
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Fall 12-2012 

Volatile Memory Message Carving: A "per process basis" Volatile Memory Message Carving: A "per process basis" 

Approach Approach 

Aisha Ibrahim Ali-Gombe 
University of New Orleans, aaligomb@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ali-Gombe, Aisha Ibrahim, "Volatile Memory Message Carving: A "per process basis" Approach" (2012). 
University of New Orleans Theses and Dissertations. 1569. 
https://scholarworks.uno.edu/td/1569 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uno.edu%2Ftd%2F1569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1569?utm_source=scholarworks.uno.edu%2Ftd%2F1569&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

 

Volatile Memory Message Carving: A “per process basis” Approach 

 
 
 
 
 

 
A Thesis 

 
 
 
 
 
 

Submitted to the Graduate Faculty of the 
University of New Orleans 
in partial fulfillment of the 

requirements for the degree of 
 
 
 
 
 
 

Master of Science 
in 

Computer Science 
Information Assurance 

 
 
 
 
 
 

By 
 

Aisha Ali-Gombe 
 

B.S University of Abuja, 2005 
MBA Bayero Univerity Kano, 2011 

 
December, 2012 



ii 

 

 

Table of Contents 

List of Figures .......................................................................................................... iii 
Abstract ..................................................................................................................... 1 
Introduction .............................................................................................................. 1 
Related Work ............................................................................................................ 2 

Non-Volatile Memory Dump ........................................................................ 2 
Acquiring Volatile Memory .......................................................................... 2 
Acquiring Android Volatile Memory ............................................................ 3 

The “Per Process” Approach .................................................................................... 3 
Android Applications .................................................................................... 4 
Android Processes and Memory Management .............................................. 4 
Motoblur ........................................................................................................ 5 
Memfetch ....................................................................................................... 5 
Message Carving ........................................................................................... 6 
SocialNetworking Carving and Reconstruction ............................................ 7 

Algorithm ........................................................................................... 7 
Email Carving and Reconstruction ................................................................ 7 

Algorithm ........................................................................................... 8 
Behavior of Messages.................................................................................... 8 

Experiments and Results .......................................................................................... 8 
Experimental Setup ....................................................................................... 8 
Testing ........................................................................................................... 8 
Sample Run Analysis .................................................................................. 10 
Research Findings ....................................................................................... 11 

Conclusion .............................................................................................................. 11 
References .............................................................................................................. 11 
Vita ......................................................................................................................... 13 

 

  



iii 

 

List of Figures 

Figure 1: Android Memory Management ................................................................. 5 
Figure 2: Sample output of email.py ........................................................................ 9 
Figure 3: Sample output of chat.py ........................................................................ 10 
Figure 4: Sample run result .................................................................................... 10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Volatile Memory Message Carving: A “Per Process Basis” Approach 

Ali-Gombe Aisha 

Department of Computer Science, University of New Orleans 

 

ABSTRACT 

The pace at which data and information transfer and storage has shifted from PCs to mo-
bile devices is of great concern to the digital forensics community. Android is fast be-
coming the operating system of choice for these hand-held devices, hence the need to de-
velop better forensic techniques for data recovery cannot be over-emphasized. This thesis 
analyzes the volatile memory for Motorola Android devices with a shift from traditional 
physical memory extraction to carving residues of data on a “per process basis”. Each 
Android application runs in a separate process within its own Dalvik Virtual Machine 
(JVM) instance, thus, the proposed “per process basis” approach.  To extract messages, 
we first extract the runtime memory of the MotoBlur application, then carve and recon-
struct both deleted and undeleted messages (emails and chat messages).  An experimental 
study covering two Android phones is also presented. 

 

1. Introduction 

Android has the largest smartphone user 
base, constituting about 61% of the total 
market in the US and Canada. Motorola, 
which was recently acquired by Google, 
has 29% of the total Android market 
making it second next to HTC.  

