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Abstract 

 
 

The 2010 BP Deepwater Horizon oil spill in the Gulf of Mexico awakened communities 

to the increased risk of large-scale damage along their coastlines presented by new technology in 

deep water drilling. Normal accident theory and high reliability theory offer a framework 

through which to view the 2010 spill that features predictive criteria linked to a qualitative 

assessment of risk presented by technology and organizations. The 2010 spill took place in a 

sociotechnical system that can be described as complex and tightly coupled, and therefore prone 

to normal accidents. However, the entities in charge of managing this technology lacked the 

organizational capacity to safely operate within this sociotechnical system. 
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Chapter 1: Introduction 

 
The 2010 BP Deepwater Horizon blowout and oil spill in the Gulf of Mexico traumatized 

the Gulf coast and awakened society to the looming threat of new technologies in oil drilling that 

present risks many orders of magnitude larger than were present in the past. This thesis aims to 

answer a question that nags at the societal dependence on fossil fuels, which is: Are oil spills 

inevitable? Will the Gulf of Mexico, and later the Arctic tundra become the common victims of 

poorly understood environmentally exploitive practices? Are these accidents avoidable 

considering their highly technical and delicately balanced nature combined with the 

organizational failure inherent in human endeavors? This thesis will search for answers derived 

from accident theory and organizational literature to answer these questions, and will aim to 

draw conclusions and set forth policy recommendations based on the risk presented by 

dangerous new technologies. 

 

Purpose of the Thesis 

The goal of this thesis is to present a view of the 2010 BP Deepwater Horizon accident 

grounded in organizational theory that may offer insight to decision-makers and stakeholders in 

the Gulf region as well as other areas affected by or at risk of contamination from newly 

developed extractive technologies. The topic of the 2010 spill is significant because it exhibits 

the uncontrollable power of a technological accident as well as the conflict between reliance on 

unsustainable energy resources with the necessity to preserve ecological resources and 

environmental quality. 
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The analysis conducted in this thesis will address how the 2010 BP Deepwater Horizon 

blowout and oil spill can be characterized within disaster theory by attempting to answer the 

following questions: 1) Was the 2010 BP Deepwater Horizon Spill preventable within its 

existing sociotechnical system? Sub-question a) Do normal accident theory and high reliability 

theory apply to this event? Sub-question b) If these theories are applicable to this event, what 

indicators and criteria are appropriate for analysis? Sub-question c) How is the spill 

characterized in terms of these concepts and indicators?  

 

The findings of this analysis will indicate whether the 2010 spill was inevitable based on 

indicators drawn from normal accident theory and high reliability theory. These findings weigh 

heavily in questions of whether or not to continue this risky technological endeavor, a topic 

partially broached by the advent of the 2010 spill and subsequent temporary moratorium on deep 

water drilling in the Gulf of Mexico. These questions also point to necessary changes to be 

incorporated into this sociotechnical system post-BP spill, and lend criteria by which to judge 

whether or not adequate steps have been taken to address these indicators of imminent disaster 

within the system. Finally, this thesis attempts to examine the tension between inherently 

accident-prone technology and organizational attempts to cope with this inherent risk in order to 

use this technology. 

 

Narrative of the 2010 Deepwater Horizon Blowout 

The 2010 Deepwater Horizon blowout event can be seen, as many accidents are in 

retrospect, as the result of errors and oversimplifications, an accretion of misread signals and an 

accumulation of faulty estimates in an unforgiving environment. The following narrative is 
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largely drawn from the 2011 “Report Regarding the Causes of the April 20, 2010 Macondo Well 

Blowout” published by the Bureau of Ocean Energy Management, Regulation and Enforcement, 

which details each step of the disaster and identifies technical causes of the blowout, and is 

supplemented by technical descriptions of events from other reports.  

 

BP first established the Macondo well as an exploratory well in the Gulf of Mexico, a 

process which provided limited information about its hydrocarbon reserve, yet promised 

adequate reason to cement and “temporarily abandon” the well in order to facilitate future 

extraction processes (U.S. Department of the Interior / BOEMRE, 2011: 13-21; Deepwater 

Horizon Study Group, 2011). Temporary abandonment includes the cementing of the well and 

the installation of plugs to control hydrocarbon flow and facilitate extraction (U.S. Department 

of the Interior / BOEMRE, 2011: 14-15). It is important to note that the Deepwater Horizon rig 

was a dynamically positioned mobile offshore drilling unit (DP MODU). DP MODUs are “not 

moored to the seafloor but instead hold their position over the well through a combination of 

satellite technology and directional thruster activity (Ibid: 14).” This DP MODU apparatus was 

attached to the well bore (the hole in the hydrocarbon formation) through a drill “string” armed 

with a blow out preventer (BOP) stack which was located close to the well bore (Ibid 14-15).  

 

The correct installation of a well depends on maintaining a balance between the pressure 

exerted by the formation on drilling and piping equipment and the capacity of the formation to 

withstand pressure (Ibid 27-28). Drilling mud is utilized to supply this balance, and is calibrated 

specifically to apply pressure to the formation that keeps the liquids within the formation in a 

controlled state. “In short, the mud must be heavy enough to control the pore pressure and ensure 
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that the formation fluids (including hydrocarbons) do not enter the wellbore, while not so heavy 

that it fractures the formation (Ibid 27-28).” This narrow window between the pressures needed 

to maintain the integrity of the formation while controlling the substances within it is referred to 

in the drilling industry as the “drilling margin (Ibid, 27-28).”  

 

The Macondo well was notorious for its peculiarity and difficult conditions before the 

accident occurred. The well presented problems in 2009, upon the first attempts to drill into it, 

when operators experienced well “kicks” in October 2009 and March 2010 (Ibid, 75-77). A kick 

is a serious well event referring to the “unwanted influx of formation fluids, such as 

hydrocarbons, into the wellbore (Ibid, 98).” It is crucial that operators identify these events in a 

timely fashion, as they can lead to a blow out situation, as eventually seen on April 20, 2010 

(U.S. Department of the Interior / BOEMRE, 2011:21, 98; Skogdalen and Vinnem, 2012). With 

close monitoring and active response, however, operators have been known to control well kicks 

and prevent escalation of the situation (U.S. Department of the Interior / BOEMRE, 2011: 21, 

98-99; Skogdalen and Vinnem, 2012). A second problem commonly experienced with the 

Macondo well was that of “lost returns” of drilling mud and fluid into the formation, which 

indicates a delicate formation that may have fractured in areas, allowing it to absorb fluid 

exerting great pressure on the formation at the time (U.S. Department of the Interior / BOEMRE, 

2011: 19-20; Deepwater Horizon Study Group, 2011). 

 

The goal of cementing the Macondo well was to achieve “zonal isolation” within the 

formation (U.S. Department of the Interior / BOEMRE, 2011:40). The standard procedure to 

cement and abandon a well includes cementing operations, pressure testing to make sure that the 
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constructed well can withstand the environmental pressures, the setting of a casing, and 

placement of a cement plug into the well to secure it against pressure forces (Ibid, 2, 14-16, 20-

21, 87). At the completion of these temporary abandonment procedures, the attending rig 

generally leaves the site to allow another rig to extract hydrocarbons from the well at a later date 

(Ibid, 14).  

 

Many dormant issues belied the temporary abandonment procedures of the Macondo 

well, including a lack of information about the hydrocarbon formation, faulty well design, and a 

failure to cope with the significant lost material into the well formation as a result of the tight 

drilling margin (Ibid, 13-14, 20, 38, 41-47, 53-54). These dormant issues created a risky 

environment in which small errors in operations within the well could be magnified into large 

system accidents when combined with malfunctioning equipment and inadequate staff capacity.  

 

On April 20, 2010 the crew of the Deepwater Horizon conducted positive and negative 

pressure tests to verify that the cement job in the well was adequately sealed and could withstand 

the pressure of the formation (Ibid, 21-22, 85). The positive pressure test was successful, 

however the two subsequent negative tests performed by the crew were largely inconclusive, but 

were interpreted incorrectly by the crew as being successful (Ibid 21-22, 88-97). Finally, on the 

evening of April 20, the crew conducted displacement procedures, in which they pumped out the 

drilling mud that had been used to maintain a pressure balance in the well, and replaced this mud 

with seawater in order to place the final seal on the well. During these displacement procedures, 

the hydrocarbon formation exerted immense pressure on the cement well structure with little 
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balancing force exerted from inside the well (typically referred to as an underbalanced condition) 

(Ibid, 86-88, 94-103).  

 

The well eventually experienced a well “kick” during these displacement procedures, 

which indicates the flow of hydrocarbons into the well and demands quick well control action, 

however the crew did not recognize this kick and failed to respond adequately, allowing 

hydrocarbons to flow up the well and onto the Deepwater Horizon deck (Ibid, 99-103). The crew 

then responded by diverting this flow to a mud gas separator that failed and spewed combustible 

gas within proximity to engines on the rig, which exploded and ignited the gas (Ibid, 103-106). 

The crew then attempted to initiate emergency procedures to activate the blow out preventer 

mechanism and disengage the Deepwater Horizon from the well, but these attempts failed due to 

multiple mechanical errors, leaving the well spewing oil and eventually sinking the Deepwater 

Horizon (Ibid 107-108, 129-144). Many of the crewmembers escaped the accident, however 11 

members died and an estimated five million barrels of oil were released into the Gulf of Mexico. 

The Macondo well was capped and later sealed on September 19, 2010 (Ibid, 1, 24).  

 

The 2010 spill took a large toll on the health of the various ecosystems and local 

economies of the Gulf of Mexico and the Gulf coast. It threatened the sensitive populations of 

migratory shorebirds, fish, and mammals with widespread and intergenerational consequences 

for these species (Henkel et. al., 2012; National Wildlife Federation, 2013). The deluge of oil 

suffocated the marshlands of the Mississippi River delta system (Lin and Mendelssohn, 2012), 

which serve a crucial function within the ecosystem and protect human settlements against the 

brutal hurricanes that attack the coast regularly. The oil and dispersants that cleanup workers and 
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seafood customers contacted in the time following the spill are suspected to have caused a wide 

range of physical ailments (Goldstein et. al., 2011), and some authors have suggested that the 

toxicity of these elements in seafood products was not adequately represented in federal studies 

(Rotkin-Ellman et. al., 2012). The use of dispersants was criticized further because of the largely 

untested method of applying them within the context of the 2010 spill (Iaquinto, 2012), as well 

as their possible ramifications in the marine ecosystem (Zuijdgeest and Huettel, 2012; Berninger 

et. al., 2011). Finally, the spill had far reaching mental health and financial ramifications borne 

by the communities of the Gulf South, many of which are closely tied to the natural resources of 

the area for their livelihoods (Lee and Blanchard, 2012; Johnston Jr. et. al., 2012). 

 

Analysts of the 2010 spill not only recognize the environmental impacts of the spill on 

the sensitive environment and fragile biodiversity of the Gulf of Mexico, but also note the deep 

economic impacts of this accident. Many predict long-term negative impacts to the commercial 

and recreational fishing and marine industries in the Gulf of Mexico and surrounding areas 

(Sumaila et. al., 2012), in addition to the immediate negative impact experienced by the fishing 

and tourism industries, and small businesses (Davis, 2011). The environmental, social, and 

economic repercussions of the 2010 spill cannot be understated, as they have irreversibly 

changed the Gulf coast. 

 

The devastation resulting from the 2010 spill has left many residents searching for 

answers and solutions to prevent spills in the future. While the deep water drilling industry has 

grown, the increased risk to the environment and coastal livelihoods has grown with it, resulting 

in a conflict between profitable extraction and safety that is currently playing out in post-spill 
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battles about legislation. This thesis aims to confront the question of whether or not the spill was 

preventable, and to shed light on how the sociotechnical system that controlled the operation of 

the Deepwater Horizon failed to prevent this catastrophe. 
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Chapter 2: Literature Review 

A review of the literature on accidents within sociotechnical systems includes an 

assortment of theories that consider the temporal, probabilistic, structural, and organizational 

aspects of industries and processes that present technological risk to society. Many authors 

attempt to align characteristics of a system or organization with accident potential, while some 

theorists consider the human/technology interface in society and base their claims on 

communication as opposed to control. Most theorists in the field aim to improve the operations 

or policy surrounding industries that present a threat to humans, while others seek to illuminate 

the power structures that influence decisions concerning potentially catastrophic technologies. 

 

Early Sociotechnical Disaster Theory 

A thorough study of the literature on the organizational roots of technological disasters 

begins with Barry Turner’s 1978 publication, Man-Made Disasters. In his survey of 

technological disasters, Turner analyzed the preconditions of disasters from a sociotechnical 

standpoint, including aspects such as imperfect knowledge distribution, centralization of 

decision-making, complex failures of compatibility, and gaps in responsibility (Turner 1978:3-6, 

23-24, 58, 66).   

 

Turner’s research, like others in the sociotechnical disaster literature, links human control 

over processes that use or distribute energy with disaster risk and highlights the importance of 

communication in dangerous sociotechnical systems (Turner 1978:3,38, 121-124). One of 

Turner’s most valuable contributions to sociotechnical disaster theory is his introduction of the 
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“intubation period,” a concept that describes the accumulation of minor errors and weaknesses 

that accumulate preceding, and eventually causing, a technological disaster (Turner 1978:86-90).  

 

Turner’s model is the basis of a later created time-based concept known as Disaster 

Incubation Theory (DIT), introduced by Turner and Pidgeon in 1997. DIT asserts that 

organizations can slip into complacency and suffer increased entropy and chaos as they 

accumulate dangerous precedents and practices that eventually combine to create an accident 

(Turner and Pidgeon, 1997 as cited in Shrivastava et. al., 2009). Shrivastava, Sonpar, and 

Pazzaglia, in 2009, refer to this trend toward increased accident risk through the accumulation of 

errors as “the gradual erosion of reliability,” and thus link this train of thought with theoretical 

influences that strive to prevent accidents before they happen (Shrivastava et. al., 2009). 

 

In contrast to Turner and Pidgeon’s work on the accumulation of error in a temporal 

perspective (1997), some accident theorists have based their studies on James Reason’s Swiss 

cheese model (SCM) of accident prevention, which considers the cumulative nature of errors and 

the relative probability of these errors occurring in tandem to facilitate a disaster (Reason, 1998 

as cited in Shrivastava et. al., 2009). This theory can be visualized as layers of safety barriers 

(like pieces of stacked Swiss cheese) that combine to form a solid barrier with the exception of 

the situation in which the holes in the Swiss cheese align, thereby allowing an incident to occur 

(Reason, 1998 as cited in Shrivastava et. al., 2009).  
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Introduction to Normal Accident Theory 

Charles Perrow’s Normal Accident theory not only focused on the human/technology 

interface, as previous theorists had, it identified aspects of technical and social systems that make 

disaster not only possible, but unavoidable, or “normal” (Shrivastava et. al., 2009; Perrow, 1999: 

5, 63, 333-334; Sagan, 1993: 28-29). In his normal accident theory, Perrow considers the 

structural and organizational contributing causes of technological disasters, and identifies two 

attributes -- complexity and coupling -- that serve as measures of a system’s potential to create a 

disaster (Perrow 1999: 72-97). As dictated by the theory, the accidents that result from the 

confluence of these two attributes are considered “normal” or “system” accidents because they 

are inevitable given the level of complexity and tight coupling inherent in the subject system 

(Perrow, 1999: 5). Normal accident theory, as first described by Perrow, is based on the ‘garbage 

can’ model developed by Cohen, March, and Olsen (1988) and March and Olsen (1979). This 

model asserts that an organization may be characterized by many conflicting goals and 

uncertainty, and may therefore not always act as a rational actor, and may exercise bounded 

rationality1 in decision-making (Perrow, 1994; Perrow, 1999: 323-324; Sagan, 1993, 29-31).  

 

In his quest to identify why some industries or processes rife with safety procedures and 

defenses against failure still manage to experience major accidents, Perrow notes that the 

qualities of complexity and tight coupling within a system demand different specific authority 

structures in order for a given organization to cope with these technical challenges (Perrow, 

1999: 330-335). A high level of interconnectedness between system components, reliance on 

indirect information sources, an unpredictable environment, or incomprehensibility of a system 

                                                        
1 The term “bounded rationality” refers to “limits on [humans’] thinking capacities and our inability to often 

achieve or even seek absolute rationality (Perrow, 1999: 323).” Rationality, in this instance, refers to perfect 

reasoning and consideration of all alternatives (Selten, 1999). 
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to its operators indicates complexity within a system (Perrow, 1999: 85-86). This quality may 

require specialized operator jobs and a decentralized command structure in emergent situations 

and accident prevention. This allows operators closest to the failing units or subsystems to 

exercise their knowledge to prevent escalation to a large-scale accident (Perrow, 1999: 332).  

 

Tight coupling is often indicated by a tendency within the technical system for small 

failures to be magnified and instigate major failures elsewhere in the system with little time for 

intervention. Tight coupling, therefore, requires a centralized authority structure to effectively 

anticipate the effects of specific actions on the system as a whole. A central authority figure 

familiar with all of the parts of a system may be better equipped to handle tightly coupled 

interactions (Perrow, 1999: 333-335). An example of a centralized structure is a military 

hierarchy or the influence of strict accident training and procedures implemented in an industrial 

setting (Perrow, 1999: 333-335). 

 

Normal accident theory asserts that a high level of complexity and tight coupling within a 

sociotechnical system predicts an accident within that system because the organizations that 

control these processes are unable to provide a simultaneously centralized and decentralized 

authority structure (Perrow 1999: 5, 334-335). This dilemma is an extension of contingency 

theories first developed by Burns and Stalker (1961) and Woodward (1965).2 It leads Perrow to 

conclude that systems with these qualities are naturally prone to disaster regardless of their 

technical safety buffers or procedures (Perrow 1999: 4-5, 334). 

 

                                                        
2 Perrow draws from contingency theorists’ assertion that “centralization is appropriate for organizations 

with routine tasks, and decentralization for those with nonroutine tasks (Perrow, 1999: 334).” 
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Complexity 

The first attribute that Perrow identifies as a contributor to normal accidents within 

sociotechnical systems is that of complexity. Complexity describes such factors as the level of 

interdependency or interconnectedness among physical, chemical, or biological components of 

the system, the relative obscurity of the results of operators’ commands, or the sheer 

incomprehensibility of the subject technical system to an operator who may be trained to focus 

only on a single component (Perrow 1999: 78, 88).  

 

To illustrate the concept of complexity within a sociotechnical system, Perrow utilizes 

the concept of an assembly line as an example of a linear, and thus not complex, system (Perrow 

1999: 72). Some indicators of complexity include multifunctional components within a system, 

proximity (enabling unforeseen interactions between separate components), reliance on indirect 

information sources, multiple “control parameters,” specialization of personnel, and an uncertain 

environment3 (Perrow 1999: 72-75, 84-86; Shrivastava et. al., 2009).  

