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Figure 6.12 is the 3 dimensional surface plot detected by AFM. The probe 

recorded the height value as a function of position within a 10nm by 10nm square area. It 

can be clearly seen that the samples with lower SWNT concentration of 2wt% and 6wt% 

tend to show a smoother surface, while a rougher surface goes with higher SWNT 

loading. The average roughness and RMS are directly calculated by the software.   Two 

types of roughness with respect to SWNT concentration is showed in Table 6.5 and 

plotted in Figure 6.13. When the concentration of SWNT goes from 6wt% to 10wt%, 

both kinds of roughness increase approximately by 4 times.   

2wt% SWNT 

Ra=29.6nm; Rq=38.9

15wt% SWNT 

Ra=267nm; Rq=339

10wt% SWNT 

Ra=257nm; Rq=306

6wt %SWNT 

Ra=26.1nm; Rq=32.6

 

Figure 6.12 3D surface plot of VAE/SWNT composites 
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SWNT% Ra(nm) Rq(nm) 

2wt% 29.6 38.9 

6wt% 26.1 32.6 

10wt% 257 306 

15wt% 267 339 

 

Table 6.5 Average roughness and root mean square roughness at different 

concentrations 
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Figure 6.13 Average roughness and root mean square roughness as a function of 

SWNT concentration. 

 



128 

 

The 2wt% SWNT sample was taken as an example to evaluate the experimental 

error of Z value acquisition. Other 3 samples were measured under the same parameters 

(feedback and scan rate). Figure 6.14 is the topography of 2wt% SWNT sample and 

height curve along diagonal; Figure 6.15 is the amplitude error of 2wt% SWNT sample 

along diagonal. When the probe of AFM is scanning across the sample surface, a 

feedback circuit is applied to keep the tip-sample interaction constant. Amplitude error 

signal describes difference between the instantaneous amplitude of oscillation and the 

amplitude setpoint. The amplitude error is zero in perfect situation. But the delay of the 

feedback always happens in practice. In our case, amplitude error is maintained at (-

300,200) mV, which means the feedback gains and scan rate were setup in appropriate 

values.
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Figure 6.14 Topography of 2wt% SWNT sample and height curve along diagonal. 

 

 

Figure 6.15 Amplitude error of 2wt% SWNT sample along diagonal
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6.4 Calculation of Conducting Percolation in SWNT Composites 

 

Excluded volume theory has been approved to be a powerful tool to estimate the 

conducting percolation threshold of composites containing conducting fillers with high 

aspect ratios. The goal of this modeling is to find a quantitative relationship between the 

conducting percolation threshold and the aspect ratio of single wall carbon nanotube. 

When the loading of conducting filler reach the critical volume fraction, a touching 

network of the nanotube described in Figure 6.3 can be given in polymer matrix.  

The exclude volume of the nanotube in this model is not the true physical volume. 

Considering we have a single wall carbon nanotube A in 3D space, the excluded volume 

of this carbon nanotube A is the surrounding space that another some shaped nanotube B 

passing around A without penetrating A. The percolation threshold is linked to the 

exclude volume of nanotube A instead of nanotube itself. The connecting network of 

nanotube in polymer matrix can be formed when the exclude volume of carbon nanotube 

is equal to the product of total volume of nanotubes at percolation and the critical number 

density of nanotubes at percolation. 

 

6.4.1 Assumptions 

 

1. The single wall carbon nanotubes have high aspect ratios, ] ^
�_` a 1000. 

2. The carbon nanotubes are considered as capped cylinders, as show in Figure 1. 
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3. The alignment of carbon nanotube is isotropic in polymer matrix. 

 

 

 

Figure 6.16 Nanotube is shaped as capped cylinder 
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Parameters 

b, length of cylinder 

c, radius of cylinder 

Wde^, volume of capped cylinder 

Wfg, excluded volume of capped cylinder in 3D space 

hd, the critical number density of capped cylinders at percolation 

Wd, total volume of capped cylinders at percolation 

id, volume fraction of carbon nantubes at percolation 

L, aspect ratio 
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6.4.2 Calculation 

 

