral 

pharmacologists are particularly interested in the roles of CB1 receptors because of 

their selective presence in the central nervous system and their association with brain-

reward circuitry.4  

The mesocorticolimbic dopamine system is believed to be the primary region of the 

brain mediating the effects of several drugs and is closely associated with brain-reward 

circuitry mechanisms. The mesocorticolimbic dopamine system includes neurons in the 

ventral tegmental area and corresponding projections into the forebrain regions.18 Even 

though CB1 receptors do not reside on the mesencephalic dopaminergic neurons, they 

are located in these regions.30 Studies further showed that CB1 receptor was present in 

certain brain regions with a high expression level.  Furthermore, the cannabinoid  

receptor  distribution  was  successfully  mapped  with  the  development  of  highly 

active cannabinoid receptor agonists.35,36 The existence of cannabinoid receptor was  

ultimately proved by the cloning of a cannabinoid receptor in 1990 by Matsuda et al.37  

which was followed by the cloning of a second type of cannabinoid receptors three 
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years later in 1993.38  

Figure 12 Localization of CB1 Receptors.39  

 

Much has been learned about the cannabinoid receptors by determining its 

localization. The localization of cannabinoid receptors was mainly determined using 

quantitative autoradiography, in situ hybridization and immunocytochemsitry.39 Primates 

appear to have higher densities of cannabinoid receptors in cerebral cortex, 

hippocampus and cerebellar cortex than do rats. Thus CB receptor agonists and 

antagonists may act differently in rodents and primates for procedures highly dependent 
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on learning and memory. The autoradiographic studies performed by Herkenham et al. 

demonstrated significant results about CB1 receptors:  

a) The CB1 cannabinoid receptors are mainly expressed in the central nervous 

system with high density in the cerebellum, hippocampus, and striatum. The CB1 

cannabinoid receptors were highly abundant in the brain regions that are affected by 

psychoactive effects of Δ9-tetrahydrocannabinol (Δ9-THC);  

b) The concentration was low in the brain regions unaffected by tetrahydrocannabinol 

(Δ9-THC);   

c) CB1 receptors were expressed abundantly on axon terminals. 

The expression of CB1 receptors has also been described with high resolution from 

immunoctyochemical studies. It was revealed that CB1 receptors are expressed at very 

high levels in a subset of GABAergnic interneurones, the cholecystokinin (CCK) 

containing basket cells and at lower levels on many glutamatergic terminals throughout 

the brain. CB1 receptors are largely present on the preterminal axonal segment and 
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axons but very little on more proximal axons, dendrites, or the cell body. CB1 receptors 

are also found in fat, liver, pancreas, skeletal muscles, and a number of other peripheral 

tissues.39 Conversely, the CB2 cannabinoid receptors are exclusively present in the 

immune system and modulate cytokine release. It has been found in the periphery of 

the spleen and cells associated with immune system like T-cells, B-cells, spleen, tonsils 

and monocytes. The presence of a third type of cannabinoid receptor has been 

indicated recently.32 

CB1 receptor agonists elevate dopamine levels, while CB1 receptor antagonists or 

inverse agonists can attenuate the dopamine level elevations associated with drug 

abuse and diminish  the  stimulation  of  dopaminergic  activity  in  the  reward  circuitry  

of  the  brain  and attenuate the effects of drug abuse.  

Therefore, the development of CB1 antagonists as potential therapeutic agents for 

drug abuse is straightforward. While the CB1 antagonist Rimonabant did not show to 

have an effect on cocaine and amphetamine self-administration, it has been reported to 

reduce rat cocaine-primed and cue-induced reinstatement studies with CB1 antagonist 
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CB1 antagonists have been shown to block the effects of Δ9-THC and appear to be 

devoid of abuse liability.15 

In a story very similar to the discovery of opiate receptors in the brain, cannabinoid 

receptors have been discovered along with their endogenous cannabinoids, 

representing the largest neurotransmitter system in the brain and immune system.  This 

neurotransmitter system went undetected for decades because it involves an unheard 

of concept, retrograde transmission, or reversed flow of information from the post 

synapse to the pre-synapse. 

At an inhibitory synapse, the presynaptic neuron provides an inhibitory input, 

decreasing the likelihood that the postynaptic neuron will fire (Figure 13). The 

neurotransmitters in the presynaptic vesicles and in the synapse are marked red while 

endocannabinoids are marked green. Now like in all synapses, information flows from 

the presynaptic neuron to the postsynaptic neuron via release of neurotransmitter and 

activation of postsynaptic receptors leading to changes in the activity of the postsynaptic 

neuron. However, the cannabinoid signaling mechanisms cause a pretty uncommon 
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event as they allow the postsynaptic neuron to modify the activity of the presynaptic 

neuron. 

Figure 13. Model of Inhibitory Synapse.46 

 

Hence, there is a two-way communication across the synapse, rather than the 

presynaptic neuron being the one-way communicator. 

This is the “backward” or retrograde communication that goes on from postsynaptic 
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cell to presynaptic cell. The endocannabinoids are produced by the postsynaptic cell 

and are able to activate CB1 receptors located on presynaptic terminals. They are 

produced and released on demand, not stored in vesicles like many other 

neurotransmitters, so there are very specific triggers for endocannabinoid production.32  

It was observed that when CB1 receptors are activated, there is a cumulative effect of 

complex signaling which controls release of neurotransmitters from the pre-synaptic 

neuron and hence further regulates the neuron firing. According to the proposed 

“Cannabinoid Hypothesis”, the endocannabinoid physiological control system (EPCS) 

has a potential role in the regulation of the rewarding effects of abused drugs through 

the neurobiological mechanisms.  

These receptors use retrograde signaling, which is associated with the inhibition of 

transmission at the synapse by neurotransmitter suppression. Due to this abundant 

presence in the brain retrograde signaling of these cannabinoids are limitless and may 

explain the behavioral effects associated with cannabis. The retrograde messengers 

inhibit a host of neurotransmitters such as dopamine, serotonin, GABA, and 
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acetylcholine. The endocannabinoid transmission plays a significant role in the 

dependence/withdrawal to abused substances and drug seeking behavior through 

mediation of motivation.63  

When CB1 receptors are activated, they signal through G-proteins to close calcium 

channels, preventing entry of calcium into the terminal. Calcium is needed for vesicles 

to fuse with the membrane and release inhibitory neurotransmitters into the synapse. So 

CB1 signaling stops inhibitory neurotransmitters from being released to the postsynaptic 

neuron.  

CB1 receptor activation also results in opening of potassium channels. In a resting 

neuron, these channels are closed. Outflow of positively charged potassium ions leads 

to increase in the net negative charge across the membrane. This is called 

hyperpolarization, the opposite of depolarization. As can be imagined, since 

depolarization causes neurons to fire, hyperpolarization keeps a neuron from firing. This 

further decreases the chances that neurotransmitter will be released from the 

presynaptic terminal. The net result is that the postsynaptic neuron signals back to stop 
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neurotransmitter release from the presynaptic neuron. 

Since endocannabinoid stimulation of CB1 receptors on presynaptic neurons can 

suppress neurotransmitter release from those neurons, so if we suppress inhibitory 

transmission from this circuit, we have more excitation and therefore more hunger. 

Throwing Δ9-THC into this circuit, as someone might do when they have smoked 

marijuana, can lead to the same effect even if endocannabinoids are not being released 

by the presynaptic neuron. This is the reason, why marijuana smokers get the 

“munchies” (increased appetite), as they are losing suppression of hunger pathways. 

CB1 was originally believed to be the “brain type” of receptors because it is among 

the most abundant G protein-coupled receptors in the central nervous system of 

mammalians. Now associating this with all the other circuits in brain, like reward, 

memory and motivation, for example, these are all circuits where CB1 receptors can be 

found and can be affected by Δ9-THC and lead to alterations in behavior. Δ9-THC 

interferes with the regulation of neuronal firing timing in the hippocampus, and a person 

cannot encode memories anymore. It relieves suppression upon dopaminergic neurons, 
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leading to dopamine release that gives a marijuana-intaker the “High”.  

Figure 14 Comparison of endocannabinoids & exocannabinoids.38 

  

As can be seen, Figure 14 compares the effects of endocannabinoids and the 

sedating effects of natural as well as synthetic cannabinoids on CB1 receptors.  It is 

seen that while endocannabinoids are necessasary for various physiological functions 

and development, on the other hand phytocannabinoids (obtained from plant source like 

hemp plant) and synthestic compounds interfere in the normal signaling process which 

further interferes in the physiological functions of the animal body. Now it is clear that 
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CB1 is predominantly expressed in the central nervous system but also, to a lesser 

extent, in various peripheral organs, while CB2 receptors are mostly expressed in the 

immune system. The endocannabinoid system appears to be involved in a rising 

number of pathological conditions and hence represents an exciting target for drug 

discovery.40 

7. BINDING AFFINITY AND INHIBITION CONSTANT 

The drugs are evaluated for their potency by the value of their binding affinity to a 

specific transporter. These values are typically expressed in terms of IC50 or Ki. The IC50 

value is the concentration at which the compound is needed to displace 50% of the 

bound radio-labeled ligand.38 Neurotransmitters, inhibitors, activators, and substrates 

are considered ligands since they have the ability to bind and form complexes with 

protein chains to initiate a cellular response that alters the chemical conformation of the 

receptor protein by an intermolecular force like ionic bonds, hydrogen bonds and van 

der Waals forces. 



 51 

 The radio-labeled ligands used, usually show high affinity for the targeted transporter 

or receptor. For example, 3[H]WIN55,212-2 (4) and 3[H]SR141716 (1) are used for CB1-

receptors. Ki is the inhibition constant and is related to IC50 by the following equation:

K
i
=

IC
50

1 +
[S]

____

K
m

__

 

IC50 is the functional strength of the inhibitor i.e. the concentration at which the 

inhibitor is needed to displace 50% of bound radio-labeled ligand while [S] is 

concentration of radiolabeled ligand used and Km is the affinity of the radiolabeled ligand 

for the specific protein receptor.70 

If a ligand has a high affinity the receptor-ligand complex will be present for longer 

time interval as compared from low affinity. In addition, a high binding affinity implies a 

low concentration of a ligand to maximally occupy a receptor and trigger a physiological 

response. The above equation can also be expressed as: 

K
i
=

IC
50
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d

+ 1) }
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Where Kd is the dissociation constant of the radiolabeled ligand previously 

determined for the specific receptor. Kd is usually calculated by the following equation. 

Kd = [R][L]/[RL] 

Here, [R], [L] and [RL] represent molar concentrations of the protein, ligand and 

complex, respectively. Several factors can affect the IC50 values according to 

experimental conditions which include the type and amount of radio-labeled ligand, 

state of tissue (fresh or frozen), buffer, incubation time and protein content. Therefore Ki 

offers a better comparison of data since it takes into account the concentration and 

dissociation constant of the radio-labeled ligand and the IC50 value for the compound. 

Binding  assays  are  done  by  using  a  radioligand  usually  an  agonist  in  a  low 

concentration either at or below the dissociation constant, Kd. The binding specificity is 

determined  in  the  presence  of  the  range  of  the  concentration  competing non-

radio- labeled compound  usually  an  antagonist  to  measure  the  potency through 

binding competition at the radio labeled ligand.70 
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If an agonist can maximally stimulate the receptor it is considered a full agonist, for 

example WIN 55,940 (4) and CP 55,940 (5) are agonists for CB1 receptor. However, if 

an agonist can only partially activate the physiological response it is considered a partial 

agonist for example THC is a partial agonist for CB1 receptor (Figure 15).   

An inverse agonist is an agent that binds to the same receptor as an agonist but 

induces a pharmacological response opposite to that agonist. A prerequisite for an 

inverse agonist response is that the receptor must have a constitutive (also known as 

intrinsic or basal) level activity in the absence of any ligand. An agonist increases the 

activity of a receptor above its basal level while an inverse agonist decreases the 

activity below the basal level. A neutral antagonist has no activity in the absence of an 

agonist or inverse agonist but can block the activity of either. 
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Figure 15. Dose response curves of an agonist, neutral antagonist, and inverse 

agonist70

 

On the other hand if the physiologic response is not activated by binding of the ligand 

to the receptor it is then deemed an antagonist. Competitive antagonists (also known as 

surmountable antagonists) reversibly bind to receptors at the same binding site (active 

site) as the endogenous ligand or agonist, but without activating the receptor. Agonists 

and antagonists "compete" for the same binding site on the receptor. Once bound, an 

antagonist will block agonist binding. The term "non-competitive antagonism" 

(sometimes called non-surmountable antagonists) is used to describe two distinct 

phenomena: one in which the antagonist binds to the active site of the receptor 

irreversibly, and one in which the antagonist binds to an allosteric site of the receptor. 
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The efficacy of a full agonist is by definition 100%, a neutral antagonist has 0%, while 

an inverse agonist has < 0% (i.e., negative) efficacy. 

8. PHARMACOPHORE FOR CB1 ANTAGONIST 

To date characterization of CB1 and CB2 receptors has relied upon ligand-receptor 

interactions as the three dimensional structures and structures of binding sites have yet 

to be established. SR141716A (Rimonabant, 1), the first CB1 receptor antagonist 

synthesized, was tested in humans and then approved as a drug for the treatment of 

obesity and related comorbidities.  

Based on the structure of Rimonabant, numerous analogs have been synthesized to 

elucidate the structure-activity relationship information and the biological mechanisms. 

Most of those analogs were designed and synthesized based on the 1,5-diarylpyrazole 

ring as structural template, which was believed to be the  molecular region binding to 

CB1 receptors. Various structural modifications of the prototype Rimonabant were 

undertaken and led to new series of cannabinoid compounds. Some of those 
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compounds turned out to be CB1 antagonists with good potency, CB1/CB2 selectivity 

and improved lipophilicity. 

One of the most important structural modifications was focused on the changes of the 

C-3 acyl group. Analogs have been synthesized and evaluated to establish the 

influence of the presence of the carboxamide oxygen from the C-3 position on the 

binding affinity.42 The carboxamide group was replaced by heterocyclic carboxamide 

bioisosteres, amino alcohols and even ketones. It was discovered that the potency was 

diminished relative to Rimonabant when the carboxamide oxygen was absent from the 

pyrazole ring. It was explained by the hypothesis that the carboxamide oxygen forms a 

hydrogen bond with the CB1 receptor binding region. 

However, the functional assay results of those analogs suggested that the 

carboxamide group contributes to the inverse agonist property. Analogs without the 

carboxamide oxygen were identified as neutral antagonists in efficacy evaluations 

(Figure 19). Moreover, the analogs of Rimonabant consisting of long-chain alkyl amide 

have been synthesized and reported to exhibit good affinity for CB1 receptors.43 
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Analogs with alkyl chain longer than six carbons exhibited decreased binding affinity at 

CB1 receptors. Branched alkyl amides were generally more potent than the 

corresponding straight alkyl amides with same number of carbon atoms.44 

Figure 16. Putative CB1-receptor amino acid side chains interaction with 

Rimonabant. (Modified from ref 46) 
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Based on the experimental and computational studies, the pharmacophoric 

requirements were concluded for the potency of the pyrazole analogs in CB1 binding: a 

para-substitute phenyl ring at the pyrazole C-5 position, a 2,4-dichlorophenyl ring at 

pyrazole N-1 position, and a carboxamide moiety at pyrazole C-3 position.45 SAR 

studies revealed that the C-5 phenyl group was essential for the CB1 binding.  

A general CB1 receptor inverse agonist pharmacophore model is shown in Figure 16 
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taking Rimonabant as a representative example.46 Putative CB1 receptor amino acid 

side chain residues in receptor-ligand interaction are shown. Both vicinal aromatic rings 

are connected to a central core unit which is interconnected with a lipophilic moiety via a 

hydrogen bond acceptor unit (Figure 16). Substitution at the p-position of the phenyl 

with a halogen atom or an alkyl chain can effectively increase the binding affinity. In a 

recent study, pentyl chains with a variety of groups attached to the terminal carbon were 

used as the substituents at that position. The resulting analogs exhibited excellent 

binding affinity to CB1 receptors. 

9. RATIONAL DRUG DESIGN 

Bioisosterism is an important approach frequently used in medicinal chemistry to 

discover new lead compounds based on existing key ligands. It plays a significant role 

in attenuating toxicity, optimizing binding and altering pharmacokinetics of a lead 

compound. The three dimensional structures of thiazoles, triazoles, and imidazoles and 

the structure of pyrazole exhibit a high degree of similarity. Consequently, the pyrazole 

ring in Rimanabant can be replaced by such heterocyclic five-membered rings in order 
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to discover bioisosteres, compounds that have similar chemical or physical properties 

and therefore similar biological properties.  

Based on Rimonabant as the prototype, ring bioisosterism has been the most widely 

used strategy to design and synthesize cannabinoid antagonists with optimal 

pharmacological properties. The first reported bioisosteric analogs of Rimonabant were 

4,5-diarylimidazole-2-carboxamides synthesized by replacing the pyrazole core with an 

imidazole ring.47 A series of 1,2-diarylimidazole-4-carboxamides were also described 

and structural modifications were conducted to established SAR information.48  

The biological data clearly demonstrated that for both of those two isomeric series of 

imidazole analogs, the most potent ligands were those possessing substitution pattern 

very similar to that of SR141716A. In addition, most of those imidazole analogs showed 

antagonistic properties in functional assay studies. Some compounds displayed 

affinities for CB1 receptors comparative to that of SR141716A and had good oral 

bioavailability and brain penetration. The pyrazole core in SR141716A was also 

replaced by other five-membered bioisosteric rings (Figure 17). These included thiazole, 



 60 

oxazole and 1,2,4-triazole derivatives. Those analogs were reported to be less potent 

than the methyl-diarylimidazoles discussed earlier. 

Figure 17. Five-membered bioisosteric analogs of Rimonabant 
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This difference in binding affinity may be attributed to the absence of methyl group 

which was believed to play a very important role in properly orienting the carbonyl group 

for molecular recognition at the CB1 binding pocket.  

Despite the moderate binding affinity associated with the 1,2,4-triazole derivatives,  
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this  series  provided  interesting  compounds.  The analogue bearing the same 

substituents as SR141716A was found to be an antagonist (14). Another 1,2,4-triazole 

derivative LH-21 (15) bearing a n-hexyl instead of a carboxamide was reported to be an 

antagonist both in vitro and in vivo. Also, it was one of the few known CB1 receptor 

antagonists without inverse agonistic properties.27 Tremendous amount of work has 

also been done studying the structure-activity relationship of the imidazole bioisosteric 

analogue of SR141716A which are compound 16 and 17. 

In addition to the analogs with five-membered bioisosteric rings, six-membered ring 

replacement of the pyrazole ring in SR141716A has afforded a number of pyridine, 

pyrimidine and pyrazine derivatives (Figure 18). Diarylpyridine analogs with or without 

the carboxamide group were all synthesized and evaluated in binding assay studies. 

The ether 18, a potent and selective CB1 agonist, demonstrated that the presence of 

amide moiety was not necessary for this category of compounds.  

It could be replaced by other functional group combinations with the substituent at the 

pyridine C-5 position, such as the nitrile in 19, to optimize pharmacological profiles.24 
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The introduction of a polar substituent to the pyrazine ring provided analogs 20 that 

were less lipophilic and more bioavailable. 

Figure 18. Six-membered bioisosteric analogs of Rimonabant 
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Compounds with phenyl group (21) as the central ring still exhibited good binding to 

CB1 receptor. It indicated that the presence of a heterocycle was not strictly required for 

a CB1 antagonist.50 In 2002, Hurst et al, showed that SR141716A interaction with LYS 

3.28(192) is crucial for its inverse agonism at the cannabinoid CB1 receptor.42  



 63 

Figure 19. (a) Interaction of 3-carboxamide in SR141716A with LYS 3.28(192). (b) 

Absence of this interaction VCHSR. 

(a)    

 

(b)    
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Later in 2006, the group modified to remove the hydrogen bonding capability in the C-

3 substituent region, which removes the inverse agonist effect that rimonabant produces 

at high doses, so that VCHSR instead acts as a neutral antagonist, blocking the 

receptor but producing no physiological effect of its own.  

Based on the structure of the 1,5 diarylpyrazole core template revealed in 

Rimonobant (1), bioisosteric replacement was done to synthesize and identify a variety 

of potent bioisosteric analogs. In reviewing the literature, the 1,2,3-triazole ring systems 

which are one of the privileged structures were absent from the pool of derivatives as 

CB1-antagonists.51  

Moreover the 1,2,4-triazole like LH-21 derivatives have been reported to lack inverse 

agonist efficacy and elicit a neutral antagonist profile.The design rational was to 

incorporate the 1,2,3-triazole ring system into the vicinal diaryl groups which was 

presumed to interact with a unique region of the CB1 receptor. Despite the structural 

changes in these ligands, the pharmacological profiles of SR141716 based compounds 

have been fairly consistent.  
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10. PRELIMINARY STUDIES 

CB1 antagonists have been shown to block the effects of Δ9-THC and are also 

devoid of abuse liability. However, current antagonists exhibit inverse agonist activity 

eliciting the opposite response to an agonist.   

The development of effective medications for the treatment of cannabinoid and 

psychostimulant abuse is of great importance to society. While many advances have 

been made in current understanding of drug addiction, there still remains a tremendous 

need for therapeutic agents capable of treating and maintaining sustained abstinence 

among cannabinoid and psychostimulant drug users. Addiction to the psychostimulant 

cocaine has proven to be extremely difficult to mediate.  

Extensive studies directed toward the development of an agonist based 

pharmacotherapy in the form of dopamine reuptake inhibitors for the treatment of 

cocaine addiction have yet to identify a clinically useful therapeutic agent. In addition, 

the psychostimulant methamphetamine is rapidly becoming one of the most widely 
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abused drug in the United States. Currently there are no pharmacotherapeutic agents or 

strategies in place for the treatment of either cocaine or methamphetamine addiction. 

As both cocaine and methamphetamine act as indirect agonists of dopamine 

systems, indirect attenuation of dopaminergic systems is believed to be a viable target 

for pharmacotherapy development. It has been suggested that the cannabinoid receptor 

system can indirectly modulate dopaminergic transmission and thus mediate the effects 

of psychostimulants on brain circuitry.  

Moreover, in addition to their efficacy as treatments for stimulant abuse, cannabinoid 

antagonists would be useful in blocking the effects of cannabinoids and could therefore 

be useful for treating cannabinoid abuse as well. The studies proposed in this 

application are designed to provide novel, potent and selective cannabinoid receptor 

antagonists. Compounds identified in this study will then be made available to several 

research groups including National Institute of Drug Abuse Addiction (NIDA) Treatment 

Discovery Program, to evaluate the therapeutic potential by subsequent studies for the 

treatment of drug addiction. 
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Our strategy was to focus on the development of clinically useful cannabinoid 

application for the treatment of cannabinoid and/or psychostimulant addiction by the 

synthesis and development of new cannabinoid antagonist ligands based upon novel 

diaryl triazole scaffolds structures. 

To explore this deficiency, we identified in our laboratories compound 22 (Figure 20) 

as our initial target for synthesis. With vicinal diaryl system retained and the pyrazole 

ring replaced by the 1,2,3-triazole ring system, it even had lower lipophilicity as 

compared to rimonabant. Another encouraging fact was that the 1,2,4-triazoles 

synthesized earlier (for example LH-21) did not show any inverse agonist activity which 

was a green signal for us to go ahead and synthesize 1,2,3-triazoles. 

The construction of 1,2,3-triazole ring system exploits the 1,3-dipolar cycloaddition of 

an azide and a terminal alkyne, the click chemistry developed by Sharpless et al.52 To 

achieve our goal, we wanted to not only synthesize novel compounds, we also wanted 

to characterize binding affinity at cannabinoid receptors. Ligand design rationale utilized 

developing structure activity relationship studies for each series, lead compounds in 
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literature and computational methods to optimize potency and lipophilicity. Potent and 

selective CB1 receptor antagonists inhibit the effects of typical cannabinoid agonists 

such as Δ9-THC and WIN 55,212-2 (4, Figure 7).  

Figure 20. Initial target of synthesis. 
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The program includes chemical synthesis, in vitro biological evaluation, and in vivo 

biological evaluation. Phase 1 of the study will consist of rational drug design and 

synthesis. Novel analogs will be designed based upon lead structures identified in our 

preliminary studies and supported by computational studies (Figure 21). In Phase 2, 

compounds will be evaluated in vitro studies to identify structural requirements for high 

affinity binding. The binding affinity results will be used to advance compounds to in 

vitro efficacy studies as well as provide feedback information for the optimization of 

compound structures to identify more potent ligands.  
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Figure 21. Flowscheme of CB1 receptor drug discovery program. 

 

Phase 3 of the study will consist of in vitro characterization of compound efficacy and 

identify CB1 antagonists, agonists, or inverse agonists. As a result of their different 

action mechanisms and potential therapeutic values, inverse agonists and partial  

agonists will be directed to another program. Compounds that elicit neutral antagonist 

efficacy will be advanced to the blood-brain barrier permeability evaluations. 

Compounds that exhibit good blood-brain barrier permeability will be advanced to in 

vivo evaluation of antagonist efficacy. Compounds with poor blood-brain permeability 
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will be re-evaluated in the rational drug design process to improve their physical 

properties to improve permeability. 

Finally, Phase 5 will establish in vivo antagonist activity for compounds that have met 

the goals of in vitro efficacy and blood brain permeability. Those compounds that exhibit 

good in vivo antagonist efficacy will be submitted to the National Institute of Drug Abuse 

and serve as a lead compounds in future studies aimed at developing them further as 

drug abuse medications. The various phases of the program all go simultaneously with 

each phase contributing to the refinement of the ligand structure. 

After the novel triazole derivatives are synthesized and their binding affinities are 

determined, compounds that exhibit potent (Ki values < 100 nM) receptor affinity will be 

evaluated in vitro functional assays to identify compounds with antagonist activity. 

Antagonist efficacy will be determined by blockade of effects of Δ9-THC on [35S] GTPɤS 

binding. CB1 receptor agonist inhibit cAMP production through inhibition of adenyly 

cyclase, inhibit Ca+2 influx,  activate K+ channels and activate MAP kinase pathways. 

CB1 antagonists block stimulation of [35S]GTPɤS binding and block the inhibition of 



 71 

adenlyl cyclase activity. A neutral CB1 antagonist will not exhibit inhibition of [35S]GTPɤS 

binding, while antagonizes the effects of CB1 agonists. 

Compounds identified above that exhibit most promising pharmacological profiles as 

antagonists will be evaluated in vivo for the following: 

(a) Blood Brain Barrier permeability, where the ability to cross the blood brain 

barrier will be determined in rats using LC/MS.  

(b) Blockade of agonist effects, where the antagonist activity of the compound 

with good blood brain barrier permeability will be further established by evaluating 

for their ability to inhibit the effects of Δ9-THC on locomotor stimulations in rats. 

In reviewing the literature about CB1 receptor antagonists, it was noticed that the 

1,2,3-triazole analogs were absent from the pool of SR141716A bioisosteric analogs. 

The initial design of the target compound in our laboratories was based upon 

prototypical structure of SR141617A and its related compounds discussed in the 

literature. The design rationale was to incorporate the 1,2,3-triazole ring with the vicinal 

diaryl system. This led to the compound 22 (Figure 20).58  
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Figure 22. Preliminary computational study 

 

This design was supported by preliminary computational study. As illustrated in 

Figure 22, for the AM1 geometry optimized structures, a 1,2,3-triazole ring in 2 could 

replace the pyrazole ring and provide good overlap with SR141716A in the diaryl groups 

which was believed to be the molecular region binding to CB1 receptors. It was not 

clear at that time how the juxtaposition of the alignment of the carboxamide moieties of 

22 relative to SR141716A would affect molecular recognition at CB1 receptors.  

Molecular modeling studies reported for analogs of SR141716A had suggested that 
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increased steric bulk at C4 could be tolerated. This suggested that the carboxamide at 

C4 of 22 may not have detrimental effect on CB1 binding.  

Scheme 1. Synthesis of azide by Cu(I)I. 
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 Reagents and conditions: a) NaN3, Sodium ascorbate, CuI (10% mol), trans-1,2- 

di(aminomethyl)-cyclohexane ligand (15 mol%), DMSO/H2O, 100 ºC, 2 h, 54% yield. 68 

The Ullmann-type of conversion iodobenzene catalyzed by CuI with trans-1,2- 

di(aminomethyl)-cyclohexane as ligand (Scheme 1) worked efficiently on 2,4-

dichloroiodobenzend with a 54% yield from 2,4- dichloroiodobenzene.58,68  

While the reaction can be performed using commercial sources of copper (I) such as 

cuprous bromide or iodide, the reaction works much better using a mixture of copper (II) 

(e.g. copper(II) sulfate) and a reducing agent (e.g. sodium ascorbate) to produce Cu(I) 

in situ.  

As Cu (I) is unstable in aqueous solvents, stabilizing ligands are effective for 
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improving the reaction outcome, especially if tris-(benzyltriazolylmethyl)amine (TBTA) is 

used. The reaction can be run in a variety of solvents, and mixtures of water and a 

variety of (partially) miscible organic solvents including alcohols, DMSO, DMF, tBuOH 

and acetone.  

Owing to the powerful coordinating ability of nitriles towards Cu(I), it is best to avoid 

acetonitrile as the solvent. The starting reagents need not be completely soluble for the 

reaction to be successful. In many cases, the product can simply be filtered from the 

solution as the only purification step required. 

Furthermore important to the target selection was that computational logP (ClogP) 

values for the 1,2,3-triazole derivatives typically exhibited a trend of improved 

lipophilicity over corresponding pyrazole or 1,2,4-triazole isomers of similar substitution 

and functionality.  