Messaging today plays a vital role in our 
lives ranging from emails, SMS to social 
networking. The ability to bring these 
messaging flavors on our mobile devices 
for fast, easy and accessible data and in-
formation transfer is one of the key revo-
lutionary changes smartphones brought 
to the mobile world. Thus the need to 
design new optimized techniques for the 
recovery of these messages is of great 
importance to forensic experts.  

A lot of forensic work has been done on 
Android systems ranging from file sys-
tem recovery to volatile memory acquisi-
tion. Unlike traditional computers sys-
tems, mobile devices have a different 
implementation of OS and file system 
internals across devices, making generic 
tool development much more difficult. 

Android uses SQLite databases to store 
user data; hence recovery of the file sys-
tem is guaranteed to recover undeleted 
messages. Deleted messages often times 
can be recovered through string search of 
the NAND dump,   but more often than 
not, these messages  might not laid out 
sequentially in the actual memory, but  
could be fragmented and very difficult to 
rearrange and comprehend. It might also 
be in a language the investigator doesn’t 



2 

 

understand, making the string search 
technique not too effective. 

Volatile memory acquisition and pro-
cessing also poses the same issues with 
string searches, thus our approach is to 
develop a tool to correctly extract both 
deleted and undeleted messages.  This 
involves first extracting the memory of 
the messaging process using memfetch 
(Zalewski, 2002), then running our 
mcarve application to carve out individ-
ual messages. 

The reminder of this work is organized 
as follows: Section 2 describes related 
work in detail. Section 3 presents the 
methodology of our approach. Results 
and sample runs are shown in Section 4 
and lastly section 5 presents conclusions. 

 

2. Related Work 

Both volatile and non-volatile storage 
media are a good source of digital evi-
dence today. Like traditional computer 
systems, mobile devices utilize both vol-
atile and non-volatile memory. Some 
limited work has been done to date on 
extraction of both volatile and non-
volatile memory on Android devices.  
We briefly review these prior efforts in 
the remainder of this section. 

2.1 Non-Volatile Memory Dump 

Using the command line tool dd is the 
most widely used method of obtaining a 
non-volatile memory image. Most An-
droid mobile devices use NAND flash 
memory for persistent storage and dd is 
used to produce a copy of this storage for 
forensic analysis. 

The YAFFS2 filesystem is commonly 
used over NAND Flash memory instead 
of other more common filesystems. Due 
to its robustness and efficiency, it’s used 
across a wide range of mobile devices 
today. In other to perform forensics ex-
amination, (Kessler, 2010) obtained a dd 
image of an Android mobile device and 
examined it with FTK. Though a lot of 
other important items were recovered, 
“FTK was unable to recover emails and 
chats”. A search tool was then used, but 
even with that an examiner needs to have 
a an idea of what to search for, e.g., the 
email address of the suspect. But the 
question is how is it possible to know the 
email address or the social networking 
user id of a suspect without any 
additional information? 

Hence we need some other techinques 
that will give us a wealth of digital 
evidence, no matter how little we know 
about a suspect. 

2.2 Acquiring Volatile Memory 

There are two ways of acquiring volatile 
data: hardware-based and software-based 
approaches. The hardware-based ap-
proach uses Direct Memory Access 
(DMA) to copy a memory image, begin-
ning with halting the system’s processor. 
The software approach, on the other 
hand, uses system tools like memdump 
or dd on Unix systems (Amari, 2009) 
and works by enumerating all physical 
pages and writing them out to a storage 
device while the system continues to op-
erate. 

Volatile memory on Unix systems was 
traditionally read via the /dev/mem or 
/proc/kcore devices, though not all ma-



3 

 

chines support /proc/kcore. Because 
/dev/mem allowed both read and write 
access to kernel memory, it has been dis-
abled on a lot of modern Linux distribu-
tions. The fmem tool, developed by Ivor 
Kollar (Kollar, 2010), creates a loadable 
kernel module that creates a /dev/fmem 
device supporting memory capture, but 
due to differences in the ARM and Intel 
x86 architecture, severe instability or 
even phone crashes might happen during 
acquisition (Sylve et al, 2011). Further-
more, it is essential to remember that alt-
hough Android is built on a Linux ker-
nel, it is not Linux (Brady, 2008).  