 

One example of a complex interaction based on proximity of two elements would be in 

Perrow’s example of an oil tanker accident in which the oil storage location was near the engine 

room. Designers had not planned for these two areas to affect one another, however when an 

object pierced the hull of the ship, damaging the structural integrity of the oil storage and the 

engine room, the oil seeped into the engine room and ignited (Perrow 1999: 73-74). In this chain 

of events, two areas that were not planned to interact with each other did interact, causing an 

                                                        
3 A complete list of the indicators and a working definition of complexity is included in Appendix A, page 86. 
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unforeseen event – the fire. This is an example of complexity, illustrating that complexity within 

a system is directly linked with uncertainty and unpredicted interactions.  

 

Coupling 

The second attribute that Perrow identifies is “tight coupling,” which generally refers to 

the degree to which the action of one physical, chemical, or biological component within the 

system affects the action of another component (Perrow 1999: 89-93).  Tight coupling, as 

defined by Perrow, refers to a process similar to a chemical reaction in that it must be buffered 

by safety designs such as redundancies, safety alarms, etc., due to a lack of human capacity to 

interfere in tightly-coupled processes at certain points (Perrow 1999: 90-94). However this 

concept can also describe processes that do not lend themselves to improvisation, such as 

processes that can only be completed in a specific order or where the substitution of parts or 

personnel is not possible (Shrivastava et. al., 2009; Perrow 1999: 90-94).  

 

This definition applies to strict, highly monitored or regulated processes with little slack 

for improvisation within the context of an accident. Therefore, tightly coupled systems are 

somewhat less able to absorb shocks or changes within their normal operating environment and 

rather only perform correctly within specific limits of conditions and are often indicated by the 

presence of automatic safety buffers and redundancies4 (Perrow 1999: 93-95).  

 

A simple example of tight coupling can be seen in a chemical reaction, in which the 

addition of one chemical triggers a fast process change (for example the addition of baking soda 

                                                        
4 A list of the indicators and a working definition of coupling is included in Appendix A, page 86. 
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to vinegar triggers a bubbling effect). In contrast, the addition of baking soda to a mixture of 

flour, sugar, and eggs will not trigger a quick shift of the mixture into a batch of cookies, and 

instead this process requires the baker to execute many steps in a sequence. Coupling is therefore 

a time-based concept meaning that the speed of a reaction is directly indicative of coupling. 

Coupling is also a concept linked with direct causality, meaning that if one action invariably 

triggers a specific action, these two events are tightly coupled. 

 

Other Factors Affecting Risk 

In his survey of normal accidents, Perrow notes several factors (beyond complexity and 

coupling) within various industries that contribute to disaster risk, including production 

pressures, automated technology, conflicting agency goals, various legal incentives and liability, 

regulatory relationships, and the possible effects of a disaster, (Perrow 1999: 108-118, 131-132, 

158-159, 166, 172-173, 176). Perrow also comments on a trend within dangerous sociotechnical 

systems whereby increased safety precautions or technology allow managers to push the limits of 

safeguards and operate within thin safety margins, ensuring increased efficiency rather than safer 

operation (Perrow 1999: 146, 180).  

 

Perrow, in his review of Sagan’s 1993 publication, highlights a number of organizational 

characteristics not previously specifically discussed within normal accident theory that affect the 

level of risk within a system including (Perrow, 1994): 

 

• experience/duration spent to achieve an operating scale  

• experience with “critical phases”  
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• the availability and open sharing of information on errors  

• close proximity of elites to the system operations  

• organizational control over members  

• “organizational density of the system’s environment” 

It should be noted, however, that Perrow does not make an effort to include these factors into his 

argument for the inevitability of disasters, and simply mentions them in passing. 

 

In 1993, Scott Sagan applied normal accident theory to nuclear weapons accidents within 

the United States. In this analysis, Sagan adheres closely to the original definitions of complexity 

and coupling put forward by Perrow in 1984. Sagan, however, delves deeper into the influence of 

production pressures and regulatory relationships, and places an emphasis on power and 

relationships that dictate the management of technology with a high catastrophic potential (Sagan 

1993: 37-39, 41-43, 207-210, 252-259). 

 

Cost and Production Pressures within Normal Accident Theory 

Perrow (1999) and Sagan (1993) both recognize that cost and production pressures have a 

direct and substantial influence on safety capacity within organizations. In his examination of 

cost and production pressures on sociotechnical systems with the capacity to create disasters, 

Perrow recognizes that many firms may externalize the risk or effects of their processes, thus 

resulting in a market failure. However Perrow insists that the capitalist system which allows this 

market externality is not at fault in this instance, as proven by the fact that sociotechnical 

production systems in non-capitalist systems are under the same production pressures as those 
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within capitalist systems because they must compete globally5 (Perrow 1999: 339-342). This line 

of thought would lead one to believe that cost and production pressures may play a part in 

creating risk within sociotechnical systems, but that these issues are not the main culprit in 

normal accidents.  

 

In his analysis of explosions at chemical processing plants, Perrow concludes that cost 

and production pressures are a constant within industrial endeavors and that human organizations 

will predictably exercise some degree of human error and inability to detect important anomalies 

within their processes (Perrow, 1999: 111-112). By this description, Perrow appears to ignore the 

spectrum of influence that cost and production pressures or incompetence can have within 

different firms. Although he recognizes that these issues affect risk, Perrow does not provide 

measurable indicators of the degree of influence that cost and production pressures have on a 

system’s proclivity to a normal accident. 

 

In my opinion, Perrow’s view of constant cost pressures and human ineptitude is an 

oversimplification within normal accident theory, as it seems that higher relative levels of cost 

and production pressures play a part in dramatically increasing complexity and coupling beyond 

the level inherent within the technical system. These trends also appear to have the effect of 

lowering levels of safety and preparedness for accidents. Examples of this phenomenon may 

include utilizing faster or more efficient processes that increase common-mode components (an 

indicator of complexity) and shorten time for human intervention into processes (tightening 

coupling). One example of the connection between cost pressures and coupling can be observed 

                                                        
5 It should be noted that this description of the relationship between capitalist systems and production 

pressures was written in 1984 and republished in 1999, and therefore may not adequately describe the 

current global marketplace brought on by increased globalization in the 21st century. 
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in Perrow’s description of the reduction of staff numbers in flight crews (prompted by financial 

savings), which “will lead to much tighter coupling – that is, less resources for recovery from 

incidents (Perrow, 1999: 161).” 

 

Sagan focuses on cost and production pressures through the lens of evaluating the 

applicability of normal accident theory to nuclear weapons accidents in the U.S. In his analysis, 

Sagan notes that the organizational results of production pressures, for example hasty decision-

making and procedures conducted in a rushed and imperfect fashion, often accompany a normal 

accident, thereby linking these concepts, rather than commenting on them as separate phenomena 

within a system (Sagan, 1993: 36-38). Although Perrow and Sagan provide observations on the 

relationship between cost and production pressures, this factor is not adequately represented in 

the main concepts and indicators of normal accident theory.  

 

Normal accident theorists discuss cost and production pressures as contributing to 

accident risk, but do not list measurable indicators of the degree to which these qualities 

contribute to systemic failure. Based on this treatment of the variable of cost and production 

pressures within normal accident theory, I hypothesize that normal accident theory is not capable 

of adequately describing all system accidents and fails to address the critical influence of cost 

and production pressures on accident risk. 

 

Interests and Power in Normal Accident Theory 

Perrow and Sagan have elaborated on group interests and power (Sagan, 1993 as cited in 

Perrow, 1994), structural incentives for neglecting safety (Perrow, 1994), and organizational 
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learning impeded by ineffective communication (Sagan, 1993: 252-259) within the context of 

normal accident theory.  

 

One major way in which normal accident theory addresses power issues in accidents is 

the transfer of blame in accidents from ‘operator error’ to system dysfunctions and interactions 

(Perrow 1999: 63). This implies that many accidents may be the result of a system that includes 

budget cuts to critical safety processes, poorly designed equipment, and a push toward increased 

production, yet the accident that results from this system may be blamed on operator error.  

 

In his research into “accident inducing systems,” such as the marine transportation 

industry, Perrow (1999) cites failures in management that are directly related to power structures 

encouraging unsafe operation. Perrow contends that limited financial loss in the event of an 

accident, inelastic demand, low-status or anonymous victims, delayed accident effect, and the 

absence of elites as victims in the risky system are factors that promote unsafe operation from a 

management perspective (Perrow 1999: 67-70, 171-173). Perrow further argues that managers of 

dangerous technologies are prone to perverse incentives built into the management structures of 

firms that punish expenses and delays associated with safety precautions, and that allow 

managers to make decisions that ignore an accident’s latency period (Perrow, 1994).  

 

Sagan, in his 1994 response to Perrow’s article, agrees and adds that institutional 

mindsets may prevent improvements in safety even after an accident due to reflexive adoption of 

redundancy, and failure to actually learn lessons from mishaps due to agency secrecy and 

competition as well as a false confidence in the ability to avoid disasters (Sagan, 1994). 
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Criticisms of Normal Accident Theory 

Normal accident theory is imperfect, and has been thoroughly critiqued within the 

organizational accident literature. The most significant critique of normal accident theory leveled 

by Hopkins (1999) is that the theory, as originally developed by Perrow, applies to a very narrow 

category of accidents and that it is difficult to adequately determine which accidents are 

described by normal accident theory. An example of this issue can be seen in Perrow’s 1994 

article in which the author does not classify the gas leak in Bhopal, India in 1984, the Challenger 

space shuttle disaster, the Chernobyl nuclear reactor accident, or the spill of the Exxon Valdez 

oil tanker as normal accidents6. Many critics conversely argue that some of these major accidents 

have taken place in seemingly complex and tightly coupled systems (Hopkins, 1999; Shrivastava 

et. al., 2009).  

 

Hopkins (1999) further criticizes Perrow, in his original construction of normal accident 

theory, for a lack of criteria by which to place specific industries or processes within his matrix 

of complexity and coupling. Perrow, in response to this common critique of his theory, agreed 

that a unit of measurement of the small errors within sociotechnical systems with the capacity to 

disrupt the system by bypassing safety measures is necessary (Perrow, 1994).  

 

Shrivastava et. al. (2009) note an additional critique in that normal accident theory 

utilizes the concepts of complexity and coupling as if they are static characteristics of a system. 

Shrivastava et. al. (2009) contend that complexity is a relative concept subject to the cognitive 

                                                        
6 Although many of these events can be classified as “disasters” rather than “accidents” due to their 

devastating scale or nature, Perrow does not distinguish between disasters and accidents throughout his 

1999 publication, and uses the term “accident” to describe large-scale system failures – thus designating 

more weight to this word that its standard connotation would imply. 
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capacity of operators within a system and that coupling is subject to the degree of conceptual 

slack allotted to operators within a system (Schulman 1993 as referenced in Shrivastava et. al., 

2009). Based on these considerations, Shrivastava et. al. argue that Perrow overlooks a human 

component in complexity and coupling. Their critique focuses on the flawed, rigid view of a 

system provided by normal accident theory (centering on the paradox of centralized v. 

decentralized control). These authors insist that sociotechnical systems include variable human 

elements that allow for flexibility in coping with complexity and coupling (Shrivastava et. al., 

2009).  

 

Another critique of normal accident theory is that proponents of the theory have generally 

compiled and tested their theory through the analysis of archival data found in accident reports 

(Roberts, 1990; Bain, 1999). This method clearly has its faults, including a lack of pertinent 

details and explanations, as well as the possibility of firms intentionally withholding information. 

In response to this criticism, however, Perrow warns against accident researchers ‘going native’ 

in the search for empirical evidence, and thus neglecting to anticipate failures within their 

respective organizations (Perrow, 1994).   

 

Normal accident theory has significant issues in its application to accidents and 

sociotechnical systems. As alluded to on pages 15-19, this theory attempts to describe inherent 

risk in sociotechnical systems using the variables of complexity and coupling, however this 

classification system ignores many major concepts such as cost and production pressures and 

power structures. Although both Perrow and Sagan acknowledge these factors as important, 

normal accident theory fails to provide measurable indicators for these concepts, and relegates 
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these ideas to the status of side issues. High reliability theory, detailed below, may serve to 

supplement these deficiencies within normal accident theory, by providing an organizational 

perspective that places emphasis on organizational learning, the prioritization of safety, and the 

formation of a ‘culture’ of reliability within a firm or industry. These two theories, in 

combination, may also apply to a broader range of accidents, as they provide social and technical 

indicators of risk7.  

 

An application of normal accident and high reliability theories to an accident event is, by 

its nature reliant on accident reports. This method therefore does not account for the dynamic 

characteristic of risk over time (as alluded to in Shrivastava et. al., 2009), and only offers a 

snapshot of the sociotechnical system in which the subject accident took place.  

 

Although normal accident theory and high reliability theory, as drafted by their seminal 

authors, do not include specific criteria to link accident causation with the indicators of main 

theoretical concepts such as complexity, safety prioritization, etc., this thesis attempts to 

establish criteria for these concepts based on an examination of their narrative application within 

the literature. 

 

Answer to Normal Accident Theory: High Reliability Theory 

High reliability theory refers to the study of organizations in charge of high-risk 

technology that experience very few accidents. This realm of accident theory developed in the 

late 1980s and early 1990s in direct response to Perrow’s normal accident theory (Sagan, 1993: 

                                                        
7 Many high reliability theorists, in fact, insist that their method applies to a broader range of accidents than 

does Perrow in his 1994 article – see Hopkins 1999, Shrivastava et. al., 2009, La Porte 1994, Roberts 1990b, 

Roberts and Bea, 2001. 
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14-16; Shrivastava et. al., 2009; La Porte and Consolini, 1991; La Porte, 1994). High reliability 

theorists generally responded to Perrow’s theory by asking: If complexity and coupling lead to 

inevitable accidents, why have some firms in charge of seemingly complex and tightly coupled 

processes avoided system accidents? These theorists specifically considered the frequency of 

‘near misses’ or avoided accidents and the extensive safety record of some organizations. From 

these they identified common management themes that successful firms employed to greatly 

reduce or eliminate accident potential (La Porte and Consolini, 1991; Roberts, 1990b). 

 

Scholars at the University of California at Berkeley including Todd LaPorte, Paula 

Consolini, Gene Rochlin, Karlene Roberts, and Robert Bea, and at the University of Michigan at 

Ann Arbor including Karl Weick and Kathleen Sutcliffe, pioneered research into high reliability 

organizations. These scholars asserted that organizations can avoid system disasters by practicing 

organizational learning and “sophisticated methods of trial and error,” while prioritizing safety 

above all other objectives and socializing operators to work within a decentralized authority 

structure while harboring a common operating culture (La Porte, 1994; La Porte and Consolini, 

1991; Sagan, 1993: 16-24; Roberts and Bea, 2001; Weick, 1987).  

 

More specifically, high reliability theorists look at the ways in which organizations in 

control of high hazard technologies seek out weak links in their processes and methodically 

adjust their processes to accommodate a changing environment (Roberts and Bea, 2001; Sagan, 

1993:25). Roberts, in her account of a nuclear aircraft carrier’s processes, emphasizes constant 

training as well as an authority structure that designates responsibility to the lowest ranking 
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members of the organization and allows for negotiation with leadership, thereby introducing 

flexibility and decentralization into a traditionally hierarchical structure (Roberts, 1990b).  

 

The tenets of high reliability theory are somewhat more diffuse than those presented by 

Perrow and Sagan in normal accident theory, due to their diverse authorship. From these 

numerous contributors, however, organizational learning, prioritization of safety, and 

organizational “culture” stand out as three common threads that high reliability theorists discuss 

as aiding in the vigilance and resilience of an organization.  

 

Organizational Learning 

Much of the literature on high reliability organizations focuses on these firms ability to 

learn over time and incrementally adjust their processes to reduce failure. In his description of 

high reliability theory, Sagan suggests that although trial and error serves as an opportunity for 

organizational learning to take place (as suggested by Wildavsky), high reliability firms must 

often rely on “simulations and imagination of trials and errors” to improve their processes 

because the social cost of their failure is so high (Sagan, 1993: 25-26; Wildavsky, 1988: 17 as 

referenced in Sagan, 1993). Roberts and Bea add to this concept by noting that some high 

reliability organizations practice almost constant training or accident imagination, and are able to 

identify parts of the system that require redundancies as a result of organizational learning 

(Roberts, 1990a, Roberts and Bea, 2001).  
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Prioritization of Safety 

The prioritization of safety is a critical concept in high reliability theory. Many high 

reliability theorists argue that a reduction in accidents within a given sociotechnical system is 

only possible if both elites and managers recognize that the social cost of an accident is 

unacceptable, and therefore prioritize safety as the primary objective of the organization (La 

Porte and Consolini, 1991; Roberts, 1990a; Sagan, 1993: 17-19). This assertion that safety must 

be prioritized, however, speaks to two social concepts: first, that elites (regulators and those with 

power) must have a stake in the avoidance of accidents within these systems and second, that 

managers within the entirety of a firm must prioritize safety over profit or efficiency (Sagan, 

1993: 17-19). 

 

Organizational Culture 

A third concept embraced by high reliability theorists is that of an organizational culture 

that serves to socialize operators thoroughly so that they use common operating procedures and 

decision-making reasoning (Roberts, 1990b). This culture, if implemented correctly, allows for 

decentralization within the authority structure of a firm – addressing emergency situations or 

peak load periods – while maintaining a consistent set of assumptions and goals within the group 

of operators serving a firm (Roberts, 1990b; Sagan, 1993: 21-25; Roberts and Bea, 2001). High 

reliability theorists list qualities such as open communication, clear designations of 

responsibility, and adequate training of employees as key factors in the cultivation of a safety-

oriented organizational culture within a firm (Roberts and Bea, 2001; Sagan, 1993: 21-25; 

Roberts, 1990b).  
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High Reliability Theory vs. Normal Accident Theory 

Some organizational theorists have attempted to contrast high reliability theory with 

normal accident theory, thus framing the two theories as competing perspectives (Perrow, 1994, 

Sagan, 1993).  This inclination is likely based on the fact that normal accident theory and high 

reliability theory do not neatly rest on the same theoretical assumptions concerning rationality, 

organizational structure, or the importance of redundancy (La Porte 1994, Sagan, 1993:16-28).  

 

One example of these theoretical differences is that high reliability theory, unlike that of 

normal accident theory, insists that redundancy (in terms of mechanical functions or people) can 

improve safety by “[making] a reliable system out of unreliable parts” (La Porte, 1994; Roberts, 

1990b). Because this has been a point of the dispute between the theories and due to its lack of 

conceptual prominence in recent publications8, this concept will not be considered as a main 

tenet of high reliability theory within this thesis, however it is significant that this concept 

appears in the high reliability theory literature. 

