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Abstract

The generalized inviscid Proudman-Johnson equation serves as a model for n-dimensional

incompressible Euler flow, gas dynamics, the orientation of waves in a massive director

field of a nematic liquid crystal, and high-frequency waves in shallow waters. Furthermore,

the equation also serves as a tool for studying the role that the natural fluid processes of

convection and stretching play in the formation of spontaneous singularities, or of their

absence.

In this work, we study blow-up, and blow-up properties, in solutions to the generalized in-

viscid Proudman-Johnson equation endowed with periodic or Dirichlet boundary conditions.

More particularly, for p ∈ [1,+∞], regularity of solutions in an Lp setting will be measured

via a direct approach which involves the derivation of representation formulae for solutions

to the problem. For a parameter λ ∈ R, several classes of initial data u0(x) are considered.

These include the class of smooth functions with either zero or nonzero mean, a family of

functions for which u′0(x) is piecewise constant, and a large class of initial data where u′0 is a

bounded, at least continuous almost everywhere, function satisfying Hölder-type estimates

near particular locations in the domain. Amongst other results, our analysis will indicate

that for appropriate values of the parameter λ, the curvature of u0 in a neighbourhood of

these locations is responsible for an eventual breakdown of solutions, or their persistence

for all time. Additionally, we will establish a nontrivial connection between the qualitative

properties of L∞ blow-up in ux, and its Lp regularity for p ∈ [1,+∞). Finally, for smooth

and non-smooth initial data, a special emphasis is made on the study of regularity of stagna-

tion point-form solutions to the two (λ = 1) and three (λ = 1/2) dimensional incompressible

Euler equations subject to periodic or Dirichlet boundary conditions.

Key words: Blow-up, generalized Proudman-Johnson equation, Euler equations.

vi



Chapter 1

Introduction and Scope of the Dissertation

1.1 Introduction

In this work, we examine finite-time blow-up, or global existence in time, of solutions to the

initial boundary value problem
uxt + uuxx − λu2x = I(t), t > 0,

u(x, 0) = u0(x), x ∈ [0, 1],

I(t) = −(1 + λ)
∫ 1

0
u2x dx,

(1.1.1)

where λ ∈ R and solutions are subject to either the periodic boundary conditions

u(0, t) = u(1, t), ux(0, t) = ux(1, t). (1.1.2)

or the Dirichlet boundary conditions

u(0, t) = u(1, t) = 0. (1.1.3)

For particular values of the parameter λ, equation (1.1.1)i), iii) is related to several

important models from the field of fluid dynamics. Amongst the most prominent, one finds

stagnation point-form solutions to the n-dimensional incompressible Euler equations, gas

dynamics and orientation of waves in massive director nematic liquid crystals. Moreover,

the equation appears as the short-wave (or high-frequency) limit to various models for shallow

water waves. Finally, and from a more heuristic point of view, equation (1.1.1)i), iii) also

serves as a tool for examining the competing effects that natural fluid processes such as

convection and stretching have in the formation of spontaneous singularities, or of their

absence. For these reasons, the initial boundary value problem for equation (1.1.1)i), iii) has

been the subject of extensive research by the mathematical fluid dynamics community.
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1.2 Literature Review

1.2.1 Physical Significance of the Equation

In 1962, Proudman and Johnson ([39]) studied the equation

uxt + uuxx − u2x = νuxxx +
px
y
, y 6= 0, (1.2.1)

which they derived from the vertical component of the two dimensional incompressible

Navier-Stokes system

ut + (u · ∇)u = ν∆u−∇p

∇ · u = 0
(1.2.2)

by considering stagnation point-form velocities

u(x, y, t) = (u(x, t),−yux(x, t)) (1.2.3)

in a semi-infinite domain (x, y) ∈ [a, b] × R (a two dimensional channel). In (1.2.2), u

represents the fluid velocity, p denotes the scalar pressure, ν ≥ 0 is the coefficient of kinematic

viscosity and the term px/y is a function of time only. Next, after differentiating (1.2.1) with

respect to x and inserting a parameter a ∈ R, Okamoto and Zhu ([35]) introduced the

generalized model

uxxt + uuxxx − auxuxx = νuxxxx, (1.2.4)

known as the generalized Proudman-Johnson equation. In this work, we will be concerned

with the associated inviscid (ν = 0) equation (1.1.1)i, iii), which may be obtained by inte-

grating

uxxt + uuxxx + (1− 2λ)uxuxx = 0, λ ∈ R (1.2.5)

in space and using either set of boundary conditions (1.1.2) or (1.1.3). As a result, we refer to

(1.1.1)i), iii) as the generalized, inviscid Proudman-Johnson equation. We remark that the

choice of the parameter λ, rather than a = 2λ−1, is used, mostly, for notational convenience.

As a Model for n Dimensional Incompressible Euler Flow

From the above discussion, it follows that equation (1.1.1)i), iii) for λ = 1 is physically

justified as the vertical component of the two dimensional incompressible Euler equations

ut + (u · ∇)u = −∇p

∇ · u = 0.
(1.2.6)

2



However, in section 1.2.5 we will follow Saxton and Tiglay ([40]) to show that, for λ = 1
n−1 ,

n ≥ 2, (1.1.1)i), iii) actually models stagnation point-form solutions

u(x,x′, t) = (u(x, t),−λx′ux(x, t)), (1.2.7)

where x′ = {x2, ..., xn}, to the n dimensional incompressible Euler equations. Analogously,

one may also use the cylindrical coordinate representation

ur = −λrux(x, t), uθ ≡ 0, ux = u(x, t)

for r = |x′| ([43], [35], [23]).

As a Model for Gas Dynamics and Nematic Liquid Crystals

In addition to n-dimensional incompressible Euler flow, equation (1.1.1)i), iii) also occurs in

several different contexts, either with or without the nonlocal term (1.1.1)iii).

� When λ = −1, (1.2.5) coincides with the inviscid Burgers’ equation

ut + uux = 0,

differentiated twice in space.

� If λ = −1/2, it reduces to the Hunter Saxton (HS) equation

uxt + uuxx +
1

2
u2x = −1

2

∫ 1

0

u2x dx,

which describes the orientation of waves in a massive director field for nematic liquid

crystals ([28], [3], [15], [44]). For periodic functions, the HS equation also describes

geodesics on the group D(S)\Rot(S) of orientation preserving diffeomorphisms on the

unit circle S = R\Z, modulo the subgroup of rigid rotations with respect to the right-

invariant metric ([32], [3], [41], [33])

〈f, g〉 =

∫
S
fxgxdx.

3



Moreover, we remark that in the local case I(t) ≡ 0, the equation appears as a special

case of Calogero’s equation

uxt + uuxx − Φ(ux) = 0

for Φ(z) = λz2 ([4]).

The Role of Convection and Stretching in 3D Incompressible Euler Flow

From a more heuristic point of view, the introduction of the parameter λ can also be moti-

vated as follows. Setting ω = uxx into (1.2.5) yields

ωt + uωx + (1− 2λ)ωux = 0. (1.2.8)

If λ = 1, (1.2.8) becomes

ωt + uωx − ωux = 0, (1.2.9)

which represents a one dimensional model ([16], c.f. also [13]) for

Dω

Dt
= (ω · ∇)u, (1.2.10)

the vorticity equation of 3D incompressible Euler flow. The system (1.2.10) is obtained by

taking the curl of (1.2.6)i) and defining

D

Dt
≡ ∂t + (u · ∇);

the so-called material or convective derivative. Further, (1.2.9) may also be obtained from

(1.2.10) by considering a velocity field of the form

u(x, y, t) = {u(x, t),−yux(x, t), 0}.

Now, blow-up is caused by nonlinear terms. Equation (1.2.9) has two of them, a “con-

vection” term uωx and a “stretching” term ωux. It is well known that solutions to the 2D

incompressible Euler equations which arise from smooth initial data with finite kinetic en-

ergy stay smooth for all time ([1]). This is as contrasted to the corresponding 3D problem

for which the existence of smooth solutions remains inconclusive. The disparity between the

2D and 3D equations is generally attributed to the amplification of the vorticity that occurs

4



exclusively in the 3D case due to the presence of the stretching term (ω · ∇)u. Indeed, the

absence of this term in the 2D equations implies a certain conservation of the vorticity which,

in turn, guarantees the global existence. On the other hand, the corresponding convection

term (u · ∇)ω has been alleged to play a neutral role in blow-up, however, Okamoto and

Ohkitani ([36]) showed that it too can play a more prominent role. Specifically, their study

of the generalized model (1.2.5) for λ ∈ (1/2, 1) showed that solutions persist for all time,

whereas finite-time blow-up occurs if the convection term is removed. In summary, their

results suggest that the convection term plays a positive role in global existence. In this

sense, the study of regularity in solutions to the generalized equation (1.1.1)i), iii) may lead

to a better understanding of the roles played by the processes of convection and stretching

in the formation of spontaneous singularities.

Remark 1.2.11. The existence of blow-up solutions to the 3D incompressible Euler, or

Navier-Stokes, equations which arise from smooth initial data with finite kinetic energy is

one of the most important problems in the fields of analysis and mathematical fluid dynamics.

In fact, the 3D Navier-Stokes problem of existence and smoothness is considered one of the

seven Millennium Prize problems by the Clay Mathematics Institute. The corresponding 3D

Euler problem is, however, considered of far greater physical importance. Although these

regularity questions lie outside the scope of this dissertation, due to the unbounded domain

in stagnation point-form solutions1, equation (1.1.1)i), iii) for λ = 1/2, 1 is (particularly) of

great research interest given the complexity of the full Euler problem.

As a Model for High-Frequency Waves in Shallow Water

It is also worth noting that (1.1.1)i), iii) appears as the short-wave, or high-frequency, limit

of the so-called b equation ([27], [22], [19], [18])

mt + umx + bmux = 0, m = u− α2uxx (1.2.12)

for (α, b) ∈ R2. Equation (1.2.12) is a dispersive wave equation which includes as special

cases the Camassa-Holm (CH) equation if α = 1 and b = 2 ([5]), and the Degasperis-procesi

(DP) equation when α = 1 and b = 3 ([17]). Both equations are bi-Hamiltonian (thus admit

an infinite number of conservation laws), are completely integrable via the inverse scattering

transform, and arise in the modeling of shallow water waves. The CH and DP equations

1See (1.2.7) above.
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are appropriate for waves of medium amplitude and wave breaking phenomena can occur,

that is, solutions stay continuous and bounded, while their slope may become infinite in

finite-time.

The short-wave limit of (1.2.12) is achieved via the change of variables t′ = εt, x′ = x/ε,

u(x, t) = ε2u′(x′, t′), and then letting ε → 0 in the resulting equation. In this sense, the

generalized inviscid Proudman-Johnson equation (1.1.1)i), iii) is the short-wave limit of

(1.2.12) for b = 1− 2λ and α 6= 0.

1.2.2 Some Terminology

Before giving a brief summary of earlier results and outlining the objectives of this Disser-

tation, we introduce some terminology ([20], [26]).

� For p ∈ [1,+∞] and k ∈ N ∪ {0}, Lp(0, 1) and W k,p(0, 1) denote the standard Banach

spaces. In addition, for a measurable function f(x, t) : [0, 1]× [0, T )→ R we use

‖f(·, t)‖Lp(0,1) = ‖f(·, t)‖p , ‖f(·, t)‖Wk,p(0,1) = ‖f(·, t)‖k,p

as notation for the corresponding norms:

‖f(·, t)‖Lp(0,1) ≡


(∫ 1

0
|f(x, t)|p dx

)1/p
, 1 ≤ p < +∞,

ess supx∈[0,1] |f(x, t)| , p = +∞
(1.2.13)

and

‖f(·, t)‖Wk,p(0,1) ≡


(∑

|κ|≤k
∫ 1

0
|Dκf(x, t)|p dx

)1/p
, 1 ≤ p < +∞,∑

|κ|≤k ess supx∈[0,1] |Dκf(x, t)| , p = +∞
(1.2.14)

where κ = (κ1, κ2, ..., κn) is a multiindex of order |κ| =
∑n

i=1 κi and

Dκg =
∂κ1

∂xκ11
...

∂κn

∂xκnn
g.

Also, we use the standard notation Hk(0, 1) = W k,2(0, 1), as well as H−k for the dual

of Hk
0 .

� PC(0, 1) is the space of piecewise constant functions on [0, 1].
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� Ck(0, 1) for k ∈ N ∪ {0}, denotes the space of continuous functions on [0, 1] with

continuous derivatives up to order k, whereas C∞ refers to the class of smooth func-

tions. Furthermore, for T > 0, Ck([0, T );Cj(0, 1)) and similar notations are defined

straightforwardly.

� Let x0 ∈ R and f be a function defined on a bounded set D containing x0. If 0 < q < 1,

we say that f is Hölder continuous with exponent q at x0 if the quantity

[f ]q;x0 := sup
x∈D

|f(x)− f(x0)|
|x− x0|q

(1.2.15)

is finite. We call [f ]q;x0 the q−Hölder coefficient of f at x0 with respect to D. Clearly,

if f is Hölder continuous at x0, then f is continuous at x0. When (1.2.15) is finite for

q = 1, f is said to be Lipschitz continuous at x0.

� A subscript ‘R’ is used to signify zero mean, i.e. f(·, t) ∈ L2
R(0, 1) implies

f(·, t) ∈ L2(0, 1),

∫ 1

0

f(x, t) dx = 0 (1.2.16)

for as long as f is defined.

� For fixed spatial variable, ḟ denotes differentiation with respect to time.

� The term “discrete blow-up” will apply to functions which diverge in time at a finite

number of points in its spatial domain, namely, there exists T ∈ (0,+∞), n ∈ N and

xk ∈ [0, 1], k = 1, 2, ..., n such that f(x, t) : [0, 1]× [0, T )→ R satisfies

lim
t↑T
|f(xk, t)| = +∞ (1.2.17)

for each k. If (1.2.17) holds for every x ∈ [0, 1], the term ’everywhere’ blow-up is used

instead. Furthermore, if f diverges to either +∞ or −∞ only, we say the blow-up is

“one-sided”. If instead, blow-up occurs simultaneously to +∞ and −∞, we call it a

“two-sided” blow-up.

Finally, we remark that all functions in this work are assumed to be real-valued.
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1.2.3 Earlier Results

We begin this section by stating local-in-time existence Theorems for solutions to (1.1.1)-

(1.1.2) or (1.1.3). Then, a review of earlier finite-time blow-up, or global existence in time,

results is presented.

Local Existence

The following two Theorems concern the local-in-time existence of solutions to the periodic

or Dirichlet problem for (1.1.1).

Theorem 1.2.18. For any u′′0(x) ∈ L2(0, 1) there exists T > 0 and a unique solution to

(1.1.1)-(1.1.2) or (1.1.3) in the class

uxx(x, t) ∈ C0([0, T ];L2(0, 1)) ∩ C1
w([0, T ];H−1(0, 1)),

where the subscript w implies weak topology. In addition, if u′′0(x) ∈ Hm(0, 1), with m ∈ N,

then uxx(x, t) ∈ C0([0, T ];Hm(0, 1)).

We remark that Okamoto and Zhu proved Theorem 1.2.18 in ([35]) by using a result from

Kato and Lai ([30]).

Now, in the context stagnation point-form solutions to the n dimensional incompressible

Euler equations (see section 1.2.1), we have the following result by Saxton and Tiglay ([40]):

Theorem 1.2.19. Suppose u0(x) ∈ C1(0, 1) and λ = 1
n−1 for n > 1. Then, there exists a

unique solution to (1.1.1), satisfying either (1.1.2) or (1.1.3), in the class

u(x, t) ∈ C0([0, T );C1(0, 1)) ∩ C1([0, T );C0(0, 1)).

Additionally, the solution depends continuously on the initial data.

Earlier Regularity Results

For the Dirichlet boundary condition (1.1.3), the earliest blow-up results in the nonlocal case

I(t) = −2

∫ 1

0

u2x dx, λ = 1

are due to Childress et al. ([9]), where the authors show that there are solutions which can

blow-up in finite-time2. Specifically, they attribute the finite-time blow-up to the infinite

2Recall from section 1.2.1 that for λ = 1, (1.1.1)i), iii) models stagnation point-form solutions to the 2D
incompressible Euler equations.
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domain and unbounded initial vorticity ω(x, y, 0), where ω = ∇ × u. Indeed, for velocity

fields (1.2.3), the vorticity’s only nonzero component is given by −yuxx. In proving that

breakdown can occur, the authors employed both Lagrangian and Eulerian type methods to

construct blow-up solutions. Their first Lagrangian method led to a “breakdown by example”

type of proof where, starting from a choice of smooth initial data, a closed-form formula for ux

was derived and shown to diverge in finite-time at the boundary. In their second Lagrangian

argument, more or less related to the first, the authors transformed (1.1.1)i), iii) into a

Liouville-type equation, while, in their third method, they used the separation of variables

u(x, t) = F (x)
t∗−t into (1.1.1)i), iii) to derive an ordinary differential equation for F (x), which

they then showed had a nontrivial solution. In this last case, however, the ODE places

restrictions on the regularity of the initial data.

The above results apply to Dirichlet boundary conditions (1.1.3). For spatially periodic

solutions, the following holds:

� If λ ∈ [−1/2, 0) and u0(x) ∈ W 1,2
R (0, 1), ux remains bounded in the L2 norm but blows

up in the L∞ norm ([38]).

� If λ ∈ [−1, 0), u0(x) ∈ Hs
R(0, 1), s ≥ 3 and u′′0 is not constant, then ‖ux‖∞ blows up

([42]). Similarly if λ ∈ (−2,−1) as long as

inf
x∈[0,1]

{u′0(x)}+ sup
x∈[0,1]

{u′0(x)} < 0. (1.2.20)

� If λ < −1/2, ‖ux‖2 blows up in finite-time as long as ([35])∫ 1

0

(u′0(x))3dx < 0. (1.2.21)

� If λ =∞, there is blow-up iff the Lebesgue measure∣∣∣∣ {x ∈ [0, 1] : u0(x) = max
y∈[0,1]

u0(y)

} ∣∣∣∣ ≤ 1

2
.

� If λ ∈ [0, 1/2) and u′′0(x) ∈ L
1

1−2λ

R (0, 1), u exists globally in time. Similarly, for λ = 1/2

as long as u0(x) ∈ W 2,∞
R (0, 1) ([38], [40]).

� If λ ∈ [1/2, 1) and u′′′0 (x) ∈ L
1

2(1−λ)
R (0, 1), u exists globally in time ([38]).

We will return to these results in future sections. For the time being, the reader may refer

to [9], [35], [40], [38], [42] and [12] for details.
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1.2.4 Objectives and Outline of the Dissertation

In this section, some of the regularity questions that will serve as a guide for the development

of this work are discussed. Then, a general outline of the Dissertation is provided.

Objectives

The main purpose of this work is to provide further insight on how solutions to (1.1.1)-

(1.1.2) or (1.1.3) blow up for parameters λ < 0 as well as to study their regularity, under

differing assumptions on the initial data u0(x), when λ ≥ 0. For any λ ∈ R, regularity

will be examined using Lp(0, 1) Banach spaces for p ∈ [1,+∞]. To do so, we employ a

direct approach which involves the derivation of representation formulae for solutions along

characteristics. Moreover, several classes of initial data will be considered. For the time

being, we simply note that these include:

� Smooth initial data with zero or nonzero mean in [0, 1].

� Initial data with either u′0 or u′′0 in PCR(0, 1) or PC(0, 1), the family of piecewise

constant functions.

� A class of initial data with arbitrary curvature near particular locations in the domain,

and for which u′0 is bounded and, at least, continuous almost everywhere.

Next, we discuss the main regularity issues, and other aspects related to the problem, that

will considered in this Dissertation.

� Regularity for parameters λ > 1; a case that has remained open until now for any set

of boundary conditions.

� In the cases where spontaneous singularities form, we examine detailed features of

L∞(0, 1) blow-up for any λ ∈ R:

1. Is it a discrete type of blow-up or an everywhere blow-up?

2. Is the blow-up one-sided or two-sided?

3. Relative to the data class, is there a threshold parameter value λ∗ ∈ R separating

solutions which blow-up in finite-time from those that persist globally in time?

4. Parameters λ > 0 versus λ < 0.
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5. Periodic versus Dirichlet boundary conditions.

� Further Lp(0, 1) regularity of ux for p ∈ [1,+∞):

1. Is there a correspondence between qualitative properties of L∞ blow-up and Lp

regularity of solutions?

2. Study of the energy-related quantities E(t) = ‖ux(·, t)‖22 and Ė(t).

� A special emphasis will be given to finite-time blow-up, or global existence in time, in

stagnation point-form solutions to the two (λ = 1) and three (λ = 1/2) dimensional

incompressible Euler equations.

Organization

For convenience of the reader, in section 1.2.5 we follow an argument in [40] to show how

equation (1.1.1)i), iii) can be derived from the n dimensional incompressible Euler equations

for certain values of the parameter λ. Then, in Chapter 2, representation formulae for u(x, t)

and ux(x, t) along characteristics, as well as other important related quantities, are derived.

This is done by rewriting (1.1.1)i), iii) as a second-order linear ODE in terms of the jacobian

of the transformation and then using periodic or Dirichlet boundary conditions to solve the

simpler, reformulated problem. With the formulae at hand, Chapter 3 is concerned with

the study of Lp regularity of ux for p ∈ [1,+∞], λ ∈ R and several classes of initial data.

Particularly, the regularity issues discussed in section 1.2.4 above are addressed. Lastly, the

reader may refer to Chapter 4 for specific examples.

1.2.5 Derivation of the Equation

In this section, we follow an argument used by Saxton and Tiglay ([40]) to derive equation

(1.1.1)i), iii) from the n dimensional incompressible Euler equations.

Using the ansatz (1.2.7) on (1.2.6)i) yields the following system of n equations: ut(x, t) + u(x, t)ux(x, t) = −px(x,x′, t),

uxt(x, t) + u(x, t)uxx(x, t)− λux(x, t)2 = 1
λxi
pxi(x,x

′, t)→ Ii(x, t),
(1.2.22)

where xi 6= 0 for i = 2, 3, ...n, the functions Ii are yet to be determined and λ = 1
n−1 , since

∇ · u = 0.
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Now, because u is independent of x′ = (x2, ..., x3), we apply the operator∇′ ≡ (∂x2 , ..., ∂xn)

to equation (1.2.22)i) and find that

∇′px = 0.

As a result, taking ∂x of (1.2.22)ii) implies that every Ii depends only on time. Suppose u

satisfies either (1.1.2) or (1.1.3). Then, applying
∫ 1

0
dx to (1.2.22)ii) and integrating by parts

yields

Ii(t) = −(1 + λ)

∫ 1

0

ux(x, t)
2 dx, i = 2, 3, ..., n.

Substituting the above into (1.2.22)ii) implies (1.1.1)i), iii).

Remark 1.2.23. Suppose the scalar pressure p is periodic in the variable x, i.e.

p(0,x′, t) = p(1,x′, t).

Then, integrating (1.2.22)i) in x and using either (1.1.2) or (1.1.3) implies that∫ 1

0

u(x, t) dx =

∫ 1

0

u0(x) dx. (1.2.24)

We remark that in the periodic setting (1.1.2), the ‘conservation in mean’ condition (1.2.24)

is needed in section 2.2.2 to uniquely determine a representation formula for u along char-

acteristics.
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Chapter 2

The General Solution

For as long as solutions exist, define the characteristics, γ(α, t), as the solution to the initial

value problem

γ̇(α, t) = u(γ(α, t), t), γ(α, 0) = α ∈ [0, 1]. (2.0.1)

Then

γ̇α(α, t) = ux(γ(α, t), t) · γα(α, t). (2.0.2)

For λ 6= 0, our first objective will be to derive a representation formula for ux(γ(α, t), t)

satisfying
d

dt
(ux(γ(α, t), t))− λux(γ(α, t), t)2 = I(t), (2.0.3)

which is simply (1.1.1)i) along characteristics. The case λ = 0 is considered separately in

appendix A.

2.1 The Representation Formula for ux(γ(α, t), t)

Using (1.1.1)i) and (2.0.2),

γ̈α = (uxt + uuxx) ◦ γ · γα + (ux ◦ γ) · γ̇α

= (uxt + uuxx) ◦ γ · γα + u2x ◦ γ · γα

= (λ+ 1)

(
u2x ◦ γ −

∫ 1

0

u2xdx

)
· γα

= (λ+ 1)

(
(γ−1α · γ̇α)2 −

∫ 1

0

u2xdx

)
· γα .

(2.1.1)

For I(t) = −(λ+ 1)
∫ 1

0
u2x dx and λ ∈ R\{0}, then

I(t) =
γ̈α · γα − (λ+ 1) · γ̇ 2

α

γ 2
α

= −γ
λ
α · (γ−λα )¨

λ
(2.1.2)
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and so

(γ−λα )¨+ λγ−λα I(t) = 0. (2.1.3)

Setting

ω(α, t) = γα(α, t)−λ (2.1.4)

yields

ω̈(α, t) + λI(t)ω(α, t) = 0, (2.1.5)

an ordinary differential equation parametrized by α. Suppose we have two linearly indepen-

dent solutions φ1(t) and φ2(t) to (2.1.5), satisfying φ1(0) = φ̇2(0) = 1, φ̇1(0) = φ2(0) = 0.

Then by Abel’s formula, W(φ1(t), φ2(t)) = 1, t ≥ 0, where W(g, h) denotes the wronskian of

g and h. We look for solutions of (2.1.5), satisfying appropriate initial data, of the form

ω(α, t) = c1(α)φ1(t) + c2(α)φ2(t), (2.1.6)

where reduction of order allows us to write φ2(t) in terms of φ1(t) as

φ2(t) = φ1(t)

∫ t

0

ds

φ2
1(s)

.

Since γα(α, 0) = 1 and ω̇ = −λγ−(λ+1)
α γ̇α, by (2.1.4), then ω(α, 0) = 1 and ω̇(α, 0) = −λu′0(α),

from which c1(α) and c2(α) are obtained. Combining these results reduces (2.1.6) to

ω(α, t) = φ1(t) (1− λη(t)u′0(α)) , η(t) =

∫ t

0

ds

φ2
1(s)

. (2.1.7)

Now, (2.1.4) and (2.1.7)i) imply

γα(α, t) = (φ1(t)J (α, t))−
1
λ , (2.1.8)

where

J (α, t) = 1− λη(t)u′0(α), J (α, 0) = 1. (2.1.9)

Suppose u satisfies the periodic boundary condition (1.1.2). Then, using the result on unique-

ness and existence of solutions to ODE, (2.0.1) and periodicity of u requires

γ(α + 1, t)− γ(α, t) = 1 (2.1.10)
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for as long as u is defined. On the other hand, if u satisfies Dirichlet boundary conditions

(1.1.3), then

γ(0, t) ≡ 0, γ(1, t) ≡ 1 (2.1.11)

must hold instead. Either way, the jacobian γα has mean one in [0, 1]. As a result, spatially

integrating (2.1.8) yields

φ1(t) =

(∫ 1

0

dα

J (α, t)
1
λ

)λ

, (2.1.12)

and so, if we set

Ki(α, t) =
1

J (α, t)i+
1
λ

, K̄i(t) =

∫ 1

0

dα

J (α, t)i+
1
λ

(2.1.13)

for i ∈ N ∪ {0}, we can write γα in the form

γα = K0/K̄0. (2.1.14)

Therefore, using (2.0.2) and (2.1.14), we obtain

ux(γ(α, t), t) = γ̇α(α, t)/γα(α, t) = (ln(K0/K̄0))
.

