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Abstract 
 

Phycoerythrin (PE) present on the outer phycobilisome (PBS) rods in Fremyella 

diplosiphon contains covalently attached phycoerythrobilin (PEB) chromophores for efficient 

photosynthetic light capture. Chromophore ligation on phycobiliprotein subunits occurs through 

bilin lyase catalyzed reactions. The cpeY and cpeZ genes in F. diplosiphon were shown to attach 

PEB on alph-82 of PE. To better understand the individual functions of cpeY and cpeZ in native 

cyanobacteria, we characterized PBS and PE purified from cpeY and cpeZ deletion mutants and 

compared them with wild type (WT).  Both cpeY and cpeZ mutants generated much less PE than 

WT as well as assembling much less PE into the PBS. PE purified from cpeY mutant had 

phycocyanobilin on alpha-PE in place of PEB. The mutation of cpeZ affected the biosynthesis 

and accumulation of beta-PE with a red-shifted absorbance compared to WT PE. CpeY was 

shown to function as a bilin lyase, and CpeZ possibly functions as a chaperone. 

 
 
 
 
 
 
 
 

Keywords: Phycobilisome, Phycobiliprotein, Allophycocyanin, Phycocyanin, Phycoerythrin, 
Phycocyanobilin, Phycoerythrobilin  
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1. Introduction 
 
1.1 Cyanobacteria background 

Cyanobacteria are Gram-negative prokaryotic organisms that perform photosynthesis for 

energy production. Cyanobacteria, often referred to as “blue-green algae,” have inhabited the 

earth for a long time with fossil records dating back 3.5 billion years ago [1]. They are believed 

to be responsible for converting earth’s early reducing atmosphere to its oxidizing atmosphere, 

thus providing a tolerable environment for other aerobic organisms [2]. There are over 1500 

species of cyanobacteria, and as of 2010, the genome sequences of 39 different species of 

cyanobacteria have been completed and are available in searchable databases [3]. Cyanobacteria 

inhabit a large number of diverse environments including aquatic and terrestrial habitats as well 

as extreme climates [4]. Cyanobacteria are also able to perform nitrogen fixation which is vital 

for the synthesis of many biological compounds [4, 5], thus making them ideal model systems 

for studying fundamental processes such as nitrogen fixation and photosynthesis.  

The amazing versatility of cyanobacteria has attracted huge scientific interest in recent 

years, especially in the field of engineering cyanobacteria for the production of renewable fuels 

in hopes of replacing crop-based biofuels [6].  As photosynthetic organisms, cyanobacteria are 

capable of converting solar energy to chemical energy with high efficiency. They are capable of 

tolerating high carbon dioxide levels, and naturally produce chemicals as byproducts during 

cellular processes. Engineering cyanobacteria to optimize these processes, especially 

photosynthesis, for the production of biofuels can be highly beneficial for the economy.  

Therefore, understanding the first step of photosynthesis, the light harvesting step, in 

cyanobacteria is crucial in furthering biofuel production technology.   
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1.2 Phycobilisome 

1.2.1 Phycobilisome structure and function 

Phycobilisomes (PBS) are the light harvesting complexes present in classical 

cyanobacteria, red algae, and cryptophytes [7, 8]. PBS consist of two structural domains: a core 

which connects to the photosynthetic thylakoid membrane and rods which radiate from the core 

(see Fig. 1). PBS are macromolecular complexes ranging in molecular weight from 5 x 106 Da to 

20 x 106 Da [9]. The PBS core and rods consist of homologous, light harvesting pigmented 

phycobiliproteins (PBP) which are composed of α and β subunits in heterohexameric form (αβ)6. 

Generally, the α subunit has a molecular weight between 15 and 20 kDa, and the β subunit has a 

molecular weight between 17 and 22 kDa [7]. PBP α and β subunits form monomers (αβ) by 

hydrophobic, polar and electrostatic interactions. They further form trimers (αβ)3 and hexamers 

(αβ)6 which are interconnected by nonpigmented, structural linker proteins to form the large 

structure of the PBS (see Fig. 1 and Fig. 2). Linker proteins connecting rods to other rods are 

generally 20 to 40 kDa in size while linker proteins connecting the rod to the core are 

approximately 27 kDa [7]. The smallest linker proteins are located in the allophycocyanin core 

(approximately 10 kDa) and in the most distal rods to the core (approximately 9 kDa) [7]. The 

entire PBS complex is connected to the cytosolic side of the thylakoid membrane through a large 

linker protein ApcE (approximately 75 to 120 kDa). ApcE is often referred to as the “anchor” 

protein, and facilitates energy transfer from the PBS  to the chlorophyll-a reaction centers of 

Photosystems I and II [10]. PBS from many cyanobacterial species also have non-structural 

proteins associated with them such as ferredoxin:NADP+ oxidoreductase (FNR) which oxidizes 

ferredoxin using NADP+ and H+ to form oxidized ferredoxin and NADPH, a vital reducing agent 

in cellular metabolic processes, during the photosynthetic process (see Fig. 1) [9, 11].   
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Fig. 1 Phycobilisome structure and photosynthesis 

The phycobilisome, the light harvesting complex in cyanobacteria, consists of 
phycoerythrin outer rods, phycocyanin inner rods, an allophycocyanin core, and linker proteins. 
Light energy is harvested by the outer rods and transferred down the inner rods to the core of the 
PBS where it is then transferred to the chlorophyll reaction centers of Photosystem II. The 
macromolecular complex sits on the cytosolic surface of the thylakoid membrane where 
photosynthesis occurs and ATP energy is generated [12]. 
 

 

Fig. 2 Phycobiliprotein assembly 
When the appropriate lyases are present, apo-α and apo-β subunits of phycobiliproteins 

are fully chromophorylated, forming holo proteins. Holo-α and holo-β form monomers (αβ) and 
further form trimers (αβ)3 and hexamers (αβ)6 building the rods and core of the phycobilisome 
complex which are held together by linker proteins (L).   
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1.2.2 Phycobiliproteins  

In cyanobacteria, there are four major classes of PBP assigned based on absorbance 

properties and sequence homologies: bluish green colored allophycocyanin (AP, λmax = 650-655 

nm), blue colored  phycocyanin (PC, λmax = 615-640 nm), red colored phycoerythrin (PE, λmax = 

495-575 nm) and purple colored phycoerythrocyanin (PEC, λmax = 575 nm) [13].  Phylogenetic 

analyses and amino acid sequence alignments suggest that PBP have evolved from a single 

common ancestral gene [14]. PBP crystal structures have been ascertained from a number of 

species and are available in the Protein Data Bank (PDB) repository. All PBP are comprised of α 

helices with loop linkages as seen in Fig. 3.  The core of the PBS is composed of AP which is 

approximately 110 kDa in its trimeric form. In cyanobacteria with simple PBS, the rods of the 

PBS are solely composed of PC which is approximately 230 kDa in its hexameric form.  In more 

complex PBS-containing species, the rods distal to the core also contain PE which is 

approximately 250 kDa in its hexameric form [15]. Instead of PE in the distal rods, some species 

produce PEC which has a molecular weight of approximately 225 kDa in its hexameric form.   

PC and PE are further subdivided into classes based on slight variations in maximum 

absorbance. PC and PE are given the prefixes C- or R-, originally representing the taxa from 

which that PBP was first isolated. For example, C-PC (λmax = 620 nm) and C-PE  (λmax = 565 nm) 

were isolated from blue-green algae Cyanophyceae, and R-PC (λmax:  617 >555 nm) and R-PE 

(λmax: 567>538>498 nm) were isolated from the red algae  Rhodophyceae [16, 17]. PE can also 

be classified as B-PE (λmax: 545>563>498 nm) which was originally isolated from the red algae 

Bangioideae [16, 17].  R-PC, R-PE, and B-PE have multiple absorbance peaks due to the 

presence of two or three types of linear tetrapyrrole molecules called phycobilins.  
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Fig. 3 Crystal structures of PBP α and β subunits 
Ribbon diagram of:  A. α subunit and B. β subunit of AP from Spirulina platensis; 

Protein Data Bank (PDB) ID: 1ALL [18]. C. α subunit and D. β subunit of C-PC from Spirulina 
platensis; PDB ID: 1HA7 [19]. E. α subunit and F. β subunit of R-PE from Griffithsia monilis; 
PDB ID: 1B8D [20]. Chromophores are shown as ball and stick figures or thick lines.  
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1.2.3 Bilin chromophores  

PBP exhibit brilliant color and light absorbing properties due to the presence of 

covalently bound phycobilins or bilin chromophores which are covalently attached by thioether 

linkages to highly conserved cysteine residues (see Fig. 4)  [9].  There are four different types of 

isomeric bilin chromophores, each having a molecular weight of 587 Da; blue colored 

phycocyanobilin (PCB; λmax = 620-650 nm), red colored phycoerythrobilin (PEB; λmax =540-565 

nm), purple colored phycoviolobilin (PVB; λmax =568 nm) and yellow colored phycourobilin 

(PUB; λmax =490 nm) [15], present in cyanobacteria. All four bilins are similar in structure, but 

differ in double bond conjugation which causes the difference in spectral properties. In general, 

the longer the conjugated double bond system, the longer wavelengths of light the bilin can 

absorb.  

The most abundant bilins in cyanobacteria are PEB and PCB which are derived from 

heme (see Fig. 5), and reduced by ferredoxin-dependent bilin reductases. In the presence of heme 

oxygenase (HoI), heme is cleaved into the linear tetrapyrrole biliverdin IXα (BV). 3Z-

Phycocyanobilin: ferredoxin oxidoreductase (PcyA) reduces BV in a single four electron 

reduction step to form the blue bilin PCB which has an absorbance maximum of 620-650 nm 

(see Fig. 5) [21].  To form PEB in cyanobacteria, BV is first reduced by 15,16-

dihydrobiliverdin:ferredoxin oxidoreductase (PebA) at the 15,16-double bond of BV to form 

15,16-dihydrobiliverdin (DHBV). DHBV is then reduced at the A ring diene structure by 

phycoerythrobilin:ferredoxin oxidoreductase (PebB) forming the red colored bilin PEB which 

has an absorbance maximum of 540-656 nm (see Fig. 5) [21].  

PEB can also be produced by phycoerythrobilin synthase (PebS) which is a homolog of 

PebA originally found in a Prochlorococcus cyanophage called myovirus P-SSM2 [22]. PebS is 
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capable of reducing BV directly to PEB in a single four electron reduction step; whereas PebA 

and PebB perform two separate two electron reduction steps to form PEB (see Fig. 5). 

Recombinant PebS has been successfully used to recreate the PEB biosynthesis pathway inside 

E. coli [22], a very useful tool in forming PEB in laboratory settings [23].  The other two bilins 

PVB and PUB are created through an alternative pathway by lyase/isomerase enzymes (see 

Introduction 1.3.1 for further details).  