 

More significantly, high reliability theory is often either tacitly or explicitly based on a 

rational model of organizations, and therefore claims that organizations can prioritize safety 

above all other objectives, an assertion that conflicts with Perrow’s adoption of the garbage can 

model in normal accident theory (La Porte, 1994; Perrow, 1994; Robers, 1990b). Finally, some 

high reliability theorists claim that “nearly error-free” organizations are able to experience the 

benefits of a centralized and decentralized authority structure simultaneously through intense 

socialization and communication, a notion that goes against Perrow’s assertion that these modes 

                                                        
8 Examples of this include Roberts and Bea, 2001 and Shrivastava et. al., 2009. 
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are mutually exclusive (Roberts, 1990b; Roberts and Bea, 2001; La Porte 1994; Shrivastava et. 

al., 2009). 

 

Although high reliability theory clearly expresses differences with the premises of normal 

accident theory, many theorists hold that these two theories are not competing perspectives, and 

rather function as “blindfolded observers feeling different parts of an elephant (Rosa, 2005)” 

(Shrivastava et. al., 2009; La Porte, 1994). Additionally, both normal accident theory and high 

reliability theory have been described as incomplete or featuring an “under-developed systems 

perspective that warrants a synthesis of the two concepts in analysis of accidents (Shrivastava et. 

al. 2009).” The symbiosis between the two theories may be observed within the framework of a 

structural view of a sociotechnical system as exemplified by normal accident theory 

accompanied by a view of power and safety culture based more in management, as exemplified 

by high reliability theory (Rosa, 2005).  

 

Because high reliability theory evolved as a response to the organizational challenges set 

forth by normal accident theory, namely complexity and coupling, high reliability theory is often 

framed as an attempt to answer these challenges (Roberts, 1990b; Shrivastava et. al., 2009). This 

relationship sets up a dialogue between the measures of normal accident theory concepts, which 

set forth the degree to which the sociotechnical system is burdened by complexity and coupling, 

and the measures of high reliability theory concepts, which measure the ability of an 

organization to cope with complexity and coupling.  
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Criticisms of High Reliability Theory 

Due to its predominant focus on organizational and social factors, one clear criticism of 

high reliability theory, made by Perrow, is that it ignores technical or environmental factors 

within a sociotechnical system and only looks to management in disaster causation (Perrow, 

1994). This is an apt critique that is clearly addressed by the combination of a technical system 

analysis based on normal accident theory accompanied by an application of the tenets of high 

reliability (Roberts, 1990b; Shrivastava et. al., 2009; La Porte and Consolini, 1991). An 

additional critique of this theory is that its link to causality cannot be entirely proven due to a 

lack of “systematic comparisons with non-HROs” (Shrivastava et. al., 2009). This critique 

appears to be a temporary issue, as further development of high reliability theory could seek to 

address this lack of evidence.  

 

A third, and more damning critique of high reliability theory, which also applies to 

normal accident theory, is that of the accusation of non-falsifiability as noted by Rosa (2005) and 

reiterated by Shrivastava et. al. in 2009. Shrivastava et. al. comment on this flaw by asserting 

that normal accidents theory and high reliability theory can neither be proven nor disproven in 

practice based on the lack of measurable concept criteria presented in each theory (Shrivastava 

et. al., 2009). This criticism of both theories may be addressed through further development of 

indicators and criteria identifying main concepts within the theories, as well as the growth of 

empirical studies applying these concepts to industrial practices (Shrivastava et. al., 2009; Rosa, 

2005). 
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Constructivist Approaches to Sociotechnical Systems 

Normal accident theory and high reliability theory (as well as their predecessors such as 

disaster intubation theory) are all based on organizational theories that specialize in a rational 

approach to technical problems, thereby marking a separation between human and non-human 

actors in a sociotechnical system. Other theoretical perspectives related to disasters in 

sociotechnical systems provide an alternative interpretation of this relationship, including 

science, technology, and society (STS) studies, actor-network theory, and the social construction 

of technology. STS basically refers to a branch of scholarship that focuses on the relationship 

between societal values and scientific research. STS focuses on the social context of scientific 

discoveries and contributions, and questions the strictly empirical aura surrounding scientific 

claims. Instead, it presents the notion that scientific knowledge may be socially constructed or at 

the very least may be affected by the social context in which it takes place (Radder, 1992).  

 

Actor-network theory (ANT), largely developed by Michel Callon, Bruno Latour, and 

John Law, focuses on the relationship between human and non-human actors within a system. 

Described as material-semiotics, ANT is innovative in its consideration of technology within a 

network as an “actant,” placing emphasis on the network of ideas, tools, machines, and humans 

or operators (Radder, 1992). Actor-network theory presents an interesting contrast to theories 

emphasize the technical structure or organizational control of accidents, as actor-network theory 

focuses attention to the relationships and connections between actors, as opposed to the control 

of technology through science or society (Radder, 1992). 
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Radder, in his publication on constructivist theories regarding science, contrasts the 

normative suggestions in Perrow’s normal accidents theory with Latour’s actor-network theory 

noting that while constructivist theories on science and technology may not specifically offer 

direct policy guidance for the prevention of accidents, these theories do not lack a normative 

angle, because all approaches to science, including those labeled ‘disinterested’ have normative 

ideas underlying their practice (Radder, 1992). The author further notes that a broad normative 

strategy that can be gleaned from an actor-network theory approach to technological accidents is 

to implement projects with minimal catastrophic potential that are democratically supported by 

all of the citizens involved in the process (including those affected by potential accidents) 

(Radder, 1992). This perspective on adequate technologies seems to blend easily with Perrow’s 

undertone of criticism for an unequal balance of power and risk with regard to technological 

accidents (Perrow, 1999: 304-305, 309, 320-323, 341-342).  

 

Differing Concepts of Reality 

Various theoretical approaches to disaster causality hinge on conceptions of reality and 

the possible multiple perspectives of reality in a given situation. Gephart (1984) proposes an 

additional “political sensemaking model” which embraces the notion that there is no one 

objective version of reality.  

 

Gephart has many disagreements with Turner’s theory including: 1) Gephart asserts 

(contrary to Turner’s rational model) that there is not one singular reality that operators in an 

emergency situation are having trouble grasping, but instead there are multiple constructions of 

reality based in language that are expressed by opposing sides; and 2) Gephart disagrees with 
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Turner’s assertion that the preconditions for disaster happen right before the accident and are not 

seen because of faulty paradigms of thought (Gephart, 1984). In this disagreement, Gephart 

asserts that the preconditions for a disaster can last for a long time, using the infamous “Love 

Canal” debacle as an example (Gephart, 1984).  

 

It should be noted that many authors have grappled with the disconnect between 

operators’ conceptions of reality and objective reality (later outlined in accident reports) in the 

context of a technological system accident (Turner, 1978: 50-58, 128-129, 138-146, 154-156; 

Perrow, 1999: 274-278; Weick, 1988). Gephart adds to this realm of theory by offering the 

concept that no one version of reality is correct and that the reality of a situation changes with its 

observer. 
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Chapter 3: Research Methods 

The research questions that I seek to address in this thesis are: 

1. Was the 2010 BP Deepwater Horizon oil spill preventable? 

a. Do normal accident theory and high reliability theory apply to this event? 

b. If these theories are applicable to this event, what indicators and criteria are 

appropriate by which to determine if the event was preventable? 

c. How is the spill characterized in terms of these five main indicators? 

 

Normal Accident Theory and High Reliability Theory in Application 

In order to answer my primary research question, “Was the 2010 BP Deepwater Horizon 

oil spill preventable?” I will use normal accident theory and high reliability theory, in tandem, to 

identify the sociotechnical and organizational causes of the accident. By applying these theories 

together, I will attempt to find whether complexity and coupling indicated a predication toward a 

system accident (as set forth by normal accident theory), and whether the social system including 

the Deepwater Horizon rig crew, management, and regulators functioned as a high reliability 

organization with the capability to prevent such system accidents from occurring through 

effective system management.  

 

This thesis will utilize the concepts of normal accident theory and high reliability theory 

developed by Perrow (1994, 1999), Sagan (1993, 1994), La Porte (1994 and 1991 with 

Consolini), Roberts (1990 and 2001 with Bea), Weick and Sutcliffe (2001) and Shrivastava et. al. 

(2009). I will apply criteria developed by the aforementioned authors to the causes, contributing 

causes, and possible contributing causes of the BP spill identified in the 2011 Bureau of Ocean 
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Energy Management, Regulation and Enforcement (BOEMRE) “Report Regarding the Causes of 

the April 20, 2010 Macondo Well Blowout” and the 2011 National Commission on the BP 

Deepwater Horizon Oil Spill and Offshore Drilling Chief Counsel’s Report entitled “Macondo: 

the Gulf Oil Disaster.”  

 

Methodology 

The boundaries of the sociotechnical system that this thesis will analyze include the 

Deepwater Horizon rig and the Macondo well (including all of the machinery, parts, and 

materials therein), the operators and managers atop the rig, the managers and corporate 

leadership of BP and its operating partners, and the regulatory regime of the Minerals 

Management Service in April 2010 as it applied to the Macondo well project. My unit of analysis 

will be the mechanical components (for example: the BOP stack, the drilling pipe, or the float 

collar) and, in the instance of social factors, the decisions, or specific lack of action (for example: 

the decision to use lost circulation material as a spacer, the failure to notify engine personnel of 

gas alarms) that occurred within the sociotechnical system. Larger-scale factors, such as the 

global economy, are generally outside of this boundary.   

 

I have chosen to apply the normal accident theory concepts of complexity and coupling 

and the high reliability theory concepts of organizational learning, prioritization of safety, and 

organizational culture to the subject case study through the use of a series of indicators as listed 

in Figures 1 and 2 (pp. 37-38). I will analyze each causal factor according to its alignment with 

the indicators of normal accident theory, high reliability theory, or “other” (to indicate that the 

causal factor does not fall into a category deemed significant within one of the two theories and 
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may be explained by a different theoretical approach). I will then construct a matrix to visually 

represent these findings. It should be noted that this analysis is qualitative and based on a single 

rater, and therefore may be influenced by analyst bias or a bias expressed within the accident 

reports (sources of data). Because of these conditions, some level of error will be built into this 

analysis. 

 

Upon classifying all of the causal factors of the spill, I will calculate the cumulative 

number of factors that signify each theoretical concept, as well as their percentage of the total. 

Although some causal factors may be linked to multiple theoretical concepts, the resulting 

percentages will roughly indicate the weight of each concept in the causation of the spill. I have 

set criteria to demarcate relative degrees of each concept’s influence in the causation of the spill, 

which are listed and explained in Figures 1 and 2 (pp. 37-38). I aim to determine if the subject 

sociotechnical system failed to prevent the Macondo well blowout due to complexity, tight 

coupling, a lack of organizational learning, lack of prioritization of safety, or an inadequate 

organizational culture9. This cumulative analysis of causal factors will assist in determining to 

what degree factors such as technical complexity or coupling, centralization of command 

structure, production pressures, knowledge gaps, and political/corporate power structures 

affected the accident. 

 

I have decided to apply normal accident theory and high reliability theory simultaneously 

to this event because they are the dominant theoretical influences in the field of organizational 

                                                        
9 I describe tenets of high reliability organizations in a negative manner, because the goal of the thesis is to 

answer whether or not a lack of these qualities led to the accident. 
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analysis of sociotechnical disasters10 as noted by several theorists who have recently urged a 

combination of the two methods (Shrivastava et. al., 2009; Rosa, 2005). Additionally, the 

combination of the two theories allows for a broader application to a range of disasters, as well 

as a more thorough examination of organizational causes of disaster, as each theory supplements 

the weak points of the other. An example of this supplementary usage can be seen in the fact that 

normal accident theory does not adequately set forth indicators to measure the effect that cost 

and production pressures have on risk levels within a system, however high reliability theory 

features indicators for the prioritization of safety that directly speak to this issue. Similarly, while 

high reliability theory does not adequately address the possible failure of mechanical components 

except through the concept of training and adaptation, normal accident theory provides indicators 

to assess the level of inherent technological risk through complexity and coupling. 

 

This complimentary relationship is apparent in my analysis, as many technological 

failures can be attributed to complexity and coupling, while many managerial failures can be 

attributed to a lack of organizational learning, lack of prioritization of safety, or inadequate 

organizational culture. My application of normal accident theory concepts to technical aspects of 

the Deepwater Horizon system is in keeping with the method by which Perrow employed the 

theory to multiple case studies in his 1999 publication on a component and decision level 

(Perrow, 1999: 15-32, 123-179). Similarly, my application of the concepts of high reliability 

theory to motivations or strategies aimed at addressing complexity and tight coupling is 

consistent with Karlene Robert’s analysis of high reliability as applied to nuclear aircraft carriers 

                                                        
10 The dominance of these theories within organizational accident literature is similarly exemplified by the 

number of citations per work as follows: Perrow, 1984/1999 – 2,043; Sagan, 1993 – 274; La Porte and 

Consolini, 1991 – 161; Weick and Sutcliffe, 2001 – 549; Roberts, 1990b – 144; Weick, 1987 – 226 (Thomson 

Reuters Web of Science Social Science Citation Index). 
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(Roberts, 1990b). Through the application of both theories, I aim to take a well-balanced 

approach to the causes of the disaster that considers both social and technical contributors to the 

spill. 

 

Indicators and Criteria 

A table of concepts, indicators, and criteria for normal accident theory and high reliability 

theory are provided on the following pages to illustrate the concepts presented above as applied 

throughout this thesis. The author has hypothesized criteria to determine the severity of these 

concepts in accident causation drawing on application of both theories to case studies and 

industries. 
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Figure 1: Author-Identified Concepts, Indicators, and Criteria of Normal Accident Theory  

Normal Accident Theory 

Concepts Indicators Criteria 

Complexity • Proximity of parts or units that are not in a 

production sequence 

• Many common mode connections between 

components (parts, units, or subsystems) not 

in a production sequence 

• Unfamiliar or unintended feedback loops 

• Many control parameters with potential 

interactions 

• Indirect or inferential information sources 

• Limited understanding of some processes 

Subject accident is a 

‘normal’ or ‘system’ 

accident = 50% concept 

indicators linked to 

complexity and tight 

coupling, collectively. 

 

Significant factors = 

25% or more concept 

indicators linked to one 

concept. Tight 

Coupling 
• Delays in processing not possible 

• Invariant sequences11 

• Only one method to achieve goal 

• Little slack possible in supplies, equipment, 

personnel 

• Buffers and redundancies are designed-in, 

deliberate 

• Substitutions of supplies, equipment, 

personnel limited and designed in 

Indicators drawn from Perrow, 1999: 85-96. 

  

                                                        
11 “Invariant sequences” as defined by Perrow, refers to the notion that some highly technical processes can 

only be carried out through a specific sequence of steps in order. Perrow uses the contrast between the 

assembly of an aircraft (which has a variable sequence) to the generation of energy from a nuclear reaction 

(which has an invariant sequence) to illustrate this quality (Perrow, 1999: 93-94). 
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Figure 2: Author Identified Concepts, Indicators, and Criteria of High Reliability Theory 

High Reliability Theory 

Concepts Indicators Criteria 

Lack of 

Organizational 

Learning 

• Organization does not adjust its 

procedures and routines over time to 

evolve with challenges  

• Organization does not learn from errors 

or accident simulation 

• Organization does not conduct thorough 

accident investigations 

• Organizational hubris is apparent in a 

lack of accident imagination or foresight  

• System managers fail to identify parts of 

the system that should have redundancies  

Not a leading factor in the 

spill = Less than 10% of 

decisions /action indicate 

a lack of organizational 

learning 

 

Significant factor = 10% 

or more 

Lack of 

Prioritization 

of Safety 

• Elites and system managers do not 

prioritize safety over short term profit or 

efficiency and production is valued at the 

expense of safety 

• Incentive systems do not reward safety 

and instead may reward profit or 

efficiency 

• Publicly stated safety goals do not 

coincide with operating culture 

Not a leading factor in the 

spill = Less than 10% of 

decisions /actions 

indicate a lack of 

prioritization of safety 

 

Significant factor = 10% 

or more  

Lack of 

adequate 

organizational 

culture 

• Organization does not assign 

responsibility and accountability to low 

level employees, adheres to a hierarchical 

structure 

• Lower level operators do not have 

authority to make safety decisions 

• Decision-makers do not defer to experts 

• Organization does not facilitate open and 

free communication  

• A homogeneous set of assumptions and 

premises does not exist between workers 

and common operating procedures are 

not used or enforced 

• Authority structure does not 

accommodate centralization and 

decentralization simultaneously  

• Organization does not conduct exercises 

or simulations on an ongoing basis  

• Organization does not train employees to 

recognize and respond to anomalies 

Not a leading factor in the 

spill = Less than 10% of 

decisions /actions 

indicate a lack of 

adequate organizational 

culture 

 

Significant factor = 10% 

or more  

 

Indicators drawn from: Sagan, 1993:14-27, Roberts and Bea, 2001, Roberts, 1990a, 

Roberts, 1990b, Weick and Sutcliffe, 2001: 10-17. 
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Development of Criteria 

A normal accident is an accident caused by the confluence of complexity and 

coupling within a sociotechnical system. Based on this premise, I have determined that the 

2010 BP Deepwater Horizon oil spill can only adequately be described as a normal accident 

if the identified concept indicators for complexity and coupling collectively signify 50% or 

more of the total number of concept indicators. By this logic, a level of 25% or above of 

total concept indicators for complexity or coupling would indicate a significant level of this 

quality within the subject sociotechnical system. Alternatively, many of Perrow’s analyses 

of accidents within industrial processes include high levels of either complexity or coupling 

within a system (47-57 % of listed causal factors). Without both of these attributes, 

however, these systems do not produce ‘normal accidents’ and instead demonstrate 

accidents that were either predictable (not complex) or allowed for recovery from failure 

(not tightly coupled)12. This possibility points to the notion that the important criterion in 

measuring these concepts is their collective ability to describe the cause of an accident.  

 

Because high reliability theorists strive toward creating organizational capacity to 

nearly eliminate accidents, I have set the criteria by which to determine the degree to 

which an accident is caused by one of these concepts at relatively low levels. A main tenet 

of high reliability theory is strict adherence to these principles and constant vigilance, 

indicating that if an organization owes even a small percentage of its failure to these 

                                                        
12 The examples of these types of systems set forth in Perrow’s 1999 publication are that of a dam failure 

(low complexity, tight coupling) and a dispute between students and a university over tenure policy (high 

complexity, loose coupling). These examples can be found in Perrow, 1999: 98-99, 232-241, and an analysis 

of the levels of complexity and coupling in these examples can be found in Appendix B, Figure 2, p. 121. 
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concepts, this is a significant lack of reliability within the organization (Roberts, 1990b; La 

Porte and Consolini, 1991). 