Although the ClogP values may vary from actual logP values, this trend of decreased 

lipophilicity was encouraging for us to move forward. Based on this analysis, the 1,5-

diaryl-1,2,3-triazole was identified as an initial target for synthesis. 
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Scheme 2. Synthesis of initial target carboxamide analogue 22. 68 

N
N

N

Cl

Cl
Cl

O

O

N
N

N

Cl

Cl
Cl

O

O
H

N
N

N

Cl

Cl
Cl

O

N
N

Ha. b.

30a 2222i

Reagents and conditions: a) KOH, MeOH, reflux; b) DIPEA, HBTU, CH3CN, 1- aminopiperidine, 

94% yield. 68 

To synthesize the target carboxamide analogue 22, the carboxylic acid was proposed 

as an intermediate from which the carboxamide could be synthesized through a 

straightforward amidation (Scheme 2). The methyl ester 30 was synthesized by 

capuring the 4-magnesio-1,2,3-triazole with methyl chloroformate and concomitant 

hydrolysis gave the 1,5-disubstituted-1,2,3-triazole-4-carboxylic acid in a good yield.68 

As shown in Figure 23, the X-ray crystallographic analysis of 4-methoxycarbonyl-1,5- 

diaryl-1,2,3-triazole served to confirm the regioselectivity of the cycloaddition reaction 

and unequivocally established the regiochemistry of the 1,2,3-triazole ring system.  

After this confirmation the compounds were characterized further and submitted for 

binding affinity studies. 
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Figure 23. ORTEP Drawing of 4-methoxycarbonyl-1-(4-chlorophenyl)-5-(2,4-

dichlorphenyl)- 1,2,3triazole  30a.55 

 

As illustrated in Table 2, the binding affinities for CB1 receptors of the three 1,5-

diaryl-1,2,3-triazoles were determined in vitro by displacement of [3H]SR141716A for 

CB1 receptors in rat brain. The Ki values summarized in Table 2 indicate that the initial 

SR141716A analogue carboxamide 22 exhibited only modest binding for CB1 receptors 

(Ki = 590 nM). The C4-unsubstituted analogue 36a exhibited only micromolar affinity for 

CB1 receptors and was even less potent than the bulky carboxamide. It is suggested 

that substitution at the C-4 position of the 1,2,3-triazole ring is favorable for CB1 

receptor binding and structural modification at this position may lead to compounds with 
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optimal pharmacological profiles.  

Table 2. Preliminary Binding affinities. 

Cpd # Ki (CB1) nM  # Ki (CB2) nM  *ClogP  Mol. Wt.  

1 (SR-141716)  11.5 1640.0 7.46 463.79 

22  590 ± 170 - 5.99 450.75 

30a  61 ± 1.1 - 6.26 382.63 

31a  4.6 ± 0.012 1916 ± 247 6.21 410.68 

36a 1,400 ± 270 - 5.01 324.59 

Δ9-THC 15.3 25.1 4.81 300.44 

(6) Anandamide41 61.0 1930.0 6.18 347.53 

(4) WIN 55,212-2 1.9 0.3 5.37 426.51 

aAll compounds were tested as the freebase.  

bAll values are the mean ±SEM of three experiments performed in triplicate. 

cPercent inhibition at 10 µM. dPercent inhibition at 100 µM. 

*The ClogP values were calculated using CS ChemDrawOffice2010. 

Inhibition at CB1 and CB2 receptors are determined by [3H]SR141716A and WIN 55,212-2 

respectively. 
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Anandamide (6) which is a strong CB1 agonist exhibits selectivity for CB1 over CB2 

with Ki = 61 nM (CB1) and Ki = 1930 nM (CB2).41 However, it was serendipitous to find 

that the simple ester analogue 30a exhibited potent affinity for CB1 receptors. 30a was 

roughly 50 times more potent than our originally designed compound 22 and about 6 

times less potent than Rimonabant.  

This prompted us to go on and study the Structure Activity Relationship of the triazole 

system to understand better the binding motifs of these drugs at CB receptor. And 

hence, we channeled our energies in synthesizing this new lead compound by 

substituting substituent with various other groups. With lower lipophilicity and lower 

molecular weight, we assume they will have better safety profiles. 
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11. RESULTS AND DISCUSSION 

1,2,3-Triazoles are attractive constructs, which because of their unique chemical 

properties and structure should find many applications in organic, organometalic, and 

medicinal chemistry as well as in materials chemistry. Not present in natural products, 

these triazoles are remarkably stable to metabolic transformations, such as oxidation, 

reduction, and both basic and acidic hydrolysis. Furthermore, 1,2,3-triazole moieties are 

emerging as powerful pharmacophores in their own right. However, because of lack of 

convenient direct methods for their synthesis, these aromatic heterocycles have not 

received as much attention as they deserve.52 

Known methods for the regioselective synthesis of 1,5-disubstituted- and 1,4,5-

trisubstituted-1,2,3-triazoles include reactions of azides with active methylene 

compounds. Functional groups may also be introduced to the existing 1,2,3-triazole ring 

by lithiation of the heterocycle followed by reaction with an electrophile. One of the most 

attractive approaches to the synthesis of 1,2,3-triazoles are 1,3-dipolar cycloadditions of 

azides and alkynes. Although there are known examples of influencing the 
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regiochemistry of the addition by the electronic properties of the substrate, they are 

neither general nor reliable, usually requiring a strong electron-withdrawing substituent 

on the alkyne. 

Metals, such as tin, germanium, or silicon, attached to the acetylenic carbon atom 

have been shown to give mainly 4-metalated 1,5-disubstituted triazoles. Reactions of 

sodium, lithium, or magnesium acetylides with organic azides have also been 

reported.52 1,5-Disubstituted 1,2,3-triazoles are the major products of these reactions 

and the scope of these transformations was investigated by Akimova et al. in the late 

1960s.52  

11.1. Synthetic approach for regioselective ring formation 

To synthesize the target molecule, the key was to construct the 1,2,3-triazole ring 

with the right regiochemistry. One of the most attractive strategy for the synthesis of the 

1,2,3-triazole ring system was to exploit the 1,3-dipolar cycloaddition reaction of an 

azide and a terminal alkyne (Scheme 3).53 The reaction of azides and alkynes to form 

triazoles was first discovered by O. Dimroth over 100 years ago; however it was Rolf 

http://pubs.rsc.org/en/content/articlepdf/1961/ps/ps9610000357
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Huisgen that really capitalized on the usefulness of the reaction.  Since then it, along 

with other forms of click chemistry, have been promoted by K. Barry Sharpless.who has 

called it the “cream of the crop” of click reactions. The azide alkyne Huisgen 

cycloaddition combines simplicity with efficiency in a way that is unmatched by most 

other chemistries. 

Finding the copper(I)-catalyzed route to 1,4-disubstituted-1,2,3-triazoles from azides 

and terminal alkynes highlighted the need for a direct way to achieve the 

complementary union of the same reactants, namely, one giving the regioisomeric 1,5-

triazole analogs. Although Akimova et al. had studied such a process over 30 years 

ago, a citation search turned up no further uses of their nice one-step procedure, likely 

because of the poor to moderate yields they reported.52  

A notable variant of the Huisgen 1,3-dipolar cycloaddition is the copper(I) catalyzed 

variant, no longer a true concerted cycloaddition, in which organic azides and terminal 

alkynes are united to afford 1,4-regioisomers of 1,2,3-triazoles as sole products 

(substitution at positions 1' and 4' as shown above). The copper(I)-catalyzed variant 

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/sharpless-autobio.html
http://en.wikipedia.org/wiki/Azide_alkyne_Huisgen_cycloaddition
http://en.wikipedia.org/wiki/Azide_alkyne_Huisgen_cycloaddition
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was first reported in 2002 in independent publications by Meldal et al. at the Carlsberg 

Laboratory in Denmark and Fokin and Sharpless et a.l at the Scripps Research Institute. 

The copper(I) catalyzed variant which gives rise to a triazole from a terminal alkyne and 

an azide, is better termed the Copper(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC) 

Scheme 3. The strategy to synthesize 1,2,3-triazoles 
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When Cu(I) salt was used as a catalyst for this reaction, the product was 1,4-

disubstituted-1,2,3-triazole (Scheme 4). A mechanism for the reaction has been 

suggested based on density functional theory calculations. Copper is a first row 

transition metal with the electronic configuration [Ar] 3d10 4s1. The copper (I) species 

generated in situ forms a pi complex with the triple bond of a terminal alkyne. In the 
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presence of a base, the terminal hydrogen, being the most acidic is deprotonated first to 

give a Cu-acetylide intermediate. Studies have shown that the reaction is second order 

with respect to Cu.52  

Scheme 4. Copper catalyzed click reaction. 
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It has been suggested that the transition state involves two copper atoms. One 

copper atom is bonded to the acetylide while the other Cu atom serves to activate the 

azide. The metal center coordinates with the electrons on the nitrogen atom. The azide 

and the acetylide are not coordinated to the same Cu atom in this case. The ligands 



 84 

employed are labile and are weakly coordinating. The azide displaces one ligand to 

generate a copper-azide-acetylide complex. At this point cyclization takes place. This is 

followed by protonation; the source of proton being the hydrogen which was pulled off 

from the terminal acetylene by the base. The product is formed by dissociation and the 

catalyst ligand complex is regenerated for further reaction cycles. 

An important point to note is that in the uncatalyzed reaction the alkyne remains a 

poor electrophile and thus high energy barriers lead to slow reaction rates. The reaction 

is assisted by the copper which when coordinated with the acetylide lowers the pKa of 

the alkyne C-H by up to 9.8 units. Thus under certain conditions, the reaction may be 

carried out even in the absence of a base. 

However the reaction of magnesium acetylide and a terminal alkyne gave the 1,5-

disubstituted-1,2,3-triazole exclusively. This strategy would allow rapid regioselective 

ring construction of the target molecules and provide suitable intermediates for parallel 

synthesis of potential analogs.  

Azides usually make fleeting appearances in organic synthesis. They serve as one of 
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the most reliable means to introduce a nitrogen substituent through the reaction. What 

makes azides unique for click chemistry purposes is their extraordinary stability toward 

H2O, O2, and the majority of organic synthesis conditions. 

Despite the azidophobia due to hazards and dangers associated with azide, we have 

learned to work safely with azides because they are the most crucial functional group 

for click chemistry endeavors. The spring-loaded nature of the azide group remains 

invisible unless a good dipolarophile is favorably presented. 

However, even then the desired triazole-forming cycloaddition may require elevated 

temperatures and, usually results in a mixture of the 1,4- and 1,5 regioisomers.  

The principal source of the azide moiety is sodium azide. Sodium azide is made 

industrially by the reaction of nitrous oxide (N2O), with sodium amide (NaNH2), in liquid 

ammonia as solvent.  

As one the building blocks for the cycloaddition reaction, 2,4-dichlorophenylazide 24 

was required to be synthesized. Unlike the preparation of alkyl azides, there are only 

few effective methods available for the synthesis of aryl azides.  
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Scheme 5. Synthesis of azide.  
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Reagents and conditions:  NaNO2, H2O:HCl, NaN3, 0 ºC; 2.5 h; 90% yield. 

Aryl azides were generally synthesized by diazotization of aryl amine followed by the 

treatment of sodium azide (Scheme 5).54 All the reagents required for the synthesis of 

azide in this reaction were commercially available and the reaction could be conducted 

on a gram-scale. This gave us yields more than 85% most of the times and the azide 

formed would be very pure based on thin layer chromatography analysis as well as 

based on proton NMR-spectra. We have to be careful while doing the synthesis of aryl 

azides. It is often preferred that the diazonium salt remains in solutions, but they do tend 

to supersaturate. Operators have been killed and injured by an unexpected 

crystallization of the salt followed by its detonation. The nucleophilic aromatic 

substitution reaction of azide synthesis proceeds with the usual diazotization method as 

shown in Scheme 6. This mechanism is a substitution reaction in organic chemistry in 
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which the nucleophile displaces a good leaving group, on an aromatic ring 

Scheme 6. Synthesis of diazonium solution and the SNAr (addition-elimination) 

mechanism for aryl azide synthesis. 

NH
2

Cl

Cl

+NO N
H N

H O

Cl

Cl

H
2
O

N

Cl

Cl

H N O

H
3
O+

Tautomerization

N

Cl

Cl

N OH

O
HH

H
H

2
ON

Cl

Cl

N O

H

H
N

Cl

Cl

N

23b

N
2

+

Cl

Cl

Cl

Cl

+N
2

N
3

-

N
3

Cl

Cl

Cl

Cl

N
N

NN

N

N
N

N
N

N

N
3

Cl

Cl

24

N
2

N
2

 

On basis of N-isotope labeling studies and kinetic studies of nitrogen evolution, 

Huisgen and Clusius proposed two probable mechanisms for azide formation.55 Both of 
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these proposed mechanisms shown in Scheme 6 are second order rate reactions. Rate-

determining step of the reaction is the attack of azide ion on the diazonium ion. 

A careful observation led to the fact that this azide had to be prepared fresh for next 

reaction step to go well. A three day old azide would give lower yields while forming the 

1,2,3-triazole as compared to the freshly made azide sample to synthesize the triazole 

ring which would result in better yields. The conformation of Grignard reagents in 

ethereal solutions is influenced by a dynamic equilibrium, the Schlenk Equilibrium 

between several species (Scheme 7). In diethylether and tetrahydrofuran all of these 

species are present, although the Grignard reagent R-MgX dominates.55 

Scheme 7. Conformation of Grignard reagents in ethereal solutions. 

R Mg

Br
Mg

R

R
Mg

Br

Br

Br
Mg

Br
Mg

R

R OEt
2

Et
2
O

Br
Mg

Br
Mg

R OEt
2

OEt
2

R

+

Et
2
O Et

2
O

 
 

In 1,4-dioxane the equilibrium can shift towards the dialkyl-magnesium12 species 

because the magnesium-halides form insoluble complexes with 1,4-dioxane and are 
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removed from the equilibrium. In diethylether the Grignard reagents form monomers 

when the halogen is bromine or iodine, and dimers when the halogen is chlorine or 

fluoride. In THF all or these species are predominantly monomeric.The solid state 

structures of Grignard reagents are often monomeric or dimeric structures with a 

tetrahedral coordination of the magnesium, whereas solvent free Grignard reagents are 

often polymeric. 

Grignard reagents are soluble in a number of aprotic solvents, using oxygen or 

nitrogen as donor-atoms to form complexes with the magnesium. Compared with 

alkyllithium compounds the Grignard reagents are less basic, and solutions in ethers 

are stable at room temperature or even higher. On the other hand a cooled solution of 

Grignard reagents tends to form precipitates which are very difficult to re-dissolve. A 

storage temperature around room temperature is suitable and recommended for most 

compounds 

The proposed mechanism of the cycloaddition reaction is illustrated in Scheme.8.52 

The reaction begins with the nucleophilic attack of the acetylide on the terminal nitrogen 
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of the azide to form a linear intermediate which spontaneously closes to give the 4-

metallotriazole species 25Mg which leads to formation of 1,5-disubstituted-1,2,3-triazole 

26E when treated with an electrophile.  

Scheme 8. Synthesis of triazole ring via an asynchronous transition state. 
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The reaction of the bromomagnesium acetylides with a suitable electrophile (E) gave, 

preferentially the 1,4,5-trisubstituted triazoles 26E. Electron poor azides reacted faster 

than electron rich ones, an observation consistent with the proposed nucleophilic attack 
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of the acetylide on the azide.  

An interesting point to observe is that compared to all the other methodologies that 

we tried to synthesize the desired regioselective 1,5-diaryl-4-substituted-1,2,3-triazole, 

these one pot reactions resulting in 3 to 4 new bonds are generating modest  to good 

yields. We are getting several reactions done at once and hence, these reactions are 

quite efficient in terms of utility of these click reactions. The yields reported here are not 

optimized because our main aim was to synthesize these regioselective 1,2,3-triazoles. 

Once we got a triazole analog, we wanted to try and identify it first in terms of binding 

affinity values and then we wanted to decide whether or not it’s worth going back to that 

reaction.  

As has been studied in our laboratories, substituent on the 3-position on the aryl of 

the carbon-5 of triazole (30h, 30i, 30j, 31j, 31k, 31l) gave much better yields (60-90%) 

as compared to triazoles with substituent on the 3-position on the aryl. It may be 

attributed to the fact that the substituent on the 3rd position of the aryl of aryl acetylene 

is draining electrons from the triple bond to a lesser extent. This is making the electrons 
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of the acetylene more available for the nucleophilic attack of the acetylide. 

Scheme 9. Proposed mechanisms of side products during 1,2,3-triazole formation 

where M= Li or MgBr. 
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Although the reaction is usually fast and clean, several traces of by products can be 

observed leading to low yields of the desired 26E triazoles (Scheme 8). Without strict 

exclusion of oxygen, these reactions can result in oxidative couplings. In the presence 

of excess azide over the acetylide as well as extended reaction times, the intermediate 

4-metallotriazole 25 reacts with the second azide and gives the side product 27 
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(Scheme 9).  

Formation of byproduct was reported in some cases along with unreacted starting 

materials. On the other hand, the use of lithium acetylides favored further attack by 

intermediate 25 on a second molecule of azide, resulting upon hydrolysis, in the 4-

triazene-substituted triazoles 27, often in high yields. 

Scheme 10. General synthesis scheme of triazole compounds via click chemistry.  
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Reagents and conditions: a) EtMgBr, THF, rt-addition, 50 °C, 1 h; Azide 24, THF, 50 °C, 2 h;  

b) 1 N NH4Cl; 0 °C, 1 h c) ClR* (R*= Carbonyl, Alkyl group), THF, -20 °C, 3h;  

To monitor the process of the one-pot three-step reaction and to optimize the yield for 

this reaction, the cycloaddition adduct was first directly treated with aqueous NH4Cl 

solution. The evaluation of the resulting 4-unsubstituted analogs provided important 
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SAR information about the effects of substitution at this position on the binding of 1,2,3-

triazoles to CB1 receptors.  

The best yield of 1,2,3-triazole ring (85%) was obtained when freshly made azide in 

THF was added to the acetylide and was heated for a maximum of 2 hours at 50°C with 

a small amount of acetylene remaining unreacted. Excessive azide or extended reaction 

times led to decreased yields due to the addition of a second molecule of azide to the  

4-magnesio-1,2,3-triazole.  

This result validated the previous hypothesis that 1,2,3-triazole ring was suitable 

replacement for pyrazole ring in SR141716A. It also indicated that an amide moiety at 

C4-position was not essential for high binding at CB1 receptors, which updated the SAR 

information based on previous studies on other bioisosteric SR141716A analogs. More 

important for the future studies, it provided a very promising compound as a new lead 

compound. 

Compared with the target analog (22) and even SR141716A, methyl ester 30a had a 

few desirable pharmacological features (Table 2). First of all, it is near one order of 
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magnitude more potent than the target compound and its Ki value was already in the 

same range with that of SR141716A. It also has a significantly smaller molecular weight 

than those of 22 and SR141716A.  

Scheme 11. Synthesis of triazole esters.  
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Reagents and conditions: a) EtMgBr, THF, rt-addition, 50 °C, 1 h; Azide, THF, 50 °C, 2 h, 

98% yield; b) ClCO2R, THF, -20 °C, 3 h,  

 It has a much lower ClogP value than that of SR141716A. Although the 

measurement of ligand half-lives is not part of this study, the development of an ester-

based ligand would be an important step toward the development of shorter acting 

cannabinoids with better safety profiles. 

Therefore methyl ester 30a was identified as a new lead compound for further studies 

in the development of 1,2,3-triazoles as CB1 antagonists. Since alkyl chains longer than 
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three carbons were not showing conclusive results we decided to stick to a maximum of 

five carbons on the electrophile. 

More importantly, the ester moiety may lead to a significant increase in compound 

metabolism since esters are typically more readily hydrolyzed than amides in vivo. This 

is extremely important in lieu of the long half-lives typically observed for cannabinoids. 

Ester derivatives will undoubtedly be more susceptible to metabolism and have shorter 

duration of action than amide or hydrazide analogs. 

As illustrated in Scheme 10, a series of 1,2,3-triazole analogs with varying groups 

were prepared to investigate how lipophilicity and steric effects affect the binding of the 

ester to CB1 receptors. They were synthesized using the procedures described earlier 

for the methyl esters. The 4-magnesio-1,2,3-triazole intermediate was captured with a 

number of electrophiles. Since alkyl chains longer than three carbons were not showing 

conclusive results we decided to stick to a maximum of five carbons on the alkyl 

chloroformates and alkonyl chlorides. 

Each of the analogs could be synthesized in gram-scale. But since only a small 
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quantity of product was required for the binding assay studies, only the cycloaddition 

reaction was conducted in a gram-scale.  

Scheme 12. Synthesis of triazole ketones.  
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Reagents and conditions: a) EtMgBr, THF, rt-addition, 50 °C,  1 h; Azide, THF, 50 °C, 2 h; b) 

ClCOR, THF, -20 °C, 3 h; 

The the solution of cycloaddition adduct in THF was separated into a number of 

portions and each portion was treated with a different commercially available 

chloroformates to provide the corresponding 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazole. 

Since our yields were not as high as expected, we tried to solve the problem by 

characterizing all the side products.  

For example, when we attempted to synthesize 1,5-diaryl-1,2,3-triazole-4-propyl ester 

(31b) in high yields under rigorous inert conditions, we observed compound 39 was one 
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of the most prevalent side product in that 4-propyl ester derivative 1,2,3-triazole 

formation reaction (Scheme 13) along with the 4-unsubstituted triazole 36 which is 

inevitable to form along these reactions. 

Scheme 13. Early attempt to synthesis of 1,5-diaryl-1,2,3-triazole-4-propyl ester 

N
N

N

O

O

1. EtMgBr, THF, 50 °C, 1 h

2. 10, THF, 50 °C, 2 h

3. ClCO
2
CH

2
CH

2
CH

3
,

Cl
Cl

N
N

N

Cl
Cl

H

O O

+

20%

+

12% 18%

29 31b 39 36

50 °C, 1 h

 

During our initial attempts to synthesize triazole rings, we came across a publication 

by Hlasta and Coats54 where in they had described a solid-phase synthesis of 1,2,3-

triazoles as shown in Scheme 14 in reasonably good yields. 

Scheme 14. Solid phase synthesis of 1,2,3-triazoles. 
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Taking advantage of the formation of side product 39 in Scheme3, it occurred to us 

that even this reaction mentioned in Scheme 14. would be regioselectively forming the 

1,5-diaryl-1,2,3-triazole systems as shown in Figure 24 because of the umplong effect 

of 40 similar to that of 41. 

Figure 24. Similarity of umplongs. 
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We also tried to synthesize triazole derivatives with trimethylsilyl groups on carbon-4 

to explore these systems (Scheme 15). 

Scheme 15. Synthesis of trimethyl silanes.  
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Reagents and conditions: a) Toluene, 110 °C, 19 h; 

Based on a publication by Kim et al. we tried a coupling method for the synthesis of 
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ester as is shown in Scheme 16 to develop another method of formation of triazole ring 

derivatives and if possible, in high yields.54 

Scheme 16. Synthesis of triazole ring by coupling methods. 
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Even though the proton and carbon NMR peaks of both the propyl esters synthesized 

by Scheme 11 and Scheme 16 matched, we did not have the crystallographic data to 

prove the correct regiochemistry. Moreover, our original click chemistry method for the 

formation of 1,2,3-triazoles, still generated more yields and so we decided to abandon 

this coupling technique altogether.  

We also incorporated an iodo atom on the carbon-4 position of the triazole system. It 

can not only be used as a handle for replacement of other bulky groups as is shown in 

Scheme 17, it was very stable also. It could be stored in the refrigerator and was not 

necessary to prepare fresh as was the case with phenyl azide (24). The 1,3-dipolar 
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cycloadditon reaction of azide 24 and the desired phenyl alkyne gave a 4-magnesio-

1,2,3-triazole intermediate which was treated with elemental iodine giving 38. 

Scheme 17. Synthesis of triazole iodides. 
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Even though we obtained good yields for 38, our multiple attempts to replace the iodo 

group with desired electrophiles using n-butyl lithium as well as t-butyl lithium reagent 

either did not afford good yields (Scheme 16) or did not generate the required 

substitution on the triazole system (Scheme 18). 

Scheme 18. Synthesis of 31b by replacing the iodo group on carbon-4 of the triazole. 
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Another method we tried, to increase the yields of the 1,5-diaryl-1,2,3-triazole was 
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lithiation of the iodo group followed by the nucleophilic addition to desired alkyl 

chloroformates as is shown in Scheme 19.  

Scheme 19. Synthesis of triazole derivatives by replacing the iodo-group. 
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However the yields observed were even lower than our original method of Scheme 

10. Characterization of compound 31b synthesized by the lithiation method in Scheme 

19 was done by 1H-NMR, 13C-NMR as well as by thin layer chromatography and 

comparing the results with the same compound synthesized via the Scheme 10 whose 

regiochemistry we had confirmed with crystallographic methods. 

Our low yields were also confirmed by the extensive studies performed by Akimova et 

al, in which a wide variety of azides and lithium acetylides were employed.52 Formation 

of byproduct 27 (Scheme 9) was reported in some cases along with unreacted starting 
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materials. The reaction of the bromomagnesium acetylides with azides gave, after 

hydrolysis, preferentially the 1,5-disubstituted triazoles 36 (Scheme 10); however, the 

yields were low. On the other hand, the use of lithium acetylides favored further attack 

by intermediate 25 on a second molecule of azide, resulting upon hydrolysis, in the 4-

triazene-substituted triazoles 27, often in high yields. 

In an attempt to improve yield of propyl ester 31b, transesterification method as 

employed in our laboratories previously58 was also employed by the procedure as 

reported by Shu et al, we tried to replace the methyl group of the methyl ester of 

compound 30b by 1-prapanol.  

Scheme 20. Transesterification of methyl ester 30b to 31b. 
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Even though the transesterification method (Scheme 20) gives fairly decent yields, the 

overall yield of 6% was much less than the ones we are getting by the usual 1,3-dipolar 

cycloaddition method for the direct synthesis of 31b from 29. 
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Another class of derivatives that we wanted to synthesize and do structure activity 

relationship studies were sulfonyl substituents at the carbon-4 position of the 1,2,3-

triazoles (Scheme 21). 

Scheme 21. Attempt to synthesize sulfonyl derivatives.  
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X=H
X=Cl  

Reagents and conditions: a) EtMgBr, THF, rt-addition, 50 °C, 1 h; Azide 24, THF, 50 °C, 2 h; 

b) 1-propane sulfonyl chloride (R* = SO2CH2CH2CH3), THF, -20 °C, 3h;  

With this aim, we started with the desired arylacetylene derivative dissolved in 

anhydrous tetrahydrofuran and ethyl magnesium bromide was added to it dropwise 

under inert conditions. After heating this mixture for 1 hour, the 2,4-dichlorophenyl azide 

(24) dissolved in THF was added to it and heating was continued for another hour. 

Followed by this, our reaction mixture was added to 1-propane sulfonyl chloride which 

was cooled to below zero temperature. 

Nonetheless, we faced failure to synthesize these sulfonyl derivatives which was also 
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validated by a study done by Sharpless et al 52 where it was found that the use of 

sulfamoyl and sulfonyl chlorides results in partial chlorination of the triazole ring at C-4. 

Hence the sulfonyl derivatives are not suitable for these electrophilic capture processes. 

Another type of electrophile that we wanted to trap at the C-4 position of the triazole 

ring was an amide (Scheme 22). Though, it was not conclusive at our hands, 

nonetheless, intermediates like 39n were found. However, except a proton and carbon 

NMR, 39n and other byproducts were not characterized further. 

Scheme 22. Reactions with isocyanates as electrophiles. 
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Reagents and conditions: a) EtMgBr, THF, rt-addition, 50 °C, 1 h; Azide 24, THF, 50 °C, 2 h; 

b) Propyl isocyanate (R*= CONHCH2CH2CH3), THF, -20 °C, 3h;  

We also wanted to try using elecrophiles other than alkyl chloroformates and alkyl 

chlorides to be used for substituting the C-4 position of the triazole ring. For this 

purpose we tried 2,2,3,3,4,4,4-heptafluorobutanoic anhydride. This anhydride would 
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also help place a 4-carbon fluorinated alkyl chain at the 4th position of triazole which 

would make an interesting analog for structure relationship study as compared to other 

compounds (Scheme 23). Nonetheless, it was formed in a very small amount with 4-

chloro phenyl acetylene and in trace amounts with phenyl acetylene. It was very difficult 

to purify because of its acidic nature and high polarity, due to which we were not able to 

characterize it. 

Scheme 23. Synthesis of triazole derivatives using anhydride as electrophile. 
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Reagents and conditions: a) EtMgBr, THF, rt-addition, 50 °C, 1 h; Azide 24, THF, 50 

°C, 2 h; b) 2,2,3,3,4,4,4-heptafluorobutanoic anhydride (R*= COCF2CF2CF3), THF, -20 

°C, 3h;  

Inspired from the structure of AM251, we also wanted to synthesize the analogs with 

the iodo group on the aryl on carbon-5 of the triazole ring (Scheme 24). Since 

compound 43 was not easily available commercially, we decided to prepare it by using 
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Holmes et al method.54 This method gave us very good yields for compound 43 which 

we would prepare fresh for its use in triazole ring formation of compound 31i as is 

shown in Scheme 11. 

Scheme 24. Attempt to synthesize 31i. 
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Reagents and conditions: a) KOH, CH3OH/CH2Cl2, rt, 2h; b) EtMgBr, THF, rt-addition, 50 °C, 

1 h; Azide 24, THF, 50 °C, 2 h; c) Propyl chloroformate, THF, -20 °C, 3h;  

However, this propyl ester triazole 31i kept degrading with time and with every 

consequent column as well as preparative purification. Only a decent 1H-NMR could be 

done for characterization since due to large quadrupole moment of iodine (127I) high-

resolution spectra could not be obtained. 

