
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-17-2013

Automated Timeline Anomaly Detection Automated Timeline Anomaly Detection

Joshua M. Barone
University of New Orleans, joshua.barone@gmail.com

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Barone, Joshua M., "Automated Timeline Anomaly Detection" (2013). University of New Orleans Theses
and Dissertations. 1609.
https://scholarworks.uno.edu/td/1609

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1609&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uno.edu%2Ftd%2F1609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1609?utm_source=scholarworks.uno.edu%2Ftd%2F1609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Automated Timeline Anomaly Detection

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

Information Assurance

by

Joshua Barone

B.S. University of New Orleans, 2004

May, 2013

ii

Table of Contents

List of Figures ... iv

Abstract ... v

1.1 Background ...1

1.2 Motivation ..3

1.3 Objective ...5

2.1 The Sleuth Kit ..5

2.2 Event Log Formats ..6

 2.2.1 Windows NT Event Log Format ..6

 2.2.2 Windows Vista Event Log Format .. 13

 2.2.3 Unix Log Format ... 19

3 Detecting Anomalies .. 20

4 TADpole ... 23

 4.1 Discovery Phase ... 24

 4.2 Parsing Phase ... 26

 4.3 Detection Phase .. 27

 4.4 Pairing Phase .. 29

 4.5 Correlation Phase .. 31

 4.6 Reporting Phase .. 33

5 Testing ... 35

 5.1 Windows XP Professional - Roll Forward Test .. 38

 5.2 Windows XP Professional - Roll Backward Test 40

 5.3 Windows Vista Business - Roll Forward Test .. 41

 5.4 Windows Vista Business - Roll Backward Test ... 44

iii

 5.5 Windows 7 Enterprise - Roll Forward Test .. 46

 5.6 Windows 7 Enterprise - Roll Backward Test ... 48

 5.7 M57-Patents Scenario ... 49

6 Conclusion ... 50

7 Future Work ... 51

8 References ... 52

9 Appendices .. 53

 9.1 Appendix A: Windows XP Professional - Roll Forward Test 53

 9.2 Appendix B: Windows XP Professional - Roll Backward Test 54

 9.3 Appendix C: Windows Vista Business - Roll Forward Test 55

 9.4 Appendix D: Windows Vista Business - Roll Backward Test 57

 9.5 Appendix E: Windows 7 Enterprise - Roll Forward Test 58

 9.6 Appendix F: Windows 7 Enterprise - Roll Backward Test 60

 9.7 Appendix G: M57-Patent Scenario .. 60

10 Vita ... 65

iv

List of Figures

Figure 1 Event log record header ..6

Figure 2 Windows NT Event Log Cursor Format ...8

Figure 3 Windows NT Event Log Record Format .. 10

Figure 4 Windows Vista Event Log Header Format .. 13

Figure 5 Windows Vista Log File Chunk Header Format 16

Figure 6 Windows Vista Event Log Record Format ... 18

v

Abstract

Digital forensics is the practice of trained investigators gathering and analyzing

evidence from digital devices such as computers and smart phones. On these digital

devices, it is possible to change the time on the device for a purpose other than what is

intended. Currently there are no documented techniques to determine when this occurs.

This research seeks to prove out a technique for determining when the time has been

changed on forensic disk image by analyzing the log files found on the image. Out of

this research a tool is created to perform this analysis in automated fashion. This tool is

TADpole, a command line program that analyzes the log files on a disk image and

determines if a timeline anomaly has occurred.

Keywords: Timeline, Anomaly, Forensics, Digital Forensics, Computer Forensics

1

1.1 Background

Our society has steadily become more technological and with this continuous

introduction of technology, there is more opportunity for people to do nefarious things.

This includes introduction of malware (viruses, trojan horses, etc...), identity theft,

financial fraud, and more. Not only is there more opportunity for this type of crime, but

the tools and tactics used are becoming more sophisticated. Tactics include better ways

of hiding traces of the crime, better methods of encrypting data to prevent others from

accessing incriminating data, using steganography to hide communications within

innocuous transmissions, and others.

Digital forensics is the science of locating, collecting, preserving, and analyzing

evidence from digital devices for use in exposing improper or illegal use of the digital

devices. Devices include such items as computers, laptops, net-books, tablet

computers, smartphones, smart appliances, video game consoles, and anything that

electronically stores data or connects to the Internet. The digital media used by these

devices to store data may be DVDs, CDs, flash memory, USB thumb drives, external

hard drives, and others. Digital forensics is essentially a collection of practices and

methodologies that layout how an investigator gathers digital evidence and analyzes it.

The modern forensics investigator has great responsibilities. If they are negligent

in their handling of evidence, it is possible their actions will result in unjustified

conviction of someone who is innocent or exoneration of someone who is guilty. An

investigator must therefore be careful to reduce these risks as much as possible by

ensuring the integrity of the evidence being examined as well as ensuring that the

results of investigation is properly interpreted.

2

There are usually four stages to digital forensics investigation:

● Gathering of evidence - This is the stage in which all digital media that were

seized are replicated. This is done by making a forensic copy. Traditionally this is

an exact copy of the data, as well as a cryptographic hash that fingerprints the

data to prove that it wasn’t altered.

● Analysis of evidence - In this stage, all evidence that was gathered is processed

and analyzed to determine what information is of forensic value. In this stage, the

evidence is correlated to present a more complete picture of what was done. This

involves various practices and procedures, like creating a timeline based on

events in log files and timestamps on and in files on the system, also decrypting

data on the system. This also includes recovering all files and data that were

deleted, data in swap partitions, and hibernation storage files. There exist many

tools (both commercial and open software), for performing these tasks within this

step.

● Evaluation of evidence - In this stage, all evidence and analysis is put together to

determine what was done on the system, as well as how it was done, and by

whom. This is done by corroborating events with multiple pieces of evidence, if

available. This stage is more of a practice of intuition on the part of the

investigator, as the investigator’s experience and training leads them in the

understanding of the evidence and what it means. The investigator uses the

evidence to draw conclusions about what was done and how it was done. These

conclusions are formed by analyzing the evidence and comparing what is seen to

3

patterns that are documented by other investigators and patterns that have been

experienced and documented by the investigator in the past.

● Presentation of evidence - In this stage, all information and evidence gathered is

made into a format that others are capable of understanding. This includes

reports explaining what steps were taken to collect evidence, the evidence

collected, and conclusions drawn from the evidence.

1.2 Motivation

During the course of an investigation, it is usually very helpful to create a timeline

of events that occurred on a target system. Timelines are often created from log files

that are found on a system, and timestamp (MAC times) on files. MAC timestamps

refers to the three timestamps that associated with a file. These timestamps are the

time the file was last modified, last accessed (read), and the time the file was created.

Creating these timelines is a well explored and studied practice. There are several tools

that exist to aid in the creation of a timeline, including tools like log2time or GrokEvt.

● log2timeline1 - This tool is a framework for automatic creation of a super timeline.

The main purpose is to provide a single tool to parse various log files and

artifacts found on suspect systems (and supporting systems, such as network

equipment) and produce a timeline that can be analysed by forensic

investigators/analysts.

● GrokEvt2 - This tool is a collection of Python scripts designed for reading

Windows NT style event logs. This include the event logs found on Windows NT,

2000, XP, and 2003.

4

These tools organize the events in log files in order to present a cohesive

timeline of events. These tools are lacking though. There are assumptions made by

these tools, when creating the timeline, that discount anomalies in the timeline. The

focus of my research is on detecting anomalies in the timeline. These anomalies are

possibly indicative of manipulation of the clock on a system. There could be several

reasons for changing the clock on a system. Some of these reasons are benign;

however, not all reasons are. These benign reasons could include things like:

● Testing code during development, to make sure it works as expected during

certain periods of time.

● Changing time to accommodate for daylight savings time.

● Adjusting the clock to accommodate for clock skew.

More nefarious reasons could be:

● Temporarily changing the time, so that is appears that work was done in the past

or future.

● Changing the clock backward in time to fool a piece of software with a trial

license.

● Temporarily changing the time, so that any events logged appear in the past or

future.

There is currently no automated way to detect these anomalies in a timeline. If an

investigator wished to find evidence of these anomalies, it would have to be done

manually, combing through multiple log files, which are very lengthy, and in the case of

Windows logs in a binary format. Once these anomalies are found in the log files they

5

need to be correlated among the multiple logs to help prove their validity. This is a very

daunting and tedious task, and one that should ideally be automated.

1.3 Objective

This research attempts to autonomously detect and report timeline anomalies.

Our solution will also include an implementation in the form of an application that will be

able to detect timeline anomalies within a disk image. This application is a proof of

concept and will be limited to working on Windows based operating systems. There are

a few reasons for this decision. The first is that the Windows operating system is the

most pervasive. Another reason is that Windows event log files all share a consistent

format. The application will make use of The Sleuth Kit, in order to work with files within

a disk image. With some adjustments, other operating systems could be supported.

Support for other operating systems is the focus of future work.

2.1 The Sleuth Kit

The Sleuth Kit is a programming library and a collection of tools that allow an

investigator to inspect volume and file system information for a variety of filesystem

types. The library provides access to the functionality of The Sleuth Kit, allowing it to be

included as part of larger software applications. The Sleuth Kit has a built in

understanding of many different filesystem types. It is particularly adept at working with

the popular file systems found on Windows, Linux, Unix, and Mac OS X. Because the

Sleuth Kit is an open source tool, there also exists community provided extensions and

modifications of the Sleuth Kit to include new and updated file systems, as well as

enhancements to the operation of The Sleuth Kit. With the Sleuth Kit it is possible to

treat a forensic disk image as if it were a physical hard drive. This allows the

investigator to locate and read files within the image, also low lev

metadata, et cetera.

2.2 Event Log Formats

2.2.1 Windows NT Event Log Format

The Windows NT event log format is the format that is used in Windows NT and

Windows XP. This log format is a binary and proprietary file format, which i

well documented. Since Windows uses filename extensions to denote file types, these

files all have the evt filename extension. The basic structures in this log file are records.

There are 3 types of records (Header, Cursor, and Log). The first r

header, which instructs how to read the log file. The header is the first 48 bytes at the

beginning of the file. The header is described as follows:

Figure 1 Event log record header

Each block is described as follows:

● record size - This 32 bit block denotes the size of this record in bytes, which in

this case is a header and has a fixed size of 48 bytes. This block is repeated at

the end of the header as well.

6

treat a forensic disk image as if it were a physical hard drive. This allows the

investigator to locate and read files within the image, also low level, sector

2.2.1 Windows NT Event Log Format3

The Windows NT event log format is the format that is used in Windows NT and

Windows XP. This log format is a binary and proprietary file format, which i

indows uses filename extensions to denote file types, these

files all have the evt filename extension. The basic structures in this log file are records.

There are 3 types of records (Header, Cursor, and Log). The first record of the file is the

header, which instructs how to read the log file. The header is the first 48 bytes at the

beginning of the file. The header is described as follows:

Figure 1 Event log record header

Each block is described as follows:

This 32 bit block denotes the size of this record in bytes, which in

this case is a header and has a fixed size of 48 bytes. This block is repeated at

the end of the header as well.

treat a forensic disk image as if it were a physical hard drive. This allows the

el, sector-based I/O,

The Windows NT event log format is the format that is used in Windows NT and

Windows XP. This log format is a binary and proprietary file format, which is not very

indows uses filename extensions to denote file types, these

files all have the evt filename extension. The basic structures in this log file are records.

ecord of the file is the

header, which instructs how to read the log file. The header is the first 48 bytes at the

This 32 bit block denotes the size of this record in bytes, which in

this case is a header and has a fixed size of 48 bytes. This block is repeated at

7

● magic - This is a predetermined 4 bytes (32 bits) that can be used to validate that

this is a Windows NT event log header. The 4 bytes are “LfLe”.

● unknown - There are two 32 bit blocks whose purpose is undocumented. The

value of these blocks is always 1. Possibly this is specifying the version of the log

format.

● first offset - This 32 bit block is the offset into the file where the first log record

can be found.

● write offset - This 32 bit block is the offset into the file where the next log record

would be written to.

● next record number - This is the next event record id number to use.

● first record number - This is the event record id number of the first record in this

log.

● filesize - The size of this log file in bytes.

● flags - This 32 bit block contains bit flags.

○ 0x01 (Dirty) - This flag is set when the log is first written to. If the log entry

is added without incident this flag is unset, meaning the header data is all

valid.

○ 0x02 (Wrapped) - This flag denotes a wrapped log, meaning the newest

log entry is at a lower offset than older entries.

○ 0x04 (Log Full) - This flag is set if the log can not be written to because

there isn’t enough free space in the file and the file could not grow any

larger (disk full or max file size reached) and AutoBackupLogFiles is not

configured and retention does not allow

record.