 

2.3 Acquiring Android Volatile Memory 

Lime, developed by Joe Sylve (Sylve et 
al, 2011), provides a sound forensic tool 
for volatile memory acquisition. It cap-
tures the memory image by: 

i. Parsing the kernel iomem 
structure to get the physical 
address range of system RAM. 

ii. Perform virtual to physical ad-
dress translation for each 
memory area 

iii. Reading all pages from RAM 

As excellent as this method is, an inves-
tigator will be left with a large binary file 
with size of the system RAM (in most 
case ranging from 512-1GB). String 
search remains the only way to do appli-
cation-level memory analysis on the file 
and is unlikely to be very effective. 

As stated early, string search is not an 
effective way of digging through binary 
files, particularly when it comes to mo-
bile forensics. Items to be searched, es-

pecially with respect to chats, might not 
necessarily be stored as plain text. More 
often than not, people chat in short 
phrases or native language making string 
search very complex. 

Analysis of the memory dump acquired 
using the Lime forensic tool showed that 
messages are not arranged sequentially 
in physical memory. Allocation of physi-
cal memory is done on availability of 
free blocks, thus contiguous allocation is 
not guaranteed. This can lead to frag-
mentation within messages stored.  

Since messages stored in physical 
memory might be fragmented and this 
makes understanding their meaning 
complicated, there is a need to rearrange 
broken parts to reconstruct full messages. 
At times, getting one message alone will 
not be sufficient; having the message 
thread will be needed to verify the evi-
dence.  Thus recreation of entire message 
threads is important. 

Due to these issues outlined above, there 
is need for further research to create im-
proved forensic tools that will ease the 
complicated nature of mobile device ex-
amination especially with regards to ap-
plication-level message carving and re-
construction.  Our approach was to de-
sign and develop mcarve, a forensic tool 
for extraction of messages and message 
threads from Android devices. 

 

3. The “Per Process” Approach 

This chapter discusses the methodology 
of this approach in detail. 

 



4 

 

3.1 Android Applications 

Most Android applications are developed 
in Java, with some support for native 
C/C++ programs. Android also provides 
some libraries and native code that can 
be embedded or built with the help of the 
Android NDK.  Each application in an 
Android system runs in a separate pro-
cess in its own Dalvik instance; this en-
sures the security of processes. The An-
droid Heap is the runtime memory of 
each Dalvik VM and contains all the ob-
jects created by the application. 

A typical application has the extension 
“apk”, and is basically a compressed file 
containing the following: 

classes.dex: The Java program is com-
piled into in to dalvik executable file 
called “classes.dex”. Android doesn’t use 
Java bytecode.  

Resource Files: This contains independ-
ent items like images and strings used  
within the app. 

AndroidManifest.xml: Information 
about permissions (e.g., access to con-
tacts, etc.) is set in this file. Every An-
droid application must have this file. 

 

3.2 Android Processes and Memory 
Management 

Android memory management involves 
freeing objects from memory when they 
are no longer needed and assigning 
memory to processes that require it. 

Android manages its physical memory 
on the basis of process priority. Android 
processes can be categorized into 5 prior-
ity levels: 

i. Active Process: These are pro-
cesses that run in the fore-
ground and respond to user 
events or are at the present in-
teracting with a user. Android 
reclaims memory from other 
process with lower priorities 
whenever active processes are 
in need of more RAM. Active 
process are last to be killed on 
the process priority queue.  

ii. Visible Process: A process of 
this type is not in the fore-
ground but can affect what the 
user is seeing on the screen. It 
does not directly interact with 
the user. Visible processes are 
only killed when those lower 
on priority are not available. 

iii. Started Services process: This 
process started some non-
active services that do not in-
teract directly with the user. 

iv. Background Process: This 
process is non-visible and at 
the same time has not started 
any service. 

v. Empty Process: This process 
does not have any active com-
ponent and the reason it is kept 
in memory is for caching pur-
poses, to improve startup time. 
Empty processes have the 
lowest priority. 