It was initially envisaged, that by maintaining the diaryltriazole core scaffold we could 

achieve compounds with high potency at the CB1 receptor. However, by shifting the 

position of the ester moiety relative to the carboxamide linkage of 1 interaction at the 
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binding site would be weakened to furnish compounds with diminished efficacy. This 

strategy has been successful in several recent studies, providing neutral CB1 

antagonists.56,57  

The heterocyclic aromatic iodide 38 was attempted to convert into the 1,4,5-triphenyl-

1,2,3-triazole through Suzuki cross coupling reaction with 2,4-dichlorophenylboronic 

acid by the methodology developed by Fu and coworkers (Scheme 25) and as reported 

in our laboratories by Murali et al.72 

Scheme 25. Attempt to synthesize 1,4,5-triphenyl-1,2,3-triazole. 
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Reagents and conditions: a) 2,4-Dichlorophenylboronicacid, Pd2(dba)3 (5%mol), PCy3 

(12%mol), K3PO4 (1.7 equiv), THF/H2O, 110 ºC, 16 h; 

However, compound 38X could not be characterized fully since it was sparingly 

soluble in chloroform, DMSO, benzene, water and even acetone.  
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11.2. Evaluation of regioselectively synthesized 1,5-diaryl-1,2,3-triazoles at the CB1-

receptor. 

In terms of evaluating the compounds, we look at the affinity of the compounds for 

the receptor by measuring the inhibition of the known drug by the synthetic drug. Before 

subjecting our synthesized molecules to animal models, we treat these molecules on 

tissue samples (Figure 25) to determine the binding affinity of our molecules to the 

protein receptor. Known ligands, here radiolabeled rimonabant and our ligands, the 

1,2,3-triazole derivatives, compete for the same receptors and their strengths are 

determined in terms of binding affinities by how well our molecule displaces that 

compound. The better it competes, the smaller the number will be, the more potent that 

molecule is. 

The binding affinities of the triazole derivatives (Table 3, Table 4 and Table 5) were 

determined by the inhibition of [3H]SR141716A binding in homogenates of rat 

cerebellum.62 Initially, each compound was evaluated at concentration of 10 µM for its 

ability to inhibit bound [3H]SR141716. If less than 50% percent inhibition was observed, 
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further evaluation was not pursued. 

Figure 25. Binding Affinity (Ki) - Measuring inhibition by competition. (Modified from 

reference 69) 

 

If greater than 50% inhibition at 10 µM was observed, only then a full concentration 

curve was measured and a Ki value was determined for the compound. Each 

concentration was tested in triplicate and each experiment was replicated three times. 

The binding data were analyzed using the non-linear regression analysis program of 

GraphPad Prism®.  

On comparing our library among each other we see a broad range of affinity values. 
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These values of the triazole derivatives were determined at CB1-receptor by the 

inhibition of [3H]SR141716 binding in rat cerebellum. The smaller this value, the 

stronger our ligand binds. On doing structure activity relationship study we determined 

that, the optimum values were obtained when the aryl at carbon-5 position had a chloro 

substituent and the carbon-4 of the triazole position had a chain length of approximately 

4 carbons. 

The esters were evaluated in vitro for binding affinity at CB1 receptors (Table 3). The 

n-propyl ester 31a, with a Ki value slightly higher than SR141716A, was the most potent 

derivative of the series. We noticed that it exhibited similar lipophilicity to that of 

SR141716A. The phenyl ester 32a also exhibited high affinity for CB1 receptors, but the 

affinity of the benzyl ester was somehow diminished, even though they share very 

similar lipophilicity.  
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Table 3. Inhibition of [3H]SR141716A at CB1 Receptors in comparison to esters. 

N
N

N

R*

Cl
Cl

X  

Cpda Code R* X ClogP Ki (nM)b 

30 a AVG122M CO2CH3 4-Cl 5.32 66 ± 7.0 

30 b AVG132M CO2CH3 4-H 4.64 25c 

30 c AVG142M CO2CH3 4-F 4.79 19c 

30 d AVG138M CO2CH3 4-CH3 5.16 143 ± 82 

30 e AVG157M CO2CH3 4-OPh 6.14 51c 

30 f AVG131M CO2CH3 2-CH3, 4-OCH3 5.68 910 ± 310 

30 g AVG146M CO2CH3 3-CH3, 4-F 5.3 20c 

30 h AVG 365M CO2CH3 3-Cl 6.26 
 

30 i AVG 366M CO2CH3 3-CF3 6.43 
 

30 j AVG 382M CO2CH3 3-CH3 6.05 
 

31 a AVG 276 CO2nC3H7 4-Cl 6.21 4.6 ± 0.12 

31 b AVG 200 CO2nC3H7 4-H 5.52 640 ± 360 

31 c AVG 342 CO2nC3H7 4-F 5.66 394 ± 83 

31 d AVG 260P CO2nC3H7 4-Br 6.29 85 ± 5.1 

31 e AVG 267P CO2nC3H7 4-CH3 6.04 NA 

31 f AVG 343 CO2nC3H7 4-OCH3 5.36 154 ± 38 

31 g AVG 338P3 CO2nC3H7 4-CF3 6.4 168 ± 19 

31 h AVG183P CO2nC3H7 2-CH3, 4-OCH3 5.88 620 ± 240 

31 i AVG 336P CO2nC3H7 4-I 7.73 N.T. 

31 j AVG 365P CO2nC3H7 3-Cl 7.32 
 

31 k AVG 366P CO2nC3H7 3-CF3 7.49 
 

     
 

Table 3 Contd. 
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Cpda Code R* X *ClogP Ki (nM)b 

32 a AVG 220Ph CO2Ph 4-Cl 6.83 11 ± 3.4 

32 b AVG 314Ph CO2Ph 4-H 6.3 2d 

32 c AVG 229Ph CO2Ph 4-F 6.44 1,900 ± 760 

32 d AVG 260Ph CO2Ph 4-Br 7.07 NA 

32 e AVG 267Ph CO2Ph 4-CH3 6.81 52d 

32 f AVG 259Ph CO2Ph 4-OPh 7.8 350 ± 97 

aAll compounds were tested as the freebase. bAll values are the mean ±SEM of three experiments 

performed in triplicate. Inhibition of [3H]SR141716 binding in rat cerebellum.*The ClogP values were 

calculated using CS ChemDrawOffice2010.cPercent inhibition at 10 µM. dPercent inhibition at 100 µM. 

NA-Not available. Compound decomposed in solution. N.T.-Not Tested. 

 

The esters 30a, 31a and 32a are the most potent analogs of the series. In general, 

replacement of the 4-chloro substituent on the 5-aryl moiety to give the series of 

congeners 30, 31 and 32 did not improve binding affinity. In the methyl ester series 30, 

only the 4-methyl congener 30d (Ki = 143 nM) exhibited modest potency similar to 30a.  

The other substituted congeners were significantly less potent at CB1 receptors. 

Among the propyl ester congeners 31, the 4-bromo (31d, Ki = 85 nM), 4-methoxy (31f, 

Ki = 154 nM) and 4-trifluoromethyl (31g, Ki = 168 nM) derivatives exhibited good 

potency but were less potent than the 4-chloro analogue 31a. 

None of the phenyl esters 32 exhibited even modestly potent affinity compared to 
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32a. The high binding affinities observed exclusively for 4-chloro derivatives 30a, 31a 

and 32a was unexpected.  The fact that the 4-fluoro substituted derivatives (e.g. 30c, 

31c, 32c) and the 4-methyl substituted derivatives (e.g. 30d, 31e and 32e) were 

significantly less potent reinforces the idea that the 4-chloro substituent contributes 

favorably to both the electronic and the steric requirements for binding at CB1 

receptors.  

The importance of chloro substituent at the aryl of carbon-5 of triazole is quite evident 

on comparing the binding affinities of compounds 31a and 31b. Whereas, on one hand 

31a had high potency, on the other hand removing that chloro substituent dropped the 

potency to approximately 130 times. Similarly comparing compounds 32a and 32b, the 

removal of 4-chloro substituent from the aryl group on the carbon-5 of the 32a triazole 

caused drop in activity so much so that compound 32b only had 2% inhibition at 100 µM 

concentration.  

Thus, presence of the 4-chloro substituent for the molecular recognition at the CB1-

receptor was confirmed in our research. The larger alkyl esters exhibited high 
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lipophilicity and were difficult to handle in the binding assay. Preliminary binding studies 

indicated diminished binding affinity relative to propyl ester. In general, analogs with 

either decreased or increased lipophilicity relative to SR141716A exhibited diminished 

affinity. It seems to suggest that a narrow window of lipophilic character may exist for 

binding of these triazoles at CB1 receptors. 

The second class of compounds prepared were based on the 1,5-diaryl-4-keto 

triazole ring system (Table 4). They were prepared to investigate the effects of the 

orientation of carboxyl group in triazole system on CB1 receptor affinity. 

On moving from esters to ketones, we observe that a similar structure activity 

relationship still applied to ketones as was with esters. The ketone 34a, with 4-chloro 

substituent at the aryl of carbon-5 was the most potent among the series.  The presence 

of carbonyl group was observed to be essential and the optimum values were obtained 

when the aryl at carbon-5 position had a chloro substituent and the carbon-4 of the 

triazole position had a chain length of 4 carbons.  
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Table 4. Inhibition of [3H]SR141716A at CB1 Receptors in comparison to ketones. 

N
N

N

R*

Cl
Cl

X  

 Cpda  Code  R*  X  *ClogP  Ki (nM)b  

33 a  AVG 194  -COCH2CH3   4-Cl  6.38  I.P. 

33 b  AVG 226E  -COCH2CH3   4-F   5.81   500 ±105 

33 c  AVG 260E  -COCH2CH3   4-Br   6.53  - 

33 d  AVG 267E  -COCH2CH3     4-CH3  6.17  - 

34 a  AVG 165B  -COCH2CH2CH3   4-Cl  6.9  105.3 ± 7.1 

34 b  AVG 226B  -COCH2CH2CH3   4-F   6.34  I.P. 

34 c  AVG 209  -COCH2CH2CH3   4-Br   7.06  - 

34 d  AVG 249B  -COCH2CH2CH3   4-OPh   8.29   N.T. 

34 e  AVG 353B  -COCH2CH2CH3   4-CF3   7.1  
 

34 f  AVG 356B  -COCH2CH2CH3   4-CH3  6.69  - 

35 a  AVG 359V  -COCH2CH2CH2CH3   4-Cl  7.44  - 

35 b  AVG 229V  -COCH2CH2CH2CH3   4-F   6.87   165 ± 32 

35 c  AVG 242V  -COCH2CH2CH2CH3   4-Br   7.59  - 

35 d  AVG 267V  -COCH2CH2CH2CH3   4-CH3  7.22  - 

35 e  AVG 249V  -COCH2CH2CH2CH3   4-OPh   8.82  N.T. 

35 f  AVG 346V  -COCH2CH2CH2CH3   4-CF3   7.61  
 

aAll compounds were tested as the freebase. bAll values are the mean ±SEM of three experiments 

performed in triplicate. Inhibition of [3H]SR141716 binding in rat cerebellum.*The ClogP values were 

calculated using CS ChemDrawOffice2010.cPercent inhibition at 10 µM. dPercent inhibition at 100 µM. 

NA-Not available. Compound decomposed in solution. N.T.-Not Tested. 
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Compound 35b with 4-fluoro substituent at the aryl of carbon-5 and 5 carbon chain at 

carbon-4 of the triazole also exhibited fairly decent potency. 

As can be seen in case of 3-carbon chain length substituents at carbon-4 of the 

triazole as in compound  33b, binding affinity (Ki) value are higher and thus indicating a 

decrease in potency as compared to compounds with 4-carbon chain length 

substituents at carbon-4 of the triazole.  

In addition, these keto triazoles typically had higher lipophilicity the corresponding 

1,5-diaryl-4-alkoxy triazoles. Since the presence of the carbonyl appeared to be an 

important factor, we tried to place substituents without carbonyl groups. Moreover we 

thought that lack of carbonyl will also help our design of compounds to avoid any 

inverse agonist behavior as was indicated by Hurst et al.42  

However, the removal of the carbonyl altogether lead to a drop in activity as can be 

seen in Table 5, where we have substituted the carbon-4 position with just a hydrogen 

atom, a iodine atom or the trimethyl silyl group.  
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 Table 5. Inhibition of [3H]SR141716A at CB1 Receptors. 

N
N

N

R*

Cl
Cl

X  

Cpda  Code  R*  X  *ClogP  Ki (nM)b  

36 a  AVG122H  H  4-Cl  5.01  1,400 ± 270 

36 b  AVG 132H  H  H  4.46  4c 

36 c  AVG 142H  H  4-F  4.60  17c 

36 d  AVG 136  H  4-Br  5.22  1,300 ± 210 

36 e  AVG 138H  H  4-CH3  4.97  24c 

36 f  AVG 152H  H  4-OCH3  4.3  7c 

36 g  AVG 140H  H  4-CF3  5.33  39c 

36 h  AVG 157H  H  4-OPh  5.95  3c 

36 i  AVG 161H  H  4-N(CH3)2  4.56  43c 

36 j  AVG 131H  H  2-CH3, 4-OCH3  4.81  7c 

36 k  AVG 146H  H  3-CH3, 4-F  5.11  10d 

36 l  AVG 365H  H  3-Cl  5.01  
 

36 m  AVG 366H  H  3-CF3  5.18  
 

36 n  AVG 382H  H  3-CH3  4.79  
 

38  AVG 202  -I  H  6.05  
 

37 a  AVG 126  -SiMe3  4-Cl  8.74  I.P. 

37 b  AVG 148  -SiMe3  4-Br  8.88  I.P. 

37 c  AVG 150  -SiMe3  4-OCH3  7.98  - 

37 d  AVG 156  - SiMe3  -CH(OH)Ph  6.23  NT 

aAll compounds were tested as the freebase. bAll values are the mean ±SEM of three experiments 

performed in triplicate. Inhibition of [3H]SR141716 binding in rat cerebellum.*The ClogP values were 

calculated using CS ChemDrawOffice2010.cPercent inhibition at 10 µM. dPercent inhibition at 100 µM. 

NA-Not available. Compound decomposed in solution. N.T.-Not Tested. 
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Attempts to synthesize triazoles with alkyl groups at carbon-4 position were not 

successful, either by method used in Scheme 10 or even by the lithiation methods used 

in Scheme 19. 

As we can see, the unsubstituted triazoles have drastically low potency as compared 

to their ester and ketone analogs. The triazoles with trimethyl silyl substituents have 

more lipophilicity and surprisingly their percent inhibition values at 10 micromolar as well 

as at 100 micro molar gave good results. 

From preliminary structure-activity studies, the esters 30a, 31a and 32a were 

identified as potent CB1 receptor ligands.58 It was subsequently determined that the 

propyl ester 31a was highly selective for CB1 receptors over CB2 receptors (CB2 Ki = 

1,920 ± 250 nM).59 The high potency and selectivity of 6 at CB1 receptors prompted us 

to compare the structure of 31a to that of 1.   

As illustrated in Figure 26, the alignment of predicted favorable solvated conformers 

of 1 and 31a revealed several similarities between the two structures. The 1,5-diaryl 

triazole moiety of 31a aligned well with the 1,5-diaryl pyrazole ring of 1. Likewise, the 



 120 

lipophilic propyl chain of the ester moiety of 31a occupied a similar region to that of the 

methylene units of piperidine ring of 1. However, as anticipated the superimposed 

structures clearly indicated that the ester moiety of 31a was removed from the proximity 

of the carboxamide linkage of 1.60  

The triazole ring does not necessarily co-relate with the pyrazole ring system. This 

prompted us to go on and study the SAR of the system to understand better the binding 

motifs of these drugs at CB receptor. Proximity of the functional groups is same in terms 

of aryl rings but the substituents on the triazole ring are different and that’s what we 

hope will lead to the difference in the activity of the molecule 31a from being an inverse 

agonist as is Rimonabant (1).  

The computational molecular studies (Figure 26) suggested that the interactions 

between the ester moiety and receptor-binding site would be weakened relative to the 

carboxamide-receptor interactions of SR141716A (1) and thus lead to diminished 

efficacy. This result encouraged us to move ahead with the triazole 31a as our lead 

compound toward the development of a neutral antagonist.  
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Figure 26. Superimposed predicted favorable solvated conformers of SR141716A (1) 

(yellow) and 31a (blue). 60 

 

Since it had been shown in the pyrazole system that modification of the aryl 

substituents led to compounds with favorable pharmacological profiles, in this second 

phase of study our focus was on the evaluation of the structure-activity relationships of 

5-aryl substitution. As illustrated in Scheme 10, we synthesized a number of triazole 

derivatives using a one-pot click/acylation reaction sequence previously established for 

this system.52 Based upon the structure-activity relationships of our earlier study, the 

methyl, propyl and phenyl esters were identified as lead compounds for further 
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structural studies.58 The required 2,4-dichlorphenylazide (24) was prepared in 

straightforward fashion from 2,4-dichloroaniline.54  

The azide 24 was found to be somewhat unstable even when stored at subzero 

temperatures and away from light, so it was typically used immediately in the click 

reaction sequence with a series of commercially available aryl acetylenes. Treatment of 

these substituted aryl acetylenes with ethylmagnesium bromide in THF at room 

temperature and concomitant addition of 24 afforded an intermediate triazolyl 

magnesium bromide. This intermediate triazole was treated with the corresponding 

chloroformate reagent to give the triazole esters analogs in modest yields (10-50%).  

The unacylated compounds were typical by-products of the reaction sequence. The 

formation of 36 presumably occurred during the work-up procedure by quenching the 

unreacted triazole intermediate. Alternatively, compounds 36 could be prepared directly 

in high yields (70-80%) by quenching the intermediate with ammonium chloride solution. 

Attempts to optimize the acylation reaction conditions using longer reaction times and 

higher concentrations of the various chloroformates did not significantly improved the 
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reaction yields. Despite the modest yields of the esters, sufficient quantities could be 

obtained for subsequent biological testing from a single run owing to the ease of the 

chromatographic separation of the esters from the corresponding unacylated triazoles. 

Although we were confident of the regiochemistry of the click reaction/acylation 

sequence, we unequivocally confirmed the structure of two congeners by X-ray 

crystallography.61  

As evident from the structures of 36a and 36a in Figure 29 and Figure 30 respectively 

(see appendix), the 1,5-diaryl-1,2,3-triazole ring system was formed exclusively and 

none of the 1,4-diaryltriazole regioisomer was observed. It also confirmed the 1,3-

dipolar cyloaddition method we were using gave us the desired regioselective results. 

As summarized in Table 3, the esters 30a, 31a and 32a remained the most potent 

analogs of the series. In general, replacement of the 4-chloro substituent on the 5-aryl 

moiety to give the series of congeners 30, 31 and 32 did not improve binding affinity. In 

the methyl ester series 30, only the 4-methyl congener 30d (Ki = 143 nM) exhibited 

modest potency similar to 30a. The other substituted congeners were significantly less 
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potent at CB1 receptors. Among the propyl ester congeners 31, the 4-bromo (31d, Ki = 

85 nM), 4-methoxy (31f, Ki = 154 nM) and 4-trifluoromethyl (31g, Ki = 168 nM) 

derivatives exhibited good potency but were less potent than the 4-chloro analogue 31a. 

None of the phenyl esters 32 exhibited even modestly potent affinity compared to 32a. 

The high binding affinities observed exclusively for 4-chloro derivatives 30a, 31a and 

32a was unexpected.  The fact that the 4-fluoro substituted derivatives (e.g. 30c, 31c, 

32c) and the 4-methyl substituted derivatives (e.g. 30d, 31e and 32e) were significantly 

less potent reinforces the idea that the 4-chloro substituent contributes favorably to both 

the electronic and the steric requirements for binding at CB1 receptors. Based upon 

these structure-activity relationships it was clear that the 4-chloro substituent on the 5-

aryl moiety was optimal for molecular recognition at CB1 receptors for the triazole 

scaffold.  

In general, the unacylated triazoles exhibited poor affinity for the CB1 receptors. 

Presumably, the steric and electronic effects of the acyl side-chain contribute 

significantly toward molecular recognition at CB1 receptors. Although we were unable to 
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improve potency relative to our lead compounds, the SAR results were somewhat 

gratifying in that they supported our initial design rationale that identified the 1-(2,4-

dichlorophenyl)-5-(4-chlorophenyl)-1,2,3-triazole moiety as a key molecular scaffold for 

high affinity ligands.  

Our final step as outlined in Figure 21 flowscheme of CB1 receptor drug discovery 

was to advance compounds exhibiting good blood-brain barrier permeability and 

meeting the goals of high in vitro efficacy to in vivo evaluation of antagonist efficacy.  

To provide a pharmacological profile that can be used to guide future behavioral 

studies that is, dosing and efficacy, in vivo locomotor studies were done. The 

compounds along with vehicle were administered to rats via intraperitoneal injection 15 

min before the start of locomotor activity testing (Figure 27). Data represent total 

distance traveled (cm) in 30 minutes. 

Based on the SAR of the triazole ester series, the propyl ester 31a and phenyl ester 

32a were deemed optimal ligands for advancement. However, the phenyl ester 
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presented significant solubility issues (ClogP = 6.83)62, thus our attention focused solely 

on the evaluation of the in vivo efficacy of 31a.  

Figure 27. A rat's response to ligand is measured by the distance it travels inside a 

locomotion chamber in which its movement is recorded and quantified. 

 

A locomotor activity assay in rats was used to establish agonist, antagonist or inverse 

agonist efficacy. As illustrated in, the agonist 4 (WIN55,212-2 dissolved in 20% DMSO, 

30% ethylene glycol and 50% sterile water) significantly diminished locomotor activity at 

a dose of 3.0 mg/kg as would be expected from the sedating effects of an agonist.  



 127 

Locomotor activity was measured over a period of 30 mins.  Rats were injected 15 

mins before session began with either vehicle + vehicle (VEH), vehicle + 3 mg/kg 

WIN55,212-2 (WIN), 3 mg/kg 31a + vehicle, 3 mg/kg 31a + WIN (57-4/WIN), 1 mg/kg 

Rimonabant + vehicle (RIM), or Rimonabant + WIN55,212-2 (RIM/WIN).  WIN55,212-2 

decreased activity significantly compared to vehicle and this was blocked by both 31a 

and by Rimonabant. 

Figure 28. Locomotor activity studies. 

 

*p ≤ 0.05 compared to VEH  

**p ≤ 0.05 compared to WIN 
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With agonist WIN we see the decrease in the locomotor activity as you will expect 

essentially because of the sedating effect of the cannabinoid agonist. When you treat it 

with a known antagonist you block the effects of the agonist. And so the agonist and the 

antagonist administered together we see basically normal locomotor activity. 

Now if you look at our compound 31a, we see that on its own it really does not have 

much activity of its own so we would access this as an antagonist. To prove that it 

blocks the effects of an agonist we gave our compound along with the agonist WIN and 

we saw the antagonized results in form of normal locomotor activity.  

We believe our compound to be a neutral antagonist, at least at these doses, 

because if you look at dosing of the rimonobant by itself,  which is an inverse agonist 

there is a stimulation in the locomotor activity which is the opposite to the effect of the 

agonist activity, whereas our compound looks pretty good next to it. 

Based on this preliminary data, we believe that our compound is a neutral antagonist 

with no pharmacological profile of its own and its agonist blocking ability. The 

prototypical antagonist/inverse agonist Rimonabant (1) (1.0 mg/kg rimonabant dissolved 
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in 5% tween 80 and 95% sterile water), significantly stimulated activity relative to vehicle 

when given alone. However, when rats were pretreated with Rimonabant (1) together 

with the agonist 4, the pyrazole Rimonabant (1) significantly antagonized the locomotor-

reducing effects of 4.   

To determine the efficacy of 31a (dissolved in 10% tween, 10% DMSO and 80% 

saline), initially a dose of 3.0 mg/kg was administered alone. At this dose, triazole 31a 

exhibited no significant effect on locomotor activity compared to vehicle. Concomitantly, 

to establish that 31a was penetrating into the brain, the ability of 6 to block the effects of 

the cannabinoid agonist WIN55,212-2 was measured. Initially, rats were pretreated with 

3.0 mg/kg of triazole 31a together with 3 mg/kg of the agonist 4. 

We were concerned about the pharmacological behavior of triazole 31a and since 

locomotor activity is a good test for assessing the ability of the drug as agonist will 

diminish activity while inverse agonist will stimulate locomotor activity, the triazole 31a 

fully antagonized the locomotor-reducing effects of the agonist 4 and triazole 31a had 

no pharmacological profile of its own.  
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Thus, at these dose, triazole 31a exhibited good penetration into the brain and a 

functional antagonist profile with statistically similar potency to that of 1. However 

important to our goals, unlike antagonist/inverse agonist 1, the triazole 31a did not 

stimulate locomotor activity. Thus it appears that, at least at these dosing, triazole 31a 

exhibits antagonist efficacy with no inverse agonist effects. Based upon the findings of 

these comparative locomotor-activity studies, it appears that triazole 31a elicits a neutral 

cannabinoid antagonist profile at a dose that blocks agonist effects. Rimonabant alone 

significantly increased activity, whereas 31a alone had no significant effect on activity. 
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12. CONLUSIONS 

We designed and developed chemical synthesis to prepare several CB1-antagonists. 

Our preliminary binding assay results revealed the ester 30a was 10-fold more potent 

than 22. Better potency, together with other more optimal drug-like properties, ester 30a 

was chosen to be our lead compound. With this lead compound, a series of esters (30, 

31 and 32) and ketones (33, 34 and 35) were synthesized. The compounds exhibiting 

good potency binding to CB1 receptors are 30a, 30d, 31a, 31f, 31g, 32a, 34b and 35a 

and they are currently being evaluated to determine efficacy. Based on these results, an 

extensive study is undergoing in our research laboratory searching for novel selective 

CB1 receptor antagonists. 

In the context of identifying new cannabinoid receptor ligands as potential leads for 

medication development for psychostimulant addiction, we have shown that the 1,5-

diaryl-1,2,3-triazole ring system is clearly a novel molecular scaffold that exhibits potent 

and selective CB1 receptor affinity. A series of 4-alkoxycarbonyl-1-(2,4-dichlorophenyl)-

5-(aryl)-1,2,3-triazole derivatives were synthesized via a one-pot regiospecific 
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click/acylation reaction sequence from commercially available arylacetylenes and the 

readily available 1-azido-2,4-dichlorobenzene. From the structure-activity studies the 5-

(4-chlorophenyl) congeners exhibited the most potent CB1 receptor affinities relative to 

other 5-(substituted-phenyl) moieties.  

The 1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-propylcarbonyl-1,2,3-triazole (31a) 

was found to be the optimal structure for this class of triazole esters. The ester 31a 

exhibited both high binding affinity and high selectivity for CB1 receptors.  

The triazole ester 31a further was characterized as a cannabinoid antagonist in 

locomotor-activity studies by blocking the locomotor-reducing effects of a cannabinoid 

agonist. In addition, unlike the prototypical cannabinoid antagonist SR141716A, the 

triazole ester 31a did not exhibit inverse agonist activity in the locomotor activity studies.  

Therefore, it appears that the triazole ester 31a possesses a neutral antagonist 

pharmacological profile.  The availability of a high affinity CB1 selective neutral 

antagonist will undoubtedly be useful for the further studies in a variety of cannabinergic 
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pathologies and diseases. The potential of the triazole ester 31a to be used as a 

treatment for psychostimulant abuse is under investigation.  

After exhibiting good in vivo antagonist efficacy, 31a has been submitted to the 

National Institute of Drug Abuse (NIDA) for:  

 Δ9-THC Drug Discrimination Studies to understand if 31a is infact different from 

Δ9-THC and other psychostimulants and not an addictive compound. 

 Metabolic Stability Studies and other ADME pharmacokinetic studies to 

determine how long compound 31a stays before getting eliminated from the system. 

 Off-Target Binding Studies to see if compound 31a interferes with other receptors 

or channels, by screening it for a wide variety of receptors and ion-channels. 

Moreover, as can be seen in Table 2, our compound 31a is approximately 417 times 

more selective for CB1-receptor (Ki =4.6 ± 0.012 nM) when compared with CB2-

receptor (Ki =1916 ±  247 nM) which is towards the Rimonabant’s end of spectrum 
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which is also quite selective. This is as opposed to other cannabinoid ligands like THC 

which is basically not selective at all for CB1 or CB2 receptors. 

One of the things that we may be looking at is how it affects cocaine self-

administration, how does it affects METHamphetamine self-administration as well as 

Cannabis cessation. Thus, we believe that compound 31a which is derived from novel 

1,2,3-triazole core frame, will serve as lead compound in future studies aimed at 

developing them further as drug abuse medications. 
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13. EXPERIMENTAL SECTION 

All chemicals were purchased form Aldrich Chemical Co., Milwaukee, WI, unless 

otherwise noted. Anhydrous THF was purchased from VWR International Co. and used 

under argon without any further purification. Chromatography refers to flash column 

chromatography on silica gel (Silica Gel 60, 230-400 mesh, Sorbent Technologies). 

Preparative TLC was performed on 20  

(Analtech). Reported melting points are uncorrected. NMR spectra were recorded in 

CDCl3 on a Varian-Gemini 400 MHz spectrometer. Chemical shifts are reported as 

values with teteramethylsilane (TMS), employed as the internal standard. ORTEP 

drawings of the X-ray crystal structures for 31a, 36a and 32c are given in Figure 29, 

Figure 30 and Figure 31 respectively in Appendix section, with thermal ellipsoids at 30% 

(31a) and 25% (36a) probability for non-H atoms and open circles for H-atoms. Full 

crystallographic data have been deposited to the Cambridge 

CrystallographicDataCenter (CCDC 820556 and 820557). Copies of the data can be 

obtained free of charge via the Internet at http://www.ccdc.cam.ac.uk. Purity of all 
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compounds was determined to be >95% by combustion analysis as listed. Combustion 

analyses were obtained from Atlantic Microlabs, Inc., Norcross, GA. 