. (2.1.15)

In addition, differentiating (2.1.7)ii) and using (2.1.12) and (2.1.13)ii), yields

η̇(t) = K̄0(t)
−2λ

, η(0) = 0, (2.1.16)

which upon integration gives

t(η) =

∫ η

0

(∫ 1

0

dα

(1− λµu′0(α))
1
λ

)2λ

dµ. (2.1.17)

From (2.1.17), it follows that finite-time blow-up of ux(γ(α, t), t) will depend, in part, upon

the existence of a finite, positive limit

t∗ ≡ lim
η↑η∗

∫ η

0

(∫ 1

0

dα

(1− λµu′0(α))
1
λ

)2λ

dµ (2.1.18)

for η∗ ∈ R+ to be defined. In an effort to simplify the arguments in future sections, we note

that (2.1.15) can be rewritten in a slightly more useful form. The result is the representation

formula

ux(γ(α, t), t) =
1

λη(t)K̄0(t)
2λ

(
1

J (α, t)
− K̄1(t)

K̄0(t)

)
. (2.1.19)
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This is derived as follows. From (2.1.13) and (2.1.15),

ux(γ(α, t), t) =
1

K̄0(t)
2λ

(
u′0(α)

J (α, t)
− 1

K̄0(t)

∫ 1

0

u′0(α)K1(α, t)dα

)
. (2.1.20)

However
u′0(α)

J (α, t)
=

1

λη(t)

(
1

J (α, t)
− 1

)
, (2.1.21)

by (2.1.9), and so ∫ 1

0

u′0(α)K1(α, t)dα =
K̄1(t)− K̄0(t)

λη(t)
. (2.1.22)

Substituting (2.1.21) and (2.1.22) into (2.1.20) yields (2.1.19).

Now, assuming sufficient smoothness, we may use (2.1.14) and (2.1.19) to obtain ([40], [42])

uxx(γ(α, t), t) = u′′0(α)(γα(α, t))2λ−1. (2.1.23)

Equation (2.1.23) implies that as long as a solution exists it will maintain its initial concavity

profile. Also, since the exponent above changes sign through λ = 1/2, blow-up implies,

relative to the value of λ, either vanishing or divergence of the jacobian. More explicitly,

(2.1.14) and (2.1.23) yield

uxx(γ(α, t), t) =
u′′0(α)

J (α, t)2−
1
λ

(∫ 1

0

dα

J (α, t)
1
λ

)1−2λ

. (2.1.24)

Remark 2.1.25. Since η(0) = 0 and K̄i(0) = 1, setting t = 0 into (2.1.19) yields an

expression of the form 0/0. The desired result, namely u′0(α), follows by L’Hopital’s rule.

Remark 2.1.26. Notice that either (2.1.20) or (2.1.19) imply that, for as long as solutions

exist,

ux(γ(α1, t), t) = ux(γ(α2, t), t) ⇔ u′0(α1) = u′0(α2) (2.1.27)

for λ ∈ R and α1, α2 ∈ [0, 1]. This clearly agrees with the periodic boundary conditions

(1.1.2), whereas, in the Dirichlet setting (1.1.3), (2.1.11) and (2.1.27) give

ux(0, t) = ux(1, t) ⇔ u′0(0) = u′0(1).

Remark 2.1.28. The representation formula (2.1.20) for λ = 1 (stagnation point-form

solutions (1.2.3) to the 2D incompressible Euler equations) resembles a lower-dimensional

analogue to the vertical component of an infinite energy, periodic class of solutions derived by
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Constantin ([14]) for the corresponding 3D Euler problem. For u(x, y, t) = (u1(x, y, t), u2(x, y, t))

and ∇ · u = ∂xu1 + ∂yu2, he considered the ansatz

u(x, y, z, t) = (u1(x, y, t), u2(x, y, t), zv(x, y, t))

on an infinite 2D channel (x, y, z) ∈ [0, L]2 × R. Using the above yields, as the vertical

component of the 3D Euler system, the equation

∂t(∇ · u) + (u1, u2) · ∇(∇ · u)− (∇ · u)2 = − 2

L2

∫ L

0

∫ L

0

(∇ · u)2dxdy,

a higher dimensional analogue to (1.1.1)i), iii) (with λ = 1).

Next, we show that even though formula (2.1.19) holds for either periodic or Dirichlet

boundary conditions, this is, generally, not the case for u(γ(α, t), t).

2.2 The Representation Formula for u(γ(α, t), t)

By using the results from section 2.1, we now derive an expression for u(γ(α, t), t). In section

2.2.1, we look at the case of Dirichlet boundary conditions (1.1.3) for which a straight forward

derivation follows. Then, in section 2.2.2 we examine the periodic setting (1.1.2). In this

case, we find that additional information on u and/or the data is required to completely

determine a representation formula.

2.2.1 Dirichlet Boundary conditions

Integrating (2.1.14) in α and using (2.1.11)i) and (2.1.13), we find that the characteristics,

γ, are given by

γ(α, t) = K̄0(t)
−1
∫ α

0

K0(y, t) dy. (2.2.1)

Now, from (2.1.9) and (2.1.18) there is a time interval [0, t∗), 0 < t∗ ≤ +∞ such that

J (α, t) > 0 for all α ∈ [0, 1].3 Therefore, (2.0.1), (2.1.16) and (2.2.1) yield

u(γ(α, t), t) =

K̄0(t)
−2(1+λ)

(
K̄0(t)

∫ α

0

u′0(y)K1(y, t)dy −
∫ α

0

K0(y, t)dy

∫ 1

0

u′0(α)K1(α, t)dα

)
.

3See (3.0.6) for a formal definition of η∗ ∈ R+.
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for t ∈ [0, t∗). The above formula may, in turn, be written in a slightly more useful form by

using (2.1.21) and (2.1.22). The resulting expression is

u(γ(α, t), t) =
K̄0(t)

−2(1+λ)

λη(t)

(
K̄0(t)

∫ α

0

K1(y, t)dy − K̄1(t)

∫ α

0

K0(y, t)dy

)
. (2.2.2)

2.2.2 Periodic Boundary conditions

Next, suppose u satisfies the periodic boundary conditions (1.1.2). Integrating (2.1.14) now

leads to

γ(α, t) = γ(0, t) + K̄0(t)
−1
∫ α

0

K0(y, t) dy. (2.2.3)

Then, (2.0.1) yields

u(γ(α, t), t) = γ̇(0, t) +
K̄0(t)

−2(1+λ)

λη(t)

(
K̄0(t)

∫ α

0

K1(y, t)dy − K̄1(t)

∫ α

0

K0(y, t)dy

)
, (2.2.4)

where the time-dependent function γ̇(0, t) satisfies

γ̇(0, t) = u(γ(0, t), t), γ(0, t) = γ(1, t)− 1

by (2.0.1) and (2.1.10). Below, we determine γ(0, t) in two different ways. The first relies on

assumptions on the data’s symmetry, while the second pertains to the incompressible fluid

case and uses the conservation in mean condition (1.2.24).

Odd Initial Data.

Under periodic boundary conditions, suppose the initial data u0(x) is odd about the midpoint

x = 1/2. Then u0(0) = u0(1) = 0, by periodicity. Now, it is easy to see that (1.1.1)i), iii)

is invariant under the transformation u(x, t) = −u(−x, t). This implies that if u0(x) is odd,

then u(x, t) will remain odd for as long as it exists. As a result u(0, t) = u(1, t) = 0, and

so (2.1.11) holds from uniqueness of solution to (2.0.1). Particularly, this last observation

implies γ(0, t) ≡ 0, so that (2.2.4) reduces to (2.2.2). To summarize, if the initial data u0(x)

is odd about the midpoint x = 1/2 and λ 6= 0, representation formulae for the characteristics

and solutions u(γ(α, t), t) to (1.1.1)-(1.1.2) are given by (2.2.1) and (2.2.2), respectively.

n Dimensional Incompressible Euler Flow.

Recall from section 1.2.5 that for λ = 1
n−1 , n ≥ 2, equation (1.1.1)i), iii) models stagnation

point-form solutions (1.2.7) to the n dimensional incompressible Euler equations (1.2.6).
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Furthermore, for a scalar pressure term that is periodic in the x variable, the conservation

in mean condition (1.2.24) holds. Assume periodic boundary conditions. Since∫ 1

0

u0(x) dx =

∫ 1

0

u(x, t) dx =

∫ 1

0

u(γ(α, t), t)γα(α, t) dα, (2.2.5)

we multiply (2.2.4) by the mean-one function γα in (2.1.14), integrate in α, and use the

identity ∫ 1

0

K0(α, t)

∫ α

0

K0(y, t)dy dα =
1

2

∫ 1

0

d

dα

(∫ α

0

K0(y, t)dy

)2

dα =
K̄0(t)

2

2

to obtain

γ̇(0, t) =

∫ 1

0

u0(α)dα+
K̄0(t)

−2(1+λ)

λη(t)

(
K̄0(t)K̄1(t)

2
−
∫ 1

0

K0(α, t)

∫ α

0

K1(y, t)dy dα

)
. (2.2.6)

Substituting the above back into (2.2.4) yields

u(γ(α, t), t) =

∫ 1

0

u0(α)dα +
K̄0(t)

−2(1+λ)

λη(t)

(
K̄0(t)K̄1(t)

2
+ K̄0(t)

∫ α

0

K1(y, t)dy

)
− K̄0(t)

−2(1+λ)

λη(t)

(
K̄1(t)

∫ α

0

K0(y, t)dy +

∫ 1

0

K0(α, t)

∫ α

0

K1(y, t)dydα

)
.

(2.2.7)

Lastly, since γ(0, 0) = 0, we may integrate (2.2.6) in time and use (2.2.3) to obtain an

expression for the characteristics γ(α, t).

Remark 2.2.8. If the data is not odd or λ 6= 1
n−1 , n ≥ 2, it is generally assumed that u has

zero mean. In that case, expressions for γ and u(γ(α, t), t) can be obtained from the above

formulas simply by setting
∫ 1

0
u0(α)dα = 0.

Remark 2.2.9. For the remainder of this Dissertation, solutions to (1.1.1)-(1.1.2) are as-

sumed to have zero mean.
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Chapter 3

Global Estimates and Blow-up

In this chapter, we examine finite-time blow-up, or global existence in time, of solutions to

the initial value problem (1.1.1) arising out of several classes of initial data and satisfying

either periodic (1.1.2) or Dirichlet boundary conditions (1.1.3). Before discussing the classes

of initial data to be considered, first, we make some definitions and introduce some of the

tools and auxiliary results that will aid us in the study of blow-up.

As mentioned at the end of section 2.1, finite-time blow-up of (2.1.19) will depend, in

part, upon the existence of a finite, positive limit

t∗ ≡ lim
η↑η∗

∫ η

0

(∫ 1

0

dα

(1− λµu′0(α))
1
λ

)2λ

dµ (3.0.1)

for η∗ > 0 to be defined. Let us suppose a solution u(x, t) exists on an interval t ∈ [0, t∗)

0 < t∗ ≤ +∞. Define

M(t) ≡ sup
α∈[0,1]

{ux(γ(α, t), t)}, M(0) = M0, (3.0.2)

and

m(t) ≡ inf
α∈[0,1]

{ux(γ(α, t), t)}, m(0) = m0. (3.0.3)

Then, it follows from the representation formula (2.1.19) (see appendix C) that

M(t) = ux(γ(αi, t), t) (3.0.4)

and

m(t) = ux(γ(αj, t), t), (3.0.5)
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where αi, i = 1, 2, ...,m and αj, j = 1, 2, ..., n denote the finite (or infinite) number of

locations in [0, 1] where u′0(α) attains its greatest and least values M0 > 0 > m0, respectively.

Let

η∗ =


1

λM0
, λ > 0,

1
λm0

, λ < 0,
(3.0.6)

then as η ↑ η∗, the space-dependent term in (2.1.19) will diverge for certain choices of α and

not at all for others. Specifically, for λ > 0, J (α, t)−1 blows up earliest as η ↑ η∗ at α = αi,

since

J (αi, t)
−1 = (1− λη(t)M0)

−1 → +∞ as η ↑ η∗ =
1

λM0

.

Similarly for λ < 0, J (α, t)−1 diverges first at α = αj and

J (αj, t)
−1 = (1− λη(t)m0)

−1 → +∞ as η ↑ η∗ =
1

λm0

.

However, blow-up of (2.1.19) does not necessarily follow from this; we will need to estimate

the behaviour of the time-dependent integrals

K̄0(t) =

∫ 1

0

dα

J (α, t)
1
λ

, K̄1(t) =

∫ 1

0

dα

J (α, t)1+
1
λ

as η ↑ η∗. To this end, in some of the proofs we find convenient the use of the Gauss

hypergeometric series4 ([2], [21], [25])

2F1 [a, b; c; z] ≡
∞∑
k=0

(a)k (b)k
(c)k k!

zk, |z| < 1 (3.0.7)

for c /∈ Z− ∪ {0} and where (x)k denotes the Pochhammer symbol

(x)k =

1, k = 0

x(x+ 1)...(x+ k − 1), k ∈ Z+.
(3.0.8)

Also, we will make use of the following results ([21], [25]):

Lemma 3.0.9. Suppose |arg (−z)| < π and a, b, c, a− b /∈ Z, then the analytic continuation

for |z| > 1 of the series (3.0.7) is given by

2F1[a, b; c; z] =
Γ(c)Γ(a− b)(−z)−b2F1[b, 1 + b− c; 1 + b− a; z−1]

Γ(a)Γ(c− b)

+
Γ(c)Γ(b− a)(−z)−a2F1[a, 1 + a− c; 1 + a− b; z−1]

Γ(b)Γ(c− a)

(3.0.10)

where Γ(·) denotes the standard gamma function.

4See appendix B for convergence results on (3.0.7).
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Lemma 3.0.11. Suppose b < 2, 0 ≤ |β − β0| ≤ 1 and ε ≥ C0 for some C0 > 0. Then

1

εb
d

dβ

(
(β − β0) 2F1

[
1

q
, b; 1 +

1

q
;−C0 |β − β0|q

ε

])
= (ε+ C0 |β − β0|q)−b (3.0.12)

for all q > 0 and b 6= 1/q.

Proof. See appendix B.

Our study of finite-time blow-up begins in section 3.1 where a family of smooth data

with u′′′0 (α) 6= 0 in a neighbourhood of αi and/or αj is considered. Then, in section 3.2, u′0

in the class of piecewise constant functions is studied. Finally, section 3.3 is concerned with

a large class of functions where u0(α) is, at least, C1(0, 1) a.e. and has arbitrary curvature

near αi and/or αj.

3.1 A Class of Smooth Initial Data

In this section, we study finite-time blow-up of solutions to (1.1.1)-(1.1.2) or (1.1.3) which

arise from a class of smooth initial data u0(α) ∈ C∞R (0, 1) or C∞(0, 1). More particularly,

for parameters λ > 0, we assume that the smooth, mean-zero function u′0(α) attains its

greatest value M0 > 0 at, at most, finitely many locations αi ∈ [0, 1] and that, near these

locations, u′′′0 (α) 6= 0. Similarly, when λ < 0, we suppose that its least value, m0 < 0, occurs

at a discrete set of points αj ∈ [0, 1] and u′′′0 (α) 6= 0 in a neighbourhood of every αj. One

possibility for admitting infinitely many αi and/or αj will be considered in section 3.2 for

u′0(α) ∈ PCR(0, 1), the class of piecewise constant functions. Moreover, the cases where

u′′′0 (α), or higher derivatives, vanish near the locations in question is studied at the end of

section 3.3.3. Below, is a summary of the results we will establish in this section. The case

λ = 0 is treated separately in appendix A.

Theorem 3.1.1. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3) for

the generalized, inviscid, Proudman-Johnson equation. There exist smooth initial data such

that:

1. For λ ∈ [0, 1], solutions exist globally in time. Particularly, these vanish as t ↑ t∗ = +∞
for λ ∈ (0, 1) but converge to a nontrivial steady-state if λ = 1.

2. For λ ∈ (−∞,−2] ∪ (1,+∞), there exists a finite t∗ > 0 such that both the maximum

M(t) and the minimum m(t) diverge to +∞ and respectively to −∞ as t ↑ t∗. Moreover,

if α /∈ {αi, αj}, limt↑t∗ |ux(γ(α, t), t)| = +∞ (two-sided, everywhere blow-up).
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3. For λ ∈ (−2, 0), there is a finite t∗ > 0 such that only the minimum diverges, m(t)→
−∞, as t ↑ t∗ (one-sided, discrete blow-up).

4. For λ < 0, suppose only Dirichlet boundary conditions (1.1.3) are considered and/or

u0(α) is odd about the midpoint α = 1/2. Then, for every αj ∈ [0, 1] there exists a

unique xj ∈ [0, 1] given by

xj =

∫ αj
0

(
1 +

u′0(α)

|m0|

) 1
|λ|
dα∫ 1

0

(
1 +

u′0(α)

|m0|

) 1
|λ|
dα

(3.1.2)

such that limt↑t∗ ux(xj, t) = −∞.

The next two results examine the behaviour, as t ↑ t∗, of two quantities, the jacobian

γα(α, t) (see (2.1.14)), and the Lp norm

‖ux(·, t)‖p =

(∫ 1

0

(ux(γ(α, t), t))pγα(α, t) dα

)1/p

, p ∈ [1,+∞), (3.1.3)

with particular emphasis given to the energy function

E(t) = ‖ux(·, t)‖22 .

Remark 3.1.4. Corollary 3.1.5 and Theorem 3.1.7 below describe pointwise behaviour and

Lp regularity of solutions as t ↑ t∗ where, for λ ∈ (−∞, 0) ∪ (1,+∞), t∗ > 0 refers to the

finite L∞ blow-up time for ux in Theorem 3.1.1, otherwise the description is asymptotic, for

t ↑ t∗ = +∞.

Corollary 3.1.5. Let u(x, t) in Theorem 3.1.1 be a solution to the initial boundary value

problem (1.1.1)-(1.1.2) or (1.1.3) defined for t ∈ [0, t∗). Then

lim
t↑t∗

γα(α, t) =



+∞, α = αi, λ > 0,

0, α 6= αi, λ ∈ (0, 2],

C, α 6= αi, λ > 2,

0, α = αj, λ < 0,

C, α 6= αj, λ < 0

(3.1.6)

where the positive constants C depend on the choice of λ and α.
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Table 3.1: Energy Estimates and Lp Regularity as t ↑ t∗
λ E(t) Ė(t) ux

(−∞,−2] +∞ +∞ /∈ Lp, p > 1

(−2,−2/3] +∞ +∞ ∈ L1, /∈ L2

(−2/3,−1/2) Bounded +∞ ∈ L2, /∈ L3

−1/2 Constant 0 ∈ L2, /∈ L3

(−1/2,−2/5] Bounded −∞ ∈ L2, /∈ L3(
− 2

2p−1 , 0
)
, p ≥ 3 Bounded Bounded ∈ Lp[

− 2
p−1 ,−

2
p

]
, p ≥ 6 Bounded Bounded /∈ Lp

[0, 1] Bounded Bounded ∈ L∞

(1,+∞) +∞ +∞ /∈ Lp, p > 1

Theorem 3.1.7. Let u(x, t) in Theorem 3.1.1 be a solution to the initial boundary value

problem (1.1.1)-(1.1.2) or (1.1.3) defined for t ∈ [0, t∗). It holds

1. For p ≥ 1 and λ ∈ [0, 1], ‖ux‖p exists for all time.

2. For p ≥ 1 and 2
1−2p < λ ≤ 1, limt↑t∗ ‖ux‖p < +∞.

3. For p ∈ (1,+∞) and λ ∈ (−∞,−2/p] ∪ (1,+∞), limt↑t∗ ‖ux‖p = +∞.

4. The energy E(t) = ‖ux‖22 diverges as t ↑ t∗ if λ ∈ (−∞,−2/3] ∪ (1,+∞) but remains

finite for t ∈ [0, t∗] when λ ∈ (−2/3, 0). Moreover, Ė(t) blows up to +∞ as t ↑ t∗ if

λ ∈ (−∞,−1/2) ∪ (1,+∞) and Ė(t) ≡ 0 for λ = −1/2; whereas, limt↑t∗ Ė(t) = −∞
when λ ∈ (−1/2,−2/5] but remains bounded, for all t ∈ [0, t∗], if λ ∈ (−2/5, 0).

See Table 3.1 for a summary of the results mentioned in Theorem 3.1.7. Theorem 3.1.1

and Corollary 3.1.5 are proved in sections 3.1.1, 3.1.2 and 3.1.3, whereas Theorem 3.1.7 is

established in section 3.1.4.

3.1.1 Global estimates for λ ∈ [0, 1] and blow-up for λ > 1

In this section, we establish finite-time blow-up of ux in the L∞ norm for λ > 1. In fact,

we will find that blow-up is two-sided and occurs everywhere in the domain, an event we

will refer to as “two-sided, everywhere blow-up.” In contrast, for parameters λ ∈ [0, 1], we
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show that solutions persist globally in time. More particularly, these vanish as t→ +∞ for

λ ∈ (0, 1) but converge to a non-trivial steady-state if λ = 1. Finally, the behaviour of the

jacobian (2.1.14) is also studied. We refer to appendix A for the case λ = 0.

Theorem 3.1.8. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3).

There exist smooth initial data such that:

1. For λ ∈ (0, 1], solutions persist globally in time. Particularly, these vanish as t ↑ t∗ =

+∞ for λ ∈ (0, 1) but converge to a nontrivial steady-state if λ = 1.

2. For λ > 1, there exists a finite t∗ > 0 such that both the maximum M(t) and the mini-

mum m(t) diverge to +∞ and respectively to −∞ as t ↑ t∗. Moreover, limt↑t∗ ux(γ(α, t), t) =

−∞ for α /∈ {αi, αj} (two-sided, everywhere blow-up).

Finally, for t∗ as above, the jacobian (2.1.14) satisfies

lim
t↑t∗

γα(α, t) =


+∞, α = αi, λ > 0,

0, α 6= αi, λ ∈ (0, 2],

C, α 6= αi, λ > 2

(3.1.9)

where the positive constants C depend on the choice of λ and α 6= αi.

Proof. For simplicity, assume M0 > 0 is attained at a single location5 α ∈ (0, 1). We consider

the case where, near α, u′0(α) has non-vanishing second order derivative, so that, locally

u′0(α) ∼M0 + C1(α− α)2

for 0 ≤ |α− α| ≤ s, 0 < s ≤ 1 and C1 = u′′′0 (α)/2 < 0. Then, for ε > 0

ε− u′0(α) +M0 ∼ ε− C1(α− α)2. (3.1.10)

Global existence for λ ∈ (0, 1]

By (3.1.10) above and the change of variables α =
√

ε
|C1| tan θ + α, we have that

∫ α+s

α−s

dα

(ε− C1(α− α)2)
1
λ

∼ ε
1
2
− 1
λ

√
−C1

∫ π
2

−π
2

(cos(θ))2(
1
λ
−1)dθ (3.1.11)

5The case of a finite number of αi ∈ [0, 1] follows similarly.
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for ε > 0 small and λ ∈ (0, 1]. But from properties of the gamma function (see for instance

[24]), the identity ∫ 1

0

tp−1(1− t)q−1dt =
Γ(p) Γ(q)

Γ(p+ q)
(3.1.12)

holds for all p, q > 0. Therefore, setting p = 1
2
, q = 1

λ
− 1

2
and t = sin2 θ into (3.1.12) gives∫ π

2

−π
2

(cos(θ))2(
1
λ
−1)dθ =

√
π Γ
(
1
λ
− 1

2

)
Γ
(
1
λ

) ,

which we use, along with (3.1.10) and (3.1.11), to obtain∫ 1

0

dα

(ε− u′0(α) +M0)
1
λ

∼
Γ
(
1
λ
− 1

2

)
Γ
(
1
λ

) √
− π

C1

ε
1
2
− 1
λ . (3.1.13)

Consequently, setting ε = 1
λη
−M0 into (3.1.13) yields

K̄0(t) ∼ C3J (α, t)
1
2
− 1
λ (3.1.14)

for η∗ − η > 0 small, J (α, t) = 1− λη(t)M0, η∗ = 1
λM0

and positive constants C3 given by

C3 =
Γ
(
1
λ
− 1

2

)
Γ
(
1
λ

) √
−πM0

C1

. (3.1.15)

Similarly, ∫ α+s

α−s

dα

(ε− C1(α− α)2)1+
1
λ

∼
Γ
(
1
2

+ 1
λ

)
Γ
(
1 + 1

λ

)√− π

C1

ε−( 1
2
+ 1
λ) (3.1.16)

so that

K̄1(t) ∼
C4

J (α, t)
1
2
+ 1
λ

(3.1.17)

for λ ∈ (0, 1] and positive constants C4 determined by

C4 =
Γ
(
1
2

+ 1
λ

)
Γ
(
1 + 1

λ

)√−πM0

C1

. (3.1.18)

Using (3.1.14) and (3.1.17) with (2.1.19) implies

ux(γ(α, t), t) ∼ C

J (α, t)λ−1

(
J (α, t)

J (α, t)
− C4

C3

)
(3.1.19)

for η∗ − η > 0 small. But ([24])

Γ(y + 1) = y Γ(y), y ∈ R+,
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so that

C4

C3

=
Γ
(
1
λ

)
Γ
(
1
λ
− 1

2
+ 1
)

Γ
(
1
λ

+ 1
)

Γ
(
1
λ
− 1

2

) = 1− λ

2
∈ [1/2, 1) (3.1.20)

for λ ∈ (0, 1]. Then, by (3.1.19), (3.0.4)i) and the definition of M0

M(t)→ 0+, α = α,

ux(γ(α, t), t)→ 0−, α 6= α
(3.1.21)

as η ↑ η∗ for all λ ∈ (0, 1). For the threshold parameter λ∗ = 1, we keep track of the positive

constant C prior to (3.1.19) and find that, for α = α,

M(t)→ −u
′′′
0 (α)

(2π)2
> 0 (3.1.22)

as η ↑ 1
M0
, whereas

ux(γ(α, t), t)→ u′′′0 (α)

(2π)2
< 0 (3.1.23)

for α 6= α. Finally, from (2.1.16)

dt = K̄0(t)
2λdη, (3.1.24)

then (3.1.14) implies

t∗ − t ∼ C

∫ η∗

η

(1− λµM0)
λ−2dµ. (3.1.25)

As a result, t∗ = +∞ for all λ ∈ (0, 1]. See §4.1.1 for examples.

Two-sided, everywhere blow-up for λ ∈ (1,+∞)

For λ ∈ (1,+∞)\{2}, set b = 1
λ

and q = 2 in Lemma 3.0.11 to obtain∫ α+s

α−s

dα

(ε− C1(α− α)2)
1
λ

= 2sε−
1
λ 2F1

[
1

2
,

1

λ
;
3

2
;
s2C1

ε

]
(3.1.26)

where the above series is defined by (3.0.7) as long as ε ≥ −C1 ≥ −s2C1 > 0, namely

−1 ≤ s2C1

ε
< 0. However, we are ultimately interested in the behaviour of (3.1.26) for

ε > 0 arbitrarily small, so that, eventually s2C1

ε
< −1. To achieve this transition of the series

argument across −1 in a well-defined, continuous fashion, we use Lemma 3.0.9 which provides

us with the analytic continuation of the series in (3.1.26) from argument values inside the
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unit circle, particularly −1 ≤ s2C1

ε
< 0, to those found outside, and thus for s2C1

ε
< −1.