○ 0x08 (Primary) -

backup log file.

● retention period - This 32 bit block contains the retention period (in seconds)

used for this log file.

Once the header is read and parsed,

cursor. The cursor is described in Figure 2.

Figure 2 Windows NT Event Log Cursor Format

The blocks of the cursor are described as follows:

● record length - This 32 bit block denotes the size of this record

this case is a cursor and

the end of the header as well.

● magic number - This is a predetermined 16 bytes (128 bits) that can be used to

validate that this is a Windows NT event log

“\x11\x11\x11\x11\x22\

● first offset - This 32 bit block is the offset into the file where the first log record

can be found.

● write offset - This 32 bit block is the offset into the file

would be written to.

● next record number - This is the next event record id number to use.

8

configured and retention does not allow overwriting the oldest event

- This flag is set in an active log file denoting that it is not a

This 32 bit block contains the retention period (in seconds)

Once the header is read and parsed, the next step in the process is to read in the

cursor. The cursor is described in Figure 2.

Figure 2 Windows NT Event Log Cursor Format

of the cursor are described as follows:

This 32 bit block denotes the size of this record in bytes, which in

this case is a cursor and has a fixed size of 40 bytes. This block is repeated at

the end of the header as well.

This is a predetermined 16 bytes (128 bits) that can be used to

validate that this is a Windows NT event log cursor. The 16 bytes are

\x22\x22\x22\x33\x33\x33\x33\x44\x44\x44\x44”

This 32 bit block is the offset into the file where the first log record

This 32 bit block is the offset into the file where the next log record

This is the next event record id number to use.

est event

This flag is set in an active log file denoting that it is not a

This 32 bit block contains the retention period (in seconds)

the next step in the process is to read in the

in bytes, which in

s a fixed size of 40 bytes. This block is repeated at

This is a predetermined 16 bytes (128 bits) that can be used to

cursor. The 16 bytes are

x44”.

This 32 bit block is the offset into the file where the first log record

where the next log record

This is the next event record id number to use.

9

● first record number - This is the event record id number of the first record in this

log.

The cursor record should be found at the offset specified in the write offset field

in the header. If, however, the cursor is not found at that offset, which can happen if the

cursor has been moved but the machine was shut down before the header was

updated, it must be found by doing a manual search. This can be done by reading 128

bit sequences, starting from the end of the file and working back toward the beginning,

and comparing them to the cursor’s magic number. The match denotes that the cursor

has been found. The cursor can be used to read in the log records within the file. This

can be done by reading log records starting at the first offset, denoted by either the

header or the cursor, and reading the calculated number of records. The number of

records is calculated as the next record number minus the first record number. Each log

record takes format as described in figure 3.

Figure 3 Windows NT Event Log Record Format

Each block is described as follows:

● record length - This 32 bit block denotes the size of this record in bytes, which in

this case is a log record and is variable in size.

● magic number - This is a predetermined 4 bytes (32 bits) that can be used to

validate that this is a Windows NT event log header. The 4 bytes are

● message number - This 32 bit block contains the message number.

● date created - 32 bit block containing the date the record event was created. This

time is denoted as seconds since epoch, and in UTC/GMT format.

● date written - 32 bit block containing the date the record event was written. This

time is denoted as seconds since epoch, and in UTC/GMT format.

● event id / offset - This is a 32 bit block containing the Event ID and the offset into

the system DLL that contain

10

Figure 3 Windows NT Event Log Record Format

Each block is described as follows:

This 32 bit block denotes the size of this record in bytes, which in

is a log record and is variable in size.

This is a predetermined 4 bytes (32 bits) that can be used to

validate that this is a Windows NT event log header. The 4 bytes are

This 32 bit block contains the message number.

32 bit block containing the date the record event was created. This

time is denoted as seconds since epoch, and in UTC/GMT format.

32 bit block containing the date the record event was written. This

time is denoted as seconds since epoch, and in UTC/GMT format.

This is a 32 bit block containing the Event ID and the offset into

DLL that contains the message template corresponding to the event.

This 32 bit block denotes the size of this record in bytes, which in

This is a predetermined 4 bytes (32 bits) that can be used to

validate that this is a Windows NT event log header. The 4 bytes are “LfLe”.

This 32 bit block contains the message number.

32 bit block containing the date the record event was created. This

time is denoted as seconds since epoch, and in UTC/GMT format.

32 bit block containing the date the record event was written. This

time is denoted as seconds since epoch, and in UTC/GMT format.

This is a 32 bit block containing the Event ID and the offset into

corresponding to the event.

11

The high order two bytes are the offset into the system DLL. The low order two

bytes are the Event ID. Together, as the single 32 bit block, they are used as a

parameter to FormatMessage() in a Windows system to get the message from

the corresponding DLL.

● event type - This is a 16 bit block containing the event type. This has one of 5

values.

○ Error - This event type indicates a significant problem occurred, such as

loss of data or functionality.

○ Warning - An event of this type is not indicative of an immediate problem,

but may be reporting the potential for a problem.

○ Information - This event type contains information regarding the

successful operation of an application.

○ Success Audit - This event type is indicative of the successful attempt of

security access, such as user login or privilege escalation for installing

software.

○ Failure Audit - This event type is indicative of the failed attempt of security

access.

● string count - This is a 16 bit block containing the number of strings in the event.

This refers to the number of strings in the variable section.

● category - This 16 bit block denotes the event category.

● unknown - This is a 48 bit block, whose purpose is unknown, contents vary.

● string offset - This is the offset, from the beginning of the record, of a sequence

of UTF-16 strings, all of which are NULL terminated (‘\x00\x00’).

12

● SID length - This is a 32 bit block containing the length of the SID section. This is

set to 0 if the section isn’t included.

● SID offset - This 32 bit block contains the offset, from the beginning of the record,

to the beginning of the SID section.

● data length - This 32 bit block contains the length of the supplementary data

section. This is set to 0 if the section isn’t included.

● date offset - This 32 bit block contains the offset, from the beginning of the

record, to the beginning of the supplementary data section.

● variable length sections

○ log source - This section is the collection of strings used when looking up

which DLLs to use for retrieving the message string based on Event ID.

○ computer name - This section is a UTF-16 string, that is NULL terminated

(‘\x00\x00’), containing the computer name that generated the log entry.

○ general buffer - This section contains the SID section as well as

supplementary data section.

In some instances, the log record is wrapped. In this case the record begins as

the last record in the file, but its contents is too long. When this happens, the contents

are continued at the beginning of the file, behind the header. To read this kind of record,

first the end of the file needs to be read and then the remaining data needs to be read

from the beginning of the file.

Utilizing the header and the information contained within it, the various record

types can be parsed out. These records allow for the understanding of each log event

and when it occurred. And they combine to present a picture of the events occurring on

a computer system.

2.2.2 Windows Vista Event Log Format

The Windows Vista event log format is the format that is used in Windows Vista

and Windows 7. This log format is a binary and proprietary file format, which is not very

well documented. Since Windows uses filename extensions to denote file types, these

files all have the evtx filename extension. The log file starts with a header. The header

is the first 4096 bytes of the file. Only the first 128 bytes (1024 bits) of the header are

actually used right now. The thinking behind this is that the header is loade

memory in order to expidite access. Since memory is allocated in pages, with 4096

bytes being the physical page size, it makes sense for the header to be this long. Figure

4 describes the layout of the header.

Figure 4 Windows Vista Event Log Head

Each block of the header is described as follows:

13

and when it occurred. And they combine to present a picture of the events occurring on

2.2.2 Windows Vista Event Log Format4

The Windows Vista event log format is the format that is used in Windows Vista

and Windows 7. This log format is a binary and proprietary file format, which is not very

indows uses filename extensions to denote file types, these

es all have the evtx filename extension. The log file starts with a header. The header

is the first 4096 bytes of the file. Only the first 128 bytes (1024 bits) of the header are

actually used right now. The thinking behind this is that the header is loade

memory in order to expidite access. Since memory is allocated in pages, with 4096

bytes being the physical page size, it makes sense for the header to be this long. Figure

4 describes the layout of the header.

Figure 4 Windows Vista Event Log Header Format

Each block of the header is described as follows:

and when it occurred. And they combine to present a picture of the events occurring on

The Windows Vista event log format is the format that is used in Windows Vista

and Windows 7. This log format is a binary and proprietary file format, which is not very

indows uses filename extensions to denote file types, these

es all have the evtx filename extension. The log file starts with a header. The header

is the first 4096 bytes of the file. Only the first 128 bytes (1024 bits) of the header are

actually used right now. The thinking behind this is that the header is loaded into

memory in order to expidite access. Since memory is allocated in pages, with 4096

bytes being the physical page size, it makes sense for the header to be this long. Figure

14

● magic number - This is a constant 64 bit block that helps to identify this file as a

Windows Vista event log file. The constant value is “ElfFile\x00”.

● oldest chunk number - This 64 bit number is the index of the oldest chunk in the

log file.

● current chunk number - This is the 64 bit number of the current chunk in the log

file.

● next chunk number - This is the 64 bit number of the next chunk to be created in

the log file.

● header length - This unsigned 32 bit number is the length of the first part of the

header in bytes. This is a constant number, 128 bytes (0x80).

● minor version - This unsigned 16 bit number is the minor version of the format of

the log file.

● major version - This unsigned 16 bit number is the major version of the format of

the log file. This will be 2. Version 1 was the Windows NT Event Log file format.

● header size - This is an unsigned 16 bit number indicating the size of the entire

header in bytes. This is a constant value of 4096 bytes (0x1000).

● chunk count - This is an unsigned 16 bit number expressing the number of

chunks contained in the log file.

● unknown - This is a 76 byte section whose purpose is unknown. This section has

a constant value of all 0s.

● flags - This unsigned 32 bit block contains binary flags.

15

● checksum - This unsigned 32 bit block contains a CRC-32 checksum which is

calculated over the first 120 bytes (0x78) of the header. This includes everything

up to the flags.

Each log file is divided into one or more “chunks.” These chunks hold the

recorded events. Each chunk is 64 kilobytes in length. During the system’s operation,

the current chunk is loaded in memory in order to provide faster access. The first 512

bytes (0x200) of each chunk is the header, which describes the layout of the data in the

chunk. The layout of the chunk header is described in Figure 5.

Figure 5 Windows Vista Log File Chunk Header Format

Each block of the chunk header is described as follows:

● magic number - This is a consta

within the log file. The constant value is “ElfChnk

● first log record number

16

Figure 5 Windows Vista Log File Chunk Header Format

Each block of the chunk header is described as follows:

This is a constant 64 bit block that helps to identify the chunk

within the log file. The constant value is “ElfChnk\x00”.

first log record number - This is the 64 bit number of the first chunk in the log.

nt 64 bit block that helps to identify the chunk

This is the 64 bit number of the first chunk in the log.

17

● last log record number - This is the 64 bit number of the last chunk in the log.

● first file record number - This is the 64 bit number of the first chunk in this log file.

● last file record number - This is the 64 bit number of the last chunk in this log file.

● table offset - This unsigned 32 bit number is the offset within the chunk to the

beginning of the tables.

● last offset - This unsigned 32 bit number is the offset within the chunk to the last

record.

● next offset - This unsigned 32 bit number is the offset within the chunk to the next

record location to be written.

● data checksum - This unsigned 32 bit block contains a CRC-32 checksum which

is calculated over the contents of the chunk, excluding the header.

● unknown - This is a 68 byte block whose purpose is unknown.

● header checksum - This unsigned 32 bit block contains a CRC-32 checksum

which is calculated over the contents of the chunk header. The checksum

calculation excludes 8 bytes of the header starting at the offset 120 (0x78). This

is the last 4 bytes of the unknown block and the header checksum field.

● string table - This is a 2048 bit block that is a collection of strings that would

otherwise be duplicated within the chunk.

● template table - This is a 1024 bit block this is a collection of template strings that

would otherwise be duplicated within the chunk. A template string is an

incomplete string, meaning the string is missing information that will be included

before being displayed. For an example, this could be a string that is duplicated

several times differing only in timestamps.

If the log file is empty, there will be a chunk in the file, but each of the chunk

number fields will have a value of

would be set to 1. The data section of each chunk is f

The structure of these event records is described in F

Figure 6 Windows Vista Event Log Record Format

Each block of the event record is described as follows:

● magic number - This is a constant 32 bit block that h

record within the chunk. The constant value is “**

● length - This is the unsigned 32 bit number denoting the entire length of the event

record. This length field is repeated at the end of the event record.

● log record number - This is a 64 bit number representing the identifying number

of the event record. This number is relative to the event records within the same

log channel.