 

 

 

 
 
Fig. 4 Structures of free and bound PEB and PCB 

Free PEB and PCB (left) become bound (right) to specific cysteine residues of PBP by 
thioether linkages to the A ring at carbon-31. The pyrrole rings are labeled A-D [24].  
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Fig. 5 Bilin biosynthesis 

The two major bilin chromophores PCB and PEB are derived from heme which is 
cleaved open by heme oxygenase forming biliverdin IXα (BV). 3Z-Phycocyanobilin: ferredoxin 
oxidoreductase (PcyA) reduces BV to the blue bilin PCB (Amax =620-650 nm).  The red bilin 
PEB (Amax = 540-565 nm) can be produced in two ways. In cyanobacteria, BV is first reduced by 
15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA) forming 15,16-dihydrobiliverdin 
(DHBV) which is then reduced by phycoerythrobilin:ferredoxin oxidoreductase (PebB) forming 
PEB. Alternatively, in the presence of the myovirus protein phycoerythrobilin synthase (PebS), 
BV is reduced in one step to form PEB [25]. 
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Phycobilins are covalently attached to PBP at the carbon (C) 31 position of the bilin A 

ring; however, at some Cys positions, PEB and PUB are doubly attached at both the C31 of the A 

ring and the C181 of the D ring (see Fig. 6). Double attachment of phycobilins to PBP has been 

identified in a number of different species.  In the red algae Griffithsia monilis, one PUB is 

doubly attached to the β-50/61 positions of PE (see Fig. 3 F) [20].  PE from Fremyella 

diplosiphon UTEX 481 (Calothrix sp. PCC 7601) described here contains five PEB molecules at 

cysteines α-82, α-139, β-48/59, β-80 and β-165 with one PEB doubly attached to the β-48/59 

positions [26].  When bilins are covalently attached to their PBP substrate, they are bound in a 

rigid conformation (see Fig. 4) thus enhancing the fluorescent properties. These fluorescent 

properties facilitate efficient light harvesting and energy transfer from the PBS to the 

photosynthetic thylakoid membrane. Light is absorbed by the bilins of the PE outer rods and then 

transferred to the bilins of the PC inner rods. The energy is then absorbed by the AP core where 

it is then transferred to the chlorophyll reaction centers in Photosystems I and II in the thylakoid 

membrane (see Fig. 1). PBP do not exhibit the necessary fluorescent properties unless these 

bilins are covalently bound. The ligation of phycobilins to specific Cys residues on all PBP is 

generally catalyzed by bilin lyases, with the exception of ApcE linker protein which is auto-

catalytically chromophorylated [10]. 
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Fig. 6 PEB and PUB singly versus doubly attachment to PBP 

Singly attached PEB or PUB at the carbon-31 position of the A ring  (left) versus doubly 
attached PEB and PUB at the carbon-31 position of the A ring and the carbon-181 position of the 
D ring (right) to specific cysteine residues of PBP by thioether linkages [15]. 
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1.3 Bilin lyases 

1.3.1 CpcEF type lyase 

Bilin lyases are the enzymes responsible for ligating bilins to their respective PBP 

substrates at specific Cys residues. There are four major classes of bilin lyases that have been 

characterized based on sequence similarity: CpcEF type, CpcSU type, CpcT type and the 

autocatalytic type. The four classes differ from each other in primary amino acid sequence and in 

the attachment of different bilin chromophores [27].  

The first lyase to be characterized is the CpcEF type involved in ligating PCB to the α 

subunit of PC [28-32]. Unlike other lyases, members of the CpcEF lyase family can both attach 

and remove bilins [31].  CpcEF is a heterodimer composed of CpcE and CpcF in a 1:1 ratio. The 

E- and F- subunits may have evolved from a single gene based on sequence similarity. In 

cyanobacteria, the genes encoding the PBS polypeptides, including PBP, linker polypeptides, 

and lyases, are generally clustered on the genome [7]. The cpcEF genes are located downstream 

of the structural genes encoding PC, cpcBA in Synechococcus sp. PCC 7002 [28] and in 

Anabaena sp. PCC 7120 [33]. Although no crystal structure of any CpcEF type lyases have been 

solved, Phyre2 analyses [34] of a CpcEF type lyase MpeZ from marine Synechococcus sp. 

RS9916 [35] suggests that the structure is primarily alpha-helical. All CpcEF type lyases contain 

5-6  HEAT-repeat motifs that facilitate protein-protein interactions [36, 37].  CpcEF type lyases 

have been identified and characterized in other species.  

PecE and PecF belong to the CpcEF lyase family and share 47% sequence similarity with 

CpcE and CpcF, respectively [38]. PecEF functions as a lyase/isomerase by attaching PCB and 

isomerizing it to PVB at Cys-84 of α-PEC (see Fig. 7) [38, 39]. The motif (NHCQGN) 

responsible for the isomerase activity of the enzyme is present in the F-subunit PecF [40]. PecEF 
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catalyzes a double bond shift of (Δ4      Δ2) in the A ring of PCB, thus forming PVB (see Fig. 7) 

[41]. PecEF is found within three Anabaena species including Anabaena (Nostoc) sp. PCC 7120 

[38], as well as within Mastigocladus laminosus [39], and Microcoleus chthonoplastes [42]. 

RpcG (fusion of RpcE/RpcF) from the marine cyanobacteria Synechococcus sp. strain WH8102 

is another homolog of CpcEF. RpcG functions in the same manner as PecEF by attaching PEB 

and isomerizing it to PUB at Cys-84 of the alpha subunit of R-PC (RpcA; see Fig. 7) [43]. The 

proposed isomerase function motif (NHCQGN) is found within the C-terminus of the protein 

[43]. However, the lyase/isomerase MpeZ from marine Synechococcus sp. RS9916 (another 

CpcEF type lyase) does not contain this motif (see Introduction 1.4 for more details) [35]. 

Another homolog of CpcEF, whose real function has yet to be fully characterized, is 

CpeYZ from Fremyella diplosiphon [44].  Kahn et al. isolated a transposon mutant in the cpeY 

gene in Fd33 (a short filament mutant strain of F. diplosiphon UTEX 481) [44]. Mutating cpeY 

resulted in a green phenotype when cells were grown in green light (wild type cells were brown), 

and purified PBS contained 46% of the PE levels present in the wild type strain.  The cpeY and 

cpeZ genes are cotranscribed on the same polycistronic mRNA, and mutating cpeY affected the 

transcription of cpeZ, also known as a polar effect. Complementation studies revealed that the 

wild type phenotype was restored in the cpeY mutant only in the presence of native cpeBA and 

cpeYZ or cpeYZ alone. These results suggested both cpeY and cpeZ might function in PE 

biosynthesis, and that CpeYZ possibly functions as a bilin lyase for either α or β PE (CpeA and 

CpeB, respectively) [44].  

CpeYZ from F. diplosiphon, characterized in this study, was previously analyzed in our 

lab using an in vivo heterologous plasmid coexpression system in E. coli [23]. Recombinant 

CpeY showed lyase activity on Cys-82 of α-PE and CpeZ enhanced this activity by 40%, 
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although CpeZ did not show lyase activity alone. There was also no evidence of a stable 

interaction between recombinant CpeY and CpeZ using pulldown assays [23]. CpeY is a much 

larger protein (429 amino acids) than the typical members of the CpcEF lyase family 

(approximately 200 amino acids). Sequence alignments show that cpeY might have resulted from 

a fusion of ORFs encoded by a cpcE and cpcF-like gene. This possibly explains the significant 

lyase activity of CpeY in the absence of CpeZ. CpeY is most closely related to CpcE from 

Synechocystis sp. PCC 6803 (22% identical and 32% similar). CpeZ (205 amino acids) is also 

closely related to CpcE (25% identical and 38% similar), whereas CpeZ and CpcF (from 

Synechocystis sp. PCC 6803) are 23% identical and 37% similar [23]. The cpeY and cpeZ genes 

are also present downstream of the structural genes encoding the α and β subunits of PE, cpeBA. 

The similarities in gene locus, sequence, and protein activity indicate that CpeYZ from F. 

diplosiphon are homologs of CpcEF bilin lyase.  
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Fig. 7 PVB and PUB structures and biosynthesis 
In certain species of cyanobacteria, free PCB is isomerized to PVB and attached to PecA 

by the lyase/isomerise PecE/F (RpcG is also capable of isomerising and attaching PVB to RpcA 
in heterologous systems). Free PEB is isomerized to PUB and attached to RpcA by the 
lyase/isomerise RpcG (PecE/F is also capable of isomerising and attaching PUB to PecA in 
heterologous systems) [43].   
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1.3.2 CpcSU type lyase 

The second type of bilin lyase is the CpcSU type which is unrelated in sequence to the 

CpcEF type lyase. This lyase has high binding site specificity but low chromophore and PBP 

substrate specificity.  Members of the CpcSU family of lyases are involved in the ligation of 

PEB or PCB to the Cys-82 equivalent on β-PC, β-PE, α-AP, and β-AP [24, 45-47]. There are 

three CpcS subfamilies or clades denoted CpcS-I, CpcS-II, and CpcS-III which vary slightly in 

their sequences [45]. The CpcSU type lyase from Synechococcus sp. PCC 7002 was purified as a 

heterodimer composed of CpcS-I and CpcU in a 1:1 ratio.  The CpcS and CpcU proteins share a 

high level of sequence similarity to each other (~53%) [45]. Biochemical analysis showed that 

CpcSU was the lyase responsible for ligating PCB to Cys-82 of β-PC as well as ligating PCB to 

Cys-81 of α-AP and of β-AP in Synechococcus sp. PCC 7002 [45, 47].   

Another homolog of CpcSU is CpcS-III from Thermosynechococcus elongatus which is 

highly related in sequence to CpcS-I (46% identity, 60.6% similarity) and CpcU (29.9% identity, 

44.2% similarity) from Synechococcus sp. PCC 7002 [48]. Biochemical analysis showed that 

CpcS-III functioned as a bilin lyase, and was able to ligate cognate and non-cognate bilins to all 

AP subunits and to β-PC at Cys-82 [48, 49]. In 2007, Jon Hunt’s group solved the crystal 

structure of CpcS-III from T. elongatus strain BP-1 as part of a structural genomics initiative and 

entered it into the PDB repository as Ycf58 with the PDB ID: 3BDR [50]. This is the first bilin 

lyase whose crystal structure has been solved. CpcS-III crystallized as a homodimer, and is 

comprised of a 10-stranded antiparallel β-barrel with two α-helices (see Fig. 8).  Since CpcS-III 

is highly similar in sequence to CpcS-I and CpcU from Synechococcus sp. PCC 7002 and other 

CpcSU type lyases [49], it is likely that this β-barrel structure may be the structure of other 

CpcSU type lyases.  
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Fig. 8 Crystal structure of CpcS-III from Thermosynechococcus elongatus BP-1 
The structure of CpcS-III crystallized as a homodimer (PDB ID: 3BDR). This protein has 

a 10-stranded antiparallel β-barrel with two α-helices. A phosphate ion co-crystallized with each 
subunit in the structure [49, 50]. 
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1.3.3 CpcT type lyase 

 The third type of bilin lyase is the CpcT type lyase. CpcT type lyases have a very low 

sequence homology to CpcSU type lyases, but Phyre2 analyses suggest they are β-barrel type 

structures (Schluchter et al. unpublished). CpcT from Synechococcus sp. PCC 7002 was shown 

to ligate PCB on Cys-153 of β-PC [51]. Mutating cpcT in Synechococcus sp. PCC 7002 resulted 

in a 40% reduction of PC levels when compared to wild type cells. SDS-PAGE analysis of pure 

PBS from cpcT mutant cells showed that β-PC was slightly smaller in molecular weight in 

comparison to wild type β-PC due to the absence of one PCB chromophore (587 Da). In vitro 

analysis confirmed that CpcT was a lyase responsible for ligating PCB to Cys-153 of β-PC [51]. 