5 

 

 Figure 1. Android Memory Management 

3.3 Motoblur 

Motoblur is an Android UI replacement 
and push-based service focused on mes-
saging (emails, SMS and social network-
ing), developed by Motorola (Wikipe-
dia). It creates a parent directory for 
messages and subsequent subdirectories 
for variety of widgets it supports. Older 
versions of Motorola Android phones 
require that a Motoblur account be set up 
before phone activation.  Newer phones 
don’t mandate the need for a blur ac-
count before phone activation but by de-
fault, they all come with pre-installed 
Motoblur services. Whenever a user 
opens the messaging folder, 
“com.motorola.blur.service.main” re-
ceives a signal to start up the 
EmailEngine and the SocialNetworking 
Engine. Upon startup, these engines load 
all the contents of snmessaging.db and 
email.db (which are sqlite databases) into 
memory. This is a reasonable decision 
because users typically access the mes-
sages often and loading the messages all 
the time from non-volatile memory 
would slow down the system. This con-
tent stays in memory until garbage col-

lection, but because Android performs 
garbage collection on application-by-
application basis and is based on the pri-
ority of a process, the data may stay in 
memory for an extended period of time. 
In general, because the Blur service has 
components that interact directly with 
user, it will have a high priority. Chat 
and emails are delivered through push 
operations and the Blur application calls 
the onReceive handler to get incoming 
messages. Even though the Blur service 
is not interacting with the user directly, 
activities such as getting a network con-
nection will cause the onReceive handler 
to push new messages, which immediate-
ly notifies the user. The system will want 
to maintain the message data in memory 
because of the tendency for users to 
check messages upon notification.   

3.4 Memfetch 

Memfetch is an open source tool used on 
Linux-based systems to dump the 
memory region of a user-space process 
without disrupting its execution, either 
immediately or at the nearest fault condi-
tion (Zalewski, 2002). Memfetch reads 
the memory boundaries of a running pro-
cess using /proc/pd/maps, then attaches 
to that process to PTRACE and copies 
the memory layout from /proc/pid/mem. 
In order not to disrupt the running pro-
cess, memfetch raises the wait signal be-
fore reading process memory. Reading 
from /proc/pid/mem returns exactly how 
data is stored in the process’ memory, 
thus increasing the accuracy of this ap-
proach, as we are guaranteed to output 
what is in memory at a particular time. 

Memfetch outputs mfetch.lst and a num-
ber of mem and map files which repre-



6 

 

sent anonymous maps (mostly shared 
libraries) and anonymous blocks respec-
tively (stack, heap, code, etc). 

For the purpose of this research, we are 
only interested in the heap of the running 
application, which by default is the se-
cond memory region (mem002.bin). 

To enable memfetch to run on Android, 
we need to make some changes to the 
code: 

i. Remove the include 
asm/page.h: This is because 
Android does not support page 
swapping by default. Whenev-
er it needs to free memory, the 
whole process is swapped out 
of memory. Thus we need to 
declare some integer to hold 
the page size. 

ii. We need to cross compile the 
code for the ARM architec-
ture: Memfetch was originally 
created for Linux based Intel 
x86 systems. To use it on 
ARM systems, we need to 
statically cross compile it. 
This was done using the 
Codesourcery cross compila-
tion toolkit (Sourcery 
CodeBench). 

3.5 Message Carving 

mcarve is our tool, developed to carve 
out the messages from the process heap.  
It is intended to further ease the forensic 
examination of Motorola Android 
phones. Rather than conducting exami-
nations using string search, investigators 
can use mcarve to provide a simplified 
way of rapidly viewing complete mes-
sages and message threads. mcarve is 

designed to accept the heap dump file as 
an input then outputs two lists for emails 
and chats respectively.  