 

Accident Reports in Application 

In my analysis of causes of the 2010 blowout, I will rely heavily on the September 14, 

2011 “Report Regarding the Causes of the April 20, 2010 Macondo Well Blowout” by the 

Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) and the 2011 

National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling Chief 

Counsel’s Report, “Macondo: The Gulf Oil Disaster,” known hereafter as the “BOEMRE report” 

and the “National Commission Report.”  

 

I have selected the BOEMRE report to analyze the technical failings that led to the 2010 

spill, as this report follows a strong cause and event chain and thoroughly details both 

mechanical failures and failures in decision-making made by the crew and management of the 

Deepwater Horizon. This report is well organized and chronologically details the failures on the 

rig leading to the 2010 blowout. This report summarizes the technical findings of the Joint 

Investigation Team made up of appointed members of BOEMRE, the BOEMRE Investigative 

Review Unit, and the U.S. Coast Guard. The report draws from the findings of expert analyses of 

the blowout protector stack (conducted by Det Norske Veritas), the well condition data 

(conducted by Dr. John Smith -Petroleum Consulting LLC), buoyancy analysis (conducted by 

Keystone Engineering), and cement blend analysis (conducted by Oilfield Testing and 

Consulting). Finally, this report is useful because it designates specific causes, contributing 

causes, and possible contributing causes of the blowout based on these technical findings. The 
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2011 BOEMRE report is the most comprehensive and authoritative report on the disasters 

technical causes to date. 

 

Although the BOEMRE report appears to be an accurate recount of the technical failings 

aboard the Deepwater Horizon, it should be noted that this report has been published by the very 

agency (MMS, now BOEMRE) that regulated deep water drilling permits and safety within the 

Gulf of Mexico at the time of the spill, and continues in this task, indicating a possible source of 

error in the collected data13. The 2011 report, however, is not the sole work of BOEMRE. The 

authorship of the report is credited to the Joint Investigation Team and the U.S. Coast Guard. It is 

not surprising, in light of the authorship of this report, that the report deals mainly with 

identifying failures by BP and its partners and contractors rather than pointing to regulatory or 

systematic failure. 

 

I have selected the National Commission report to supplement the BOEMRE report 

because it places a larger emphasis on the organizational and regulatory failure that led to the 

2010 spill. This report, released to the President, is geared toward a systematic approach to the 

spill including a thorough examination of the regulatory regime surrounding the event. Although 

this report does not designate specific actions or decisions as causes, contributing causes, or 

possible contributing causes, it does imply that some decisions weighed more heavily in the 

accident than others, and this has been taken into consideration in my analysis of these actions or 

decisions. The National Commission report is the most comprehensive and authoritative report 

available to date on the social causes of the 2010 oil spill.  

                                                        
13 The reorganization of MMS to BOEMRE included a separation of promotion/lease sales and safety enforcement, 
so these functions may be significantly more separate than they were at the time of the spill (“Reorganization of The 
Bureau of Ocean Energy Management, Regulation and Enforcement”). 
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The National Commission was formed by executive order shortly following the spill, and 

was made up of members of the federal government from different agencies including the 

Environmental Protection Agency, the Department of Energy, as well as members of 

nongovernmental organizations such as the Natural Resources Defense Council (National 

Commission…, 2011e). Due to the varied background of the commission members, one can 

surmise that the report does not hail from a single agency with a unified purpose, and may 

include perspectives beyond that of BP and its direct regulatory counterparts (Goode, 2010; 

Boesch, 2010; “The Antidrilling Commission”).  

 

Both of the reports used in this analysis lend themselves to classification as reflexive, 

rather than innovative “lessons learned” documents, meaning that they offer findings and 

recommendations that are specifically linked to the event on April 20, 2010, and therefore do not 

attempt to anticipate future accident possibilities or consider the deep water drilling industry as a 

whole (Flournoy, 2011). This is an important distinction, as scholars have argued that reflexive 

documents rarely serve to increase safety within a sociotechnical system, as they merely serve to 

reinforce methods in preventing repetitive disasters of the same type or to demonstrate that 

something has been done about the disaster (Flournoy, 2011; Birkland, 2009). This reflexiveness, 

however, does not impede the goal of this thesis, which focuses on whether or not the accident 

could have been prevented within the existing sociotechnical system. Without such detailed 

documents that focus on the issues leading to the 2010 spill, I would not have had the data with 

which to conduct my analysis. 
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Chapter 4: Research Findings 

The primary finding of this thesis is that the 2010 BP Deepwater Horizon spill was not 

preventable given the existing sociotechnical system. Based on a thorough analysis of the social 

and technical causes of the spill, and in accordance with the selected indicators and criteria, the 

Deepwater Horizon accident was the result of a moderate level of complex interactions and a 

significant level of coupling, resulting in a system accident. Further, the organizations in control 

of this technology were unable to cope with these characteristics due to an insufficient 

prioritization of safety, and an inadequate organizational culture within the sociotechnical 

system. The results of this analysis and a detailed explanation of each result are included in 

Appendix B, Figure 1 p. 91. A summary of these results is included below. 

 

Complexity and Coupling 

In analyzing the causes of the 2010 spill in terms of normal accident theory concepts 

(complexity and coupling), the critical threshold to determine whether or not the accident was 

“normal” is the indication that at least 50% of the causes of the spill were conceptually linked to 

complexity or coupling. If the accident causes meet or exceed this threshold, it can be 

determined that the accident was very likely to happen due to the complexity and coupling 

within the system. 

 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture  

 

Concept  
Indicators             113 27 33 6 18 22 7 

Percentage           100 23.9 29.2 5.3 15.9 19.5 6.2 
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As seen in the above chart, the causal factors that led to the 2010 Deepwater Horizon 

blowout and spill can be described as exhibiting a moderate level of complexity (23.9%) and a 

significant level of coupling (29.2 %). That this accident can accurately be labeled a normal 

accident because complexity and coupling accounted for 53.1% of the concept indicators listed 

as causal factors of the spill within the sociotechnical system.  

 

The system in question is complex in many ways, including technical interconnectedness, 

a reliance on indirect information sources, and unexpected interactions within processes, a large 

portion of which are attributable to the unpredictable environment in which deep water drilling 

takes place (U.S. Department of the Interior / BOEMRE, 2011). Deep water oil drilling is also a 

tightly coupled process, a characteristic that is largely a product of its process location which is 

on a vessel that is a hybrid between a nautical vessel and an oil derrick, complete with the 

immediate risks of the marine environment and highly combustible materials released under 

great pressure (U.S. Department of the Interior / BOEMRE, 2011). Other aspects of the deep 

water oil drilling process that lend themselves to tight coupling include tight drilling margins, a 

reliance on early and accurate detection of well ‘kicks’ and well flow, as well as the ability for 

combustible gas to trigger an explosion (U.S. Department of the Interior / BOEMRE, 2011)14.  

 

It is important to note, in consideration of the effect of coupling on the resulting accident, 

that many tightly coupled relationships that directly contributed to the blowout describe the 

                                                        
14 Perrow’s 1999 publication features a visual representation of industries’ relative degree complexity and 

coupling according to the author’s assessment (Perrow, 1999: 97). As dictated by the findings to follow this 

paragraph, I have estimated a location on this chart that corresponds to the relative degree of complexity and 

coupling present within the Deepwater Horizon system at the time of the 2010 spill. This chart is featured in 

Appendix B, Figure 3, page 123. 
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interfaces between human operators and decision-makers and technology. Examples include the 

decision to use the mud gas separator during the blowout event, which was tightly coupled to the 

presence of gas on the rig and thus to the subsequent explosion (U.S. Department of the Interior / 

BOEMRE, 2011). Examples of the relationship also include mechanical signals that were missed 

or misinterpreted by operators, leading to catastrophe, such as the failure of the well crew to 

recognize the signs of a well kick in a timely manner and the collective misinterpretation of the 

negative test results. These two human failures are directly linked with mechanical failures 

triggering the blowout and explosion on the Deepwater Horizon (U.S. Department of the Interior 

/ BOEMRE, 2011).  

 

Reliability Factors 

The goal of analyzing the causes of the 2010 spill in terms of high reliability theory 

concepts is to determine whether or not the organizational system (including BP, MMS, etc.) was 

performing as a high reliability organization. The critical threshold here is the indication that at 

least 10% of the causes of the spill were conceptually linked to the absence of a high reliability 

concept (organizational learning, safety prioritization, or organizational culture). If the accident 

causes meet or exceed this threshold, it can be determined that the accident was not likely to 

have been prevented or controlled by the organizational system because it was unable to function 

as a high reliability organization. 

 

As seen in the summary chart on page 42, the identified causal factors can be described 

as being slightly attributed to a lack of organizational learning (5.3 %), however a lack of safety 

prioritization (15.9 %) and an inadequate organizational culture (19.5 %) were more significant 
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factors in the 2010 spill. These results indicate that BP, its operating partners, and the Minerals 

Management Service were not functioning together as a high reliability system, and they 

collectively lacked two critical traits of high reliability, that of a prioritization of safety and an 

adequate organizational culture. This lack of reliability in the subject sociotechnical system 

greatly contributed to the cause of the 2010 spill. 

 

There existed a cultural dominance of cost and production pressures that weighed in 

decisions made at all levels of power within BP15 (Lustgarten, 2012: 22-23, 45,49), and was 

likely thoroughly instilled in operators and managers over time, as seen in the many decisions 

atop the Deepwater Horizon rig16 (U.S. Department of the Interior / BOEMRE, 2011; Deepwater 

Horizon Study Group, 2011; Pritchard and Kotow, 2010). In this example of a profit conscious 

workplace culture, one could easily imagine that managers and operators were tacitly aware of 

cost and production pressures and may have felt pressured from company leaders to work outside 

the margins of safety to maintain a secure bottom line. Although litigation is still ongoing 

surrounding the 2010 spill, some reports indicate that this prevailing cost-conscious culture 

deeply impacted BP’s ability to prevent the spill (The Times-Picayune, 2013). 

 

The organizational structure controlling the operation of the Macondo well stands as an 

example of a collective failure to prevent, comprehend, or address risk within the sociotechnical 

system. The operations within the team on the Deepwater Horizon appeared to have a measure of 

                                                        
15 Some examples of this concept can be seen in the decisions implicated as causal factors in the 2005 

explosion at BP’s Texas City Refinery, as well as a 2006 leak of 212,000 gallons of oil in Alaska’s North Slope 

from a BP maintained pipeline. Both of these events are detailed thoroughly in Lustgarten, 2012: 120-203. 
16 Some of these decisions include “not waiting for more centralizers of preferred design,” “not running the 

cement evaluation log,” and using lost circulation material as a spacer (listed in National Commission…, 

2011c). These decisions all raised risk levels on the rig and saved time or operational costs (National 

Commission…, 2011c). 
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decentralization built into them (for emergent situations). However, as demonstrated by the 

existence of a “stop work order,” in which well operators could demand that work on a well be 

stopped if they feel work is contributing to an accident situation (U.S. Department of the Interior 

/ BOEMRE, 2011). I argue, based on the above-cited examples, that cost and production 

pressures primarily and almost exclusively guided the actions of the operations team on the rig 

and their corporate counterparts in Houston.  

 

Cost and production pressures are not unique to BP. Several authors have recognized a 

trend in hydrocarbon extraction firms toward riskier and more expensive technological 

processes, questionable financial reporting practices, and increased involvement with unreliable 

political regimes in search of “proved reserves” that is fiscally justified by rising oil prices (Coll, 

2012: 50-56; Boman, 2012; Lustgarten, 2012:7-13, 52; National Commission…, 2011b). The 

connection between cost and production pressures and a decrease in safety buffers to large-scale 

accidents is clear in the case study of the 2010 Deepwater Horizon spill. This aligns with theories 

about safety within complex industries and specifically within the deep water drilling industry 

(Hofmann and Stetzer, 1996; Pritchard and Kotow, 2010;  Perrow, 1994; Perrow, 1999: 118, 

146, 175-176, 180; Heimann, 1993) 

 

BP was undergoing a multitude of management changes and reassignments during the 

months leading up to the spill, thereby fragmenting and obfuscating responsibility, placing new 

operators in unfamiliar positions, and facilitating friction between operation leaders (U.S. 

Department of the Interior / BOEMRE, 2011). In addition to this managerial confusion, BP 

operated the Macondo well and Deepwater Horizon in collaboration with Transocean (its 
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primary contractor), Halliburton, MI-SWACO, Schlumberger, and Sperry Drilling. This led to 

fragmentation of responsibility and a severe lack of communications between BP and its 

contractors (U.S. Department of the Interior / BOEMRE, 2011). Finally, operations surrounding 

the temporary abandonment of the Macondo well were woefully understaffed, thus distracting 

operators’ attention from critical monitoring duties and pressing staff into multiple simultaneous 

duties. This eliminated operational capacity to address any unexpected events at the well (U.S. 

Department of the Interior / BOEMRE, 2011). 

 

It should be noted that before the 2010 spill, BP generally regarded itself as a responsible, 

reliable organization, and touted its “Operating Management System” (OMS) as a significant 

step toward risk reduction (BP, 2006). The results of this analysis refute this assertion, and are 

accompanied by general opinion as expressed in an article by World Oil Online that asserted that 

BP’s method of gauging safety and risk was flawed (World Oil Online, 2010). 

 

Finally, the Minerals Management Service (now BOEMRE) clearly failed to prioritize 

safety in regulating deep water drilling processes at the Macondo well. Perrow in his normal 

accidents theory, notes that regulatory agencies operating under conflicting missions or 

objectives face difficulties in effectively enforcing safety laws17 (Perrow, 1999: 157-159). The 

Minerals Management Service (MMS) was a prime example of this dilemma, and some authors 

assert that this stands as an example of regulatory capture (Flournoy, 2011; Sylves and Comfort, 

2012; Plater, 2011). Many authors note that this organizational confusion is not completely 

remedied by the reorganization of BOEMRE (effectively splitting responsibility for lease sales 

                                                        
17 Perrow, in his 1999 publication, uses the example of air traffic controllers, whose conflicting missions are 

to decrease air collisions while increasing air traffic (Perrow, 1999: 156-158). 
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and promotion of deep water drilling away from enforcement duties by creating two entities that 

operate separately) (U.S. Department of the Interior / BOEMRE, “Reorganization…”). Because 

the United States relies heavily on hydrocarbon energy, a rational regulatory relationship that 

effectively keeps the oil producing industries in check may not be possible (Flournoy, 2011; 

Sylves and Comfort, 2012). 

 

Finding 1: Inevitability of the 2010 Spill 

Given the moderate degree of complex interactions and high degree of coupling, 

accompanied by the significant lack of safety prioritization and inadequate organizational culture 

within the subject sociotechnical system, one can conclude that the spill was not preventable. Not 

only did there exist sufficient complexity and coupling to cause a major accident within the 

system, but the social structure of control over this technology also severely failed to cope with 

this inherent danger through the prioritization of safety and creation of a culture of prevention. 

The primary research question is now answered, based on applying normal accident theory and 

high reliability theory to the data in the two selected reports: No, the oil spill was not 

preventable; it was a normal accident (for full analysis results, see p. 91). Further, BP and its 

operating partners and regulators did not exercise adequate vigilance in the form of safety 

prioritization and organizational culture to adequately cope with the complexity and coupling 

inherent in the subject sociotechnical system, thereby increasing the inevitability of the oil spill.  

 

Finding 1a: Theoretical Applicability 

Sub-question a) of this thesis posed the question “Do normal accident theory and high 

reliability theory apply to the 2010 BP oil spill?” In my selection of a theoretical framework to 
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apply to this event, I considered a range of approaches. Many technical analyses of similar 

industrial accidents follow a root cause analysis or decision tree model to arrive at causal 

relationships in accident events (Leveson, 2004), while other theoretical approaches consider 

quantitative risk probability (Ji et. al., 2012). I chose to employ two methods of accident 

analysis, however, that were grounded in organizational theory, and therefore could qualitatively 

describe the technical and organizational characteristics leading to the oil spill. Both of these 

approaches are highly cited, as previously mentioned, and apply to a broad range of 

contemporary industrial accidents when employed together.  

 

Although normal accident theory and high reliability theory are not without their faults, 

this thesis has used both theories in tandem in order to address many of these issues. Because 

normal accident theory lacks measurable indicators for cost and production pressures as well as 

organizational weakness, I have supplemented the indicators of complexity and coupling with 

those of organizational learning, safety prioritization, and organizational culture; drawn from 

high reliability theory. Similarly, because high reliability theory does not address inherent 

technical characteristics of a system that exist despite managements’ best efforts, I have 

supplemented this theory with the indicators of complexity and coupling drawn from normal 

accident theory.  

 

Although this thesis attempts to set forth criteria to measure the effect of these indicators 

on accident causation, the critique that normal accident theory and high reliability theory do not 

provide objective measurable criteria by which to judge the degree of their concepts within a 

system holds true. Because the concepts within both theories are somewhat ethereal, a concrete 
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application of these concepts is difficult to establish. Further, this thesis does not fully resolve 

the larger issues of non-falsifiability inherent within both theories. This thesis does, however, 

aim to add to a developing body of work featuring measurable applications of normal accident 

theory and high reliability theory to events18, with the intention to contribute to the formation of 

standard indicators and criteria by which to objectively analyze accidents within sociotechnical 

systems. 

 

Finding 1 a (i): Theoretical Coverage 

Based on my analysis of the causal factors of the 2010 spill, I can conclude that these two 

theories, employed simultaneously, effectively characterize a large majority of the causal factors 

in the spill. Out of the 113 concept indicators identified in the two reports, only 7 signified a 

concept outside of the realm of normal accident theory or high reliability theory. Of these 

concept indicators, 60 (53.1 %) signify complexity and coupling within the sociotechnical 

system, indicating that the oil spill was a normal accident. Further, 46 (40.7 %) of these concept 

indicators showed a lack of reliability within the organizations in charge of the Deepwater 

Horizon and Macondo well, which were incapable of coping with this degree of complexity and 

tight coupling within the system. These results are shown below. 

Theory Applicability Normal Accident High Reliability Other 

Concept  
Indicators             113 60 46 7 

Percentage           100 53.1 40.7 6.2 

 

 

 

                                                        
18 Wolf and Sampson have made significant progress in this endeavor with respect to normal accident theory 

– see Wolf, 2001 and Wolf and Sampson, 2007. 
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Finding 1 a (ii): Theory Symbiosis 

Because the three most significant concepts implicated in the cause of the spill (coupling 

(29.2 %), lack of safety priority (15.9 %), and inadequate organizational culture (19.5 %)) are 

rooted in normal accident theory and high reliability theory, respectively, neither of these 

theories is sufficient to describe the 2010 spill when employed in isolation. For example, to 

describe the spill as simply a ‘normal accident’ with tight coupling and medium complexity (the 

meaning of “normal” as defined by Perrow) would miss significant organizational causes of the 

spill including cost and production pressures and a failure of management to adequately train 

operators to deal with loss of well control events. Similarly, to claim that the spill was singularly 

caused by a failure of management would be to ignore the uncertain environment and tight safety 

margins inherent in deep water drilling processes. For this reason, I contend that this application 

of both theories to the causal factors of the 2010 spill is necessary to describe both the technical 

and social factors that created a sociotechnical system unable to harness the destructive power of 

the Macondo well. The answer to sub-question 1a is yes; normal accident theory and high 

reliability theory are applicable to the Deepwater Horizon oil spill, however both of these 

theories are necessary to adequately describe the structural and organizational causal factors of 

the oil spill. 