The protein CpcT1 from Nostoc sp. PCC 7120 is homologous to the CpcT type bilin lyase and 

was shown to ligate PCB on Cys-155 of β-PC and of β-PEC [52]. CpcT type lyases have high 

chromophorylation site specificity with a moderate PBP specificity [27].  

 

1.3.4 Autocatalytic type lyase 

The fourth type of lyase is the autocatalytic lyase where ApcE linker protein can ligate 

PCB autocatalytically without the aid of a separate enzyme [10, 46]. ApcE is the only known 

PBP capable of chromophore autoligation. ApcE is a large linker protein (approximately 75 to 

120 kDa) which is responsible for connecting the entire PBS complex to the cytosolic side of the 

thylakoid membrane. ApcE contains a chromophore binding site at Cys-195 and PCB attachment 

to this site is conducted through the N-terminal portion of ApcE (240 amino acids). ApcE is 

often referred to as the “anchor” protein, and facilitates energy transfer from the PBS  to the 

chlorophyll-a reaction centers of Photosystems I and II [10].  
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1.4 Chromatic acclimation and Fremyella diplosiphon 

Cyanobacteria have evolved to alter their PBS composition in response to environmental 

stimuli. In the presence of low light intensities, more PBS are synthesized and the outer rods are 

extended to efficiently capture more light [53-55]. Certain cyanobacteria which contain PE are 

also capable of altering their PBS protein composition in response to light quality, such as red 

light versus green light wavelengths, in a process called chromatic acclimation (CA) [56-58]. 

During CA, the rods distal to the core are altered, a modification that is necessary for many 

cyanobacteria to readily capture the most abundant wavelengths of light available in the 

environment. Cyanobacteria are classified into four groups (I-IV) based on their pigmentation 

alterations in different light qualities.  

Group I cyanobacteria are incapable of performing CA when the wavelength of light is 

altered. Such species include Synechococcus sp. PCC 7424, Nostoc sp. PCC 7121, and 

Gloeobacter sp. PCC 7421 [17]. Group II cyanobacteria, such as Synechocystis sp. PCC 6701 

[59], can alter their PE levels in red and green light. When grown in green light, cells produce 

PBS with an extra distal PE rod disc when compared to cells grown in red light [56]. Both PE 

abundance and cpeBA mRNA levels are altered during changes in light quality [60]. Group III 

cyanobacteria, such as F. diplosiphon, can alter both PE and PC levels with changes in light 

quality to efficiently capture the wavelengths of light available in the environment [57]. The rods 

proximal to the core are composed of PC1 (constitutive PC) under both red and green light 

conditions. Under red light conditions, PC production is induced, and the rods distal to the core 

are assembled with PC2 (inducible PC). Under green light conditions, PC2 production is 

inhibited, and PE synthesis and assembly into the rods distal from the core are induced (see Fig. 

9). The genes for PC1 and PC2 are encoded on 2 different operons (cpcB1A1 and cpcB2A2, 
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respectively). The PC1 and PC2 proteins differ in amino acid sequence mainly in residues on the 

surface of the β-subunits where hexameric interactions occur [61]. AP core protein levels are 

unaffected during CA in F. diplosiphon [62, 63].  

The last group, Group IV cyanobacteria can alter the bilin chromophore content on the 

outermost rods of the PBS as opposed to altering PBP content.  Some strains of 

marine Synechococcus species, which possess two forms of PE (PEI and PEII), alter PEB/PUB 

ratios on PEI and PEII during shifts from blue light to green light or white light [64]. In marine 

Synechococcus sp. RS9916, chromophorylation is affected on the α subunits of PEI (CpeA) and 

PEII (MpeA) by one or more bilin lyases/isomerases during type IV chromatic acclimation 

(CA4) [35, 65]. Under green light conditions, PEB molecules are bound to Cys-139 of CpeA and 

to Cys-83 and Cys-140 of MpeA. However, under blue light conditions, PUB molecules are 

bound to all three Cys positions in place of PEB. In marine Synechococcus sp. RS9916, the 

protein MpeZ was characterized as a lyase/isomerase responsible for ligating PEB to Cys-83 of 

MpeA and isomerizing it to PUB during CA4 [35]. The lyase/isomerase enzymes responsible for 

chromophorylating Cys-140 of MpeA and Cys-139 of CpeA during CA4 are still unknown.   

Fremyella diplosiphon, used in this study, is a freshwater, filamentous cyanobacterium 

possessing both PC and PE in the rods of the PBS. This species is capable of performing type III 

chromatic acclimation (CA3, see Fig. 9) and as such, is a model organism for studying this 

biological process. Pigmentation alteration in CA3 is controlled at the RNA level in F. 

diplosiphon where transcription levels of the cpcB2A2 (encoding α and β PC2) and cpeBA 

(encoding α and β PE) operons as well as cpcHID (encoding PC linker proteins) and 

cpeCDESTR operons (first three genes encoding PE linker proteins) are affected [66]. 
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Mechanisms for this transcriptional regulation during CA3 have been studied in F. diplosiphon, 

which is regulated by two signal transduction pathways (see Fig. 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Type III chromatic acclimation in F. diplosiphon 
A: Whole cell absorbance spectra of F. diplosiphon cells grown in green and red light 

with PE absorbing around 570 nm (green light) and PC absorbing around 620 nm (red light). The 
remaining peaks in the blue and red regions represent absorption by chlorophyll a and 
carotenoids. B: In red light, PE is replaced by inducible PC (PC2, blue colored) on the outer rods 
of the PBS, resulting in green colored cells. In green light, PC2 is replaced by PE (red colored) 
on the outer rods of the PBS, resulting in brown colored cells [67].  Constitutive PC (PC1) is 
unaltered and present under both light conditions.  
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The first signal transduction pathway is the Cgi (control of green light induction) system, 

which represses cpeCDESTR expression in red light (see Fig. 10) [68]. Under green light 

conditions, cpeCDESTR expression is activated, and CpeR further activates expression of cpeBA 

and pebAB (genes encoding PebA and PebB) by binding specific promoter sequences (the N-

box) [69]. The second and more widely studied signal transduction pathway is the Rca (regulator 

of chromatic acclimation) system which uses a phosphorelay system to activate cpcB2A2 and 

pcyA expression and repress cpeCDESTR expression in red light (see Fig. 10) [70].  Red and 

green light are sensed by the photosensory receptor protein RcaE, which has an N-terminal 

chromophore-binding GAF domain with a PCB chromophore covalently attached to Cys-248, 

and a C-terminal histidine kinase domain which is light-regulated [71, 72]. Under red light 

conditions, the bilin undergoes photoisomerization which triggers a proton transfer from the bilin 

to Glu-217 of RcaE [72]. The protonation states of the bilin and Glu-217 causes a structural 

change within RcaE which activates its kinase activity, thereby phosphorylating and activating a 

downstream CA response regulator RcaF [72, 73]. RcaF further phosphorylates and activates a 

second CA response regulator RcaC which is a transcription factor that binds specific promoter 

sequences (the L-box) of pcyA and cpcB2A2, thus inducing expression (see Fig. 10) [74]. Under 

green light conditions, the PCB chromophore attached to RcaE undergoes photoisomerization 

favoring a protonated state of the bilin allowing for the absorbance of green light [72]. RcaE 

kinase activity is deactivated by the protonated state of the PCB chromophore, and Rca-

controlled expression of cpcB2A2 is reduced due to the dephosphorylated states of the Rca 

proteins (see Fig. 10)  [75].  There are many steps in the mechanism of CA regulation that are 

still unknown and continuing to be studied.   
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Fig. 10 Regulation of gene expression during type III chromatic acclimation 
Under red light conditions, pcyA and cpcB2A2 expression is activated by the Rca signal 

transduction system, while cpeCDESTR and cpeBA expression is repressed by both Rca and Cgi 
systems. Under green light conditions, Rca-controlled expression of cpcB2A2 is reduced due to 
the dephosphorylated states of the Rca proteins, and the expression of cpeCDESTR and cpeBA 
operons are activated possibly by the Cgi signal transduction system (indicated by the dashed 
line) [62].  
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1.5 Phycobiliprotein applications in biotechnology 

Fluorescent molecules or fluorophores, such as PBP, are widely used in many biological 

applications. C-PC, R-PE, and B-PE have been used as a natural protein dye in food products 

[76] such as chewing gum, dietary products, and candy, as well as in cosmetics [77]. PBP have 

also been used in pharmaceuticals to stimulate the immune defense system, and they possess 

antioxidant, anti-inflammatory, anti-viral, anti-cancer, and cholesterol-lowering effects [78]. In 

addition, PBP have been used in textiles and printing dyes [79].  

PBP have unique spectral properties and produce high fluorescent quantum yields, 

making them a valuable resource for biotechnology. Holo-PBP, most commonly AP, R-PE and 

B-PE, have been engineered as fluorescent probes, which are often used in histochemistry, 

fluorescence microscopy, flow cytometry, fluorescence activated cell sorting, and fluorescence 

immunoassays [15, 80, 81]. Other fluorophores are available in place of PBP, such as the widely 

used green fluorescent protein (GFP) and its derivatives. However, PBP are more advantageous 

due to their broader absorbance spectral range (490-650 nm), high fluorescent quantum yields, 

and stability under a wide range of biological pH (4.5-8.0) [81].  The continued study of these 

valuable proteins is beneficial to the advancement of this biotechnology.  
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1.6 Purpose of this work 

The study conducted by Kahn et al. of the transposon mutant in the cpeY gene in F. 

diplosiphon suggested that cpeY and cpeZ may function in PE biosynthesis [44]. The resulting 

polar effects from the transposon mutant make the determination of the exact roles of CpeY and 

CpeZ in cyanobacteria difficult. In our lab, we characterized recombinant CpeY as a specific 

bilin lyase for attaching PEB to Cys-82 of α-PE using a heterologous plasmid coexpression 

system in E. coli, site-directed mutagenesis, and mass spectrometry (see Fig. 11) [23]. 

Recombinant CpeZ enhanced this activity by 40%, but CpeZ alone was unable to ligate PEB to 

α-PE, suggesting a chaperone-like function. Pulldown assay analysis suggests that recombinant 

CpeY and CpeZ do not form a stable interaction with each other. Neither CpeY, CpeZ nor 

CpeYZ were able to ligate PEB to β-PE [23]. The function of CpeZ is still unclear, and CpeY 

may function differently within native cyanobacteria. In this thesis, I describe a detailed 

characterization of single, clean deletion mutants of cpeY and cpeZ genes in Fremyella 

diplosiphon strain UTEX 481 using biochemical and molecular approaches.  
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Fig. 11 Crystal structure of α-PE 
In the presence of the lyase CpeYZ, α-PE is chromophorylated with PEB at Cys-82 as 

represented in the ribbon diagram above. PEB molecules are bound to the subunit at both Cys-
139 and Cys-82. PDB ID: 1B8D [20] 
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2. Materials and Methods 

2.1 Construction of expression vectors 

All expression plasmids used in this study were previously described and are listed below 

in Table 1.  