In other to develop a standardized tool, 
we need to find out how the Motoblur  
app works. Since the Motoblur applica-
tion is closed source, the only option for 
our purposes is to reverse engineer the 
application file (apk). 

The Android Debug Bridge (adb) comes 
as a part of the standard Android SDK 
and provides a command line-based in-
terface for interacting with the Android 
phone’s file system.  

To reverse engineer the apk, we first 
download and install the Android SDK, 
then execute the adb command to get ac-
cess to the phone’s shell. Then we do the 
following: 

i. Pull the 
BlurSNMessagingEngine.apk 
and BlurEmailEngine.apk 
from /data/app. 

ii. Rename the apk to zip file ex-
tension, enabling analysis of 
the classes.dex file. 

iii. Download and run dex-2-jar, 
which will extract the clas-
ses.dex file and convert it to a 
jar file. 

iv. Download jd-gui and execute 
with classes.jar as its argu-
ment. The output will be java 
source code. 

We also downloaded and installed smali, 
which is an assembler/disassembler for 
the dex format. We run it against the 
classes.dex to get the assembly files out-
put. 



7 

 

Using the Java code, the assembly code 
and the memory dump, we can now dis-
cover how messages are arranged in the 
heap. 

3.5.1 SocialNetworking Carving and 
Reconstruction 

The SNMessaging engine controls all the 
social networking widgets of the 
Motoblur application. At the receipt of 
intent from the user, it calls the 
SNMessagingSyncHandler. This is a 
class that implements SNMailAction. 
The Sync handler classes loads all mes-
sages from the snmessaging.db into the 
process’ memory by calling the routine 
addSNMessage. It also loads all message 
threads in memory. 

A social networking message thread in-
dicates that communication has occurred 
at some time between two or more users; 
in this case the phone owner and other 
user(s). For every message thread, there 
is a unique remote id. Whenever a new 
message arrives from the same partici-
pant id, the system uses their remote id 
to continue the chat thread.  

When the sync handler calls 
addSNThread, it causes the remote id, 
participant id, username and the thread 
status to be loaded in memory, in this 
order, for every chat participant in the 
database.  

3.5.1.1  Algorithm  

In order to carve out the chat messages, 
we need to first create a list of all partic-
ipants. We use Python regular expres-
sions to extract the thread information. 
This returns a list of strings all starting 
with some digits and then the user name. 

Because the digits of the remote id and 
participant id are concatenated and the 
lengths of these digits vary for all users, 
we decided to strip this string of the be-
ginning digits and be left with only the 
usernames. 

As stated earlier, addSNMessage loads 
the message table in memory, which in-
cludes the remote id, participant id, 
username and the message body. It dis-
tinguishes sent from received messages 
by concatenating the participant id and 
the phone owner’s id, followed by the 
owner’s username, then the message 
body. 

Using the above list of usernames as the 
handle, we now extract all chats begin-
ning with the names. We also trail back 
and extract the participant id. Now we 
end up with a list of messages beginning 
with ids, followed by username then 
message body. But all messages belong-
ing to the phone owner will now have 
much longer ids (recall that for sent mes-
sages, the receiver’s id is concatenated 
with the phone owner’s id). Therefore in 
order to recreate message threads, we 
now compare the participant id at the be-
ginning of each message; if that id exists 
then we put those messages in the same 
list.  A collection holds a different list for 
each message thread. 

3.5.2 Email Carving and Reconstruction 

Like the SNMessaging engine, the email 
engine starts up after the Blur App 
receives intent from the user.  The init() 
routine loads the content of message 
table  email.db onto the heap. It lays 
down messages in a hash map, with each 
entry corresponding to a message. The 



8 

 

key represents message id; senders 
address and message body is 
concatenated into one string to form the 
value.   
 