 

Finding 1 b: Indicators and Criteria 

A thorough list of indicators and criteria used in this analysis are featured on pages 37-38. 

The indicators used to operationalize the concepts of normal accident theory and high reliability 

theories were numerous and easily recognized within the narratives of the accident reports. The 

criteria used in this analysis designated various degrees of influence of each concept, and were 



 53

calibrated through an analysis of normal accident and high reliability theorists’ application of 

their respective concepts to narratives of various accidents.  

 

Many systems examined by Perrow (1999) feature either complexity or coupling in high 

degrees (43-57 % causal factors of accidents), yet do not have ‘normal accidents.’ This appears 

to be due to the fact that a ‘normal accident’ refers to an accident in which complexity and 

coupling are both signified in causal factors. Based on this argument, set forth by Perrow, I 

concluded that an accident can only truly be labeled a ‘normal accident’ if complexity and 

coupling (collectively) are linked to 50% or more of its identified causal factors.  

 

I selected criteria to establish causal relationships between a lack of high reliability 

factors and the 2010 oil spill at a lower rate than that of normal accident theory based on the 

notion, asserted by high reliability theorists, that organizations must be constantly and 

impeccably vigilant to maintain reliability (La Porte and Consolini, 1991; Roberts, 1990b; 

Roberts and Bea, 2001). As a reflection of this assertion, I concluded that a lack of a high 

reliability concept linked to under 10 % of concept indicators could be considered a slight lapse 

in vigilance, while any connection higher than 10% represents a significant divergence from the 

tenets of high reliability. 

 

In my analysis, I estimate that the applied indicators and criteria adequately gauge the 

effect of normal accident theory and high reliability theory concepts on causal factors of the 

2010 spill. Because my criteria were drawn from narrative applications of these theories, 



 54

however, further application of normal accident theory and high reliability theory concepts to 

similar disasters is needed to accurately set criteria for accident prediction. 
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Chapter 5: Policy Recommendations 

The analysis contained in this thesis features two broad normative concepts by which to 

draft policy recommendations: technical accident potential and organizational capability to cope 

with risks (represented by normal accident theory and high reliability theory, respectively). The 

2010 BP Deepwater Horizon oil spill stands as a clear example of a sociotechnical system with 

relatively high inherent accident potential combined with extremely poor organizational 

capability to cope with this risk. In this final section of this thesis, I urge policymakers to 

consider these two dimensions in technological accident prevention and in the construction of 

new regulations addressing deep water drilling. 

 

Performance-Based v. Prescriptive Regulation 

 Studies conducted after the 2010 Deepwater Horizon spill concerned with regulatory 

action cite the examples of Norway and the U.K. in enacting “safety case19” requirements that 

place risk assessment duties in the responsibility of the operator of deep water drilling rigs 

(National Commission…, 2011a; Scarlett et. al., 2011). Safety case requirements are clearly 

more adaptive to different operations and exercise a performance-based method of regulation, as 

opposed to U.S. regulations which are largely prescriptive (Skogdalen and Vinnem, 2012). This 

method has been criticized, however, as “self-regulation” and runs the risk of eventually 

becoming a rote task performed by a small pool of contractors (National Commission…, 2011a). 

Further, some analysts have noted that, as valuable as a “safety case” requirement is in 

anticipating risk, this method may ignore the human and organizational factors in deep water 

                                                        
19 These “safety case” requirements refer to a comprehensive risk analysis required by Norwegian and U.K. 

regulators to be conducted and submitted by a drilling company. This system requires the company to assess 

all risks affiliated with the requested action and demonstrate risk reduction methods and response capacity 

to reach specific safety levels set by regulators. In this system, regulators oversee compliance with agreed 

upon methods set forth by the drilling company to maintain a low level of risk (Scarlett et. al., 2011). 
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drilling and may simply focus on technical safety barriers, which are in fact dependent on 

organizational capacity. One example is the engagement of safety barriers such as a BOP in a 

well control event, which is dependent upon human interpretation of signals of well kicks and 

flow, and therefore is rendered useless if not activated properly (Skogdalen and Vinnem, 2012).  

 

Another issue with drawing a contrast between the U.S. and Norway or the U.K. is the 

wide gap in accident rates between countries that exercise the two methods. This gap is partially 

explained by deep water oil wells in the Gulf that are inherently more risky than those found 

elsewhere, largely because of their high pressure and high gas formations, which create slim 

drilling margins (Skogdalen and Vinnem, 2012). However, this gap is also likely due to the lack 

of required barriers against well blowout required by U.S. regulators in comparison to those in 

Norway (Skogdalen and Vinnem, 2012). 

 

Changes to liability laws and permitting processes within BOEMRE have been suggested 

in the wake of the 2010 spill (U.S. Department of the Interior / BOEMRE, 2011; National 

Academy of Engineering and National Research Council, 2012; Peterson et. al., 2012; Galligan, 

Jr., 2012) and will help in addressing the issues presented by the 2010 Deepwater Horizon 

accident. But my results suggest that any regulatory change that does not address cost and 

production pressures by instituting strict safety standards and risk analysis (even at the risk of 

slowing operations and thereby production to the global market) will fail to enact real change in 

the deep water drilling industry. As indicated by my results, a certain level of complexity and 

coupling within the system of deep water drilling is unavoidable. However, organizational 
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failures prompted by cost and production pressures increase the risk of accidents even further by 

reducing safety prioritization.  

 

Deep Water Drilling in the Gulf of Mexico 

Political forces weigh in all decisions in fuel production in the U.S., namely that of high 

powered lobbying forces pushing for looser regulation and the expansion of fossil fuel operations 

to increasingly risky and sensitive frontiers and a general lack of prioritization of development of 

alternative fuels for mass consumption (Plater, 2011). One major issue in the effective regulation 

of the oil industry lies in the fact that as oil prices increase, companies are incentivized to 

undertake increasingly risky and expensive operations to reach hydrocarbon formations that were 

previously untapped due to the prohibitive cost of extracting oil from them (Coll, 2012: 50-56; 

Boman, 2012; Lustgarten, 2012:7-13, 52; National Commission…, 2011b).  

 

As drilling companies set their sights on the Gulf of Mexico and the Arctic (Handwerk, 

2011), regulators will be hard pressed to prevent these new technologies from operating in 

increasingly hazardous frontiers that abut extremely sensitive ecological resources. Critics of the 

previous regulatory regime of MMS have noted that a revolving door between industry and 

regulators inhibited the power of the agency to demand increases in safety and may have 

impacted the quality of safety reviews (National Commission…, 2011a). Further, the severely 

deficient budget of MMS has clearly been a factor in preventing adequate regulatory capacity, 

indicating that an inability to offer competitive wages to regulators may create an imbalance in 

staff capability and lead professionals toward industry positions (National Commission..., 2011a.  
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Numerous reports surrounding the 2010 spill note that the hydrocarbon formations in the 

deep water of the Gulf of Mexico present unconquered challenges in terms of drilling margin and 

the intense pressure and heat at which its hydrocarbons circulate (Skogdalen and Vinnem, 2012; 

National Commission…, 2011d). This is the most critical technological problem in terms of 

regulating oil exploration in the Gulf of Mexico. The harsh environment and unique geologic 

formations of the Gulf of Mexico, coupled with the vast ecologically sensitive areas in the Gulf, 

upon which millions of residents depend directly and indirectly, leads to significantly more risk 

of failure and higher levels of catastrophic damage associated with accidents. The fact that the 

unique environment of the Gulf of Mexico presents this challenge invites the question of whether 

drilling in this unique environment can be regulated to a point of safety acceptable to society.  

 

Liability 

One important factor in the regulation of dangerous technologies is assigning and 

enforcing liability after an accident. Many have critiqued the National Resource Damage 

Assessment process (put forth by the OPA 90 laws) in the aftermath of the 2010 Deepwater 

Horizon spill, claiming that it is not suited for use in deep water spills and citing slow and 

conflicting processes that require the government and responsible party to agree on the validity 

of damage studies (Peterson et. al., 2012; NRDC, 2011). One issue to consider in addressing 

liability issues in deep water drilling is that of drilling firms’ ability to pay liability assigned for 

spills.  

 

Current laws require companies to prove that they are able to take on the financial 

liability to drill, however the current cap on financial liability allows small firms to enter the 
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drilling field (National Commission…, 2011b). True liability reform should ideally ignore this 

barrier to entry and require verification that firms are not only financially able to cover the 

liability costs of a spill but also that these firms are physically equipped with the equipment and 

staff capacity to clean up spills quickly. Many authors have agreed with this approach, largely 

influenced by the relatively larger scale of hydrocarbons at risk of blowout in deep water drilling 

operations (Richardson, 2011; National Commission…, 2011b). 

 

Public Participation 

One suggestion applicable to the Gulf of Mexico is participation of those affected by 

spills through the use of a Regional Citizen Advisory Council (RCAC). This concept was hailed 

by Zygmunt Plater, the Chairman of the State of Alaska Oil Spill Commission’s Legal Task 

Force, and put into place in Alaska following the 1989 Exxon Valdez spill to resolve the 

dipolar20 system of regulation of the oil industry (Plater, 2011). These councils have assisted in 

advancing safety precautions in oil industry operations along the Alaska coast, and have 

facilitated whistleblowing from within the firms and government agencies (Plater, 2011).  

 

Plater notes that because many residents of the Gulf coast are highly dependent on the 

waters of the Gulf for their livelihoods, these residents would have likely demanded more 

information and safety precautions from offshore drilling processes had they been allotted any 

measure of authority in the form of a citizen council (Plater, 2011). Although citizen 

participation is always an important factor in decision-making about natural resources, one 

                                                        
20 Plater’s description of a "di-polar" system is one “where industry and government regulators come too 

close together, [and] responsible overall management of operations and risks suffers (Plater, 2011).” Plater 

further remarks that this type of system does not delegate any decision making power to residents affected 

by oil spills. 
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critical component of the effective operation of an RCAC is some form of legally allotted veto 

power or influence over dangerous activities, rather than simply providing citizens a sounding 

board through which to be heard. It should be noted, however, that this type of regulatory body 

would likely not assist in avoiding system accidents caused by inherent complexity and coupling, 

therefore rendering these councils useless against system errors and only effective against poor 

management practices and corporate influence.  

 

Recommendation 1: 

Restrain Gulf drilling to a specific quota or low level to be decreased yearly in order to 

phase out this highly accident prone operation. Continue the moratorium until reliance on 

hydrocarbons is decreased or until technological and organizational advancements in deep water 

drilling improve the ability to foresee and prevent loss of well control events.  

 

Flournoy et. al. (2010) encourage technological advancement and less subsidization of 

deep water drilling in their recommendations based on the 2010 BP oil spill, however these 

authors do not directly urge for mass reduction in deep water drilling activities in the Gulf. Few 

authors urge the complete phasing out of this technology21, likely due to the economic benefit 

that this technology provides. An application of normal accident theory to the 2010 oil spill, 

however, indicates that this event was a normal accident and was therefore unpreventable. 

Although technological advancements and stricter regulation may reduce some level of 

organizational failure and complexity within the subject system, it is not inconceivable that a 

similar chain of events could take place at another well site within the Gulf of Mexico. The only 

                                                        
21 U.S. Department of the Interior / BOEMRE, 2011 and Deepwater Horizon Study Group, 2011 are two 

prominent reports that do not recommend the phasing out of this technology. 
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way to truly reduce this risk is to phase out this technology that is inherently risky. Phasing out 

this technology would directly address the inevitability of another spill in the Gulf of Mexico. 

 

Recommendation 2:  

Adopt performance-based regulations similar to those exercised by Norway and the U.K. 

Recommendation 2 (a): 

These regulations should include requirements for multiple safety barriers against well 

blowouts. 

Recommendation 2 (b): 

These regulations should address the prevalence of contract workers in the deep water 

drilling industry through more effective labor laws and clear assignment of responsibility. 

 

Scarlett et. al., 2011 as well as National Commission…, 2011a are two reports that 

recommend the adoption of performance-based regulations within the U.S. offshore oil 

regulations. This is an immediate solution that would address the lack of regulatory capacity 

within the Bureau of Ocean Energy Management. The adoption of a “safety case” requirement 

would likely encourage oil drilling companies within the Gulf of Mexico to practice increased 

organizational learning and may assist in fostering the prioritization of safety goals within the 

deep water drilling community. Ideally, these new regulations would include additional required 

barriers to well blowouts, as advocated by Skogdalen and Vinnem (2012). Finally, these new 

regulations should adequately address the assignment of responsibility within deep water drilling 

operators, specifically because many of these operations include numerous contractors under 
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different managers, which can diffuse accountability (Deepwater Horizon Study Group, 2011; 

Rebitzer, 1995). 

 

Recommendation 3: 

Change the funding structure of BOEMRE in order to enable the agency to hire the 

highly trained professionals needed to adequately analyze industry information and conduct 

inspections.  

 

As demonstrated by my analysis, the Bureau of Ocean Energy Management, Regulation, 

and Enforcement was not contributing to high reliability within the subject sociotechnical 

system. This agency clearly lacked an adequate organizational culture and the ability to prioritize 

safety and conduct organizational learning in April 2010. The addition of experts and adequate 

funding, as advocated in U.S. Department of the Interior / BOEMRE, 2011; Flournoy et. al., 

2010; and Deepwater Horizon Study Group, 2011 would serve to address these issues. 

 

Recommendation 4:  

Remove the liability cap on oil spill claims made through the OPA 90 and Clean Water 

Act. 

 

Changes to existing liability regulations as urged by Richardson, 2011 and National 

Commission…, 2011b may address the lack of prioritization of safety exemplified in the 2010 

BP oil spill, by transferring a larger portion of the cost of oil spills directly to drilling companies 

and their insurers. 
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Recommendation 5: 

Create and fund Regional Citizen Advisory Councils (RCACs) to oversee offshore 

drilling activities in the Gulf of Mexico with review powers over permitting processes, new 

proposals, and safety requirements specific to the Gulf of Mexico.  

 

Plater (2011) recommends the introduction of RCACs to the Gulf of Mexico region to 

balance the competing needs of industry and the environment. The introduction of citizen 

concerns into the decision making process surrounding deep water drilling permits and proposals 

may increase the prioritization of safety within this organizational system, thus improving its 

reliability by considering the needs of those directly affected by oil spills.  

 

Suggestions for Further Research: 

Because deep water drilling regulations and permitting processes have undergone 

significant changes in the wake of the 2010 spill, I suggest that further study question whether 

post-spill changes to the sociotechnical system make catastrophic oil spills more preventable. A 

thorough application of the concepts of normal accident theory and high reliability theory to 

post-spill improvements would be enlightening. Accident reports, reports of near misses, and the 

operations of companies drilling within the Gulf of Mexico could be used as data. And the 

indicators utilized in this thesis may contribute to understanding the effectiveness of those 

changes.  
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Recommendation 6: 

Apply normal accident theory and high reliability theory to similar accidents in order to 

cross-validate criteria. Employ additional methods such as multiple raters and tests of 

significance with non-parametric statistics to further hone the measurability and applicability of 

normal accident theory and high reliability theory concepts to actual events and organizations. 
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Chapter 6: Conclusion 

The events of April 20, 2010 reminded the citizens of the United States that the nation’s 

ocean floor holds unbridled power that can overwhelm modern technology. This event also 

reminded the citizens of the Gulf Coast that a fearsome and risky endeavor takes place on their 

doorstep and can threaten their livelihoods, health, and property in an instant if not adequately 

controlled. Control, however, currently lies in the hands of imperfect organizations working 

within the margins of safety and profit which are, in some instances, regulated by a set of rules 

set in the past that are not adequately enforced in the present. Local residents feel this conflict 

between the harvesting of natural resources for export and the preservation of the economy and 

productive coastal ecosystem of the Gulf coast personally.  

 

My analysis shows that the sociotechnical system controlling the Deepwater Horizon and 

the Macondo well on April 20, 2010 was indeed complex and tightly coupled, and further that 

this system was not organized optimally to respond to disaster risk. The system was hampered by 

cost and production pressures and was poorly guided by an ineffective regulatory regime. This 

event, in my estimate, fits the description of a system accident as outlined by normal accident 

theory and high reliability theory. A system accident portends more accidents of its kind in the 

future, granted sociotechnical conditions in the future meet these criteria. It appears that the 

Macondo well was not an anomaly in the Gulf of Mexico. It was similar to some other well sites 

in the region in terms of geologic demands and conditions for drilling. My analysis also shows 

that the organizational structure of the Deepwater Horizon could conceivably be adopted by 

other drilling rigs within the Gulf of Mexico, thus enabling missed well kicks and misinterpreted 

signals to taint what may otherwise be a safe drilling endeavor. Many factors signaling 
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complexity, tight coupling, and organizational inadequacy within the 2010 BP system could be 

in widespread use, potentially creating a situation in which oil spills of a large magnitude in the 

Gulf of Mexico are not only possible, but more likely in the future.  

 

Finally, I conclude that deep water drilling in this area should be restricted in order to 

reduce the catastrophic risk presented to the abutting communities and ecosystems, who do not 

proportionally benefit from such endeavors. In considering future lease sales and regulations for 

the outer continental shelf, lawmakers should consider the practical inevitability of future 

catastrophic oil spills and make decisions based on realistic qualitative risk rather than 

aspirational goals of failure-free operation. 
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Appendix A 

 

Working Definitions 

 

 
Working Definition of Complexity 

Perrow uses a multifaceted definition of complexity in a sociotechnical system. In his 

section on complexity in his 1999 publication, Perrow indicates that “baffling interactions” 

indicate the presence of complexity and that this complexity is often present in systems that 

serve a diverse number of functions or that operate in “hostile environments” and are 

interconnected with other systems (Perrow, 1999: 72). Three main components of complexity 

within a system that Perrow identifies in his 1999 publication are multi-functionality22, 

proximity23, and indirect information sources24 (Perrow 1999: 72-75). Perrow also notes that 

“transformation processes,” those that “transform raw materials rather than fabricate or assemble 

them” are often a source of complexity, which is not easily addressed by traditional approaches 

to complex systems (aimed at making them more linear) such as better designs or operations 

(Perrow 1999: 84-85). Finally, in his analysis of complexity, Perrow lists characteristics that 

indicate complexity within a system including (Perrow, 1999: 85-86): 

 

 

                                                        
22 The common example of this characteristic is a “common mode” failure in which one component of a 

system is designed to conduct two processes, in which a failure of that component triggers two separate 

negative reactions, this is often exemplified by a heater which heats the gas in one tank while absorbing heat 

from a chemical reactor – if the heater fails, both the tank and the reactor will experience an unstable 

temperature– see Perrow 1999: 72-73 for more detail. 
23 Perrow’s example of proximity as a characteristic in unforeseen interactions is that of an oil tanker accident 

in which flammable gases, engine equipment, and leaking oil combined to create a fire and explosion due to 

the proximity of oil storage near the engine room (Perrow 1999: 73-74). 
24 Indirect information sources may include sources of information that are not properly calibrated or do not 

measure parameters directly linked to critical information, or a reliance on gauges that replace visual 

observation of critical components (Perrow 1999: 73, 82-83). 
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• Proximity of parts or units that are not in a production sequence; 

• many common mode connections between components (parts, units, or 

subsystems) not in a production sequence; 

• unfamiliar or unintended feedback loops; 

• many control parameters with potential interactions 

• indirect or inferential information sources; and 

• limited understanding of some processes. 