Considering the cap as the hemisphere, the volume of capped cylinder is, 

                                      Wde^ � �
j kcj � kbc� 

Equation 6.3 

The excluded volume of a capped cylinder in three dimensional space is[83, 84], 

                         Wfg � j�
j kcj � 8kbc� � 4b�c  sin 
n� a  Equation 6.4 

According to excluded volume theory[83], the critical number density is inverse 

of the excluded volume, 

hd o 
Wfg�N� Equation 6.5 

Linking the excluded volume and the critical volume fraction[85], 

id � 1 � exp 
� WdWde^
Wfg

� Equation 6.6 

The total volume of capped cylinders at percolation[86], 

Wd � 1.4 

The volume fraction of nanotube at percolation becomes, 

id � 1 � exp 
�
1.4
�

j kcj � kbc��
j�
j kcj � 8kbc� � 4b�c  sin 
n� a

� Equation 6.7 

Using the isotropic assumption[87],  sin 
n� a� p
�, above is simplified to 
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id � 1 � exp 
�
1.4
�

j kcj � kbc��
j�
j kcj � 8kbc� � kb�c

� 

 

Equation 6.8 

Substituting aspect ratioA � ^
�_, the final expression of fraction volume becomes, 

id � 1 � exp 
� 28 � 42L
160 � 240L � 60L�� Equation 6.9 

Then we plot the value id with respect to aspect ratio A, using the Wolfram 

Mathematica software, to get the curve as showed in Figure 6.17. 

 

Figure 6.17 Critical volume fraction as a function of aspect ratio 
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The carbon nanotube we used has a diameter of 1-2nm, and length of 5-30um, as 

showed in Figure 6.1, which give us the domain ofL s t2500,30000u, thenid s t2.3 Y

10Nv, 2.8 Y 10N�u . 



136 

 

CHAPTER 7 SUMMARY AND FUTURE WORK 

 

In this thesis, 5 different combinations of nano inclusion and polymer matrix have 

been investigated. Titanium dioxide and single wall carbon nanotube were used as nano 

inclusions. The polymer matrix are polyaniline, polystyrene, polyaniline and polystyrene 

mixture, polyethylene, vinyl acetate-enthylene copolymer. We have applied 2 synthesis 

methods: in situ polymerization and solution blending. Two types of solution blending 

methods, sonication and high pressure homogenizer, were used to mix the nano inclusion 

and polymer. Physical properties like electrical conductivity and thermal conductivity 

were studied. As for the structure investigation, the interactions between the nano 

inclusion and polymer matrix and the dispersion of nanotube or nanoparticles have been 

studied.  Detailed information has been summarized in Table 7.1.  
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Nano inclusion Polymer matrix Synthesis method Research Target 

Titanium dioxide Polyaniline 
in situ 

polymerization 

Energy conversion 

efficiency 

Titanium dioxide Polystyrene 
solution blending 

(sonication) 

Mathematical 

simulation on 

thermal analysis 

Titanium dioxide 
Polyaniline and 

polystyrene 

solution blending 

(sonication) 

Interaction between 

nanoparticles and 

polymer 

Titanium dioxide Polyethylene 

solution blending 

(high pressure 

homogenizer) 

Dispersoin of 

nanoparticles 

Carbon nanotube 

Vinyl acetate-

enthylene 

copolymer 

solution blending 

(high pressure 

homogenizer) 

Dispersoin of 

nanotube and 

conducting 

percolation 

 

Table 7.1 Overview of five different composite materials in this thesis
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Attapulgite/TiO2/PANI nano-composites were synthesized by in situ 

polymerization under different doping-acids (HCl, sulfosalicylic acid (SSA), HCl+SSA 

dual acids, HClO4).The doping-acids can help with the improvement of microstructure, 

thermal stability and thermoelectric properties of the composite material. We come up 

with the result that HCl+SSA gave the biggest boost on electrical conductivity and 

seebeck coefficient. A higher value of ZT is kept in the range of 323-373 K for the 

HCl+SSA dual acids doped ATOP nano-composites. The electrical conductivity of nano-

composites with HCl+SSA can reach 6.67 S/cm at 373K and exhibit a typical non-

metallic temperature dependence and the Seebeck coefficient reachs 57 µV/K at 363K. it 

is believed that HCl+SSA dual acids have a promising industrial application in power 

generation over a wide temperature range. 

 

The introduction of anatase titanium dioxide can significantly affects the physical 

properties of the composite material due to the large surface area of the nanofiller and its 

interaction with macromolecular chain. TGA analysis can detect the fingerprint of the 

formation of a polymer –nanoparticle interface.The experimental results show that the 

temperature at which the mass loss reaches the highest value increases by more than 258 

as the concentration of the filler is increased up to 11wt%. Further increase of the filler 

concentration does not resulted in a further increase of the degradation temperature. This 

demonstrates the formation of an interface between the nanofiller and the 

nanocomposites. Several mathematical equation were used to simulate the TGA curve. 