3.5.2.1 Algorithm 
 
Figuring out email headers is not as 
complex as the social networking chats. 
The format of the mails starts with the 
mail ID which is the primary key in the 
message table of email.db. For both the 
two phones examined, the ID is 5-digit 
integer. Between the ID and the 
beginning of any email address, there is a 
single non-printable character, followed 
by a left angular bracket to denote the 
start of an email address (<).   
With the above pattern, we develop a 
regular expression using Python to get 
the beginning index of each email 
starting with the ID, then the email 
address.  This forms the mailList. Having 
the mailList as a handle, we now extract 
starting from each index of the mailList 
until we reach some non-printable 
characters of length at least 10 because 
there is no specific pattern to show the 
end of an email in memory.  We now end 
up with a Mails List with each entry 
representing an email.  
 
3.6 Behavior of Messages 
 
Users with activated Motoblur accounts 
have their messages loaded unto memory 
as described above whenever the phone 
is switched on. New messages get 
appended to the hashmap as they come 
in, thus   increasing the size of the 
process heap. When an email gets 
deleted, the email is moved from inbox 
to trash folder, the folder entry in 

email.db is changed from inbox to trash, 
but the memory is not affected. 
Deleted emails get trapped in the trash 
forever until the trash is emptied. If the 
phone is rebooted, these deleted 
messages will be loaded into memory 
again. This is because their entries in the 
database have not been removed.  
If the trash is emptied, the entries will be 
deleted from the database, but because 
the Android system doesn’t support page 
swapping, the entry of that message in 
memory potentially remains unaffected 
until the phone is rebooted, when the 
new state of the database is loaded. 
 

4. Experiments and Results 

4.1 Experimental Setup 

Two phones were used for this research; 
the Motorola Droid and Motorola flip-
out.  

The Droid was running Android 2.2 
Froyo Model number A955, while the 
Flip-Out was running on Android 2.1 
Update Éclair model number MB511. 
The Droid was rooted before messages 
were deleted, while for the flip-out 
phone, messages were deleted before 
rooting. This is to ascertain that the root-
ing did not change the state of the 
Motoblur app. 

4.2 Testing 

In this section we outline the steps to 
take for investigating a phone. 

First the phone has to be rooted, Univer-
sal Androot (Shaka, 2010) is a good root-
ing kit and it doesn’t disrupt most of the 
user processes. Also it doesn’t require 



9 

 

you to reboot the phone so we are sure 
the memory isn’t going to be wiped 
away. Unlike some rooting software like 
Z4Root, Universal Androot includes the 
su binary (superuser.apk), and it works 
well with Motorola phones. 

The phone should then be connected via 
USB, ensuring that USB debugging is 
turned on and the phone is set to charge 
only. 

A compiled memfetch is copied into the 
phone and data is saved in /data/local. 

We edited memfetch to call grep 
blur.service.main on ps output and return 
the necessary pid. The pid is provided to 
memfetch as an argument. Execution of 
memfetch will return the mfetch.lst, and 
some *.mem and *.map files. 

The file mem.002.bin is then copied 
from the phone and mcarve is run on it. 
This will output mail and chat collections 
from the phone.  . 

 
Email Sample Output 

 
Figure 2. Sample output of email.py. 

 



 

 

 

Figure 3: Sample Output of chat.py
 

4.3 Sample Run Analysis 

10 

Chat Sample Output 

Figure 3: Sample Output of chat.py.  
 



 

11 

 

Figure 4. Sample run result. 

 

Out of 192 undeleted emails on the 
Droid phone, all were recovered.  

Out of 6 deleted emails on the Droid 
phone, all were recovered. 

Out of 175 undeleted Emails on the flip-
out phone, all were recovered.  

Out of 9 deleted emails on the flip-out 
phone, all were recovered. 

 

4.4 Research Findings 

Data recovery from the process heap is 
not only possible, but recovers infor-
mation in a format as laid out by a par-
ticular application source code in its 
runtime memory. This is especially use-
ful in for processes that load data from 
databases. 

Due to the process priority’s role in An-
droid’s garbage collection scheme, active 
processes tend to stay longer in memory. 
As long as the phone has not been pow-
ered down, data in the process heap for 
the Blur application is maintained and 
both deleted and undeleted messages can 
be recovered. 