13.1. General Experimental Methods 

1-Azido-2,4-dichlorobenzene (24). 2,4-Dichloroaniline (320 mg, 2.0 mmol) was 

suspended in a mixture of water (2.2 mL) and conc. HCl (4.4 mL) under a nitrogen 

atmosphere. The solution was cooled to 0 °C and a solution of sodium nitrite (166 mg, 

2.4 mmol) in water (1 mL) was added. After stirring for 1 h at 0 °C, a solution of sodium 

azide (170 mg, 2.6 mmol) in water (1 mL) was added to this mixture and stirring was 

continued for another 2 h at 0 °C. The resulting reaction mixture was diluted with brine 

(25 mL) and extracted using ethyl acetate (3  25 mL). The combined organic fractions 

were dried over Na2SO4 and the solvent was removed under reduced pressure. The 

residue was triturated with Et2O to furnish the azide as light yellow solid (336 mg, 90%) 

in sufficiently pure form to be used in subsequent steps without additional purification. 

mp 51-52 °C [lit. mp 52.8-53.4 °C]. 1H NMR (400 MHz, CDCl3): δ 7.39 (s, 1H), 7.27-7.28 

(m, 1H), 7.09 (d, J = 8.6 Hz, 1H).13C NMR (400 MHz, CDCl3): 136.0, 130.6, 130.4, 
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128.1, 120.4. Anal. (C6H3Cl2N3): C, 38.33; H, 1.61; N, 22.35. Found: C, 38.43; H, 1.72; 

N, 21.54. 

General procedure for synthesis of 4-alkoxycarbonyl-5-(substituted phenyl)-1-(2,4-

dichlorophenyl)-1H-1,2,3-triazoles. (30-32) Under a nitrogen atmosphere, a solution of 

ethyl magnesium bromide (1.5 mL, 1.0 M in THF) was added dropwise to neat aryl-

acetylene (1.05 mmol) or in anhydrous THF (1 mL) at rt. The mixture was heated to 50 

°C and stirring was continued for 1 h. A solution of freshly made 2,4-dichlorophenyl 

azide (24, 1 mmol) in 1 mL THF was added dropwise and the mixture was heated to 50 

⁰C for 1 h. The solution was allowed to cool to room temperature and added dropwise to 

a solution of alkyl chloroformate (1.5 mmol) in THF (3 mL) at -20⁰C under inert 

conditions. After stirring for 3 h, or until the tentative product spot on thin layer 

chromatography was not changing, the reaction was quenched with sat. NH4Cl (5 mL) 

and diluted with EtOAc (30 mL). The organic fraction was separated. The aqueous 

fraction was extracted with EtOAc (2×30 mL). The combined organic fractions were 

washed with brine (30 mL), dried over anhydrous MgSO4, filtered, and concentrated 
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under reduced pressure. The residue was purified by chromatography (SiO2, 

EtOAc/hexanes; 1/5) or by preparative TLC (SiO2, EtOAc/hexanes/CH2Cl2; 1/3/1) to 

afford the corresponding 4-alkoxycarbonyl-1-(2,4-dichlorophenyl)-5-(substituted phenyl)-

1H-1,2,3-triazole. 

1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-methoxycarbonyl-1H-1,2,3-triazoles. (30a). 

Yield, 61%, as a white crystalline solid; mp 158-160 °C. 1H NMR (400 MHz, CDCl3) δ 

7.93-7.40 (m, 7H), 3.78 (s, 3H). 13C NMR (400 MHz, CDCl3) δ 142.0, 137.9, 136.9, 

136.3, 132.8, 132.1, 131.4, 130.8, 130.4, 129.0, 128.5, 123.3, 52.5. Anal. 

(C16H10Cl3N3O2) : C, 50.22; H, 2.63; N, 10.98. Found: C, 49.95; H, 2.68; N, 10.70. 

1-(2,4-Dichlorophenyl)-4-methoxycarbonyl-5-phenyl-1H-1,2,3-triazole (30b). Yield 12% 

as white crystalline solid; mp 140-140.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.48 (s, 1H), 

7.27-7.43 (m, 7H), 3.92 (s, 3H); 13C NMR (400 MHz, CDCl3) δ 160.2, 132.8, 137.4, 

132.7, 132.2, 130.5, 130.3, 130.2, 129.7, 128.3, 128.1, 127.8, 124.5, 52.4, Anal. 

(C16H11Cl2N3O2): C, 55.19; H, 3.18; N, 12.07. Found: C, 54.93; H, 3.21; N, 12.01. 
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1-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-4-methoxycarbonyl-1H-1,2,3-triazole (30c). 

Yield 14%, as a white waxy solid. 1H NMR (400 MHz, CDCl3) δ 7.50 (s, 1H), 7.28-7.39 

(m, 4H), 7.04-7.09 (m, 2H), 3.95 (s, 3H); 13C NMR (400 MHz, CDCl3) δ 164.9, 161.2, 

142.0, 137.6, 132.7, 132.0, 131.9, 130.6, 130.2, 128.2, 120.6, 115.9, 115.7, 52.3; Anal. 

(C16H10FCl2N3O2 ) : C, 52.48; H, 2.75; N, 11.48. Found: C, 52.55; H, 2.92; N, 11.25. 

1-(2,4-Dichlorophenyl)-4-methoxycarbonyl-5-(4-methylphenyl)-1H-1,2,3-triazole (30d). 

Yield 25%, as a white solid; mp 136-137 °C. 1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 

7.33-7.34 (m, 2H), 7.15-7.18 (m, 4H), 3.94 (s, 3H), 2.36 (s, 3H); 13C NMR (400 MHz, 

CDCl3) δ 161.3, 144.1, 140.6, 137.3, 135.9, 132.8, 132.3, 130.5, 130.2, 129.6, 129.1, 

128.1, 121.6, 52.2, 21.4; Anal. (C17H13Cl2N3O2•0.33 H2O ) : C, 56.37; H, 3.62; N, 11.60. 

Found: C, 55.65; H, 3.64; N, 11.29. 

1-(2,4-Dichlorophenyl)-4-methoxycarbonyl-5-(4-phenoxyphenyl)-1H-1,2,3-triazole (30e). 

Yield 18%, as yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 1H), 7.34-7.39 (m, 4H), 

7.25 (d, J = 8.4Hz, 2H), 7.16-7.19 (m, 1H), 7.05 (d, J = 8.4Hz, 2H), 6.92 (d, J = 8.4Hz, 

2H), 3.95 (s, 3H); 13C NMR (400 MHz, CDCl3) δ 159.6, 155.1, 132.8, 132.3, 131.5, 
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130.6, 130.2, 130.0, 128.2, 124.6, 120.2, 118.4, 117.4, 52.6; Anal. (C22H15Cl2N3O3 ) : C, 

60.02; H, 3.43; N, 9.54. Found: C, 60.00; H, 3.50; N, 9.35. 

1-(2,4-Dichlorophenyl)-4-methoxycarbonyl-5-(4-methoxy-2-methylphenyl)-1H-

1,2,3triazole (30f). Yield 22%, yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 2 Hz, 

1H), 7.22 - 7.32 (m, 2H), 6.95 (d, J = 8.4 Hz, 1H), 6.76 (s, 1H), 6.66 (d, J = 8.4 Hz, 1H), 

3.89 (s, 3H), 3.77 (s, 3H), 2.13 (s, 3H); 13C NMR (400 MHz, CDCl3) δ 161.0, 160.8, 

153.6, 147.7, 139.6, 131.0, 130.6,129.9,127.9, 115.7, 111.4, 55.1, 52.2, 20.1; Anal. 

(C18H15Cl2N3O• 0.5 H2O): C, 53.88; H, 4.02; N, 10.47. Found: C, 53.87; H, 3.93; N, 

10.05. 

1-(2,4-Dichlorophenyl)-5-(4-fluoro-3-methylphenyl)-4-methoxycarbonyl-1H-1,2,3-triazole 

(30g). Yield 14%, as white powder; mp 149-150 °C. 1H NMR (400 MHz, CDCl3) δ 

7.51(s, 1H), 7.35 (m, 2H), 7.16 (br s, 1H), 7.05 (m, 1H), 6.96 (t, J = 8.8 Hz, 1H), 3.93 (s, 

3H), 2.22 (s, 3H); 13C NMR (400 MHz, CDCl3) δ 163. 5, 161.2, 137.5, 133.2, 133.1, 

132.8, 130.5, 130.2, 129.1, 129.0, 128.1, 125.5, 120.3, 115.4, 52.2, 14.2; Anal. 
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(C17H12Cl2N3O2F• 0.25 H2O): C, 53.08; H, 3.27; N, 10.92. Found: C, 53.07; H, 3.17; N, 

10.80. 

1-(2,4-Dichlorophenyl)-5-(3-chlorophenyl)-4-methoxycarbonyl-1H-1,2,3-triazole (30h).  

Yield 93%, as a white powder; mp 127 °C. 1H NMR (400 MHz, CDCl3)δ 7.50(d, J = 2 Hz 

1H), 7.39-7.28 (m, 5H), 7.14(d, J = 7.6 Hz, 1H), 3.93 (s, 3H); 13C NMR (400 MHz, 

CDCl3) δ 161, 141.4, 137.7, 136.3, 134.6, 132.7, 131.8, 130.6, 130.5, 130.1, 129.9, 

129.6, 128.2, 127.9, 126.5, 52.4; Anal. (C16H10Cl3N3O2): C, 50.22; H, 2.63; N, 10.98. 

Found: C, 50.74; H, 2.90; N, 10.48. 

1-(2,4-Dichlorophenyl)-5-(3-(trifluoromethyl)phenyl)-4-methoxycarbonyl-1H-1,2,3-

triazole (30i). Yield 36%, as white solid; mp 125-128 °C. 1H NMR (400 MHz, CDCl3) δ 

7.67(bd, J =  5.2 Hz 1H), 7.58 (s, 1H), 7.52-7.47 (m, 3H), 7.42-7.37 (m, 2H), 3.93 (s, 

3H); 13C NMR (400 MHz, CDCl3) δ 161, 141.3, 137.9, 136.4, 133.1, 132.6, 131.7, 131.1, 

130.6, 130.1, 128.9, 128.3, 127.0 (t, J = 12, 12.4 Hz,), 126.99,126.95), 125.7, 124.7, 

52.4; Anal. (C17H10Cl2F3N3O2): C, 49.06; H, 2.42; N, 10.10. Found: C, 49.10; H, 2.69; N, 

9.38. 
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1-(2,4-Dichlorophenyl)-5-(3-methylphenyl)-4-methoxycarbonyl-1H-1,2,3-triazole (30j).  

Yield 64%, as a pale white powder; mp 105-105.5 °C. 1H NMR (400 MHz, CDCl3) δ 

7.50(d, J = 2 Hz 1H), 7.39-7.28 (m, 5H), 7.14(d, J = 7.6 Hz, 1H), 3.91 (s, 3H), 2.29 (s, 

3H); 13C NMR (400 MHz, CDCl3) δ 161.5, 143.3, 138.4, 137.6, 133.1, 132.5, 133.1, 

132.5, 131.3, 130.9, 130.7,130.5, 130.2, 128.5, 128.2, 127.0, 124.8, 52.4, 21.5; Anal. 

(C17H13Cl2N3O2• 0.25 C7H8): C, 58.37; H, 3.92; N, 10.91. Found: C, 58.43; H, 3.68; N, 

13.41. 

1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31a). 

Yield 17%, as a white solid; mp 117-118 °C. 1H NMR (400 MHz, CDCl3) δ 7.92-7.39 (m, 

7H), 4.15 (t, J = 7.4 Hz, 2H), 1.54 (sextet, J = 7.5 Hz, 2H), 0.75 (t, J = 7.5 Hz, 3H). 13C 

NMR (400 MHz, CDCl3) δ 160.9, 141.8, 137.8, 136.7, 136.6, 132.8, 132.1, 131.4 130.7, 

130.4, 128.9, 128.4, 123.6, 67.2, 22.0, 10.4. Anal. (C18H14Cl3N3O2): C, 52.62; H, 3.44; 

N, 10.23. Found: C, 52.90; H, 3.47; N, 10.25. 

1-(2,4-Dichlorophenyl)-5-phenyl-4-propoxycarbonyl-1H-1,2,3-triazole (31b). Yield 

18%, as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.45 (s, 1H), 7.29-7.39 (m, 5H), 7.25-
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7.29 (m, 2H), 4.24 (t, J = 6.8 Hz, 2H), 1.67 (sextet, J = 6.8 Hz, 2H), 0.85 (t, J = 6.8 Hz, 

3H); 13C NMR (400 MHz, CDCl3) δ 160.8, 142.6, 137.3, 136.4, 132.7, 132.1, 130.4, 

130.2, 130.1, 129.8, 128.2, 128.0, 124.9, 66.8, 21.8, 10.3; Anal. (C18H15Cl2N3O2): C, 

57.46; H, 4.02; N, 11.17. Found: C, 57.76; H, 4.13; N, 10.50.  

Procedure for conversion of compound 30b to 31b: A flame dried 50-mL round 

bottomed flask was vacuumed and backfilled with nitrogen gas. The flask was charged 

with 1-propanol (1 eq) in 10 mL of anhydrous THF. The solution was cooled to -78 ⁰C 

and t-butyl lithium (2.5 M in hexanes, 2.5 eq) was added slowly. After stirring for 10 

minutes, compound 30b (1 eq) dissolved in 2 mL of anhydrous THF was added drop 

wise. The resultant solution was stirred for 1 hour and poured into 30 mL ice water in a 

separatory funnel and extracted with EtOAc (2 x 30 mL). The combined organic 

fractions were washed by sat. NaCl, dried on anhydrous MgSO4, filtered, and purified 

by running through a thin pad of silica gel. After, the solution was concentrated in 

vacuuo, followed by column purification, compound 31b in 46% yield. 
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Procedure for conversion of compound 39 to 31b: Under a nitrogen atmosphere, into a 

25 mL round-bottomed flask equipped with a condensor was added benzyl azide 24 

(1.0 mmol) and compound 39 (1.1 mmol), and DMF (4 mL). The mixture was stirred at 

reflux for 20 h and concentrated in vacuo. The residue was purified by chromatography 

(SiO2, EtOAc/hexanes; 1/5) or by preparative TLC (SiO2, EtOAc/hexanes/CH2Cl2; 1/3/1)  

to afford the compound 31b in 8% yield. 

Procedure for conversion of compound 38 to 31b: Under a nitrogen atmosphere, 

compound 38 (1 mmol) was dissolved in THF (2 mL), cooled to -78 °C and t – BuLi (1.6 

M in hexanes, 1.5 mmol) was added drop wise. After 2 h, neat propyl chloroformate (1.5 

mmol) was added dropwise. The temperature was maintained at -78 °C for another two 

hours, before allowing it to rt, after which the solution was stirred for another 4 h. After, 

the solution was concentrated in vacuuo, it was partitioned with water and ethyl acetate 

(3 X 20 mL). The combined organic fractions were washed with brine (30 mL), dried 

over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue 
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was purified by chromatography (SiO2, EtOAc/hexanes; 1/5) or by preparative TLC 

(SiO2, EtOAc/hexanes/CH2Cl2; 1/3/1) to afford the compound 31b in 5.43% yield. 

1-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31c).  

Yield 25%, as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.48 (s, 1H), 7.32-7.38 (m, 2H), 

7.26-7.32 (m, 2H), 7.04 (t, J = 8.0 Hz, 2H), 4.27 (t, J = 6.8 Hz, 2H), 1.71 (m, 2H), 0.90 (t, 

J = 7.6 Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 164.8, 162.3, 160.8, 141.7, 137.5, 132.0, 

131.9, 130.5, 130.2, 128.2, 120.9, 115.8, 115.5, 66.9, 21.8, 10.3; Anal. 

(C18H14Cl2N3O2F): C, 54.84; H, 3.58; N, 10.66. Found: C, 55.12; H, 3.58; N, 10.39. 

5-(4-Bromophenyl)-1-(2,4-dichlorophenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31d). 

Yield 21%, as a white crystalline solid; mp 122-123 °C. 1H NMR (400 MHz, CDCl3) δ 

7.48-7.51 (m, 3H), 7.33-7.40 (m, 2H), 7.17 (d, J = 6.6Hz, 2H), 4.29 (t, J = 6.6 Hz, 2H), 

1.74 (sextet, J = 7.4 Hz, 2H), 0.93 (t, J = 7.6 Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 

160.8, 141.6, 137.6, 136.5, 132.7, 131.9, 131.7, 131.4, 130.6, 130.2, 128.2, 124.9, 

123.9, 67.0, 21.8, 10.3; Anal. (C18H14Cl2N3O2Br): C, 47.50; H, 3.10; N, 9.23. Found: C, 

47.74; H, 3.10; N, 9.11. 
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1-(2,4-Dichlorophenyl)-5-(4-methylphenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31e). 

Yield 40%, as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.43 (s, 1H), 7.31 (s, 2H), 

7.09-7.15 (m, 4H), 4.23 (t, J = 6.8 Hz, 2H), 2.29 (s, 3H), 1.68 (sextet, J = 7.3 Hz, 2H), 

0.86 (t, J = 7.4 Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 160.8, 142.7, 140.3, 137.1, 

136.1, 132.7, 132.2, 130.3, 130.2, 129.6, 128.9, 127.9, 121.7, 66.7, 21.7, 21.2, 10.1; 

Anal. (C19H17Cl2N3O2): C, 58.47; H, 4.39; N, 10.77. Found: C, 58.22; H, 4.38; N, 10.60.  

1-(2,4-Dichlorophenyl)-5-(4-methoxyphenyl)-4-propoxycarbonyl-1H-1,2,3-triazole 

(31f). Yield 20%, as a tan oil. 1H NMR (400 MHz, CDCl3) δ 7.47(s, 1H), 7.30-7.36 (m, 

2H), 7.21 (d, J = 8.4Hz, 2H), 6.84 (d, J = 6.8 Hz, 2H), 4.27 (t, J = 6.8Hz, 2H), 3.79 (s, 

3H), 1.73(sextet, J = 7.2 Hz, 2H), 0.92 (t, J = 7.6 Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 

161.3, 161.1, 142.9, 137.5, 136.3, 133.1, 132.6, 131.6, 130.7, 130.5, 128.3, 116.9, 

114.7, 114.6, 114.1, 67.1, 55.5, 22.1, 10.6; Anal. (C19H17Cl2N3O3) : C, 56.17; H, 4.22; N, 

10.34. Found: C, 56.44; H, 4.06; N, 10.09. 

1-(2,4-Dichlorophenyl)-5-(4-trifluoromethylphenyl)-4-propoxycarbonyl-1H-1,2,3-

triazole (31g). Yield 16%, as a tan solid; mp 127-129 °C. 1H NMR (400 MHz, CDCl3)δ 
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7.62 (d, J = 8.2 Hz, 2H), 7.49 (s, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.35-7.40 (m, 2H), 4.27 

(t, J = 6.8 Hz, 2H), 1.71 (sextet, J = 7.2 Hz, 2H), 0.89 (t, J = 7.2 Hz, 3H); 13C NMR (400 

MHz, CDCl3) δ 160.7, 141.3, 137.9, 136.9, 132.6, 131.8, 130.7, 130.4, 130.1, 128.8, 

128.3,125.4, 125.3, 115.3, 67.1, 21.8, 10.2; Anal. (C19H14Cl2N3O2): C, 51.37; H, 3.18; N, 

9.46. Found: C, 51.18; H, 3.22; N, 9.23. 

1-(2,4-Dichlorophenyl)-5-(4-methoxy-2-methylphenyl)-4-propoxycarbonyl-1H-1,2,3-

triazole (31h).  Yield 12%, as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 

7.22-7.32 (m, 2H), 6.97 (d, J = 8.4 Hz, 1H), 6.76 (s, 1H), 6.67 (d, J = 8.4 Hz, 1H), 4.25 

(t, J = 6.4 Hz, 2H), 3.78 (s, 3H), 2.14 (s, 3H), 1.68 (sextet, J = 6.8 Hz, 2H), 0.87 (t, J = 

7.6 Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 160.7, 142.3, 139.5, 137.3, 137.1, 132.7, 

132.1, 131.2, 130.9, 130.4, 129.9, 127.8,116.6, 115.6, 111.3, 66.7, 55.1, 21.8, 20.0, 

10.1; Anal. (C20H19Cl2N3O3). C, 57.52; H, 4.60; N, 9.89. Found: C, 57.76; H, 4.59; N, 

9.93. 

1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31i).  

Yield >2%, as a tan oil. 1H NMR (400 MHz, CDCl3) δ 7.58-7.46 (m, 2H), 7.41 (d, J = 8.2 
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Hz, 1H), 7.36-7.30 (m, 3H), 7.16 (d, J = 8 Hz, 1H), 4.30-4.25 (m, 2H), 1.70 (td,  J = 6.6, 

7.4 Hz, 2H), 0.95-0.87 (m, 3H); 13C NMR (400 MHz, CDCl3) δ 160.7, 153.1, 149.2, 

143.2, 141.9, 137.6, 135.4, 131.6, 130.7, 130.5, 130.2, 128.9, 128.2, 127.7, 125.8, 66.9, 

21.9, 10.2. 

1-(2,4-Dichlorophenyl)-5-(3-chlorophenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31j).  

Yield 60%, as a white solid; mp 105-106 °C. 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 

1.6 Hz, 1H), 7.39-7.32 (m, 3H), 7.29-7.25 (m, 2H), 7.12 (d, J = 8 Hz, 1H), 4.27(t, J = 6.8 

Hz, 2H )1.71 (sextet, J = 7.6, 6.8, 7.2, 7.2, 6.8 Hz, 2H), 0.89 (t, J = 7.6, 7.2 Hz, 3H); 13C 

NMR (400 MHz, CDCl3) δ 160.8, 141.4, 137.9, 137, 134.5, 132.9, 132.1, 130.8, 130.6, 

130.4, 130.3, 129.8, 128.5, 128.1, 127, 67.3, 22.1, 10.5; Anal. (C18H14Cl3N3O2). C, 

52.64; H, 3.44; N, 10.23. Found: C, 52.73; H, 3.38; N, 10.05. 

1-(2,4-Dichlorophenyl)-5-(3-chlorophenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31k).  

Yield 54%, as a white solid; mp 110-110.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 

5.6 Hz, 1H), 7.58 (s, 1H), 7.51-7.45 (m, 3H), 7.40-7.35 (m, 2H), 4.26 (t, J = 6.4,6.8 Hz, 

2H ),1.68 (sextet, J = 7.2 Hz, 2H), 0.86 (t, J = 7.6, 7.2 Hz, 3H); 13C NMR (400 MHz, 
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CDCl3) δ 160.5, 141.0, 137.8, 136.8, 133.1, 132.6, 131.7, 131.0, 130.7, 130.6, 130.2, 

128.9, 128.3, 126.9, 126.0, 67.1, 21.8, 10.2; Anal. (C19H14Cl2N3F3O2). C, 51.37; H, 3.18; 

N, 9.46. Found: C, 51.22; H, 3.06; N, 9.40. 

1-(2,4-Dichlorophenyl)-5-(3-methylphenyl)-4-propoxycarbonyl-1H-1,2,3-triazole (31l).  

Yield 43%, as a white solid; mp 101-102 °C. 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 2 

Hz, 1H), 7.35-7.28 (m, 2H), 7.23-7.18 (m, 2H), 7.11 (s, 1H), 7.05-7.02 (m,1H), 4.26 (t, J 

= 6.4,6.8 Hz, 2H ), 2.30 (s, 3H), 1.69 (sextet, J = 7.2 Hz, 2H), 0.88 (t, J = 7.6, 7.2 Hz, 

3H); 13C NMR (400 MHz, CDCl3) δ 160.9, 142.8, 142.5, 138,0, 137.3, 136.4, 132.9, 

132.3, 130.9, 130.5, 130.2, 128.2, 127.9, 126.8, 124.9, 115.4, 66.9, 21.8, 21.3, 10.3; 

Anal. (C19H17Cl2N3O2• 0.15 C7H8). C, 59.60; H, 4.54; N, 10.40. Found: C, 59.36; H, 4.81; 

N, 10.33. 

1-(2,4-Dichlorophenyl)-5-(4-chlorophenyl)-phenoxycarbonyl-1H-1,2,3-triazole (32a). 

Yield, 13% as a white solid; mp 205-208 °C. 1H NMR (400 MHz, CDCl3) δ 7.96-7.21 (m, 

12H). 13C NMR (400 MHz, CDCl3) δ 169.4, 150.4, 142.9, 138.0, 137.0, 135.9, 132.8, 
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132.0, 131.4, 130.8, 130.4, 129.7, 129.0, 128.6, 126.4, 123.1, 121.7. Anal. 

(C21H12Cl3N3O2): C, 57.64; H, 3.08; N, 9.16. Found: C, 57.84; H, 3.21; N, 9.08. 

1-(2,4-Dichlorophenyl)-4-phenoxycarbonyl-5-phenyl-1H-1,2,3-triazole (32b). Yield 

11%, as a white solid; mp 209-211 °C. 1H NMR (400 MHz, CDCl3) δ 7.50 (s, 1H), 7.33-

7.40 (m, 8H), 7.19-7.26 (m, 4H); 13C NMR (400 MHz, CDCl3) δ 159.3, 150.3, 143.7, 

137.5, 135.6, 132.8, 132.1, 130.5, 130.4, 130.2, 129.8, 129.4, 128.4, 128.2, 126.1, 

124.5, 121.6; Anal. (C21H13Cl2N3O2• 0.33H2O): C, 60.60; H, 3.31; N, 10.10. Found: C, 

60.30; H, 3.05; N, 10.16. 

1-(2,4-dichlorophenyl)-5-(4-fluorophenyl)-4-phenoxycarbonyl-1H-1,2,3-triazole (32c). 

Yield 30%, as a white solid; mp 230-231 °C. 1H NMR (400 MHz, CDCl3) δ 7.52 (s, 1H), 

7.32-7.42 (m, 7H), 7.19-7.26 (m, 3H), 7.04 (t, J = 8.6 Hz, 2H) ; 13C NMR (400 MHz, 

CDCl3) δ 164.9, 162.5, 159.3, 150.2, 142.9, 137.8, 135.6, 132.7, 132.1, 132.0, 130.7, 

130.2, 129.5, 128.3, 126.2, 121.6, 120.5, 120.4, 115.9, 115.7; Anal. (C21H12Cl2N3O2F): 

C, 58.90; H, 2.82; N, 9.81. Found: C, 58.63; H, 2.66; N, 9.80. 
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5-(4-Bromophenyl)-1-(2,4-dichlorophenyl)-4-phenoxycarbonyl-1H-1,2,3-triazole (32d). 

Yield 9%, as a white solid; mp 191-192 °C. 1H NMR (400 MHz, CDCl3) δ 7.52 (s, 1H), 

7.48 (d, J = 7.0 Hz, 2H), 7.37-7.42 (m, 5H), 7.19-7.26(m, 4H); 13C NMR (400 MHz, 

CDCl3) δ 159.3, 150.2, 142.7, 137.8, 135.7, 132.6, 131.9, 131.8, 131.4, 130.7, 130.2, 

129.5, 128.4, 126.2, 125.2, 123.4, 121.6; Anal. (C21H12Cl2N3O2Br): C, 51.56; H, 2.47; N, 

8.59. Found: C, 51.67; H, 2.64; N, 8.39. 

1-(2,4-Dichlorophenyl)-5-(4-methylphenyl)-4-phenoxycarbonyl-1H-1,2,3-triazole 

(32e). Yield 24%, as a white solid; 203-204 °C. 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 

1H), 7.35-7.41 (m, 4H), 7.26 (s, 1H), 7.20-7.24 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 2.32 (s, 

3H); 13C NMR (400 MHz, CDCl3) δ 159.4, 150.3, 143.9, 140.7, 137.4, 135.2, 132.8, 

132.3, 130.6, 130.2, 129.7, 129.4, 129.1, 128.1, 126.0, 121.7, 121.4, 21.4; Anal. 

(C22H15Cl2N3O2): C, 62.28; H, 3.56; N, 9.90. Found: C, 62.00; H, 3.39; N, 9.90. 

1-(2,4-Dichlorophenyl)-5-(4-phenoxyphenyl)-4-phenoxycarbonyl-1H-1,2,3-triazole 

(32f). Yield 10%, as an orange solid; mp 159-161 °C. 1H NMR (400 MHz, CDCl3) δ 

7.53(s, 1H), 7.38-7.42 (m, 3H), 7.35 (t, J = 8.0 Hz, 2H), 7.27-7.30 (m, 2H), 7.24 (t, J = 
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8.2 Hz, 3H), 7.16 (t, J = 7.6 Hz, 2H), 7.01(d, J = 8.2 Hz, 2H), 6.91(d, J = 6.8 Hz, 2H); 

13C NMR (400 MHz, CDCl3) δ 159.6, 159.4, 155.3, 150.3, 143.4, 137.5, 135.3, 132.7, 

132.2, 131.6, 130.6, 130.2, 129.9, 129.4, 128.2, 126.1, 124.5, 121.6, 120.1, 118.2, 

117.4; Anal. (C27H17Cl2N3O3): C, 64.55; H, 3.41; N, 8.36. Found: C, 64.23; H, 3.45; N, 

8.04. 

General procedure for synthesis of 4-ketocarbonyl-5-(substituted phenyl)-1-(2,4-

dichlorophenyl)-1H-1,2,3-triazoles.(33-35) Under a nitrogen atmosphere, a solution of 

ethyl magnesium bromide (1.5 mL, 1.0 M in THF) was added dropwise to neat aryl-

acetylene (1.05 mmol) or in anhydrous THF (1 mL) at rt. The mixture was heated to 50 

°C and stirring was continued for 1 h. A solution of freshly made 2,4-dichlorophenyl 

azide (24, 1 mmol) in 1 mL THF was added dropwise and the mixture was heated to 50 

⁰C for 1 h. The solution was allowed to cool to room temperature and added dropwise to 

a solution of alkanoyl chloride (1.5 mmol) in THF (3 mL) at -20⁰C under inert conditions. 