● time created - This is a 64 bit block that contains the time the event record was

created. This field is in Windows Vista FILETIME format, which is units of 100

nanoseconds since 1601

● variable length data block

this event record. The data is actually a proprietary binary encoding

18

If the log file is empty, there will be a chunk in the file, but each of the chunk

number fields will have a value of -1, except for the first log record number field which

would be set to 1. The data section of each chunk is further divided into event records.

event records is described in Figure 6.

Figure 6 Windows Vista Event Log Record Format

Each block of the event record is described as follows:

This is a constant 32 bit block that helps to identify the event

record within the chunk. The constant value is “**\x00\x00”.

This is the unsigned 32 bit number denoting the entire length of the event

record. This length field is repeated at the end of the event record.

This is a 64 bit number representing the identifying number

of the event record. This number is relative to the event records within the same

This is a 64 bit block that contains the time the event record was

field is in Windows Vista FILETIME format, which is units of 100

nanoseconds since 1601-01-01T00:00:00.

variable length data block - This block contains the information being logged in

this event record. The data is actually a proprietary binary encoding

If the log file is empty, there will be a chunk in the file, but each of the chunk

1, except for the first log record number field which

urther divided into event records.

elps to identify the event

This is the unsigned 32 bit number denoting the entire length of the event

record. This length field is repeated at the end of the event record.

This is a 64 bit number representing the identifying number

of the event record. This number is relative to the event records within the same

This is a 64 bit block that contains the time the event record was

field is in Windows Vista FILETIME format, which is units of 100

This block contains the information being logged in

this event record. The data is actually a proprietary binary encoding of XML data.

19

2.2.3 Unix Log Format

There are many different log files on Unix and Linux systems. These file includes

several system logs as well as others such as apache logs on web servers and others.

Most logs on these systems can be found in the /var/log directory. There are five

primary log files to be considered on a unix system.

● /var/log/btmp - contains the failed login histroy.

● /var/log/messages - contains messages from the syslog facility. This file might

instead be called /var/log/syslog on some systems.

● /var/log/secure - contains the logged information for access and authentication.

● /var/run/utmp - contains the summary of currently logged on users.

● /var/log/wtmp - contains the history of logins and logouts on the system.

Most log files on Unix systems are simple text files. These text files separate

each logged event with a new line. The format of these logged events, however, is

different and unique to each log file. There isn’t a defined pattern for the log files such

as there are on Windows systems. A big difference though between log files on unix

and windows is documentation. Even though the log files each have a different format,

they are easy to read and are usually well documented as to what each field is and it’s

purpose. Because of the multiple formats that these log files use, they are being

excluded from the tool being implemented by this research, but it is worth noting that

this could be included in future versions.

20

3 Detecting Anomalies

At the heart of the solution for autonomously detecting anomalies in the timeline

is the understanding of how log files are created. When applications and operating

systems are logging events, log entries are added to the log in the order that they are

received. This is the key to the solution. Current timelining solutions assume that entries

with timestamps that are out of order, e.g., an entry is followed by an entry whose

timestamp precedes it, are the result of delays in the I/O or threading issues. While this

is sometimes the case, when someone is purposefully manipulating the time on a

computer system, these out of order entry sequences will always be present in an

unaltered log file. Of course, the presence of these entry sequences is not enough to

verify that a timeline anomaly is present. There must be more evidence to corroborate

the existence of the anomaly.

This evidence is found in the form of timeline gaps. A gap in the timeline is simply

two log entries where the delta in the timestamps for those entries is of a significantly

long time. Again, a gap in the timeline is not in and of itself evidence of a timeline

anomaly. Gaps in the timeline occur for many innocuous reasons, such as a machine

that was put to sleep or powered off, applications and operating systems left in an idle

state, and any other reason where the system is not generating log events for a period

of time. The gap in the timeline is only significant when that gap is paired with entries

whose timestamps are out of sequence.

There are 2 cases that need to be considered. The first case is when the clock

was set back in time. This means that the person purposefully sets the clock back in

time, does some work, and then set the time back to the current time (real time). When

21

this occurs the log file will first have entries with out of sequence timestamps, several

more log entries, and eventually entries denoting a gap in the timeline. This will be

defined as a roll back, since the clock was temporarily rolled back in time. The second

case to consider is when the clock was set forward in time. This is when a person sets

the clock forward in time, does some work, then sets the time back to the current time

(real time). In this case the log file will first have entries that denote a gap in the

timeline, followed by more log file entries, and eventually entries with out of sequence

timestamps. This case will be defined as a roll forward, since the clock is temporarily

rolled into the future. In both of these cases the log entries that occur between the 2

anomaly markers are going to have timestamps that are within the anomalous timeline.

That is timestamps in the anomalous timeline would be past timestamps in the case of a

roll back, or future timestamps in the case of a roll forward. The collection of log events

is what make up an anomaly pair. An anomaly pair contains 4 events. The first 2 events

are the pair that make up the original roll forward or roll back. The second 2 events are

the pair events that make the reset of the time to the current time. An anomaly pair is

also indicative of two separate timelines. The first timeline considered is the anomalous

timeline. This timeline is represented by the timestamps of the second event in the first

pair and the first event in the second pair, this would be events 2 and 3 respectively

within the anomaly pair collection. The second timeline is the real time timeline,

meaning it represents the timeline that existed before the clock was changed. This

timeline is represented by the timestamps of the first event of the first pair and the

second event of the second pair, this would be event 1 and 4 respectively within the

anomaly pair.

Finding evidence of either a roll forward or a roll back in a log file is not sufficient

evidence to determine a timeline anomaly has occurred. To truly determin

anomaly has occurred, it is necessary to correlate the anomaly with anomalies found in

other log files on the system. Doing this correlation is not a simple task. Individual log

channels log events in varying frequencies. For this reason, anomali

exactly across log files. There are actually 4 cases which need to be considered for

correlating anomalies. This cases are demonstrated in figure 7.

Figure 7 Correlation Categories for Anomalies

The correlation patterns are further d

● 1 to 1 match - This is the best case scenario for event correlation. This would be

the pattern found if the two anomaly pairs contains the exact timestamps. This is

the least likely pattern to be found, due to different logs recording diffe

of events. Each event type is most probably not occurring at the exact time on a

system.

22

Finding evidence of either a roll forward or a roll back in a log file is not sufficient

evidence to determine a timeline anomaly has occurred. To truly determin

anomaly has occurred, it is necessary to correlate the anomaly with anomalies found in

other log files on the system. Doing this correlation is not a simple task. Individual log

channels log events in varying frequencies. For this reason, anomalies will not match up

exactly across log files. There are actually 4 cases which need to be considered for

correlating anomalies. This cases are demonstrated in figure 7.

Figure 7 Correlation Categories for Anomalies

The correlation patterns are further described below:

This is the best case scenario for event correlation. This would be

the pattern found if the two anomaly pairs contains the exact timestamps. This is

the least likely pattern to be found, due to different logs recording diffe

of events. Each event type is most probably not occurring at the exact time on a

Finding evidence of either a roll forward or a roll back in a log file is not sufficient

evidence to determine a timeline anomaly has occurred. To truly determine that an

anomaly has occurred, it is necessary to correlate the anomaly with anomalies found in

other log files on the system. Doing this correlation is not a simple task. Individual log

es will not match up

exactly across log files. There are actually 4 cases which need to be considered for

This is the best case scenario for event correlation. This would be

the pattern found if the two anomaly pairs contains the exact timestamps. This is

the least likely pattern to be found, due to different logs recording different types

of events. Each event type is most probably not occurring at the exact time on a

23

● pair offsets by leading - In this case the first anomaly pair precedes the second

pair with an overlap of the anomalous timelines.

● pair offsets by trailing - In this case the first anomaly pair trails the second pair

with an overlap of the anomalous timelines.

● pair contained within another - This case occurs when one pair’s anomalous

timeline starts after the other and finishes before it.

The more log files that correlate an anomaly, the greater the probability that the

anomalous event is not a false positive. The correlation across multiple log files can

also be used to the narrow the window of real time and widen the window of anomalous

time to get a more accurate picture when the roll back or roll forward occurred, as well

as how long the anomalous period lasted. This is beneficial to the investigator in that it

can help narrow the focus to files that were altered during the anomalous time periods.

4 TADpole

Along with this research a tool was created to demonstrate the concepts

presented here. This tool is TADpole. TADpole is a utility application that operates on a

forensic disk image to detect timeline anomalies. TADpole is designed for performing

timeline anomaly detection on Microsoft Windows operating system based disk images.

The reason for this focus is the consistent nature of the log files on these systems.

Since Unix and Linux log files are all of varying formats it becomes more difficult to

quickly develop an application that could parse out these formats. Unix support is the

subject of future work.

24

TADpole is a console application written in C++, focusing on running on Unix,

Linux, and Mac OS X platforms. These platforms were chosen because they provide

many libraries to aid in the development of the application, and these libraries are

consistent across these platforms. There are several reasons that the C++ language

was chosen for developing TADpole.

● Object Oriented Programming design patterns can be used.

● Linux / Unix / Mac OS X all have gcc compilers, make, and autotools making

building of the application easier and consistent on all platforms.

● The Sleuth Kit is a C/C++ library. On Linux, Unix, and Mac OS X platforms this

library is a single library file making it easy to import. On Microsoft Windows

platforms this library is spread out across multiple dynamic link library files.

● C++ allows for easy parsing and understanding of the binary file formats found in

windows event log files.

TADpole is designed to operate in several phases: discovery, parsing, detection,

pairing, correlation, and finally reporting. These phases are described below in more

detail.

4.1 Discovery Phase

The discovery phase is the phase in which the log files within the image are

located so that they can be processed. This is accomplished by leveraging The Sleuth

Kit application library. The Sleuth Kit library is used to open a forensics disk image and

locate log files in the system. This is done by extending a provided class in the library,

TskAuto. The TskAuto class provides a way to iterate over every file in an image. When

25

a file is found a function, processFile, is called to handle the processing of the found file.

This allows for inspecting the file to make sure that is a log file, and if so, inspect the file

for anomalies. To leverage this, a class was created that extends TskAuto. This class is

LogProcessor. LogProcessor implements the the virtual function necessary for TskAuto

to accomplish its work. This function has the following signature:

virtual TSK_RETVAL_ENUM processFile
(TSK_FS_FILE* fs_file, const char *path);

This is the function that initiates the work of identifying if the given file is indeed a log

file. Because TADpole is only concerned with Windows Event Log Files this becomes a

simple task. The processFile function simply looks at the filename contained within the

TSK_FS_FILE structure and looks to see if it ends with evt or evtx file extensions. This

check is done with a simple helper method within the LogProcessor, hasEnding. This

function takes the filename and the expected extension as arguments and returns true if

the filename ends with the file extension, and false otherwise. Since the filesystem on

Windows Systems (FAT32, NTFS) are case insensitive it is necessary to make both

strings lowercase first to ensure that the match is not determined by case. The function

makes use of the C++ string library in order to transform the strings and do the

comparison. The function can be seen here:

bool hasEnding

(std::string const &fullString, std::string const &ending)
{
 std::string lf(fullString);
 std::string le(ending);

 std::transform(lf.begin(), lf.end(), lf.begin(), ::tolower);
 std::transform(le.begin(), le.end(), le.begin(), ::tolower);

 if (lf.length() > le.length())
 return (0 == lf.compare(

26

 lf.length() - le.length(),
 le.length(),
 le));
 else
 return false;
}

If it is determined that the file being processed is indeed a Windows Event Log File, the

next phase is triggered for the file.

4.2 Parsing Phase

The parsing phase is the phase in which the Windows Event Log File is parsed

and the events are extracted for analysis. To accomplish this an object oriented design

was used. An interface was created, ILogParser, in order to capture the work needed to

be done by a parser. This interface is defined as follows:

class ILogParser
{
 public:
 virtual std::string getExtension() = 0;
 virtual std::vector<LogEvent*>
 parseLogFile(TSK_FS_FILE *file, const char *path) = 0;
};

This interface provides two method definitions. The first, getExtension, defines a

method to return a string containing the file extension that the parser is capable of

working on. The second function, parseLogFile, is the function that actually does the

parsing of the log file and returns a collection of LogEvent objects. The LogEvent class

is a data holder class that is defined in the application that holds three pieces of data,

date created, date written, and event id. These 3 pieces of information are the minimal

requirements for processing the timeline for anomalies. By returning this uniform data

27

type, the implementing parsers can be used in a uniform way, independent of the event

entry types of their corresponding log files.

With the interface defined as above, two parsers were created, EvtLogParser

and EvtxLogParser. EvtLogParser was created to work on Windows NT Event Log Files

with the evt file extension. EvtxLogParser was created to work on Windows Vista Event

Log Files with the evtx file extension. These parsers work on their respective log file

formats to create a collection of LogEvents. The collection that is returned from the

parsers is an ordered collection of LogEvents. The order of the events is the same as

the order found in the log file. This is an important note, as it will aid in the next phases

of the program.