 

Table 1: Plasmids used in this study 

Plasmid name Recombinant proteins 
produceda Parent vector Antibioticb Reference 

pCpeA HT-CpeA from F. diplosiphon pETDuet-1 Ap [23] 

pCpcEF 
CpcE and CpcF from 

Synechocystis sp. PCC 6803 
pBS414v Sp [46] 

pPcyA 
PcyA from Synechococcus sp. 

PCC 7002 and Ho1 from 
Synechocystis sp. PCC 6803 

pACYCDuet-1 Cm [46] 

pPebS Ho1 and PebS from Myovirus pACYCDuet-1 Cm [25] 
a Proteins produced as Hexa-histidine-tagged fusions are indicated as HT- 
b Antibiotic resistance used to select for the presence of the plasmid (Ap: ampicillin; Cm: 
chloramphenicol; Sp: spectinomycin)  
 
 

2.2 In-vivo heterologous expression and purification of recombinant proteins 

Recombinant plasmids were co-transformed into BL21 (DE3) competent E. coli cells 

(Novagen, Darmstadt, Germany), and colonies were selected on LB plates in the presence of the 

appropriate combination of antibiotics (see Table 1). Cells were grown in liquid LB media with 

the appropriate combinations of antibiotics at the following concentrations: ampicillin (Ap: 100 

μg·mL-1), chloramphenicol (Cm: 34 μg·mL-1), spectinomycin (Sp: 100 μg·mL-1) at 37°C for 2 to 

4 hours at 220 rpm. When the optical density (OD) at 600 nm reached 0.6, 1 mM Isopropyl-β-D-

thiogalactoside (IPTG; Gold Biotechnology, St. Louis, MO) was added to induce T7 RNA 

polymerase expression from Duet vectors. The induced cultures expressing PEB synthesis 
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proteins were placed at 18°C for approximately 16 hours at 220 rpm. Cultures expressing PCB 

synthesis proteins were induced at 30°C for only 3 hours. Cells were harvested at 11,000 x g for 

10 min in a Sorvall RC 5C Plus centrifuge (Kendro Laboratory Products, Newtown, CT). Cell 

pellets were stored at -20°C for later use. 

Cell pellets were resuspended in Buffer O (20 mM Tris-HCl, pH 8.0, 50 mM NaCl, 50 

mM KCl), 0.1X complete mini protease inhibitor cocktail (Roche, Indianapolis, IN), and 0.1 

mg·ml-1 lysozyme. After incubating for 30 min on ice, cells were passed through a French 

Pressure Cell Press at 12,000 psi three times to ensure cell lysis. Cellular debris, inclusion 

bodies, and unbroken cells were removed via centrifugation at 20,000 x g for 20 min in a Sorvall 

RC 5B Plus centrifuge (Kendro Laboratory Products) with the supernatant containing soluble 

proteins.  

Soluble, hexa-histidine tagged (HT) proteins were passed through a high density nickel-

nitrilotriacetic acid (Ni-NTA) agarose affinity column (Gold-Bio, St. Louis, MO) three times to 

ensure binding. The protein-bound slurry was washed with one column volume of Buffer A1 (20 

mM Tris-HCl, pH 8.0, 50 mM NaCl, 50 mM KCl, 20 mM imidazole, 5% glycerol), Buffer B (20 

mM Tris-HCl, pH 8.0, 0.5 M NaCl, 0.5 M KCl), then Buffer A2 (20 mM Tris-HCl, pH 8.0, 50 

mM NaCl, 50 mM KCl, 30 mM imidazole). HT proteins were then eluted from the Ni-NTA 

column with a small volume of Buffer C (20 mM Tris-HCl, pH 8.0, 50 mM NaCl, 50 mM KCl, 

200 mM imidazole). Imidazole introduced during elution was removed by dialysis against Buffer 

O and 10 mM 2-mercaptoethanol (β-Me) overnight at 4°C. The next day, the dialysis buffer was 

exchanged with fresh buffer and allowed to stir for another 2 hours. Diluted recombinant 

proteins were concentrated by ultrafiltration through an Amicon YM10 (Millipore, Billercia, 

MA) for further analysis. Recombinant proteins were stored on ice at 4°C in the dark.  
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2.3 Purification of phycobiliproteins from cyanobacteria  

2.3.1 Growth of Fremyella diplosiphon 

The Fremyella diplosiphon cells were grown in 50 ml CytoOne T25 filter cap TC flasks 

(USA Scientific, Ocala, FL) in Blue Green (BG-11) medium [82] with 10 mM HEPES, pH 8.0 

(B-HEPES). The cultures were grown on a Thermolyne Bigger Bill orbital shaker (Barnstead 

Thermolyne, Dubuque, IA) at 100 rpm, and illuminated with approximately 10-20 μE/m2/s cool 

white light (enriched in green light) or soft white light (enriched in red light). The cell density 

was monitored with UV-Vis spectrophotometry at 750 nm. Cells were also streaked on B-

HEPES agar plates containing 10 μg·mL-1 carbendazim, an antifungal agent, under the same 

conditions as liquid cultures.  

The F. diplosiphon knockout mutants in cpeY or cpeZ were generated as clean deletions 

that have no polarity effects (generously provided by David Kehoe and Andrian Gutu of Indiana 

University).  These deletions were verified by polymerase chain reaction (PCR) and Southern 

blot analyses (data not shown). 

 

2.3.2 Phycobilisome (PBS) purification 

Phycobilisomes from wild type and mutant F. diplosiphon were separated following the 

protocol described by Glazer [83] with a few minor alterations. Unless specified, all steps were 

performed at room temperature. Cyanobacterial cells were collected via centrifugation at 20,000 

x g for 30 min at 4°C. The cells were washed in 20-30 mL 0.75 M sodium/potassium (Na/K) 

phosphate, pH 7.0 and subjected to centrifugation.  The cells were resuspended in 5 to 15 mL 

0.75 M Na/K phosphate, pH 7.0, 0.1X protease inhibitor cocktail, and 0.02% lysozyme. After 30 

min incubation on ice, the cells were lysed using a French Press Cell Press (see Materials and 
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Methods 2.2). Triton X-100 was immediately added to 2% from a 20% stock (v/v) solution, and 

the solution was allowed to gently stir in the dark for 20 min. The samples were subjected to 

centrifugation for 10 min at 21,000 x g.  Three layers were detected after centrifugation: 

unbroken cells and debris pelleted, phycobiliproteins collected in the central aqueous layer, and 

chlorophyll and lipids fractionated in the top layer. Additional chlorophyll extractions were 

performed when necessary. Phycobiliproteins were collected from the aqueous layer and 1.5 mL 

was loaded onto sucrose density gradients in 14 x 89 mm Ultra-Clear Centrifuge Tubes 

(Beckman, Palo Alto, CA). All of the sucrose solutions were prepared in 0.75 M Na/K 

phosphate, pH 7.0, 1 mM sodium azide, and the following concentrations were poured into the 

centrifuge tubes from bottom to top: 2 M (0.75 mL), 1 M (2.5 mL), 0.75 M (2.75 mL), 0.5 M 

(2.25 mL), and 0.25 M (2.0 mL). The sucrose gradients were balanced in a SW 41 Ti swinging 

bucket rotor and subjected to ultracentrifugation at 151,000 x g for 18 hrs at 4°C using a 

Beckman L-60 ultracentrifuge. Intact phycobilisomes were recovered from the 0.75 M sucrose 

layer for wild type extracts and 0.5 M sucrose layer for the mutant extracts and further analyzed 

by absorbance and fluorescence spectroscopy (see Materials and Methods 2.4.2). Pure PBS 

samples were diluted to approximately 0.5-1.0 OD (at λmax) with 0.75 M Na/K phosphate, pH 7.0 

prior to obtaining their absorbance spectra. PBS samples from wild type F. diplosiphon had a 

λmax at OD565 nm, and F. diplosiphon mutants PBS samples had a λmax at OD620 nm. Quantification 

of PBP were calculated using the following equations [84].  

PC (mg·mL-1) = (OD620 nm – 0.7 x OD650 nm) / 7.38 

  AP (mg·mL-1) = (OD650  nm – 0.19 x OD620 nm) / 5.65 

       PE (mg·mL-1) = (OD565 nm – 2.8[PC] – 1.34[AP]) / 12.7 
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PBS samples were precipitated from sucrose prior to analysis on SDS-PAGE using 25% 

trichloroacetic acid (TCA) and incubation on ice for 30 min in the dark. The samples were 

subjected to centrifugation at 21,000 x g for 5 min at 4°C. The supernatant was discarded, and 

the pellet was resuspended in 100 mM Tris-HCl, pH 8.8. Excess Tris-HCl was added to 

neutralize residual acid when necessary.  

 

2.3.3 Phycoerythrin (PE) purification 

PE purification from F. diplosiphon wild type, cpeY mutant, and cpeZ mutant was 

performed following the protocol described by Glazer [85] with minor alterations. The entire 

procedure was conducted in dim light and at 4°C when possible.  F. diplosiphon cells were 

collected via centrifugation at 20,000 x g for 30 min. The cells were resuspended in 5 to 15 mL 

of 1 M sodium acetate (NaOAc, to dissociate proteins within the PBS), pH 5.0, 0.1X protease 

inhibitor cocktail, and 0.1 mg·ml-1 lysozyme. The samples were broken by passage through the 

French Pressure cell (see Materials and Methods 2.2) and subjected to ultracentrifugation at 

77,000 x g for one hour at 4°C using a Beckman L-60 ultracentrifuge (SW 41 Ti swinging 

bucket rotor) to pellet unbroken cells and thylakoid membranes.  

The supernatant was brought to 35% saturation with solid ammonium sulfate 

((NH4)2SO4) and allowed to stir slowly for 90 min. The sample was subjected to centrifugation at 

17,000 x g for 15 min. The PE-containing pellet was resuspended in a small volume 

(approximately 2 to 4 mL) of 0.1 M NaOAc, pH 5.0 and dialyzed overnight against the same 

buffer plus 10 mM β-Me. The next day, the dialysis buffer was exchanged with fresh buffer and 

allowed to stir for an additional 2 hours.  
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Dialyzed samples were then passed though a Sephadex G-100 size exclusion column (1.5 

x 27 cm) preequilibrated with 0.1 M NaOAc, pH 5.0. Fractions were analyzed for high PE 

content using absorbance and fluorescence emission spectroscopy (see Materials and Methods 

2.4.2). PE-containing fractions were collected and brought to 35% saturation with (NH4)2SO4. 

Samples were stirred for an hour and subjected to centrifugation at 17,000 x g for 15 min. The 

PE-containing pellet was resuspended in a small volume (approximate 3 mL) of 5 mM potassium 

phosphate, pH 7.0 and dialyzed overnight against the same buffer plus 10 mM β-Me. The next 

day, the dialysis buffer was exchanged with fresh buffer and allowed to stir for another 2 hours. 

Dialyzed samples were applied to a column (2.5 x 18 cm) of DEAE-Cellulose DE-52 

(Whatmann), preequilibrated with 5 mM potassium phosphate, pH 7.0.  After washing with 1 

volume of starting buffer, the column was developed with a 550 ml linear 5-200 mM potassium 

phosphate, pH 7.0, gradient. Fractions were analyzed using absorbance and fluorescence 

emission spectroscopy to detect PE purity. Pure PE fractions were collected, brought to 70% 

saturation with (NH4)2SO4, and allowed to stir for 30 min. Samples were then subjected to 

centrifugation at 17,000 x g for 15 min, resuspended in small volumes of 100 mM sodium 

phosphate, 1 mM sodium azide, pH 7.0, and dialyzed against the same buffer plus 10 mM β-Me 

overnight. Once all the (NH4)2SO4 was sufficiently removed, pure PE samples were available for 

further analysis. For long-term storage, pure PE samples were stored in 70% (NH4)2SO4 in a low 

phosphate buffer containing 1 mM sodium azide, in the dark at 4°C.   