 

In his discussion of complexity, Perrow also lists several qualities of linear systems 

including spatial segregation, “easy isolation of failed components,” “less personnel 

specialization,” and “extensive substitution of supplies and materials (Perrow 1999: 88).” 

 

Sagan (1993) derives his definition from Perrow, noting that “Interactive complexity is a 

measure, not of a system’s overall size or the number of subunits that exist in it, but rather of the 

way in which parts are connected and interact (Sagan, 1993: 78).” Sagan, in his consideration of 

a nuclear power plant, notes that proximity, a multitude of coordinated processes being 

conducted simultaneously, a limited understanding of some processes within the nuclear 

industry, and indirect information sources are all factors indicating complexity within a system 

(Sagan, 1993: 32-33). 

 

Shrivastava et. al. (2009) echo Perrow’s concept of complexity as signified by 

interactions that occur in unfamiliar, unplanned, or unexpected sequences; and which are either 

not visible, not comprehensible, have multiple functionality, the physical proximity of 
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components, require specialized knowledge of personnel (Shrivastava et. al., 2009 note that this 

narrows operator’s awareness of interdependencies), have multiple control parameters, and may 

require the deciphering of unfamiliar or unintended feedback loops (Shrivastava et. al., 2009).  

 

Shrivastava et. al. add, however, that both complexity and coupling may be framed as 

dependent variables affected by the amounts of energy levels involved in the organization’s 

transformative processes and the gaps in knowledge about the processes. These authors suggest 

that in analyzing the level of energy employed in a given transformative process, researchers also 

consider the number of “interfaces” at which point inputs and outputs are changed or monitored 

within complex systems (Shrivastava et. al., 2009). As asserted by Shrivastava et. al. (2009), my 

analysis of the relative complexity and tight coupling of the system surrounding the 2010 spill 

will include a consideration of the level of energy involved in the processes included in deep 

water drilling. Finally, Shrivastava et. al. (2009) also describe complexity as a dynamic element 

that is addressed through requisite variety of organizations (assigning adequate human capability 

to complex tasks).  

 

In my consideration of the 2011 BOEMRE report, I have decided that any operation, 

process, or interaction that can be described by the above attributes of complexity will be 

considered an indication of complexity within the subject system. 

 

Working Definition of Coupling 

Perrow describes coupling generally as the level of responsiveness between two 

components in a system (Perrow, 1999: 90-91). Some facets of coupling that Perrow explores 
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include time-dependent processes that may be utilized either for efficiency purposes or as 

necessitated by the materials used in a industrial process (such as chemical reactions), invariant 

sequences in production, sequences that may only be completed in one way (labeled as 

“unifinality”), and a lack of “slack” in a system (leaving little room for substitution of processes 

or materials) (Perrow, 1999: 93-94). Perrow notes that automatic safety devices are often 

featured in tightly coupled systems and must be “designed in” to protect against time-dependent 

failures that threaten the system and leave little room for human intervention in an emergency 

(Perrow, 1999: 94-95). As with his description of complexity, Perrow accompanies his 

description of tight coupling with a chart detailing the characteristics of tight coupling including 

(Perrow, 1999: 96): 

• Delays in processing not possible 

• Invariant sequences 

• Only one method to achieve goal 

• Little slack possible in supplies, equipment, personnel 

• Buffers and redundancies are designed-in, deliberate 

• Substitutions of supplies, equipment, personnel limited and designed in 

 

In this discussion, Perrow also lists some qualities of loosely coupled systems which 

include such concepts as “processing delays possible,” “order of sequences can be changed,” and 

“slack in resources possible.”  

 

Sagan echoes these qualities of tight coupling and also notes that tight coupling “affects 

[a system’s] ability to recover from small-scale failures before they cascade into larger problems 



 90

(Sagan, 1993: 34).” Sagan also contrasts the workings of a university, which may be complex but 

loosely coupling (allowing for scheduling changes and improvisation in reaction to errors) to that 

of a nuclear power plant, in which a small error may propagate within the system quickly with 

little slack for intervention or recovery (Sagan, 1993: 35-36). 
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Appendix B 
 
Fig. 1: Causes, Contributing Causes, and Possible Contributing Causes Classified by Normal 
Accident Theory and High Reliability Theory Criteria  
 
Note: all identified “Contributing Causes” are considered to be coupled to their respective effect, 
while factors labeled “Possible Contributing Causes” are considered to have a weaker linkage to 
subsequent events that cannot be unequivocally categorized as “coupling.” Some factors are not 
clearly classifiable and signify multiple indicators of normal accident theory or high reliability 
theory. 
* = Causal factor identified in U.S. Department of the Interior / BOEMRE, 2011 
† = Causal factor identified in National Commission..., 2011c 
 

Causes, Contributing Causes, and Possible Contributing Causes of the 2010 Spill 
 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture  

 

1. Cause of the 
Blowout: Failure of 
shoe cement* 

X      

2. Contributing 
Cause: Decision to 
set the product casing 
in a laminated sand-
shale zone in the 
vicinity of a 
hydrocarbon 
interval* 

X X     

3. Contributing 
Cause: Failure to take 
additional 
precautions during 
cementing 
considering known 
losses in the well* 

 X  X   

4. Contributing 
Cause: Failure to 
perform production 
casing cement job in 
accordance with API 
RP 65* 

 X    Divergence 
from 

accepted 
practices 
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

5. Contributing 
Cause: Decision to 
set float collar across 
the hydrocarbon-
bearing zones of 
interest* 

 X    Divergence 
from 

accepted 
practices 

6. Contributing 
Cause: Failure to 
inform all parties 
operating of the 
known risks 
associated with 
Macondo well 
operations* 

 X   X  

7. Contributing 
Cause: Failure to 
appropriately 
analyze/evaluate risks 
associated with well* 

X X  X   

8. Contributing 
Cause: Failure to 
place cement on top 
of wiper plug* 

 X X    

9. Contributing 
Cause: Decision to 
use a float collar that 
was not sufficiently 
debris-tolerant* 

 X     

10. Possible 
Contributing Cause: 
Decision to set casing 
in the production 
interval with known 
drilling margin limits 
at total depth* 

   X   

11. Possible 
Contributing Cause: 
Lack of accurate and 
reliable flow-line 
sensors during 
cementing 
operations*  

X      
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

12. Possible 
Contributing Cause: 
Planning and 
conducting 
production casing 
cement job* 
 

X   X   

13. Possible 
Contributing Cause: 
Failure of leaders and 
crew to recognize 
risks associated with 
multiple problems 
between 4/19-4/20* 

X   X X  

14. Cause of the Well 
Control Failure: 
Failure of crew to 
detect influx of 
hydrocarbons until 
they were above the 
BOP stack* 

X X 
 

  X  

15. Cause of the Well 
Control Failure: 
Crew’s collective 
misinterpretation of 
the negative tests* 

X X   X  

16. Contributing 
Cause: Crew’s 
inability to accurately 
monitor pit levels 
while conducting 
simultaneous 
operations during the 
critical negative test* 

 X  X X  

17. Possible 
Contributing Cause: 
Failure to perform an 
incident investigation 
into 3/8/10 well 
control event and 
delayed kick 
detection* 

  X    
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

18. Possible 
Contributing Cause: 
Failure to inform 
operators of all 
known risks 
associated with well 
production casing 
cement job* 

    X  

19. Possible 
Contributing Cause: 
Use of lost 
circulation material 
pills as a spacer* 

X   X   

20. Possible 
Contributing Cause: 
Complacency of the 
crew* 

    X  

21. Possible 
Contributing Cause: 
Hafle’s failure to 
investigate/resolve 
negative test 
anomalies* 

     Personal 
decision 

22. Possible 
Contributing Cause: 
Failure of well site 
leaders to 
communicate well-
related issues with 
managers on 
Deepwater Horizon* 

   X X  

23. Possible 
Contributing Cause: 
Failure to provide 
complete and final 
negative test 
procedures in a 
timely fashion* 

X  X X   
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

24. Possible 
Contributing Cause: 
Crew’s hesitance to 
shut-in the BOP 
immediately* 

X X   X  

25. Possible 
Contributing Cause: 
Failure to conduct the 
first of 2 negative 
tests* 

   X  Divergence 
from 

accepted 
practices 

26. Possible 
Contributing Cause: 
Crew’s decision to 
bypass Sperry-Sun 
flow meter while 
pumping spacer 
overboard* 

X  X X   

27. Possible 
Contributing Cause: 
Failure of well 
control training and 
MMS requirements to 
address situations 
such as negative tests 
and displacement 
operations* 

X    X  

28. Contributing 
Cause: Decision to 
use the mud gas 
separator during well 
control event* 

X X   X  

29. Contributing 
Cause: Ambiguity in 
Transocean well 
control manual on 
when to use diverter 
v. mud gas separator* 

X X   X  

30. Contributing 
Cause: Failure of 
bridge personnel to 
notify crew in engine 
room about alarms* 

 X   X  
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

31. Possible 
Contributing Cause: 
Rig floor crew’s 
inability to determine 
the location of the 
kick in relation to 
BOP stack and 
volume of 
hydrocarbons coming 
to rig* 

 X     

32. Possible 
Contributing Cause: 
Failure to initiate 
emergency 
disconnect system 
until after 
hydrocarbons were 
past BOP stack* 

 X     

33. Possible 
Contributing Cause: 
“Inhibited” general 
alarm system* 

     Divergence 
from 

optimal 
safety 

procedures 

34. Possible 
Contributing Cause: 
Failure to train 
marine crew to 
handle serious 
blowout events* 

    X  

35. Contributing 
Cause: Location of 
air intakes for engine 
room #3 and 6* 

X X     

36. Contributing 
Cause: Failure of 
over-speed devices to 
initiate shut-down of 
engines* 

X X     
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

37. Contributing 
Cause: Location 
/design of mud gas 
separator outlet 
vents* 

X X     

38. Contributing 
Cause: Failure to 
instruct engine room 
crew to initiate 
emergency shutdown 
sequence after 
receiving gas alarms*  

 X    Communi-
cation 
failure 

 

39. Possible 
Contributing Cause: 
Classification of 
engine rooms #3 and 
#6 as non-classified 
areas* 

X      

40. Possible 
Contributing Cause: 
Failure to identify 
risks associated with 
locating air intake of 
engine room #3 in 
close proximity to 
drill floor* 

X      

41. Possible 
Contributing Cause: 
Absence of 
emergency shut-
down devices that 
could automatically 
be triggered in 
response to high gas 
levels* 

X X 
 

    

42. Possible 
Contributing Cause: 
Failure to document 
which devices are 
tested * 

     Break in 
record-
keeping 
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

43. Possible 
Contributing Cause: 
DP MODU operating 
philosophy when 
considering the 
performance of an 
emergency shutdown 
(ESD)* 

X      

44. Cause of BOP 
Stack Failure: Failure 
of the BOP to shear 
the drill pipe due to 
physical location of 
pipe outside of the 
BSR cutting surface* 

X      

45. Contributing 
Cause: Elastic 
buckling of the drill 
pipe * 

X X     

46. Possible 
Contributing Cause: 
Forces causing elastic 
buckling of the drill 
pipe* 

X      

47. Contributing 
Cause: Failure of 
crew to stop work on 
the Deepwater 
Horizon* 

 X   X  

48. Contributing 
Cause: Failure to 
fully asses the risks 
associated with a 
number of 
operational decisions 
leading up to the 
blowout* 

 X  X   
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

49. Contributing 
Causes: Cost or time 
saving decisions 
made without 
considering 
contingencies and 
mitigation* 

 X  X   

50. Contributing 
Cause: Failure to 
ensure all risks 
associated with 
operations were as 
low as reasonably 
practicable* 

 X  X   

51. Contributing 
Cause: BP’s failure to 
have full supervision 
and accountability 
over activities 
associated with the 
Deepwater Horizon* 

 X   X  

52. Possible 
Contributing Cause: 
Failure to document, 
evaluate, approve, 
and communicate 
changes associated w/ 
DH personnel and 
operations* 

X      

53. Possible 
Contributing Cause: 
Failure of BP and 
Transocean to ensure 
a common, integrated 
approach to well 
control* 

X    X  
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

54. Possible 
Contributing Cause: 
Failure of current 
subpart O rule to 
identify personnel 
who need to be 
trained in well 
control operations, 
specifically in kick 
detection* 

    X  

55. Possible 
Contributing Cause: 
Conflict between 
managers and 
confusion about 
accountability at the 
managerial level† 

    X  

56. Contributing 
Cause: Failure to 
consult available 
experts on cement 
program and negative 
test procedures† 

 X   X  

57. Possible 
Contributing Cause: 
Failure of Transocean 
to communicate 
lessons learned on 
similar rig to BP† 

  X    

58. Possible 
Contributing Cause: 
Ineffective 
management and 
communication with 
contractors† 

   X X  

59. Contributing 
Cause: BP use of 
incentives to promote 
performance † 

 X  X   
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Fig. 1 Continued 

Causal Factor Theoretical Characterization: NAT / HRT Concept Other 

 Complexity Coupling Lack of 
Org. 

Learning 

Lack of 
Safety 

Priority 

Inadequate 
Org. 

Culture 

 

60. Contributing 
Cause: MMS mission 
conflict† 

 X  X   

61. Contributing 
Cause: MMS lack of 
adequate precautions 
in permitting 
Macondo well site † 

 X X X   

62. Contributing 
Cause: Lack of 
adequate training for 
operators to monitor 
for well kicks as 
required by MMS† 

 X   X  

Concept  
Indicators             113 27 33 6 18 22 7 

Percentage           100 23.9 29.2 5.3 15.9 19.5 6.2 

Theory Applicability Normal Accident High Reliability Other 

Concept Indicators           60 46 7 

Percentage           100 53.1 40.7 6.2 

 

Explanation of classifications: 

1. Report lists “contamination25, over-displacement26, and/or possibly nitrogen breakout27” 

as causes for the shoe track cement to fail. The crew would have been unable to directly 

observe these events (as they took place deep within the wellbore), and operators used 

                                                        
25 The materials pumped down a well to cement it are often separated to prevent their mixing and 

contamination, in the Macodo well, the crew pumped base oil, a water based spacer, a bottom dart, cement, a 

top dart, spacer, and drilling mud (in that order), in order to place the cement in the shoe track (the lowest 

portion of the wellbore). The 2011 report asserts that the drilling mud, which was oil based, may have mixed 

with and contaminated the cement mixture, thereby compromising the strength of the cement in the well 

(U.S. Department of the Interior / BOEMRE, 2011). 
26 The 2011 report notes that one possibility in the shoe track failure is that operators may have pushed the 

cement/mud/spacer mixture too far through the wellbore, thereby pushing the cement mixture past its 

intended location in the shoe track (U.S. Department of the Interior / BOEMRE, 2011). 
27 Nitrogen breakout refers to nitrogen bubbles in the foamed cement that “’break out’ of suspension – which 

can result in inconsistent cement placement and densitites (U.S. Department of the Interior / BOEMRE, 

2011).” 



 102

nitrified cement specifically to address the issue of lost returns in the well28. 

Contamination of the cement may have been an unexpected interaction, indicating 

complexity as well. 

2. Although the 2011 report indicates that this is not a standard practice, the drilling team at 

the Macondo well’s decision to set the production casing in a laminated sand-shale zone 

was partially motivated by the need to adapt to the uncertain environment in which the 

drilling took place. There was limited information on the hydrocarbon formation at the 

outset of the drilling activities at Macondo, and operators drilling the exploratory well 

were forced to end the well before its designed depth due to an increasingly slim drilling 

margin, which threatened the safety of the well. This change of plans left the shoe cement 

in a location where it was more prone to channeling or contamination (U.S. Department 

of the Interior / BOEMRE, 2011). This action was partially motivated by limited indirect 

information and adaptation to the unpredictable drilling environment, both signs of 

complexity. Additionally, this action was a contributing cause of the cement barrier 

failure within the well, and therefore was tightly coupled to this outcome (U.S. 

Department of the Interior / BOEMRE, 2011). 

3. The 2011 report notes that the extreme mud losses within the Macondo well during 

drilling operations warranted additional caution during the production casing cementing 

operations, however it appears that BP failed to consider this fact and consistently made 

decisions based on cost and time savings, indicating a lack of prioritization of safety. The 

                                                        
28 “Lost returns” refers to the loss of drilling fluids into fissures in the geologic formation containing 

hydrocarbons, which was delicate at the Macondo well site and required special attention to maintaining the 

pressure balance required to control hydrocarbon flow while preventing large scale fracturing of the 

formation. The designers of the Macondo well used nitrified foam cement in this particular case in order to 

reduce the density of the cement in the well, thus lowering the risk of “formation breakdown.” According to 

the 2011 report, this type of cement “presented technical challenges in ensuring that the cement mixture is 

stable (U.S. Department of the Interior / BOEMRE, 2011).” 
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decision not to take extra precautions has been identified as a contributing cause of the 

cement barrier failure and therefore was tightly coupled to this outcome (U.S. 

Department of the Interior / BOEMRE, 2011). 

4. BP operators did not follow some of the recommended practices in API RP 65 (The 

American Petroleum Institute distributes industry standards and recommendations for oil 

drilling operations). This decision was identified as a contributing cause of the cement 

barrier failure, indicating tight coupling. While some of these actions may have been 

motivated by attempts to adapt to the delicate pressure balance within the well, this is 

clearly an example of a failure to conduct cementing procedures as instructed by accepted 

practices (U.S. Department of the Interior / BOEMRE, 2011).  

5. BP’s decision to set the float collar (one barrier to well inflow) across the hydrocarbon-

bearing zones of the formation clearly went against standard practices and increased the 

coupling within the well operations by allowing less time for kick response by the crew 

by decreasing the “overbalanced” pressure condition between the cement and well 

pressures. This was a contributing cause of the cement barrier failure, and signifies tight 

coupling (U.S. Department of the Interior / BOEMRE, 2011). 