 

5. Conclusion 

This thesis presented a “per process” ap-
proach for application-level live forensic 
analysis, a method we used in capturing 
the volatile memory of one of the most 
important applications on Motorola An-
droid phones. It detailed how the runtime 

memory can be extracted while the pro-
cess is still running without disrupting its 
execution, as well as providing the 
mcarve tool which extracts valuable in-
formation (mails and chats) stored and 
transferred using the Motoblur app. 

The MotoBlur app not only controls 
mails and chats but also transmits and 
stores friend’s feeds and blur contacts. 
Future research can help in improving 
this tool by embedding patterns to extract 
the friends status updates as well as all 
blur contacts, not limiting to those that 
have established message threads. 

Because the Blur app is limited to only 
Motorola phones, future research is 
needed to determine how other Android 
phones on the market handle email and 
chats and how best we can find ways of 
easing forensic investigation on them. 

 

References 

Memory Management in Android. 
(2010). Retrieved from 
http://mobworld.wordpress.com/2
010/07/05/memory-management-
in-android/ 

Amari, K. (2009). Techniques and Tools 

for Recovering and Analyzing 

Data from Volatile Memory.  

Brady, P. (2008). Anatomy and 

Physiology of an Android. 
Retrieved from Google I/O 
Session Videos abd Slides: 
https://sites.google.com/site/io/an
atomy-physiology-of-an-android 



 

12 

 

 

Canon, T. (2010). Android Reverse 

Engineering. Retrieved from 
http://thomascannon.net/projects/a
ndroid-reversing/ 

Case A, et. al. (2010). Dynamic 
recreation of kernel data 
structures for live forensics. 
Digital Investigation, 7:S32–40. 

Freke, J. smali/baksmali . Retrieved 
2012, from Google Code: 
http://code.google.com/p/smali/ 

Sylve J, et al. Acquisition and analysis of 
volatile memory from android 
devices. DFRWS, 2011. 

Lesser J. & Kessler G. C. (2010). 
Android Forensics: Simplifying 
Cell Phone Examinations. Small 

Scale Digital Device Forensics, 
ISSN# 1941-6164. 

Kollar, I. Retrieved 2010, from 
http://hysteria.sk/wniekt0/foriana/
fmem_current.tgz 

Kollar, I. (2010a). Forensic RAM dump 

image analyser. Prague: 
Departmemt of Software 
Engineering, Charles University. 

Panxiaobo. Retrieved 2012, from 
http://code.google.com/p/dex2jar/ 

Shaka, H. (2010, August 30). Universal 

Androot 1.6.2 beta 5. Retrieved 
Sepetember 2012, from 

http://blog.23corner.com/tag/univ
ersalandroot/ 

Sourcery CodeBench.  Retrieved June 
01, 2012, from Mentor Graphics: 
http://www.mentor.com/embedde
d-software/sourcery-
tools/sourcerycodebench/editions/
lite-edition/;  

T. Vidas, et. al. (2011). Toward a general 
collection methodology for 
Android devices. Digital 

Investigation, S14-24. 

Thinkfeed. Retrieved 2011, from 
http://code.google.com/p/innlab/ 

VLL Thing, et. al. (2010). Live memory 
forensics of mobile phones. 
DFRWS. 

Zalewski, M. (2002) Retrieved 2012, 
from 
http://lcamtuf.coredump.cx/soft/m
emfetch. tgz 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

13 

 

 
 

 

VITA 

 
The author Aisha Ali-Gombe was born in Zaria, Kaduna State Nigeria. She obtained her 
Bachelor’s degree in computer science from University of Abuja, Nigeria in 2005 and an 
MBA from Bayero University Kano in 2011. She then joined the University of New Or-
leans computer science graduate program to pursue an MS degree in the same field with 
concentration in information assurance. This research work was done under the supervi-
sion of Professor Golden Richard III in 2012. 
 


	Volatile Memory Message Carving: A "per process basis" Approach
	Recommended Citation

	Microsoft Word - 317300-text.native.1352737188.docx