Consequently, for ε small enough so that −s2C1 > ε > 0, proposition 3.0.9 implies

2sε−
1
λ 2F1

[
1

2
,

1

λ
;
3

2
;
s2C1

ε

]
= C Γ

(
1

λ
− 1

2

)
ε
1
2
− 1
λ +

C

λ− 2
+ ψ(ε) (3.1.27)

for ψ(ε) = o(1) as ε → 0 and positive constant C which may depend on λ and can be

obtained explicitly from (3.0.10). Then, substituting ε = 1
λη
−M0 into (3.1.27) and using

(3.1.10) along with (3.1.26), yields

K̄0(t) ∼

C3J (α, t)
1
2
− 1
λ , λ ∈ (1, 2),

C, λ ∈ (2,+∞)
(3.1.28)

for η∗ − η > 0 small and positive constants C3 given by (3.1.15) for λ ∈ (1, 2). Similarly,

by following an identical argument, with b = 1 + 1
λ

instead, we find that estimate (3.1.17),

derived initially for λ ∈ (0, 1], holds for λ ∈ (1,+∞) as well. First suppose λ ∈ (1, 2), then

(2.1.19), (3.1.17) and (3.1.28)i) imply estimate (3.1.19). However, by (3.1.20) we now have

C4

C3

= 1− λ

2
∈ (0, 1/2)

for λ ∈ (1, 2). As a result, setting α = α in (3.1.19), we obtain

M(t) ∼ C

J (α, t)λ−1
→ +∞ (3.1.29)

as η ↑ η∗. On the other hand, if α 6= α, the definition of M0 gives

ux(γ(α, t), t) ∼ − C

J (α, t)λ−1
→ −∞. (3.1.30)

The existence of a finite t∗ > 0 follows from (3.1.24) and (3.1.28)i), which imply

t∗ − t ∼ C(η∗ − η)λ−1. (3.1.31)

For λ ∈ (2,+∞), we use (2.1.19), (3.1.17) and (3.1.28)ii) to get

ux(γ(α, t), t) ∼ C

J (α, t)

(
J (α, t)

J (α, t)
− CJ (α, t)

1
2
− 1
λ

)
. (3.1.32)

Then, setting α = α in (3.1.32), we obtain

M(t) ∼ C

J (α, t)
→ +∞ (3.1.33)
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as η ↑ η∗. Similarly, for α 6= α,

ux(γ(α, t), t) ∼ − C

J (α, t)
1
2
+ 1
λ

→ −∞. (3.1.34)

A finite blow-up time t∗ > 0 follows from (3.1.24) and (3.1.28)ii), which yield

t∗ − t ∼ C(η∗ − η).

For the case λ = 2 and η∗ − η = 1
2M0
− η > 0 small, we have

K̄0(t) ∼ −C ln (J (α, t)) , K̄1(t) ∼
C

J (α, t)
. (3.1.35)

Two-sided blow-up for λ = 2 then follows from (2.1.19), (3.1.24) and (3.1.35). Finally, the

behaviour of the jacobian in (3.1.9) is deduced from (2.1.14) and the estimates (3.1.14),

(3.1.28) and (3.1.35). See section 4.1.1 for examples.

Remark 3.1.36. As discussed in section 1.2.3, several methods were used in [9] to show that

there are stagnation point-form blow-up solutions to the 2D incompressible Euler equations

(λ = 1) under Dirichlet boundary conditions. We remark that these do not conflict with our

global result in part 1 of Theorem 3.1.8 as long as the data is smooth and, under certain

circumstances, its local behaviour near the endpoints α = {0, 1} allows for a smooth, periodic

extension of u′0 to all α ∈ R. We will return to this issue in section 3.3. Also in that section,

we will show that if u′0 behaves linearly, instead of quadratically, near αi then finite-time

blow-up occurs for all λ > 1/2, whereas, global existence in time follows if λ ∈ [0, 1/2]. In

particular, this will provide us with blow-up criteria for the 2D Euler case and allow for a

better understanding of the role played by the corresponding set of boundary conditions in

the breakdown of solutions that arise from smooth data.

3.1.2 Blow-up for λ < −1

Theorem 3.1.37 below proves the existence of smooth data and a finite t∗ > 0 such that ux

undergoes a two-sided, everywhere blow-up for λ ≤ −2. If instead λ ∈ (−2,−1), we show

that only the minimum diverges, m(t)→ −∞, at a finite number of locations in the domain.

We will refer to this last type of blow-up as “one-sided, discrete blow-up”.
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Theorem 3.1.37. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3).

There exist smooth initial data such that:

1. For λ ≤ −2, there is a finite t∗ > 0 such that both the maximum M(t) and the minimum

m(t) diverge to +∞ and respectively to −∞ as t ↑ t∗. Also, limt↑t∗ ux(γ(α, t), t) = +∞
for α /∈ {αi, αj} (two-sided, everywhere blow-up).

2. For λ ∈ (−2,−1), there exists a finite t∗ > 0 such that only the minimum diverges,

m(t)→ −∞, as t ↑ t∗ (one-sided, discrete blow-up).

3. For λ < −1, suppose only Dirichlet boundary conditions are considered and/or u0 is

odd about the midpoint. Then, for every αj ∈ [0, 1] there exists a unique xj ∈ [0, 1]

given by (3.1.2) such that limt↑t∗ ux(xj, t) = −∞.

Finally, for λ < −1 and t∗ > 0 as above, the jacobian (2.1.14) satisfies

lim
t↑t∗

γα(α, t) =

0, α = αj,

C, α 6= αj

(3.1.38)

where the positive constants C depend on the choice of λ and α 6= αj.

Proof. For λ < −1 and

η∗ =
1

λm0

,

smoothness of u′0 implies that

K̄0(t) =

∫ 1

0

J (α, t)
1
|λ|dα, K̄0(0) = 1

remains finite, and positive, for all η ∈ [0, η∗]. Indeed, suppose there is an earliest t1 > 0

such that η1 = η(t1) > 0 and

K̄0(t1) =

∫ 1

0

(1− λη1u′0(α))
1
|λ|dα = 0.

Since ∫ 1

0

(
1 +

u′0(α)

|m0|

) 1
|λ|

dα > 0,

then η1 6= η∗. Also, by periodicity of the data, there are [0, 1] 3 α′ 6= αj where

(1− λη1u′0(α′))
1
|λ| = 1.

30



As a result, K̄0(t1) = 0 implies the existence of at least one [0, 1] 3 α′′ 6= αj where u′0(α
′′) =

1
λη1
. But u′0(α) ≥ m0 and η∗ = 1

λm0
, then

η∗ < η1. (3.1.39)

In fact, (3.1.39) and m0 ≤ u′0(α) ≤M0 yield

0 <

∫ 1

0

(
1 +

u′0(α)

|m0|

) 1
|λ|

dα ≤ K̄0(t) ≤ 1 (3.1.40)

for all η ∈ [0, η∗]. Next, for λ < −1, we need to examine the behaviour of

K̄1(t) =

∫ 1

0

dα

J (α, t)1+
1
λ

as η ↑ η∗. We will do so by following an argument analogous to the one used in the derivation

of (3.1.28) in the previous section. For simplicity, we will assume that m0 occurs at a single

location α ∈ (0, 1).6 Also, we consider smooth functions u′0(α) with non-vanishing second

order derivative near α, so that, locally

u′0(α) ∼ m0 + C2(α− α)2

for 0 ≤ |α− α| ≤ r, 0 < r ≤ 1 and C2 = u′′′0 (α)/2 > 0. Then, for arbitrary ε > 0,

ε+ u′0(α)−m0 ∼ ε+ C2(α− α)2. (3.1.41)

Given λ < −1, set b = 1 + 1
λ

and q = 2 into (3.0.12) of Lemma 3.0.11, to find∫ α+r

α−r

dα

(ε+ C2(α− α)2)1+
1
λ

=
2r

ε1+
1
λ

2F1

[
1

2
, 1 +

1

λ
;
3

2
;−r

2C2

ε

]
(3.1.42)

for ε ≥ C2 ≥ r2C2 > 0 and λ ∈ (−∞,−1)\{−2}.7 Now, if we let ε > 0 become small

enough, so that eventually − r2C2

ε
< −1, we may use Lemma 3.0.9 to obtain a continuous,

well-defined transition of the series argument, − r2C2

ε
, across −1. We find

2r

ε1+
1
λ

2F1

[
1

2
, 1 +

1

λ
;
3

2
;−r

2C2

ε

]
=

C

λ+ 2
+
C Γ

(
1
2

+ 1
λ

)
ε
1
2
+ 1
λ

+ ξ(ε) (3.1.43)

for ξ(ε) = o(1) as ε→ 0 and positive constants C which may depend on the choice of λ and

can be obtained explicitly from (3.0.10). Accordingly, we use (3.1.41), (3.1.42) and (3.1.43)

to obtain ∫ α+r

α−r

dα

(ε+ u′0(α)−m0)
1+ 1

λ

∼ C

λ+ 2
+
C Γ

(
1
2

+ 1
λ

)
ε
1
2
+ 1
λ

(3.1.44)

6The case of finitely many αj ∈ [0, 1] follows similarly.
7The case λ = −2 is treated separately.
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for small ε > 0. Finally, setting ε = m0 − 1
λη

implies

K̄1(t) ∼

C, λ ∈ (−2,−1),

C5J (α, t)−( 1
2
+ 1
λ), λ < −2

(3.1.45)

for η∗ − η > 0 small, η∗ = 1
λm0

, J (α, t) = 1− λη(t)m0 and

C5 =
Γ
(
1
2

+ 1
λ

)
Γ
(
1 + 1

λ

)√−πm0

C2

> 0, λ < −2. (3.1.46)

Setting α = α in (2.1.19) and using (3.0.5), (3.1.40) and (3.1.45), we find that

m(t) ∼ − C

J (α, t)
→ −∞ (3.1.47)

as η ↑ η∗ for all λ ∈ (−∞,−1)\{−2}, a one-sided, discrete blow-up.

On the other hand, (2.1.19), (3.1.40), (3.1.45), and the definition of m0, imply that for

α 6= α, |ux(γ(α, t), t)| < +∞, λ ∈ (−2,−1),

ux(γ(α, t), t) ∼ CJ (α, t)−( 1
2
+ 1
λ) → +∞, λ < −2

(3.1.48)

as η ↑ η∗. A one-sided, discrete blow-up for λ ∈ (−2,−1) follows from (3.1.47) and (3.1.48)i),

whereas a two-sided, everywhere blow-up for λ < −2 results from (3.1.47) and (3.1.48)ii).

The existence of a finite blow-up time t∗ > 0 and formula (3.1.2) follow from (2.1.16) and

(2.2.1), respectively, along with (3.1.40) as η ↑ η∗. Particularly, we have the lower bound

η∗ ≤ t∗. (3.1.49)

The case λ = −2 can be treated directly. We find

K̄1(t) ∼ −C ln (J (α, t)) (3.1.50)

for η∗−η > 0 small. A two-sided, everywhere blow-up then follows as above. Finally, (3.1.38)

is deduced from (2.1.14) and (3.1.40). See section 4.1.1 for examples.

3.1.3 One-sided, discrete blow-up for λ ∈ [−1, 0)

Theorem 3.1.51 below will extend the one-sided, discrete blow-up found in Theorem 3.1.37

for parameters λ ∈ (−2,−1) to all λ ∈ (−2, 0). It is also valid for arbitrary smooth initial

data.
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Theorem 3.1.51. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3)

for arbitrary smooth initial data. If λ ∈ [−1, 0), there exists a finite t∗ > 0 such that only

the minimum diverges, m(t) → −∞, as t ↑ t∗ (one-sided, discrete blow-up). Also, if only

the Dirichlet setting (1.1.3) is considered and/or u0 is odd about the midpoint, then formula

(3.1.2) gives the corresponding blow-up locations in the Eulerian variable x ∈ [0, 1]. Finally,

the jacobian (2.1.14) satisfies

lim
t↑t∗

γα(α, t) =

0, α = αj,

C, α 6= αj

(3.1.52)

where the positive constants C depend on the choice of λ and α 6= αj.

Proof. Since u′0 is smooth and λ ∈ [−1, 0), both integrals K̄i(t), i = 0, 1 remain finite (and

positive) for all η ∈ [0, η∗), η∗ = 1
λm0

. Also, K̄0(t) does not vanish as η ↑ η∗. In fact

1 ≤ K̄0(t) ≤
(

1 +
M0

|m0|

) 1
|λ|

(3.1.53)

for all η ∈ [0, η∗]. Indeed, notice that ˙̄K0(0) = 0 and

¨̄K0(t) =

(1 + λ)

∫ 1

0

u′0(α)2dα

J (α, t)2+
1
λ

− 2λ

(∫ 1

0

u′0(α) dα

J (α, t)1+
1
λ

)2
 K̄0(t)

−4λ > 0

for λ ∈ [−1, 0) and η ∈ (0, η∗). This implies

˙̄K0(t) = K̄0(t)
−2λ
∫ 1

0

u′0(α)dα

J (α, t)1+
1
λ

> 0. (3.1.54)

Then, (3.1.54), K̄0(0) = 1 and m0 ≤ u′0(α) ≤M0 yield (3.1.53). Similarly, one can show that

1 ≤ K̄1(t) ≤
(

|m0|
M0 + |m0|

)1+ 1
λ

. (3.1.55)

Consequently, (2.1.19), (3.0.5), (3.1.53), and (3.1.55) imply that

m(t)→ −∞

as η ↑ η∗. On the other hand, by (3.1.53), (3.1.55) and the definition of m0, we find that

ux(γ(α, t), t) remains bounded for all α 6= αj as η ↑ η∗. The existence of a finite blow-up time
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t∗ > 0 and formula (3.1.2) follow from (2.1.16) and (2.2.1), respectively, along with (3.1.53).

Although t∗ can be computed explicitly from (2.1.18), (3.1.53) provides the simple estimate8

η∗

(
m0

m0 −M0

)2

≤ t∗ ≤ η∗. (3.1.56)

Also, since the maximum M(t) remains finite as t ↑ t∗, setting α = α in (2.1.19) and using

(3.0.4) and (2.0.3) gives Ṁ(t) < λ(M(t))2 < 0, which implies

0 < M(t) ≤M0

for all t ∈ [0, t∗] and λ ∈ [−1, 0). Finally, (3.1.52) follows directly from (2.1.14), (3.1.53) and

the definition of m0. See section 4.1.1 for examples.

This concludes the proof of Theorem 3.1.1 and Corollary 3.1.5.

3.1.4 Further Lp Regularity

In this section, we prove Theorem 3.1.7. Particularly, we will find that the two-sided, every-

where blow-up (or one-sided, discrete blow-up) from Theorem 3.1.1, can be associated with

stronger (or weaker) Lp regularity.

Before proving the Theorem, we use (2.1.14) and (2.1.19) to derive basic upper and lower

bounds for the Lp(0, 1) norm

‖ux(·, t)‖p =

(∫ 1

0

(ux(γ(α, t), t))pγα(α, t) dα

)1/p

, p ∈ [1,+∞), (3.1.57)

as well as write down explicit formulas for the energy function E(t) = ‖ux(·, t)‖22, its time

derivative Ė(t), and estimate the blow-up rates of relevant time-dependent integrals.

First of all, let t∗ > 0 be as in Theorem 3.1.1, namely, for parameters λ ∈ (−∞, 0) ∪
(1,+∞), t∗ > 0 denotes the finite, L∞ blow-up time for ux, otherwise t∗ = +∞. From

(2.1.14) and (2.1.19),

|ux(γ(α, t), t)|p γα(α, t) =
|f(α, t)|p

|λη(t)|p K̄0(t)
1+2λp (3.1.58)

for t ∈ [0, t∗), p ∈ [1,+∞), λ 6= 0 and

f(α, t) =
1

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)J (α, t)
1
λp

.

8Which we may contrast to (3.1.49). Notice that (2.1.18) implies that the two cases coincide (t∗ = η∗) in
the case of Burgers’ equation λ = −1.
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Integrating (3.1.58) in α and using periodicity, or the Dirichlet boundary conditions, then

gives

‖ux(·, t)‖pp =
1

|λη(t)|p K̄0(t)
1+2λp

∫ 1

0

|f(α, t)|p dα. (3.1.59)

In particular, setting p = 2 yields, after simplification, the following formula for the energy

E(t) :

E(t) =
(
λη(t)K̄0(t)

1+2λ
)−2 (K̄0(t)K̄2(t)− K̄1(t)

2
)
. (3.1.60)

Furthermore, multiplying (1.1.1)i) by ux, integrating by parts and using either (1.1.2) or

(1.1.3), along with (2.1.14) and (2.1.19), gives

Ė(t) = (1 + 2λ)

∫ 1

0

(ux(x, t))
3dx

= (1 + 2λ)

∫ 1

0

(ux(γ(α, t), t))3γα(α, t) dα

=
1 + 2λ

(λη(t))3

[
K̄3(t)

K̄1(t)
− 3K̄2(t)

K̄0(t)
+ 2

(
K̄1(t)

K̄0(t)

)2
]
K̄1(t)

K̄0(t)6λ+1
.

(3.1.61)

Now, K̄i(t) and J (α, t) stay positive and bounded for all α ∈ [0, 1] and η ∈ [0, η∗) (i.e. for

t ∈ [0, t∗)), as a result

|f(α, t)|p ≤ 2p−1

(
1

J (α, t)
p+ 1

λ

+
K̄1(t)

p

K̄0(t)
pJ (α, t)

1
λ

)
, (3.1.62)

where we used the simple inequality (see appendix D)

(a+ b)p ≤ 2p−1(ap + bp)

valid for p ≥ 1 and non-negative numbers a and b. Then, we integrate (3.1.62) in space and

use (3.1.58) to obtain the upper bound

‖ux(·, t)‖pp ≤
2p−1

|λη(t)|p K̄0(t)
1+2λp

(∫ 1

0

dα

J (α, t)
p+ 1

λ

+
K̄1(t)

p

K̄0(t)
p−1

)
(3.1.63)

for t ∈ [0, t∗), p ∈ [1,+∞) and λ 6= 0.

For a lower bound, notice that by Jensen’s inequality (see appendix D, [20]),∫ 1

0

|f(α, t)|p dα ≥
∣∣∣∣∫ 1

0

f(α, t)dα

∣∣∣∣p
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for p ∈ [1,+∞). Using the above on (3.1.59), we find

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣ . (3.1.64)

Although the right-hand side of (3.1.64) is identically zero for p = 1, it does allow for the

study of Lp regularity of solutions when p ∈ (1,+∞).9

Next, we need to determine any blow-up rates for the appropriate integrals in (3.1.60)-

(3.1.64). By following the argument in Theorems 3.1.8 and 3.1.37, we go through the deriva-

tion of estimates for the term ∫ 1

0

dα

J (α, t)1+
1
λp

with λ > 1 and p ≥ 1, whereas those for∫ 1

0

dα

J (α, t)
1
λp

,

∫ 1

0

dα

J (α, t)p+
1
λ

follow similarly and will be simply stated here.

For simplicity, assume u′0 attains its maximum valueM0 > 0 at a single location α ∈ (0, 1).

As before, we consider the case where, near α, u′0 has non-vanishing second order derivative.

Accordingly, there is 0 < s ≤ 1 small enough such that, by a simple Taylor expansion,

u′0(α) ∼M0 + C1(α− α)2

for 0 ≤ |α− α| ≤ s and C1 = u′′′0 (α)/2 < 0. Then

ε− u′0(α) +M0 ∼ ε− C1(α− α)2

for ε > 0. Given λ > 1 and p ≥ 1, we let b = 1 + 1
λp

and q = 2 in Lemma 3.0.11 to obtain∫ α+s

α−s

dα

(ε− u′0(α) +M0)b
∼
∫ α+s

α−s

dα

(ε− C1(α− α)2)b
=

2s

εb
2F1

[
1

2
, b;

3

2
;
C1s

2

ε

]
(3.1.65)

for ε ≥ −C1 ≥ −C1s
2 > 0. Now, letting ε > 0 become small enough, so that eventually

C1s2

ε
< −1, Lemma 3.0.9 implies

2s

εb
2F1

[
1

2
, b;

3

2
;
C1s

2

ε

]
=

2s

(1− 2b)(−s2C1)b
+

Γ
(
b− 1

2

)
Γ(b)

√
− π

C1

ε
1
2
−b + ζ(ε)

9Also, for p ∈ (1,+∞), (3.1.64) makes sense as t ↓ 0 due to the periodicity of u0, or its vanishing at the
endpoints.
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for λ 6= 2/p, and ζ(ε) = o(1) as ε→ 0. Using the above on (3.1.65) yields∫ 1

0

dα

(ε− u′0(α) +M0)b
∼ Γ(b− 1/2)

Γ(b)

√
− π

C1

ε
1
2
−b (3.1.66)

for ε > 0 small. Then, setting ε = 1
λη
−M0 into (3.1.66) gives∫ 1

0

dα

J (α, t)1+
1
λp

∼ CJ (α, t)−(
1
2
+ 1
λp

) (3.1.67)

for η∗ − η > 0 small, η∗ = 1
λM0

, λ > 1, and p ≥ 1.10 For the other cases and remaining

integrals, we follow a similar argument to find∫ 1

0

dα

J (α, t)1+
1
λp

∼ C

J (α, t)
1
2
+ 1
λp

, λ < −2

p
, p ≥ 1, (3.1.68)

∫ 1

0

dα

J (α, t)
1
λp

∼

C, λ > 2
p
, p ≥ 1 or λ < 0,

CJ (α, t)
1
2
− 1
λp , 1 < λ < 2

p
, 1 < p < 2

(3.1.69)

and ∫ 1

0

dα

J (α, t)p+
1
λ

∼ C,
2

1− 2p
< λ < 0, p ≥ 1 (3.1.70)

where the positive constants C may depend on the choices for λ and p.

Recall from Theorem 3.1.1 (see also appendix A) that

lim
t→+∞

‖ux‖∞ < +∞, λ ∈ [0, 1]. (3.1.71)

In contrast, we also showed that there is a finite t∗ > 0 such that

lim
t↑t∗
‖ux‖∞ = +∞, λ ∈ R\[0, 1]. (3.1.72)

In the case of (3.1.72), Theorem 3.1.73 below further examines the Lp regularity of ux as t

approaches the finite L∞ blow-up time t∗.

10For λ = 2/p, we have that b = 3/2 and (3.1.67) reduces to (3.1.35)ii).
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Theorem 3.1.73. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3) and

let t∗ > 0 denote the finite L∞ blow-up time for ux in Theorem 3.1.1. There exist smooth

initial data such that:

1. For p ∈ (1,+∞) and λ ∈ (−∞,−2/p] ∪ (1,+∞), limt↑t∗ ‖ux‖p = +∞.

2. For p ∈ [1,+∞) and 2
1−2p < λ < 0, limt↑t∗ ‖ux‖p < +∞.

3. The energy E(t) = ‖ux‖22 diverges as t ↑ t∗ if λ ∈ (−∞,−2/3] ∪ (1,+∞) but remains

finite for t ∈ [0, t∗] when λ ∈ (−2/3, 0). Moreover, Ė(t) blows up to +∞ as t ↑ t∗ if

λ ∈ (−∞,−1/2) ∪ (1,+∞) and Ė(t) ≡ 0 for λ = −1/2; whereas, limt↑t∗ Ė(t) = −∞
when λ ∈ (−1/2,−2/5] but remains bounded for all t ∈ [0, t∗] if λ ∈ (−2/5, 0).

Proof. Let C denote a positive constant which may depend on λ and p.

Case λ, p ∈ (1,+∞)

First, consider the lower bound (3.1.64) for p ∈ (1, 2) and λ ∈ (1, 2/p). Then, λ ∈ (1, 2)

so that (3.1.28)i), (3.1.17), (3.1.67) and (3.1.69)ii) imply

‖ux‖pp ≥

∣∣∣∫ 1

0
f(α, t)dα

∣∣∣p
|λη(t)|p K̄0(t)

1+2λp ∼ CJ (α, t)σ(λ,p)

for η∗ − η > 0 small and σ(λ, p) = 3p
2
− 1

2
− λp. By the above restrictions on λ and p, we

have that σ(λ, p) < 0 for

1

2

(
3− 1

p

)
< λ <

2

p
, p ∈ (1, 5/3).

Then, by choosing p− 1 > 0 arbitrarily small,

lim
t↑t∗
‖ux(·, t)‖p = +∞

for λ ∈ (1, 2). Next, let λ > 2 and p ∈ (1,+∞). This means λ > 2
p
, and so, (3.1.28)ii),

(3.1.17), (3.1.67) and (3.1.69)i) now yield

‖ux‖p ≥

∣∣∣∫ 1

0
f(α, t)dα

∣∣∣
|λη(t)| K̄0(t)

2λ+1
p
∼ C

J (α, t)
1
2
+ 1
λ

→ +∞ (3.1.74)

as t ↑ t∗. This proves 1 of the Theorem for λ > 1.11

11If λ = 2, λ > 2
p for p > 1 and result follows from (3.1.35), (3.1.64), (3.1.67) and (3.1.69)i).
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Case λ < 0 and p ∈ [1,+∞)

For λ < 0, we keep in mind the estimates (3.1.40), (3.1.45)i), (3.1.53) and (3.1.55), which

describe the behaviour of K̄i(t), i = 0, 1 as η ↑ η∗.
Consider the upper bound (3.1.63) for p ∈ [1,+∞) and 2

1−2p < λ < 0. Then λ ∈ (−2, 0)

so that (3.1.70), along with the aforementioned estimates, imply

‖ux(·, t)‖pp ≤
2p−1

|λη(t)|p K̄0(t)
1+2λp

(∫ 1

0

dα

J (α, t)
p+ 1

λ

+
K̄1(t)

p

K̄0(t)
p−1

)
→ C

as t ↑ t∗. By the above, we conclude that

lim
t↑t∗
‖ux(·, t)‖p < +∞

for 2
1−2p < λ < 0 and p ∈ [1,+∞). Now, consider the lower bound (3.1.64) with p ∈ (1,+∞)

and −2 < λ < −2
p
< 2

1−2p . Then, by (3.1.68), (3.1.69)i) and corresponding estimates on

K̄i(t), i = 0, 1, we find that

‖ux(·, t)‖p ≥

∣∣∣∫ 1

0
f(α, t)dα

∣∣∣
|λη(t)| K̄0(t)

2λ+1
p
∼ CJ (α, t)−( 1

2
+ 1
λ) (3.1.75)

for η∗ − η > 0 small. Therefore,

lim
t↑t∗
‖ux(·, t)‖p = +∞ (3.1.76)

for p ∈ (1,+∞) and λ ∈ (−2,−2/p].12 Finally, let λ < −2 and p ∈ (1,+∞). Then λ < −2
p

and it is easy to check that (3.1.75), with different constants C, also holds. As a result,

(3.1.76) follows for p > 1 and λ ≤ −2.13 This concludes the proof of statements 1 and 2.

For statement 3, notice that when p = 2, 1 and 2, as well as Theorem 3.1.1 imply that, as

t ↑ t∗, both E(t) = ‖ux‖22 and Ė(t) diverge to +∞ for λ ∈ (−∞,−1] ∪ (1,+∞) while E(t)

remains finite if λ ∈ (−2/3, 1]. Therefore we still have to establish the behaviour of E(t)

when λ ∈ (−1,−2/3] and Ė(t) for λ ∈ (−1, 0)\{−1/2}. However, from (3.1.53), (3.1.55) and

(3.1.60), we see that, as t ↑ t∗, any blow-up in E(t) for λ ∈ (−1,−2/3] must come from the

K̄2(t) term. Using Lemmas 3.0.9 and 3.0.11, we estimate14

K̄2(t) ∼


CJ (α, t)−( 3

2
+ 1
λ), λ ∈ (−1,−2/3),

−C log (J (α, t)) , λ = −2/3,

C, λ ∈ (−2/3, 0)

(3.1.77)

12For the case λ = − 2
p with p ∈ (1,+∞), we simply use (3.1.50) instead of (3.1.68).