6. The 2011 report indicates that BP personnel did not share information with their 

operating partners concerning the increased risks inherent in the Macondo well 

cementing job, although BP personnel were aware of some of these risks (U.S. 

Department of the Interior / BOEMRE, 2011). This is clearly a failure of communication 

with dire consequences, as this information may have aided in decision making by non-

BP personnel. This failure in communication between partners indicates an inadequate 
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authority structure. This also signifies tight coupling as this action was a contributing 

cause of the cement barrier failure 

7. As referred to in the body of this study, BP personnel clearly did not understand some of 

the risks associated with the Macondo well (such as those displayed by the OptiCem 

model), indicating complexity in accurate risk analysis, however BP personnel also made 

decisions to move ahead with cementing operations despite a lack of information on 

cement strength and float collar blockage, both of which increased risk but were not 

adequately accounted for in BP’s calculations (which ignored the cumulative risk in the 

well operations) (U.S. Department of the Interior / BOEMRE, 2011). This lack of direct 

information signifies complexity within the system. This failure of interpretation was 

identified as a contributing cause of the cement barrier failure, indicating coupling (U.S. 

Department of the Interior / BOEMRE, 2011). Finally, this hastiness in neglecting risk 

analysis was likely driven by cost and production pressures, indicating a lack of 

prioritization of safety. 

8. The 2011 report notes, “This additional cement would have created another barrier to 

prevent flow up the production casing… (U.S. Department of the Interior / BOEMRE, 

2011),” indicating that the decision not to set cement on top of the wiper plug was not 

consistent with best practices in the industry. The fact that well site managers did not 

recognize the prudence in placing this barrier indicates organizational hubris within BP, 

signifying a lack of organizational learning, while this decision has been identified as a 

contributing cause of the cement barrier failure, indicating tight coupling. 

9. The float collar was a critical component within the Macondo well, and its operation 

affected other processes within the well including the cement placement and well control 
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(U.S. Department of the Interior / BOEMRE, 2011). BP clearly made a faulty decision in 

failing to install a debris-tolerant float collar (U.S. Department of the Interior / 

BOEMRE, 2011), which had subsequent repercussions within the system by increasing 

coupling between components used to control well flow and eventually contributing to 

the cement barrier failure. 

10. The 2011 report implies that production pressures may have played a part in this 

decision, as BP had the option to temporarily abandon the Macondo well without setting 

a production casing, which would have cost significantly more yet would have allowed 

more time for BP to draft a safer plan to extract hydrocarbons from the delicate well 

(U.S. Department of the Interior / BOEMRE, 2011). The fact that this action increased 

risk and was motivated by cost and production pressures indicates a lack of prioritization 

of safety. 

11. Cementing operations were monitored through calculations and measurements with a 

high margin of error, indicating a reliance on indirect information sources – a clear sign 

of complexity within the system (U.S. Department of the Interior / BOEMRE, 2011).  

12. BP and Halliburton made many decisions in conducting the cement casing job in the well 

that were motivated by accommodating the unique nature of the well, as well as reducing 

operation time and cost savings. (delicate pressure balance and material losses) (U.S. 

Department of the Interior / BOEMRE, 2011; National Commission.., 2011c). Many of 

these decisions increased complexity within the system as a response to the unstable 

environment and signified an inadequate prioritization of safety within the system. 

13. There appears to have been a collective failure on the part of operators aboard the 

Deepwater Horizon to understand the well system as a whole and to place the 
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“anomalies” experienced at the site into the context of cumulative risk and uncertainty 

(U.S. Department of the Interior / BOEMRE, 2011). This represents complexity, in that 

operators could not comprehend the entire system and could not observe or comprehend 

certain interactions and oddities, however this also may indicate the presence of cost and 

production pressures that incentivized finishing the temporary abandonment procedures 

in as little time as possible, indicating a lack of prioritization of safety. Finally, the fact 

that operators were unable to adequately recognize and respond to anomalies, indicates a 

lack of adequate organizational culture within the system (U.S. Department of the Interior 

/ BOEMRE, 2011). 

14. This failure indicates complexity within the system, as crew would have had to monitor a 

variety of information sources to determine that a well kick was in progress (due to the 

usage of a multitude of mud pits during displacement operations – a situation that 

generally conflicts with industry accepted practices) (U.S. Department of the Interior / 

BOEMRE, 2011). This failure also highlights the tight coupling between flow into the 

well and a loss of well control, as the crew’s ability to control an influx of hydrocarbons 

deteriorates quickly once the hydrocarbons are above the BOP stack (U.S. Department of 

the Interior / BOEMRE, 2011). Finally, this failure highlights the inability for BP and its 

operating partners to adequately staff the Deepwater Horizon with a crew large enough to 

effectively conduct displacement and monitoring processes simultaneously and to train 

the crew to react to a hydrocarbon influx adequately. This failure signifies complexity, 

coupling, and an inadequate organizational culture. 

15. This causal factor indicates that negative test procedures are not clearly defined and 

generally agreed upon within the industry, indicating limited understanding of some 
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processes, which denote complexity within the system  (U.S. Department of the Interior / 

BOEMRE, 2011). This factor also indicates a lack of adequate training or socialization as 

operators and managers were not instructed to dispute the results of the inconclusive 

negative test. Finally, the inability of the crew to correctly interpret the negative test 

directly contributed to the loss of well control, triggering the blowout and explosion. This 

failure signifies complexity, an inadequate organizational culture within the system, and 

coupling between misinterpretation of the test results and the blowout and explosion. 

16. The crew’s inability to accurately monitor pit levels during the critical negative test 

stemmed from the fact that the crew was conducting multiple processes aboard the rig 

while displacing drilling mud from the well riser, which obfuscated the signs of a kick. 

The crew also chose to bypass the Sperry-Sun flow-out meter, a critical measure of well 

flow, which inhibited their ability to detect a kick even further. Finally, it appears that 

managers atop the Deepwater Horizon failed to adequately delegate responsibility for 

kick monitoring. These decisions were largely motivated by an attempt to reduce 

operation time, and therefore signify a failure to prioritize safety, as well as a failure in 

organizational culture (U.S. Department of the Interior / BOEMRE, 2011; National 

Commission…, 2011c). This failure is also identified as a contributing cause of the kick 

detection failure, signifying coupling (U.S. Department of the Interior / BOEMRE, 2011). 

17. The failure to investigate the March 8, 2010 well control event (U.S. Department of the 

Interior / BOEMRE, 2011) was a failure of management on the part of BP, and the fact 

that individuals present during the March 8 kick were also monitoring the Macondo well 

on April 20, 2010 (U.S. Department of the Interior / BOEMRE, 2011) is an example of 
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an organization failing to investigate and learn from accidents signifying a lack of 

organizational learning. 

18. This appears to be a failure of communication between BP and its operating partners, 

however, like explanation #6, this may have contributed to the cause of the kick detection 

failure (U.S. Department of the Interior / BOEMRE, 2011) because this information may 

have increased operators awareness surrounding well kick monitoring activities. Because 

BP did not facilitate open communication with its partners, this is an example of an 

inadequate authority structure. 

19. The use of lost circulation material pills as a spacer in the well represents complexity, as 

this decision created an unexpected interaction that obscured negative test results, 

however this decision was also motivated by cost pressures at the risk of safety, 

indicating a lack of prioritization of safety (U.S. Department of the Interior / BOEMRE, 

2011). 

20. The crew of the Deepwater Horizon became increasingly “comfortable” with the 

operations of the rig, which may have compromised their monitoring and decision 

making ability (U.S. Department of the Interior / BOEMRE, 2011). This likely spurred 

from a lack of a common safety culture. 

21. This identified causal factor specifically focuses on the decision of one individual, 

indicating that this is a personnel matter and may have been partially a result of poor 

communication (U.S. Department of the Interior / BOEMRE, 2011). 

22. This appears to be a symptom of a lack of open and free communication, however this 

failure may have partially resulted from decentralization in the organization, as well site 

leaders were not required to communicate their issues to their superiors in this instance, 
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(U.S. Department of the Interior / BOEMRE, 2011). Finally, the reluctance on the part of 

well site leaders to raise issue with the negative test results, and therefore confront more 

experienced engineers and managers about these results points to a desire to move 

forward with the temporary abandonment procedures quickly. This serves as a tacit 

motivation to place cost and production pressures ahead of safety concerns (National 

Commission…, 2011c). These factors indicate that this factor can be categorized as a 

sign of an inadequate authority structure and lack of prioritization of safety within the 

organization. 

23. This failure may have resulted from differences of opinions within the industry on 

negative test procedures, as well as confusion surrounding operations stemming from 

disorganization (U.S. Department of the Interior / BOEMRE, 2011). The difference of 

opinion on negative test procedures exemplifies a limited understanding of some 

processes, an indicator of complexity, while the fact that BP rushed the preparation of the 

negative test plan and procedures even in light of hesitance raised by a manager who had 

experienced problems with “just in time delivery of well plans” indicates that the 

organization was unable to practice organizational learning or to prioritize safety over 

production pressures (National Commission…, 2011c). This factor signifies complexity, 

a lack of organizational learning and a lack of prioritization of safety. 

24. This causal factor is likely owed to complexity, in that the crew had differing opinions 

about the cause of the anomalous occurrences surrounding the hydrocarbon influx. This 

failure also signifies tight coupling, however as the crew’s quick response would have 

been necessary to intervene before the well blowout was well underway (U.S. 

Department of the Interior / BOEMRE, 2011). Finally, this failure is partially owed to 
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operator error, signifying a lack of adequate training and therefore an inadequate 

organizational culture. This failure signifies complexity, coupling, and an inadequate 

organizational culture. 

25. This appears to have been a divergence from agree-upon industry accepted practices in 

deep water drilling. This decision, however, also went against the stated negative test 

procedures featured within the MMS approved permitting documents for the Macondo 

well site. This decision, based on communications between BP employees, appeared to 

have been motivated by at attempt to reduce operating time, signifying a lack of 

prioritization of safety. (U.S. Department of the Interior / BOEMRE, 2011). 

26. This divergence from best practices limited the crew’s ability to accurately monitor the 

volume of liquid leaving the well, and thus created unnecessary complexity while 

exposing organizational hubris in the failure to use an additional check against flow 

within the well (U.S. Department of the Interior / BOEMRE, 2011). The decision to 

bypass these critical flow meters may have been motivated by an attempt to save time 

during the displacement procedures, indicating a lack of prioritization of safety. This 

action also signifies complexity and a lack of organizational learning. 

27. This failure indicates complexity in the possible ambiguity within the industry 

surrounding negative test and displacement operations. Failure by BP, Transocean, and 

MMS to guide operators adequately in safety precautions and risk prone well operations 

also signifies a inadequate training and thus a lack of adequate organizational culture 

(U.S. Department of the Interior / BOEMRE, 2011). 

28. The crew’s decision to use the mud gas separator may have been the result of a lack of 

knowledge about the volume of hydrocarbon flow from the well, which would depend on 
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inferential information sources (a sign of complexity), as well as a lack of training needed 

to adequately assess the condition as a blowout that would overwhelm the mud gas 

separator. This decision is also identified as a contributing cause of the response failure, 

indicating coupling (U.S. Department of the Interior / BOEMRE, 2011). This factor 

signifies complexity, a lack of adequate organizational culture, and coupling.  

29. This causal factor may be owed to ambiguity within the industry (differing expert 

opinions – signifying complexity) concerning when to use the mud gas separator versus 

the diverter in a well control situation, however this is also an example of a lack of 

guidance and training provided by Transocean, indicating a lack of adequate 

organizational culture. Finally, this factor indicates coupling, as it was identified as a 

contributing cause of the response failure (U.S. Department of the Interior / BOEMRE, 

2011). This factor signifies complexity, a lack of adequate organizational culture, and 

coupling. 

30. This failure was likely prompted by a lack of emergency training exercises, as indicated 

by the testimony of Andrea Fleytas, an officer on the rig, signifying a lack of adequate 

organizational culture. This failure was also identified as a contributing cause of the 

response failure, indicating coupling  (U.S. Department of the Interior / BOEMRE, 

2011).  

31. The rig floor crew’s inability to determine the location of the kick in relation to the BOP 

stack and the volume of hydrocarbons coming to the rig signifies tight coupling, as the rig 

crew would have had a very short time period in which to make effective actions that 

would stop the chain of events that lead to the blowout. Because the crew lacked this 

information, they were unable to activate the BOP equipment in a timely fashion and 
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were unable to adequately decide whether or not to use the mud gas separator, and thus 

made decisions that lead to the ignition of flammable gas atop the rig (U.S. Department 

of the Interior / BOEMRE, 2011). 

32. This is a clear example of tight coupling, as the emergent situation required quick 

response and was hampered by the influx of hydrocarbons above the BOP stack (U.S. 

Department of the Interior / BOEMRE, 2011). 

33. The 2011 report correctly identifies this procedure as inconsistent with best practices 

(U.S. Department of the Interior / BOEMRE, 2011). 

34. This factor indicates a failure on behalf of management to adequately train employees for 

emergency situations, which was made worse by a somewhat decentralized command 

structure leaving those who were not adequately trained in charge of emergency 

operations on the bridge of the Deepwater Horizon (U.S. Department of the Interior / 

BOEMRE, 2011). This failure represents a inadequate organizational culture structure 

that did not provide a common operating procedure. 

35. The location of these air intakes to the outlet of the mud gas separator (which spewed 

combustible gas) is an example of complexity, specifically that of proximity of two 

components that later harbored an unforeseen interaction. This factor was also identified 

as a contributing cause of the Deepwater Horizon explosion, signifying coupling (U.S. 

Department of the Interior / BOEMRE, 2011). 

36. The failure of the over-speed devices to shut down the engines on the Deepwater Horizon 

exemplifies complexity, as these engines were in proximity to the mud gas separator 

outlet and provided power to the rig in an emergency situation while posing an ignition 

risk. This failure also signifies tight coupling, however, as indicated by the presence of 
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automatic safety barriers which failed, leaving little time for human intervention. This 

failure was identified as a contributing cause of the Deepwater Horizon explosion, again 

signifying coupling (U.S. Department of the Interior / BOEMRE, 2011).  

37. The location of the mud gas separator outlet vents, as alluded to previously, created an 

unforeseen complex interaction via proximity to combustion engines and sources of 

ignition. Further, this factor was identified as a contributing cause of the Deepwater 

Horizon explosion, signifying coupling (U.S. Department of the Interior / BOEMRE, 

2011). This factor signifies complexity and coupling. 

38. This failure indicates tight coupling, as the impending emergency situation would have 

required quick and decisive action to prevent injury, however this is also an example of 

poor communication between operators (U.S. Department of the Interior / BOEMRE, 

2011). 

39. The classification of the engine rooms as non-classified areas increased system 

complexity because it created an opportunity for ignition sources to be in close proximity 

to combustible gas in a blowout situation, relying only on over-speed devices to prevent 

engine failure. This interaction was clearly unseen by designers of the rig, however it 

created an environment conducive to an explosion on the Deepwater Horizon (U.S. 

Department of the Interior / BOEMRE, 2011). 

40. This, like the previously mentioned factor, indicates complexity unforeseen by the 

designers of the Deepwater Horizon DP MODU (U.S. Department of the Interior / 

BOEMRE, 2011). 

41. The absence of this safety device may have been motivated by the need for emergency 

power on the Deepwater Horizon in an emergency situation in order to escape the well 
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site; however this added complexity in the design of the rig, as emergency shutdown is 

necessary in an emergency that releases combustible gas in the vicinity of ignition 

sources. The manual engine shutdown mechanism also indicates tight coupling in the 

system as it requires human intervention at the immediate outset of a well control event 

releasing combustible gas to prevent the imminent interaction between the engines and 

gas (U.S. Department of the Interior / BOEMRE, 2011). 

42. Neither Transocean nor the American Bureau of Shipping (ABS) were able to procure 

records tracking the testing of the over-speed devices on the rig engines due to 

inconsistent testing procedures (U.S. Department of the Interior / BOEMRE, 2011). This 

is clearly a failure to keep orderly documentation of inspection and may indicate a failure 

in inspection processes in general. 

43. This “operating philosophy” refers to the conflicting needs experienced on a DP MODU 

which include the need to shutdown engines on the rig to avoid the risk of igniting 

combustible gas versus the need to power the rig in a blowout or emergency situation in 

order to disconnect from the well string and evacuate the well site. These conflicting 

demands indicate complexity within the system surrounding the engines, which serve a 

critical purpose but pose a risk while serving this purpose (U.S. Department of the 

Interior / BOEMRE, 2011). 

44. A primary cause of the Deepwater Horizon blowout was the inability of the BOP to sever 

and seal the drill pipe, which was lodged in-between the faces of the blind shear ram 

outside of the area of the cutting surface. This is an example of an unexpected interaction 

between parts, signifying complexity (U.S. Department of the Interior / BOEMRE, 2011). 
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45. Unforeseen interactions between the well equipment caused the drill pipe connected to 

the Macondo well and the Deepwater Horizon to buckle and become trapped between the 

blind shear ram faces, thus disabling the blind shear ram (part of the BOP) from severing 

and sealing the well pipe. The 2011 report indicates that two possible scenarios may have 

caused this buckling: 

a. “Flow from the well forced the section of drill pipe located between the closed 

VBR [variable bore rams] and the closed upper annular up into the closed upper 

annular to a point where a tool joint stopped against the closed upper annular. 

Wellbore conditions produced enough force to cause the pipe to elastically buckle 

in this area.” 

b. “Flow from the well and weight of the unsupported 5,000 feet of 6 5/8 inch 

diameter drill pipe above the closed VBR forced the section of drill pipe located 

between the upper VBR and the upper annular into an elastically buckled state 

(U.S. Department of the Interior / BOEMRE, 2011).” 

These chains of events were clearly unforeseen and prevented the BOP from working 

correctly, indicating complexity and coupling within the system. 

46. See above, indicating complexity. 

47. The operators on the Deepwater Horizon were authorized to issue a “stop work” order if 

they believed that the operations as conducted posed significant danger to the crew. The 

fact that these workers were authorized to make this command but did not in the face of 

clearly risky operations that were contrary to standard practices (that of utilizing multiple 

mud pits in displacement operations) indicates that the attempt to decentralize authority 

by allowing operators close to the system some measure of control over its operation did 
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not serve the purpose of preventing the 2010 blowout, possibly because cost and 

production pressures were ingrained in the organizational culture at the site. This failure 

to stop the work at the site is considered a contributing cause of the Macondo Blowout, 

signifying coupling (U.S. Department of the Interior / BOEMRE, 2011).  