After stirring for 3 h, or until the tentative product spot on thin layer chromatography was 

not changing, the reaction was quenched with sat. NH4Cl (5 mL) and diluted with EtOAc 
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(30 mL). The organic fraction was separated. The aqueous fraction was extracted with 

EtOAc (2×30 mL). The combined organic fractions were washed with brine (30 mL), 

dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The 

residue was purified by chromatography (SiO2, EtOAc/hexanes; 1/5) or by preparative 

TLC (SiO2, EtOAc/hexanes/CH2Cl2; 1/3/1) to afford the corresponding 4-ketocarbonyl-1-

(2,4-dichlorophenyl)- 5-(substituted phenyl)-1H-1,2,3-triazole. 

1-(5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)propan-1-one (33a) 

Yield 18%, as a white powder; mp 153-153.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.50(s, 

1H), 7.30-7.37(m, 4H), 7.21-7.23(m, 2H); 13C NMR (400 MHz, CDCl3) δ 195.8, 142.5, 

139.8, 137.6, 136.5, 132.6, 132.0, 131.2, 130.6, 130.1, 128.7, 128.3, 123.4, 33.7, 7.6; 

Anal. Calcd for C17H12Cl3N3O• 0.33 H2O: C, 52.81; H, 3.30; N, 10.87. Found: C, 52.83; 

H, 3.01; N, 10.56. 

1-(1-(2,4-dichlorophenyl)-5-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)propan-1-one (33b) 

Yield 30%, as a white powder; mp 115-116 °C. 1H NMR (400 MHz, CDCl3) δ 7.51(s, 

1H), 7.27-7.40(m, 4H), 7.04(t, J=8.6Hz, 2H), 3.29(q, J=11Hz, 2H), 1.23(J=7.4Hz, 3H); 
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13C NMR (400 MHz, CDCl3) δ 196.1, 165.1, 162.6, 142.7, 140.3, 137.7, 132.9, 132.3, 

132.2, 130.9, 130.3, 128.5, 121.2, 121.1, 116.0, 115.8, 33.9, 7.8; Anal. Calcd for 

C17H12Cl2N3OF: C, 56.06; H, 3.32; N, 11.54. Found: C, 56.13; H, 3.23; N, 11.34. 

1-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)propan-1-one (33c) 

Yield 11%, as a yellow powder; mp 157-160 °C. 1H NMR (400 MHz, CDCl3) δ 7.50(s, 

1H), 7.47(d, J=6.8Hz, 2H), 7.38(d, J=8.4Hz, 1H), 7.32(d, J=8.4Hz, 1H), 7.15(d, d, 

J=6.6Hz, 2H), 3.29(q, J=7.6, 7.2, 7.2Hz, 2H), 1.22(t, J=7.6, 7.2Hz, 3H); 13C NMR (400 

MHz, CDCl3) δ 195.9, 142.5, 139.9, 137.6, 132.6, 132.0, 131.7, 131.4, 130.7, 130.1, 

128.3, 124.9, 123.9, 33.7, 7.6; Anal. Calcd for C17H12Cl2N3OBr •0.7 H2O: C, 46.65; H, 

3.09; N, 9.60. Found: C, 46.95; H, 2.66; N, 9.26. 

1-(1-(2,4-dichlorophenyl)-5-(p-tolyl)-1H-1,2,3-triazol-4-yl)propan-1-one (33d) Yield 

15%, as a pale yellow powder; mp 123-125 °C. 1H NMR (400 MHz, CDCl3) δ 7.48(s, 

1H), 7.29-7.36(m, 2H), 7.16(d, J=7.2Hz, 2H), 7.12(d, J=8.4Hz, 2H), 3.27(q, J=7.2, 7.6, 

7.2Hz, 2H), 2.33(s, 3H), 1.21(t, J=7.2, 7.6Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 195.8, 

142.4, 141.1, 140.4, 137.2, 132.8, 132.4, 130.5, 130.2, 129.7, 129.0, 128.1, 121.8, 
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115.3, 33.6, 21.4, 7.6; Anal. Calcd for C18H15Cl2N3O: C, 60.01; H, 4.20; N, 11.66. 

Found: C, 59.77; H, 4.24; N, 11.44. 

1-(5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)butan-1-one (34a) 

Yield 5%, as a pale white solid; mp 133-134 °C. 1H NMR (400 MHz, CDCl3) δ 7.52(s, 

1H), 7.32-7.34(m, 4H), 7.23,(d, J=7.6 Hz, 2 H), 3.25(t, J=7.2Hz, 2H), 1.79(sextet, 

J=7.6Hz, 2H),1.03(t, J=7.6Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 139.9, 137.6, 136.6, 

135.2, 131.2, 130.7, 130.1, 128.7, 128.3, 123.4, 42.3, 17.2, 13.8 ; Anal. Calcd for 

C18H14Cl3N3O•H2O: C, 52.39; H, 3.91; N, 10.18. Found: C, 52.59; H, 3.51; N, 9.44. 

1-(1-(2,4-dichlorophenyl)-5-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)butan-1-one (34b) 

Yield 40%, as a white powder; mp 98-100 °C. 1H NMR (400 MHz, CDCl3) δ 7.50(s, 1H), 

7.26-7.39(m, 4H), 7.00-7.05(m, 2H), 3.24(t, J=7.2Hz, 2H), 1.78(sextet, J=7.6Hz, 2H), 

1.02(t, J=7.6Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 195.7, 165.1, 162.6, 142.8, 137.8, 

132.9, 132.4, 132.3, 132.2, 130.9, 130.4, 128.5, 121.2, 121.2, 116.1, 115.8, 42.5, 17.4, 

14.0; Anal. Calcd for C18H14Cl2N3OF : C, 57.16; H, 3.73; N, 11.11. Found: C, 57.08; H, 

3.54; N, 10.84. 
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1-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)butan-1-one (34c) 

Yield 7%, as a white waxy solid. 1H NMR (400 MHz, CDCl3) δ 7.47-7.51(m, 2H), 7.32-

7.41(m, 3H), 7.16(d, J=8Hz, 2H), 3.25(t, J=7.2Hz, 2H), 1.79(sextet, J=7.2Hz, 2H), 

1.03(t, J=7.2Hz, 3H) ; 13C NMR (400 MHz, CDCl3) δ 195.4, 155.1, 142.6, 137.6, 132.6, 

132.0, 131.7, 131.4, 130.7, 130.1, 128.3, 124.9, 123.9, 42.3, 17.2, 13.8; Anal. Calcd for 

C18H14Cl2N3OBr• 0.25 H2O: C, 51.3; H, 3.48; N, 9.09. Found: C, 50.91; H, 3.69; N, 8.74.  

1-(1-(2,4-dichlorophenyl)-5-(4-phenoxyphenyl)-1H-1,2,3-triazol-4-yl)butan-1-one 

(34d) Yield 30%, as an oil. 1H NMR (400 MHz, CDCl3) δ 7.50(s, 1H), 7.30-7.374(m, 3H), 

7.23(d, J=8.4Hz, 2H), 7.16(t, J=7.2Hz, 2H), 7.03(d, J=8Hz, 2H), 6.89(d, J=8.8Hz, 2H), 

3.24(t, J=7.2Hz, 2H), 1.78(sextet, J=7.2Hz, 2H), 1.02(t, J=7.2, 7.6Hz, 3H); 13C NMR 

(400 MHz, CDCl3) δ 195.4, 159.4, 155.5, 142.4, 140.6, 137.3, 132.7, 132.4, 131.5, 

130.6, 130.1, 129.9, 128.2, 124.4, 120.1,118.8, 117.3, 42.3, 17.2, 13.8; Anal. Calcd for 

C24H19Cl2N3O2: C, 63.73; H, 4.23; N, 9.29. Found: C, 63.85; H, 4.24; N, 9.11.  

1-(1-(2,4-dichlorophenyl)-5-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)butan-1-

one (34e) Yield 9%, as a white powder; mp 102-104 °C. 1H NMR (400 MHz, CDCl3) δ 
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7.59(d, J=8Hz, 2H), 7.49(s, 1H), 7.41(d, J=8Hz, 2H), 7.33-7.37(m, 1H), 3.24(t, J=7.2Hz, 

2H), 1.78(sextet, J=7.2Hz, 2H), 1.02(t, J=7.2, 7.6Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 

195.3, 142.9, 139.5, 137.7, 132.5, 132.2, 131.8, 130.7, 130.3, 130, 129.3, 128.8, 128.4, 

128.3, 125.298, 125.2, 124.9, 122.2, 42.2, 17.1, 13.8 ; Anal. Calcd for C19H14Cl2N3OF3• 

0.05 C7H8: C, 53.69; H, 3.35; N, 9.71. Found: C, 53.65; H, 3.40; N, 9.32. 

1-(1-(2,4-dichlorophenyl)-5-p-tolyl-1H-1,2,3-triazol-4-yl)butan-1-one (34f) Yield 15%, 

as a white powder; mp 94-96 °C. 1H NMR (400 MHz, CDCl3) δ 7.47(d, J=2Hz, 1H), 

7.26-7.36(m, 2H), 7.13(q, J=8,10,8 Hz, 4H), 3.21(t, J=7.2 Hz, 2H), 2.31(s, 3H), 

1.77(sextet, J=7.2, 7.6, 7.2Hz, 2H), 1.00(t, J=7.6, 7.4Hz, 3H) ; 13C NMR (400 MHz, 

CDCl3) δ 195.2, 142.4, 141.1, 140.3, 137.1, 132.7, 132.4, 130.4, 130.1, 129.6, 128.9, 

128, 121.8, 42.2, 21.4, 17.2, 13.8; Anal. Calcd for C19H17Cl2N3O•0.1 C7H8: C, 61.70; H, 

4.68; N, 10.96. Found: C, 61.76; H, 4.70; N, 11.02. 

1-(5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)pentan-1-one (35a) 

Yield 11%, as a white powder; mp 123-124 °C. 1H NMR (400 MHz, CDCl3) δ 7.48(d, 

J=2 Hz, 1H), 7.28-7.39(m, 4H), 7.21(d, J=8.8Hz, 2H), 3.24(t, J= 7.2, 7.6Hz, 2H), 
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1.72(quintet, J=7.2, 7.6, 8Hz, 2H), 1.42(sextet, J=7.6, 7.2 Hz, 2H), 0.94(t, J=7.2Hz, 3H); 

13C NMR (400 MHz, CDCl3) δ 195.4, 142.6, 139.8, 137.5, 136.4, 132.5, 132.3, 131.9, 

131.4, 131.1, 130.6, 130.1, 130, 128.6, 128.4, 128.3,128.2,123.4, 40, 25.7, 22.3, 13.9; 

Anal. Calcd for C19H16Cl2N3O•0.05 C7H8: C, 56.23; H, 4.00; N, 10.17. Found: C, 56.10; 

H, 3.85; N, 9.79. 

1-(1-(2,4-dichlorophenyl)-5-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)pentan-1-one (35b) 

Yield 4%, as an off white powder; mp 96.5-99 °C. 1H NMR (400 MHz, CDCl3) δ 7.49(s, 1 

H), 7.26-7.39(m, 4H), 7.02(t, J=8.6Hz, 2H), 3.25(t, J=7.4Hz, 2H), 1.73(quintet, J=7.2Hz, 

2H), 1.43(sextet, J=6.8, 6.4, 7.2Hz, 2H), 0.95(t, J=7.4Hz, 3H); 13C NMR (400 MHz, 

CDCl3) δ 195.6, 164.9, 163.3, 143.1, 142.6, 140.0, 137.5, 132.6,132.0, 131.9, 130.6, 

130.1,128.6, 128.2, 127.9, 122.2, 120.96, 120.93, 40.1, 25.8, 22.3, 13.9; Anal. Calcd for 

C19H16Cl2N3OF: C, 58.18; H, 4.11; N, 10.71. Found: C, 58.05; H, 4.06; N, 10.50.  

1-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)pentan-1-one (35c) 

*Yield 18%, as a yellow powder; mp 156-158 °C. 1H NMR (400 MHz, CDCl3) δ 7.49(s, 

1H), 7.46(d, J=7.6Hz, 2H), 7.37(d, J=8.4Hz, 1H), 7.32(d, J=8.4Hz, 1H), 7.14(d, J=7.6Hz, 
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2H), 3.25(t, J=7.6, 7.2Hz, 2H), 1.72(quintet, J=8, 7.6Hz, 2H), 1.42(sextet, J=7.6Hz, 2H), 

0.95(t, J=7.6Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 195.4, 142.6, 139.8, 137.5, 132.5, 

132.2, 131.9, 131.6, 131.3, 130.6, 130.0, 128.6, 128.2, 127.8, 124.9, 123.9, 40.0, 25.8, 

22.3, 13.9; Anal. Calcd for C19H16Cl2N3OBr • 0.45 H2O : C, 49.47; H, 3.69; N, 9.11. 

Found: C, 49.82; H, 3.45; N, 8.72.  

1-(1-(2,4-dichlorophenyl)-5-p-tolyl-1H-1,2,3-triazol-4-yl)pentan-1-one (35d) Yield 

27%, as a white powder; mp 99-100 °C. 1H NMR (400 MHz, CDCl3) δ 7.45(s, 1H), 7.28-

7.33(m, 2H), 7.15(d, J=8Hz, 2H), 3.22(t, J=7.6, 2H), 2.29(s, 3H), 1.71(quintet, J=7.6Hz, 

2H), 1.40(sextet, J=7.6Hz, 2H), 0.92(t, J=7.2Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 

195.2, 142.3, 141, 140.2, 137, 132.6, 132.3, 130.3, 130.1, 129.6, 128.9, 128, 121.8, 

39.9, 25.7, 22.3, 21.3, 13.8; Anal. Calcd for C20H19Cl2N3O: C, 61.86; H, 4.93; N, 10.82. 

Found: C, 62.05; H, 5.00; N, 10.63. 

1-(1-(2,4-dichlorophenyl)-5-(4-phenoxyphenyl)-1H-1,2,3-triazol-4-yl)pentan-1-one 

(35e) Yield 50%, as a tan oil. 1H NMR (400 MHz, CDCl3) δ 7.51(s, 1H), 7.30-7.39(m, 

3H), 7.23(d, J=6.8Hz, 2H), 7.14-7.18(m, 2H), 7.04(d, J=8Hz, 2H), 6.89(d, J=6.8Hz, 2H), 
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3.26(t, J=7.2,7.6Hz, 2H), 1.74(quintet, J=7.6, 7.2Hz, 2H), 1.43(sextet, J=7.6, 7.2Hz, 2H), 

0.96(t, J=6.4, 7.2Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 195.5, 159.3, 155.4, 142.3, 

140.5, 137.2, 132.6, 132.3, 131.5, 130.5, 130.1, 129.9, 128.1, 124.4, 120.1, 118.7, 

117.3, 40.0, 25.8, 22.3, 13.8; Anal. Calcd for C25H21Cl2N3O2•0.1 C7H8: C, 64.91; H, 4.62; 

N, 8.84. Found: C, 64.77; H, 4.54; N, 8.84. 

1-(1-(2,4-dichlorophenyl)-5-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)pentan-1-

one (35f) Yield 11%, as a white powder; mp 107.5-110 °C. 1H NMR (400 MHz, CDCl3) δ 

7.6 (d, J=8.4Hz, 2H), 7.51 (d, J=2Hz, 1H), 7.41 (d, J=7.6 Hz, 2H), 7.38 (d, J=2 Hz, 1H), 

7.35 (s, 1H), 3.27 (t, J=7.2, 2H), 1.73 (quintet, J=7.6, 2H), 1.44 (sextet, J=7.6 Hz, 2H), 

0.96 (J=7.2, 7.6 Hz, 3H); 13C NMR (400 MHz, CDCl3) δ 195.5, 142.9, 139.5, 137.8,, 

132.6, 131.8, 130.7, 130.3, 130, 129.3, 128.8, 128.3, 125.3, 125.3, 122.2, 40.1, 25.8, 

22.4, 13.9; Anal. Calcd for (C20H16Cl2N3OF3• 0.05 C7H8): C, 54.70; H, 3.70; N, 9.40. 

Found: C, 54.31; H, 3.84; N, 8.78. 

General Procedure for synthesis of 5-(substituted phenyl)-1-(2,4-dichlorophenyl)-1H-

[1,2,3]triazoles (36). Under a nitrogen atmosphere, a solution of ethyl magnesium 
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bromide (1.5 mL, 1.0 M in THF) was added dropwise to neat aryl-acetylene (1.05 mmol) 

or in anhydrous THF (1 mL) at rt. The mixture was heated to 50 °C and stirring was 

continued for 1 h. A solution of freshly made 2,4-dichlorophenyl azide (24, 1 mmol) in 1 

mL THF was added dropwise and the mixture was heated to 50 ⁰C for 1 h. The solution 

was allowed to cool to room temperature was quenched with sat. NH4Cl (20 mL) and 

diluted with EtOAc (30 mL). The organic fraction was separated. The aqueous fraction 

was extracted with EtOAc (2×30 mL). The combined organic fractions were washed with 

brine (30 mL), dried over anhydrous MgSO4, filtered, and concentrated under reduced 

pressure. The residue was purified by chromatography (SiO2, EtOAc/hexanes; 1/5) to 

afford the corresponding 1-(2,4-dichlorophenyl)- 5-(substituted phenyl)-1,2,3-triazole. 

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole (36a). Yield, 85%, as a 

light yellow solid; mp 140-141 °C. 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.96-7.28 

(m, 7H). 13C NMR (400 MHz, CDCl3) δ 138.6, 135.8, 137.4, 136.0, 133.2, 132.7, 132.6, 

130.9, 130.3, 129.6, 129.2, 128.6, 124.9. Anal. (C14H8Cl3N3): C, 51.80; H, 2.48; N, 

12.95. Found: C, 51.80; H, 2.48; N, 12.79. 
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1-(2,4-Dichlorophenyl)-5-phenyl-1H-1,2,3-triazole (36b). Yield 68%, as a brown solid; 

mp 75-76 °C. 1H NMR (400 MHz, CDCl3) δ 7.91(s, 1H), 7.52v(s, 1H), 7.32-7.42 (m, 5H), 

7.19 (d, J = 8.0 Hz, 2H); 13C NMR (400 MHz, CDCl3) δ 139.4, 136.9, 133.3, 132.7, 

132.4, 130.6, 130.1, 129.5, 129.0, 128.2, 127.7, 126.2; Anal. (C14H9Cl2N3): C, 57.95; 

H,3.13; N, 14.48. Found: C, 57.67; H, 3.21; N, 13.79. 

1-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-1H-1,2,3-triazole (36c). Yield 57%, as a 

white solid; mp 130-131 °C. 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.53 (s, 1H), 

7.74 (s, 2H), 7.15-7.23 (m, 2H), 7.01-7.09 (m, 2H) ; 13C NMR (400 MHz, CDCl3)δ 164.5, 

138.6, 137.1, 132.4, 130.6, 130.1, 129.8, 129.7, 128.3, 122.3, 116.4, 116.2; Anal. 

(C14H8Cl2N3F): C, 54.57; H, 2.62; N, 13.64. Found: C, 54.51; H, 2.62; N, 13.53. 

5-(4-Bromophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,3-triazole (36d). Yield 60%, as a 

white crystalline solid; mp 157-157 °C. 1H NMR (400 MHz, CDCl3) δ 7.91 (s, 1H), 7.53 

(s, 1H), 7.42-7.48 (m, 4H), 7.06 (d, J = 8.8 Hz, 2H); 13C NMR (400 MHz, CDCl3) δ 

138.7, 137.5, 13.2, 132.8, 132.7, 132.6, 130.9, 130.3, 129.4, 128.6, 125.4, 124.3; Anal. 

(C14H8Cl2N3Br): C, 45.56; H, 2.18; N, 11.39. Found: C, 45.46; H, 2.11; N, 11.32. 
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1-(2,4-Dichlorophenyl)-5-(4-methylphenyl)-1H-1,2,3-triazole (36e). Yield 66%, as a 

yellow crystalline solid; mp 118-121 °C. 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.54 

(s, 1H), 7.42 (s, 2 H), 7.08-7.16 (m, 4H), 2.35 (3, H); 13C NMR (400 MHz, CDCl3) δ 

139.5, 136.99, 132.97, 132.2, 130.6, 130.2, 129.8, 129.7, 128.2, 127.997, 127.6, 123.3, 

21.3; Anal. (C15H11Cl2N3 ): C, 59.23; H, 3.65; N, 13.81. Found: C, 59.24; H, 3.94; N, 

12.63. 

1-(2,4-Dichlorophenyl)-5-(4-methoxyphenyl)-1H-1,2,3-triazole (36f). Yield 73%, as a 

yellow solid; mp 120-121.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.84(s, 1H), 7.52 (s, 1H), 

7.41 (s, 2H), 7.42 (d, J = 8.0 Hz, 2H), 6.85 (d, J =8.0 Hz, 2H), 3.81(s, 3H); 13C NMR 

(400 MHz, CDCl3) δ 160.4, 139.3, 136.8, 133.4, 132.7, 131.8, 130.5, 130.1, 129.1, 

128.2, 118.4, 114.4, 55.3.  Anal. (C15H11Cl2N3O): C, 56.27; H, 3.46; N, 13.12. Found: C, 

56.24; H, 3.52; N, 12.83. 

1-(2,4-Dichlorophenyl)-5-(4-trifluoromethylphenyl)-1H-1,2,3-triazole (36g). Yield 66%, 

as a white solid; mp 123-123.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.98 (s, 1H), 7.61 (d, J 

= 8.4 Hz, 2 H), 7.55 (s, 1H), 7.46 (s, 2H), 7.33 (d, J = 8.0 Hz, 2H); 13C NMR (400 MHz, 



 164 

CDCl3) δ 138.1, 137.4, 132.9, 132.8, 132.5 130.8. 130.0, 128.5, 128.0, 126.1, 126.0; 

Anal. (C15H8Cl2N3F3): C, 50.30; H, 2.25; N, 11.73. Found: C, 50.35; H, 2.03; N, 11.73. 

1-(2,4-Dichlorophenyl)-5-(4-phenoxyphenyl)-1H-1,2,3-triazole (36h). Yield 77%, as a 

yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.55 (s, 1H), 7.43 (s, 2H), 7.38 (t, J 

= 8.0 Hz, 2H), 7.13-7.19(m, 3H), 7.03 (d, J = 8.6Hz, 2H), 6.93 (d, J = 6.6 Hz, 2H); 13C 

NMR (400 MHz, CDCl3) δ 158.8, 155.7, 139.0, 137.0, 133.3, 132.7, 132.2, 130.6, 130.1, 

129.9, 129.3, 128.3, 124.3, 120.5, 119.9, 118.3; Anal. (C20H13Cl2N3O): C, 62.84; H, 

3.43; N, 10.99. Found: C, 63.13; H, 3.39; N, 10.81. 

1-(2,4-Dichlorophenyl)-5-(4-dimethylaminophenyl)-1H-1,2,3-triazole (36i). Yield 55%, 

as a yellow crystalline solid; mp 139.5-140.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.82(s, 

1H), 7.55 (s, 1H), 7.41 (s, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.59 (d, J =7.8 Hz, 2H), 2.93 (s, 

6H); 13C NMR (400 MHz, CDCl3) δ 150.6, 139.9, 136.6, 135.2, 133.8, 132.9, 131.2, 

130.5, 130.2, 128.5, 128.1, 111.9, 40.1; Anal. (C16H14Cl2N4 ): C, 57.67; H, 4.23; N, 

16.81. Found: C, 57.69; H, 4.20; N, 16.71. 
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1-(2,4-Dichlorophenyl)-5-(4-methoxy-2-methylphenyl)-1H-1,2,3-triazole (36j). Yield 

61%, as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.78 (s, 1H), 7.48 (s, 1H), 7.32-

7.33 (m, 2H), 6.90 (d, J = 8.4 Hz, 1H), 6.77 (s, 1H), 6.64 (d, J = 8.4 Hz, 1H), 3.79 (s, 

3H), 2.22 (s, 3H); 13C NMR (400 MHz, CDCl3) δ 160.4, 138.9, 138.3, 136.5, 133.7, 

131.3, 130.5, 130.0, 127.9, 117.4, 116.0, 111.5, 55.2, 20.4; Anal. (C16H13Cl2N3O ): C, 

57.50 ; H, 3.92; N, 12.57. Found: C, 57.51; H, 3.77; N, 12.44. 

1-(2,4-Dichlorophenyl)-5-(4-fluoro-3-methylphenyl)-1H-1,2,3-triazole (36k). Yield 

58%, as a white solid; mp 136-137 °C. 1H NMR (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.54 

(s, 1H), 7.42 (s, 2H), 7.97 (d, J = 7.2Hz, 1H), 6.89-6.98 (m, 2H), 2.23 (s, 3H); 13C NMR 

(400 MHz, CDCl3) δ 163.1, 160.6, 138.8, 137.0, 132.3, 131.3, 131.2, 130.6, 130.1, 

128.2, 126.9, 126.8, 115.8, 115.6, 14.5. Anal. (C15H10Cl2N3F ): C, 55.92; H, 3.13; N, 

13.04. Found: C, 56.06; H, 2.92; N, 12.99.  

1-(2,4-Dichlorophenyl)-5-(3-chlorophenyl)-1H-1,2,3-triazole (36l).  Yield 66%, as a 

waxy solid. 1H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H), 7.54 (t, J = 1.2, 1.6 Hz, 1H), 7.44 

(d, J = 1.2 Hz, 2H), 7.35 (dq, J = 7.3 Hz, 1H), 7.28-7.24 (m, 2H), 7.02(dt, J = 7.7 Hz, 
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3H); 13C NMR (400 MHz, CDCl3) δ 138.4, 137.5, 135.2, 133.1, 132.9, 132.8, 130.9, 

130.5, 130.3, 129.9, 128.6, 128.2, 128.1, 125.9. Anal. (C14H8Cl2N3•0.05 C7H8 ): C, 

52.36; H, 2.57; N, 12.76. Found: C, 52.22; H, 2.54; N, 12.37.  

General Procedure for synthesis of 5-(substituted phenyl)-1-(2,4-dichlorophenyl)-4-

(trimethylsilyl)-[1,2,3]triazoles (37) Under a nitrogen atmosphere, into a 25 mL round-

bottomed flask equipped with a condensor was added benzyl azide 24 (1.0 mmol) and 

(4-substituted)ethynyl trimethylsilane  (2.0 mmol), and toluene (7 mL). The mixture was 

stirred at reflux for 19 h and concentrated in vacuo. The residue was purified by 

chromatography (SiO2, EtOAc/hexanes; 1/5) to afford the corresponding 4-trimethylsilyl-

1-(2,4-dichlorophenyl)-5-(substituted phenyl)-1H-1,2,3-triazole (37). 

5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-(trimethylsilyl)-1H-1,2,3-triazole (37a) 

Yield 15%, as a brown powder; mp 139-139.5 °C. 1H NMR (400 MHz, CDCl3) δ 7.47 (s, 

1H), 7.28-7.35 (m, 3H), 7.11 (d, J=10 Hz, 2H), 0.21 (s, 9H); 13C NMR (400 MHz, CDCl3) 

δ 144.6, 143.96, 136.8, 135.7, 135.2, 132.8, 133.8, 130.9, 130.4, 130.2, 128.8, 127.9, 



 167 

126.3, 0.3; Anal. Calcd for C17H16Cl3N3Si : C, 51.46; H, 4.06; N, 10.59. Found: C, 51.93; 

H, 4.21; N, 10.17. 

5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-(trimethylsilyl)-1H-1,2,3-triazole (37b) 

Yield 7%, as a brown flaky solid; mp 148-149 °C. 1H NMR (400 MHz, CDCl3) δ 7.43-

7.48(m, 3H), 7.26-7.33(m, 2H), 7.01-7.06(m, 2H), 0.25(s, 9H); 13C NMR (400 MHz, 

CDCl3) δ 144.5, 143.9, 136.7, 132.8, 132.7, 131.7, 131.1, 130.3, 130.1, 127.9, 126.7, 

123.9, -0.7; Anal. Calcd for C17H16Cl2N3BrSi : C, 46.28; H, 3.66; N, 9.52. Found: C, 

46.44; H, 3.55; N, 9.27. 

1-(2,4-dichlorophenyl)-5-(4-methoxyphenyl)-4-(trimethylsilyl)-1H-1,2,3-triazole (37c) 

Yield 6%, as a dark brown oil. 1H NMR (400 MHz, CDCl3) δ 7.43(s, 1H), 7.254-7.283(m, 

2H), 7.06(d, J=8.4Hz, 2H), 6.819 (d, J=8.4 Hz, 2H), 3.78(s, 3H), 0.23(s, 9H) ; 13C NMR 

(400 MHz, CDCl3) δ 160.3, 145.0, 144.1, 136.4, 133.3, 132.9,130.9,130.3,119.6, 113.8, 

55.2, -0.773; Anal. Calcd for C18H19Cl2N3OSi•0.1C7H8 : C, 55.93; H,4.97; N, 10.46. 

Found: C, 55.68; H, 5.22; N, 10.20. 
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1-(2,4-dichlorophenyl)-4-(trimethylsilyl)-1H-1,2,3-triazol-5-yl)(phenyl)methanol (37d) 

Yield 9%, as a white crystalline solid; mp 189.5-190 °C. 1H NMR (400 MHz, CDCl3) δ 

7.39(s, 1H), 7.15-7.26(m, 3H), 7.13(d, J=7.6Hz, 1H), 6.96(d, J=6.96Hz, 2H), 6.82(bs, 

1H), 6.03(d, J=3.2Hz, 1H), 0.42(s, 9H); 13C NMR (400 MHz, CDCl3) δ 145.8, 144.4, 

139.7, 136.6, 135.2, 132.953, 130.4, 129.8, 128.4, 128.2, 127.3, 126.1, -0.3; Anal. 