13If λ = −2, λ < − 2
p for p > 1. Result follows as above with (3.1.50) instead of (3.1.68).

14Under the usual assumption u′′′0 (α) 6= 0.
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for η∗ − η > 0 small. Then, (3.1.53), (3.1.55), and (3.1.60) imply that, as t ↑ t∗, both E(t)

and Ė(t) blow-up to +∞ for λ ∈ (−1,−2/3].

Now, from (3.1.61)i), ∣∣∣Ė(t)
∣∣∣ ≤ |1 + 2λ| ‖ux‖33 (3.1.78)

so that (3.1.53), (3.1.55) and (3.1.61)iii) imply that

lim
t↑t∗

∣∣∣Ė(t)
∣∣∣ < +∞

for λ ∈ [−1/3, 1].15 Moreover, by part 2

lim
t↑t∗
‖ux‖3 < +∞

for λ ∈ (−2/5, 0). Then, (3.1.78) implies that Ė(t) also remains finite for λ ∈ (−2/5,−1/3).

Lastly, estimating K̄3(t) yields

K̄3(t) ∼

CJ (α, t)−( 5
2
+ 1
λ), λ ∈ (−2/3,−2/5),

−C log (J (α, t)) , λ = −2/5.
(3.1.79)

As a result, (3.1.53), (3.1.55), (3.1.77)iii) and (3.1.61)iii) imply that

lim
t↑t∗

Ė(t) = +∞

for λ ∈ (−2/3,−1/2) but

lim
t↑t∗

Ė(t) = −∞

when λ ∈ (−1/2,−2/5]. This concludes the proof of the Theorem. We refer the reader to

table 3.1 in section 3.1 for a summary of the above results.

Remark 3.1.80. Theorem 3.1.73 implies that for every p > 1, Lp blow-up occurs for ux

if λ ∈ R\(−2, 1], whereas for λ ∈ (−2, 0), ux remains in L1 but blows up in particular,

smaller Lp spaces. This suggests a weaker type of blow-up for the latter which certainly

agrees with our L∞ results where a “stronger”, two-sided, everywhere blow-up takes place

for λ ∈ R\(−2, 1], but a “weaker”, one-sided, discrete blow-up occurs when λ ∈ (−2, 0).

Finally, in addition to the energy results notice that Theorem 3.1.73 and inequality

(3.1.78) yield a complete description of the L3 regularity for ux:

lim
t↑t∗
‖ux(·, t)‖3 =

+∞, λ ∈ R\(−2/5, 1],

C, λ ∈ (−2/5, 1]
(3.1.81)

15The result for λ ∈ [0, 1] follows from Theorem 3.1.1 and appendix A
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where the positive constant C depends on the choice of λ ∈ (−2/5, 1].

Remark 3.1.82. For V (t) =
∫ 1

0
u3xdx, the authors in [35] derived a finite upper bound

T ∗ =

(
3

|1 + 2λ|E(0)

) 1
2

(3.1.83)

for the blow-up time of E(t) for λ < −1/2 and

V (0) < 0,
|1 + 2λ|

2
V (0)2 ≥ 2

3
E(0)3. (3.1.84)

If (3.1.84)i) holds but we reverse (3.1.84)ii), then they proved that Ė(t) blows up instead.

Now, from 3 in Theorem 3.1.73 we have that, in particular for λ ∈ (−2/3,−1/2), E(t)

remains bounded for all t ∈ [0, t∗] but Ė(t) → +∞ as t ↑ t∗. Here, t∗ > 0 denotes the

finite L∞ blow-up time for ux (see Theorem 3.1.51) and satisfies (3.1.56). Therefore, further

discussion is required to clarify the apparent discrepancy between the two results for λ ∈
(−2/3,−1/2) and u′0 satisfying both conditions in (3.1.84). Our claim is that for these values

of λ,

t∗ < T ∗. (3.1.85)

Specifically, E(t) remains finite for all t ∈ [0, t∗] ⊂ [0, T ∗], while Ė(t)→ +∞ as t ↑ t∗. From

(3.1.61)i) and (3.1.84)ii), we have that

Ė(0)2

2 |1 + 2λ|
≥ 2

3
E(0)3,

or equivalently

1

(|1 + 2λ|E(0))3
≥ 4

3(|1 + 2λ| Ė(0))2
.

As a result, (3.1.83) yields

T ∗ ≥
(

6

|1 + 2λ| Ė(0)

) 1
3

(3.1.86)

where we used Ė(0) > 0; a consequence of (3.1.61)i), (3.1.84)i) and λ ∈ (−2/3,−1/2). Now,

for instance, suppose 0 < M0 ≤ |m0|.16 Then

−V (0) =

∣∣∣∣ ∫ 1

0

u′0(x)3dx

∣∣∣∣ ≤ max
x∈[0,1]

|u′0(x)|3 = |m0|3 , (3.1.87)

16A natural case to consider given (3.1.84)i).
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which we use on (3.1.61)i) to obtain 0 < Ė(0) ≤ |1 + 2λ| |m0|3 , or

6

|1 + 2λ| Ė(0)
≥ 6

|1 + 2λ|2 |m0|3
. (3.1.88)

Consequently, (3.1.56), (3.1.86) and (3.1.88) yield

T ∗ ≥
(

6

|1 + 2λ|2 |m0|3

) 1
3

>
1

|1 + 2λ|
2
3 |m0|

>
1

|λ| |m0|
= η∗ ≥ t∗ (3.1.89)

for λ ∈ (−2/3,−1/2). If λ ≤ −2/3, both results concerning L2 blow-up of ux coincide.

Furthermore, in [10] the authors derived a finite upper bound

T∗ =
3

(1 + 3λ)
V (0)−

1
3

for the blow-up time of V (t) to negative infinity valid as long as V (0) < 0 and λ < −1/3.

Clearly, T∗ also serves as an upper bound for the breakdown of ‖ux‖3 for λ < −1/3, or

Ė(t) = (1 + 2λ)V ((t) if λ ∈ (−∞,−1/3)\{−1/2}. However, (3.1.81) and 1 in Theorem

3.1.73 prove the existence of a finite t∗ > 0 such that, particularly for λ ∈ (−2/5,−1/3],

‖ux‖3 remains finite for t ∈ [0, t∗] while limt↑t∗ ‖ux‖6 = +∞. This in turn implies the local

boundedness of Ė(t) for t ∈ [0, t∗] and λ ∈ (−2/5,−1/3]. Similar to the previous case, we

claim that t∗ < T∗. Here, once again, we consider the case 0 < M0 ≤ |m0|. Accordingly,

(3.1.56) and (3.1.87) imply that

T∗ =
3

(1 + 3λ)V (0)
1
3

≥ 3

|1 + 3λ| |m0|
>

1

|λ| |m0|
= η∗ ≥ t∗.

For the remaining values λ ≤ −2/5, both our results and those established in [10] re-

garding blow-up of V (t) agree. A simple example is given by

u′0(x) = sin(2πx) + cos(4πx)

for which V (0) = −3/4, E(0) = 1, m0 = −2 and M0 ∼ 1.125. Then, for λ = −3/5 ∈
(−2/3,−1/2), we have that

T ∗ =
√

15 > η∗ = 5/6 ≥ t∗ ≥ 0.34,

whereas, if λ = −7/20 ∈ (−2/5,−1/3),

T∗ = 20(6)2/3 > 10/7 = η∗ ≥ t∗ ≥ 0.59.
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Remark 3.1.90. Global weak solutions to (1.1.1)i) having I(t) = 0 and λ = −1/2 have

been studied by several authors, ([29], [3], [33]). Such solutions have also been constructed

for λ ∈ [−1/2, 0) ([10], c.f. also [11]) by extending an argument used in [3]. Notice that

Theorems 3.1.1 and 3.1.73 imply the existence of smooth data and a finite t∗ > 0 such

that strong solutions to (1.1.1)-(1.1.2) with λ ∈ (−2/3, 0) satisfy limt↑t∗ ‖ux‖∞ = +∞ but

limt↑t∗ E(t) < +∞. As a result, it is possible that the representation formulae derived in

chapter 2 can lead to similar construction of global, weak solutions for λ ∈ (−2/3, 0).

3.2 n−phase Piecewise Constant u′0(x)

Up to this point, we have considered smooth data u′0 which attained its extreme values

M0 > 0 > m0 at finitely many points αi and αj ∈ [0, 1], respectively, with u′0 having, relative

to the sign of λ, quadratic local behaviour near these locations. In this section, we consider

a class of functions which violates these assumptions, namely u′0(α) ∈ PCR(0, 1), the class

of mean-zero piecewise constant functions. Specifically, we will be concerned with the Lp

regularity of solutions for p ≥ 1.

Let χi(α), i = 1, ..., n denote the characteristic function for the intervals Ωi = (αi−1, αi) ⊂
[0, 1] with α0 = 0, αn = 1 and Ωj ∩ Ωk = ∅, j 6= k, i.e.

χi(α) =

1, α ∈ Ωi,

0, α /∈ Ωi.
(3.2.1)

Then, for hi ∈ R, let PCR(0, 1) denote the space of mean-zero, simple functions:{
g(α) ∈ C0(0, 1) a.e.

∣∣∣∣ g(α) =
n∑
i=1

hiχi(α) and
n∑
i=1

hiµ(Ωi) = 0

}
(3.2.2)

where µ(Ωi) = αi − αi−1, the Lebesgue measure of Ωi. Observe that for u′0(α) ∈ PCR(0, 1)

and λ 6= 0, (2.1.13), (3.2.1) and (3.2.2) imply that

K̄i(t) =
n∑
j=1

(1− λη(t)hj)
−i− 1

λµ(Ωj). (3.2.3)
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We prove the following Theorem:

Theorem 3.2.4. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3) for

u′0(α) ∈ PCR(0, 1). Let T > 0 and assume solutions are defined for all t ∈ [0, T ]. Then, the

representation formula (2.1.19) implies that no global W 1,∞(0, 1) solution can exist if T ≥ t∗,

where t∗ = +∞ for λ ≥ 0 and 0 < t∗ < +∞ otherwise. In addition, limt↑t∗ ‖ux(·, t)‖1 = +∞
if λ < −1, while

lim
t↑t∗
‖ux(·, t)‖p =

C, −1
p
≤ λ < 0,

+∞, −1 ≤ λ < −1
p

for p ≥ 1 and positive constants C that depend on the choice of λ and p.

Proof. Let C denote a generic constant which may depend on λ and p. Since

u′0(α) =
n∑
i=1

hiχi(α), (3.2.5)

for hi ∈ R as in (3.2.2), then (2.1.14) and (3.2.3) give

γα(α, t)−λ = (1− λη(t)
n∑
i=1

hiχi(α))

(
n∑
i=1

(1− λη(t)hi)
− 1
λµ(Ωi)

)λ

(3.2.6)

for η ∈ [0, η∗), η∗ as defined in (3.0.6) andM0 = maxi hi > 0,

m0 = mini hi < 0.
(3.2.7)

Let Imax and Imin denote the sets of indexes for the intervals Ωi and Ωi, respectively, defined

by

Ωi ≡ {α ∈ [0, 1] |u′0(α) = M0} , Ωi ≡ {α ∈ [0, 1] |u′0(α) = m0} . (3.2.8)

Global estimates for λ > 0

Let λ > 0 and η∗ = 1
λM0

. Using the above definitions, we may write

1− λη(t)
n∑
i=1

hiχi(α) = 1− λη(t)

( ∑
i∈Imax

M0χi(α) +
∑

i/∈Imax

hiχi(α)

)
(3.2.9)
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and

n∑
i=1

(1− λη(t)hi)
− 1
λµ(Ωi) =

∑
i∈Imax

(1− λη(t)M0)
− 1
λµ(Ωi)

+
∑

i/∈Imax

(1− λη(t)hi)
− 1
λµ(Ωi).

(3.2.10)

Then, for fixed i ∈ Imax choosing α ∈ Ωi and substituting into (3.2.9), we find

1− λη(t)
n∑
i=1

hiχi(α) = 1− λη(t)M0. (3.2.11)

Using (3.2.6), (3.2.10) and (3.2.11) we see that, for η ∈ [0, η∗),

γα(α, t) =

[ ∑
i∈Imax

µ(Ωi) + (1− λη(t)M0)
1
λ

∑
i/∈Imax

(1− λη(t)hi)
− 1
λµ(Ωi)

]−1
. (3.2.12)

Since 1− λη(t)u′0(α) > 0 for all η ∈ [0, η∗) and α ∈ [0, 1], (3.2.12) implies

lim
t↑t∗

γα(α, t) =

( ∑
i∈Imax

µ(Ωi)

)−1
> 0 (3.2.13)

for some t∗ > 0. However, (2.1.14), (2.1.16) and (3.2.5) give

dt =

(
1− λη(t)

n∑
i=1

hiχi(α)

)−2
γα(α, t)

−2λ

dη (3.2.14)

and so, for η∗ − η > 0 small, (3.2.6), (3.2.10) and the above observation on the term 1 −
λη(t)u′0(α) yield, after integration,

t∗ − t ∼ C

∫ η∗

η

(1− λM0σ)−2dσ.

Consequently, t∗ = +∞. Finally, since γ̇α = (ux(γ(α, t), t))γα,

γα(α, t) = exp

(∫ t

0

ux(γ(α, s), s)ds

)
. (3.2.15)

Then (3.0.4)i), (3.2.13) and (3.2.15) yield

lim
t→+∞

∫ t

0

M(s) ds = − ln

( ∑
i∈Imax

µ(Ωi)

)
> 0.

If α = α̃ ∈ Ωi for some index i /∈ Imax, so that
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1− λη(t)u′0(α̃) = 1− λη(t)h̃, h̃ < M0,

then (3.2.6) implies

γα(α̃, t) ∼ C(1− λη(t)M0)
1
λ → 0

as t→ +∞. Thus, by (3.2.15), we obtain

lim
t→+∞

∫ t

0

ux(γ(α̃, s), s)ds = −∞.

We refer to appendix A for the case λ = 0.

Lp regularity for p ∈ [1,+∞] and λ < 0

Suppose λ < 0 so that η∗ = 1
λm0

. We now write

1− λη(t)
n∑
i=1

hiχi(α) = 1− λη(t)

 ∑
i∈Imin

m0χi(α) +
∑
i/∈Imin

hiχi(α)

 (3.2.16)

and

n∑
i=1

(1− λη(t)hi)
1
|λ|µ(Ωi) =

∑
i∈Imin

(1− λη(t)m0)
1
|λ|µ(Ωi)

+
∑
i/∈Imin

(1− λη(t)hi)
1
|λ|µ(Ωi).

(3.2.17)

Choose α ∈ Ωi for some i ∈ Imin and substitute into (3.2.16) to obtain

1− λη(t)
n∑
i=1

hiχi(α) = 1− λη(t)m0. (3.2.18)

Using (3.2.17) and (3.2.18) with (3.2.6) gives

γα(α, t) =

[ ∑
i∈Imin

µ(Ωi) +

∑
i/∈Imin(1− λη(t)hi)

1
|λ|µ(Ωi)

(1− λη(t)m0)
1
|λ|

]−1
(3.2.19)

for η ∈ [0, η∗). Then, since 1 − λη(t)u′0(α) > 0 for η ∈ [0, η∗), α ∈ [0, 1] and λ < 0, we have

that

lim
t↑t∗

γα(α, t) = 0

for some t∗ > 0 or, equivalently,

lim
t→t∗

∫ t

0

m(s)ds = −∞
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by (3.0.5) and (3.2.15). The blow-up time t∗ > 0 is now finite. Indeed, (3.2.6), (3.2.14) and

(3.2.17) yield the estimate

dt ∼

 ∑
i/∈Imin

(1− λη(t)hi)
1
|λ|µ(Ωi)

2λ

dη

for η∗ − η > 0 small and λ < 0. Since hi > m0 for any i /∈ Imin, integration of the above

implies a finite t∗ > 0.

Now, if α = α′ ∈ Ωi for some i /∈ Imin, then u′0(α
′) = h′ for h′ > m0. Following the

argument in the λ > 0 case yields

γα(α′, t) =

 ∑
i/∈Imin

(1− λη(t)hi)
1
|λ|µ(Ωi)

−1 (1− λη(t)h′)
1
|λ| ,

consequently

lim
t↑t∗

γα(α′, t) = C ∈ R+

and so, by (3.2.15),
∫ t
0
ux(γ(α, s), s) ds remains finite as t ↑ t∗ for every α′ 6= α and λ < 0.

Lastly, we look at Lp regularity of ux for p ∈ [1,+∞) and λ < 0. From (2.1.14) and (2.1.19),

|ux(γ(α, t), t)|p γα(α, t) =
K0(α, t)|J (α, t)−1 − K̄0(t)

−1K̄1(t)|p

|λη(t)|p K̄0(t)2λp+1

for t ∈ [0, t∗) and p ∈ R. Then, integrating in α and using (3.2.3) gives

‖ux(·, t)‖pp =
1

|λη(t)|p

(
n∑
i=1

(1− λη(t)hi)
− 1
λµ(Ωi)

)−(2λp+1)

n∑
j=1

{
(1− λη(t)hj)

− 1
λ

∣∣∣∣(1− λη(t)hj)
−1 −

∑n
i=1(1− λη(t)hi)

−1− 1
λµ(Ωi)∑n

i=1(1− λη(t)hi)
− 1
λµ(Ωi)

∣∣∣∣pµ(Ωj)

}
for p ∈ [1,+∞). Splitting each sum above into the indexes i, j ∈ Imin and i, j /∈ Imin, we

obtain, for η∗ − η > 0 small,

‖ux(·, t)‖pp ∼ CJ (α, t)−
1
λ

∣∣∣∣J (α, t)−1 − C
(
J (α, t)−1−

1
λ + C

) ∣∣∣∣p
+ C

∑
j /∈Imin

{
(1− ληhj)−

1
λ

∣∣∣∣(1− ληhj)−1 − C (J (α, t)−1−
1
λ + C

) ∣∣∣∣pµ(Ωj)

}
where λ < 0, J (α, t) = 1 − λη(t)m0 and C ∈ R+ may now also depend on p ∈ [1,+∞).

Suppose λ ∈ [−1, 0), then −1− 1
λ
≥ 0 and the above implies

‖ux(·, t)‖pp ∼ CJ (α, t)−(p+ 1
λ) + g(t) (3.2.20)
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for g(t) a bounded function on [0, t∗) with finite, non-negative limit as t ↑ t∗. On the other

hand, if λ < −1 then −1− 1
λ
< 0 and

‖ux(·, t)‖pp ∼ CJ (α, t)−(p+ 1
λ) (3.2.21)

holds instead. The last part of the Theorem follows from (3.2.20) and (3.2.21) as t ↑ t∗. See

section 4.1.2 for examples.

3.3 Initial Data with Arbitrary Curvature Near M0 or m0

As motivation for this section, consider the following example with periodic, piecewise linear

u′0. Let

u0(α) =

2α2 − α, α ∈ [0, 1/2],

−2α2 + 3α− 1, α ∈ (1/2, 1].
(3.3.1)

Then

u′0(α) =

4α− 1, α ∈ [0, 1/2],

−4α + 3, α ∈ (1/2, 1]
(3.3.2)

attains its greatest and least values, M0 = 1 and m0 = −1, at α = 1/2 and α = {0, 1}
respectively. As a result, (3.0.6) implies that η∗ = 1

|λ| for λ 6= 0.

Figure 3.1: u0(α) and u′0(α) in (3.3.1) and (3.3.2).

Using (3.3.2), we find

K̄0(t) =


1

2(1−λ)η(t)

(
J (α, t)1−

1
λ − J (α, t)1−

1
λ

)
, λ ∈ R\{0, 1},

1
2η(t)

ln
(
η∗+η(t)
η∗−η(t)

)
, λ = 1

(3.3.3)
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and

K̄1(t) =
J (α, t)−

1
λ − J (α, t)−

1
λ

2η(t)
, λ 6= 0 (3.3.4)

where

J (α, t) = 1− λη(t), J (α, t) = 1 + λη(t).

If λ < 0, then  K̄0(t)→ 2
1
|λ| |λ|

1−λ ,

K̄1(t)→ |λ| 2
1
|λ|−1

(3.3.5)

as η ↑ η∗ = − 1
λ

and so both integral terms are finite (and nonzero) for all η ∈ [0, η∗].

Consequently, when α = α, ux(γ(α, t), t) undergoes a one-sided discrete blow-up due to the

space-dependent term in (2.1.19). We find that

m(t)→ −∞

as η ↑ − 1
λ

for all λ < 0. The existence of a finite t∗ > 0 follows from (2.1.16) and (3.3.3)i).

On the other hand, if λ > 0 and η∗ − η > 0 is small,

K̄0(t) ∼


λ

2(1−λ)J (α, t)1−
1
λ , λ ∈ (0, 1),

λ

2
1
λ (λ−1)

, λ ∈ (1,+∞),

−C log(η∗ − η(t)), λ = 1

(3.3.6)

and

K̄1(t) ∼
λ

2J (α, t)
1
λ

. (3.3.7)

If α = α, the above estimates and (2.1.19) imply that, as η ↑ η∗,

M(t) = ux(γ(α, t), t)→ 0, λ ∈ (0, 1/2),

but

M(t) = ux(γ(α, t), t)→ +∞, λ > 1/2.

Furthermore, for α 6= α,

ux(γ(α, t), t)→ 0, λ ∈ (0, 1/2),
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while

ux(γ(α, t), t)→ −∞, λ > 1/2.

For the threshold parameter λ = 1/2,
ux(γ(α, t), t)→ −1 as η ↑ η∗ = 2 for α /∈ {α, α},

M(t) = ux(γ(α, t), t) ≡ 1,

m(t) = ux(γ(α, t), t) ≡ −1.

(3.3.8)

Finally, from (2.1.16) and (3.3.6),

t∗ − t ∼


C
∫ η∗
η

(1− λµ)2(λ−1)dµ, λ ∈ (0, 1),

C(η∗ − η)(2− 2 log(η∗ − η) + ln2(η∗ − η)), λ = 1,

C(η∗ − η), λ > 1,

and so t∗ = +∞ for λ ∈ (0, 1/2] but 0 < t∗ < +∞ when λ > 1/2.

In summary, for the choice of data (3.3.2), ux(γ(α, t), t) undergoes a two-sided, every-

where blow-up in finite-time for λ > 1/2, whereas, if λ < 0, a one-sided discrete blow-up

occurs instead, m(t) → −∞ as t ↑ t∗. In contrast, the solution persists for all time when

λ ∈ (0, 1/2], that is, ux → 0 as t → +∞ for λ ∈ (0, 1/2), while a nontrivial steady-state is

reached if λ = 1/2.

Remark 3.3.9. We recall that if λ ∈ [1/2, 1) and u′′′0 (x) ∈ L
1

2(1−λ)
R (0, 1), then u persists

globally in time ([38]). This result does not contradict the above blow-up example. Indeed,

if u′′′0 ∈ L
1

2(1−λ)
R for λ ∈ [1/2, 1), then u′′0 is an absolutely continuous function on [0, 1], and

hence continuous. However, in the case just considered, u′′0 is, of course, not continuous.

As opposed to the results from sections 3.1 and 3.2, where u′0 had either quadratic or

constant local behaviour near the points αi and/or αj, we find that the above choice of u′0

with linear local behaviour instead leads to different blow-up behaviour. More particularly,

(3.3.2) implies finite-time blow-up for λ ∈ (1/2, 1]; parameter values for which no blow-up

occurred in the cases previously considered. Furthermore, for other values of the parameter

the nature of the blow-up, or its occurrence at all, differs as well from the results in Theorems

3.1.1 and 3.2.4.
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3.3.1 The Data Classes

In light of the above observations, we conclude that relative to the sign of λ 6= 0, the

curvature of u0 near αi and/or αj plays a decisive role in the finite-time blow-up of solutions

to (1.1.1). The purpose of the remaining sections is to further examine this interaction by

studying a larger class of initial data in which u′0 admits other than quadratic, or piecewise

constant, behaviour near the locations in question. Specifically, suppose u′0 is bounded, at

least C0(0, 1) a.e., and assume that for λ > 0 there is q ∈ R+ and C1 ∈ R−, such that

u′0(α) ∼M0 + C1 |α− αi|q (3.3.10)

for 0 ≤ |α− αi| ≤ r, 1 ≤ i ≤ m, and small enough 0 < r ≤ 1, r ≡ min1≤i≤m{ri}. Similarly,

if λ < 0, suppose

u′0(α) ∼ m0 + C2

∣∣α− αj∣∣q (3.3.11)

for 0 ≤
∣∣α− αj∣∣ ≤ r, C2 ∈ R+ and 1 ≤ j ≤ n. See Figure 3.2 below. Also, for q ∈ R+

and either λ > 0 or λ < 0, we will assume there are a finite number of locations αi or αj,

respectively. Particularly, this rules out the possibility of having initial data for which u′0

oscillates infinitely many times through its greatest value M0 > 0 when λ > 0, or through

its minimum value m0 < 0 for λ < 0. Moreover, for q ∈ (0, 1), the above local estimates may

lead to cusp singularities in u′0, namely, jump discontinuities in u′′0 of infinite magnitude.

In contrast, a jump discontinuity of finite magnitude in u′′0 may occur if q = 1. As we will

see in the coming sections, the either finite or infinite character in the size of this jump

along with the corresponding set of boundary conditions plays a decisive role, particularly,

in the formation of spontaneous singularities in stagnation point-form solutions to the two

and three dimensional incompressible Euler equations that arise from smooth initial data.

Finally, observe that (3.3.10) and/or (3.3.11) generalize the class of smooth data studied in

section 3.1 characterized by functions u′0 with quadratic local behaviour near αi and/or αj.

Now, for 0 < r ≤ 1 as specified above, define

Di ≡ [αi − r, αi + r], Dj ≡ [αj − r, αj + r].

Below, we list some of the data classes that admit the asymptotic behaviour (3.3.10)

and/or (3.3.11) for particular values of q > 0.

� u0(x) ∈ C∞(0, 1) for q = 2k and k ∈ Z+ (see definition 3.3.117).
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Figure 3.2: Local behaviour of u′0(α) satisfying (3.3.10) for several values of q > 0, α = 1/2,
M0 = 1 and C1 = −1.

� If q = 1, u′′0(x) ∈ PC(Di) for λ > 0, or u′′0(x) ∈ PC(Dj) if λ < 0.

� In the limit as q → +∞, u′0(x) ∈ PC(Di) for λ > 0, or u′0(x) ∈ PC(Dj) if λ < 0.

� From (3.3.10), we see that the quantity

[u′0]q;αi = sup
α∈Di

|u′0(α)− u′0(αi)|
|α− αi|q

(3.3.12)

is finite. As a result, for 0 < q ≤ 1 and λ > 0, u′0 is Hölder continuous at αi.

Analogously for λ < 0, since

[u′0]q;αj = sup
α∈Dj

|u′0(α)− u′0(αj)|
|α− αj|q

(3.3.13)

is defined by (3.3.11).

� For λ > 0 and either s < q < s + 1, s ∈ N, or q > 0 odd, u′0(α) ∈ Cs+1
(Di). Similarly

for λ < 0.