 

 

 

 



32 
 

2.4 Protein and bilin analysis 

2.4.1 Polyacrylamide gel electrophoresis 

Polypeptides were diluted 1:1 in 2X Laemmli Sample Buffer (65.8 mM Tris-HCl, pH 6.8, 

2.1% SDS, 26.3% (w/v) glycerol, 0.01% bromophenol blue, 5% β-Me; Bio-Rad, Hercules, CA), 

and were resolved by polyacrylamide gel electrophoresis (PAGE; 14% Tris-HCl w/v) in the 

presence of sodium dodecyl sulfate (SDS). SDS samples of PBS were only boiled for 3 min. 

Other polypeptide samples were boiled for 5 min prior to loading. Electrophoresis running buffer 

(1X) contained 25 mM Tris, 192 mM glycine, and 0.1% SDS, pH 8.3 [86]. Gels were run for 13 

min at 100 V then 55 min at 200 V. Time varied between 45-60 min for the 200 V stage during 

electrophoresis to ensure appropriate polypeptide separation. The gels were then soaked in 10 

mM zinc sulfate (ZnSO4) for 10 min to visualize peptide linked bilins [87]. Zn-enhanced 

fluorescence of covalently attached bilins was visualized using FX imaging system (Bio-Rad) 

with excitation at 532 nm (detects PEB and PCB) and/or 635 nm (detects PCB only). Proteins in 

the gels were then stained by incubation in Coomassie brilliant blue G-250 overnight and 

destained in 10% methanol and 10% acetic acid.  

 

2.4.2 Fluorescence emission and absorbance spectroscopy 

Fluorescence emission and excitation spectra were recorded with a Perkin Elmer LS55 

fluorescence spectrophotometer (Waltham, MA) with slit widths of 10 nm. The excitation 

wavelength was set at 490 nm for proteins containing PEB and at 590 nm for those with PCB. 

Chromophorylated samples were diluted to ~0.05 OD (at λmax) prior to obtaining their 

fluorescence emission spectra to accommodate the sensitivity range of the machine. Samples 

produced in the absence of a lyase, which had very little or no chromophore attached, were 
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measured without dilution because they had an absorbance less than 0.05. Absorbance spectra 

were acquired using a lambda 35, dual-beam UV/Vis spectrometer (Perkin Elmer) with slit 

widths set to 0.5 nm. Chromophorylated samples were diluted to approximately 0.5-1.0 OD (at 

λmax) prior to obtaining their absorbance spectra to accommodate the sensitivity range of the 

machine. 

 

2.4.3 Western blotting  

Western blots were performed to identify cyanobacteria proteins as previously described 

[88, 89] with few minor alterations. Two 14% Tris-HCl SDS-PAGE gels were loaded identically 

with pre-stained low molecular weight standards (Bio-Rad). One gel was stained and analyzed 

(see Materials and Methods 2.4.1) and the other was used for Western blot detection. For the 

protein transfer, a piece of PVDF transfer membrane was cut to the size of the gel and pre-wet in 

100% methanol for 10 seconds, washed in ddH2O 2 x 2.5 min and then equilibrated with cold 

Western transfer buffer (25 mM Tris-HCl, pH 8.3, 192 mM glycine, 20% (v/v) methanol, 0.1% 

SDS) for at least 10 min. Four pieces of Whatman paper (3 mm) were cut slightly larger than the 

gel, and soaked in cold Western transfer buffer. The Western blot transfer was set up as follows: 

two pieces of Whatman paper, the SDS gel, the PVDF membrane, and two pieces of Whatman 

paper. Air bubbles were removed to prevent disruption during the transfer. The entire assembly 

was placed in a cassette and then into the electrode central core assembly module.  The entire 

apparatus was put into a SDS-PAGE buffer tank with cold Western transfer buffer and a frozen 

cooling unit. The entire tank was surrounded by ice. Proteins were transferred at 100 volts for 1 

hour. 
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 Membranes were removed and placed in blocking buffer (TBST (20 mM Tris, pH 7.6, 

137 mM NaCl, and 0.1% (v/v) Tween-20) and 5% (w/v) non-fat dried milk) for one hour at room 

temperature with mild agitation, and then washed with TBST.  Membranes were then submerged 

in 40 ml TBST and primary polyclonal rabbit antibodies at the following dilutions: Anti B-PE 

1:1,000 (against holo-B-PE purified from the red algae, Porphyridium cruentum; NOVUS 

Biologicals, Littleton, CO) and Anti FDCpeA 1:5,000 (against recombinant α-PE from 

Fremyella diplosiphon purified from E. coli; YenZym Antibodies, San Francisco, CA). The 

membrane incubated with the primary antibodies for an hour at room temperature with mild 

agitation. The antibody solution was removed and saved with 5% (w/v) bovine serum albumin 

for a maximum of 3 uses. The membrane was immediately washed with 100 mL of TBST for 20 

seconds twice to remove any unbound antibodies from the containers. The membrane was then 

washed in 100 mL TBST five times for 3 minutes each wash with high agitation. The secondary 

antibodies (goat-anti rabbit, horse radish peroxidase-conjugated antibodies, Bio-Rad) were added 

to 1:10,000 dilution and incubated with the membrane for 45 minutes at room temperature with 

mild agitation. The secondary antibody solution was removed and the membrane was washed in 

the same manner as before. Membranes remained in TBST until ready for chemiluminescence 

detection. Luminal/enhancer and peroxide reagents (Bio-Rad) for enhanced chemiluminescence 

were mixed in a 1:1 ratio and incubated with the membrane for 3 minutes. Chemiluminescence 

was detected by the Chemi-Doc System (Bio-Rad). Membranes were stored in TBST at 4°C.  

Membranes were stripped using 100 mM β-Me, 2% SDS, and 62.5 mM Tris-HCl, pH 

6.7. Membranes were submerged in the stripping buffer for 30 min at 70°C then washed in 

TBST 2 x 10 min. Membranes incubated with blocking buffer for one hour at room temperature 

with mild agitation before being probed with different primary antibodies. 
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2.4.4 Tryptic digestion and mass spectrometry  

Tryptic digestion of proteins were conducted following the protocol described earlier 

[90]. Purified protein was exhaustively dialyzed against 2 mM sodium phosphate, pH 7.0 with 10 

mM β-Me and then concentrated by ultrafiltration through an Amicon YM10 (Millipore). 

Concentrated samples were titrated to pH 2.0 with 1N HCl. The solution incubated for 45 min in 

the dark at room temperature for complete unfolding of protein. Trypsin was added to 2% (w/w) 

from a 5 mg/ml stock solution in 1 mM HCl. Ammonium bicarbonate was added to 0.1 M and 

the mixture was titrated to pH 7.5 with 1N NaOH. The digested mixture incubated at 30°C for 2h 

in the dark. An additional aliquot of trypsin was added (2% w/w) and incubated for another 2h. 

The reaction was quenched by adding 30% (v/v) glacial acetic acid. The mixture was passed 

through a C8 Sep-Pak cartridge for peptide purification (Waters Corporation, Milford, MA). The 

eluted sample was partially vacuum-dried and stored at -20⁰C for MALDI-Mass spectrometry 

(MS) analysis which was performed by our collaborators Richard Cole and Mohamed Boutaghou 

of the University of New Orleans as previously described [23].  
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3. Results 
 

3.1 Phenotypes and whole cell analysis of wild type F. diplosiphon versus mutants  

CpeY and CpeZ from F. diplosiphon were previously characterized using a heterologous 

coexpression system in E. coli as a CpcEF type lyase [23]. CpeY showed lyase activity on α-82 

of PE, and CpeZ enhanced this activity by 40%, although CpeZ alone did not show any PEB 

ligation activity on α-PE or β-PE.  

To better understand the functions of these proteins within native cyanobacteria, cpeZ 

and cpeY genes were knocked out in F. diplosiphon as clean deletions (generously provided by 

David Kehoe and Andrian Gutu of Indiana University) for further analysis. These deletions were 

generated to minimize polar effects. All cells were grown in green-enriched light, conditions 

which induce maximal PE production. Mutant strains were confirmed using PCR and Southern 

blot analysis (data not shown). Wild type (hereafter referred to as WT) cells grown in green-

enriched light were characteristically brown in color as a result of producing both the red PE and 

the blue PC proteins within the rods of the phycobilisome (PBS) (see Fig. 12). Both the cpeY and 

cpeZ mutants (ΔcpeY and ΔcpeZ, respectively) displayed phenotypes that differed from WT. 

Both ΔcpeY and ΔcpeZ mutants grown in green-enriched light were green in color, indicating a 

reduction of PE produced (see Fig. 12). The whole cells were analyzed by absorbance 

spectroscopy as shown in Fig. 13.  The absorbance spectrum for WT (see Fig. 13, solid line) 

shows a large amount of PE (λmax = 560-570 nm), whereas the spectrum for the ΔcpeY mutant 

(see Fig. 13, dotted line) indicates no evidence of PE. Very little PE was detected in the ΔcpeZ 

mutant also (see Fig. 13, dashed line). From this observation, we can conclude cpeY and cpeZ are 

two genes involved in the induction, biosynthesis, or stability of PE. 
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Fig. 12 Phenotypes of WT versus ΔcpeY and ΔcpeZ mutant cells grown in green-
enriched light 

A. Liquid cultures of wild type F. diplosiphon (FD WT, brown in color), ΔcpeY mutant 
(FD ΔcpeY, green in color), and ΔcpeZ mutant (FD ΔcpeZ, green in color) cells. Cells were 
grown in green light in B-HEPES liquid media. B. B-HEPES agar plates of wild type F. 
diplosiphon (WT, brown in color), ΔcpeY mutant (green in color), and ΔcpeZ mutant (green in 
color) cells. Cells were grown in green-enriched light on B-HEPES agar plates containing 10 
μg·mL-1 of the antifungal agent carbendazim. 