Calcd for C18H19Cl2N3OSi : C, 55.10; H, 4.88; N, 10.71. Found: C, 54.90; H, 4.72; N, 

10.62. 

1-(2,4-dichlorophenyl)-4-iodo-5-phenyl-1H-1,2,3-triazole (38) Under a nitrogen 

atmosphere, a solution of ethyl magnesium bromide (1.5 mL, 1.0 M in THF) was added 

dropwise to neat 29 (1.05 mmol) or in anhydrous THF (1 mL) at rt. The mixture was 

heated to 50 °C and stirring was continued for 1 h. A solution of freshly made 2,4-

dichlorophenyl azide (24, 1 mmol) in 1 mL THF was added dropwise and the mixture 

was heated to 50 ⁰C for 1 h. The solution was allowed to cool to room temperature and 

1.5mmol iodine dissolved in 3ml of THF was added to it. This reaction mixture was 

heated at 50 ⁰C for 15h.The reaction was then quenched with 2ml of 1M Na2S2O3 and 
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diluted with EtOAc (30 mL). The organic fraction was separated. The aqueous fraction 

was extracted with EtOAc (2×30 mL). The combined organic fractions were washed with 

brine (30 mL), dried over anhydrous MgSO4, filtered, and concentrated under reduced 

pressure. The residue was purified by chromatography (SiO2, EtOAc/hexanes; 1/9). 

Yield 69%, as a pale yellow powder; mp 142-143 °C. 1H NMR (400 MHz, CDCl3) δ 

7.49(s, 1H), 7.36-7.40(m, 6H), 7.25-7.27(m, 1H); 13C NMR (400 MHz, CDCl3) δ 139.0, 

137.5, 132.8, 130.8, 130.3, 130.2, 129.5, 129.0, 128.4, 125.6, 110.7, 108.1, 89.9; Anal. 

Calcd for C14H8Cl2N3I: C, 40.02; H, 1.94; N, 10.10. Found: C, 40.21; H, 1.80; N, 9.91. 

Procedure for conversion of 38 to 38x: Compound 38 (0.5 mmol), 2,4-dichlorophenyl 

boronic acid (0.55 mmol), Pd2(dba)3 (0.025 mmol), tricyclohexylphosphine (0.06 mmol), 

and K3PO4 (0.85 mmol)were suspended in 8 mL THF + 2 mL H2O in a 30 mL pressure 

tube. The reaction vessel was purged with N2, sealed, and heated to 120 ⁰C for 16 

hours in an oil bath. The reaction mixture was partitioned between water (40 mL) and 

EtOAc (40 mL). The organic layer was separated and the aqueous layer was extracted 

with EtOAc (2 x 40 mL). Combined organic fractions were washed by sat. NaCl, dried 
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on anhydrous MgSO4, filtered, and concentrated in vacuo followed by column 

purification. 

Propyl 3-phenylpropiolate (39) Yield 19%, as a white powder; mp 328-329 °C. 1H 

NMR (400 MHz, CDCl3) δ 7.59(d, J=7.6Hz, 2H), 7.43-7.47(m, 1H), 7.36-7.39(m, 2H); 

13C NMR (400 MHz, CDCl3) δ 154.2, 132.9, 130.6, 128.5, 119.7, 118.5, 86.0, 80.7, 67.6, 

21.8, 10.3; Anal. Calcd for C12H12O2: C, 76.57; H, 6.43. Found: C, 76.04; H, 6.45. 

1-ethynyl-4-iodobenzene (43) In a nitrogen flushed three neck round bottom flask, 

potassium hydroxide (0.37 g, 6.6 mmol) was added to methanol (10 mL), 

dichloromethane (5mL) and 1-[2-(trimethylsilyl)ethynyl]-4-iodobenzene (1.00 g, 3.3 

mmol). After stirring for 2 h, the reaction mixture was quenched with water; extracted 

with dichloromethane, dried with magnesium sulfate and filtered. The solvent was 

removed under reduced pressure and the pure product was isolated by column 

chromatography (silica gel, 4:1 hexane/dichloromethane) and recrystallized from 

hexane. Yield 90%, as a pale white powder; mp 220-222 °C. 1H NMR (400 MHz, 

CDCl3) δ 7.66 (d, J= 8.4 Hz, 2H), 7.21 (d, J=8.4 Hz, 2H), 3.126 (s, 1H); 13C NMR (400 
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MHz, CDCl3) δ 155.3, 137.5, 135.2, 133.6, 78.6; Anal. Calcd for C8H5I•0.25H2O : C, 

41.32; H, 2.32. Found: C, 41.45; H, 2.32. 

13.2. CB1 Binding Assay.  

Binding of [3H]SR 141716A was carried out as previously described.63 Cerebellum 

were dissected on ice and suspended in 10 volumes of ice-cold buffer (50 mM Tris-HCl, 

3 mM MgCl2, 0.1 M EDTA, pH 7.4) and homogenized for 20 sec with a polytron (setting 

6).  The homogenates were centrifuged at 31000 x g for 10 min at 4 °C, the 

supernatants discarded and the tissue resuspended in buffer and centrifuged again.  

The final pellet was resuspended at a concentration of 5 mg wet weight/mL.  Triplicate 

samples of membranes were incubated in buffer for 2 h at 30 °C in a final volume of 1 

mL buffer (50 mM Tris-HCl, 3 mM MgCl2 , 0.1 mM EDTA, 100 mM NaCl, pH 7.7 with 

NaOH) in the presence of 0.5 nM [3H]SR 141716A and 30 µM GDP.  Non-specific 

binding was determined as binding in the presence of 1 µM CP 55,940.  The incubation 

was terminated by rapid filtration through Whatman GF/B glass fiber filter paper 

(presoaked in cold Tris buffer).  The filters were rinsed 3 times, each with 5 mL Tris 
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buffer containing 0.1% BSA and transferred to scintillation vials. Beckman Ready Value 

Scintillation Cocktail was added to the vials, which were counted the next day at an 

efficiency of approximately 40%.   

13.3. Locomotor Activity Studies.  

Male Sprague-Dawley rats (Charles River, Wilmington, MA) were used for all studies. 

Rats were housed two per cage in a temperature and humidity-controlled environment 

under a 12 h light/dark cycle.  Food and water were available ad libitum.  Rats were 

placed in 40.4 x 40.5 x 30.3 cm Plexiglas enclosures placed in Digiscan locomotor 

activity monitors (Omnitech Electronics, Columbus, OH).   

Panels of infrared beams (16 beams per side) with corresponding photodetectors are 

located on the sides of the chambers, and distance traveled, in centimeters, and 

horizontal activity (expressed as number of beam breaks) were measured in 5 min 

intervals for 60 min post-injection, as described previously.64, 65 Each dose was 

administered in a volume of 1 mL/kg. 
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APPENDIX 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full 

covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, 

angles and torsion angles; correlations between esds in cell parameters are only used when they are 

defined by crystal symmetry.  An approximate (isotropic) treatment of cell esds is used for estimating esds 

involving l.s. planes.  

   

1. Data_HS-57-4 (Compound 31a) (Figure 28) 

 

Table 1.  Crystal data and structure refinement for 31a. 

Identification code  HSP574 

Empirical formula  C18H14Cl3N3O2 

Formula weight  410.67 

Temperature  120(2) K 

Wavelength   0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 16.6316(8) Å  

 b = 19.5734(9) Å  

 c = 23.7372(11) Å  

Volume 7488.0(6) Å3 

Z 16 

Density (calculated) 1.457 Mg/m3 

Absorption coefficient 0.507 mm-1 

F(000) 3360 

Crystal size 0.60 x 0.60 x 0.20 mm3 

Theta range for data collection 1.71 to 27.50°. 

Index ranges -21<=h<=21, -25<=k<=25, -30<=l<=30 

Reflections collected 226453 

Independent reflections 17128 [R(int) = 0.0222] 

Completeness to theta = 27.50° 99.6 %  

Absorption correction Enpirical multi-scan 

Max. and min. transmission 0.9054 and 0.7506 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 17128 / 0 / 1161 
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Goodness-of-fit on F2 1.165 

Final R indices [I>2sigma(I)] R1 = 0.0295, wR2 = 0.0881 

R indices (all data) R1 = 0.0342, wR2 = 0.0933 

Largest diff. peak and hole 0.986 and -0.669 e.Å-3 

 

 Table 2.  Atomic coordinates ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) for 

31a.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

______________________________________________________________________________ 

 x y z U(eq) 

______________________________________________________________________________  

O(1D) -1417(1) 4865(1) 9222(1) 20(1) 

Cl(1C) 236(1) 729(1) 1964(1) 32(1) 

O(1C) -1446(1) 229(1) 4153(1) 21(1) 

Cl(1D) -90(1) 4410(1) 6931(1) 36(1) 

Cl(1A) -8511(1) 2780(1) 2261(1) 46(1) 

Cl(1B) -3398(1) 2603(1) 2501(1) 56(1) 

O(1A) -6342(1) 1842(1) 671(1) 28(1) 

N(1B) -1577(1) -68(1) 462(1) 22(1) 

N(1C) -13(1) 1005(1) 5360(1) 20(1) 

O(1B) -1221(1) 1699(1) 818(1) 28(1) 

N(1D) -76(1) 3902(1) 10359(1) 19(1) 

N(1A) -6410(1) 32(1) 460(1) 22(1) 

C(1A) -6068(1) 2853(1) 1613(1) 38(1) 

C(1D) -2645(1) 4770(1) 8150(1) 34(1) 

C(1C) -2723(1) 467(1) 3089(1) 38(1) 

C(1B) -1700(2) 3073(1) 1060(1) 56(1) 

O(2D) -1357(1) 4885(1) 10178(1) 23(1) 

Cl(2D) 3361(1) 2225(1) 9018(1) 30(1) 

O(2A) -5384(1) 1200(1) 389(1) 30(1) 

O(2C) -1386(1) 110(1) 5106(1) 24(1) 

Cl(2A) -9924(1) -1359(1) 1877(1) 32(1) 

N(2C) 616(1) 1392(1) 5347(1) 20(1) 

Cl(2B) -4826(1) -1521(1) 2054(1) 35(1) 

N(2D) 518(1) 3492(1) 10312(1) 20(1) 

Cl(2C) 3446(1) 2788(1) 4106(1) 39(1) 
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O(2B) -443(1) 1006(1) 405(1) 32(1) 

N(2A) -6930(1) -384(1) 614(1) 22(1) 

N(2B) -2146(1) -451(1) 590(1) 22(1) 

C(2C) -2488(1) -227(1) 3362(1) 31(1) 

C(2A) -6267(1) 3005(1) 963(1) 29(1) 

C(2D) -2390(1) 5442(1) 8465(1) 30(1) 

C(2B) -831(1) 2781(1) 1248(1) 38(1) 

Cl(3D) 497(1) 1971(1) 9667(1) 24(1) 

Cl(3C) 630(1) 2955(1) 4819(1) 27(1) 

Cl(3A) -6733(1) -721(1) 2021(1) 31(1) 

N(3A) -7386(1) -5(1) 906(1) 19(1) 

Cl(3B) -1771(1) -629(1) 2048(1) 28(1) 

N(3C) 662(1) 1422(1) 4781(1) 18(1) 

N(3D) 562(1) 3510(1) 9745(1) 17(1) 

N(3B) -2558(1) -59(1) 904(1) 19(1) 

C(3A) -5902(1) 2475(1) 634(1) 26(1) 

C(3C) -2175(1) -218(1) 4014(1) 23(1) 

C(3D) -2098(1) 5358(1) 9114(1) 22(1) 

C(3B) -648(1) 2264(1) 828(1) 34(1) 

C(4D) -1110(1) 4681(1) 9772(1) 17(1) 

C(4C) -1116(1) 337(1) 4716(1) 18(1) 

C(4B) -1021(1) 1104(1) 615(1) 22(1) 

C(4A) -6012(1) 1254(1) 549(1) 21(1) 

C(5D) -419(1) 4190(1) 9830(1) 17(1) 

C(5C) -379(1) 783(1) 4810(1) 18(1) 

C(5A) -6532(1) 674(1) 646(1) 20(1) 

C(5B) -1612(1) 566(1) 695(1) 20(1) 

C(6A) -7154(1) 658(1) 939(1) 18(1) 

C(6B) -2234(1) 580(1) 986(1) 19(1) 

C(6D) -12(1) 3944(1) 9428(1) 16(1) 

C(6C) 54(1) 1044(1) 4429(1) 17(1) 

C(7A) -7507(1) 1173(1) 1264(1) 19(1) 

C(7D) -78(1) 4065(1) 8806(1) 18(1) 

C(7B) -2530(1) 1089(1) 1347(1) 19(1) 

C(7C) 13(1) 965(1) 3806(1) 18(1) 

C(8C) 16(1) 1542(1) 3459(1) 22(1) 
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C(8B) -1973(1) 1362(1) 1834(1) 23(1) 

C(8A) -7351(1) 1133(1) 1866(1) 25(1) 

C(8D) -7(1) 4727(1) 8603(1) 21(1) 

C(9B) -2238(1) 1831(1) 2188(1) 27(1) 

C(9C) 74(1) 1470(1) 2888(1) 24(1) 

C(9D) -19(1) 4832(1) 8022(1) 24(1) 

C(9A) -7666(1) 1627(1) 2174(1) 30(1) 

C(10C) 121(1) 820(1) 2668(1) 24(1) 

C(10D) -101(1) 4275(1) 7652(1) 25(1) 

C(10B) -3063(1) 2021(1) 2052(1) 32(1) 

C(10A) -8135(1) 2154(1) 1871(1) 28(1) 

C(11C) 91(1) 239(1) 2999(1) 24(1) 

C(11D) -182(1) 3617(1) 7843(1) 27(1) 

C(11A) -8302(1) 2203(1) 1274(1) 29(1) 

C(11B) -3626(1) 1756(1) 1576(1) 34(1) 

C(12A) -7983(1) 1707(1) 971(1) 24(1) 

C(12D) -169(1) 3512(1) 8425(1) 23(1) 

C(12C) 39(1) 313(1) 3572(1) 22(1) 

C(12B) -3359(1) 1287(1) 1220(1) 28(1) 

C(13D) 1234(1) 3184(1) 9573(1) 17(1) 

C(13C) 1341(1) 1762(1) 4630(1) 18(1) 

C(13B) -3131(1) -381(1) 1182(1) 19(1) 

C(13A) -8007(1) -320(1) 1142(1) 19(1) 

C(14C) 1938(1) 1370(1) 4463(1) 23(1) 

C(14B) -3968(1) -423(1) 907(1) 23(1) 

C(14A) -8838(1) -265(1) 852(1) 21(1) 

C(14D) 1856(1) 3592(1) 9457(1) 22(1) 

C(15D) 2510(1) 3297(1) 9278(1) 23(1) 

C(15B) -4503(1) -767(1) 1179(1) 25(1) 

C(15A) -9439(1) -580(1) 1080(1) 22(1) 

C(15C) 2583(1) 1685(1) 4291(1) 25(1) 

C(16B) -4177(1) -1064(1) 1717(1) 24(1) 

C(16A) -9187(1) -944(1) 1595(1) 22(1) 

C(16C) 2627(1) 2395(1) 4305(1) 24(1) 

C(16D) 2533(1) 2591(1) 9228(1) 20(1) 

C(17B) -3342(1) -1026(1) 2000(1) 23(1) 
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C(17D) 1923(1) 2173(1) 9347(1) 20(1) 

C(17C) 2042(1) 2797(1) 4474(1) 24(1) 

C(17A) -8359(1) -997(1) 1896(1) 23(1) 

C(18D) 1265(1) 2477(1) 9518(1) 17(1) 

C(18C) 1389(1) 2472(1) 4632(1) 19(1) 

C(18A) -7771(1) -678(1) 1662(1) 21(1) 

C(18B) -2821(1) -678(1) 1724(1) 20(1) 

______________________________________________________________________________ 

 

 

Table 3.   Bond lengths [Å] and angles [°] for 31a. 

______________________________________________________________________________ 

O(1D)-C(4D)  1.3297(14) 

O(1D)-C(3D)  1.4612(13) 

Cl(1C)-C(10C)  1.7389(12) 

O(1C)-C(4C)  1.3306(14) 

O(1C)-C(3C)  1.4649(13) 

Cl(1D)-C(10D)  1.7362(12) 

Cl(1A)-C(10A)  1.7422(13) 

Cl(1B)-C(10B)  1.7432(13) 

O(1A)-C(4A)  1.3369(15) 

O(1A)-C(3A)  1.4541(14) 

N(1B)-N(2B)  1.3014(14) 

N(1B)-C(5B)  1.3656(15) 

N(1C)-N(2C)  1.2990(14) 

N(1C)-C(5C)  1.3687(15) 

O(1B)-C(4B)  1.3336(15) 

O(1B)-C(3B)  1.4572(15) 

N(1D)-N(2D)  1.3001(14) 

N(1D)-C(5D)  1.3668(15) 

N(1A)-N(2A)  1.3036(14) 

N(1A)-C(5A)  1.3636(15) 

C(1A)-C(2A)  1.524(2) 

C(1D)-C(2D)  1.522(2) 

C(1C)-C(2C)  1.515(2) 

C(1B)-C(2B)  1.516(3) 



 195 

O(2D)-C(4D)  1.2067(14) 

Cl(2D)-C(16D)  1.7311(11) 

O(2A)-C(4A)  1.2012(15) 

O(2C)-C(4C)  1.2087(14) 

Cl(2A)-C(16A)  1.7377(12) 

N(2C)-N(3C)  1.3642(13) 

Cl(2B)-C(16B)  1.7423(12) 

N(2D)-N(3D)  1.3669(13) 

Cl(2C)-C(16C)  1.7295(12) 

O(2B)-C(4B)  1.2021(16) 

N(2A)-N(3A)  1.3664(14) 

N(2B)-N(3B)  1.3667(13) 

C(2C)-C(3C)  1.5059(18) 

C(2A)-C(3A)  1.5128(18) 

C(2D)-C(3D)  1.5070(18) 

C(2B)-C(3B)  1.503(2) 

Cl(3D)-C(18D)  1.7215(11) 

Cl(3C)-C(18C)  1.7210(11) 

Cl(3A)-C(18A)  1.7275(12) 

N(3A)-C(6A)  1.3522(14) 

N(3A)-C(13A)  1.4308(14) 

Cl(3B)-C(18B)  1.7284(12) 

N(3C)-C(6C)  1.3605(14) 

N(3C)-C(13C)  1.4308(14) 

N(3D)-C(6D)  1.3575(14) 

N(3D)-C(13D)  1.4315(14) 

N(3B)-C(6B)  1.3568(14) 

N(3B)-C(13B)  1.4329(14) 

C(4D)-C(5D)  1.4778(15) 

C(4C)-C(5C)  1.4769(15) 

C(4B)-C(5B)  1.4831(16) 

C(4A)-C(5A)  1.4802(16) 

C(5D)-C(6D)  1.3857(15) 

C(5C)-C(6C)  1.3841(15) 

C(5A)-C(6A)  1.3811(16) 

C(5B)-C(6B)  1.3797(16) 
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C(6A)-C(7A)  1.4753(15) 

C(6B)-C(7B)  1.4755(15) 

C(6D)-C(7D)  1.4733(15) 

C(6C)-C(7C)  1.4718(15) 

C(7A)-C(12A)  1.3902(16) 

C(7A)-C(8A)  1.3909(16) 

C(7D)-C(12D)  1.3940(16) 

C(7D)-C(8D)  1.3970(16) 

C(7B)-C(12B)  1.3923(17) 

C(7B)-C(8B)  1.3957(16) 

C(7C)-C(12C)  1.3970(16) 

C(7C)-C(8C)  1.3983(16) 

C(8C)-C(9C)  1.3903(17) 

C(8B)-C(9B)  1.3881(17) 

C(8A)-C(9A)  1.3907(17) 

C(8D)-C(9D)  1.3898(16) 

C(9B)-C(10B)  1.3805(19) 

C(9C)-C(10C)  1.3851(18) 

C(9D)-C(10D)  1.3857(18) 

C(9A)-C(10A)  1.3826(19) 

C(10C)-C(11C)  1.3886(18) 

C(10D)-C(11D)  1.3827(19) 

C(10B)-C(11B)  1.378(2) 

C(10A)-C(11A)  1.380(2) 

C(11C)-C(12C)  1.3912(17) 

C(11D)-C(12D)  1.3911(17) 

C(11A)-C(12A)  1.3891(18) 

C(11B)-C(12B)  1.3921(19) 

C(13D)-C(14D)  1.3874(16) 

C(13D)-C(18D)  1.3923(15) 

C(13C)-C(14C)  1.3870(16) 

C(13C)-C(18C)  1.3907(15) 

C(13B)-C(14B)  1.3866(17) 

C(13B)-C(18B)  1.3891(16) 

C(13A)-C(14A)  1.3884(16) 

C(13A)-C(18A)  1.3896(16) 
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C(14C)-C(15C)  1.3849(16) 

C(14B)-C(15B)  1.3949(18) 

C(14A)-C(15A)  1.3931(16) 

C(14D)-C(15D)  1.3866(16) 

C(15D)-C(16D)  1.3877(16) 

C(15B)-C(16B)  1.3859(19) 

C(15A)-C(16A)  1.3863(18) 

C(15C)-C(16C)  1.3907(17) 

C(16B)-C(17B)  1.3869(18) 

C(16A)-C(17A)  1.3889(17) 

C(16C)-C(17C)  1.3853(17) 

C(16D)-C(17D)  1.3852(16) 

C(17B)-C(18B)  1.3862(16) 

C(17D)-C(18D)  1.3914(16) 

C(17C)-C(18C)  1.3880(16) 

C(17A)-C(18A)  1.3863(16) 

 

C(4D)-O(1D)-C(3D) 116.36(9) 

C(4C)-O(1C)-C(3C) 115.73(9) 

C(4A)-O(1A)-C(3A) 118.68(10) 

N(2B)-N(1B)-C(5B) 108.88(10) 

N(2C)-N(1C)-C(5C) 109.36(9) 

C(4B)-O(1B)-C(3B) 116.71(10) 

N(2D)-N(1D)-C(5D) 109.19(9) 

N(2A)-N(1A)-C(5A) 108.92(10) 

N(1C)-N(2C)-N(3C) 106.96(9) 

N(1D)-N(2D)-N(3D) 107.15(9) 

N(1A)-N(2A)-N(3A) 106.95(9) 

N(1B)-N(2B)-N(3B) 107.14(9) 

C(3C)-C(2C)-C(1C) 114.55(12) 

C(3A)-C(2A)-C(1A) 112.01(12) 

C(3D)-C(2D)-C(1D) 112.89(11) 

C(3B)-C(2B)-C(1B) 113.17(15) 

C(6A)-N(3A)-N(2A) 111.39(9) 

C(6A)-N(3A)-C(13A) 127.96(10) 

N(2A)-N(3A)-C(13A) 120.63(9) 
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C(6C)-N(3C)-N(2C) 111.49(9) 

C(6C)-N(3C)-C(13C) 127.72(10) 

N(2C)-N(3C)-C(13C) 120.46(9) 

C(6D)-N(3D)-N(2D) 111.22(9) 

C(6D)-N(3D)-C(13D) 127.76(9) 

N(2D)-N(3D)-C(13D) 120.25(9) 

C(6B)-N(3B)-N(2B) 111.20(9) 

C(6B)-N(3B)-C(13B) 128.73(10) 

N(2B)-N(3B)-C(13B) 118.94(9) 

O(1A)-C(3A)-C(2A) 106.29(10) 

O(1C)-C(3C)-C(2C) 107.19(10) 

O(1D)-C(3D)-C(2D) 106.84(10) 

O(1B)-C(3B)-C(2B) 106.52(11) 

O(2D)-C(4D)-O(1D) 124.81(10) 

O(2D)-C(4D)-C(5D) 123.48(11) 

O(1D)-C(4D)-C(5D) 111.72(9) 

O(2C)-C(4C)-O(1C) 124.93(11) 

O(2C)-C(4C)-C(5C) 123.57(11) 

O(1C)-C(4C)-C(5C) 111.49(9) 

O(2B)-C(4B)-O(1B) 125.79(11) 

O(2B)-C(4B)-C(5B) 124.24(11) 

O(1B)-C(4B)-C(5B) 109.96(10) 

O(2A)-C(4A)-O(1A) 125.55(11) 

O(2A)-C(4A)-C(5A) 124.70(11) 

O(1A)-C(4A)-C(5A) 109.75(10) 

N(1D)-C(5D)-C(6D) 109.06(10) 

N(1D)-C(5D)-C(4D) 119.44(10) 

C(6D)-C(5D)-C(4D) 131.50(10) 

N(1C)-C(5C)-C(6C) 109.03(10) 

N(1C)-C(5C)-C(4C) 119.21(10) 

C(6C)-C(5C)-C(4C) 131.76(11) 

N(1A)-C(5A)-C(6A) 109.38(10) 

N(1A)-C(5A)-C(4A) 121.16(10) 

C(6A)-C(5A)-C(4A) 129.39(11) 

N(1B)-C(5B)-C(6B) 109.45(10) 

N(1B)-C(5B)-C(4B) 119.83(10) 
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C(6B)-C(5B)-C(4B) 130.71(11) 

N(3A)-C(6A)-C(5A) 103.35(10) 

N(3A)-C(6A)-C(7A) 122.75(10) 

C(5A)-C(6A)-C(7A) 133.79(10) 

N(3B)-C(6B)-C(5B) 103.31(10) 

N(3B)-C(6B)-C(7B) 121.90(10) 

C(5B)-C(6B)-C(7B) 134.70(11) 

N(3D)-C(6D)-C(5D) 103.37(9) 

N(3D)-C(6D)-C(7D) 121.66(10) 

C(5D)-C(6D)-C(7D) 134.96(10) 

N(3C)-C(6C)-C(5C) 103.17(10) 

N(3C)-C(6C)-C(7C) 121.12(10) 

C(5C)-C(6C)-C(7C) 135.60(10) 

C(12A)-C(7A)-C(8A) 119.69(11) 

C(12A)-C(7A)-C(6A) 120.20(11) 

C(8A)-C(7A)-C(6A) 120.10(10) 

C(12D)-C(7D)-C(8D) 120.08(11) 

C(12D)-C(7D)-C(6D) 119.65(10) 

C(8D)-C(7D)-C(6D) 120.19(10) 

C(12B)-C(7B)-C(8B) 119.40(11) 

C(12B)-C(7B)-C(6B) 121.15(11) 

C(8B)-C(7B)-C(6B) 119.43(10) 

C(12C)-C(7C)-C(8C) 119.88(11) 

C(12C)-C(7C)-C(6C) 119.85(10) 

C(8C)-C(7C)-C(6C) 120.07(10) 

C(9C)-C(8C)-C(7C) 120.29(11) 

C(9B)-C(8B)-C(7B) 120.70(11) 

C(9A)-C(8A)-C(7A) 120.16(12) 

C(9D)-C(8D)-C(7D) 119.83(11) 

C(10B)-C(9B)-C(8B) 118.78(12) 

C(10C)-C(9C)-C(8C) 118.93(11) 

C(10D)-C(9D)-C(8D) 119.15(12) 

C(10A)-C(9A)-C(8A) 118.88(12) 

C(9C)-C(10C)-C(11C) 121.73(11) 

C(9C)-C(10C)-Cl(1C) 119.08(10) 

C(11C)-C(10C)-Cl(1C) 119.18(10) 
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C(11D)-C(10D)-C(9D) 121.88(11) 

C(11D)-C(10D)-Cl(1D) 119.40(10) 

C(9D)-C(10D)-Cl(1D) 118.71(10) 

C(11B)-C(10B)-C(9B) 121.69(12) 

C(11B)-C(10B)-Cl(1B) 119.49(11) 

C(9B)-C(10B)-Cl(1B) 118.82(11) 

C(11A)-C(10A)-C(9A) 122.08(12) 

C(11A)-C(10A)-Cl(1A) 119.32(10) 

C(9A)-C(10A)-Cl(1A) 118.60(11) 

C(10C)-C(11C)-C(12C) 119.17(11) 

C(10D)-C(11D)-C(12D) 118.90(12) 

C(10A)-C(11A)-C(12A) 118.53(12) 

C(10B)-C(11B)-C(12B) 119.44(12) 

C(11A)-C(12A)-C(7A) 120.66(12) 

C(11D)-C(12D)-C(7D) 120.16(11) 

C(11C)-C(12C)-C(7C) 119.95(11) 

C(11B)-C(12B)-C(7B) 119.99(12) 

C(14D)-C(13D)-C(18D) 120.43(10) 

C(14D)-C(13D)-N(3D) 118.26(10) 

C(18D)-C(13D)-N(3D) 121.30(10) 

C(14C)-C(13C)-C(18C) 120.62(10) 

C(14C)-C(13C)-N(3C) 118.59(10) 

C(18C)-C(13C)-N(3C) 120.76(10) 

C(14B)-C(13B)-C(18B) 120.79(11) 

C(14B)-C(13B)-N(3B) 120.87(11) 

C(18B)-C(13B)-N(3B) 118.28(10) 

C(14A)-C(13A)-C(18A) 120.57(11) 

C(14A)-C(13A)-N(3A) 119.96(10) 

C(18A)-C(13A)-N(3A) 119.47(10) 

C(15C)-C(14C)-C(13C) 119.89(11) 

C(13B)-C(14B)-C(15B) 119.39(12) 

C(13A)-C(14A)-C(15A) 119.65(11) 

C(15D)-C(14D)-C(13D) 120.01(11) 