The best fit of the mass derivative dependence on temperature has been obtained for the 

double Gaussian dependence, which demonstrates that the shape asymmetry implies 
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different linewidth on the left and on the right of the extreme temperature Ti. WAXS 

spectra of TiO2 nanoparticles dispersed within polystyrene at various temperatures 

ranging from 25 oC to 105 oC confirms that anatase is the dominant phase. 

 

Polyaniline were added into the polystyrene-TiO2 system to enhance the electrical 

conductivity, because of the excellent electrical conductivity and thermal-oxidative 

stability of polyaniline. TGA data of PS-PANI composites shows that the degradation 

temperature did not change too much as the concentration of PANI increased from 0wt% 

to 10wt%, demonstrating that there is no interface formed between the polystyrene and 

PANI fillers. The TGA results of PS-PANI-TiO2 shows that the degradation temperature 

has 25°C with the increasing concentration of TiO2, implying there is no interaction 

between TiO2 nanofillers and PANI fillers. We can conclude that the significant shift of 

the degradation temperature of PS-PANI-TiO2 system is mainly caused by the interface 

between TiO2 and PS matrix. 

High pressure homogenizer was applied to disperse Titanium dioxide into 

polyethylene matrix. The study was try to figure out the phase transition phenomena like 

crystallization, melting, and glass transition behavior in polyethylene oxide (PEO) and 

polyethylene oxide - TiO2 nanocomposites (PEO-TiO2). The SEM images of PEO-TiO2 

show that samples with concentrations of TiO2 below 20wt% appears an evenly 

distributed cluster at the size of 1um-2um. when the loading of TiO2 went above 20wt%, 

the cluster size increased significantly.  By comparing of these two groups of samples, we 

can see that the viscosity of the polymer matrix solution has a great influence on the final 



140 

 

cluster size and dispersion of the nanofillers, we successfully maintain the clusters into 

nanosize up to 30wt% of TiO2 concentration, this demonstrates that the high pressure 

method is more efficient than sonication method (reaching up to 11wt% TiO2 in PS 

matrix). DSC curve shows that the glass transition temperature was affected by the 

loading of TiO2 and the heating rate. DSC curve for PEO-TiO2 nanocomposites at 5 

oC/min cooling rate shows the dispersion of TiO2 nanoparticles drops the crystallization 

temperature of PEO. 

 

The single wall carbon nanotube has excellent carrier mobility 

of~10,000VK�WN�XN� , which makes it promising nanofiller for conducting composite 

material. To make the suspension compatible with high pressure homogenizer, we use 

Vinyl acetate-ethylene copolymer emulsion because of its water solubility.  High pressure 

homogenizer has been proved to be a much more efficiency method to mix suspension. It 

just takes Nanodebee 1/60 processing time of sonicator to give a much higher quality 

sample.  Composite sample with single wall carbon nanotube at concentration of 2wt%, 

6wt%, 10wt%, 15wt% were tested by Raman spectroscopy. G-band was observed in the 

Raman spectrum to confirm the existence of single wall carbon nanotubes in the system. 

The relative intensity of D to G band value showed its maximum of 2.88 at 2wt% SWNT, 

indicating the higher level of disorder between grapheme layers tend to happen at lower 

SWNT concentration. Average roughness and root mean square roughness have been 

obtained from atomic force microscope. Both roughness value show that lower loading of 

SWNT tends to give a smoother surface. Excluded volume theory was used to calculate 

the percolation threshold of nanotube composites. We assumed the nanotube as capped 
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cylinders. Expression of fraction volume was derived as a function of aspect ratio, giving 

a valuable reference for future design of carbon nanotube/polymer structure.  

The research on nano composite materials gives promising future for creating 

high efficiency new energy equipment. The future work of this subject can be making 

thermal electric devices to convert heat to electricity or vice versa. Our experiment shows 

that the HCl+SSA dual acids gave the best boost of ZT value enhancement, but how the 

introduction of H+ modify the micro structure of composite system remains unclear. 

Electrical conductivity measurement of nanotube composite can be conducted in the 

follow up work to verify the prediction of percolation threshold of single wall carbon 

nanotube concentration.  
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