The outline of this section is as follows. In section 3.3.2, we examine Lp, p ∈ [1,+∞],

regularity of ux with bounded u′0(x) that is, at least, C0(0, 1) a.e. and satisfies (3.3.10)

and/or (3.3.11) for q = 1. Then, in section 3.3.3, a similar analysis follows for arbitrary
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q > 0. Amongst other results, we note that in section 3.3.3 we generalize the results from

section 3.1 to arbitrary smooth initial data.

3.3.2 Global Estimates and Blow-up for λ 6= 0 and q = 1

In this section, we consider initial data satisfying (3.3.10) and/or (3.3.11) for q = 1. One

main reason for discussing the q = 1 case separately from arbitrary q > 0, is that the

argument we will use for the latter, see Lemma 3.3.41, excludes the study, particularly, of

stagnation point-form solutions to the 2D incompressible Euler equations (λ = 1) whenever

u′0 satisfies (3.3.10) for q = 1. We begin by studying the L∞ regularity of ux for λ ∈ R, then,

for the cases where finite-time blow-up in the L∞ norm is established, we examine further

properties of Lp regularity for arbitrary p ∈ [1,+∞). For the case λ = 0, the reader may

refer to appendix A.

L∞ Regularity for λ 6= 0 and q = 1

Theorem 3.3.14. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3) for

u′0(α) bounded and, at least, C0(0, 1) a.e..

1. Suppose λ > 1/2 and u′0 satisfies (3.3.10) with q = 1. Then, there exists a finite

t∗ > 0 such that both the maximum M(t) and the minimum m(t) diverge to +∞ and

respectively to −∞ as t ↑ t∗. Moreover, for every α /∈ {αi, αj}, limt↑t∗ ux(γ(α, t), t) =

−∞ (two-sided, everywhere blow-up).

2. Suppose λ ∈ (0, 1/2] and u′0 satisfies (3.3.10) with q = 1. Then solutions exist globally

in time. More particularly, these vanish as t ↑ t∗ = +∞ for λ ∈ (0, 1/2) but converge

to a non-trivial steady-state if λ = 1/2.

3. Suppose λ < 0 and u′0 satisfies (3.3.11) with q = 1. Then, there is a finite t∗ > 0 such

that only the minimum diverges, m(t) → −∞, as t ↑ t∗ (one-sided, discrete blow-up).

Further, if only Dirichlet boundary conditions (1.1.3) are considered and/or u0 is odd

about the midpoint, then for every αj ∈ [0, 1] there exists a unique xj ∈ [0, 1] given by

(3.1.2) such that limt↑t∗ ux(xj, t) = −∞.
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Proof. Let C denote a positive constant which may depend on λ 6= 0.

Proof of Statements 1 and 2

For simplicity, we prove 1 and 2 for the case where M0 occurs at a single location α ∈
(0, 1).17 According to (3.3.10), there is 0 < r ≤ 1 small enough such that u′0(α) ∼ M0 +

C1 |α− α| for 0 ≤ |α− α| ≤ r and C1 < 0. Then

ε+M0 − u′0(α) ∼ ε− C1 |α− α| (3.3.15)

for ε > 0, so that∫ α+r

α−r

dα

(ε+M0 − u′0(α))
1
λ

∼
∫ α+r

α−r

dα

(ε− C1 |α− α|)
1
λ

=

∫ α

α−r

dα

(ε+ C1(α− α))
1
λ

+

∫ α+r

α

dα

(ε− C1(α− α))
1
λ

=
2λ

|C1| (1− λ)

(
ε1−

1
λ − (ε+ |C1| r)1−

1
λ

)
(3.3.16)

for λ ∈ (0,+∞)\{1}.18 Consequently, setting ε = 1
λη
−M0 into (3.3.16) we find that

K̄0(t) ∼

C, λ > 1,

2λM0

|C1|(1−λ)J (α, t)1−
1
λ , λ ∈ (0, 1)

(3.3.17)

for η∗ − η > 0 small, η∗ = 1
λM0

and J (α, t) = 1 − λη(t)M0. In a similar fashion, we can

estimate

K̄1(t) ∼
2λM0

|C1|
J (α, t)−

1
λ (3.3.18)

for any λ > 0. Suppose λ > 1. Then, (2.1.19), (3.3.17)i) and (3.3.18) give

ux(γ(α, t), t) ∼ C

(
1

J (α, t)
− C

J (α, t)
1
λ

)
(3.3.19)

for η∗ − η > 0 small. Setting α = α into (3.3.19) and using (3.0.4) implies that

M(t) ∼ C

J (α, t)
→ +∞

as η ↑ η∗. However, if α 6= α, the second term in (3.3.19) dominates and

ux(γ(α, t), t) ∼ − C

J (α, t)
1
λ

→ −∞.

17By a similar argument, the Theorem can be established for the case of several αi ∈ [0, 1].
18The case λ = 1 is considered separately.
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The existence of a finite t∗ > 0 for all λ > 1 follows from (2.1.16) and (3.3.17)i), which imply

t∗ − t ∼ C(η∗ − η).

Now let λ ∈ (0, 1). Using (3.3.17)ii) and (3.3.18) on (2.1.19), yields

ux(γ(α, t), t) ∼ C

(
1

J (α, t)
− 1− λ
J (α, t)

)
J (α, t)2(1−λ) (3.3.20)

for η∗ − η > 0 small. Setting α = α into (3.3.20) implies

M(t) ∼ CJ (α, t)1−2λ →

0+, λ ∈ (0, 1/2),

+∞, λ ∈ (1/2, 1)
(3.3.21)

as η ↑ η∗. If instead α 6= α,

ux(γ(α, t), t) ∼ −CJ (α, t)1−2λ →

0−, λ ∈ (0, 1/2),

−∞, λ ∈ (1/2, 1)
(3.3.22)

as η ↑ η∗. For the threshold parameter λ = 1/2, we keep track of the constants and find that,

as η ↑ η∗,

ux(γ(α, t), t)→


|C1|
4
, α = α

− |C1|
4
, α 6= α.

(3.3.23)

Finally, (2.1.16) and (3.3.17)ii) imply

dt ∼ CJ (α, t)2(λ−1)dη

so that

t∗ = lim
η↑η∗

t(η) ∼


C

2λ−1

(
C − limη↑η∗(η∗ − η)2λ−1

)
, λ ∈ (0, 1)\{1/2},

−C limη↑η∗ log(η∗ − η), λ = 1
2
.

(3.3.24)

As a result, t∗ = +∞ for λ ∈ (0, 1/2] while 0 < t∗ < +∞ when λ ∈ (1/2, 1). Lastly, if λ = 1

K̄0(t) ∼ −
2M0

|C1|
log(η∗ − η) (3.3.25)

for 0 < η∗ − η = 1
M0
− η << 1 small. Then, a two-sided everywhere blow-up in finite-time

follows just as above from (2.1.19), (2.1.16), (3.3.18) and (3.3.25).
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Proof of Statement 3

For λ < 0, set η∗ = 1
λm0

and suppose u′0(α) is at least C0(0, 1) a.e. and satisfies (3.3.11)

for q = 1. Then K̄0(t) remains finite, and positive, for all η ∈ [0, η∗]. In fact, K̄0(t) satisfies

(3.1.53) if λ ∈ [−1, 0) while (3.1.40) holds for λ < −1. Similarly, when λ ∈ [−1, 0), K̄1(t)

satisfies (3.1.55). See sections 3.1.2 and (3.1.3) for details. However, if λ < −1, we still need

to estimate the behaviour of K̄1(t) for η∗ − η > 0 small. For simplicity, we do so for u′0(α)

achieving its smallest value m0 < 0 at a single point α ∈ (0, 1). Then, (3.3.11) with q = 1

yields∫ α+r

α−r

dα

(ε+ u′0(α)−m0)
1+ 1

λ

∼
∫ α+r

α−r

dα

(ε+ C2 |α− α|)1+
1
λ

=

∫ α

α−r

dα

(ε− C2(α− α))1+
1
λ

+

∫ α+r

α

dα

(ε+ C2(α− α))1+
1
λ

=
2 |λ|
C2

(
(ε+ C2r)

1
|λ| − ε

1
|λ|

)
.

(3.3.26)

Substituting ε = m0 − 1
λη

into the above, we find that K̄1(t) has a finite, positive limit as

η ↑ η∗ for any λ < −1. Therefore, for λ < 0, every time-dependent integral in (2.1.19)

remains bounded and positive for all η ∈ [0, η∗]. As a result, blow-up of (2.1.19), as η ↑ η∗,
will follow from the space-dependent term, J (α, t)−1, evaluated at α = α. In this way, we

set α = α into (2.1.19) and use (3.2.7)ii) to obtain

m(t) ∼ Cm0

J (α, t)
→ −∞

as η ↑ η∗. On the other hand, for α 6= α, the definition of m0 implies that the space-dependent

term now remains bounded for all η ∈ [0, η∗], and so (2.1.19) stays finite as η ↑ η∗. Finally,

the existence of a finite blow-up time t∗ > 0 for the minimum as well as formula (3.1.2)

follow from (2.1.16) and (2.2.1), respectively, along with the above estimates on K̄0(t). See

section 4.2 for examples.

Remark 3.3.27. Recall from Theorem 3.1.1, which examines a family of smooth initial data,

that λ∗ = 1 acts as the threshold parameter between solutions that vanish at t = +∞ for

λ ∈ (0, λ∗) and those which blow-up in finite-time when λ ∈ (λ∗,+∞), while for λ∗ = 1, ux

converges to a nontrivial steady-state as t → +∞. According to Theorem 3.3.14 above, if

u′0 behaves linearly near αi, we now have the corresponding behavior at λ∗ = 1/2 instead.

56



Particularly, this means that if αi ∈ (0, 1), the jump discontinuity of finite magnitude in

u′′0 at αi leads to finite-time blow-up when λ = 1, while solutions persist globally in time

if λ = 1/2. Interestingly enough, recall that for λ = 1/2 or λ = 1, equation (1.1.1) i),

iii) models stagnation point-form solutions to the 3D or 2D incompressible Euler equations

respectively. In section 3.3.3, we show that jump discontinuities in u′′0 of infinite magnitude

instead (cusps in the graph of u′0), lead to finite-time blow-up for λ = 1/2. Also, see Remark

3.3.28 below and Corollary 3.3.29 for the case of smooth data with linear behaviour near the

boundary.

For λ 6= 0, Remark 3.3.28 below discusses the role that both periodic and Dirichlet

boundary conditions play in the finite-time blow-up of solutions to (1.1.1) which arise from

smooth initial data having linear local behaviour near αi and/or αj. The main results

concerning the regularity of stagnation point-form solutions to the 2D incompressible Euler

equations are summarized in Corollary 3.3.29.

Remark 3.3.28. Suppose there are a finite number of αi lying in the interior (0, 1) and

consider either periodic or Dirichlet boundary conditions. Then, no function u′0(α) can be

both smooth in [0, 1] and satisfy (3.3.10) for q = 1. Indeed, since q = 1 and there are

αi ∈ (0, 1), u′′0(α) has jump discontinuities of finite magnitude at those locations. Therefore,

if u′0(α) is smooth and behaves linearly near αi, then these points must lie strictly on the

boundary. An example for the Dirichlet setting is given by u0(α) = α(1− α) with α1 = 0.19

On the other hand, suppose a periodic function u0(α) satisfies (3.3.10) with q = 1 and

M0 = u′0(0) = u′0(1) > u′0(α) for all α ∈ (0, 1). Then 0 > u′′0(0) = u′′0(1), by periodicity. But

using (3.3.10) for q = 1 gives

0 > u′′0(1) = lim
h→0−

u′0(1 + h)−M0

h
∼ lim

h→0−

(M0 + |C1|h)−M0

h
= |C1| ,

a contradiction. We conclude that if a periodic function u′0(α) behaves linearly near αi, then

these points must lie somewhere in the interior, and thus, u0 cannot be smooth. Using these

results along with Theorem 3.3.14, we deduce that finite-time blow-up in ux for smooth

initial data and λ > 1/2 can only occur under Dirichlet, not periodic boundary conditions.

This includes, particularly, breakdown in stagnation point-form solutions to the 2D Euler

equations (λ = 1). Moreover, by using αj and (3.3.11) instead, the same conclusion follows

for λ < 0. Finally, we note that the blow-up, at least for λ ∈ (1/2, 1], may be suppressed

19Smooth data similar to this was used in [9] to construct a blow-up solution for λ = 1 (2D Euler).
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in the Dirichlet setting if we further assume that u′0 admits a smooth, periodic extension to

the entire real line, which would prevent linear behaviour near the boundary.

Corollary 3.3.29. Consider the IVP (1.1.1) for λ = 1. Suppose the initial data is smooth

and u′0 satisfies (3.3.10) for q = 1. Then, there exists a finite t∗ > 0 such that stagnation

point-form solutions (1.2.3) to the 2D incompressible Euler equations will diverge only

under Dirichlet boundary conditions. More particularly, as t ↑ t∗,
ux(αi, t)→ +∞, αi ∈ {0, 1},

ux(x, t)→ −∞, x 6= αi,

‖ux(·, t)‖p → +∞, p > 1.

In contrast, if periodic boundary conditions are considered, solutions persist for all time.

Proof. See Remark 3.3.28 and Theorem 3.3.30(1) below.

Further Lp Regularity for λ 6= 0, p ∈ [1,+∞) and q = 1

From Theorem 3.3.14, ux ∈ L∞ for all time if λ ∈ [0, 1/2] and the data satisfies (3.3.10)

for q = 1. Therefore, for these values of the parameter and p ≥ 1, ‖ux‖p exist globally. In

contrast, there is a finite t∗ > 0 such that ‖ux‖∞ diverges as t ↑ t∗ when λ ∈ R\[0, 1/2].

In this section, we use the upper and lower bounds (3.1.63) and (3.1.64) to study further

Lp(0, 1) regularity properties of ux as t ↑ t∗ for p ∈ [1,+∞) and λ ∈ R\[0, 1/2].

Theorem 3.3.30. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3) for

u′0(α) bounded and, at least, C0(0, 1) a.e. Also, let t∗ > 0 denote the finite L∞ blow-up time

for ux in Theorem 3.3.14. It follows:

1. Suppose u′0 satisfies (3.3.10) with q = 1. Then, limt↑t∗ ‖ux‖p = +∞ for all λ > 1/2

and p > 1.

2. Suppose u′0 satisfies (3.3.11) with q = 1. Then, ux ∈ L1 for all λ < 0 and t ∈ [0, t∗],

while ux ∈ Lp for 1
1−p < λ < 0, p > 1 and t ∈ [0, t∗].

3. The energy E(t) = ‖ux‖22 diverges if λ ∈ (−∞,−1] ∪ (1/2,+∞) as t ↑ t∗ but remains

finite for t ∈ [0, t∗] and λ ∈ (−1, 0). Also, limt↑t∗ Ė(t) = +∞ when λ ∈ (−∞,−1/2) ∪
(1/2,+∞), whereas Ė(t) ≡ 0 if λ = −1/2 and Ė(t) stays bounded for t ∈ [0, t∗] and

λ ∈ (−1/2, 0).
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Proof. Let C denote a positive constant that may depend on λ and p ∈ [1,+∞).

Proof of Statement 1

First, suppose λ > 0 and set η∗ = 1
λM0

. For simplicity, we prove 1 under the assumption

M0 > 0 occurs at a single point α ∈ (0, 1). As a result, for some ε > 0, (3.3.10) implies that

ε+M0 − u′0(α) ∼ ε− C1 |α− α|

for 0 ≤ |α− α| ≤ r, 0 < r ≤ 1 small enough and C1 < 0. Accordingly, we have∫ α+r

α−r

dα

(ε+M0 − u′0(α))1+
1
λp

∼
∫ α+r

α−r

dα

(ε− C1 |α− α|)1+
1
λp

=

∫ α

α−r

dα

(ε+ C1(α− α))1+
1
λp

+

∫ α+r

α

dα

(ε− C1(α− α))1+
1
λp

=
2λp

|C1|

(
ε−

1
λp − (ε− C1r)

− 1
λp

)
for p ≥ 1, and so ∫ α+r

α−r

dα

(ε+M0 − u′0(α))1+
1
λp

∼ Cε−
1
λp (3.3.31)

for small ε > 0. Then, setting ε = 1
λη
−M0 into (3.3.31) we conclude that∫ 1

0

dα

J (α, t)1+
1
λp

∼ C

J (α, t)
1
λp

(3.3.32)

for η∗ − η > 0 small, λ > 0, p ≥ 1 and J (α, t) = 1 − λη(t)M0. Next, we use a similar

argument to obtain, for p ≥ 1, the following estimates

∫ 1

0

dα

J (α, t)
1
λp

∼


CJ (α, t)1−

1
λp , λ ∈ (0, 1/p),

−C log(η∗ − η), λ = 1/p,

C, λ > 1/p

(3.3.33)

and ∫ 1

0

dα

J (α, t)p+
1
λ

∼ CJ (α, t)1−p−
1
λ , λ > 0. (3.3.34)

In (3.3.32), (3.3.33)i) and (3.3.34) above, the positive constants C are given by

2λpM0

|C1|
,

2λpM0

|C1| (1− λp)
,

2λM0

|C1| (λ(p− 1) + 1)
(3.3.35)
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respectively, for λ and p as specified in the corresponding estimate.

Suppose λ, p > 1 so that λ > 1/p. Then, using (3.3.17)i), (3.3.18), (3.3.32) and (3.3.33)iii)

on (3.1.64) implies that

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣CJ (α, t)−
1
λp − J (α, t)−

1
λ

∣∣∣
∼ CJ (α, t)−

1
λ

for η∗ − η > 0 small. Therefore,‖ux‖p → +∞ as η ↑ η∗ for all λ, p > 1.

Now, suppose λ ∈ (1/2, 1/p) for p ∈ (1, 2), so that, relative to the value of p, λ ∈ (1/2, 1).

Then, using (3.3.17)ii), (3.3.18), (3.3.32), (3.3.33)i) and (3.3.35) on (3.1.64) we now have

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣∣1− 1− λ
1− λp

∣∣∣∣J (α, t)ρ(λ,p)

= CJ (α, t)ρ(λ,p)

for η∗ − η > 0 small and ρ(λ, p) = 2(1− λ)− 1
p
. However, for λ and p as specified above, we

have that ρ(λ, p) < 0 for 1 − 1
2p
< λ < 1

p
and p ∈ (1, 3/2). Therefore, for any λ ∈ (1/2, 1),

there is 1 − p > 0 arbitrarily small such that ‖ux‖p → +∞ as η ↑ η∗. Finally, if λ = 1 we

have λ > 1/p for p > 1, therefore (3.3.18), (3.3.25), (3.3.32) and (3.3.33)iii) imply that for

0 < η∗ − η << 1 small

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ CJ (α, t)−1(− log(η∗ − η))−3−

1
p ,

and so ‖ux‖p → +∞ as η ↑ η∗. The existence of a finite blow-up time t∗ > 0 follows from

Theorem 3.3.14. This concludes the proof of statement 1.

Proof of Statement 2

Suppose λ < 0, set η∗ = 1
λm0

and assume that u′0(α) is bounded, at least C0(0, 1) a.e.,

and satisfies (3.3.11) with q = 1. First of all, recall from the proof of Theorem 3.3.14 that

both integral terms K̄i(t), i = 0, 1 remain finite, and positive, for all η ∈ [0, η∗] and λ < 0.

Furthermore, in Theorem 3.3.14, we established the existence of a finite t∗ > 0 such that
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limt↑t∗ ‖ux‖∞ = +∞ for all λ < 0.20 These remarks, along with the upper bound (3.1.63),

imply that

lim
t↑t∗
‖ux‖p < +∞ ⇔ lim

t↑t∗

∫ 1

0

dα

J (α, t)p+
1
λ

< +∞, p ≥ 1. (3.3.36)

However, if p = 1, ∫ 1

0

dα

J (α, t)p+
1
λ

= K̄1(t),

which remains finite as t ↑ t∗. As a result

lim
t↑t∗
‖ux(·, t)‖1 < +∞

for all λ < 0. If p > 1, we need to estimate the integral. Assume for simplicity that u′0

attains its least value m0 < 0 only at one location α ∈ (0, 1). Then for q = 1 and some

ε > 0, (3.3.11) implies∫ α+r

α−r

dα

(ε+ u′0(α)−m0)
p+ 1

λ

∼
∫ α+r

α−r

dα

(ε+ C2 |α− α|)p+
1
λ

=

∫ α

α−r

dα

(ε− C2(α− α))p+
1
λ

+

∫ α+r

α

dα

(ε+ C2(α− α))p+
1
λ

=
2 |λ|

C2(1 + λ(p− 1))

(
(ε+ C2r)

1−p− 1
λ − ε1−p−

1
λ

)
.

Substituting ε = m0 − 1
λη

into the above, we obtain∫ α+r

α−r

dα

J (α, t)p+
1
λ

∼ 2 |λ|
C2(1 + λ(p− 1))

(
C − |m0| J (α, t)1−p−

1
λ

)
(3.3.37)

for η∗ − η > 0 small. Suppose 1
1−p < λ < 0 for p > 1. Then 1− p− 1

λ
> 0 and the integral

remains finite as t ↑ t∗. Consequently, (3.3.36) implies that

lim
t↑t∗
‖ux(·, t)‖p < +∞

for all 1
1−p < λ < 0 and p > 1. This establishes 2. We remark that the lower bound

(3.1.64) yields no information regarding Lp blow-up of ux, as t ↑ t∗, for parameter values

−∞ < λ < 1
1−p p > 1. However, we may still use (3.1.60) and (3.1.61) in section 3.1.4 to

obtain additional blow-up information on energy-related quantities.

20More particularly, we showed that only the minimum blows up, m(t)→ −∞, as t ↑ t∗.
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Proof of Statement 3

From Theorem 3.3.14, ux ∈ L∞ for all time when λ ∈ [0, 1/2]. Therefore, E(t) exist

globally for these values of the parameter. Likewise, 3.1.78 implies that Ė(t) persists globally

for λ ∈ [0, 1/2]. Now, blow-up of E(t) and Ė(t) to +∞, as t ↑ t∗, for λ > 1/2 is a consequence

of 1 above. Furthermore, setting p = 2 into part 2 implies that E(t) remains bounded for

all λ ∈ (−1, 0) and t ∈ [0, t∗]. Similarly for p = 3, we use part 2 and (3.1.78) to conclude

that Ė(t) remains finite when λ ∈ [−1/2, 0) and t ∈ [0, t∗]. According to these results, we

have yet to determine the behaviour of E(t) as t ↑ t∗ for λ ≤ −1, as well as that of Ė(t)

when λ < −1/2. To do so, we will use formulas (3.1.60) and (3.1.61). Following the usual

argument21, the details of which we omit this time, we derive the following estimates

K̄2(t) ∼


CJ (α, t)−1−

1
λ , λ < −1,

−C log(η∗ − η), λ = −1,

C, λ ∈ (−1, 0)

(3.3.38)

and

K̄3(t) ∼


CJ (α, t)−2−

1
λ , λ < −1/2,

−C log(η∗ − η), λ = −1/2,

C, λ ∈ (−1/2, 0)

(3.3.39)

for η∗ − η > 0 small. The constants C ∈ R+ in (3.3.38)i) and (3.3.39)i) are given by

2λ |m0|
C2(1 + λ)

,
2λ |m0|

C2(1 + 2λ)
,

respectively, for λ as specified by the corresponding estimate. Since both K̄i(t), i = 0, 1 stay

finite and positive for all η ∈ [0, η∗], formula (3.1.60) tells us that blow-up in K̄2(t) leads to

a diverging E(t). Then, (3.3.38)i) implies that for λ < −1,

E(t) ∼ CJ (α, t)−1−
1
λ → +∞

as η ↑ η∗. Similarly for λ = −1 by using (3.3.38)ii) instead. Clearly, this also implies blow-up

of Ė(t) to +∞ as t ↑ t∗ for all λ ≤ −1. Finally, from (3.1.61)iii), (3.3.38)iii) and (3.3.39)i),

Ė(t) ∼ Cm3
0(1 + 2λ)

J (α, t)2+
1
λ

→ +∞

as η ↑ η∗ for all λ ∈ (−1,−1/2). The existence of a finite t∗ > 0 follows from 3 in Theorem

3.3.14.
21See for instance the argument that led to estimates (3.3.26) and (3.3.37).
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Remark 3.3.40. Notice from Theorem 3.3.14 that the values of λ for which ux undergoes

its “strongest” type of L∞ blow-up, the two-sided everywhere blow-up, agrees with those λ

in Theorem 3.3.30 for which the “strongest” form of Lp blow-up takes place, an Lp blow-up

for 1− p > 0 arbitrarily small. On the other hand, in Theorem 3.3.14 we also showed that,

for λ < 0, ux undergoes its “weakest” type of L∞ blow-up, a one-sided, discrete blow-up.

In this case, however, Theorem 3.3.30 tells us that ux remains integrable for t ∈ [0, t∗],

while, for p > 1 and 1
1−p ≤ λ < 0, it stays in Lp for all t ∈ [0, t∗]. As we will see in the

remaining sections, this type of interaction between the “strength” of the L∞ blow-up and

the Lp, p ∈ [1,+∞) regularity of ux also holds in the general case of q > 0.

3.3.3 Global Estimates and Blow-up for λ 6= 0 and q > 0

In this last section, we treat the more general case of initial data satisfying (3.3.10) and/or

(3.3.11) for arbitrary q ∈ R+. Amongst other results, we will examine the Lp regularity of

ux for λ ∈ R\{0}, q > 0 and p ∈ [1,+∞]. More particularly, depending on the sign of λ 6= 0,

regularity of ux in the L∞ norm is first examined. Then, for the cases leading to L∞ blow-up

as t approaches some finite t∗ > 0, the behaviour of limt↑t∗ ‖ux‖p for p ∈ [1,+∞) is studied.

Moreover, the jacobian (2.1.14) is also considered. Finally, a larger class of initial data than

the one examined in section 3.1 is discussed. Before stating and proving our results, we first

establish Lemma 3.3.41 below which we use to obtain estimates on the behaviour of several

time-dependent integrals for η∗ − η > 0 small.

Lemma 3.3.41. Suppose u′0(α) is bounded, at least C0(0, 1) a.e., and for some q ∈ R+

satisfies (3.3.10) when λ ∈ R+, or (3.3.11) if λ ∈ R−. It holds:

1. If λ ∈ R+ and b > 1
q
, ∫ 1

0

dα

J (α, t)b
∼ C

J (αi, t)
b− 1

q

(3.3.42)

for η∗ − η > 0 small, η∗ = 1
λM0

and positive constants C given by

C =
2mΓ

(
1 + 1

q

)
Γ
(
b− 1

q

)
Γ (b)

(
M0

|C1|

) 1
q

. (3.3.43)

Here, m ∈ N denotes the finite number of locations αi in [0, 1].

2. If λ ∈ R− and b > 1
q
, ∫ 1

0

dα

J (α, t)b
∼ C

J (αj, t)
b− 1

q
(3.3.44)
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for η∗ − η > 0 small, η∗ = 1
λm0

and positive constants C determined by

C =
2nΓ

(
1 + 1

q

)
Γ
(
b− 1

q

)
Γ (b)

(
|m0|
C2

) 1
q

. (3.3.45)

Above, n ∈ N represents the finite number of points αj in [0, 1].

3. Suppose q > 1/2 and b ∈ (0, 1/q), or q ∈ (0, 1/2) and b ∈ (0, 2), satisfy 1
q
, b, b− 1

q
/∈ Z.