C(14D)-C(15D)-C(16D) 118.79(11) 

C(16B)-C(15B)-C(14B) 118.65(11) 

C(16A)-C(15A)-C(14A) 118.68(11) 
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C(14C)-C(15C)-C(16C) 118.58(11) 

C(15B)-C(16B)-C(17B) 122.78(11) 

C(15B)-C(16B)-Cl(2B) 119.49(10) 

C(17B)-C(16B)-Cl(2B) 117.72(10) 

C(15A)-C(16A)-C(17A) 122.53(11) 

C(15A)-C(16A)-Cl(2A) 119.39(9) 

C(17A)-C(16A)-Cl(2A) 118.08(10) 

C(17C)-C(16C)-C(15C) 122.52(11) 

C(17C)-C(16C)-Cl(2C) 118.92(9) 

C(15C)-C(16C)-Cl(2C) 118.56(9) 

C(17D)-C(16D)-C(15D) 122.24(10) 

C(17D)-C(16D)-Cl(2D) 119.27(9) 

C(15D)-C(16D)-Cl(2D) 118.48(9) 

C(18B)-C(17B)-C(16B) 117.70(11) 

C(16D)-C(17D)-C(18D) 118.33(10) 

C(16C)-C(17C)-C(18C) 118.02(11) 

C(18A)-C(17A)-C(16A) 117.93(11) 

C(17D)-C(18D)-C(13D) 120.19(10) 

C(17D)-C(18D)-Cl(3D) 119.37(9) 

C(13D)-C(18D)-Cl(3D) 120.43(9) 

C(17C)-C(18C)-C(13C) 120.34(10) 

C(17C)-C(18C)-Cl(3C) 119.32(9) 

C(13C)-C(18C)-Cl(3C) 120.33(9) 

C(17A)-C(18A)-C(13A) 120.63(11) 

C(17A)-C(18A)-Cl(3A) 119.93(9) 

C(13A)-C(18A)-Cl(3A) 119.43(9) 

C(17B)-C(18B)-C(13B) 120.69(11) 

C(17B)-C(18B)-Cl(3B) 119.89(9) 

C(13B)-C(18B)-Cl(3B) 119.40(9) 

_____________________________________________________________  

 

 

 

 

 



 202 

Table 4.   Anisotropic displacement parameters (Å2x 103) for 31a.  The anisotropic 

displacement factor exponent takes the form:  - 2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1D) 20(1)  21(1) 21(1)  0(1) 7(1)  6(1) 

Cl(1C) 34(1)  44(1) 20(1)  -2(1) 8(1)  7(1) 

O(1C) 20(1)  20(1) 25(1)  0(1) 8(1)  -4(1) 

Cl(1D) 42(1)  50(1) 17(1)  3(1) 9(1)  2(1) 

Cl(1A) 61(1)  28(1) 60(1)  -11(1) 33(1)  7(1) 

Cl(1B) 44(1)  53(1) 74(1)  -39(1) 20(1)  4(1) 

O(1A) 28(1)  20(1) 40(1)  -1(1) 17(1)  -5(1) 

N(1B) 25(1)  20(1) 21(1)  1(1) 8(1)  1(1) 

N(1C) 22(1)  17(1) 23(1)  1(1) 9(1)  1(1) 

O(1B) 31(1)  19(1) 41(1)  -3(1) 18(1)  -5(1) 

N(1D) 22(1)  17(1) 20(1)  -1(1) 7(1)  0(1) 

N(1A) 22(1)  20(1) 23(1)  1(1) 8(1)  1(1) 

C(1A) 49(1)  35(1) 32(1)  -4(1) 15(1)  0(1) 

C(1D) 34(1)  41(1) 25(1)  -3(1) 0(1)  4(1) 

C(1C) 45(1)  37(1) 28(1)  3(1) 0(1)  -9(1) 

C(1B) 82(2)  31(1) 61(1)  2(1) 30(1)  16(1) 

O(2D) 24(1)  25(1) 23(1)  -4(1) 9(1)  4(1) 

Cl(2D) 24(1)  27(1) 42(1)  -9(1) 16(1)  3(1) 

O(2A) 27(1)  29(1) 40(1)  -2(1) 17(1)  -4(1) 

O(2C) 23(1)  25(1) 28(1)  4(1) 11(1)  -2(1) 

Cl(2A) 28(1)  39(1) 35(1)  1(1) 17(1)  -8(1) 

N(2C) 24(1)  19(1) 21(1)  0(1) 10(1)  0(1) 

Cl(2B) 32(1)  31(1) 51(1)  0(1) 25(1)  -5(1) 

N(2D) 24(1)  19(1) 18(1)  1(1) 8(1)  2(1) 

Cl(2C) 26(1)  30(1) 69(1)  13(1) 24(1)  -3(1) 

O(2B) 33(1)  31(1) 38(1)  -5(1) 20(1)  -6(1) 

N(2A) 24(1)  20(1) 25(1)  0(1) 10(1)  1(1) 

N(2B) 27(1)  19(1) 22(1)  -2(1) 9(1)  2(1) 

C(2C) 34(1)  29(1) 30(1)  -6(1) 8(1)  -8(1) 

C(2A) 35(1)  21(1) 35(1)  3(1) 15(1)  -2(1) 
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C(2D) 32(1)  29(1) 28(1)  6(1) 6(1)  9(1) 

C(2B) 61(1)  25(1) 31(1)  -3(1) 16(1)  -12(1) 

Cl(3D) 22(1)  19(1) 32(1)  -1(1) 9(1)  -4(1) 

Cl(3C) 28(1)  17(1) 41(1)  -1(1) 18(1)  3(1) 

Cl(3A) 21(1)  32(1) 36(1)  14(1) 2(1)  -1(1) 

N(3A) 22(1)  16(1) 21(1)  0(1) 7(1)  0(1) 

Cl(3B) 20(1)  35(1) 28(1)  7(1) 3(1)  -2(1) 

N(3C) 19(1)  15(1) 20(1)  0(1) 7(1)  -1(1) 

N(3D) 19(1)  15(1) 18(1)  1(1) 6(1)  2(1) 

N(3B) 22(1)  16(1) 20(1)  -2(1) 6(1)  -1(1) 

C(3A) 29(1)  20(1) 30(1)  1(1) 12(1)  -6(1) 

C(3C) 21(1)  20(1) 30(1)  -1(1) 8(1)  -6(1) 

C(3D) 21(1)  19(1) 26(1)  0(1) 6(1)  5(1) 

C(3B) 40(1)  24(1) 42(1)  -4(1) 19(1)  -13(1) 

C(4D) 16(1)  14(1) 22(1)  -3(1) 6(1)  -3(1) 

C(4C) 18(1)  14(1) 25(1)  2(1) 9(1)  3(1) 

C(4B) 24(1)  22(1) 22(1)  1(1) 8(1)  -2(1) 

C(4A) 22(1)  22(1) 18(1)  0(1) 5(1)  -2(1) 

C(5D) 18(1)  14(1) 20(1)  -2(1) 6(1)  -1(1) 

C(5C) 19(1)  15(1) 23(1)  2(1) 8(1)  2(1) 

C(5A) 20(1)  20(1) 18(1)  0(1) 5(1)  0(1) 

C(5B) 22(1)  19(1) 20(1)  0(1) 6(1)  1(1) 

C(6A) 18(1)  18(1) 18(1)  2(1) 4(1)  -1(1) 

C(6B) 20(1)  16(1) 19(1)  1(1) 3(1)  0(1) 

C(6D) 17(1)  13(1) 20(1)  -1(1) 5(1)  0(1) 

C(6C) 17(1)  13(1) 22(1)  0(1) 6(1)  1(1) 

C(7A) 19(1)  17(1) 22(1)  0(1) 7(1)  -2(1) 

C(7D) 17(1)  20(1) 17(1)  0(1) 5(1)  2(1) 

C(7B) 22(1)  15(1) 21(1)  0(1) 7(1)  0(1) 

C(7C) 16(1)  19(1) 21(1)  0(1) 6(1)  0(1) 

C(8C) 23(1)  19(1) 22(1)  0(1) 5(1)  0(1) 

C(8B) 20(1)  24(1) 25(1)  -1(1) 5(1)  1(1) 

C(8A) 32(1)  20(1) 23(1)  1(1) 8(1)  2(1) 

C(8D) 21(1)  20(1) 21(1)  0(1) 6(1)  2(1) 

C(9B) 29(1)  26(1) 27(1)  -6(1) 6(1)  -2(1) 

C(9C) 26(1)  25(1) 22(1)  4(1) 5(1)  0(1) 
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C(9D) 23(1)  25(1) 23(1)  5(1) 6(1)  2(1) 

C(9A) 42(1)  25(1) 24(1)  -2(1) 13(1)  1(1) 

C(10C) 20(1)  32(1) 18(1)  -2(1) 5(1)  2(1) 

C(10D) 22(1)  36(1) 16(1)  2(1) 4(1)  2(1) 

C(10B) 32(1)  24(1) 42(1)  -12(1) 15(1)  2(1) 

C(10A) 31(1)  18(1) 39(1)  -6(1) 18(1)  0(1) 

C(11C) 24(1)  23(1) 26(1)  -5(1) 7(1)  0(1) 

C(11D) 30(1)  29(1) 20(1)  -5(1) 5(1)  1(1) 

C(11A) 26(1)  22(1) 39(1)  4(1) 11(1)  5(1) 

C(11B) 23(1)  30(1) 49(1)  -10(1) 7(1)  5(1) 

C(12A) 23(1)  26(1) 25(1)  4(1) 6(1)  3(1) 

C(12D) 26(1)  21(1) 22(1)  -2(1) 5(1)  0(1) 

C(12C) 23(1)  19(1) 25(1)  -1(1) 8(1)  -1(1) 

C(12B) 23(1)  23(1) 34(1)  -5(1) 2(1)  2(1) 

C(13D) 18(1)  15(1) 18(1)  0(1) 5(1)  3(1) 

C(13C) 17(1)  16(1) 21(1)  2(1) 6(1)  -2(1) 

C(13B) 22(1)  15(1) 22(1)  -3(1) 8(1)  -1(1) 

C(13A) 22(1)  15(1) 22(1)  -1(1) 9(1)  -2(1) 

C(14C) 23(1)  15(1) 31(1)  3(1) 11(1)  2(1) 

C(14B) 24(1)  20(1) 25(1)  -4(1) 5(1)  0(1) 

C(14A) 24(1)  19(1) 20(1)  -2(1) 6(1)  0(1) 

C(14D) 25(1)  14(1) 28(1)  -1(1) 11(1)  0(1) 

C(15D) 23(1)  18(1) 29(1)  -3(1) 11(1)  -3(1) 

C(15B) 20(1)  22(1) 33(1)  -6(1) 7(1)  0(1) 

C(15A) 20(1)  22(1) 26(1)  -5(1) 7(1)  -1(1) 

C(15C) 21(1)  21(1) 36(1)  6(1) 12(1)  5(1) 

C(16B) 25(1)  18(1) 33(1)  -5(1) 16(1)  -3(1) 

C(16A) 24(1)  21(1) 26(1)  -4(1) 12(1)  -3(1) 

C(16C) 17(1)  22(1) 34(1)  8(1) 8(1)  -2(1) 

C(16D) 19(1)  20(1) 24(1)  -4(1) 7(1)  3(1) 

C(17B) 27(1)  20(1) 24(1)  -2(1) 10(1)  0(1) 

C(17D) 22(1)  14(1) 24(1)  -3(1) 5(1)  2(1) 

C(17C) 22(1)  15(1) 33(1)  3(1) 7(1)  -2(1) 

C(17A) 27(1)  20(1) 24(1)  1(1) 9(1)  -2(1) 

C(18D) 18(1)  15(1) 18(1)  0(1) 3(1)  -1(1) 

C(18C) 18(1)  15(1) 23(1)  0(1) 5(1)  1(1) 
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C(18A) 20(1)  18(1) 24(1)  1(1) 4(1)  -1(1) 

C(18B) 20(1)  19(1) 23(1)  -3(1) 6(1)  -1(1) 

______________________________________________________________________________  

 

 

 Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) for 31a. 

______________________________________________________________________________ 

 x  y  z  U(eq) 

______________________________________________________________________________  

H(1AC) -6266(14) 2400(12) 1696(9) 57(6) 

H(1AB) -6305(13) 3200(11) 1834(9) 58(6) 

H(1AA) -5478(13) 2855(10) 1771(9) 44(5) 

H(1DC) -2892(13) 4853(11) 7747(9) 51(6) 

H(1DB) -2155(13) 4486(10) 8184(9) 48(5) 

H(1DA) -3070(13) 4521(10) 8314(9) 48(5) 

H(1CC) -2269(14) 760(11) 3141(9) 48(5) 

H(1CB) -3159(13) 685(10) 3250(9) 47(5) 

H(1CA) -2936(13) 431(10) 2676(9) 50(6) 

H(1BC) -2105(16) 2708(13) 1017(11) 72(7) 

H(1BB) -1727(14) 3321(12) 712(10) 63(7) 

H(1BA) -1814(18) 3408(15) 1352(12) 92(9) 

H(2CB) -2056(12) -446(10) 3203(8) 44(5) 

H(2CA) -2981(13) -532(10) 3264(8) 44(5) 

H(2AB) -6848(11) 3017(9) 802(7) 31(4) 

H(2AA) -6062(11) 3441(9) 899(8) 37(5) 

H(2DB) -1936(12) 5667(9) 8324(8) 37(5) 

H(2DA) -2852(12) 5747(10) 8401(8) 42(5) 

H(2BB) -756(11) 2593(10) 1628(8) 38(5) 

H(2BA) -431(12) 3139(10) 1281(8) 46(5) 

H(3AB) -5965(10) 2591(9) 230(8) 31(4) 

H(3AA) -5292(10) 2416(8) 808(7) 27(4) 

H(3CB) -2599(10) -51(8) 4193(7) 26(4) 

H(3CA) -2016(10) -660(8) 4168(7) 24(4) 

H(3DB) -2535(10) 5189(8) 9283(7) 25(4) 

H(3DA) -1902(10) 5768(8) 9302(7) 25(4) 
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H(3BB) -743(11) 2448(9) 442(8) 38(5) 

H(3BA) -66(13) 2102(10) 943(9) 46(5) 

H(8C) -34(10) 1983(9) 3617(7) 29(4) 

H(8B) -1417(11) 1222(9) 1929(7) 32(4) 

H(8A) -7020(10) 772(8) 2062(7) 27(4) 

H(8D) 59(10) 5108(9) 8857(7) 29(4) 

H(9B) -1842(12) 2030(10) 2517(9) 46(5) 

H(9C) 93(11) 1876(9) 2652(8) 33(4) 

H(9D) 46(11) 5286(9) 7885(8) 33(4) 

H(9A) -7566(11) 1603(9) 2587(8) 40(5) 

H(11C) 140(11) -208(9) 2835(8) 33(4) 

H(11D) -231(11) 3229(9) 7583(8) 36(4) 

H(11A) -8615(11) 2569(9) 1071(7) 34(4) 

H(11B) -4180(11) 1896(9) 1494(8) 36(4) 

H(12A) -8080(10) 1733(9) 566(7) 31(4) 

H(12D) -222(10) 3062(8) 8572(7) 23(4) 

H(12C) 53(11) -81(9) 3806(8) 32(4) 

H(12B) -3740(11) 1119(9) 895(7) 31(4) 

H(14C) 1902(10) 899(9) 4471(7) 27(4) 

H(14B) -4174(10) -217(8) 531(7) 28(4) 

H(14A) -8991(10) -22(8) 505(7) 24(4) 

H(14D) 1826(11) 4066(9) 9495(7) 30(4) 

H(15D) 2928(11) 3573(9) 9182(8) 35(4) 

H(15B) -5060(11) -800(8) 1000(7) 28(4) 

H(15A) -10001(11) -552(8) 885(7) 28(4) 

H(15C) 2989(12) 1434(10) 4158(8) 41(5) 

H(17B) -3150(10) -1248(9) 2363(7) 29(4) 

H(17D) 1957(10) 1695(8) 9312(7) 24(4) 

H(17C) 2095(10) 3283(9) 4477(7) 29(4) 

H(17A) -8219(11) -1255(9) 2249(8) 30(4) 

___________________________________________________________________________ 
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 Table 6.  Torsion angles [°] for 31a. 

________________________________________________________________  

C(5C)-N(1C)-N(2C)-N(3C) -0.05(12) 

C(5D)-N(1D)-N(2D)-N(3D) -0.17(12) 

C(5A)-N(1A)-N(2A)-N(3A) -0.63(13) 

C(5B)-N(1B)-N(2B)-N(3B) 0.56(13) 

N(1A)-N(2A)-N(3A)-C(6A) 0.07(13) 

N(1A)-N(2A)-N(3A)-C(13A) -178.90(10) 

N(1C)-N(2C)-N(3C)-C(6C) -0.45(12) 

N(1C)-N(2C)-N(3C)-C(13C) -174.30(9) 

N(1D)-N(2D)-N(3D)-C(6D) 0.44(12) 

N(1D)-N(2D)-N(3D)-C(13D) 171.17(9) 

N(1B)-N(2B)-N(3B)-C(6B) -1.22(13) 

N(1B)-N(2B)-N(3B)-C(13B) -170.12(10) 

C(4A)-O(1A)-C(3A)-C(2A) -163.14(11) 

C(1A)-C(2A)-C(3A)-O(1A) 67.05(15) 

C(4C)-O(1C)-C(3C)-C(2C) 175.51(10) 

C(1C)-C(2C)-C(3C)-O(1C) -58.86(15) 

C(4D)-O(1D)-C(3D)-C(2D) -175.25(10) 

C(1D)-C(2D)-C(3D)-O(1D) 56.44(14) 

C(4B)-O(1B)-C(3B)-C(2B) -160.86(12) 

C(1B)-C(2B)-C(3B)-O(1B) -62.80(17) 

C(3D)-O(1D)-C(4D)-O(2D) 0.67(16) 

C(3D)-O(1D)-C(4D)-C(5D) -179.23(9) 

C(3C)-O(1C)-C(4C)-O(2C) -1.73(16) 

C(3C)-O(1C)-C(4C)-C(5C) 179.05(9) 

C(3B)-O(1B)-C(4B)-O(2B) -5.4(2) 

C(3B)-O(1B)-C(4B)-C(5B) 173.65(11) 

C(3A)-O(1A)-C(4A)-O(2A) -2.62(19) 

C(3A)-O(1A)-C(4A)-C(5A) 176.87(10) 

N(2D)-N(1D)-C(5D)-C(6D) -0.14(13) 

N(2D)-N(1D)-C(5D)-C(4D) -179.80(9) 

O(2D)-C(4D)-C(5D)-N(1D) 5.57(17) 

O(1D)-C(4D)-C(5D)-N(1D) -174.53(10) 

O(2D)-C(4D)-C(5D)-C(6D) -174.00(12) 

O(1D)-C(4D)-C(5D)-C(6D) 5.90(16) 
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N(2C)-N(1C)-C(5C)-C(6C) 0.51(13) 

N(2C)-N(1C)-C(5C)-C(4C) -179.48(10) 

O(2C)-C(4C)-C(5C)-N(1C) -5.89(17) 

O(1C)-C(4C)-C(5C)-N(1C) 173.33(9) 

O(2C)-C(4C)-C(5C)-C(6C) 174.12(12) 

O(1C)-C(4C)-C(5C)-C(6C) -6.66(17) 

N(2A)-N(1A)-C(5A)-C(6A) 0.97(13) 

N(2A)-N(1A)-C(5A)-C(4A) 178.20(10) 

O(2A)-C(4A)-C(5A)-N(1A) -11.71(19) 

O(1A)-C(4A)-C(5A)-N(1A) 168.80(11) 

O(2A)-C(4A)-C(5A)-C(6A) 164.90(13) 

O(1A)-C(4A)-C(5A)-C(6A) -14.58(17) 

N(2B)-N(1B)-C(5B)-C(6B) 0.26(13) 

N(2B)-N(1B)-C(5B)-C(4B) 179.62(10) 

O(2B)-C(4B)-C(5B)-N(1B) -7.93(19) 

O(1B)-C(4B)-C(5B)-N(1B) 173.03(11) 

O(2B)-C(4B)-C(5B)-C(6B) 171.28(13) 

O(1B)-C(4B)-C(5B)-C(6B) -7.76(18) 

N(2A)-N(3A)-C(6A)-C(5A) 0.50(13) 

C(13A)-N(3A)-C(6A)-C(5A) 179.37(11) 

N(2A)-N(3A)-C(6A)-C(7A) -176.02(10) 

C(13A)-N(3A)-C(6A)-C(7A) 2.85(18) 

N(1A)-C(5A)-C(6A)-N(3A) -0.87(13) 

C(4A)-C(5A)-C(6A)-N(3A) -177.81(11) 

N(1A)-C(5A)-C(6A)-C(7A) 175.07(12) 

C(4A)-C(5A)-C(6A)-C(7A) -1.9(2) 

N(2B)-N(3B)-C(6B)-C(5B) 1.32(12) 

C(13B)-N(3B)-C(6B)-C(5B) 168.85(11) 

N(2B)-N(3B)-C(6B)-C(7B) -175.68(10) 

C(13B)-N(3B)-C(6B)-C(7B) -8.16(18) 

N(1B)-C(5B)-C(6B)-N(3B) -0.96(13) 

C(4B)-C(5B)-C(6B)-N(3B) 179.77(12) 

N(1B)-C(5B)-C(6B)-C(7B) 175.47(12) 

C(4B)-C(5B)-C(6B)-C(7B) -3.8(2) 

N(2D)-N(3D)-C(6D)-C(5D) -0.50(12) 

C(13D)-N(3D)-C(6D)-C(5D) -170.36(10) 
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N(2D)-N(3D)-C(6D)-C(7D) 178.66(10) 

C(13D)-N(3D)-C(6D)-C(7D) 8.80(17) 

N(1D)-C(5D)-C(6D)-N(3D) 0.39(12) 

C(4D)-C(5D)-C(6D)-N(3D) 179.99(11) 

N(1D)-C(5D)-C(6D)-C(7D) -178.61(12) 

C(4D)-C(5D)-C(6D)-C(7D) 1.0(2) 

N(2C)-N(3C)-C(6C)-C(5C) 0.74(12) 

C(13C)-N(3C)-C(6C)-C(5C) 174.03(10) 

N(2C)-N(3C)-C(6C)-C(7C) -176.06(9) 

C(13C)-N(3C)-C(6C)-C(7C) -2.77(17) 

N(1C)-C(5C)-C(6C)-N(3C) -0.74(12) 

C(4C)-C(5C)-C(6C)-N(3C) 179.25(11) 

N(1C)-C(5C)-C(6C)-C(7C) 175.34(12) 

C(4C)-C(5C)-C(6C)-C(7C) -4.7(2) 

N(3A)-C(6A)-C(7A)-C(12A) -114.57(13) 

C(5A)-C(6A)-C(7A)-C(12A) 70.13(18) 

N(3A)-C(6A)-C(7A)-C(8A) 66.66(16) 

C(5A)-C(6A)-C(7A)-C(8A) -108.64(15) 

N(3D)-C(6D)-C(7D)-C(12D) 53.79(15) 

C(5D)-C(6D)-C(7D)-C(12D) -127.36(14) 

N(3D)-C(6D)-C(7D)-C(8D) -122.95(12) 

C(5D)-C(6D)-C(7D)-C(8D) 55.90(18) 

N(3B)-C(6B)-C(7B)-C(12B) -58.01(16) 

C(5B)-C(6B)-C(7B)-C(12B) 126.10(15) 

N(3B)-C(6B)-C(7B)-C(8B) 120.16(13) 

C(5B)-C(6B)-C(7B)-C(8B) -55.74(19) 

N(3C)-C(6C)-C(7C)-C(12C) 122.01(12) 

C(5C)-C(6C)-C(7C)-C(12C) -53.53(18) 

N(3C)-C(6C)-C(7C)-C(8C) -52.82(15) 

C(5C)-C(6C)-C(7C)-C(8C) 131.64(14) 

C(12C)-C(7C)-C(8C)-C(9C) -2.22(17) 

C(6C)-C(7C)-C(8C)-C(9C) 172.61(11) 

C(12B)-C(7B)-C(8B)-C(9B) -0.45(19) 

C(6B)-C(7B)-C(8B)-C(9B) -178.64(11) 

C(12A)-C(7A)-C(8A)-C(9A) -0.46(19) 

C(6A)-C(7A)-C(8A)-C(9A) 178.32(12) 
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C(12D)-C(7D)-C(8D)-C(9D) -0.67(17) 

C(6D)-C(7D)-C(8D)-C(9D) 176.06(10) 

C(7B)-C(8B)-C(9B)-C(10B) 0.3(2) 

C(7C)-C(8C)-C(9C)-C(10C) 0.46(18) 

C(7D)-C(8D)-C(9D)-C(10D) 0.00(18) 

C(7A)-C(8A)-C(9A)-C(10A) 0.2(2) 

C(8C)-C(9C)-C(10C)-C(11C) 1.75(19) 

C(8C)-C(9C)-C(10C)-Cl(1C) -177.36(9) 

C(8D)-C(9D)-C(10D)-C(11D) 0.74(19) 

C(8D)-C(9D)-C(10D)-Cl(1D) -178.41(9) 

C(8B)-C(9B)-C(10B)-C(11B) 0.1(2) 

C(8B)-C(9B)-C(10B)-Cl(1B) 179.30(11) 

C(8A)-C(9A)-C(10A)-C(11A) 0.2(2) 

C(8A)-C(9A)-C(10A)-Cl(1A) -178.89(10) 

C(9C)-C(10C)-C(11C)-C(12C) -2.16(18) 

Cl(1C)-C(10C)-C(11C)-C(12C) 176.95(9) 

C(9D)-C(10D)-C(11D)-C(12D) -0.79(19) 

Cl(1D)-C(10D)-C(11D)-C(12D) 178.34(10) 

C(9A)-C(10A)-C(11A)-C(12A) -0.3(2) 

Cl(1A)-C(10A)-C(11A)-C(12A) 178.80(10) 

C(9B)-C(10B)-C(11B)-C(12B) -0.4(2) 

Cl(1B)-C(10B)-C(11B)-C(12B) -179.56(12) 

C(10A)-C(11A)-C(12A)-C(7A) -0.03(19) 

C(8A)-C(7A)-C(12A)-C(11A) 0.38(18) 

C(6A)-C(7A)-C(12A)-C(11A) -178.39(11) 

C(10D)-C(11D)-C(12D)-C(7D) 0.11(19) 

C(8D)-C(7D)-C(12D)-C(11D) 0.61(18) 

C(6D)-C(7D)-C(12D)-C(11D) -176.13(11) 

C(10C)-C(11C)-C(12C)-C(7C) 0.35(18) 

C(8C)-C(7C)-C(12C)-C(11C) 1.80(17) 

C(6C)-C(7C)-C(12C)-C(11C) -173.04(11) 

C(10B)-C(11B)-C(12B)-C(7B) 0.2(2) 

C(8B)-C(7B)-C(12B)-C(11B) 0.2(2) 

C(6B)-C(7B)-C(12B)-C(11B) 178.35(12) 

C(6D)-N(3D)-C(13D)-C(14D) 64.04(16) 

N(2D)-N(3D)-C(13D)-C(14D) -105.01(12) 
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C(6D)-N(3D)-C(13D)-C(18D) -115.33(13) 

N(2D)-N(3D)-C(13D)-C(18D) 75.62(14) 

C(6C)-N(3C)-C(13C)-C(14C) -64.99(16) 

N(2C)-N(3C)-C(13C)-C(14C) 107.76(13) 

C(6C)-N(3C)-C(13C)-C(18C) 113.10(13) 

N(2C)-N(3C)-C(13C)-C(18C) -74.14(14) 

C(6B)-N(3B)-C(13B)-C(14B) 100.14(14) 

N(2B)-N(3B)-C(13B)-C(14B) -93.16(13) 

C(6B)-N(3B)-C(13B)-C(18B) -82.66(15) 

N(2B)-N(3B)-C(13B)-C(18B) 84.04(13) 

C(6A)-N(3A)-C(13A)-C(14A) 80.03(15) 

N(2A)-N(3A)-C(13A)-C(14A) -101.19(13) 

C(6A)-N(3A)-C(13A)-C(18A) -99.77(14) 

N(2A)-N(3A)-C(13A)-C(18A) 79.01(14) 

C(18C)-C(13C)-C(14C)-C(15C) -0.73(19) 

N(3C)-C(13C)-C(14C)-C(15C) 177.36(11) 

C(18B)-C(13B)-C(14B)-C(15B) 0.02(17) 

N(3B)-C(13B)-C(14B)-C(15B) 177.14(10) 

C(18A)-C(13A)-C(14A)-C(15A) -0.93(17) 

N(3A)-C(13A)-C(14A)-C(15A) 179.27(10) 

C(18D)-C(13D)-C(14D)-C(15D) 0.60(18) 

N(3D)-C(13D)-C(14D)-C(15D) -178.78(11) 

C(13D)-C(14D)-C(15D)-C(16D) -0.86(19) 

C(13B)-C(14B)-C(15B)-C(16B) -0.61(18) 

C(13A)-C(14A)-C(15A)-C(16A) -0.21(17) 

C(13C)-C(14C)-C(15C)-C(16C) 1.63(19) 

C(14B)-C(15B)-C(16B)-C(17B) 0.80(18) 

C(14B)-C(15B)-C(16B)-Cl(2B) -177.81(9) 

C(14A)-C(15A)-C(16A)-C(17A) 1.11(18) 

C(14A)-C(15A)-C(16A)-Cl(2A) -178.33(9) 

C(14C)-C(15C)-C(16C)-C(17C) -1.1(2) 

C(14C)-C(15C)-C(16C)-Cl(2C) 178.54(10) 

C(14D)-C(15D)-C(16D)-C(17D) 0.35(19) 

C(14D)-C(15D)-C(16D)-Cl(2D) -178.88(10) 

C(15B)-C(16B)-C(17B)-C(18B) -0.37(18) 

Cl(2B)-C(16B)-C(17B)-C(18B) 178.27(9) 
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C(15D)-C(16D)-C(17D)-C(18D) 0.44(18) 

Cl(2D)-C(16D)-C(17D)-C(18D) 179.66(9) 

C(15C)-C(16C)-C(17C)-C(18C) -0.4(2) 

Cl(2C)-C(16C)-C(17C)-C(18C) 180.00(9) 

C(15A)-C(16A)-C(17A)-C(18A) -0.83(18) 

Cl(2A)-C(16A)-C(17A)-C(18A) 178.61(9) 

C(16D)-C(17D)-C(18D)-C(13D) -0.71(17) 

C(16D)-C(17D)-C(18D)-Cl(3D) 179.83(9) 

C(14D)-C(13D)-C(18D)-C(17D) 0.20(17) 

N(3D)-C(13D)-C(18D)-C(17D) 179.56(10) 

C(14D)-C(13D)-C(18D)-Cl(3D) 179.66(9) 

N(3D)-C(13D)-C(18D)-Cl(3D) -0.98(15) 

C(16C)-C(17C)-C(18C)-C(13C) 1.29(18) 

C(16C)-C(17C)-C(18C)-Cl(3C) -177.59(10) 

C(14C)-C(13C)-C(18C)-C(17C) -0.76(18) 

N(3C)-C(13C)-C(18C)-C(17C) -178.82(11) 

C(14C)-C(13C)-C(18C)-Cl(3C) 178.11(9) 

N(3C)-C(13C)-C(18C)-Cl(3C) 0.06(15) 

C(16A)-C(17A)-C(18A)-C(13A) -0.33(18) 

C(16A)-C(17A)-C(18A)-Cl(3A) 179.36(9) 

C(14A)-C(13A)-C(18A)-C(17A) 1.21(18) 

N(3A)-C(13A)-C(18A)-C(17A) -178.99(11) 

C(14A)-C(13A)-C(18A)-Cl(3A) -178.49(9) 

N(3A)-C(13A)-C(18A)-Cl(3A) 1.32(15) 

C(16B)-C(17B)-C(18B)-C(13B) -0.25(17) 

C(16B)-C(17B)-C(18B)-Cl(3B) -178.66(9) 

C(14B)-C(13B)-C(18B)-C(17B) 0.43(18) 

N(3B)-C(13B)-C(18B)-C(17B) -176.78(10) 

C(14B)-C(13B)-C(18B)-Cl(3B) 178.85(9) 

N(3B)-C(13B)-C(18B)-Cl(3B) 1.64(15) 

________________________________________________________________  
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Figure 28. ORTEP Drawing of 1,5-diaryl-1,2,3-triazoles 31a .61 
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2. Data_hsp572 (Compound 36a) (Figure 27)  

   

  Table 1.  Crystal data and structure refinement for 36a. 