 
 



38 
 

 

 

 
Fig. 13 Whole cell spectra of WT versus ΔcpeY and ΔcpeZ mutant cells 

This figure represents the whole cell absorbance spectrum of WT (solid line), ΔcpeY 
mutant (dotted line) and ΔcpeZ (dashed line) from F. diplosiphon grown under green-enriched 
light. The peaks at 560 nm represents PE, 620 nm represent PC, and 440/680 nm represent 
chlorophyll a.  
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3.2 Analysis of phycobilisomes purified from F. diplosiphon WT versus mutants 

3.2.1 Sucrose density gradient ultracentrifugation 

Phycobilisomes (PBS) are macromolecular complexes ranging in molecular weight from 

5 x 106 Da to 20 x 106 Da depending on the cyanobacterial species and phycobiliprotein (PBP) 

composition, the latter of  which can be altered by a number of factors [9]. PBS from WT and 

mutant F. diplosiphon cells grown in green-enriched light were purified using sucrose density 

gradients. The bulk of pure PBS from WT migrated to the 0.75 M sucrose layer (fraction 2), 

whereas the bulk of pure PBS from both the ΔcpeY and ΔcpeZ mutants migrated to the 0.50 M 

sucrose layer (fraction 1) (see Fig. 14). Fractions 3 and 4 contained dissociated PBP. Proteins in 

the 0.50 M sucrose layer are lower in molecular weight and less dense than the proteins in the 

0.75 M sucrose layer. Larger and denser protein complexes migrate further within the gradient. 

These results indicate that the PBS from the mutants are smaller in size and less dense due to the 

reduced PE levels associated with the PBS. The PBS extracted from WT were purple in color 

due to the presence of both PC and PE in the rods. PBS isolated from the ΔcpeY and ΔcpeZ 

mutants were blue in color since PE levels were reduced (see Fig. 14).   
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Fig. 14 PBS sucrose density gradients 
This figure shows the sucrose density gradients for wild type, ΔcpeY mutant, and ΔcpeZ 

mutant samples. Four PBS fractions were collected from each sample (numbered 1 through 4). 
The PBS pictures above the gradients represent the suspected PBS generated from those cells. 
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3.2.2 Absorbance and fluorescence emission spectroscopy analysis 

All four fractions were extracted from the sucrose gradients and analyzed by absorbance 

and fluorescence emission spectroscopy. The bulk of intact PBS from F. diplosiphon WT was 

isolated from fraction 2, and the bulk of intact PBS from both ΔcpeY and ΔcpeZ were isolated 

from fraction 1; therefore, these fractions were used for further analysis.  The absorbance 

spectrum for WT PBS (see Fig. 15 A, black line) shows a large amount of PE (λmax = 568 nm) 

production in comparison to PC (λmax = 616 nm) and to AP (λmax = 650 nm). When excited at 

490 nm, a wavelength that excites PE preferentially, the fluorescence emission peak around 646 

nm indicates most of the energy is being transferred to PC (see Fig. 15 B, black line). Excitation 

at 490 nm directly excites PE thus resulting in the peak around 580 nm (see Table 2). Both 

ΔcpeY and ΔcpeZ mutants have very little PE incorporated into the PBS (see Fig. 15 A, blue and 

red lines, respectively) when compared to WT, but some energy transfer from PE to PC is 

observed (see Fig. 15 B, blue and red lines, respectively). PE in PBS isolated from both ΔcpeY 

and ΔcpeZ mutants has a maximum absorbance at 578 and 577, respectively (see Fig. 15 A and 

Table 2), indicating a slight shift in the spectrum when compared to WT (λmax = 568 nm). One 

possible explanation for this shift is the presence of a PCB chromophore on either subunit of PE. 

Another possibility is the presence of a non-covalently attached PEB chromophore in the bilin-

binding pocket of one of the PE subunits. Both situations would result in a slightly red shifted 

absorbance spectrum of the protein due to the presence of an extra double bond within the bilin.  

PE, PC, and AP levels were quantified as previously described (see Material and 

Methods 2.3.2) and are listed in Table 3. These quantitative data indicate both mutants have 

reduced levels of PE production and incorporation into the PBS when compared to WT. Both PC 

and AP levels were also increased when compared to WT PC and AP levels (see Table 3).  This 
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result is most likely attributed to the compensation of light harvesting proteins in the absence of 

the distal rod PE protein synthesis.  

 

 
 
Fig. 15 Analysis of PBS purified from WT, ΔcpeY, and ΔcpeZ  

A. Absorbance spectra of PBS samples purified from WT fraction 2 (black line), ΔcpeY 
fraction 1 (blue line), and ΔcpeZ fraction 1(red line). B. Fluorescence emission (with excitation 
at 490 nm) spectra of PBS samples purified from WT fraction 2 (black line), ΔcpeY fraction 
1(blue line), and ΔcpeZ fraction 1(red line). C. The Coomassie-stained SDS polyacrylamide gel 
for PBS purified from WT 1 and 2, ΔcpeY 1 and 2, and ΔcpeZ 1 and 2. Numbers 1 and 2 indicate 
the fractions extracted from the sucrose density gradients. D and E. The zinc enhanced 
fluorescence of the gel in part “C” excited at 532 nm “D” and 635 nm “E.”  Lane “Std” indicates 
the molecular weight standard. 
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Table 2: Spectral properties of PBS purified from WT, ΔcpeY, and ΔcpeZ 
 

Strain* PE λmax 

(nm) 
PC λmax 

(nm) 
AP λmax 

(nm) 
PE Fluorescence 

Emission λmax (nm) 
PC Fluorescence 

Emission λmax (nm) 

WT 2 568  616 650 580 646 

ΔcpeY 1 578 615 650 579 644 

ΔcpeZ 1 577 616 650 578 644 
* Numbers 1 and 2 indicate the fractions extracted from the sucrose density gradients (see Fig. 
14).  
 
 
 
 
 
 
 
 
 
Table 3: Quantification of PBP in PBS samples purified from WT, ΔcpeY, and 
ΔcpeZ 
 

Strain* [PE]1 [PC]1 [AP]1 [PE/AP]1 [PC/AP]1 [PE/PC]1 

WT 2 0.138 0.039 0.058 2.373 0.679 3.494 

ΔcpeY 1 0.120 0.154 0.360 0.333 0.427 0.780 

ΔcpeZ 1 0.090 0.203 0.274 0.331 0.742 0.446 

* Numbers 1 and 2 indicate the fractions extracted from the sucrose density gradients (see Fig. 
14) 
1 PBP concentrations are in mg·mL-1 (see Materials and Methods 2.3.2) 
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3.2.3 SDS-PAGE and Western blot analysis 

PBS samples from WT and mutant F. diplosiphon were further analyzed by SDS-PAGE 

to visualize PBP levels. The bilin attachment to proteins was examined by zinc staining of the 

gel to enhance covalently-bound bilin fluorescence as shown in Fig. 15 D and E; protein levels 

were shown by subsequent staining of the same gel with Coomassie Blue (see Fig. 15 C). PBP 

samples were loaded to approximately 1 μg of AP (unaffected during PBP composition alteration 

during CA). When compared to WT, both ΔcpeY and ΔcpeZ mutants have drastically reduced 

levels of β-PE as well as reduced α-PE levels (see Fig. 15 C). The zinc stained gel was visualized 

after excitation at 532 nm to observe both PEB and PCB (see Fig. 15 D) or after excitation at 635 

nm to observe the presence of PCB bound PBP (see Fig. 15 E). In both ΔcpeY and ΔcpeZ 

mutants, PE levels are reduced while PC levels are increased when compared to WT samples 

which have more PE associated into the PBS (see Fig. 15 D and E). In the ΔcpeZ mutant PBS 

sample, there appears to be two β-PE bands when separated by SDS-PAGE, both containing 

PEB as shown when excited at 532 nm (see Fig. 15 D, labeled β PE and β PE*). The extra β-PE 

band (β-PE*) appears to be slightly smaller in molecular weight than the actual size of β-PE as 

seen in WT (see Fig. 15 D). One possible explanation is that β-PE* is missing one or two PEB 

(587 Da each). Thus, in native cyanobacteria, when CpeY or CpeZ are absent from cells, PE 

levels are dramatically lower and PC production and association into the PBS appears to be 

increased to compensate.  

To determine the presence of PE subunits in PBS samples purified from WT, ΔcpeY and 

ΔcpeZ, PBS were subjected to SDS-PAGE and then transferred to a PVDF membrane and 

probed with two kinds of primary antibodies. The membrane was first probed with Anti-B-PE 

antibodies which detect both α and β subunits of PE (data not shown). Both α and β PE were 



45 
 

detected in WT, ΔcpeY 1 and ΔcpeZ 1 PBS samples (data not shown). The PVDF membrane was 

stripped and reprobed with Anti-FDCpeA antibodies which detect only α-PE from F. diplosiphon 

as seen in Fig. 16. When comparing the band intensity of α-PE, ΔcpeY 1 and ΔcpeZ 1 samples 

appear less intense when compared to WT despite all samples being loaded with approximately 

1μg of AP. To fully analyze the effect of the lack of CpeY and CpeZ on PE synthesis or stability, 

PE was purified from WT and mutant strains of F. diplosiphon and analyzed further. 

 

 

 
 
Fig. 16 Western blot analysis of PBS purified from WT, ΔcpeY, and ΔcpeZ 

Western blot of PBS samples blotted with primary antibodies against FD CpeA (α-PE 
from F. diplosiphon). Numbers 1 and 2 indicate the fractions extracted from the sucrose density 
gradients. Lane “Std” indicates the molecular weight standard. “WT PE” was loaded as a control. 
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3.3 Biochemical characterization of PE purified from ΔcpeY mutant  

PE was purified from both WT and ΔcpeY mutant F. diplosiphon cells (approximately 4 

L) using gel filtration chromatography and ion exchange chromatography as described earlier 

(see Materials and Methods 2.3.3). These proteins were purified from whole cells and represent 

the entire pool of PE synthesized. This includes PE assembled into PBS and PE that may not be 

assembled into PBS. The purified PE was characterized using absorbance and fluorescence 

emission spectroscopy. PE from WT cells had an absorbance maximum at 563 nm with a 

shoulder at 545 nm, and was highly fluorescent with an emission maximum at 574 nm (see Fig. 

17 A and Table 4). The yield of PE obtained from the ΔcpeY mutant was drastically less than that 

of WT. The major absorbance peak was at 566 nm with two shoulders at 599 nm and 616 nm, 

which might be due to the presence of some PCB (see Fig. 17 B, solid line and Table 4). For 

obtaining the fluorescence emission spectrum, the sample was excited at 490 nm initially to 

observe the presence of PEB (dashed line; emission maximum at 573 nm) and at 590 nm to 

observe the presence of PCB (dotted line; emission maximum at 635 nm) (see Fig. 17 B and 

Table 4). The presence of PCB might be due to contamination of the PE preparation with AP or 

PC.   

For further analysis, the PE from both WT and ΔcpeY mutant were separated by SDS-

PAGE. The bilin addition on both α and β subunits of PE were observed by zinc staining the gel 

to enhance bilin fluorescence. Both α and β subunits of WT PE contain exclusively PEB as 

expected (see Fig. 17 C and D, lane 1).  Zinc staining of PE from the ΔcpeY mutant indicates the 

β-PE appears like the WT both in apparent molecular weight and PEB fluorescence, but the α-PE 

may have some PEB replaced with PCB (see Fig. 17 C and D, lanes 2-4). The PE purified from 

the ΔcpeY mutant is also slightly contaminated with AP. However, the main effect of the ΔcpeY 
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appears to be on the α-PE subunit. In the absence of CpeY, it appears another lyase may be 

attaching PCB, presumably at Cys α-82.   