4.3 Detection Phase

In the detection phase, TADpole seeks to find, or detect, anomalies within the

LogEvent collection parsed from a log file. This is accomplished by walking the

collection from beginning to end, comparing an event to the one that follows. When

comparing the LogEvents it is necessary to compare both the date created as well as

the date written. Though these two dates are often the same within an event, it is not

always the case. There might be a delay in the time that an event is created and when it

can be written to the event log. This delay could occur for various reasons, such as slow

disk writes causing buffering or the central processing unit of the computer system

handling another process temporarily so that the write of the event is paused. Because

these dates might be different, they must be accommodated.

There are two different types of anomalies to search for, roll forward and roll

back. In each case we are comparing the current LogEvent to the one that follows

28

modified by a certain delta. The delta is provided to ensure that the anomalies that are

found are actual anomalies and not events that were written to the file out of sequence.

Two deltas were defined as number of seconds. These deltas were selected after

analysis of several log files and some trial and error attempts.

#define FORWARD_JUMP_DELTA 3600// 1 hour
#define BACKWARD_JUMP_DELTA 300// 5 minutes

To detect a roll back anomaly the BACKWARD_JUMP_DELTA is used. This is

done by adding the delta value to the date in the following LogEvent and comparing it to

the date in the current LogEvent. If the modified date in the following LogEvent is less

than the date in the current LogEvent, it is determined that a roll back anomaly has

been found. The delta chosen for the backward jump is designed to insure that the out

of order event dates are not a product of lag within the computer system but are

purposeful manipulations of the clock.

To detect a roll forward anomaly the FORWARD_JUMP_DELTA is used. It is

applied by subtracting the delta to the date in the following LogEvent and comparing it

to the date in the current LogEvent. If the modified date in the following LogEvent is

greater than the date in the current LogEvent, it is determined that a roll forward

anomaly has been found. The delta of an hour was selected to help determine if the gap

was significant and not just a small idle session on the computer system. The roll

forward anomaly is the more difficult of the two anomalies to insure that it is an actual

anomaly and not just a product of the computer being idle, sleeping, hibernating, or

being shutdown for a period of time. From just this level of analysis of the log files, it is

impossible to determine this. It is in the pairing phase that it is determined whether or

not the gap is caused by an anomaly.

29

In either of the cases, when an anomaly is found, an Anomaly object is created.

The anomaly object contains the two LogEvents that denote the anomaly as well as an

indication of the anomaly type. As these Anomaly objects are created, they are added to

a collection. The Anomaly collection is an ordered collection, where the order of the

Anomaly objects is the same order as found in the log file. This is important for the next

phase, as it aids in the pairing of the anomalies.

4.4 Pairing Phase

Within the pairing phase, all anomalies collected in the previous phase are

analyzed, and where applicable are paired together to form an anomaly pair. TADpole

finds these anomaly pairs by walking the collection of anomalies from beginning to end

and comparing the Anomaly to the one that follows. There are two cases that need to

be considered when pairing anomalies.

The first case is a roll forward followed by a roll backward. This case is indicative

of the clock being pushed forward into a future date and time, then being reset to the

current date and time after work was done. In code this would be found as the current

Anomaly being looked at being of type FORWARD_JUMP_ANOMALY and the next

Anomaly being BACKWARD_JUMP_ANOMALY.

The second case to be considered is a roll backward followed by a roll forward.

This particular case is indicative of the clock being rolled back to a past date and time,

then being reset to the current date and time after work was performed. In code this

would be found as the current Anomaly being looked at being of type

BACKWARD_JUMP_ANOMALY and the next Anomaly being FORWARD_JUMP_ANOMALY.

30

The case where an anomaly is followed by an anomaly of the same type could

easily be explained as not a purposeful manipulation of the clock. The case of two roll

forward anomalies could, for example, show that the computer was simply put to sleep,

or shut off, for a period of time twice. This is normal use of the computer and should

therefore be excluded. The case of two roll back anomalies could be an example of the

clock being adjusted for legitimate reasons, such as the clock being adjusted for

daylight savings time and then again for clock skew. This case too is normal use and

should be excluded.

Each time an anomaly pair is identified within the Anomaly collection, a new

object is created to hold the pair. This object is AnomalyPair. An AnomalyPair object

holds just two pieces of data, the two Anomalys that make up the pair. The type of

AnomalyPair, which case the pair was identified as, can be determined by inspecting

the type of the first Anomaly in the pair.

This phase is the final phase in the processing of an individual log file. Being that

this is the case, once the collection of AnomalyPairs is created, a new object is created

to contain the AnomalyPair collection as well as the information about the log file in

which the anomalies were found. The object created in this case is called

LoggedAnomalies. A LoggedAnomalies object holds another object called LogInfo as

well as the AnomalyPair collection. LogInfo contains the information that was passed

into the processFile method originally, TSK_FS_FILE pointer and a char pointer

representing the path to the file. Once the LoggedAnomalies object is created it is

added to collection that is a member of the LogProcessor class. This will allow the

LogProcessor to correlate the AnomalyPairs in the following phase.

31

4.5 Correlation Phase

The correlation phase is the final processing phase, occurring after all log files on

a system have been processed. During this phase, all anomalies that are found on a

system are correlated. This correlation is necessary as it increases the confidence that

a particular anomaly is truly an anomaly and not just a mistake. TADpole accomplishes

this task of correlation by processing the LoggedAnomalies collection that was created

after the pairing phase.

For every LoggedAnomalies in the collection, an entry is added to another

collection. The collection that is being added to is a collection of AnomalyCollection

objects. Each AnomalyCollection object contains an AnomalyPair, which is a

representation of the timeline anomaly that was detected. The AnomalyCollection also

contains the list of log files in which the represented anomaly was found. Also it

contains the actual AnomalyPair for each log file that correlates with the represented

anomaly in the AnomalyCollection.

The AnomalyPairs within each LoggedAnomalies is compared to the

AnomalyPair in every AnomalyCollection. If the AnomalyPair intersects the AnomalyPair

in an AnomalyCollection, then those anomalies are considered to be correlated. When

this occurs an entry is added to the AnomalyCollection which correlated. This entry

contains the AnomalyPair from the LoggedAnomalies that correlated as well as the

LogInfo, which contains the information about the log file in which the anomaly was

found. If a match is not found then a new AnomalyCollection is created and the

AnomalyPair from the LoggedAnomalies is added to it. The adding of an anomaly to

AnomalyCollection not only adds the log file information to the collection, but also

32

adjusts the representative AnomalyPair to better represent the AnomalyCollection.

These adjustments work to shrink the window of real time and widen the window of

anomalous time. This works by comparing LogEvent objects within the AnomalyPairs.

The representative AnomalyPair will take the greater, latest in time, of the first LogEvent

objects. This serves to find the more accurate time when which the roll back or roll

forward was performed. The second LogEvent objects are compared and the least of

those, earliest in time, is set in the representative AnomalyPair. This determines the

more accurate time to which the clock was rolled forward or rolled back. The greatest of

the third LogEvent objects is used to determine the most accurate time at which the

clock was reset to real time, current time. Finally, the least of the fourth LogEvent

objects is selected as it represents the more accurate time to which the clock was reset.

To help in the process of determining if two anomalies intersect a helper function

was added to the AnomalyPair pair. The function signature is:

bool intersects(AnomalyPair *pair);

This function will compare the current AnomalyPair to the given one and return true if

the two AnomalyPair intersect. Because the log events have two different date and time

fields, date written and date created, an AnomalyPair actually has two different timelines

that need to be considered and compared. Also, when determining if an AnomalyPair

intersects another, the anomalous timeline is the one that is used. This means that the

timeline that exists from the second LogEvent in the first Anomaly and the first LogEvent

in the second Anomaly of a pair. An intersection of anomalies is one of the correlation

categories described above and pictured in figure 7.

33

4.6 Reporting Phase

After all the work of finding anomalies and correlating them together, the

investigator needs to know the results of what was found in the disk image. The

reporting phase is where this occurs. TADpole provides two ways to report the

information found, a simple grepable report or a more verbose XML report. Both of

these report types work by presenting the data within the collection of

AnomalyCollection objects that was created in the previous phase. The report presents

the four timelines represented by each anomaly. These timelines are the real time

according to the created and written dates as well as the anomalous time according to

the created and written dates. The report will also show the log files in which the

anomaly was located. The XML report goes further and displays the date and time for

each log event that makes up an anomaly.

Anomaly
 real (created): 2008-11-01T00:33:42 - 2008-11-01T11:18:12
 real (written): 2008-11-01T00:33:42 - 2008-11-01T11:18:12
 anomaly (created): 2008-10-30T22:33:57 - 2008-10-30T22:38:50
 anomaly (written): 2008-11-01T00:33:42 - 2008-10-30T22:38:50
 logs:
 Windows/System32/winevt/Logs/Microsoft-Windows-

GroupPolicy%4Operational.evtx
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/Microsoft-Windows-

TaskScheduler%4Operational.evtx
 Windows/System32/winevt/Logs/Security.evtx
 Windows/System32/winevt/Logs/System.evtx

Example entry of grepable report

<anomaly>
 <realstartcreated>2008-11-01T00:33:42</realstartcreated>
 <realstartwritten>2008-11-01T00:33:42</realstartwritten>
 <realendcreated>2008-11-01T11:18:12</realendcreated>
 <realendwritten>2008-11-01T11:18:12</realendwritten>
 <anomalystartcreated>2008-10-30T22:33:57</anomalystartcreated>
 <anomalystartwritten>2008-10-30T22:33:57</anomalystartwritten>
 <anomalyendcreated>2008-10-30T22:38:50</anomalyendcreated>
 <anomalyendwritten>2008-10-30T22:38:50</anomalyendwritten>
 <logs>
 <log>

34

 <path>Windows/System32/winevt/Logs/</path>
 <name>Microsoft-Windows-GroupPolicy%4Operational.evtx</name>
 <times>
 <realstartcreated>2008-11-01T00:33:42</realstartcreated>
 <realstartwritten>2008-11-01T00:33:42</realstartwritten>
 <realendcreated>2008-11-01T11:18:12</realendcreated>
 <realendwritten>2008-11-01T11:18:12</realendwritten>
 <anomalystartcreated>2008-10-30T22:33:57</anomalystartcreated>
 <anomalystartwritten>2008-10-30T22:33:57</anomalystartwritten>
 <anomalyendcreated>2008-10-30T22:38:50</anomalyendcreated>
 <anomalyendwritten>2008-10-30T22:38:50</anomalyendwritten>
 </times>
 </log>
 <log>
 <path>Windows/System32/winevt/Logs/</path>
 <name>Application.evtx</name>
 <times>
 <realstartcreated>2008-11-01T00:33:42</realstartcreated>
 <realstartwritten>2008-11-01T00:33:42</realstartwritten>
 <realendcreated>2008-11-01T11:18:12</realendcreated>
 <realendwritten>2008-11-01T11:18:12</realendwritten>
 <anomalystartcreated>2008-10-30T22:34:09</anomalystartcreated>
 <anomalystartwritten>2008-10-30T22:34:09</anomalystartwritten>
 <anomalyendcreated>2008-11-01T01:36:15</anomalyendcreated>
 <anomalyendwritten>2008-11-01T01:36:15</anomalyendwritten>
 </times>
 </log>
 <log>
 <path>Windows/System32/winevt/Logs/</path>
 <name>Microsoft-Windows-TaskScheduler%4Operational.evtx</name>
 <times>
 <realstartcreated>2008-11-01T00:33:33</realstartcreated>
 <realstartwritten>2008-11-01T00:33:33</realstartwritten>
 <realendcreated>2008-11-01T00:00:00</realendcreated>
 <realendwritten>2008-11-01T00:00:00</realendwritten>
 <anomalystartcreated>2008-10-30T22:33:57</anomalystartcreated>
 <anomalystartwritten>2008-10-30T22:33:57</anomalystartwritten>
 <anomalyendcreated>2008-10-30T22:51:50</anomalyendcreated>
 <anomalyendwritten>2008-10-30T22:51:50</anomalyendwritten>
 </times>
 </log>
 <log>
 <path>Windows/System32/winevt/Logs/</path>
 <name>Security.evtx</name>
 <times>
 <realstartcreated>2008-11-01T00:33:22</realstartcreated>
 <realstartwritten>2008-11-01T00:33:22</realstartwritten>
 <realendcreated>2008-11-01T01:08:47</realendcreated>
 <realendwritten>2008-11-01T01:08:47</realendwritten>
 <anomalystartcreated>2008-10-30T22:33:57</anomalystartcreated>
 <anomalystartwritten>2008-10-30T22:33:57</anomalystartwritten>
 <anomalyendcreated>2008-10-30T23:24:48</anomalyendcreated>
 <anomalyendwritten>2008-10-30T23:24:48</anomalyendwritten>
 </times>
 </log>

35

 <log>
 <path>Windows/System32/winevt/Logs/</path>
 <name>System.evtx</name>
 <times>
 <realstartcreated>2008-11-01T00:33:33</realstartcreated>
 <realstartwritten>2008-11-01T00:33:33</realstartwritten>
 <realendcreated>2008-11-01T11:14:40</realendcreated>
 <realendwritten>2008-11-01T11:14:40</realendwritten>
 <anomalystartcreated>2008-10-30T22:33:57</anomalystartcreated>
 <anomalystartwritten>2008-10-30T22:33:57</anomalystartwritten>
 <anomalyendcreated>2008-11-01T01:37:39</anomalyendcreated>
 <anomalyendwritten>2008-11-01T01:37:39</anomalyendwritten>
 </times>
 </log>
 </logs>
 </anomaly>

Example entry of XML report

TADpole also provides some extra functionality to help out investigators. This

extra functionality makes a second pass over the disk image and creates a list of files

whose MAC times (Modified / Accessed / Created) fall within an anomalous timeline.