Identification code  HSP572 

Empirical formula  C14H8Cl3N3 

Formula weight  324.58 

Temperature  120(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 
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Space group  P21/c 

Unit cell dimensions a = 19.8341(7) Å  

 b = 5.5235(2) Å  

 c = 12.3196(4) Å  

Volume 1335.64(8) Å3 

Z 4 

Density (calculated) 1.614 Mg/m3 

Absorption coefficient 0.676 mm-1 

F(000) 656 

Crystal size 0.65 x 0.50 x 0.25 mm3 

Theta range for data collection 2.08 to 46.84°. 

Index ranges -39<=h<=39, -9<=k<=9, -24<=l<=24 

Reflections collected 88047 

Independent reflections 10494 [R(int) = 0.0224] 

Completeness to theta = 46.84° 86.7 %  

Absorption correction Empirical multi-scan 

Max. and min. transmission 0.8491 and 0.6675 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10494 / 0 / 213 

Goodness-of-fit on F2 1.116 

Final R indices [I>2sigma(I)] R1 = 0.0363, wR2 = 0.0953 

R indices (all data) R1 = 0.0447, wR2 = 0.1073 

Largest diff. peak and hole 0.769 and -0.439 e.Å-3 

 

 Table 2.  Atomic coordinates ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for 36a.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

Cl(1) 1988(1) 9551(1) 1679(1) 20(1) 

N(1) 2544(1) 10470(1) -1581(1) 22(1) 

C(1) 3091(1) 9084(2) -1194(1) 21(1) 

Cl(2) 201(1) 2229(1) 1580(1) 26(1) 

N(2) 2010(1) 9651(1) -1186(1) 20(1) 
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C(2) 2895(1) 7301(1) -518(1) 17(1) 

N(3) 2215(1) 7730(1) -536(1) 16(1) 

Cl(3) 4617(1) -511(1) 1842(1) 27(1) 

C(3) 3302(1) 5384(1) 81(1) 16(1) 

C(4) 3910(1) 4668(2) -288(1) 20(1) 

C(5) 4322(1) 2890(2) 257(1) 22(1) 

C(6) 4121(1) 1790(1) 1174(1) 19(1) 

C(7) 3528(1) 2475(2) 1565(1) 20(1) 

C(8) 3122(1) 4280(2) 1020(1) 19(1) 

C(9) 1712(1) 6465(1) -39(1) 15(1) 

C(10) 1556(1) 7179(1) 984(1) 16(1) 

C(11) 1073(1) 5922(1) 1473(1) 18(1) 

C(12) 754(1) 3943(1) 923(1) 18(1) 

C(13) 890(1) 3233(1) -105(1) 20(1) 

C(14) 1371(1) 4519(1) -585(1) 18(1) 

________________________________________________________________________________  

 

 

 Table 3.   Bond lengths [Å] and angles [°] for 36a. 

_____________________________________________________  

Cl(1)-C(10)  1.7245(7) 

N(1)-N(2)  1.3081(9) 

N(1)-C(1)  1.3564(11) 

C(1)-C(2)  1.3811(9) 

Cl(2)-C(12)  1.7356(7) 

N(2)-N(3)  1.3567(8) 

C(2)-N(3)  1.3654(8) 

C(2)-C(3)  1.4650(10) 

N(3)-C(9)  1.4265(8) 

Cl(3)-C(6)  1.7389(8) 

C(3)-C(8)  1.3986(9) 

C(3)-C(4)  1.4046(9) 

C(4)-C(5)  1.3873(11) 

C(5)-C(6)  1.3908(11) 

C(6)-C(7)  1.3859(9) 

C(7)-C(8)  1.3919(10) 
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C(9)-C(14)  1.3907(9) 

C(9)-C(10)  1.3974(8) 

C(10)-C(11)  1.3887(9) 

C(11)-C(12)  1.3891(10) 

C(12)-C(13)  1.3886(10) 

C(13)-C(14)  1.3888(10) 

 

N(2)-N(1)-C(1) 108.83(6) 

N(1)-C(1)-C(2) 109.57(6) 

N(1)-N(2)-N(3) 107.46(6) 

N(3)-C(2)-C(1) 103.23(6) 

N(3)-C(2)-C(3) 127.22(6) 

C(1)-C(2)-C(3) 129.54(6) 

N(2)-N(3)-C(2) 110.91(5) 

N(2)-N(3)-C(9) 117.89(5) 

C(2)-N(3)-C(9) 131.14(6) 

C(8)-C(3)-C(4) 118.51(6) 

C(8)-C(3)-C(2) 122.95(6) 

C(4)-C(3)-C(2) 118.52(6) 

C(5)-C(4)-C(3) 121.07(6) 

C(4)-C(5)-C(6) 119.02(6) 

C(7)-C(6)-C(5) 121.24(7) 

C(7)-C(6)-Cl(3) 119.06(6) 

C(5)-C(6)-Cl(3) 119.70(5) 

C(6)-C(7)-C(8) 119.31(6) 

C(7)-C(8)-C(3) 120.83(6) 

C(14)-C(9)-C(10) 119.92(6) 

C(14)-C(9)-N(3) 119.49(5) 

C(10)-C(9)-N(3) 120.59(6) 

C(11)-C(10)-C(9) 120.44(6) 

C(11)-C(10)-Cl(1) 119.30(5) 

C(9)-C(10)-Cl(1) 120.20(5) 

C(10)-C(11)-C(12) 118.39(6) 

C(13)-C(12)-C(11) 122.21(6) 

C(13)-C(12)-Cl(2) 119.32(6) 

C(11)-C(12)-Cl(2) 118.39(5) 
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C(12)-C(13)-C(14) 118.63(6) 

C(13)-C(14)-C(9) 120.37(6) 

_____________________________________________________________  

 

 Table 4.   Anisotropic displacement parameters (Å2x 103) for 36a.  The anisotropic 

displacement factor exponent takes the form:  - 2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Cl(1) 24(1)  22(1) 16(1)  -3(1) 4(1)  -5(1) 

N(1) 29(1)  21(1) 19(1)  3(1) 7(1)  -2(1) 

C(1) 23(1)  23(1) 18(1)  2(1) 6(1)  -4(1) 

Cl(2) 23(1)  27(1) 30(1)  2(1) 11(1)  -6(1) 

N(2) 25(1)  19(1) 16(1)  3(1) 5(1)  2(1) 

C(2) 17(1)  20(1) 14(1)  0(1) 4(1)  -2(1) 

N(3) 18(1)  18(1) 14(1)  1(1) 5(1)  0(1) 

Cl(3) 25(1)  30(1) 25(1)  -1(1) 2(1)  10(1) 

C(3) 15(1)  20(1) 14(1)  -1(1) 4(1)  -2(1) 

C(4) 16(1)  26(1) 18(1)  -1(1) 6(1)  -2(1) 

C(5) 16(1)  29(1) 21(1)  -3(1) 6(1)  2(1) 

C(6) 16(1)  23(1) 18(1)  -3(1) 2(1)  2(1) 

C(7) 18(1)  26(1) 17(1)  2(1) 4(1)  3(1) 

C(8) 17(1)  26(1) 16(1)  3(1) 6(1)  3(1) 

C(9) 16(1)  17(1) 13(1)  0(1) 4(1)  1(1) 

C(10) 16(1)  18(1) 14(1)  -1(1) 3(1)  0(1) 

C(11) 16(1)  22(1) 16(1)  -1(1) 5(1)  0(1) 

C(12) 16(1)  20(1) 19(1)  1(1) 5(1)  -1(1) 

C(13) 22(1)  20(1) 20(1)  -2(1) 5(1)  -3(1) 

C(14) 22(1)  18(1) 15(1)  -2(1) 4(1)  -1(1) 

______________________________________________________________________________  
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 Table 5.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) 

for 36a. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  

H(1) 3541(9) 9340(30) -1374(14) 31(4) 

H(4) 4016(8) 5430(30) -910(13) 28(4) 

H(5) 4749(9) 2410(30) 2(14) 35(4) 

H(7) 3405(9) 1740(30) 2216(14) 33(4) 

H(8) 2726(8) 4700(30) 1315(12) 23(3) 

H(11) 989(8) 6390(30) 2214(13) 27(3) 

H(13) 667(8) 1910(30) -464(14) 31(4) 

H(14) 1476(8) 4040(30) -1278(13) 27(4) 

________________________________________________________________________________  

 

 Table 6.  Torsion angles [°] for 36a. 

________________________________________________________________  

N(2)-N(1)-C(1)-C(2) -0.17(9) 

C(1)-N(1)-N(2)-N(3) 0.29(8) 

N(1)-C(1)-C(2)-N(3) -0.03(8) 

N(1)-C(1)-C(2)-C(3) 179.76(7) 

N(1)-N(2)-N(3)-C(2) -0.32(8) 

N(1)-N(2)-N(3)-C(9) -177.78(6) 

C(1)-C(2)-N(3)-N(2) 0.21(7) 

C(3)-C(2)-N(3)-N(2) -179.58(6) 

C(1)-C(2)-N(3)-C(9) 177.23(6) 

C(3)-C(2)-N(3)-C(9) -2.57(11) 

N(3)-C(2)-C(3)-C(8) -24.37(11) 

C(1)-C(2)-C(3)-C(8) 155.89(8) 

N(3)-C(2)-C(3)-C(4) 157.36(7) 

C(1)-C(2)-C(3)-C(4) -22.38(11) 

C(8)-C(3)-C(4)-C(5) 0.61(11) 

C(2)-C(3)-C(4)-C(5) 178.95(7) 

C(3)-C(4)-C(5)-C(6) 0.78(11) 
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C(4)-C(5)-C(6)-C(7) -1.47(12) 

C(4)-C(5)-C(6)-Cl(3) 177.90(6) 

C(5)-C(6)-C(7)-C(8) 0.73(12) 

Cl(3)-C(6)-C(7)-C(8) -178.64(6) 

C(6)-C(7)-C(8)-C(3) 0.71(12) 

C(4)-C(3)-C(8)-C(7) -1.37(11) 

C(2)-C(3)-C(8)-C(7) -179.63(7) 

N(2)-N(3)-C(9)-C(14) 90.35(8) 

C(2)-N(3)-C(9)-C(14) -86.50(9) 

N(2)-N(3)-C(9)-C(10) -89.04(7) 

C(2)-N(3)-C(9)-C(10) 94.11(9) 

C(14)-C(9)-C(10)-C(11) 1.55(10) 

N(3)-C(9)-C(10)-C(11) -179.06(6) 

C(14)-C(9)-C(10)-Cl(1) 178.73(5) 

N(3)-C(9)-C(10)-Cl(1) -1.88(9) 

C(9)-C(10)-C(11)-C(12) 0.29(10) 

Cl(1)-C(10)-C(11)-C(12) -176.91(5) 

C(10)-C(11)-C(12)-C(13) -1.83(11) 

C(10)-C(11)-C(12)-Cl(2) 174.99(5) 

C(11)-C(12)-C(13)-C(14) 1.47(11) 

Cl(2)-C(12)-C(13)-C(14) -175.32(6) 

C(12)-C(13)-C(14)-C(9) 0.43(11) 

C(10)-C(9)-C(14)-C(13) -1.92(10) 

N(3)-C(9)-C(14)-C(13) 178.68(6) 

________________________________________________________________  
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Figure 27. ORTEP Drawing of 1,5-diaryl-1,2,3-triazoles 36a .61 
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3. Data_avg229ph_0m (Compound 32 c) (Figure 31 ) 

  Table 1.  Crystal data and structure refinement for 32c. 

 

Identification code  avg229ph_0m 

Empirical formula  C21H12Cl2F N3O2 

Formula weight  428.24 
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Temperature  120(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbca 

Unit cell dimensions a = 8.9553(5) Å  

 b = 20.5764(11) Å  

 c = 20.8197(11) Å  

Volume 3836.4(4) Å3 

Z 8 

Density (calculated) 1.483 Mg/m3 

Absorption coefficient 0.371 mm-1 

F(000) 1744 

Crystal size 0.70 x 0.50 x 0.40 mm3 

Theta range for data collection 2.21 to 45.32°. 

Index ranges -17<=h<=17, -41<=k<=41, -39<=l<=40 

Reflections collected 210038 

Independent reflections 15821 [R(int) = 0.0183] 

Completeness to theta = 45.32° 98.3 %  

Absorption correction empirical mult-scan 

Max. and min. transmission 0.8657 and 0.7811 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15821 / 0 / 310 

Goodness-of-fit on F2 0.839 

Final R indices [I>2sigma(I)] R1 = 0.0398, wR2 = 0.0979 

R indices (all data) R1 = 0.0464, wR2 = 0.1046 

Largest diff. peak and hole 1.123 and -0.924 e.Å-3 
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 Table 2.  Atomic coordinates ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for 32c.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

Cl(1) 5874(1) 4596(1) 7347(1) 33(1) 

F(1) 11297(1) 6118(1) 8452(1) 32(1) 

N(1) 3423(1) 4718(1) 9228(1) 18(1) 

O(1) 4866(1) 6333(1) 9160(1) 26(1) 

C(1) 5472(1) 7176(1) 9914(1) 24(1) 

Cl(2) 9038(1) 2393(1) 7427(1) 33(1) 

O(2) 3032(1) 5972(1) 9814(1) 23(1) 

N(2) 4024(1) 4204(1) 8976(1) 18(1) 

C(2) 5390(1) 7827(1) 10095(1) 28(1) 

N(3) 5416(1) 4373(1) 8768(1) 15(1) 

C(3) 4542(1) 8259(1) 9742(1) 28(1) 

C(4) 3770(1) 8046(1) 9205(1) 29(1) 

C(5) 3830(1) 7397(1) 9017(1) 24(1) 

C(6) 4685(1) 6975(1) 9378(1) 19(1) 

C(7) 4004(1) 5869(1) 9428(1) 16(1) 

C(8) 4403(1) 5225(1) 9175(1) 16(1) 

C(9) 5704(1) 5009(1) 8884(1) 15(1) 

C(10) 7172(1) 5307(1) 8762(1) 16(1) 

C(11) 8415(1) 5078(1) 9098(1) 18(1) 

C(12) 9818(1) 5353(1) 8999(1) 21(1) 

C(13) 9933(1) 5853(1) 8559(1) 22(1) 

C(14) 8728(1) 6089(1) 8215(1) 26(1) 

C(15) 7331(1) 5814(1) 8321(1) 22(1) 

C(16) 6314(1) 3904(1) 8445(1) 15(1) 

C(17) 6835(1) 3368(1) 8782(1) 18(1) 

C(18) 7665(1) 2894(1) 8470(1) 21(1) 

C(19) 7999(1) 2977(1) 7825(1) 20(1) 

C(20) 7502(1) 3510(1) 7479(1) 23(1) 

C(21) 6620(1) 3969(1) 7790(1) 19(1) 

________________________________________________________________________________ 
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 Table 3.   Bond lengths [Å] and angles [°] for 32c. 

_____________________________________________________  

Cl(1)-C(21)  1.7215(6) 

F(1)-C(13)  1.3563(7) 

N(1)-N(2)  1.2988(7) 

N(1)-C(8)  1.3664(7) 

O(1)-C(7)  1.3491(7) 

O(1)-C(6)  1.4067(7) 

C(1)-C(6)  1.3828(10) 

C(1)-C(2)  1.3925(10) 

Cl(2)-C(19)  1.7319(6) 

O(2)-C(7)  1.2028(7) 

N(2)-N(3)  1.3637(6) 

C(2)-C(3)  1.3821(11) 

N(3)-C(9)  1.3570(7) 

N(3)-C(16)  1.4242(7) 

C(3)-C(4)  1.3852(12) 

C(4)-C(5)  1.3927(10) 

C(5)-C(6)  1.3815(9) 

C(7)-C(8)  1.4701(7) 

C(8)-C(9)  1.3860(7) 

C(9)-C(10)  1.4726(7) 

C(10)-C(11)  1.3968(8) 

C(10)-C(15)  1.3960(8) 

C(11)-C(12)  1.3931(8) 

C(12)-C(13)  1.3816(9) 

C(13)-C(14)  1.3834(10) 

C(14)-C(15)  1.3909(9) 

C(16)-C(17)  1.3886(7) 

C(16)-C(21)  1.3961(8) 

C(17)-C(18)  1.3879(8) 

C(18)-C(19)  1.3868(9) 

C(19)-C(20)  1.3853(9) 

C(20)-C(21)  1.3903(9) 

 

N(2)-N(1)-C(8) 108.82(4) 
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C(7)-O(1)-C(6) 117.70(5) 

C(6)-C(1)-C(2) 118.68(6) 

N(1)-N(2)-N(3) 107.43(4) 

C(3)-C(2)-C(1) 120.22(7) 

C(9)-N(3)-N(2) 111.29(4) 

C(9)-N(3)-C(16) 129.04(4) 

N(2)-N(3)-C(16) 119.59(4) 

C(2)-C(3)-C(4) 120.03(6) 

C(3)-C(4)-C(5) 120.72(7) 

C(6)-C(5)-C(4) 118.13(6) 

C(5)-C(6)-C(1) 122.22(6) 

C(5)-C(6)-O(1) 118.60(6) 

C(1)-C(6)-O(1) 118.92(6) 

O(2)-C(7)-O(1) 124.39(5) 

O(2)-C(7)-C(8) 125.09(5) 

O(1)-C(7)-C(8) 110.51(4) 

N(1)-C(8)-C(9) 109.35(4) 

N(1)-C(8)-C(7) 120.13(4) 

C(9)-C(8)-C(7) 130.50(5) 

N(3)-C(9)-C(8) 103.10(4) 

N(3)-C(9)-C(10) 122.76(4) 

C(8)-C(9)-C(10) 133.84(5) 

C(11)-C(10)-C(15) 120.03(5) 

C(11)-C(10)-C(9) 118.97(5) 

C(15)-C(10)-C(9) 121.00(5) 

C(10)-C(11)-C(12) 120.50(5) 

C(13)-C(12)-C(11) 117.87(6) 

F(1)-C(13)-C(12) 118.35(6) 

F(1)-C(13)-C(14) 118.49(6) 

C(12)-C(13)-C(14) 123.15(5) 

C(13)-C(14)-C(15) 118.46(6) 

C(14)-C(15)-C(10) 119.99(6) 

C(17)-C(16)-C(21) 120.20(5) 

C(17)-C(16)-N(3) 119.22(5) 

C(21)-C(16)-N(3) 120.53(5) 

C(16)-C(17)-C(18) 120.16(5) 
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C(19)-C(18)-C(17) 118.77(5) 

C(20)-C(19)-C(18) 122.14(5) 

C(20)-C(19)-Cl(2) 118.27(5) 

C(18)-C(19)-Cl(2) 119.58(5) 

C(19)-C(20)-C(21) 118.54(5) 

C(20)-C(21)-C(16) 120.10(5) 

C(20)-C(21)-Cl(1) 118.67(5) 

C(16)-C(21)-Cl(1) 121.20(4) 

_____________________________________________________________  

 

 Table 4.   Anisotropic displacement parameters (Å2x 103) for 32c.  The anisotropic 

displacement factor exponent takes the form:  - 2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Cl(1) 53(1)  24(1) 23(1)  8(1) -4(1)  8(1) 

F(1) 19(1)  32(1) 46(1)  4(1) 6(1)  -11(1) 

N(1) 14(1)  15(1) 25(1)  -1(1) 3(1)  -1(1) 

O(1) 26(1)  14(1) 38(1)  -4(1) 17(1)  -3(1) 

C(1) 24(1)  20(1) 28(1)  3(1) -2(1)  0(1) 

Cl(2) 33(1)  33(1) 34(1)  -13(1) 5(1)  11(1) 

O(2) 24(1)  18(1) 26(1)  -2(1) 11(1)  0(1) 

N(2) 14(1)  15(1) 25(1)  -1(1) 2(1)  -2(1) 

C(2) 30(1)  24(1) 29(1)  -4(1) -3(1)  -5(1) 

N(3) 14(1)  12(1) 20(1)  0(1) 2(1)  0(1) 

C(3) 34(1)  16(1) 34(1)  -3(1) 4(1)  0(1) 

C(4) 31(1)  23(1) 31(1)  0(1) -1(1)  11(1) 

C(5) 21(1)  26(1) 26(1)  -5(1) -2(1)  4(1) 

C(6) 17(1)  14(1) 26(1)  -1(1) 5(1)  -1(1) 

C(7) 15(1)  14(1) 20(1)  -1(1) 3(1)  0(1) 

C(8) 13(1)  14(1) 21(1)  0(1) 3(1)  0(1) 

C(9) 13(1)  12(1) 19(1)  1(1) 2(1)  0(1) 

C(10) 13(1)  13(1) 20(1)  0(1) 3(1)  -1(1) 

C(11) 15(1)  19(1) 22(1)  1(1) 2(1)  -2(1) 

C(12) 14(1)  23(1) 25(1)  -1(1) 2(1)  -3(1) 
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C(13) 16(1)  19(1) 30(1)  -1(1) 6(1)  -5(1) 

C(14) 21(1)  20(1) 37(1)  8(1) 5(1)  -4(1) 

C(15) 17(1)  18(1) 31(1)  7(1) 3(1)  -1(1) 

C(16) 15(1)  13(1) 17(1)  0(1) 0(1)  1(1) 

C(17) 22(1)  17(1) 17(1)  1(1) 0(1)  5(1) 

C(18) 23(1)  19(1) 20(1)  -1(1) -2(1)  7(1) 

C(19) 19(1)  20(1) 22(1)  -6(1) 1(1)  3(1) 

C(20) 28(1)  22(1) 17(1)  -2(1) 4(1)  1(1) 

C(21) 25(1)  17(1) 17(1)  2(1) 0(1)  1(1) 

______________________________________________________________________________  

 

 Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for 32c. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  

H(1) 6048(15) 6880(7) 10158(7) 35(3) 

H(2) 5926(16) 7970(7) 10491(7) 41(4) 

H(3) 4508(18) 8712(8) 9861(7) 46(4) 

H(4) 3182(17) 8352(7) 8948(7) 45(4) 

H(5) 3289(16) 7228(7) 8652(7) 37(3) 

H(11) 8294(13) 4725(6) 9406(6) 25(3) 

H(12) 10673(15) 5209(7) 9209(7) 33(3) 

H(14) 8874(17) 6436(7) 7916(7) 42(4) 

H(15) 6452(15) 5986(6) 8094(6) 29(3) 

H(17) 6620(14) 3327(6) 9239(6) 27(3) 

H(18) 8011(14) 2519(6) 8686(6) 29(3) 

H(20) 7747(16) 3552(7) 7034(7) 37(3) 

________________________________________________________________________________  
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 Table 6.  Torsion angles [°] for 32c. 

________________________________________________________________________________  

C(8)-N(1)-N(2)-N(3) 1.11(7) 

C(6)-C(1)-C(2)-C(3) -0.33(11) 

N(1)-N(2)-N(3)-C(9) -0.60(6) 

N(1)-N(2)-N(3)-C(16) -177.46(5) 

C(1)-C(2)-C(3)-C(4) 0.02(12) 

C(2)-C(3)-C(4)-C(5) 0.27(13) 

C(3)-C(4)-C(5)-C(6) -0.25(12) 

C(4)-C(5)-C(6)-C(1) -0.08(10) 

C(4)-C(5)-C(6)-O(1) -174.21(6) 

C(2)-C(1)-C(6)-C(5) 0.36(10) 

C(2)-C(1)-C(6)-O(1) 174.48(6) 

C(7)-O(1)-C(6)-C(5) -99.77(7) 

C(7)-O(1)-C(6)-C(1) 85.90(8) 

C(6)-O(1)-C(7)-O(2) 4.68(10) 

C(6)-O(1)-C(7)-C(8) -176.38(6) 

N(2)-N(1)-C(8)-C(9) -1.24(7) 

N(2)-N(1)-C(8)-C(7) -179.61(5) 

O(2)-C(7)-C(8)-N(1) 18.29(9) 

O(1)-C(7)-C(8)-N(1) -160.65(6) 

O(2)-C(7)-C(8)-C(9) -159.68(6) 

O(1)-C(7)-C(8)-C(9) 21.38(9) 

N(2)-N(3)-C(9)-C(8) -0.15(6) 

C(16)-N(3)-C(9)-C(8) 176.33(5) 

N(2)-N(3)-C(9)-C(10) 174.36(5) 

C(16)-N(3)-C(9)-C(10) -9.16(9) 

N(1)-C(8)-C(9)-N(3) 0.82(6) 

C(7)-C(8)-C(9)-N(3) 178.96(6) 

N(1)-C(8)-C(9)-C(10) -172.77(6) 

C(7)-C(8)-C(9)-C(10) 5.37(11) 

N(3)-C(9)-C(10)-C(11) -61.90(7) 

C(8)-C(9)-C(10)-C(11) 110.68(7) 

N(3)-C(9)-C(10)-C(15) 118.50(6) 

C(8)-C(9)-C(10)-C(15) -68.93(9) 

C(15)-C(10)-C(11)-C(12) 0.19(9) 
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C(9)-C(10)-C(11)-C(12) -179.42(5) 

C(10)-C(11)-C(12)-C(13) -0.19(9) 

C(11)-C(12)-C(13)-F(1) -179.13(6) 

C(11)-C(12)-C(13)-C(14) -0.16(10) 

F(1)-C(13)-C(14)-C(15) 179.48(7) 

C(12)-C(13)-C(14)-C(15) 0.52(11) 

C(13)-C(14)-C(15)-C(10) -0.51(11) 

C(11)-C(10)-C(15)-C(14) 0.17(10) 

C(9)-C(10)-C(15)-C(14) 179.78(6) 

C(9)-N(3)-C(16)-C(17) 116.78(6) 

N(2)-N(3)-C(16)-C(17) -66.99(7) 

C(9)-N(3)-C(16)-C(21) -65.73(8) 

N(2)-N(3)-C(16)-C(21) 110.50(6) 

C(21)-C(16)-C(17)-C(18) 0.14(9) 

N(3)-C(16)-C(17)-C(18) 177.64(5) 

C(16)-C(17)-C(18)-C(19) 1.94(9) 

C(17)-C(18)-C(19)-C(20) -1.45(10) 

C(17)-C(18)-C(19)-Cl(2) 179.83(5) 

C(18)-C(19)-C(20)-C(21) -1.13(10) 

Cl(2)-C(19)-C(20)-C(21) 177.60(5) 

C(19)-C(20)-C(21)-C(16) 3.23(10) 

C(19)-C(20)-C(21)-Cl(1) -174.76(5) 

C(17)-C(16)-C(21)-C(20) -2.77(9) 

N(3)-C(16)-C(21)-C(20) 179.76(6) 

C(17)-C(16)-C(21)-Cl(1) 175.16(5) 

N(3)-C(16)-C(21)-Cl(1) -2.30(8) 

________________________________________________________________  
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Figure 31. ORTEP Drawings of 1,5-diaryl-1,2,3-triazoles 32c. 
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