 

 

 
 
 

 
 
 
 
Fig. 17 Analysis of PE purified from WT and ΔcpeY mutant  

A. Absorbance (solid line) and florescence emission (excited at 490 nm, dashed line; 
excited at 590 nm, dashed and dotted line) spectra of PE purified from WT F. diplosiphon. B. 
Absorbance (solid line) and florescence emission (excited at 490 nm, dashed line; excited at 590 
nm, dotted line) spectra of PE purified from the ΔcpeY mutant. C and D. The zinc stained SDS 
polyacrylamide gel for PE purified from WT (lane 1) and ΔcpeY mutant (lanes 2-4) excited at 
532 nm “C” and 635 nm “D.” Lane “Std” indicates the molecular weight standard. 
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Table 4: Spectral properties of PE purified from WT, ΔcpeY, and ΔcpeZ 
 

Strain λmax (nm) 
Fluorescence 

Emission λmax (nm) 
excited at 490 nm 

Fluorescence 
Emission λmax (nm) 
excited at 590 nm 

WT 545 (sh), 563  573 ND 

ΔcpeY 
566, 599 (sh), 

616 (sh) 
573 635 

ΔcpeZ 542 (sh), 572 573 ND 
“ND” represents data that were not determined  
“sh” indicates shoulder 
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3.4 Synechocystis sp. PCC 6803 CpcEF lyase activity of PCB and PEB ligation to CpeA  

Since the α-PE and α-PC subunits are similar in amino acid sequence and structure, and 

CpeY is homologous to a fusion of CpcE and CpcF bilin lyase which is specific for α-PC at Cys-

82, we hypothesized that the CpcEF lyase may be able to attach PCB to CpeA. This CpcEF lyase 

is expressed in red light and green light since some PC is produced in both light conditions. To 

test our hypothesis, we used an in vivo heterologous coexpression system to express CpcEF 

lyase, hexa-histidine-tagged CpeA (HT-CpeA), and HoI/PcyA in E. coli. The plasmids pCpeA, 

pCpcEF, pPcyA were coexpressed in E. coli (see Table 1), and the purified HT-CpeA protein 

obtained was characterized using absorbance and fluorescence emission spectroscopy.  E. coli 

cells containing pCpeA/pPcyA had no significant absorbance or fluorescence emission spectrum 

(data not shown) whereas cells containing pCpeA/pCpcEF/pPcyA was shown to have some 

absorbance at 625 nm and fluorescence emission at 640 nm, corresponding to native PCB bound 

phycobiliproteins (see Fig. 18 A). The purified HT-CpeA samples were analyzed by SDS-PAGE 

(see Fig. 18 B and C).   The bilin addition to HT-CpeA was examined by zinc staining of the gel 

to enhance bilin fluorescence as shown in Fig. 18 C; protein content was shown by subsequent 

staining of the same gel with Coomassie Blue (see Fig. 18 B). Cells containing pCpeA, pCpcEF 

and pPcyA showed Zn-enhanced fluorescent protein (see Fig. 18 C). No fluorescent protein was 

detected in cells without CpcEF lyase (data not shown). The conclusion of this experiment is that 

CpcEF can attach PCB to CpeA, albeit not as efficiently as for its native substrate CpcA [31]. It 

is likely that in the absence of the CpeY lyase within the ΔcpeY mutant, CpcEF can ligate PCB to 

α-PE in F. diplosiphon.  
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Fig. 18 PCB ligation on CpeA catalyzed by Synechocystis sp. PCC 6803 CpcEF  

A. Absorbance (solid line) and fluorescence emission (dotted line) spectrum from 
purified HT-CpeA obtained by coexpressing pCpeA, pCpcEF, and pPcyA. B. The Coomassie-
stained SDS polyacrylamide gel for purified HT-CpeA (CpeA-PCB). C. The zinc enhanced 
fluorescence of the gel pictured in part “B.” 
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3.5 Biochemical characterization of PE purified from ΔcpeZ mutant  

PE was purified from the ΔcpeZ mutant of F. diplosiphon, and was characterized using 

absorbance and fluorescence spectroscopy. PE obtained from the ΔcpeZ mutant had an 

absorbance maximum of 572 nm with a shoulder at 542 nm (see Fig. 19 A, solid line), which is a 

little red shifted when compared to WT (see Fig. 17 A, solid line and Table 2). This may be 

caused by the presence of PCB, or the presence of PEB which is not covalently bound to the PE 

substrate. For obtaining the fluorescence emission spectrum, the sample was excited at 490 nm 

initially to observe the presence of PEB (dashed line; emission maximum at 573 nm) and 590 nm 

for PCB (dotted line; no emission from PCB attachment was observed) (see Fig. 19 A).   

The pure PE samples were separated by SDS-PAGE. The bilin addition to both PE 

subunits was examined by zinc staining of the gel to enhance bilin fluorescence as shown in Fig. 

19 C and D; protein content was shown by subsequent staining with Coomassie Blue (see Fig. 19 

B). Protein staining of pure PE isolated from ΔcpeZ mutant shows that β-PE levels are drastically 

reduced and ultimately non-detectable (see Fig. 19 B, lanes 3-5) when compared to WT PE (see 

Fig. 19 B, lanes 1 and 2).  Zinc staining of PE isolated from the ΔcpeZ mutant shows that α-PE 

contains only PEB but very little chromophorylated β-PE is detected (see Fig. 19 C and D, lanes 

3-5). In WT, both α and β subunits of PE contain exclusively PEB (see Fig. 19 C and D, lanes 1 

and 2); however, excitation of the SDS-polyacrylamide gel at 635 nm appears to excite PEB 

even though excitation at this wavelength excites PCB preferentially. Since no PCB was detected 

on mutant PE by fluorescence spectroscopy (Fig. 19 A, dotted line) and PEB was fluorescing in 

WT PE samples when excited at 635 nm (Fig. 19 D, lanes 1 and 2), the presence of PCB on PE 

purified from ΔcpeZ mutant is unlikely.  
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One interesting result was that both α and β subunits of PE obtained from ΔcpeZ mutant 

showed a slight molecular weight shift when compared to WT PE subunits. One possible 

explanation for this shift is that both α-PE and β-PE are missing one or two PEB (578 Da each). 

The main effect of deleting cpeZ appears to be the biosynthesis of the β subunit of PE, resulting 

in drastically reduced protein levels. Recombinant protein analysis showed CpeZ does not act as 

a bilin lyase alone but it does enhance the bilin lyase activity of CpeY [23]. It is likely that CpeZ 

is functioning as a chaperone, possibly for both α-PE and β-PE in native cyanobacteria. It may 

also interact or enhance activity of β-subunit lyases. These proteins were purified from whole 

cells and represent the total pool of PE synthesized. Some of this pool may not be incorporated 

into PBS as efficiently, especially if chromophores are missing. Stability and turnover for 

subunits without chromophores has been affected in other lyase mutants [28, 38, 45, 51, 91, 92]. 

Thus, in the absence of CpeZ, the main effect appears to be that β-PE is not accumulating to the 

same degree as the α-PE subunit, presumably because bilin attachment to the Cys residues of PE 

is not occurring.   
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Fig. 19 Analysis of PE purified from WT and ΔcpeZ mutant 
 A. Absorbance and fluorescence emission spectra of PE purified from the ΔcpeZ mutant; 

solid line is absorbance, dashed line is the fluorescence emission excited at 490 nm, and dotted 
line is the fluorescence emission excited at 590 nm. B. The Coomassie-stained SDS 
polyacrylamide gel for PE purified from WT (lanes 1 and 2) and ΔcpeZ mutant (lanes 3-5); C 
and D. The Zinc enhanced fluorescence for the gel pictured in “B” excited at 532 nm “C” and 
635 nm “D.” 
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3.6 Western blot analysis of PE purified from WT, ΔcpeY and ΔcpeZ 

PE samples purified from WT, ΔcpeY and ΔcpeZ were subjected to SDS-PAGE and then 

transferred to a PVDF membrane and probed with Anti-B-PE antibodies which detect both α and 

β subunits of PE as seen in Fig. 20. Both α and β PE were detected in WT PE. In ΔcpeY or 

ΔcpeZ mutants, β-PE was not detected; only α-PE was detected for both mutant samples. Figure 

20 also shows that α-PE from ΔcpeY (denoted as α-PE*) is lower in molecular weight than α-PE 

from WT. In the absence of CpeY in F. diplosiphon, β-PE accumulation is reduced, and α-PE is 

lower in molecular weight most likely due to the absence of a PEB (587 Da) at Cys-82 of α-PE. 

In the absence of CpeZ in F. diplosiphon, β-PE biosynthesis and accumulation are also reduced.   

 

 

 

Fig. 20 Western blot analysis of PE purified from WT, ΔcpeY, and ΔcpeZ 
 Western blot analysis of PE purified from WT, ΔcpeY, and ΔcpeZ blotted with primary 

antibodies against B-PE, which recognizes both α and β subunits of PE. Lane “Std” indicates the 
molecular weight standard. “WT PE” was loaded as a control. 
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3.7 Mass spectrometry analysis of PE purified from ΔcpeY and ΔcpeZ mutants 

PE purified from WT, cpeY mutant, and cpeZ mutant was digested with trypsin, purified 

using a C8 Sep-Pak cartridge, and characterized using MALDI-mass spectrometry (MS). 

MALDI-MS analysis was performed by our collaborators Richard Cole and Mohamed 

Boutaghou of the University of New Orleans.  Sequences of expected tryptic peptides containing 

Cys residues with bound PEB can be found in Table 5.  PE extracted from WT resulted in five 

major peaks that were identified as peptides containing a PEB bilin; 2 from α-PE and 3 from β-

PE (see Table 6). PEB attachment occurred at Cys-82 (m/z 935) and Cys-139 (m/z 1089) from α-

PE. PEB attachment also occurred at Cys-80 (m/z 1250), Cys-165 (m/z 2104) and double 

attachment to Cys-48/Cys-59 (m/z 4641) from β-PE. PE from both ΔcpeY and ΔcpeZ only had 

PEB attachment to α-PE at both Cys-82 and Cys-139 (see Table 6). Neither chromophorylated 

nor non-chromophorylated β-PE peptides were detected in either mutant. These results confirm 

our previous results that in the absence of CpeY and CpeZ in F. diplosiphon, β-PE levels are 

reduced.  
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Table 5: Expected sequence and average mass per charge (m/z) of tryptic digested 
PE peptides  
 

Cys 
Position Avg. m/z Avg. m/z 

+PEB (587) Start1 End1 Sequence2 

α-82 349 936 82 84 (K)CAR(D) 
α-139 504 1091 138 142 (R)GCAPR(D) 

β-80 
665 

(681)* 
1252 

(1268)* 
77 82 (R)MAACLR(D) 

β-165 1520 2107 165 178 (R)CASLVAEASSYFDR(V) 

β-48/59 
4044 

(4060)* 
(4076)** 

4631 
(4647)* 
(4663)** 

36 75 
(R)LDAVNAIASNASCMVSDAVA
GMICENQGLIQAGGNCYPNR(R) 

*represent m/z values of peptides with an oxidized methionine (+16) indicated in parentheses  
** represent m/z values of peptides with 2 methionine oxidations (+32) indicated in parentheses 
1 represents the amino acid position 
2 Cys residues available for potential bilin binding are underlined  
(Generated by MS-Digest in ProteinProspector 5.10.9 Basic from UCSF) 
 
 
 
 
 
 
 
 
Table 6: Observed MALDI-MS peaks of tryptic digested PE peptides  
 

Strain α-82 m/z α-139 m/z β-80 m/z β-165 m/z β-48/59 m/z 

WT 936 1090 1251 2104 4641 

ΔcpeY 936 1090 ND ND ND 

ΔcpeZ 935 1090 ND ND ND 

 “ND” represents peaks that were not detected in MS results 
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4. Discussion 
 

Recombinant CpeY from Fremyella diplosiphon has been characterized as a CpcEF type 

lyase which attaches PEB to Cys-82 of α-PE, and CpeZ enhanced this activity by 40% [23]. 