This helps point an investigator to particular files that may have been altered while the

clock had been changed. This extra functionality is accomplished with another class that

extends TskAuto. The class is called FileProcessor. FileProcessor works by checking

every file’s MAC time and seeing if it falls within an anomaly within the collection of

AnomalyCollection objects. If it is found to be within an anomaly the file information is

added the the AnomalyCollection. Both report types will output this list along with each

anomaly entry.

5 Testing

To test TADpole, six different VMWare images were created, two instance of

each, Windows XP Professional, Windows Vista Business, WIndows 7 Enterprise.

These six images were created so that half could be used to create a roll forward and

the other half could be used to create a roll backward. Also, since this is a simple test a

36

BAT script was created to continually generate log events. This ensures that there is

sufficient evidence of the anomaly within the log files. This is a simple script that

leverages the eventcreate.exe application available on all three platforms. In order to

wait for a specified time would normally be done with a sleep command, but this

command was only present in Windows 7 Enterprise. To create a consistent way of

waiting a specified amount of time, the ping.exe command was used. By pinging a non-

existent address and specifying the time out in milliseconds, the command will wait the

specified amount of time then exit. This has the side effect of being a sleep command.

:looplabel
eventcreate /L System /ID 123 /D "Test Event" /T INFORMATION
ping 123.45.67.89 -n 1 -w 3000 > nul
eventcreate /L Application /ID 123 /D "Test Event" /T INFORMATION
ping 123.45.67.89 -n 1 -w 10000 > nul
goto :looplabel

This script creates an entry in the System log, waits three seconds, creates an

entry in the Application log, waits ten seconds then loops. This loop is an infinite loop,

so the script will run, and generate event entries, until the script is stopped with CTRL-

C. Before each test is run, the event logs are cleared. This is done to remove any

artifacts that might exist in the logs from installation. On the Windows XP images, this

was just a matter of opening the event viewer and clearing the logs. On the Vista and

Windows 7 images there are a great deal more log files. To clear these, the following

script was used:

@for /f %%i in ('wevtutil el') do wevtutil cl "%%i" >NUL 2>&1

wevtutil.exe cl "Microsoft-Windows-Diagnosis-DPS/Operational"

wevtutil.exe cl "Microsoft-Windows-User Profile Service/Operational"

wevtutil.exe cl "Microsoft-Windows-Windows Defender/Operational"

wevtutil.exe cl "Microsoft-Windows-Windows Defender/WHC"

37

wevtutil.exe cl "Microsoft-Windows-Windows Firewall With Advanced

Security/Firewall"

wevtutil.exe cl System

To simulate work being done on the system the following actions were taken on each of

the virtual machines:

1 event.bat is started (on Windows Vista Business and Windows 7 Enterprise this

requires running as administrator).

2 6 file are created on the system: test1.txt, test2.txt, test3.txt, test4.txt, test5.txt,

test6.txt.

3 The system time is set to either a time in the future or the past.

4 The content of test3.txt, test4.txt, test5.txt is modified.

5 test6.txt is deleted

6 3 new files are created on the system: test7.txt, test8.txt, test9.txt.

7 The system time is reset to the real time.

8 The content of test4.txt and test8.txt is modified.

9 test2.txt, test5.txt, test9.txt are deleted.

10 A new file is created: test10.txt.

11 event.bat is stopped.

12 The system is shutdown.

The process outlined will generate ten separate files on the system as well as

generating many log file entries. The nature of the files creation, modification, and

deletion is done in order to test TADpole’s ability to not only detect an anomaly, but also

its ability to find the files that were created, modified, or deleted within the anomalous

38

time period. Once the virtual machines have been shutdown the vmdk images are

converted into raw images that can be processed by The Sleuth Kit, and therefore

TADpole. The conversion is done by using “qemu-img convert”. The command used for

this conversion is:

qemu-img convert -O raw <vmdk image> <raw image>

Once this conversion is complete the raw image can be used directly by TADpole to

produce the reports of the tests. Those results are described below.

5.1 Windows XP Professional - Roll Forward Test

For the purposes of this test, the time was adjusted one month forward. The

results of this test returned a single anomaly. This anomaly is found in both the

Application and System log files, which were constantly being written to. This anomaly

is reported as follows:

Anomaly
 real (created): 2012-10-10T18:04:35 - 2012-10-10T18:07:33
 real (written): 2012-10-10T18:04:35 - 2012-10-10T18:07:33
 anomaly (created): 2012-11-10T18:04:40 - 2012-11-10T18:07:24
 anomaly (written): 2012-11-10T18:04:40 - 2012-11-10T18:07:24
 logs:
 WINDOWS/system32/config/AppEvent.Evt
 WINDOWS/system32/config/SysEvent.Evt

This report shows that the anomalous time line occurs in November 10th and the

real time occurs in October 10th. This is the result that is expected as that was the time

that the clock was adjusted to in the test. Another run was made with TADpole, this time

with file reporting turned on. This was done to insure that TADpole was able to find the

files that were manipulated during the anomalous period. The report generated reveals

many files were found to have been accessed or modified during the anomalous time

39

period. Several of these files reveal the work that was done during the anomalous time

period.

Anomaly
 real (created): 2012-10-10T18:04:35 - 2012-10-10T18:07:33
 real (written): 2012-10-10T18:04:35 - 2012-10-10T18:07:33
 anomaly (created): 2012-11-10T18:04:40 - 2012-11-10T18:07:24
 anomaly (written): 2012-11-10T18:04:40 - 2012-11-10T18:07:24
 logs:
 WINDOWS/system32/config/AppEvent.Evt
 WINDOWS/system32/config/SysEvent.Evt
 files:
 Documents and Settings/Administrator/Recent/test3.lnk
 Documents and Settings/Administrator/Recent/test4.lnk
 Documents and Settings/Administrator/Recent/test5.lnk
 RECYCLER/S-1-5-21-1644491937-682003330-839522115-500/Dc2.txt
 RECYCLER/S-1-5-21-1644491937-682003330-839522115-500/Dc3.txt
 test/test3.txt
 test/test7.txt
 test/test8.txt
 WINDOWS/Prefetch/EVENTCREATE.EXE-28AF53E7.pf
 WINDOWS/Prefetch/NOTEPAD.EXE-336351A9.pf
 WINDOWS/Prefetch/PING.EXE-31216D26.pf

 … removed for brevity …

The last three files in the list above reveal the executables that were being used.

Eventcreate and ping were used in the batch script that ran in the background to

generate the log entries. Notepad was used to make changes in the text files. The three

files presented directly in the output (test3.txt, test7.txt, text8.txt) are files that were

modified or created during the anomalous time period. The files test5.txt, test6.txt, and

text9.txt do not appear directly in the output. However, test3, test4 and test5 are

revealed as lnk files in the users Recent folder. These are the three files that were

modified during the anomalous time period. Observing the content of Dc2.txt and

Dc3.txt in the RECYCLER folder (trash can), revealed these files to actually be test5.txt

and test9.txt. This is very telling. When the file was deleted, the MAC time on the file

was not altered. This is for this reason that no file associated with test6.txt is found

40

during the anomalous period, since the MAC time is still associated with it’s creation,

which was before the time was changed.

5.2 Windows XP Professional - Roll Backward Test

The second test performed was also done on a WIndows XP Professional

instance. In this test the system time was adjusted one month backward, to create the

anomalous time period. The results of this test returned a single anomaly. This anomaly

is found in both the Application and System log files, which were constantly being

written to. This anomaly is reported as follows:

Anomaly
 real (created): 2012-10-03T21:42:48 - 2012-10-03T21:44:23
 real (written): 2012-10-03T21:42:48 - 2012-10-03T21:44:23
 anomaly (created): 2012-09-03T21:42:57 - 2012-09-03T21:44:21
 anomaly (written): 2012-09-03T21:42:57 - 2012-09-03T21:44:21
 logs:
 WINDOWS/system32/config/AppEvent.Evt
 WINDOWS/system32/config/SysEvent.Evt

This report shows that the anomalous timeline occurs in September 3rd and the

real timeline occurs in October 3rd. This is the result that is expected as that was the

time that the clock was adjusted to in the test. As before, another run was made with

TADpole, this time with file reporting turned on. The generated report is nearly identical

to the one from the previous test.

Anomaly
 real (created): 2012-10-03T21:42:48 - 2012-10-03T21:44:23
 real (written): 2012-10-03T21:42:48 - 2012-10-03T21:44:23
 anomaly (created): 2012-09-03T21:42:57 - 2012-09-03T21:44:21
 anomaly (written): 2012-09-03T21:42:57 - 2012-09-03T21:44:21
 logs:
 WINDOWS/system32/config/AppEvent.Evt
 WINDOWS/system32/config/SysEvent.Evt
 files:
 Documents and Settings/Administrator/Recent/test3.lnk
 Documents and Settings/Administrator/Recent/test4.lnk
 Documents and Settings/Administrator/Recent/test5.lnk
 RECYCLER/S-1-5-21-606747145-1770027372-839522115-500/Dc3.txt

41

 RECYCLER/S-1-5-21-606747145-1770027372-839522115-500/Dc4.txt
 test/test3.txt
 test/test7.txt
 test/test8.txt
 WINDOWS/Prefetch/NOTEPAD.EXE-336351A9.pf
 … removed for brevity …

Unlike the previous test, only the notepad.exe prefetch showed up in this report.

This is the program that was used to modify text files during the anomalous time period.

Not listed are the prefetch files for ping.exe and eventcreate.exe, which were used by

the batch file for generating events in the log files. The timestamps associated with a

prefetch is updated every time it’s accessed. However, if timestamp is later than the

current time, it is not updated. For this reason, the prefetch files are not found, because

the MAC timestamps fall within the real time timeline. Like the first test, the three files

presented directly in the output (test3.txt, test7.txt, text8.txt) are files that were modified

or created during the anomalous time period. The files test5.txt, test6.txt, and text9.txt

do not appear in the output. However, test3, test4 and test5 are revealed as lnk files in

the users Recent folder. These are the three files that were modified during the

anomalous time period. Observing the content of Dc3.txt and Dc4.txt in the RECYCLER

folder (trash can), revealed these files to actually be test5.txt and test9.txt. As noted in

the previous test, test6.txt does not appear in out file list, even though it was deleted

during the anomalous time period. These are the results we expected to see.

5.3 Windows Vista Business - Roll Forward Test

This test was performed on an instance of Windows Vista Business, and for the

purposes of this test, the time was adjusted one month forward. The results of this test

returned two anomalies.

42

Anomaly
 real (created): 2012-10-24T21:27:39 - 2012-10-24T21:29:11
 real (written): 2012-10-24T21:27:39 - 2012-10-24T21:29:11
 anomaly (created): 2012-11-24T20:27:43 - 2012-11-24T21:28:59
 anomaly (written): 2012-11-24T20:27:43 - 2012-11-24T21:28:59
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
Anomaly
 real (created): 2012-10-24T21:26:47 - 2012-10-24T21:29:07
 real (written): 2012-10-24T21:26:47 - 2012-10-24T21:29:07
 anomaly (created): 2012-11-24T21:27:43 - 2012-11-24T21:27:43
 anomaly (written): 2012-11-24T21:27:43 - 2012-11-24T21:27:43
 logs:

 Windows/System32/winevt/Logs/
Microsoft-Windows-TaskScheduler%4Operational.evtx

 Windows/System32/winevt/Logs/Security.evtx

Observation of the timestamps of the described anomalous time periods makes it

appear that the anomalies are actually the same anomaly. The second reported

anomaly has an anomalous period that starts and ends at the same reported time. The

difference in these reported anomalies are actually just milliseconds apart. This

millisecond difference is a result of how the system clock change is logged in Windows

Vista. The clock changing is actually tracked as a security and operational events, but

the way they are logged creates the resulting millisecond anomaly.