Then for λ 6= 0 and η∗ as defined in (3.0.6),∫ 1

0

dα

J (α, t)b
∼ C (3.3.46)

for η∗ − η > 0 small and positive constants C that depend on the choice of λ, b and q.

Similarly, the integral remains bounded, and positive, for all η ∈ [0, η∗] and λ 6= 0 when

b ≤ 0 and q > 0.

Proof.

Proof of Statement 1

For simplicity, we prove statement 1 for functions u′0 that attain their greatest value

M0 > 0 at a single location α ∈ (0, 1). By a slight modification of the argument below, the

Lemma can be shown to hold for several αi ∈ [0, 1]. Using (3.3.10), there is 0 < r ≤ 1 small

enough such that

ε+M0 − u′0(α) ∼ ε− C1 |α− α|q

for q ∈ R+, ε > 0 and 0 ≤ |α− α| ≤ r. Therefore∫ α+r

α−r

dα

(ε+M0 − u′0(α))b
∼
∫ α+r

α−r

dα

(ε− C1 |α− α|q)b

= ε−b

[∫ α

α−r

(
1 +
|C1|
ε

(α− α)q
)−b

dα +

∫ α+r

α

(
1 +
|C1|
ε

(α− α)q
)−b

dα

]
for b ∈ R. Making the change of variables√

|C1|
ε

(α− α)
q
2 = tan θ,

√
|C1|
ε

(α− α)
q
2 = tan θ

in the first and second integrals inside the bracket, respectively, we find after simplification

that ∫ α+r

α−r

dα

(ε+M0 − u′0(α))b
∼ 4

q |C1|
1
q εb−

1
q

∫ π
2

0

(cos θ)
2b− 2

q−1

(sin θ)
1− 2

q
dθ (3.3.47)
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for small ε > 0. Suppose b > 1
q
, then setting ε = 1

λη
−M0 into (3.3.47) implies∫ 1

0

dα

J (α, t)b
∼ C

J (α, t)
b− 1

q
(3.3.48)

for η∗ − η > 0 small, η∗ = 1
λM0

, J (α, t) = 1− λη(t)M0 and

C =
4

q

(
M0

|C1|

) 1
q
∫ π

2

0

(cos θ)
2b− 2

q−1

(sin θ)
1− 2

q
dθ. (3.3.49)

Now, recall that for p, s, y > 0 (see for instance [24]),∫ 1

0

tp−1(1− t)s−1dt =
Γ(p)Γ(s)

Γ(p+ s)
, Γ(1 + y) = yΓ(y), (3.3.50)

where (3.3.50)i) is commonly known as the Beta function. Therefore, letting t = sin2 θ,

p = 1
q

and s = b− 1
q

into (3.3.50)i), and using (3.3.50)ii), one gets

2

∫ π
2

0

(cos θ)
2b− 2

q−1

(sin θ)
1− 2

q
dθ =

q Γ
(

1 + 1
q

)
Γ
(
b− 1

q

)
Γ(b)

, b >
1

q
. (3.3.51)

The result follows from (3.3.48), (3.3.49) and (3.3.51).

Proof of Statement 2

Follows from an argument analogous to the one above by using (3.3.11) instead of (3.3.10).

Proof of Statement 3

The last claim in statement 3 follows trivially if b ≤ 0 and q ∈ R+ due to the boundedness

and almost everywhere continuity of u′0 in [0, 1]. To establish the remaining claims, we make

use of Lemmas 3.0.9 and 3.0.11. However, in order to use the latter, we require that b ∈ (0, 2)

and b 6= 1/q. Since b > 0 and the case b > 1/q was established in parts (1) and (2), suppose

that b ∈ (0, 1/q) and b ∈ (0, 2). This is equivalent to having either q > 1/2 and b ∈ (0, 1/q),

or q ∈ (0, 1/2) and b ∈ (0, 2).

First, for q and b as above, we consider the case of λ > 0. Also, for simplicity, suppose

that u′0 attains its greatest value at a single point α ∈ (0, 1). Then, by (3.3.10) and Lemma

3.0.11, there is 0 < r ≤ 1 small enough such that∫ α+r

α−r

dα

(ε+M0 − u′0(α))b
∼
∫ α+r

α−r

dα

(ε− C1 |α− α|q)b

= 2rε−b 2F1

[
1

q
, b, 1 +

1

q
,
C1r

q

ε

] (3.3.52)
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for ε ≥ |C1| ≥ |C1| rq > 0 and 0 ≤ |α− α| ≤ r. Now, the restriction on ε implies that −1 ≤
C1rq

ε
< 0. However, our ultimate goal is to let ε vanish, so that, eventually, the argument C1rq

ε

of the series in (3.3.52)ii) will leave the unit circle, particularly C1rq

ε
< −1. At that point,

definition (3.0.7) for the series no longer holds and we turn to its analytic continuation in

Lemma 3.0.9. Accordingly, taking ε > 0 small enough such that |C1| rq > ε > 0, we apply

Lemma 3.0.9 to (3.3.52) and obtain

2r

εb
2F1

[
1

q
, b, 1 +

1

q
,
C1r

q

ε

]
=

2r1−qb

(1− bq) |C1|b
+

2Γ
(

1 + 1
q

)
Γ
(
b− 1

q

)
Γ(b) |C1|

1
q εb−

1
q

+ ψ(ε) (3.3.53)

for ψ(ε) = o(1) as ε→ 0, and either q > 1/2 and b ∈ (0, 1/q), or q ∈ (0, 1/2) and b ∈ (0, 2).

In addition, due to the assumptions in Lemma 3.0.9 we also require that 1
q
, b, b − 1

q
/∈ Z.

Finally, since b− 1
q
< 0, upon substituting ε = 1

λη
−M0 into (3.3.52) and (3.3.53), we conclude

that ∫ 1

0

dα

J (α, t)b
∼ C (3.3.54)

for η∗− η > 0 small, η∗ = 1
λM0

and positive constants C that depend on the choice of λ > 0,

b and q as above. An analogous argument may be used if λ < 0 by using (3.3.11) instead of

(3.3.10).

Estimates for K̄i(t), i = 0, 1 with λ 6= 0 and q ∈ R+

For parameters λ > 0

Setting b = 1
λ

into 1 and 3 of Lemma 3.3.41, we find that for λ > 0 and η∗− η > 0 small,

K̄0(t) ∼

C, λ > q > 1
2
, or q ∈ (0, 1/2), λ > 1

2
,

C6J (αi, t)
1
q
− 1
λ , q > 0, λ ∈ (0, q)

(3.3.55)

where the positive constants C6 > 0 are given by

C6 =
2mΓ

(
1 + 1

q

)
Γ
(

1
λ
− 1

q

)
Γ
(
1
λ

) (
M0

|C1|

) 1
q

, (3.3.56)

and for (3.3.55)i) we assume that λ and q satisfy, when applicable,

λ 6= q

1− nq
, q 6= 1

n
∀ n ∈ N. (3.3.57)

66



Similarly, by letting b = 1 + 1
λ
, one finds that

K̄1(t) ∼

C, q ∈ (1/2, 1), λ > q
1−q or q ∈ (0, 1/2), λ > 1,

C7J (αi, t)
1
q
− 1
λ
−1, q ∈ (0, 1), 0 < λ < q

1−q or q ≥ 1, λ > 0

(3.3.58)

with positive constants C7 determined by

C7 =
2mΓ

(
1 + 1

q

)
Γ
(

1 + 1
λ
− 1

q

)
Γ
(
1 + 1

λ

) (
M0

|C1|

) 1
q

. (3.3.59)

Additionally, for (3.3.58)i) we assume that λ and q satisfy (3.3.57).

For parameters λ < 0

For λ < 0 and b = 1
λ
, we use 3 of Lemma 3.3.41 to conclude that

K̄0(t) ∼ C (3.3.60)

for η∗ − η > 0 small, q > 0 and λ < 0. Moreover, 2 and 3 of Lemma 3.3.41, now with

b = 1 + 1
λ

and λ < 0, imply that

K̄1(t) ∼ C (3.3.61)

for either 
q > 0, λ ∈ [−1, 0),

q ∈ (0, 1), λ < −1 satisfying (3.3.57),

q > 1, q
1−q < λ < −1,

(3.3.62)

whereas

K̄1(t) ∼ C8J (αj, t)
1
q
− 1
λ
−1 (3.3.63)

for q > 1, λ < q
1−q and positive constants C8 determined by

C8 =
2nΓ

(
1 + 1

q

)
Γ
(

1 + 1
λ
− 1

q

)
Γ
(
1 + 1

λ

) (
|m0|
C2

) 1
q

. (3.3.64)
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L∞ Regularity for λ, q ∈ R+

In this section, we use the estimates obtained for K̄i(t), i = 0, 1 in the previous section to

examine the L∞ regularity of ux for λ > 0 and bounded, at least continuous a.e. u′0 satisfying

(3.3.10) for some q ∈ R+. Furthermore, the behaviour of the jacobian (2.1.14) is also studied.

Theorem 3.3.65. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3) for

u′0(α) bounded, at least C0(0, 1) a.e., and satisfying estimate (3.3.10).

1. For q ∈ R+ and λ ∈ [0, q/2], solutions exist globally in time. More particularly, these

vanish as t ↑ t∗ = +∞ for λ ∈ (0, q/2) but converge to a nontrivial steady state if

λ = q/2.

2. For q ∈ R+ and λ ∈ (q/2, q), there exists a finite t∗ > 0 such that both the maximum

M(t) and the minimum m(t) diverge to +∞ and respectively to −∞ as t ↑ t∗. Addi-

tionally, for α /∈ {αi, αj}, limt↑t∗ ux(γ(α, t), t) = −∞ (two-sided, everywhere blow-up).

3. For q ∈ (0, 1/2) and λ > 1 such that q 6= 1
n

and λ 6= q
1−nq for all n ∈ N, there is a

finite t∗ > 0 such that only the maximum blows up, M(t)→ +∞, as t ↑ t∗ (one-sided,

discrete blow-up). Further, if 1
2
< λ < q

1−q for q ∈ (1/3, 1/2), a two-sided, everywhere

blow-up (as described in (2) above) occurs as t approaches some finite t∗ > 0.

4. Suppose q ∈ (1/2, 1). Then for q < λ < q
1−q , there exists a finite t∗ > 0 such that, as

t ↑ t∗, two-sided, everywhere blow-up develops. If instead λ > q
1−q , only the maximum

diverges, M(t)→ +∞, as t ↑ t∗ < +∞.

5. For λ > q > 1, there is a finite t∗ > 0 such that ux undergoes a two-sided, everywhere

blow-up as t ↑ t∗.

Proof. Suppose λ, q > 0, let C denote a positive constant which may depend on λ and q,

and set η∗ = 1
λM0

.

Proof of Statements 1 and 2

Suppose λ ∈ (0, q) for some q > 0. Then, for η∗ − η > 0 small, K̄0(t) satisfies (3.3.55)ii)

while K̄1(t) obeys (3.3.58)ii). Consequently, (2.1.19) implies that

ux(γ(α, t), t) ∼ M0

C
2λ

6

(
J (αi, t)

J (α, t)
− C7

C6

)
J (αi, t)

1− 2λ
q (3.3.66)
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for positive constants C6 and C7 given by (3.3.56) and (3.3.59). But for y1 = 1
λ
− 1

q
and

y2 = 1
λ
, (3.3.50)ii), (3.3.56) and (3.3.59) yield

C7

C6

=
Γ(y1 + 1) Γ(y2)

Γ(y1) Γ(y2 + 1)
=
y1
y2

= 1− λ

q
∈ (0, 1), λ ∈ (0, q). (3.3.67)

As a result, setting α = αi into (3.3.66) and using (3.0.4) implies that

M(t) ∼ M0

C
2λ

6

(
λ

q

)
J (αi, t)

1− 2λ
q (3.3.68)

for η∗ − η > 0 small, whereas, if α 6= αi,

ux(γ(α, t), t) ∼ −M0

C
2λ

6

(
1− λ

q

)
J (αi, t)

1− 2λ
q . (3.3.69)

Clearly, when λ = q/2,

M(t)→ M0

2C q
6

> 0

as η ↑ η∗, while, for α 6= αi,

ux(γ(α, t), t)→ − M0

2C q
6

< 0.

If λ ∈ (0, q/2), (3.3.68) now implies that

M(t)→ 0+

as η ↑ η∗, whereas, using (3.3.69) for α 6= αi,

ux(γ(α, t), t)→ 0−.

In contrast, if λ ∈ (q/2, q), 1− 2λ
q
< 0. Then (3.3.68) and (3.3.69) yield

M(t)→ +∞ (3.3.70)

as η ↑ η∗, but

ux(γ(α, t), t)→ −∞ (3.3.71)

for α 6= αi. Lastly, rewriting (2.1.16) as

dt = K̄0(t)
2λdη (3.3.72)

and using (3.3.55)ii), we obtain

t∗ − t ∼ C

∫ η∗

η

(1− λµM0)
2λ
q
−2dµ (3.3.73)
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or equivalently

t∗ − t ∼


C

2λ−q

(
C(η∗ − η)

2λ
q
−1 − limµ↑η∗(η∗ − µ)

2λ
q
−1
)
, λ ∈ (0, q)\{q/2},

C (log(η∗ − η)− limµ↑η∗ log(η∗ − µ)) , λ = q/2.
(3.3.74)

Consequently, t∗ = +∞ for λ ∈ (0, q/2] while 0 < t∗ < +∞ if λ ∈ (q/2, q).

Proof of Statement 3

First, suppose q ∈ (0, 1/2) and λ > 1 satisfy (3.3.57). Then K̄0(t) and K̄1(t) satisfy

(3.3.55)i) and (3.3.58)i), respectively. Therefore, (2.1.19) implies that

ux(γ(α, t), t) ∼ C

(
1

J (α, t)
− C

)
(3.3.75)

for η∗ − η > 0 small. Set α = αi into (3.3.75) and use (3.2.7)i) to find that

M(t) ∼ C

J (αi, t)
→ +∞

as η ↑ η∗. However, if α 6= αi, ux(γ(α, t), t) remains finite for all η ∈ [0, η∗] due to the

definition of M0. The existence of a finite blow-up time t∗ > 0 for the maximum is guaranteed

by (3.3.55)i) and (3.3.72), which lead to

t∗ − t ∼ C(η∗ − η). (3.3.76)

Next, suppose 1
2
< λ < q

1−q for q ∈ (1/3, 1/2), so that q
1−q ∈ (1/2, 1). Then, using (3.3.55)i)

and (3.3.58)ii) on (2.1.19), we find that

ux(γ(α, t), t) ∼ C

(
C

J (α, t)
− J (αi, t)

1
q−

1
λ
−1
)

(3.3.77)

for η∗ − η > 0 small. Consequently, setting α = αi into the above and using λ > q, we find

that

M(t) ∼ C

J (αi, t)
→ +∞ (3.3.78)

as η ↑ η∗. On the other hand, for α 6= αi, the space-dependent in (3.3.77) now remains

bounded and positive for all η ∈ [0, η∗]. As a result, the second term dominates and

ux(γ(α, t), t) ∼ −CJ (αi, t)
1
q−

1
λ
−1

→ −∞ (3.3.79)

as η ↑ η∗. The existence of a finite blow-up time t∗ > 0, follows, as in the previous case,

from (3.3.72) and (3.3.55)i).
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Proof of Statement 4

Part 4 follows from an argument analogous to the one above. Briefly, if q < λ < q
1−q

for q ∈ (1/2, 1), we use estimates (3.3.55)i) and (3.3.58)ii) on (2.1.19) to get (3.3.77), with

different positive constants C. A two-sided, everywhere blow-up in finite-time then follows

just as above. If instead λ > q
1−q for q ∈ (1/2, 1), then (3.3.55)i) still holds but K̄1(t) now

remains finite for all η ∈ [0, η∗]; it satisfies (3.3.58)i). Therefore, up to different positive

constants C, (2.1.19) leads to (3.3.75), and so only the maximum diverges, M(t)→ +∞, as

t approaches some finite t∗ > 0 whose existence is guaranteed by (3.3.76).

Proof of Statement 5

For λ > q > 1, (3.3.55)i), (3.3.58)ii) and (2.1.19) imply (3.3.77). Then, we follow the

argument used to establish the second part of 3 to show that two-sided, everywhere blow-up

occurs at a finite time. See section 4.2 for examples.

Remark 3.3.80. Theorems 3.3.14 and 3.3.65 allow us to predict the regularity of stagnation

point-form (SPF) solutions to the two (λ = 1) and three (λ = 1/2) dimensional incompress-

ible Euler equations assuming we know something about the curvature of the initial data u0

near αi. Setting λ = 1 into Theorem 3.3.65(1) implies that SPF solutions in the 2D setting

persist for all time if u′0 is, at least, C0(0, 1) a.e. and satisfies (3.3.10) for arbitrary q ≥ 2.

On the contrary, Theorems 3.3.14 and 3.3.65(2)-(4), tell us that if q ∈ (1/2, 2), two-sided,

everywhere blow-up in finite-time occurs instead. Analogously, solutions to the correspond-

ing 3D problem exist globally in time for q ≥ 1, whereas, two-sided, everywhere blow-up

develops when q ∈ (1/2, 1). See Table 3.2 below.

Table 3.2: Regularity of SPF solutions to Euler equations

q 2D Euler 3D Euler

(1/2, 1) Finite time blow up Finite time blow up

[1, 2) Finite time blow up Global in time

[2,+∞) Global in time Global in time

Finally, we remark that finite-time blow-up in ux is expected for both the two and three

dimensional equations if q ∈ (0, 1/2]. See for instance section 4.2 for a blow-up example in

the 3D case with q = 1/3.

71



Behaviour of the Jacobian for λ, q ∈ R+

Corollary 3.3.81 below briefly examines the behaviour, as t ↑ t∗, of the jacobian (2.1.14) for

t∗ > 0 is as in Theorem 3.3.65.

Corollary 3.3.81. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3)

for u′0(α), at least C0(0, 1) a.e., satisfying (3.3.10) for some q ∈ R+. Furthermore, let t∗ > 0

be as in Theorem 3.3.65. It follows,

1. For q ∈ R+ and λ ∈ (0, q),

lim
t↑t∗

γα(α, t) =

+∞, α = αi,

0, α 6= αi

(3.3.82)

where t∗ = +∞ for λ ∈ (0, q/2], while 0 < t∗ < +∞ if λ ∈ (q/2, q).

2. Suppose λ > q > 1/2, or q ∈ (0, 1/2) and λ > 1/2, satisfy (3.3.57). Then, there exists

a finite t∗ > 0 such that

lim
t↑t∗

γα(α, t) =

+∞, α = αi,

C, α 6= αi

(3.3.83)

where the positive constants C depend on λ, q and [0, 1] 3 α 6= αi.

Proof. Set η∗ = 1
λM0

for λ > 0.

Proof of Statement 1

Suppose λ ∈ (0, q) for q > 0. Then (2.1.14) and (3.3.55)ii) imply

γα(α, t) ∼ 1

C6

J (αi, t)
1
λ
− 1
q

J (α, t)
1
λ

for η∗ − η > 0 small. Setting α = αi then gives

γα(αi, t) ∼
1

C6J (αi, t)
1
q

→ +∞

as η ↑ η∗, whereas, for α 6= αi,

γα(α, t) ∼ CJ (αi, t)
1
λ
− 1
q → 0.

The either finite or infinite character of t∗ > 0 follows from Theorem 3.3.65.
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Proof of Statement 2

Now suppose λ > q > 1/2, or λ > 1/2 for any q ∈ (0, 1/2), satisfy (3.3.57). Then (2.1.14)

and (3.3.55)i) imply that

γα(α, t) ∼ C

J (α, t)
1
λ

for η∗ − η > 0 small. If α = αi, then γα(αi, t) → +∞ as η ↑ η∗, whereas, for α 6= αi,

the definition of M0 implies that γα converges to some finite, positive constant C as η ↑ η∗.
Finally, the existence of a finite t∗ > 0 follows from Theorem 3.3.65.

Further Lp Regularity for λ > q/2, p ∈ [1,+∞) and q ∈ R+

Recall from Theorem 3.3.65 that for q ∈ R+, ‖ux‖∞ exists for all time if λ ∈ [0, q/2].

Therefore, for these values of the parameter and p ≥ 1, ux ∈ Lp for all t ∈ [0,+∞]. On

the other hand, blow-up of ux in the L∞ norm occurs as t approaches some finite t∗ > 0 for

λ > q/2. In this section, we study further properties of Lp regularity in ux, as t ↑ t∗, for

λ > q/2, p ∈ [1,+∞) and initial data u′0(α) satisfying (3.3.10) for some q ∈ R+. To do so,

we will make use of the upper and lower bounds, (3.1.63) and (3.1.64), derived in section

3.3.2 for ‖ux‖p. As a result, we require estimates on the behaviour of the time-dependent

integrals ∫ 1

0

dα

J (α, t)
1
λp

,

∫ 1

0

dα

J (α, t)1+
1
λp

,

∫ 1

0

dα

J (α, t)p+
1
λ

(3.3.84)

for η∗ − η > 0 small, which may be obtained directly from parts (1) and (3) of Lemma

3.3.41. Since applying the Lemma is a rather straight-forward exercise, we omit the details

and state our findings below.

For p ≥ 1,

∫ 1

0

dα

J (α, t)
1
λp

∼

C, q ∈ (0, 1/2), λ > 1
2p

or q > 1
2
, λ > q

p
,

C9J (αi, t)
1
q
− 1
λp , q > 0, λ ∈ (0, q/p)

(3.3.85)

for η∗ − η > 0 small and positive constants

C9 =
2mΓ

(
1 + 1

q

)
Γ
(

1
λp
− 1

q

)
Γ
(

1
λp

) (
M0

|C1|

) 1
q

.

Also, ∫ 1

0

dα

J (α, t)1+
1
λp

∼ C (3.3.86)
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for p ≥ 1 and either  q ∈ (0, 1/2), λ > 1
p
,

q ∈ (1/2, 1), λ > q
p(1−q) ,

(3.3.87)

whereas ∫ 1

0

dα

J (α, t)1+
1
λp

∼ C10J (αi, t)
1
q
− 1
λp
−1 (3.3.88)

for p ≥ 1 and  q ∈ (0, 1), 0 < λ < q
p(1−q) ,

q ≥ 1, λ > 0.
(3.3.89)

The positive constant C10 in (3.3.88) can be obtained by simply substituting every 1
λp

term

in C9 above, by 1 + 1
λp

. We also point out that due to part (3) of Lemma 3.3.41, estimates

(3.3.85)i) and (3.3.86) are valid for

λ 6= q

p(1− nq)
, q 6= 1

n
∀ n ∈ N ∪ {0}. (3.3.90)

Finally, ∫ 1

0

dα

J (α, t)p+
1
λ

∼ C (3.3.91)

for either  q ∈ (0, 1/2), p ∈ [1, 2), λ > 1
2−p ,

q ∈ (1/2, 1), p ∈ [1, 1/q), λ > q
1−pq .

(3.3.92)

whereas ∫ 1

0

dα

J (α, t)p+
1
λ

∼ CJ (αi, t)
1
q
− 1
λ
−p (3.3.93)

for 
q ∈ (0, 1], p ∈ [1, 1/q), 0 < λ < q

1−pq ,

q ∈ (0, 1], p ≥ 1
q
, λ > 0,

q > 1, p ≥ 1, λ > 0.

(3.3.94)

Estimate (3.3.91) is in turn valid for

λ 6= q

1 + q(n− p)
, q 6= 1

n
∀ n ∈ N. (3.3.95)

Now, in what follows, t∗ > 0 will denote the L∞ blow-up time in Theorem 3.3.65. Also, we

will assume that (3.3.57), (3.3.90) and (3.3.95) hold whenever their corresponding estimates
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are used. For simplicity, the restrictions placed on λ and q by these conditions are only stated

in the main Theorem 3.3.100 at the end of this section, which summarizes our results. We

begin by considering the lower bound (3.1.64). In particular, we will show that two-sided,

everywhere blow-up in Theorem 3.3.65 corresponds to a diverging Lp norm of ux for p > 1.

Then, we consider the upper bound (3.1.63). In that case, we will find that if q ∈ R+ and

λ > q are such that only the maximum diverges at a finite t∗ > 0, then ux remains integrable

for all t ∈ [0, t∗], whereas, its regularity in other Lp spaces for t ∈ [0, t∗] and p ∈ (1,+∞)

will be determined from the parameter λ as a function of either p, q, or both.

Suppose q/2 < λ < q/p for q ∈ R+ and p ∈ (1, 2). This implies that estimate (3.3.85)ii)

holds. Also, since (q/2, q/p) ⊂ (0, q), (3.3.55)ii) applies as well. Now, if q ∈ (0, 1), then

0 <
q

2
< λ <

q

p
< q <

q

1− q
,

and so (3.3.58)ii) follows, otherwise, (3.3.58)ii) is also known to hold for all q ≥ 1 and

λ > 0. Similarly for q ∈ (0, 1), we have that

0 <
q

2
< λ <

q

p
<

q

p(1− q)
so that (3.3.88) holds. Alternatively, this last estimate is also valid if q ≥ 1 for any λ > 0.

Accordingly, using these estimates on (3.1.64) yields, after simplification,

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C(p− 1)J (α, t)σ(p,q,λ)

for η∗ − η > 0 small and

σ(p, q, λ) = 1 +
1

q

(
1− 1

p
− 2λ

)
.

Then, ‖ux‖p will diverge, as η ↑ η∗, for σ(p, q, λ) < 0, or equivalently, p(1+q−2λ)−1 < 0.

Since q/2 < λ < q/p for q > 0 and p ∈ (1, 2), we find this to be the case if

q ∈ R+, 1 < p < 1 +
q

1 + q
,

1

2

(
q + 1− 1

p

)
< λ <

q

p
.