Recombinant CpeZ did not interact with CpeY, and it did not act as a lyase alone on either α-PE 

or β-PE. Kahn et al. isolated a transposon mutant in the cpeY gene in F. diplosiphon [44], 

resulting in a reduced PE phenotype. Complementation studies revealed that only when both 

cpeY and cpeZ were added was the WT phenotype restored. However, the function of CpeZ was 

never fully analyzed. This study analyzes the role of both CpeY and CpeZ from clean deletion 

mutants in F. diplosiphon.  

Just as Kahn et al. observed reduced PE levels in the cpeY mutant, we observed a reduced 

PE phenotype in our ΔcpeY mutant cells. PBS purified from the ΔcpeY mutant showed a slight 

red-shifted absorbance spectrum believed to be caused by the presence of PCB on α-PE. PCB 

has a longer conjugated double bond system than PEB which can cause the red-shifted 

absorbance spectrum. Our analysis of PE confirmed that α-PE did have PCB attached to it, most 

likely at Cys-82, in the absence of the CpeY lyase. We demonstrated that recombinant CpcEF 

lyase, which naturally has a higher affinity for PCB [32], was able to ligate PCB on α-PE albeit 

in lower amounts than it normally shows for its cognate substrate α-PC. We propose that in 

native cyanobacteria, endogenous CpcEF can also possibly ligate PCB to α-PE in the absence of 

CpeY. Jung et al. observed similar results from insertion mutants in the genes encoding the 

PecEF lyase/isomerase (homologs of CpcEF) generated and isolated from Nostoc (Anabaena) sp. 

PCC 7120 [38]. When both pecE and pecF were mutated, PEC levels were severely reduced, and 

the natural PVB covalently bound at α-84 was replaced with PCB by endogenous CpcEF lyase 

[38].  
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Another possibility for the red-shifted absorbance spectrum for the PE purified from the 

mutants is the presence of non-covalently attached PEB to PE. Shen et al. used mass 

spectrometry to detect non-covalent association of PCB with Cys-82 of β-PC in the absence of 

CpcS-I in mutants from Synechococcus sp. PCC 7002 [45].  Non-covalent binding of 

chromophores in the bilin-binding pocket of PBP results in a shift of the absorbance spectrum 

due to the presence of an extra double bond, as observed in our ΔcpeY mutant as well as our 

ΔcpeZ mutant analysis of purified PBS and PE.   

PE purified from ΔcpeY mutant showed α-PE had a slightly lower molecular weight (α-

PE*) on SDS-PAGE and detected by Western blotting when compared to WT α-PE. It is likely 

that the cause of this shift resulted from the absence of a PEB (587 Da) bilin on α-PE due to the 

deletion of the lyase CpeY. Bilin lyase mutants in other species of cyanobacteria have resulted in 

similar observations of molecular weight shifts due to the absence of a covalently-bound bilin to 

PBP. Molecular weight shifts in PC subunits as well as reduced amounts of PC produced were 

observed in cpcE/cpcF lyase mutants [28, 29, 92, 93],  cpcT lyase mutants [51], and cpcS/cpcU 

lyase mutants [45]. Due to these previous studies in lyase mutants, it is expected that when a 

bilin is missing on a PBP subunit, a shift in molecular weight should be detected on SDS-PAGE, 

as observed in our analysis of PE purified from ΔcpeY mutant. Similar results were observed in 

PE isolated from the ΔcpeZ mutant. Both α and β subunits of PE had lower molecular weights 

when compared to PE purified from WT cells. PBS from ΔcpeZ mutant had an extra β-PE band 

denoted as β-PE*, which had a slightly smaller molecular weight than the normal β-PE. In the 

PBS samples purified from the cpeY transposon mutant isolated by Kahn et al., both β-PE* and 

β-PE (same molecular weight as WT) subunits were present in roughly equal amounts [44].    
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Our MALDI-MS analysis of PE purified from both ΔcpeY and ΔcpeZ mutants showed 

that some amount of α-PE was chromophorylated at both Cys-82 and Cys-139 with PEB or PCB 

or both (since both PEB and PCB are the same mass, they cannot be differentiated by MALDI-

MS). Bilins naturally have a high affinity for the bilin binding pockets in PBP. Non-enzymatic 

bilin addition has been seen in F. diplosiphon [94], where PEB was covalently attached to PE at 

very slow reaction rates. PCB was also shown to slowly become covalently attached to PC by 

rearrangement of PCB in the binding pocket in the absence of a lyase [45]. Biswas et al. 

demonstrated that recombinant CpeS lyase, whose natural substrate is β-PE at Cys-80 in F. 

diplosiphon, was able to covalently attach PEB to both Cys-82 and Cys-139 of α-PE at a slow 

rate and not very efficiently [23].  The small amounts of chromophorylated PE detected in our 

PE samples purified from ΔcpeY and ΔcpeZ mutants could have been generated from a slow 

covalent (non-enzymatic) reaction between the chromophore and apo-PE, or by the endogenous 

CpeS lyase present in F. diplosiphon.  

Toole et al. generated site-directed mutants in Synechocystis sp. PCC 6701 by changing 

the bilin-binding residues from Cys to Ala in both subunits of PC [95].  These mutant analyses 

revealed that in the absence of proper chromophorylation, α-PC and β-PC heterodimer 

interaction strength is reduced. Formation and stability of PC is decreased and turnover rates are 

increased, most likely due to degradation pathway activity. Attachment of the central bilin (Cys-

82 equivalent) facilitates stability of the subunits, thus allowing for proper heterodimer formation 

as well as hexamer formation and assembly into the PBS [95]. Biswas et al. also demonstrated 

that chromophorylation at this central position (Cys-82 of α-PE in F. diplosiphon) increased 

recombinant CpeA solubility and stability in E. coli [23]. We have seen that in the absence of 

CpeY or CpeZ in F. diplosiphon, PEB chromophorylation on PE is affected resulting in reduced 
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levels of PE. Both ΔcpeY and ΔcpeZ mutants generated PE with non-detectable β-PE in Western 

blots and mass spectrometry. These proteins were purified from whole cells and represent the 

total pool of PE synthesized. Our PE samples include PE that was not incorporated into the PBS 

as efficiently, especially if chromophores are missing. Therefore, due to proteolytic degradation, 

β-PE may not be accumulating in large enough amounts to be visualized after purification of 

total PE from cells.  However, β-PE was detected in PBS samples at lower concentrations when 

compared to WT.  Therefore, during our PE purification process from whole cells, the β subunit 

is likely lost due to its lack of PEB and lower solubility.  In order to properly test the levels of β-

PE, whole cells and intact PBS from mutants and WT should be analyzed by Western blot using 

highly specific primary antibodies against β-PE. Antibodies generated against apo-CpeB are not 

very specific (data not shown). 

The lack of bilins on PBP in the absence of bilin lyases not only affects stability and 

turnover rates of the protein, but also the assembly of PBP into the PBS and energy transfer 

efficiency. Once apo-PBP are chromophorylated, they form monomers, trimers and then 

hexamers which are assembled into the PBS (see Fig. 2). The peripheral bilins of the disc-shaped 

trimer (the energy donors which absorb at shorter wavelengths) capture the light and transfer the 

energy to the bilins in the center of the disc-shaped trimer (the energy acceptors) [96]. These 

energy acceptors are bilins bound to the Cys-82 equivalent of both α and β subunits of PBP with 

the β-82 equivalent being the terminal energy acceptor in PE (Cys-80 in F. diplosiphon, see Fig. 

21) [13]. If PE was missing one or more PEB chromophores, this could result in instability of the 

PE subunits leading to protein degradation, preventing proper assembly into the PBS, thereby 

decreasing PBS light capturing and energy transfer efficiency [13, 97, 98]. In the absence of bilin 
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lyases and proper bilin ligation, there is a marked decrease in PBP content [28, 38, 45, 51, 91, 

92], and this was described in this thesis when cpeY and cpeZ were deleted in F. diplosiphon.  

 

 

 

 

 

Fig. 21 Crystal structure of PE as a trimer 
Ribbon diagram of R-PE trimer from Gracilaria chilensis [99]. α (blue-green colored) 

and β (dark blue colored) subunits of R-PE are labeled as “1-3α” and “1-3β,” respectively. 
Arrows are pointing to the energy acceptor PEB chromophores of α-PE (α-Cys-82) and β-PE (β-
Cys-80) normally found in F. diplosiphon. 
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Recombinant protein studies of CpeY show this protein functions as a bilin lyase 

responsible for attaching PEB to α-82 of PE in F. diplosiphon [23]. Our analysis of ΔcpeY 

mutant confirmed that CpeY is a lyase for α-PE due to the loss of a PEB bilin as seen in the 

Western blot analysis of PE purified from the mutant. Recombinant protein studies of CpeZ 

showed that CpeZ does not function as a lyase alone but increases the lyase activity of CpeY 

[23]. Heterologous coexpression of recombinant cpeZ with cpeB and the genes to synthesize 

PEB resulted in no PEB addition to CpeB [23]. However, our ΔcpeZ mutant analysis shows that 

deleting cpeZ mainly affects β-PE in terms of proper chromophorylation and PE synthesis and 

accumulation. This suggests that CpeZ may play a role in PE biosynthesis as a chaperone. Böhm 

et al. provided the first evidence for a chaperone-like function of a lyase subunit [100]. The α 

subunit of PEC is able to autoligate PCB with very low efficiency, resulting in poor spectral 

properties. Incubation with PecE improved the spectral properties by inducing a conformational 

change in the PBP for a more stable and fluorescent product [100]. This reaction does not require 

ATP or GTP like other chaperones do; thus, PecE behaves as a chaperone-like protein. 

Performing an experiment such as this with α and β PE, PEB and CpeZ from F. diplosiphon may 

further provide evidence for the chaperone-like activity of CpeZ as suggested by our ΔcpeZ 

mutant results.  

Another possibility is that CpeZ may interact with PE linker proteins as a chaperone, 

facilitating assembly. Linker proteins have structural roles in connecting PBP trimers together to 

form hexamers and connecting one type of PBP to another type. Linker proteins also have 

functional roles for efficient energy transfer in the PBS. Whitaker et al. isolated a mutant with a 

PE-deficient phenotype in F. diplosiphon which was shown to have a transposon in the cpeE 

gene encoding a PE rod-linker protein [101]. Mutating cpeE resulted in the reduction of PE 
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accumulation as seen in our ΔcpeZ mutant.  It is possible that CpeZ may play a role in PE 

assembly with linkers also. There are many genes in F. diplosiphon that are involved in the 

synthesis and assembly of PE such as genes encoding linker proteins (CpeC, CpeD, and CpeE) 

[102], bilin lyases (CpeY, CpeS, and putative lyases, CpeF, CpeT and CpeU) [23, 49], CA 

regulatory proteins (Rca and Cgi regulatory pathway proteins) [62], and transcription factors 

(CpeR activator) [69]. Performing recombinant heterologous coexpressions in E. coli and 

protein-protein interaction assays with CpeZ and other F. diplosiphon proteins involved in PE 

biosynthesis and assembly may shed some light on the specific function of the chaperone-like 

function of CpeZ.   
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