The first reported anomaly is the anomaly that we created. This anomaly is found

in the Application and System log files, which were constantly being written to. The

report shows that the anomalous time line occurs in November 24th and the real time

occurs in October 24th. This is the result that is expected as that was the time that the

clock was adjusted to in the test. As before a second run was made with TADpole with

file reporting turned on. This report show no files associated with the second anomaly,

which is expected since it only lasted for a millisecond and no work was done during

that time. The first anomaly presents a file list that is expected.

43

Anomaly
 real (created): 2012-10-24T21:27:39 - 2012-10-24T21:29:11
 real (written): 2012-10-24T21:27:39 - 2012-10-24T21:29:11
 anomaly (created): 2012-11-24T20:27:43 - 2012-11-24T21:28:59
 anomaly (written): 2012-11-24T20:27:43 - 2012-11-24T21:28:59
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
 files:

 $Recycle.Bin/S-1-5-21-285488370-3719860764-2834214899-1000/$IX0O32K.txt
 $Recycle.Bin/S-1-5-21-285488370-3719860764-2834214899-1000/$R4AICPX.txt
 $Recycle.Bin/S-1-5-21-285488370-3719860764-2834214899-1000/$RWNS9V7.txt
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk
 Windows/Prefetch/NOTEPAD.EXE-EB1B961A.pf
 Windows/Prefetch/PING.EXE-B29F6629.pf
 Windows/Prefetch/EVENTCREATE.EXE-0DABBE19.pf
 test/test3.txt
 test/test7.txt
 test/test8.txt
 … removed for brevity …

Like the first test, we find prefetch files that reveal the executables that were

being used. Eventcreate and ping were used in the batch script that ran in the

background to generate the log entries. Notepad was used to make changes in the text

files. The three files presented directly in the output (test3.txt, test7.txt, text8.txt) are files

that were modified or created during the anomalous time period. Though the Recent

folder is in a different location than it was on Windows XP, it still provides a window into

the files that were accessed during the anomalous time period. The ones presented

here are test3, test4 and test5, which were altered during the anomalous time period.

The Recycle Bin, show three text files. The Recycle Bin in Windows Vista no longer

uses the INFO2 database to track where files were deleted from, but instead uses a

collection of files that start with either $I or $R. The $I files are binary files that actually

hold the information about the file deleted, including the original file size, timestamp of

deletion, and original path and filename 5. The $R files contains the original contents of

the deleted file. Knowing this, the contents of $IX0O32K.txt can be read and reveals

44

that this file is the index for test6.txt. This is the first hint found of test6.txt which was

deleted during the anomalous time period. The corresponding $R file $RX0O32K.txt

doesn’t appear in the file list because it still holds the MAC time of the file prior to

deletion. The $I files corresponding to the $R files that do appear in the result list

$R4AICPX.txt and $RWNS9V7.txt reveal these files to be test9.txt and test5.txt

respectively. All of this analysis of the results of this anomaly has revealed every file

that was touched (created, modified, or deleted) during the anomalous time period.

5.4 Windows Vista Business - Roll Backward Test

This test was performed on an instance of Windows Vista Business and the time

was adjusted one month backward. Like the previous Windows Vista Business test, the

results of this test reveal two anomalies.

Anomaly
 real (created): 2012-10-14T11:26:10 - 2012-10-14T11:27:37
 real (written): 2012-10-14T11:26:10 - 2012-10-14T11:27:37
 anomaly (created): 2012-09-14T11:26:20 - 2012-09-14T11:27:30
 anomaly (written): 2012-09-14T11:26:20 - 2012-09-14T11:27:30
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
Anomaly
 real (created): 2012-10-14T11:25:41 - 2012-10-14T11:27:37
 real (written): 2012-10-14T11:25:41 - 2012-10-14T11:27:37
 anomaly (created): 2012-09-14T11:26:20 - 2012-09-14T11:26:20
 anomaly (written): 2012-09-14T11:26:20 - 2012-09-14T11:26:20
 logs:

 Windows/System32/winevt/Logs/
Microsoft-Windows-TaskScheduler%4Operational.evtx

 Windows/System32/winevt/Logs/Security.evtx

These results are similar to the previous test, in that the second reported

anomaly only lasted for a milliseconds. Again, this millisecond anomaly is captured in

the security and operational logs, due to the way the time change event is logged. The

first reported anomaly is the result of the test performed, and reveals an anomalous

45

time period that occurs on September 14th, while the real time period was in October

14th. This is what is expected, since these are the time periods tested. TADpole is run

again with file reporting turned on. Like the previous Windows Vista test, no files are

reported associated with the second reported anomaly. The file list for the first reported

anomaly is similar to the file list produced in the previous Windows Vista test.

Anomaly
 real (created): 2012-10-14T11:26:10 - 2012-10-14T11:27:37
 real (written): 2012-10-14T11:26:10 - 2012-10-14T11:27:37
 anomaly (created): 2012-09-14T11:26:20 - 2012-09-14T11:27:30
 anomaly (written): 2012-09-14T11:26:20 - 2012-09-14T11:27:30
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
 files:
 $Recycle.Bin/S-1-5-21-1711782242-822617886-3376483720-1000/$ICYWXGZ.txt
 $Recycle.Bin/S-1-5-21-1711782242-822617886-3376483720-1000/$RBSTSZM.txt
 $Recycle.Bin/S-1-5-21-1711782242-822617886-3376483720-1000/$REM5JZZ.txt
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk
 Windows/Prefetch/NOTEPAD.EXE-EB1B961A.pf
 test/test3.txt
 test/test7.txt
 test/test8.txt
 … removed for brevity …

Like the previous roll back test, only the notepad.exe prefetch file is found.

Notepad is what was used to edit the files during the anomalous time period.

Eventcreate.exe and ping.exe do not show in the result list, as the MAC times for those

prefetch files are still all within the real time period. As expected from the previous tests,

test3.txt, text7.txt, and text8.txt are directly listed in the file result list. Also, the result list

contains the lnk files for test3, test4, and test5 in the users Recent folder. Analysis of

the files listed in the Recycle Bin show that $ICYWXGZ.txt is the recycler index file for

test6.txt. So again, the results have found test6.txt. Further analysis of the

corresponding $I files for $RBSTSZM.txt and $REM5JZZ.txt show that they are the

46

content files for test5.txt and test9.txt respectively. These results have found every file

that was touched during the anomalous time period.

5.5 Windows 7 Enterprise - Roll Forward Test

For the purposes of this test, the time was adjusted one month forward on an

instance of Windows 7 Enterprise. The results of this test returned two anomalies.

Anomaly
 real (created): 2012-11-05T11:59:31 - 2012-11-05T12:01:26
 real (written): 2012-11-05T11:59:31 - 2012-11-05T12:01:26
 anomaly (created): 2012-12-05T11:59:33 - 2012-12-05T12:01:25
 anomaly (written): 2012-12-05T11:59:33 - 2012-12-05T12:01:25
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
Anomaly
 real (created): 2012-11-05T11:57:36 - 2012-11-05T12:01:26
 real (written): 2012-11-05T11:57:36 - 2012-11-05T12:01:26
 anomaly (created): 2012-12-05T11:59:33 - 2012-12-05T11:59:33
 anomaly (written): 2012-12-05T11:59:33 - 2012-12-05T11:59:33
 logs:
 Windows/System32/winevt/Logs/Security.evtx

Like the Windows Vista tests, the second reported anomaly has an anomalous

time period that only lasted milliseconds. This anomaly is also only associated with the

Security log. This is again a result of the logging that occurred when the time was

changed. The first reported anomaly is the result of the test conducted. It is associated

with the Application and System logs, which are the log files that were being populated

by the batch script. The anomaly shows that the anomalous time period took place on

December 5th, while the real time is indicated to be November 5th. Again, TADpole is

run again with file reporting turned on. As before in the Windows Vista tests, no files are

reported corresponding to the second reported anomaly.

47

Anomaly
 real (created): 2012-11-05T11:59:31 - 2012-11-05T12:01:26
 real (written): 2012-11-05T11:59:31 - 2012-11-05T12:01:26
 anomaly (created): 2012-12-05T11:59:33 - 2012-12-05T12:01:25
 anomaly (written): 2012-12-05T11:59:33 - 2012-12-05T12:01:25
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
 files:
 $Recycle.Bin/S-1-5-21-2059584777-4223279744-942756276-1000/$IAR5EZM.txt
 $Recycle.Bin/S-1-5-21-2059584777-4223279744-942756276-1000/$R3Q6YJF.txt
 $Recycle.Bin/S-1-5-21-2059584777-4223279744-942756276-1000/$ROYN4WH.txt
 test/test3.txt
 test/test7.txt
 test/test8.txt
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk
 Windows/Prefetch/PING.EXE-B29F6629.pf
 Windows/Prefetch/EVENTCREATE.EXE-0DABBE19.pf
 Windows/Prefetch/NOTEPAD.EXE-EB1B961A.pf
 … removed for brevity …

This report is nearly identical to the report generated in the Windows Vista

forward test. The prefetch files reveal eventcreate.exe and ping.exe which were used by

the batch script for generating log events. Also, notepad.exe is shown to be used during

the anomalous time period, which it was used to edit the files during the anomaly.

Directly found in the report are test3.txt, test7.txt and test8.txt which are files that were

either created or edited during the anomalous time period. The Recent folder holds lnk

files for test3, test4 and test5 which are the 3 files that were edited during the

anomalous time period. Analysis of the files reported in the Recycle Bin shows that

$IAR5EZM.txt refers to test6.txt. Also the corresponding $I files for $R3Q6YJF.txt and

$ROYN4WH.txt reveal the files to be the content files for test9.txt and test5.txt

respectively. All the files touched during the anomalous time period of the test are

revealed.

48

5.6 Windows 7 Enterprise - Roll Backward Test

The final test was performed on an instance of Windows 7 Enterprise where the

time was adjusted one month backward. The results of this test returned two anomalies.

As seen in the other Windows 7 test, the second reported anomaly was only found in

the Security log. The anomalous time period associated with this anomaly is again only

milliseconds in length. The first reported anomaly is the anomaly created by the test.

Anomaly
 real (created): 2012-10-24T22:05:11 - 2012-10-24T22:06:39
 real (written): 2012-10-24T22:05:11 - 2012-10-24T22:06:39
 anomaly (created): 2012-09-24T22:05:13 - 2012-09-24T22:06:31
 anomaly (written): 2012-09-24T22:05:13 - 2012-09-24T22:06:31
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
Anomaly
 real (created): 2012-10-24T22:03:10 - 2012-10-24T22:06:39
 real (written): 2012-10-24T22:03:10 - 2012-10-24T22:06:39
 anomaly (created): 2012-09-24T22:05:13 - 2012-09-24T22:05:13
 anomaly (written): 2012-09-24T22:05:13 - 2012-09-24T22:05:13
 logs:
 Windows/System32/winevt/Logs/Security.evtx

This report shows that the anomalous time line occurs on September 24th and

the real time occurs in October 24th. This is the result that is expected as that was the

time that the clock was adjusted to in the test. Running TADpole again with file reporting

enabled, shows a report that is nearly identical to the previous Windows 7 test.

Anomaly
 real (created): 2012-10-24T22:05:11 - 2012-10-24T22:06:39
 real (written): 2012-10-24T22:05:11 - 2012-10-24T22:06:39
 anomaly (created): 2012-09-24T22:05:13 - 2012-09-24T22:06:31
 anomaly (written): 2012-09-24T22:05:13 - 2012-09-24T22:06:31
 logs:
 Windows/System32/winevt/Logs/Application.evtx
 Windows/System32/winevt/Logs/System.evtx
 files:
 $Recycle.Bin/S-1-5-21-2484575684-171609815-2448202825-1000/$IWZSCAF.txt
 $Recycle.Bin/S-1-5-21-2484575684-171609815-2448202825-1000/$R1MB7J6.txt
 $Recycle.Bin/S-1-5-21-2484575684-171609815-2448202825-1000/$RN9W80Y.txt
 test/test3.txt
 test/test7.txt
 test/test8.txt

49

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk
 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk
 … removed for brevity …

The first observation of note, is the lack of prefetch files being reported. The

prefetch files associated with the executables used during the anomaly all have MAC

tims that are within the real time timeline. The files that were actually touched are all

found though. The files directly reported, test3.txt, test7.txt and test8.txt are files created

or edited during the anomalous time period. The lnk files in the Recent folder show that

test3, test4 and test5 were accessed during the anomalous time period, which is

expected, since they were edited during the anomaly. Finally, analysis of $IWZSCAF.txt

in the Recycle Bin, show that it is the index file for test6.txt, which was deleted during

the anomalous time period. Analysis of the corresponding $I files for $R1MB7J6.txt and

$RN9W80y.txt reveals these files to be the content files for test5.txt and test9.txt

respectively. All files touched during the anomaly have been found.