Therefore, by taking p− 1 > 0 arbitrarily small, we find that

lim
t↑t∗
‖ux‖p = +∞
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for λ ∈ (q/2, q) and q ∈ R+. The existence of a finite blow-up time t∗ > 0 follows from (2)

in Theorem 3.3.65, while the embedding

Ls ↪→ Lp, s ≥ p, (3.3.96)

yields Lp blow-up for any p > 1. Next, for q ∈ (1/3, 1/2) we consider values of λ lying

between stagnation point-form solutions to the 2D (λ = 1) and 3D (λ = 1/2) incompressible

Euler equations. Suppose 1
2
< λ < q

p(1−q) for 1 < p < 2q
1−q and q ∈ (1/3, 1/2). The condition

on p simply guarantees that q
p(1−q) >

1
2

for q as specified. Furthermore, we have that

0 <
1

2p
<

1

2
< λ <

q

p(1− q)
<

q

1− q
∈ (1/2, 1),

so that relative to our choice of λ and q, λ ∈ (1/2, 1). Using the above, we find that (3.3.55)i),

(3.3.58)ii), (3.3.85)i) and (3.3.88) hold, and so (3.1.64) leads to

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣CJ (α, t)
1
q
− 1
λp
−1 − J (α, t)

1
q
− 1
λ
−1
∣∣∣

∼ CJ (α, t)
1
q
− 1
λ
−1

(3.3.97)

for η∗ − η > 0 small. Therefore, as η ↑ η∗, ‖ux‖p will diverge for all 1
2
< λ < q

p(1−q) ,

q ∈ (1/3, 1/2) and 1 < p < 2q
1−q . Here, we can take p − 1 > 0 arbitrarily small and

use (3.3.96) to conclude the finite-time blow-up, as t ↑ t∗, of ‖ux‖p for all 1
2
< λ < q

1−q ,

q ∈ (1/3, 1/2) and p > 1. The existence of a finite blow-up time t∗ > 0 is guaranteed by

the second part of (3) in Theorem 3.3.65. Now suppose q ∈ (1/2, 1) and q < λ < q
p(1−q) for

1 < p < 1
1−q . This means that λ > q > 1/2 and

0 <
q

p
< q < λ <

q

p(1− q)
<

q

1− q
. (3.3.98)

Consequently, using (3.3.55)i), (3.3.58)ii), (3.3.85)i) and (3.3.88) on (3.1.64), implies (3.3.97),

possibly with distinct positive constants C. Then, as η ↑ η∗,

‖ux(·, t)‖p → +∞

for all q < λ < q
p(1−q) , q ∈ (1/2, 1) and 1 < p < 1

1−q . Similarly, if q and p are as above, but
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q
p(1−q) < λ < q

1−q , (3.3.55)i), (3.3.58)ii), (3.3.85)i) and (3.3.86) imply

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣C − J (α, t)
1
q
− 1
λ
−1
∣∣∣

∼ CJ (α, t)
1
q
− 1
λ
−1 → +∞

as η ↑ η∗. From these last two results and (3.3.96), we see that

‖ux‖p → +∞ as η ↑ η∗

for all q < λ < q
1−q , q ∈ (1/2, 1) and p > 1. The existence of a finite t∗ > 0 follows from

part 4 of Theorem 3.3.65. Lastly, suppose λ > q > 1 and p > 1. Then, estimates (3.3.55)i),

(3.3.58)ii), (3.3.85)i) and (3.3.88) hold for η∗ − η > 0 small. As a result, (3.1.64) implies

(3.3.97), which in turn leads to Lp blow-up of ux for any λ > q > 1 and p > 1, as η ↑ η∗.
The existence of a finite t∗ > 0 is due to (5) in Theorem 3.3.65.

Notice from the results established so far, that some values of λ > q/2 for q ∈ R+ are

missing. These are precisely the cases for which the lower bound (3.1.64) yields inconclusive

information about the Lp regularity of ux for p ∈ (1,+∞). To examine some aspects of the

Lp regularity of ux for t ∈ [0, t∗] and p ∈ [1,+∞), in these particular cases, we consider

the upper bound (3.1.63) instead. First, suppose q ∈ (0, 1/2) and λ > 1
2−p for p ∈ [1, 2).

Then, we have that λ > 1
2−p > 1 > q

1−q > q. As a result, (3.3.55)i), (3.3.58)i) and (3.3.91)

imply that all the integral terms in (3.1.63) remain bounded, and nonzero, for η ∈ [0, η∗].

We conclude that

lim
t↑t∗
‖ux(·, t)‖p < +∞ (3.3.99)

for all λ > 1
2−p , q ∈ (0, 1/2) and p ∈ [1, 2). Here, t∗ > 0 denotes the finite L∞ blow-up time

for ux established in the first part of (3) in Theorem 3.3.65. Particularly, this result implies

that even though

lim
t↑t∗
‖ux‖∞ = +∞

for all λ > 1 when q ∈ (0, 1/2), ux remains integrable for t ∈ [0, t∗].

Finally, suppose q ∈ (1/2, 1) and λ > q
1−pq for p ∈ [1, 1/q). Then
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λ >
q

1− pq
≥ q

1− q
> 1 > q >

1

2
,

and so (3.3.55)i), (3.3.58)i) and (3.3.91) hold. Consequently, (3.1.63) implies that

lim
t↑t∗
‖ux‖p < +∞

for all λ > q
1−pq , q ∈ (1/2, 1) and p ∈ [1, 1/q). This time, t∗ > 0 stands as the finite L∞

blow-up time for ux established in the second part of (4) in Theorem 3.3.65. Furthermore,

this result tells us that although

lim
t↑t∗
‖ux‖∞ = +∞

for λ > q
1−q and q ∈ (1/2, 1), ux stays integrable for all t ∈ [0, t∗]. These last two results

on the integrability of ux, for t ∈ [0, t∗], become evident by setting p = 1 into (3.1.63) to

obtain

‖ux‖1 ≤
2K̄1(t)

|λη(t)| K̄0(t)1+2λ
.

The result then follows from the above inequality and estimates (3.3.55)i) and (3.3.58)i).

Theorem 3.3.100 below summarizes the above results.

Theorem 3.3.100. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3)

for u′0(α) bounded, at least C0(0, 1) a.e., and satisfying (3.3.10). Also, let t∗ > 0 be as in

Theorem 3.3.65.

1. For q > 0 and λ ∈ [0, q/2], limt→+∞ ‖ux‖p < +∞ for all p ≥ 1. More particularly,

limt→+∞ ‖ux‖p = 0 for λ ∈ (0, q/2), while, as t → +∞, ux converges to a nontrivial,

L∞ function when λ = q/2.

2. Let p > 1. Then, there exists a finite t∗ > 0 such that for all q > 0 and λ ∈ (q/2, q),

limt↑t∗ ‖ux‖p = +∞. Similarly if λ > q > 1, or 1
2
< λ < q

1−q , q ∈ (1/3, 1/2).

3. For all q ∈ (0, 1/2), λ > 1
2−p and p ∈ [1, 2), there exists a finite t∗ > 0 such that

limt↑t∗ ‖ux‖p < +∞ (see (3) in Theorem 3.3.65).

4. Suppose q ∈ (1/2, 1). Then, there exists a finite t∗ > 0 such that limt↑t∗ ‖ux‖p = +∞
for q < λ < q

1−q and p > 1, whereas, if λ > q
1−pq and p ∈ [1, 1/q), limt↑t∗ ‖ux‖p < +∞

(see (4) in Theorem 3.3.65).
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L∞ Regularity for λ < 0 and q ∈ R+

We now examine L∞ regularity of ux for λ < 0. We prove Theorem 3.3.101 below.

Theorem 3.3.101. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3)

for u′0(α) bounded, at least C0(0, 1) a.e., and satisfying (3.3.11). It holds,

1. Suppose λ ∈ [−1, 0) and q ∈ R+. Then, there exists a finite t∗ > 0 such that only the

minimum diverges, m(t)→ −∞, as t ↑ t∗ (one-sided, discrete blow-up).

2. Suppose that λ < −1 and q ∈ (0, 1) satisfy λ 6= q
1−nq and q 6= 1

n
∀ n ∈ N. Then, a

one-sided discrete blow-up, as described in (1) above, occurs in finite-time. Similarly

for q
1−q < λ < −1 and q > 1.

3. Suppose λ < q
1−q and q > 1. Then, there is a finite t∗ > 0 such that both the maxi-

mum M(t) and the minimum m(t) diverge to +∞ and respectively to −∞ as t ↑ t∗.
Moreover, limt↑t∗ ux(γ(α, t), t) = +∞ for α /∈ {αi, αj} (two-sided, everywhere blow-up).

4. For λ < 0, assume only Dirichlet boundary conditions (1.1.3) and/or suppose u0 is odd

about the midpoint. Then, for every αj ∈ [0, 1] there exists a unique xj ∈ [0, 1] given

by formula (3.1.2) such that limt↑t∗ ux(xj, t) = −∞. Finally, the jacobian (2.1.14)

satisfies

lim
t↑t∗

γα(α, t) =

0, α = αj,

C, α 6= αj

(3.3.102)

for all λ < 0, q ∈ R+ and where the positive constants C depend on the choice of λ, q

and α 6= αj.

Proof. Let C be a positive constant depending on λ < 0 and q > 0, and set

η∗ =
1

λm0

.

Proof of Statement 1

Suppose λ ∈ [−1, 0) and, given q ∈ R+, assume u′0(α) is bounded, at least C0(0, 1) a.e.,

and satisfies (3.3.11). Then, from (3.3.60) and (3.3.61) both integral terms K̄i(t), i = 0, 1 in

(2.1.19) remain finite and nonzero as η ↑ η∗. More particularly, one can show that (3.1.53)

and (3.1.55) hold for all η ∈ [0, η∗]. Then, by setting α = αj into (2.1.19) and using (3.0.5) we

find that, due to the space-dependent term in (2.1.19), the minimum diverges, m(t)→ −∞,
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as η ↑ η∗. However, if α 6= αj, the definition of m0 implies that the space-dependent term

now remains bounded, and positive, for all η ∈ [0, η∗]. As a result, ux(γ, t) stays finite for

α 6= αj and η ∈ [0, η∗]. We conclude that as η ↑ η∗, a one-sided, discrete blow-up occurs.

The existence of a finite blow-up time t∗ > 0 and formula (3.1.2), the latter under Dirichlet

boundary conditions, follow from (2.1.16) and (2.2.1), respectively, along with (3.3.60). In

fact, we may use (2.1.16) and (3.1.53) to obtain estimate (3.1.56).

Proof of Statements 2 and 3

Now suppose λ < −1. As in the previous case, the term K̄0(t) remains finite and positive

for all η ∈ [0, η∗]. Particularly, K̄0(t) satisfies (3.1.40) for all η ∈ [0, η∗]. On the other hand,

K̄1(t) now either converges or diverges as η ↑ η∗ according to (3.3.61) or (3.3.63). If λ < −1

and q ∈ R+ are such that (3.3.61) holds, then (2) follows just as part (1). However, if q > 1

and λ < q
1−q , we use (3.3.60) and (3.3.63) on (2.1.19) to obtain

ux(γ(α, t), t) ∼ Cm0

(
1

J (α, t)
− CJ (αj, t)

1
q
− 1
λ
−1
)

for η∗ − η > 0 small. Setting α = αj into the above and using (3.0.5) then implies

m(t) ∼ Cm0

J (αj, t)
→ −∞

as η ↑ η∗. On the other hand, if α 6= αj, so that the space-dependent term J (α, t)−1 now

remains bounded, we use q > 1 and λ < q
1−q to conclude that the second term dominates

and

ux(γ(α, t), t) ∼ C |m0| J (αj, t)
1
q
− 1
λ
−1 → +∞

as η ↑ η∗. The existence of a finite blow-up time t∗ > 0 and formula (3.1.2), the latter for the

Dirichlet setting (1.1.3) and/or odd data u0, follow just as in the λ ∈ [−1, 0) case. In fact,

(2.1.16) and (3.1.40) yield the lower bound η∗ ≤ t∗.
22 Finally, (3.3.102) is derived directly

from (2.1.14) and (3.3.60). See section 4.2 for examples.

Further Lp Regularity for λ < 0, p ∈ [1,+∞) and q ∈ R+

Let t∗ > 0 denote the finite L∞ blow-up time for ux in Theorem 3.3.101 and recall that

η∗ = 1
λm0

. In this last section, we briefly study the Lp regularity of ux as t ↑ t∗ for λ < 0

22Which we may compare to (3.1.56). From (2.1.16), we see that the two coincide, t∗ = η∗, in the case of
Burgers’ equation λ = −1.
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and p ∈ [1,+∞). Also, the behaviour of the jacobian is considered and a class of smooth

functions larger than the one studied in section 3.1 is discussed at the end.

As in section 3.3.3, our study of Lp regularity requires the use of the upper and lower

bounds (3.1.63) and (3.1.64). First of all, by the last part of (3) in Lemma 3.3.41,∫ 1

0

dα

J (α, t)
1
λp

dα ∼ C (3.3.103)

for η∗ − η > 0 small, λ < 0, q ∈ R+ and p ≥ 1. Similarly by the same result,∫ 1

0

dα

J (α, t)p+
1
λ

∼ C (3.3.104)

for η∗ − η > 0 small, −1
p
≤ λ < 0, q ∈ R+ and p ≥ 1. Moreover, due to the first part of (3)

in the Lemma, estimate (3.3.104) is also seen to hold, with different positive constants C,

for λ < −1
p
, p ≥ 1 and q ∈ R+ satisfying either of the following

q ∈ (0, 1/2), p ∈ [1, 2], λ < −1
p
,

q ∈ (0, 1/2), p > 2, 1
2−p < λ < −1

p
,

q ∈ (1/2, 1), p ∈ [1, 1/q], λ < −1
p
,

q ∈ (1/2, 1), p > 1
q
, q

1−pq < λ < −1
p
,

q > 1, p ≥ 1, q
1−pq < λ < −1

p
,

(3.3.105)

as well as

λ /∈
{

q

1− q(p+ n)
,

1

1− p

}
, q 6= 1

n
∀ n ∈ N. (3.3.106)

If (3.3.104) diverges instead, then it dominates the other terms in the upper bound (3.1.63),

regardless of whether these converge or diverge, and so no information on the behaviour of

‖ux‖p is obtained. Finally, using (2) in Lemma 3.3.41, one finds that∫ 1

0

dα

J (α, t)1+
1
λp

∼ CJ (αj, t)
1
q
− 1
λp
−1 (3.3.107)

for η∗ − η > 0 small, q > 1, p ≥ 1 and λ < q
p(1−q) . We remark that for the cases where the

above integral converges, the lower bound (3.1.64) yields no information. For the remaining

of this section, we will assume that (3.3.57) holds whenever (3.3.61) is being used for λ < −1

and q ∈ (0, 1). Also, (3.3.106) will be valid in those cases where estimate (3.3.104) is

considered for λ, p and q as in (3.3.105).
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Suppose q
1−q < λ < q

p(1−q) for q > 1 and p > 1. Then, using (3.3.60), (3.3.61), (3.3.103)

and (3.3.107) on the lower bound (3.1.64) implies that

lim
t↑t∗
‖ux‖p = +∞.

If instead, λ < q
1−q for q > 1 and p > 1, then (3.3.60), (3.3.63), (3.3.103) and (3.3.107) give

‖ux(·, t)‖p ≥
1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣CJ (α, t)
1
q
− 1
λp
−1 − J (α, t)

1
q
− 1
λ
−1
∣∣∣

∼ CJ (α, t)
1
q
− 1
λp
−1 → +∞

as η ↑ η∗. For the upper bound (3.1.63), we simply mention that estimates (3.3.60), (3.3.61)

and (3.3.104) lead to several instances where ‖ux‖p remains finite for all t ∈ [0, t∗]. For

simplicity, we omit the details and summarize the results from this section in Theorem

(3.3.108) below.

Theorem 3.3.108. Consider the initial boundary value problem (1.1.1)-(1.1.2) or (1.1.3)

for u′0(α) bounded, at least C0(0, 1) a.e., and satisfying (3.3.11). In addition, let t∗ > 0

denote the finite L∞ blow-up time for ux as described in Theorem 3.3.101. It follows,

1. Let q ∈ (0, 1/2). Then limt↑t∗ ‖ux‖p < +∞ for either λ < 0 and p ∈ [1, 2], or 1
2−p <

λ < 0 and p > 2.

2. Let q ∈ (1/2, 1). Then limt↑t∗ ‖ux‖p < +∞ for either λ < 0 and p ∈ [1, 1/q], or
q

1−pq < λ < 0 and p > 1/q.

3. Let q > 1. Then limt↑t∗ ‖ux‖p < +∞ for q
1−pq < λ < 0 and p ≥ 1, whereas

limt↑t∗ ‖ux‖p = +∞ for λ < q
p(1−q) and p > 1.

Whenever applicable, conditions (3.3.57) and (3.3.106) apply to parts (1) and (2) above.

Remark 3.3.109. Suppose λ > 0. Then, Lemma 3.3.41 was established under the assump-

tions that the continuous, bounded function u′0(α) attained its greatest value M0 > 0 at

several locations αi ∈ [0, 1], i = 1, 2, ...,m, and its local behaviour near each of these points

is the same, i.e u′0 satisfies (3.3.10) for the same q ∈ R+ regardless of location αi. Clearly,
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we may encounter functions u′0 with local behaviour that varies from one particular location

αj to the next αk, j 6= k. Formally, we can have u′0 which near αi satisfies

u′0(α) ∼M0 + Ci |α− αi|qi (3.3.110)

for all 0 ≤ |α− αi| ≤ r, 0 < r ≤ 1, qi > 0 and some Ci < 0. Here, r is chosen as small as

needed to avoid overlapping amongst the intervals. Now, without loss of generality, suppose

q1 ≥ q2 ≥ ... ≥ qm > 0 so that

1

qm
≥ 1

qm−1

≥ ... ≥ 1

q1
> 0.

Then, applying the argument used to prove 1 in Lemma 3.3.41, we find that for b > 1
qm

and η∗ − η > 0 small,

m∑
i=1

∫ αi+r

αi−r

dα

J (α, t)b
∼

m∑
i=1

ciJ (αi, t)
1
qi
−b

= J (α1, t)
1
q1
−b

(
c1 +

m∑
i=2

ciJ (αi, t)
1
qi
− 1
q1

) (3.3.111)

for the constants ci given by

ci =
2NΓ

(
1 + 1

qi

)
Γ
(
b− 1

qi

)
Γ (b)

(
M0

|Ci|

) 1
qi

, (3.3.112)

and where the positive integer N ≥ 1 denotes the multiplicity of the corresponding qi in the

set {q1, q2, ..., qm}. Furthermore, since for every 1 ≤ i ≤ m, b > 1
qi

, the constants ci are all

positive and well-defined. Also, because q1 ≥ qi, we have 1
qi
− 1

q1
≥ 0. As a result, using the

continuity of u′0 implies that the integral will diverge, as η ↑ η∗, at a rate∫ 1

0

dα

J (α, t)b
∼ c1J (α1, t)

1
q1
−b (3.3.113)

for all b > 1
qm

. This implies that the blow-up rate for the integral is determined by the

greatest element in the set {qi}, whereas the values of b > 0 for which the blow-up occurs

depend on the smallest member. This interaction between qg and qs The above result is

summarized in Corollary 3.3.114, which may be used for studying regularity of solutions in

the more general case of u′0 with distinct local behaviours. Similar arguments are possible

by following the above procedure, along with the one used in Lemma 3.3.41, to obtain

corresponding integral estimates for λ < 0 and/or b ≤ 1
qm

.

83



Corollary 3.3.114. For λ > 0 and η∗ = 1
λM0

, suppose that u′0(α) is bounded, at least C0(0, 1)

a.e., and satisfies (3.3.110). In addition, let q1 > 0 denote the greatest element(s) in the set

{qi}, i = 1, 2, ...,m having multiplicity N , and qm > 0 its smallest member. Then for all

b > 1
qm

and η∗ − η > 0 small, ∫ 1

0

dα

J (α, t)b
∼ c1J (α1, t)

1
q1
−b (3.3.115)

with positive constant

c1 =
2NΓ

(
1 + 1

q1

)
Γ
(
b− 1

q1

)
Γ (b)

(
M0

|C1|

) 1
q1

. (3.3.116)

3.3.4 Smooth Initial Data and the Order of u′′0(x)

Definition 3.3.117. Suppose a smooth function f(x) satisfies f(x0) = 0 but f is not

identically zero. We say f has a zero of order k ∈ N at x = x0 if

f(x0) = f ′(x0) = ... = f (k−1)(x0) = 0, f (k)(x0) 6= 0.

In section 3.1, we examined a class of smooth initial data characterized by u′′0(α) having

order k = 1 at a finite number of locations αi for λ > 0, or at αj if λ < 0, namely u′′′0 (αi) < 0

or u′′′0 (αj) > 0. As a result, in each case we were able to use an appropriate Taylor expansion,

up to quadratic order, to account for the local behaviour of u′0 near these locations. By using

definition 3.3.117 above and assuming that u′′0 has the same order k (k ≥ 2) at every αi when

λ > 0, or αj if λ < 0, we may apply the results established thus far to a larger class of smooth,

periodic initial data than the one studied in section 3.1. We do this by simply substituting

q in Theorems 3.3.65, 3.3.100, 3.3.101 and 3.3.108 by 2k in those cases where q ≥ 2. The

results are summarized in Corollary 3.3.118 below.
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Corollary 3.3.118. Consider the initial boundary value problem (1.1.1)-(1.1.2) for smooth,

mean-zero initial data. Furthermore,

1. Suppose u′′0(α) has order k ≥ 1 at every αi, i = 1, 2, ...,m. Then

� For λ ∈ [0, k], solutions exist globally in time. More particularly, these vanish as

t ↑ t∗ = +∞ for λ ∈ (0, k) but converge to a nontrivial steady state if λ = k.

� For λ > k, there exists a finite t∗ > 0 such that both the maximum M(t) and the

minimum m(t) diverge to +∞ and respectively to −∞ as t ↑ t∗. Furthermore,

limt↑t∗ ux(γ(α, t), t) = −∞ if α /∈ {αi, αj} and limt↑t∗ ‖ux‖p = +∞ for all p > 1.

2. Suppose u′′0(α) has order k ≥ 1 at each αj, j = 1, 2, ..., n. Then

� For 2k
1−2k < λ < 0, there exists a finite t∗ > 0 such that only the minimum diverges,

m(t)→ −∞, as t ↑ t∗, whereas, for 2k
1−2kp < λ < 0 and p ≥ 1, limt↑t∗ ‖ux‖p < +∞.

� For λ < 2k
1−2k , there is a finite t∗ > 0 such that both M(t) and m(t) diverge to +∞

and respectively to −∞ as t ↑ t∗. Additionally, if α /∈ {αi, αj}, limt↑t∗ ux(γ(α, t), t) =

+∞ while limt↑t∗ ‖ux‖p = +∞ for λ < 2k
p(1−2k) and p > 1.

Remark 3.3.119. If there are αi ∈ {0, 1} when λ > 0, or αj ∈ {0, 1} for λ < 0, the results

in Corollary 3.3.118 may be extended to the Dirichlet setting (1.1.3) by further assuming

that u′0(α) admits a periodic, smooth extension to the entire real line. Also, notice that

letting q → +∞ in either (3.3.10) or (3.3.11) implies that u′0 ∼ M0 near αi, or u′0 ∼ m0 for

α ∼ αj, respectively. If, in turn, we let k → +∞ in (1) of the above Corollary, we find that

for this class of locally constant u′0, if a solution exist locally in time, it will persist for all

time and λ ≥ 0, a result, we remark, agrees with the regularity results derived in section 3.2

for piecewise constant u′0.
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Chapter 4

Examples

4.1 Examples for Sections 3.1 and 3.2

Examples 1-4 in §4.1.1 are instances of Theorem 3.1.1 for λ ∈ {3,−5/2, 1,−1/2}. In these

cases, we will use formula (2.1.20) and the Mathematica software to aid in the closed-form

evaluation of some of the integrals and the generation of plots. For simplicity, most details of

the computations are omitted. Furthermore, examples 5 and 6 in §4.1.2 are representatives of

Theorem 3.2.4 for λ = 1 and −2. Finally, due to the difficulty in solving the IVP (2.1.16), the

plots in this section (except figure 4.2A)) will depict ux(γ(α, t), t) for fixed α ∈ [0, 1] against

the variable η(t), not t. Figure 4.2A) however, will represent u(x, t) for fixed t ∈ [0, t∗) versus

x ∈ [0, 1].

4.1.1 For Theorem 3.1.1

For examples 1-3, let

u0(α) = − 1

4π
cos(4πα).

Then

u′0(α) = sin(4πα)

attains its maximum M0 = 1 at αi = {1/8, 5/8}, while m0 = −1 occurs at αj =

{3/8, 7/8}.

Example 1. Two-sided Blow-up for λ = 3

Let λ = 3, then η∗ = 1
λM0

= 1/3 and we have that

K̄0(t) = 2F1

[
1

6
,
2

3
; 1; 9 η(t)2

]
→

Γ
(
1
6

)
Γ
(
1
3

)
Γ
(
5
6

) ∼ 1.84 (4.1.1)
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and ∫ 1

0

u′0(α) dα

J (α, t)
4
3

= 2η(t) 2F1

[
7

6
,
5

3
; 2; 9 η(t)2

]
→ +∞ (4.1.2)

as η ↑ 1/3. Using (4.1.1) and (4.1.2) on (2.1.20), and taking the limit as η ↑ 1/3, we find

that

M(t) = ux(γ(αi, t), t)→ +∞

whereas, for α 6= αi,

ux(γ(α, t), t)→ −∞.

The blow-up time t∗ ∼ 0.54 is obtained from (2.1.16) and (4.1.1). See figure 4.1(A).

Example 2. Two-sided Blow-up for λ = −5/2

For λ = −5/2 we have η∗ = 1
λm0

= 2/5. Also,

K̄0(t) = 2F1

[
−1

5
,

3

10
; 1;

25

4
η(t)2

]
→

Γ
(

9
10

)
Γ
(

7
10

)
Γ
(
6
5

) ∼ 0.9 (4.1.3)

and ∫ 1

0

u′0(α) dα

J (α, t)
3
5

= −3

4
η(t) 2F1

[
4

5
,
13

10
; 2;

25

4
η(t)2

]
→ −∞ (4.1.4)

as η ↑ 2/5. Plugging the above formulas into (2.1.20) and letting η ↑ 2/5, we find that

m(t) = ux(γ(αj, t), t)→ −∞

while, for α 6= αj,

ux(γ(α, t), t)→ +∞.

The blow-up time t∗ ∼ 0.46 is obtained from (2.1.16) and (4.1.3). See figure 4.1(B).

The next example is an instance of global existence in stagnation point-form solutions

(1.2.3) to the 2D incompressible Euler equations (λ = 1). We find that solutions converge

to a nontrivial steady state as t→ +∞.

Example 3. Global existence for λ = 1

Let λ = 1, then

K̄0(t) =
1√

1− η(t)2
(4.1.5)
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and ∫ 1

0

u′0(α) dα

J (α, t)2
=

η(t)

(1− η(t)2)
3
2

(4.1.6)

both diverge to +∞ as η ↑ η∗ = 1. Also, (4.1.5) and (2.1.16) imply

η(t) = tanh t,

which we use on (2.1.20), along with (4.1.5) and (4.1.6), to obtain

ux(γ(α, t), t) =
tanh t− sin(4πα)

tanh t sin(4πα)− 1
.

Clearly,

M(t) = ux(γ(αi, t), t) ≡ 1

and

m(t) = ux(γ(αj, t), t) ≡ −1

while, for α /∈ {αi, αj},
ux(γ(α, t), t)→ −1

as η ↑ 1. Finally, η(t) = tanh t yields

t∗ = lim
η↑1

arctanh η = +∞.

It is also easy to see from (4.1.5) and the formulas in section 2.1 that the nonlocal term

(1.1.1)iii) satisfies I(t) ≡ −1. See figure 4.1(C).

Example 4. One-sided Blow-up for λ = −1/2

For λ = −1/2 (HS equation), let

u0 = cos(2πα) + 2 cos(4πα).

Then, the least value m0 < 0 of u′0, and the location α ∈ [0, 1] where m0 occurs are given,

approximately, by m0 ∼ −30 and α ∼ 0.13, while η∗ = − 2
m0
∼ 0.067. For this choice of

data, we find

K̄0(t) = 1 +
17π2η(t)2

2
(4.1.7)
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and ∫ 1

0

u′0(α)J (α, t) dα = 17π2η(t), (4.1.8)

so that (2.1.16) and (4.1.7) give

η(t) =

√
2

17π2
tan

(
π

√
17

2
t

)
.

Using these results on (2.1.20) yields, after simplification,

ux(γ(α, t), t) =
π
(

2 sin(2πα) + 8 sin(4πα) +
√

34 tan
(
π
√

17
2
t
))

√
2
17

tan
(
π
√

17
2
t
)

(sin(2πα) + 4 sin(4πα))− 1

for 0 ≤ η < η∗. Setting α = α into the above formula, we see that

m(t) = ux(γ(α, t), t)→ −∞

as η ↑ η∗, whereas ux(γ(α, t), t) remains finite for α 6= α,. Finally, from the expression for

η(t) we obtain

t∗ = t (−2/m0) ∼ 0.06.