48. This appears to be a failure of management motivated by cost and production pressures, 

as portrayed in the 2011 BOEMRE report, indicating a lack of prioritization of safety. 

This failure, however, was also a contributing cause of the Macondo Blowout, and 

therefore is coupled to the chain of events that became this accident (U.S. Department of 

the Interior / BOEMRE, 2011).  

49. The 2011 report asserts that BP managers made a number of decisions that may have 

increased risk on the Deepwater Horizon without regard to contingencies and mitigation 

in the days leading up to the 2010 spill. These decisions appear to be strictly motivated 

by cost and production pressures, and are examples of a lack of prioritization of safety. 

These decisions also signify coupling within the system as they are identified as 

contributing causes of the Macondo Blowout (U.S. Department of the Interior / 

BOEMRE, 2011). 

50. The management of the Deepwater Horizon clearly did not attempt to reduce risk 

inherent in the drilling system to a level as low as reasonably possible, as a prioritization 

of safety would require. This failure is also identified as a contributing cause of the 

Macondo Blowout, indicating coupling  (U.S. Department of the Interior / BOEMRE, 

2011). 

51. Supervision and accountability on the Deepwater Horizon was fragmented and BP did 

not effectively manage the operations on the rig, indicating an inadequate organizational 
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culture. The 2011 report insists that this created a chaotic environment and was a possible 

contributing cause of the blowout. Further, this factor is identified as a contributing cause 

of the Macondo blowout, indicating coupling (U.S. Department of the Interior / 

BOEMRE, 2011).  

52. A number of personnel changes occurred in the management and staffing of the 

Deepwater Horizon shortly before the 2010 blowout, including the reorganization of 

some departments controlling the planning and temporary abandonment of the well. This 

indicates organizational complexity in the system controlling the well, and displays a 

temporary weakness in the system as many employees were still settling into their new 

roles. Similarly, the operations aboard the Deepwater Horizon were changed and 

amended with little notice during the temporary abandonment procedures due to 

unforeseen circumstances and changes in the order of procedures as dictated by operators 

and engineers. This signifies complexity in the system controlling the Deepwater Horizon 

(U.S. Department of the Interior / BOEMRE, 2011). 

53. The failure of Transocean and BP to establish common well control guidelines indicates 

that blowout situations are dealt with differently between different firms. Because few 

well control situations are exactly alike, it appears that this event is complex, and 

required pre-considered guidance for operators. The failure of these two companies to 

communicate clear guidelines to their employees indicates an inadequate organizational 

culture (U.S. Department of the Interior / BOEMRE, 2011). 

54. The failure of BP’s Subpart O plan to specifically identify some operators with 

responsibility for well monitoring, specifically kick detection, indicates an organizational 

system with diffuse allocations of responsibility for crucial functions in the drilling 
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system. This scenario signifies an inadequate organizational culture. (U.S. Department of 

the Interior / BOEMRE, 2011). 

55. Like the previous factor, the presence of unclear or diffuse accountability was a 

widespread problem within the BP management following a recent reorganization. This, 

as well as personal conflicts between managers, caused confusion at the well site, leading 

to a dysfunctional organizational culture (National Commission…, 2011c). 

56. BP managers and well site leaders failure to adequately consult available experts 

concerning the casing design and negative test procedures is a clear indicator of an 

inadequate organizational culture (National Commission…, 2011c). The decision not to 

consult these experts had immediate repercussions as seen in the subpar performance of 

the cement and the incorrect interpretations of the negative test results by those on the rig. 

This failure can be seen as a contributing cause of the cement bond failure.  

57. Transocean had recently experienced a well control event during displacement 

procedures, a similar experience to that of the later Deepwater Horizon accident. 

Although this experience heightened awareness and vigilance within Transocean 

concerning this procedure, this information was not shared with BP employees, thereby 

preventing organizational learning between the two partners (National Commission…, 

2011c). 

58. BP failed “to effectively manage the timeline and validity of the cement testing” process 

by Halliburton. Halliburton also failed to “effectively communicate cementing issues to 

BP.” In this respect, it is clear that communication between the two partners was not open 

and responsive to issues, indicating an inadequate organizational culture between the two 

entities (National Commission…, 2011c). A possible reason for a lack of oversight over 
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the cement testing procedures as conducted by Halliburton may have been production 

pressure experienced by BP, as asserted in National Commission…, 2011c. This notion 

of cost cutting and rushing production is directly linked to many subsequent decisions by 

BP surrounding the Macondo well that may have increased risk. This is indicative of a 

lack of prioritization of safety and an inadequate organizational culture. 

59. The operating style of BP featured strong incentives for reducing cost and promoting 

production efficiency, which may have been promoted at the expense of safety, urging 

some managers to “treat redundancies as inefficiencies.” This is a clear example of a lack 

of prioritization of safety within the system and is coupled to many other decisions and 

actions leading to the 2010 spill (National Commission…, 2011c). 

60. The conflict between the two tasks of MMS (promoting and regulating offshore 

exploration) was a direct contributor to the way in which BP approached well safety, 

design, and processes at the Macondo well. This lack of clear prioritization of safety on 

behalf of MMS is coupled to a lack of safety prioritization within BP (National 

Commission…, 2011c). 

61. The permitting procedure for BP to commence drilling and temporarily abandoning the 

Macondo well was not adequately rigorous, and therefore demonstrated a lack of 

adequate oversight by MMS. The Chief Counsel’s Report on the 2010 spill drafted by the 

National Commission on the BP Deepwater Horizon Spill and Offshore Drilling lists 

numerous examples of permit requirements or policies that were overlooked or waived by 

MMS in reference to the Macondo well site. Some decisions, like allowing BP to set the 

cement surface plug deeper than standard requirements dictated, were made quickly with 

little evident consideration of overall risk, and may have directly contributed to the spills 
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occurrence (National Commission…, 2011c). The Chief Counsel’s Report makes a 

thorough case for the fact that MMS not only failed to apply adequate safety 

requirements to BP in this case, but generally neglected to keep regulatory pace with 

technological advances in deep water drilling (National Commission…, 2011c). The fact 

that this agency failed to address serious safety concerns and adjust its procedures in 

response to new technology indicates that it failed to practice organizational learning or 

safety prioritization. The fact that these failures were likely linked to the lax safety 

precautions in the design of the Macondo well and temporary abandonment procedures 

also points to coupling within the system (National Commission…, 2011c).  

62. Regulations covering drilling activities on the Deepwater Horizon required that operators 

responsible for well kick monitoring complete a form of “MMS-approved well control 

training.” This training, however proved inadequate due to its focus on well kick 

response during drilling operations not during temporary abandonment (National 

Commission…, 2011c). This lack of adequate training as mandated by MMS was a 

failure on the part of the regulatory regime to instill a common set of operating 

procedures in the workforce directly responsible for monitoring for well kicks, indicating 

an inadequate organizational culture within the system. Further, this failure was likely a 

contributing cause of the well operators at Macondo to recognize a well kick until it was 

thoroughly underway, leading to the blowout. This is an example of coupling. 
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Fig. 2 Calibration of Normal Accident Criteria based on Perrow’s (1999) Analyses (Perrow, 
1999: 98-99, 232-241 
 
 

University Dispute Over Tenure – Example of Complexity 

Causal Factor 
Signifies 

Complexity 
Other 

Decision to deny tenure to 
teacher 

 X 

Quality of service program X  

Dismissal linked to service 
program 

 X 

Student protest  X 

Creation of evaluation 
program 

X  

Application of program to 
other teachers 

X  

Unexpected demands X  

Total Factors                       7 4 3 

Percentage                       100 57.1 42.9 
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Grand Teton Dam Failure – Example of Tight Coupling 

Causal Factor 
Signifies 
Coupling 

Other 

Failure in one part of dam 
linked to structural integrity of 
the whole 

X  

Critical dam failure linked to 
destruction 

X  

Connection between dam 
failure and earthquakes 

X  

Failure in inter-agency 
communication 

 X 

Lack of action taken 
concerning known risks 

X  

Agency relationships inspired 
complacency 

 X 

Investment in dam  X 

Risk data ignored X  

Cracks in dam structure 
downplayed 

X  

Institutional hubris  X 

Dam filled too quickly X  

Unpredictable environment  X 

Failure to recognize 
anomalies/signs of danger 

 X 

Failure to adequately inspect 
dam construction 

 X 

Professional differences 
concerning connection 
between earthquakes and 
reservoirs 

 X 

Scale of the dam  X 

Proximity of dam to human 
settlements 

X  

Levels of potential energy 
produced by dam containment 

X  

Faulty data analysis  X 

Total Factors                     19 9 10 

Percentage                       100 47.4 52.6 

 
 
Note: Neither of these events are considered a normal accident by Perrow. 
  



 

Fig. 3 Approximate Location of BP Deepwater Horizon on Perrow’s Interaction / Coupling Chart 
(Perrow, 1999:97)  
 

 
Explanation of Placement:  

 

I have chosen to locate deep water drilling in the Gulf of Mexico in the Interaction / 

Coupling Chart in the upper right
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Approximate Location of BP Deepwater Horizon on Perrow’s Interaction / Coupling Chart 

I have chosen to locate deep water drilling in the Gulf of Mexico in the Interaction / 

right quadrant of the chart (indicating that this process features 

DH System 

Approximate Location of BP Deepwater Horizon on Perrow’s Interaction / Coupling Chart 

 

I have chosen to locate deep water drilling in the Gulf of Mexico in the Interaction / 

quadrant of the chart (indicating that this process features 
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moderate complexity and tight coupling) based on the results of my analysis of the concept 

indicators identified in causal factors of the oil spill (p. 88). Based on Perrow’s analysis of a dam 

failure and university’s dispute with students concerning tenure, I have concluded that if 50 % of 

an accidents causal factors can be linked to a concept indicator within normal accident theory 

(complexity or coupling), this system can be described as exemplifying a high level of the 

indicated quality. This 50 % relationship is employed as the upper bound of concept expression 

within the analyzed systems. Because the Deepwater Horizon system exemplified a moderate 

degree of complexity shown by 23.9 % of its concept indicators and a significant degree of 

coupling shown by 29.2 % of its concept indicators, this system occupies its above designated 

area. 

 

This location is near “Aircraft” (the operation of aircraft, not to be confused with airways 

control) and “Chemical plants.” This region corresponds to the Deepwater Horizon system 

because deep water drilling is similarly tightly coupled and complex as that of the aircraft 

industry because it takes place in an unforgiving environment.29 The Deepwater Horizon system 

is also located in a position near that of a chemical plant because both of these processes include 

specific control parameters of high temperature, high pressure, and massive releases of energy. It 

should be noted that although the Deepwater Horizon system is similar to marine transport in 

that it took place on a marine craft (a DP MODU), the processes of extracting hydrocarbons from 

                                                        
29 Deep water drilling occurs at sea, where accidents may not always cause the rig to sink and may lend more 

opportunities for human intervention in a time of crisis, as opposed to in high altitudes, in which mishaps can 

result in the crashing of the aircraft. Perrow discusses the airline industry in pages 121-146 of his 1999 

publication. 
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a deep water well significantly increase the complexity and slightly increase the coupling above 

those levels experienced in marine transport30.  

  

                                                        
30 The demands on a mobile marine drilling rig are not simply those of staying afloat in a harsh environment, 

but also consist of controlling massive underground pressure and storing and transferring large quantities of 

liquid from the rig to the well and vice versa (U.S. Department of the Interior / BOEMRE, 2011). Perrow 

discusses the marine transportation industry in pages 171-223 of his 1999 publication. 
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Fig. 4: BP Decisions and Associated Cost, Time and Risks (recreated from U.S. Department of 
the Interior / BOEMRE, 2011) 
 

BP Decisions and Associated Cost, Time and Risks 
 

BP Decision Less Cost to BP Less Rig Time Greater Risk 

6 versus 21 centralizers Yes Yes Yes 

Cement bond log Yes Yes Yes 

Full Bottoms Up on 4/19 Yes Yes Yes 

Long String versus Liner Yes Yes -- 

Timing of Lock Down 
Sleeve Installation After 
the Negative Test 

Yes Yes Yes 

Pumping mud to boat 
while displacing 

Yes Yes Yes 

Lost Circulation Material 
(“LCM”) pills combined 
for Spacer 

Yes Yes Unknown 

 
Contextual description of each listed BP Decision 

1. 6 versus 21 centralizers  

The 2011 report defines centralizers as “pieces of equipment used to keep the casing 

centered in the well (U.S. Department of the Interior / BOEMRE, 2011).” These allow 

cement to be installed evenly surrounding the well casing in the well bore, and therefore 

are crucial to the structural integrity of the cement job in a well. During the cement 

modeling stage, Halliburton employees modeled a number of well construction 

techniques and situations in order to find the optimal method of cementing and 

temporarily abandoning the Macondo well. These models showed that with 10 

centralizers, cement channeling was possible and was accompanied by a “moderate” gas 

flow potential, while with 21 centralizers, channeling would not occur and gas flow 

potential was minor (U.S. Department of the Interior / BOEMRE, 2011). BP managers 

were clearly aware of the results of this modeling, as demonstrated by their request for 15 

additional centralizers, however operators decided not to install these centralizers at the 
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well cementing phase because they incorrectly perceived them to be the incorrect types of 

centralizers for the job (U.S. Department of the Interior / BOEMRE, 2011; Deepwater 

Horizon Study Group, 2011). 

2. Cement bond log  

A cement evaluation log is a common element of a well cementing procedure such as that 

conducted by the Deepwater Horizon crew, in order to anticipate fluid losses during the 

casing cement job and to verify the strength of the cement placement. During the 

temporary abandonment procedures of the Macondo well, however, BP employees 

checked the integrity of the cement by checking “lift pressure” and evaluating if there had 

been apparent fluid losses. Based on these tests, Mark Hafle, a leader in the operation, 

then decided that a cement log was unnecessary and sent the logging crew home (U.S. 

Department of the Interior / BOEMRE, 2011). 

3. Full Bottoms Up on 4/19  

A “full bottoms up” refers to a process in which the operators on a rig in charge of 

cementing the well circulate drilling mud through the well casing in order to 1) clean out 

the well and 2) analyze any material circulated from the bottom of the well in order to 

determine if hydrocarbons are present (U.S. Department of the Interior / BOEMRE, 

2011). In the cementing process of the Macondo well, however, operators decided not to 

conduct a full bottoms up circulation due to concerns about lost returns (fluids lost into 

the formation), which they had previously experienced with the well (U.S. Department of 

the Interior / BOEMRE, 2011). 
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4. Long String versus Liner  

In considering the design of the Macondo well, BP was faced with two options to cement 

the well for temporary abandonment, the liner with tieback and a long string design. 

Although there are many strengths and weaknesses associated with both designs, BP 

ultimately chose the long string design, however this decision increased risk, according to 

many reports, and was influenced at least partially by cost savings and reduced 

installation time (U.S. Department of the Interior / BOEMRE, 2011; Deepwater Horizon 

Study Group, 2011). It should also be noted that BP leaders had a third option to consider 

in the temporary abandonment procedures, that of abandoning the well with no 

production casing installed in order to reassess the plan of action in designing the well, a 

procedure which is often utilized in wells with little drilling margin(U.S. Department of 

the Interior / BOEMRE, 2011). This third option, although likely safer, would have cost 

considerably more (U.S. Department of the Interior / BOEMRE, 2011). 

5. Timing of Lock Down Sleeve Installation After the Negative Test  

The 2011 report notes that a lock-down sleeve holds the production casing (the tube 

through which the rig extracts hydrocarbons) to the wellhead during production (against 

the pressures generated by well flow) (U.S. Department of the Interior / BOEMRE, 

2011). The report indicates that although it was not originally planned to install the lock-

down sleeve, the crew of the Deepwater Horizon were instructed to install this equipment 

upon BP leaders discovering that this installation would save time and money if 

conducted by the Deepwater Horizon (U.S. Department of the Interior / BOEMRE, 

2011). Simply put, the decision to set the lock-down sleeve during temporary 

abandonment was unnecessary and increased risk by demanding operators to conduct a 
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procedure that they had little experience with and necessitating a deeper setting of the 

surface plug within the well, which contributed to the severe pressure differential in the 

well during displacement procedures, directly increasing risk of a blowout (U.S. 

Department of the Interior / BOEMRE, 2011). 

6. Pumping mud to boat while displacing  

Careful monitoring of displacement volumes in temporary abandonment procedures is 

critical in order to observe and respond to well kicks (U.S. Department of the Interior / 

BOEMRE, 2011). Best practices in the deep water drilling industry advise operators to 

displace drilling mud to a single active pit (storage vessel on the marine unit) in order to 

facilitate this monitoring (U.S. Department of the Interior / BOEMRE, 2011). In the case 

of the temporary abandonment of the Macondo well, however, operators displaced 

drilling mud to multiple pits on the boat, which was not optimal and prevented 

mudloggers from accurately monitoring the volume of fluid coming out of the well (U.S. 

Department of the Interior / BOEMRE, 2011). 

7. Lost Circulation Material (“LCM”) pills combined for Spacer  

Spacer fluid is used in the context of displacement procedures to separate drilling mud 

from seawater (in displacement, drilling mud is removed and replaced by seawater) (U.S. 

Department of the Interior / BOEMRE, 2011). In the case of the Deepwater Horizon, 

operators utilized a large amount of lost circulation material (material used to prevent lost 

returns of drilling mud into the formation) as a spacer (U.S. Department of the Interior / 

BOEMRE, 2011). This decision is portrayed in the 2011 report as a sort of improvisation 

by BP in order to avoid disposal costs for the lost circulation material, indicating that the 

risk and possible interaction between this improvised spacer material and the well 
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equipment and interfaces with seawater and drilling mud (U.S. Department of the Interior 

/ BOEMRE, 2011). 

  



 

Fig. 5: Relative location of the hydrocarbon bearing sandstone formations (Pay Sands). 
(Deepwater Horizon Study Group, 2011)
 

Image Source: Adapted from the National Commission on the BP Deepwater Horizon Oil Spill 
and Offshore Drilling, Op. ct. 24.
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: Relative location of the hydrocarbon bearing sandstone formations (Pay Sands). 
(Deepwater Horizon Study Group, 2011) 

dapted from the National Commission on the BP Deepwater Horizon Oil Spill 
and Offshore Drilling, Op. ct. 24. 

: Relative location of the hydrocarbon bearing sandstone formations (Pay Sands). 

 

  
dapted from the National Commission on the BP Deepwater Horizon Oil Spill 
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Fig. 6: The Blowout Preventer used on the Deepwater Horizon (Deepwater Horizon Study 
Group, 2011) 

 

 
 
Image Source: Aconawellpro,�ref: 
http://www.aconawellpro.com/@api/deki/files/251/=MiniSeminar_Macondo_August_2010.pdf. 
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Fig. 7: Off Center Drill Pipe (U.S. Department of the Interior / BOEMRE, 2011). 

 
Source: DNV 
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