See figure 4.1(D).

4.1.2 For Theorem 3.2.4

For examples 5 and 6 below, let

u0(α) =


−α, 0 ≤ α < 1/4,

α− 1/2, 1/4 ≤ α < 3/4.

1− α, 3/4 ≤ α ≤ 1

(4.1.9)

so that

u′0(α) =


−1, 0 ≤ α < 1/4,

1, 1/4 ≤ α < 3/4.

−1, 3/4 ≤ α ≤ 1.

(4.1.10)
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Figure 4.1: Figures A and B depict two-sided, everywhere blow-up of (2.1.20) for λ = 3 and
−5/2 (Examples 1 and 2) as η ↑ 1/3 and 2/5, respectively. Figure C (Example 3) represents
global existence in time for λ = 1; the solution converges to a nontrivial steady-state as
η ↑ 1 (t → +∞). Finally, figure D (Example 4) illustrates one-sided, discrete blow-up for
λ = −1/2 as η ↑ 0.067.

Then, M0 = 1 occurs when α ∈ [1/4, 3/4), while m0 = −1 for α ∈ [0, 1/4) ∪ [3/4, 1] and

η∗ =
1

|λ|

for λ 6= 0. Also, notice that (4.1.9) is odd about the midpoint α = 1/2 and vanishes at the

end-points (as it should due to periodicity). As a result, uniqueness of solution to (2.0.1)

implies that γ(0, t) ≡ 0 and γ(1, t) ≡ 1 for as long as u is defined. See also our discussion in

section 2.2.2.

Example 5. Global existence for λ = 1

Using (4.1.10), we find that

K̄0(t) =
1

1− η(t)2
(4.1.11)

for 0 ≤ η < η∗ = 1. Then (2.1.14) implies

γα(α, t) =
1− η(t)2

1− η(t)u′0(α)
,
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or, after integrating and using (4.1.10) and γ(0, t) ≡ 0,

γ(α, t) =


(1− η(t))α, 0 ≤ α < 1/4,

α + η(t)(α− 1/2), 1/4 ≤ α < 3/4,

α + η(t)(1− α), 3/4 ≤ α ≤ 1.

(4.1.12)

Now, since γ̇ = u ◦ γ, we have that

u(γ(α, t), t) =


−αη̇(t), 0 ≤ α < 1/4,

(α− 1/2)η̇(t), 1/4 ≤ α < 3/4

(1− α)η̇(t), 3/4 ≤ α ≤ 1

(4.1.13)

where, by (2.1.16) and (4.1.11) above,

η̇(t) = (1− η(t)2)2.

Notice that (4.1.12) let us solve for α = α(x, t), the inverse Lagrangian map. We find

α(x, t) =


x

1−η(t) , 0 ≤ x < 1−η(t)
4

,

2x+η(t)
2(1+η(t))

, 1−η(t)
4
≤ x < 3+η(t)

4
,

x−η(t)
1−η(t) ,

3+η(t)
4
≤ x ≤ 1,

(4.1.14)

which we use on (4.1.13) to obtain the corresponding Eulerian representation

u(x, t) =


−(1− η(t))(1 + η(t))2x, 0 ≤ x < 1−η(t)

4
,

1
2
(1 + η(t))(1− η(t))2(2x− 1), 1−η(t)

4
≤ x < 3+η(t)

4
,

(1− η(t))(1 + η(t))2(1− x), 3+η(t)
4
≤ x ≤ 1,

(4.1.15)

which in turn yields

ux(x, t) =


−(1− η(t))(1 + η(t))2, 0 ≤ x < 1−η(t)

4
,

(1 + η(t))(1− η(t))2, 1−η(t)
4
≤ x < 3+η(t)

4
,

−(1− η(t))(1 + η(t))2, 3+η(t)
4
≤ x ≤ 1.

(4.1.16)

Finally, solving the IVP for η gives

t(η) =
1

2

(
arctanh(η) +

η

1− η2

)
,
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so that the blow-up time (2.1.18) is given by

t∗ = lim
η↑1

t(η) = +∞.

See figure 4.2(A) below.

Example 6. Finite-time blow-up for λ = −2

Using (4.1.9) and λ = −2 we find that

K̄0(t) =

√
1− 2η(t) +

√
1 + 2η(t)

2
(4.1.17)

and ∫ 1

0

u′0(α) dα

J (α, t)1+
1
λ

=
dK̄0(t)

dη
=

1

2

(
1√

1 + 2η(t)
− 1√

1− 2η(t)

)

for η ∈ [0, η∗) and η∗ = 1/2. Then, (2.1.20) yields

ux(γ(α, t), t) =


M(t) =

(√
1−2η(t)+

√
1+2η(t)

)3

8(1+2η(t))
√

1−2η(t)
, α ∈ [1/4, 3/4),

m(t) = −
(√

1−2η(t)+
√

1+2η(t)
)3

8(1−2η(t))
√

1+2η(t)
, α ∈ [0, 1/4) ∪ [3/4, 1],

(4.1.18)

so that, as η ↑ 1/2, M(t) → +∞ whereas m(t) → −∞. The finite blow-up time t∗ > 0 is

obtained from (2.1.16) and (4.1.17) above. We find

t(η) =
1

6η3

(
η2
(

6− 4
√

1− 4η2
)

+
√

1− 4η2 − 1
)
,

so that t∗ = t(1/2) = 2/3. See figure 4.2(B) below.

4.2 Examples for Section 3.3

Examples for Theorems 3.3.14, 3.3.65 and 3.3.101 are now presented. For simplicity, only

Dirichlet boundary conditions are considered. Given λ 6= 0, the time-dependent integrals in

(2.1.20) are evaluated and pointwise plots are generated using the Mathematica software.

Whenever possible, plots in the Eulerian variable x, instead of the Lagrangian coordinate

α, are provided. For practical reasons, details of the computations in most examples are

omitted. Also, due to the difficulty in solving the IVP (2.1.16) for the function η(t) in terms

of elementary functions, most plots for ux(γ(α, t), t) are against the variable η rather than t.
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Figure 4.2: In figure A, (4.1.15) vanishes as t → +∞, while figure B depicts two-sided,
everywhere blow-up of (4.1.18) as η ↑ η∗ = 1/2.

Example 1 below applies to stagnation point-form solutions to the incompressible 3D

Euler equations, λ = 1/2. We consider two types of initial data, one satisfying (3.3.10) for

q ∈ (0, 1) and the other with q > 1. Recall from Table 3.2 that if q ≥ 1, global existence in

time follows, while, for q ∈ (1/2, 1), we have finite-time blow-up instead. Below, we see that

a spontaneous singularity may also form if q = 1/3.

Example 1. Regularity of stagnation point-form solutions to 3D Euler for

q = 1/3 and q = 6/5

For λ = 1/2 and α ∈ [0, 1], first consider

u0(α) = α(1− α
1
3 ). (4.2.1)

Then

u′0(α) = 1− 4

3
α

1
3

achieves its maximum M0 = 1 at α = 0. Also, q = 1/3 and η∗ = 2. Furthermore,

u′0(α) /∈ C1(0, 1) at α, namely

lim
α→0+

u′′0(α) = −∞,

a jump discontinuity of infinite magnitude in u′′0. Evaluating the integrals in (2.1.20), we

obtain

K̄0(t) = −
54(η(t)− 6)η(t)− 81(2− η(t))(6 + η(t)) arctanh

(
2η(t)
η(t)−6

)
4(6 + η(t))η(t)3

(4.2.2)
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and

∫ 1

0

u′0(α) dα

J (α, t)3
= −

27
(

9(2− η(t))(6 + η(t))2 log
(

24
η(t)+6

− 3
))

8(6 + η(t))2η(t)4

−
27
(

8η(t)(54− (η(t)− 9)η(t)) + 6η(t)(6 + η(t))2 arctanh
(

2η(t)
η(t)−6

))
8(6 + η(t))2η(t)4

(4.2.3)

for 0 ≤ η < 2. Furthermore, in the limit as η ↑ η∗ = 2,

K̄0(t∗) =
27

16
,

∫ 1

0

u′0(α) dα

J (α, t)3
→ +∞.

Also, (2.1.16) and (4.2.2) yield

t(η) = −
9
(

2η(6− 5η) + 9(η − 2)2arctanh
(

2η
η−6

))
16η2

so that

t∗ = lim
η↑2

t(η) =
9

4
.

Using (4.2.2) and (4.2.3) on (2.1.20), we find that ux(γ(α, t), t) undergoes a two-sided, ev-

erywhere blow-up as t ↑ 9/4. Now, if instead of q = 1/3 in (4.2.1) we let q = 6/5, then

u′0(α) = 1− 11

5
α

6
5

and u′′0 is now defined as α ↓ 0. In addition, for q = 6/5 we find that both integrals now

diverge to +∞ as η ↑ 2, in contrast to the case q = 1/3 where K̄0(t) converged while K̄1(t)

diverged. The diverging of the two integrals to +∞ now causes a balancing effect amongst the

terms in (2.1.20), which was absent for q = 1/3. Ultimately, we find that ux(γ(α, t), t)→ 0

as η ↑ 2 for all α ∈ [0, 1]. Furthermore, using (2.1.16) we find that t∗ = +∞. See figure 4.3

below.

In Theorem 3.1.1, we showed that for a class of smooth initial data (q = 2), finite-time

blow-up occurs for all λ > 1. Example 2 below is an instance of part 1 in Theorem 3.3.65.

For λ ∈ {2, 5/4}, we consider initial data satisfying (3.3.10) for q ∈ {5, 5/2}, respectively,

and find that solutions persist globally in time. Also, the example illustrates the two possible

global behaviours: convergence of solutions, as t→ +∞, to nontrivial or trivial steady states.
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Figure 4.3: Example 1 for λ = 1/2 and q ∈ {1/3, 6/5}. Figure A depicts two-sided, every-
where blow-up of ux(γ(α, t), t) for q = 1/3 as η ↑ 2 (t ↑ 9/4), whereas, for q = 6/5, figure B
represents its vanishing as η ↑ 2 (t→ +∞).

Example 2. Global existence for λ = 2, q = 5 and λ = 5/4, q = 5/2

First, let λ = 2 and

u0(α) = α(1− α5). (4.2.4)

Then

u′0(α) = 1− 6α5

achieves its greatest value M0 = 1 at α = 0 and η∗ = 1/2. Since λ = 2 ∈ [0, 5/2) =

[0, q/2), part (1) of Theorem 3.3.65 implies global existence in time. Particularly

lim
t→+∞

ux(γ(α, t), t) = 0.

See figure 4.4(A). Now, suppose λ = 5/4 and replace q = 5 in (4.2.4) by q = 5/2. Then,

u′0(α) = 1− 7

2
α5/2

attains M0 = 1 at α = 0 and η∗ = 4/5. Because λ = 5/4 = q/2, part 1 of Theorem 3.3.65

implies that ux converges to a nontrivial steady-state as t→ +∞. See figure 4.4(B).
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Figure 4.4: For example 2, figure A represents the vanishing of ux(γ(α, t), t) as η ↑ 1/2
(t→ +∞) for λ = 2 and q = 5, whereas, figure B illustrates its convergence to a nontrivial
steady state as η ↑ 4/5 (t→ +∞) if q = 5/2 and λ = 5/4 = q/2.

Example 3. Two-sided, everywhere blow-up for λ = 11
2

and q = 6

Suppose λ = 11/2 and

u0(α) =
α

11
(1− α6).

Then

u′0(α) =
1

11
(1− 7α6)

attains its greatest value M0 = 1/11 at α = 0. Also, η∗ = 2 and λ = 11/2 ∈ (q/2, q).

According to 2 in Theorem 3.3.65, two-sided, everywhere blow-up takes place. The estimated

blow-up time is t∗ ∼ 22.5. See figure 4.5(A).

Example 4. One-sided, discrete blow-up for λ = −5/2 and q = 3/2

Let λ = −5/2 and

u0(α) = α(α
3
2 − 1).

Then u′0 attains its minimum m0 = −1 at α = 0 and η∗ = 2/5. Since q
1−q < λ < −1, part

2 of Theorem 3.3.101 implies one-sided, discrete blow-up. The estimated blow-up time is

t∗ ∼ 0.46. See figure 4.5(B). We remark that in Theorem 3.1.1, the same value of λ for a

class of smooth initial data with q = 2 led to two-sided, everywhere blow-up instead.
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Figure 4.5: Figure A for example 3 depicts two-sided, everywhere blow-up of ux(γ(α, t), t) as
η ↑ 2 (t ↑ 22.5) for λ = 11/2 and q = 6, while, figure B for example 4 illustrates one-sided,
discrete blow-up, m(t) = ux(0, t) → −∞, as η ↑ 2/5 (t ↑ t∗ ∼ 0.46) for λ = −5/2 and
q = 3/2.

In these last two examples, we consider smooth data with either mixed local behaviour

near two distinct locations αj for λ = −1/3, or M0 occurring at both endpoints for λ = 1.

Example 5. One-sided, discrete Blow-up for λ = −1/3 and q = 1, 2

For λ = −1/3, let

u0(α) = α(1− α)(α− 3

4
)

(
α− 1 + 4

√
22

36

)
.

Then m0 ∼ −0.113 occurs at both α1 = 1 and α2 = 4+
√
22

24
∼ 0.36. Now, near α2, u

′
0

behaves quadratically (q = 2), whereas, for 1 − α > 0 small, it behaves linearly (q = 1).

The quadratic behaviour is due to u′′0 having order one at α2 ∼ 0.36, thus, Corollary 3.3.118

implies a discrete, one-sided blow-up. Similarly in the case of linear behaviour according to

Theorem 3.3.14. After evaluating the integrals, we find that m(t)→ −∞ as t ↑ t∗ ∼ 17.93.

Due to the Dirichlet boundary conditions, one blow-up location is the boundary x1 = 1,

while the interior blow-up location, x2, is obtained by setting α = α2 into (2.2.1) and letting

η ↑ η∗ = 3
|m0| . We find that x2 ∼ 0.885. See figure 4.6(A).

Example 6. Two-sided, everywhere blow-up for stagnation point-form solu-

tions to the 2D incompressible Euler equations (λ = 1)

For λ = 1, let

u0(α) = α(α− 1)(α− 1/2).
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Then, M0 = 1/2 occurs at both endpoints αi = {0, 1}. Also η∗ = 2 and since

u′0(α) = M0 − 3α + 3α2 = M0 − 3 |α− 1|+ 3(α− 1)2,

the local behaviour of u′0 near both endpoints is linear (q = 1). The integrals in (2.1.20)

evaluate to

K̄0(t) =
2 arctanh(y(t))√

3η(t)(4 + η(t))

and ∫ 1

0

u′0(α) dα

J (α, t)2
=

dK̄0(t)

dη

for 0 ≤ η < 2 and where

y(t) =

√
3η(t)(4 + η(t))

2(1 + η(t))
.

Using (2.1.11), we plug the above into (2.1.20) to find that

M(t) = ux(0, t) = ux(1, t)→ +∞

as η ↑ 2, while

ux(x, t)→ −∞

for all x ∈ (0, 1). The blow-up time is estimated from (2.1.16) and K̄0(t) above as t∗ ∼ 2.8.

See figure 4.6(B).

Figure 4.6: Figure A for example 5 with λ = −1/3 and q = 1, 2, depicts one-sided, discrete
blow-up, m(t) =→ −∞, as t ↑ 17.93. The blow-up locations are x1 = 1 and x2 ∼ 0.885.
Then, figure B for example 6 with λ = 1 and q = 1, represents two-sided, everywhere blow-up
of ux(x, t), as t ↑ 2.8.
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[1] C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux.

J. Math. Anal. Appl. 40 (1972), 769-790.

[2] E. W. Barnes, “A New Development of the Theory of Hypergeometric Functions”, Proc.

London Math. Soc. (2) 6 (1908), 141-177.

[3] A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation, SIAM

J. Math. Anal 37 (3) (2005), 996-1026.

[4] F. Calogero, A solvable nonlinear wave equation, Stud. Appl. Math., 70 (3) (1984),

189-199.

[5] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,

Phys. Rev. Lett. 71 (11) (1993), 1661-1664.

[6] X. Chen, H. Okamoto, Global existence of solutions to the Proudman-Johnson equation,

Proc. Japan Acad., 76A (2000), 149-152.

[7] X. Chen, H. Okamoto, Global existence of solutions to the generalized Proudman-

Johnson equation, Proc. Japan Acad., 78, ser. A, 78(A) (2002), 136-139.

[8] X. Chen, H. Okamoto, A blow-up problem related to the Euler equations of incompress-

ible inviscid fluid motion, J. Math. Sci., Univ. Tokyo 10 (2003), 373-389.

[9] S. Childress, G.R. Ierley, E.A. Spiegel and W.R. Young, Blow-up of unsteady two-

dimensional Euler and Navier-Stokes equations having stagnation-point form, J. Fluid

Mech. 203 (1989), 1-22.

[10] C. H. Cho and M. Wunsch, Global and singular solutions to the generalized Proudman-

Johnson equation, J. Diff. Eqns. 249 (2010), 392-413.

99



[11] C. H. Cho. M Wunsch, Global weak solutions to the generalized Proudman-Johnson

equation, Commun. Pure Appl. Ana. 11 (4) (2012), 1387-1396.

[12] A. Constantin, M. Wunsch, On the inviscid Proudman-Johnson equation, Proc. Japan

Acad. Ser. A Math. Sci., 85 (7) (2009), 81-83.

[13] P. Constantin, P.D. Lax, A. Majda, A simple one dimensional model for the three

dimensional vorticity equation, Commun. Pure Appl. Math., 38 (1985), 715-724.

[14] P. Constantin, The Euler equations and non-local conservative Riccati equations, Inter.

Math. Res. Notice 9 (2000), 455-465.

[15] C. M. Dafermos, Generalized characteristics and the Hunter-Saxton equation, J. Hy-

perbol. Differ. Eq., 8 (1) (2011), 159-168.

[16] S. De Gregorio, On a one dimensional model for the three dimensional vorticity equation,

J. Stat. Phys. 59 (5-6) (1990), 1251-1263.

[17] A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and perturbation

theory (Rome, 1998), World Sci. Publ., River Edge, NJ, (1999), 23-37.

[18] H. R. Dullin, G. A. Gottwald, D. D. Holm, An integrable shallow water equation with

linear and nonlinear dispersion, Phys. Rev. Lett., Vol. 87, No. 19 (2011).

[19] H. R. Dullin, G. A. Gottwald, D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and

other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33

(2003), 73-95.

[20] L.C. Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol.

19, American Mathematical Society, Providence, Rhode Island (1998).
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Appendices

Appendix A - Global existence for λ = 0

To obtain the corresponding solution formulae for λ = 0, a limiting argument on (2.1.14)

may be used.

Suppose u′0(α) is, at least, C0(0, 1) a.e.. Then for n ∈ R+, η ∈ [0, η∗) and η∗ = n
M0

set

ψn =

(
1− ηu′0

n

)n
.

Observe that ψn > 0 for all n > 0 and α ∈ [0, 1]. As a result, since

lim
n→+∞

ψn = exp

 lim
n→+∞

log
(

1− ηu′0
n

)
1
n

 = e−ηu
′
0

then

lim
n→+∞

∫ 1

0

ψ−1n dα =

∫ 1

0

eηu
′
0dα.

We conclude that

lim
n→+∞

{
ψ−1n∫ 1

0
ψ−1n dα

}
=

eηu
′
0∫ 1

0
eηu

′
0dα

. (4.2.5)

But for λ 6= 0, the jacobian γα in (2.1.14) may be written as

γα(α, t) =

(
1− ηu′0

n

)−n
∫ 1

0

(
1− ηu′0

n

)−n
dα

=
ψ−1n∫ 1

0
ψ−1n dα

(4.2.6)

for n = 1
λ
. Then, letting n→ +∞ in (4.2.6) and using (4.2.5) implies that

γα(α, t) =
eηu

′
0∫ 1

0
eηu

′
0dα

(4.2.7)
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in the limit as λ→ 0+. But we know that γ̇α = (ux(γ(α, t), t))γα, so that

ux(γ(α, t), t) = u′0(α)−
∫ 1

0
u′0(α)etu

′
0(α)dα∫ 1

0
etu
′
0(α)dα

. (4.2.8)

The representation formula (4.2.8) is also valid if λ→ 0− by following an argument similar

to the one above. Finally, (4.2.8) easily implies that

0 ≤ u′0(α)− ux(γ(α, t), t) ≤
∫ 1

0

u′0(α) etu
′
0(α)dα, t ≥ 0.

The global existence for the other types of initial data are analogous, and follow from

the above.

Appendix B - Proof of Lemma 3.0.11

For the hypergeometric series (3.0.7), we have the following convergence results [21]:

� Absolute convergence for all |z| < 1.

� Suppose |z| = 1, then

1. Absolute convergence if Re(a+ b− c) < 0.

2. Conditional convergence for z 6= 1 if 0 ≤ Re(a+ b− c) < 1.

3. Divergence if 1 ≤ Re(a+ b− c).

Furthermore, consider the identities [21]:

d

dz
2F1 [a, b; c; z] =

ab

c
2F1 [a+ 1, b+ 1; c+ 1; z] (4.2.9)

and

2F1 [a, b; b; z] = (1− z)−a, (4.2.10)

as well as the contiguous relations

z 2F1 [a+ 1, b+ 1; c+ 1; z] =
c

a− b
(2F1 [a, b+ 1; c; z]− 2F1 [a+ 1, b; c; z]) (4.2.11)

and

2F1 [a, b; c; z] =
b

b− a 2F1 [a, b+ 1; c; z]− a

b− a 2F1 [a+ 1, b; c; z] (4.2.12)
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for b 6= a. Suppose b < 2, 0 ≤ |β − β0| ≤ 1 and ε ≥ C0 for some C0 > 0. We show that

1

εb
d

dβ

(
(β − β0) 2F1

[
1

q
, b; 1 +

1

q
;−C0 |β − β0|q

ε

])
= (ε+ C0 |β − β0|q)−b (4.2.13)

for all q > 0 and b 6= 1/q. For simplicity, let us denote 2F1 by F . Also, all constants and

variables are assumed to be real-valued. Set

a = 1/q, c = a+ 1, z = −C0 |β − β0|q

ε
.

Then −1 ≤ z ≤ 0, a+ b− c = b− 1 < 1 and

dz

dβ
= −qC0

ε
(β − β0) |β − β0|q−2 .

Therefore,

d

dβ
((β − β0)F [a, b; c; z]) = (β − β0)

d

dβ
(F [a, b; c; z]) + F [a, b; c; z]

=
ab

c
(β − β0)F [a+ 1, b+ 1; c+ 1; z]

dz

dβ
+ F [a, b; c; z] , by (4.2.9)

=
b

c
(zF [a+ 1, b+ 1; c+ 1; z]) + F [a, b; c; z] , by

dz

dβ

=
b

a− b
(F [a, b+ 1; c; z]− F [a+ 1, b; c; z]) + F [a, b; c; z] , by (4.2.11)

=
b

a− b
(F [a, b+ 1; c; z]− F [a+ 1, b; c; z]) +

b

b− a
F [a, b+ 1; c; z]

− a

b− a
F [a+ 1, b; c; z] , by (4.2.12)

= F [a+ 1, b; c; z] = F [b, a+ 1; c; z] , by (3.0.7)

= F [b, c; c; z] , by c = a+ 1

=

(
1 +

C0 |β − β0|q

ε

)−b
, by (4.2.10)

= εb (ε+ C0 |β − β0|q)−b .

(4.2.14)

Multiplying both sides by ε−b yields our result. �

Notice that no issue arises in the use of identity (4.2.10) because, in our case, −1 ≤ z ≤ 0.
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Appendix C - Proof of (3.0.4) and (3.0.5)

We prove (3.0.4) and (3.0.5) for λ > 0. The case of parameter values λ < 0 follows similarly.

Suppose λ > 0 and set ηε = 1
λM0+ε

for arbitrary ε > 0. Then 0 < ηε < η∗ for η∗ = 1
λM0

.

Also, due to the definition of M0,

1− ληεu′0(α) =
ε+ λ(M0 − u′0(α))

λM0 + ε
> 0

for all α ∈ [0, 1], while 1− ληεu′0(α) = 0 only if ε = 0 and α = αi. We conclude that

1− λη(t)u′0(α) > 0 (4.2.15)

for all 0 ≤ η(t) < η∗ and α ∈ [0, 1]. But u′0(α) ≤M0, or equivalently

u′0(α)(1− λη(t)M0) ≤M0(1− λη(t)u′0(α)),

therefore (4.2.15) and u′0(α) = M0, yield

u′0(α)

J (α, t)
≤ u′0(α)

J (α, t)
(4.2.16)

for 0 ≤ η < η∗ and

J (α, t) = 1− λη(t)u′0(α), J (α, t) = 1− λη(t)M0.

The representation formula (2.1.20) and (4.2.16) then imply

ux(γ(α, t), t) ≥ ux(γ(α, t), t) (4.2.17)

for 0 ≤ η(t) < η∗ and α ∈ [0, 1]. Then (3.0.4) follows by using (2.1.27), definition (3.0.2) and

(in)equality (4.2.17). Likewise, to establish (3.0.5) for λ > 0, notice that u′0(α) ≥ m0 = u′0(α)

gives

u′0(α)(1− λη(t)m0) ≥ m0(1− λη(t)u′0(α)),

and so by (4.2.15),

u′0(α)

J (α, t)
≥ u′0(α)

J (α, t)
(4.2.18)

for 0 ≤ η < η∗ and J (α, t) = 1− λη(t)m0. The representation formula (2.1.20) and (4.2.18)

then imply

ux(γ(α, t), t) ≥ ux(γ(α, t), t) (4.2.19)

for 0 ≤ η(t) < η∗ and α ∈ [0, 1].

Similarly for λ < 0, (4.2.15) holds with η∗ = − 1
λm0

> 0 instead. Both (3.0.4) and (3.0.5)

then follow as above. �
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Appendix D - Inequalities

Definition 4.2.20. A function f : R→ R is called convex provided that

f(rx+ (1− r)y) ≤ rf(x) + (1− r)f(y)

for all x, y ∈ R and each 0 ≤ r ≤ 1.

Proof of (a+ b)p ≤ 2p−1(ap + bp): For p ≥ 1 and nonnegative reals a and b,

(a+ b)p ≤ 2p−1(ap + bp)

Proof. Since f(x) = xp is convex for all p ≥ 1, we use the above definition, with r = 1/2,

to obtain(
a+ b

2

)p
= f

(
a

2
+

(
1− 1

2

)
b

)
≤ f(a)

2
+

(
1− 1

2

)
f(b) =

ap + bp

2
(4.2.21)

for nonnegative (a, b) ∈ R2. �

Jensen’s Inequality: Assume f : R→ R is convex, and U ⊂ Rn is open and bounded.

In addition, let u : U→ R be summable. Then

f

(
−
∫
U

u dx

)
≤ −
∫
U

f(u) dx (4.2.22)

where −
∫
U
g dx = 1

|U|

∫
U
g dx = average of g over U and +∞ > |U| = measure of U.

Proof. Since f is convex, we have that for each p ∈ R there exists r ∈ R such that

f(q) ≥ f(p) + r(q − p) ∀ q ∈ R.

Let p = −
∫
U
u dx and q = u. The inequality follows after integrating the above in x over

U. �
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