5.7 M57-Patents Scenario

To further test TADpole, the tool was run against the raw disk images provided in

the M57-Patents Scenario8. There were no timeline anomalies detected in any of the

images associated with Charlie, Jo, or Pat. The images associated with Terry did report

anomalies. The images terry-2009-11-12 through terry-2009-11-18 reported the same 2

anomalies.

Anomaly

 real (created): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 real (written): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 anomaly (created): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 anomaly (written): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 logs:

 Windows/System32/winevt/Logs/System.evtx

50

Anomaly

 real (created): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 real (written): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 anomaly (created): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 anomaly (written): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 logs:

 Windows/System32/winevt/Logs/System.evtx

These anomalies are mirrors of each other, meaning that the real time is reported

as the anomalous time of the other. These anomalies are also only found in the

System.evtx log, which lowers the confidence that this is an actual event, and more

likely just an error in how the logs were written. Also, the images terry-2009-11-23

through terry-2009-12-11-002 reported a different anomaly.

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

This anomaly shows that the anomalous time period overlaps the real time

period. This anomaly is also only found in the System.evtx log file, again lowering the

confidence that this is an actual event.

Because these images were snapshots of the same machine, taken each day, it

makes sense that the same anomaly is seen in the multiple disk images. Because the

log file is only being added to, and it takes several days for the log file to overwrite the

anomalous log entries.

6 Conclusion

There are several applications available for generating timelines from log files,

GrokEVT and log2timeline. These applications are lacking though. There is an

51

assumption in these tools that an event log entry written out of order was an accident

and they are reordered to present a continuous timeline.

This research proves that these log entries written out of order can be leveraged

to present a forensics researcher with information that the system being analyzed had

its system clock manipulated. The key to doing this, is not only finding log entries that

are written out of order, but also pairing these anomalies together with other anomalies

of the opposite type within the same log file. The type of anomalies being considered

here are entries that have a gap of time between them (roll forward) and entries where

the log entry that follows has a timestamp that is actually in less than the one that

precedes it (roll backward). To help eliminate false positives being presented to the

investigator, these anomalies are further corroborated by finding corresponding

anomalies in other log files on the system.

From this research a tool was created to perform this analysis in an automated

fashion. TADpole is a one of kind implementation of an automated timeline anomaly

detection tool. It leverages the sleuthkit toolset to perform analysis of a given filesystem

image and determine if the system clock on that image had been manipulated as well

as report on the files that were accessed during the time that the clock was in its altered

time.

7 Future Work

While TADpole performs well, and is able to detect timeline anomalies, it still has

room for improvement. The deltas that were chosen for this implementation were done

so with trial and error. More work could be done to find delta values that are much more

appropriate. Also it would seem that these would be a good candidate for being put in

52

an external configuration file so that a forensics investigator could adjust them as

needed. It was also discovered that the TskAuto class that was leveraged by the tool

has some limitations. Namely, the TskAuto class did not provide access to files that had

been deleted from the system being analyzed. To accomplish this, TADpole could be

refactored to leverage the APIs provided by sleuthkit directly. It would also make sense

for TADpole to be integrated into other tools like log2timeline or autopsy. TADpole can

also be expanded to be able to parse the various log file formats found on UNIX/LINUX

systems as well as log files specific to applications on the system.

8 References

1 Mastering the Super Timeline with log2timeline

http://www.sans.org/reading_room/whitepapers/logging/mastering-super-

timeline-log2timeline_33438

2 GrokEvt http://projects.sentinelchicken.org/grokevt/

3 GrokEvt Format Documentation

http://code.google.com/p/grokevt/source/browse/trunk/doc/devel/format.txt

4 Vista event log category on int for(ensic){blog;} (Andreas Schuster)

http://computer.forensikblog.de/en/topics/windows/vista-event-log/

5 Recycle Bin Forensics in Vista and Windows 7

http://dereknewton.com/2010/06/recycle-bin-forensics-in-windows-7-and-vista/

6 M57-Patents Scenario http://digitalcorpora.org/corpora/scenarios/m57-patents-

scenario

53

9 Appendices

9.1 Appendix A: Windows XP Professional - Roll Forward Test

Anomaly

 real (created): 2012-10-10T18:04:35 - 2012-10-10T18:07:33

 real (written): 2012-10-10T18:04:35 - 2012-10-10T18:07:33

 anomaly (created): 2012-11-10T18:04:40 - 2012-11-10T18:07:24

 anomaly (written): 2012-11-10T18:04:40 - 2012-11-10T18:07:24

 logs:

 WINDOWS/system32/config/AppEvent.Evt

 WINDOWS/system32/config/SysEvent.Evt

 files:

 Documents and Settings/Administrator/Application Data/desktop.ini

 Documents and Settings/Administrator/Recent/test.lnk

 Documents and Settings/Administrator/Recent/test3.lnk

 Documents and Settings/Administrator/Recent/test4.lnk

 Documents and Settings/Administrator/Recent/test5.lnk

 Documents and Settings/All Users/Application Data/desktop.ini

 Documents and Settings/All Users/Documents/desktop.ini

 Documents and Settings/All Users/Documents/My Music/Desktop.ini

 Documents and Settings/All Users/Documents/My Pictures/Desktop.ini

 Documents and Settings/All Users/Documents/My Videos/Desktop.ini

 Program Files/Windows NT/Accessories/wordpad.exe

 RECYCLER/S-1-5-21-1644491937-682003330-839522115-500/Dc2.txt

 RECYCLER/S-1-5-21-1644491937-682003330-839522115-500/Dc3.txt

 RECYCLER/S-1-5-21-1644491937-682003330-839522115-500/desktop.ini

 RECYCLER/S-1-5-21-1644491937-682003330-839522115-500/INFO2

 test/test3.txt

 test/test7.txt

 test/test8.txt

 WINDOWS/Prefetch/EVENTCREATE.EXE-28AF53E7.pf

 WINDOWS/Prefetch/NOTEPAD.EXE-336351A9.pf

 WINDOWS/Prefetch/PING.EXE-31216D26.pf

 WINDOWS/Prefetch/WMIADAP.EXE-2DF425B2.pf

 WINDOWS/Prefetch/WMIPRVSE.EXE-28F301A9.pf

 WINDOWS/SoftwareDistribution/DataStore/DataStore.edb

 WINDOWS/SoftwareDistribution/DataStore/Logs/edb.chk

 WINDOWS/SoftwareDistribution/DataStore/Logs/edb.log

 WINDOWS/system32/atl.dll

 WINDOWS/system32/credui.dll

 WINDOWS/system32/cfgmgr32.dll

 WINDOWS/system32/drivers/acpi.sys

 WINDOWS/system32/drivers/http.sys

 WINDOWS/system32/drivers/intelppm.sys

 WINDOWS/system32/drivers/ipnat.sys

 WINDOWS/system32/drivers/mssmbios.sys

 WINDOWS/system32/mfc42u.dll

 WINDOWS/system32/ncobjapi.dll

 WINDOWS/system32/ntdsapi.dll

 WINDOWS/system32/psapi.dll

 WINDOWS/system32/pschdprf.dll

 WINDOWS/system32/query.dll

 WINDOWS/system32/resutils.dll

 WINDOWS/system32/rsvpperf.dll

 WINDOWS/system32/rtutils.dll

54

 WINDOWS/system32/samlib.dll

 WINDOWS/system32/utildll.dll

 WINDOWS/system32/wldap32.dll

 WINDOWS/system32/wmi.dll

 WINDOWS/system32/comctl32.dll

 WINDOWS/system32/comdlg32.dll

 WINDOWS/system32/perfts.dll

 WINDOWS/system32/dnsapi.dll

 WINDOWS/system32/linkinfo.dll

 WINDOWS/system32/loadperf.dll

 WINDOWS/system32/mpr.dll

 WINDOWS/system32/mprapi.dll

 WINDOWS/system32/netshell.dll

 WINDOWS/system32/ntmarta.dll

 WINDOWS/system32/perfc009.dat

 WINDOWS/system32/perfctrs.dll

 WINDOWS/system32/perfdisk.dll

 WINDOWS/system32/perfh009.dat

 WINDOWS/system32/perfnet.dll

 WINDOWS/system32/perfos.dll

 WINDOWS/system32/perfproc.dll

 WINDOWS/system32/PerfStringBackup.INI

 WINDOWS/system32/rasctrs.dll

 WINDOWS/system32/setupapi.dll

 WINDOWS/system32/traffic.dll

 WINDOWS/system32/clusapi.dll

 WINDOWS/system32/msdtcprx.dll

 WINDOWS/system32/msdtcuiu.dll

 WINDOWS/system32/xpsp2res.dll

 WINDOWS/system32/mtxclu.dll

 WINDOWS/system32/activeds.dll

 WINDOWS/system32/adsldpc.dll

 WINDOWS/system32/tapiperf.dll

 WINDOWS/system32/wbem/cimwin32.dll

 WINDOWS/system32/wbem/mofd.dll

 WINDOWS/system32/wbem/Performance/WmiApRpl.h

 WINDOWS/system32/wbem/Performance/WmiApRpl.ini

 WINDOWS/system32/wbem/fastprox.dll

 WINDOWS/system32/wbem/Logs/wmiadap.log

 WINDOWS/system32/wbem/Logs/wmiprov.log

 WINDOWS/system32/wbem/Repository/FS/INDEX.BTR

 WINDOWS/system32/wbem/Repository/FS/OBJECTS.DATA

 WINDOWS/system32/wbem/wbemcomn.dll

 WINDOWS/system32/wbem/wbemprox.dll

 WINDOWS/system32/wbem/wbemsvc.dll

 WINDOWS/system32/wbem/wmiadap.exe

 WINDOWS/system32/wbem/wmiprov.dll

 WINDOWS/system32/wbem/wmiprvse.exe

 WINDOWS/system32/wbem/wmiutils.dll

 WINDOWS/system32/wsock32.dll

 WINDOWS/Fonts/lucon.ttf

9.2 Appendix B: Windows XP Professional - Roll Backward Test

Anomaly

55

 real (created): 2012-10-03T21:42:48 - 2012-10-03T21:44:23

 real (written): 2012-10-03T21:42:48 - 2012-10-03T21:44:23

 anomaly (created): 2012-09-03T21:42:57 - 2012-09-03T21:44:21

 anomaly (written): 2012-09-03T21:42:57 - 2012-09-03T21:44:21

 logs:

 WINDOWS/system32/config/AppEvent.Evt

 WINDOWS/system32/config/SysEvent.Evt

 files:

 Documents and Settings/Administrator/Application Data/desktop.ini

 Documents and Settings/Administrator/Recent/test.lnk

 Documents and Settings/Administrator/Recent/test3.lnk

 Documents and Settings/Administrator/Recent/test4.lnk

 Documents and Settings/Administrator/Recent/test5.lnk

 Documents and Settings/All Users/Application Data/desktop.ini

 Documents and Settings/All Users/Documents/desktop.ini

 Documents and Settings/All Users/Documents/My Music/Desktop.ini

 Documents and Settings/All Users/Documents/My Pictures/Desktop.ini

 Documents and Settings/All Users/Documents/My Videos/Desktop.ini

 Program Files/Windows NT/Accessories/wordpad.exe

 RECYCLER/S-1-5-21-606747145-1770027372-839522115-500/Dc3.txt

 RECYCLER/S-1-5-21-606747145-1770027372-839522115-500/Dc4.txt

 RECYCLER/S-1-5-21-606747145-1770027372-839522115-500/desktop.ini

 RECYCLER/S-1-5-21-606747145-1770027372-839522115-500/INFO2

 test/test3.txt

 test/test7.txt

 test/test8.txt

 WINDOWS/Prefetch/NOTEPAD.EXE-336351A9.pf

 WINDOWS/system32/imm32.dll

 WINDOWS/system32/rundll32.exe

 WINDOWS/system32/timedate.cpl

 WINDOWS/system32/w32time.dll

 WINDOWS/system32/msv1_0.dll

 WINDOWS/system32/linkinfo.dll

 WINDOWS/system32/wbem/Repository/FS/INDEX.BTR

 WINDOWS/system32/wbem/Repository/FS/OBJECTS.DATA

 WINDOWS/Fonts/lucon.ttf

9.3 Appendix C: Windows Vista Business - Roll Forward Test

Anomaly

 real (created): 2012-10-24T21:27:39 - 2012-10-24T21:29:11

 real (written): 2012-10-24T21:27:39 - 2012-10-24T21:29:11

 anomaly (created): 2012-11-24T20:27:43 - 2012-11-24T21:28:59

 anomaly (written): 2012-11-24T20:27:43 - 2012-11-24T21:28:59

 logs:

 Windows/System32/winevt/Logs/Application.evtx

 Windows/System32/winevt/Logs/System.evtx

 files:

 $Recycle.Bin/S-1-5-21-285488370-3719860764-2834214899-

1000/$IX0O32K.txt

 $Recycle.Bin/S-1-5-21-285488370-3719860764-2834214899-

1000/$R4AICPX.txt

 $Recycle.Bin/S-1-5-21-285488370-3719860764-2834214899-

1000/$RWNS9V7.txt

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002B.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002C.log

56

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002D.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002E.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002F.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS00030.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS00031.log

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/0001000B.ci

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/0001000B.dir

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/0001000B.wid

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/0001000C.ci

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/0001000C.dir

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/0001000C.wid

Users/test/AppData/LocalLow/Microsoft/CryptnetUrlCache/Content/4DD39726D4B55A

C3B4119B35A893323C_519751C668626633CE3FCE5B411E0890

Users/test/AppData/LocalLow/Microsoft/CryptnetUrlCache/Content/D47DBD2F9E3365

FBBE008D71FB06716F_4DD1053BCC726DA41115FFF4C7D6E9CC

Users/test/AppData/LocalLow/Microsoft/CryptnetUrlCache/MetaData/4DD39726D4B55

AC3B4119B35A893323C_519751C668626633CE3FCE5B411E0890

Users/test/AppData/LocalLow/Microsoft/CryptnetUrlCache/MetaData/696F3DE637E6D

E85B458996D49D759AD

Users/test/AppData/LocalLow/Microsoft/CryptnetUrlCache/MetaData/94308059B57B3

142E455B38A6EB92015

Users/test/AppData/LocalLow/Microsoft/CryptnetUrlCache/MetaData/B8CC409ACDBF2

A2FE04C56F2875B1FD6

Users/test/AppData/LocalLow/Microsoft/CryptnetUrlCache/MetaData/D47DBD2F9E336

5FBBE008D71FB06716F_4DD1053BCC726DA41115FFF4C7D6E9CC

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk

 Windows/Prefetch/SEARCHPROTOCOLHOST.EXE-AFAD3EF9.pf

 Windows/Prefetch/NOTEPAD.EXE-EB1B961A.pf

 Windows/Prefetch/VERCLSID.EXE-4D95F5A7.pf

 Windows/Prefetch/WMIADAP.EXE-369DF1CD.pf

 Windows/Prefetch/WMIPRVSE.EXE-43972D0F.pf

 Windows/Prefetch/DLLHOST.EXE-71214090.pf

 Windows/Prefetch/PING.EXE-B29F6629.pf

 Windows/Prefetch/EVENTCREATE.EXE-0DABBE19.pf

 Windows/System32/wbem/Logs/wmiprov.log

57

 Windows/System32/wbem/Repository/INDEX.BTR

 Windows/System32/wbem/Repository/MAPPING1.MAP

 Windows/System32/wbem/Repository/MAPPING2.MAP

 Windows/System32/wbem/Repository/OBJECTS.DATA

 Windows/System32/wbem/Performance/WmiApRpl.h

 test/test3.txt

 test/test7.txt

 test/test8.txt

Anomaly

 real (created): 2012-10-24T21:26:47 - 2012-10-24T21:29:07

 real (written): 2012-10-24T21:26:47 - 2012-10-24T21:29:07

 anomaly (created): 2012-11-24T21:27:43 - 2012-11-24T21:27:43

 anomaly (written): 2012-11-24T21:27:43 - 2012-11-24T21:27:43

 logs:

 Windows/System32/winevt/Logs/Microsoft-Windows-

TaskScheduler%4Operational.evtx

 Windows/System32/winevt/Logs/Security.evtx

9.4 Appendix D: Windows Vista Business - Roll Backward Test

Anomaly

 real (created): 2012-10-14T11:26:10 - 2012-10-14T11:27:37

 real (written): 2012-10-14T11:26:10 - 2012-10-14T11:27:37

 anomaly (created): 2012-09-14T11:26:20 - 2012-09-14T11:27:30

 anomaly (written): 2012-09-14T11:26:20 - 2012-09-14T11:27:30

 logs:

 Windows/System32/winevt/Logs/Application.evtx

 Windows/System32/winevt/Logs/System.evtx

 files:

 $Recycle.Bin/S-1-5-21-1711782242-822617886-3376483720-

1000/$ICYWXGZ.txt

 $Recycle.Bin/S-1-5-21-1711782242-822617886-3376483720-

1000/$RBSTSZM.txt

 $Recycle.Bin/S-1-5-21-1711782242-822617886-3376483720-

1000/$REM5JZZ.txt

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002B.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002C.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002D.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002E.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS0002F.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS00030.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS00031.log

 ProgramData/Microsoft/Search/Data/Applications/Windows/MSS00032.log

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010014.ci

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010014.dir

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010014.wid

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010015.ci

58

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010015.dir

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010015.wid

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010016.ci

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010016.dir

ProgramData/Microsoft/Search/Data/Applications/Windows/Projects/SystemIndex/I

ndexer/CiFiles/00010016.wid

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk

 Windows/inf/WmiApRpl/0009/WmiApRpl.ini

 Windows/inf/WmiApRpl/WmiApRpl.h

 Windows/Prefetch/NOTEPAD.EXE-EB1B961A.pf

 Windows/Prefetch/DLLHOST.EXE-D64E0F21.pf

 Windows/System32/perfc009.dat

 Windows/System32/perfh009.dat

 Windows/System32/PerfStringBackup.INI

 Windows/System32/wbem/Performance/WmiApRpl.ini

 test/test3.txt

 test/test7.txt

 test/test8.txt

Anomaly

 real (created): 2012-10-14T11:25:41 - 2012-10-14T11:27:37

 real (written): 2012-10-14T11:25:41 - 2012-10-14T11:27:37

 anomaly (created): 2012-09-14T11:26:20 - 2012-09-14T11:26:20

 anomaly (written): 2012-09-14T11:26:20 - 2012-09-14T11:26:20

 logs:

 Windows/System32/winevt/Logs/Microsoft-Windows-

TaskScheduler%4Operational.evtx

 Windows/System32/winevt/Logs/Security.evtx

9.5 Appendix E: Windows 7 Enterprise - Roll Forward Test

Anomaly

 real (created): 2012-11-05T11:59:31 - 2012-11-05T12:01:26

 real (written): 2012-11-05T11:59:31 - 2012-11-05T12:01:26

 anomaly (created): 2012-12-05T11:59:33 - 2012-12-05T12:01:25

 anomaly (written): 2012-12-05T11:59:33 - 2012-12-05T12:01:25

 logs:

 Windows/System32/winevt/Logs/Application.evtx

 Windows/System32/winevt/Logs/System.evtx

 files:

 $Recycle.Bin/S-1-5-21-2059584777-4223279744-942756276-

1000/$IAR5EZM.txt

 $Recycle.Bin/S-1-5-21-2059584777-4223279744-942756276-

1000/$R3Q6YJF.txt

59

 $Recycle.Bin/S-1-5-21-2059584777-4223279744-942756276-

1000/$ROYN4WH.txt

 test/test3.txt

 test/test7.txt

 test/test8.txt

Users/test/AppData/Roaming/Microsoft/Windows/Recent/AutomaticDestinations/1b4

dd67f29cb1962.automaticDestinations-ms

Users/test/AppData/Roaming/Microsoft/Windows/Recent/AutomaticDestinations/918

e0ecb43d17e23.automaticDestinations-ms

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk

 Windows/inf/WmiApRpl/WmiApRpl.h

 Windows/Prefetch/CONHOST.EXE-3218E401.pf

 Windows/Prefetch/CONSENT.EXE-65F6206D.pf

 Windows/Prefetch/CONTROL.EXE-9459D5A0.pf

 Windows/Prefetch/DLLHOST.EXE-71214090.pf

 Windows/Prefetch/PING.EXE-B29F6629.pf

 Windows/Prefetch/EVENTCREATE.EXE-0DABBE19.pf

 Windows/Prefetch/WMIADAP.EXE-369DF1CD.pf

 Windows/Prefetch/NOTEPAD.EXE-EB1B961A.pf

 Windows/Prefetch/TASKHOST.EXE-437C05A8.pf

 Windows/Prefetch/RUNDLL32.EXE-5A976A8C.pf

Windows/ServiceProfiles/LocalService/AppData/Local/Microsoft/Windows/History/

History.IE5/index.dat

Windows/ServiceProfiles/LocalService/AppData/Local/Microsoft/Windows/Temporar

y Internet Files/Content.IE5/index.dat

Windows/ServiceProfiles/LocalService/AppData/Roaming/Microsoft/Windows/Cookie

s/index.dat

 Windows/servicing/Packages/Microsoft-Windows-IIS-WebServer-

Package~31bf3856ad364e35~x86~~6.1.7600.16385.cat

 Windows/System32/LogFiles/Scm/0d9b5d92-3a22-486d-a887-3aa21597cf27

 Windows/System32/LogFiles/Scm/a1cfa52f-06f2-418d-addb-cd6456d66f43

 Windows/System32/LogFiles/Scm/a316e645-1c56-45a6-bd6a-7dca79778090

 Windows/System32/LogFiles/Scm/a6394592-54ce-4e93-8d64-1a068f462632

 Windows/System32/wbem/Performance/WmiApRpl.h

 Windows/System32/wbem/Repository/INDEX.BTR

 Windows/System32/wbem/Repository/MAPPING2.MAP

 Windows/System32/wbem/Repository/MAPPING3.MAP

 Windows/System32/wbem/Repository/OBJECTS.DATA

Anomaly

 real (created): 2012-11-05T11:57:36 - 2012-11-05T12:01:26

 real (written): 2012-11-05T11:57:36 - 2012-11-05T12:01:26

 anomaly (created): 2012-12-05T11:59:33 - 2012-12-05T11:59:33

 anomaly (written): 2012-12-05T11:59:33 - 2012-12-05T11:59:33

 logs:

 Windows/System32/winevt/Logs/Security.evtx

60

9.6 Appendix A: Windows F Enterprise - Roll Backward Test

Anomaly

 real (created): 2012-10-24T22:05:11 - 2012-10-24T22:06:39

 real (written): 2012-10-24T22:05:11 - 2012-10-24T22:06:39

 anomaly (created): 2012-09-24T22:05:13 - 2012-09-24T22:06:31

 anomaly (written): 2012-09-24T22:05:13 - 2012-09-24T22:06:31

 logs:

 Windows/System32/winevt/Logs/Application.evtx

 Windows/System32/winevt/Logs/System.evtx

 files:

 $Recycle.Bin/S-1-5-21-2484575684-171609815-2448202825-

1000/$IWZSCAF.txt

 $Recycle.Bin/S-1-5-21-2484575684-171609815-2448202825-

1000/$R1MB7J6.txt

 $Recycle.Bin/S-1-5-21-2484575684-171609815-2448202825-

1000/$RN9W80Y.txt

ProgramData/Microsoft/Search/Data/Applications/Windows/GatherLogs/SystemIndex

/SystemIndex.2.Crwl

ProgramData/Microsoft/Search/Data/Applications/Windows/GatherLogs/SystemIndex

/SystemIndex.2.gthr

 test/test3.txt

 test/test7.txt

 test/test8.txt

Users/test/AppData/Roaming/Microsoft/Windows/Recent/AutomaticDestinations/918

e0ecb43d17e23.automaticDestinations-ms

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test3.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test4.lnk

 Users/test/AppData/Roaming/Microsoft/Windows/Recent/test5.lnk

 Windows/servicing/Packages/Microsoft-Windows-Indexing-Service-

Package~31bf3856ad364e35~x86~en-US~6.1.7600.16385.cat

 Windows/SoftwareDistribution/DataStore/DataStore.edb

 Windows/SoftwareDistribution/DataStore/Logs/edb.chk

 Windows/SoftwareDistribution/DataStore/Logs/edb.log

 Windows/System32/LogFiles/Scm/16856e74-4859-44d0-997c-b249ee0e608c

 Windows/System32/Tasks/Microsoft/Windows Defender/MP Scheduled Scan

Anomaly

 real (created): 2012-10-24T22:03:10 - 2012-10-24T22:06:39

 real (written): 2012-10-24T22:03:10 - 2012-10-24T22:06:39

 anomaly (created): 2012-09-24T22:05:13 - 2012-09-24T22:05:13

 anomaly (written): 2012-09-24T22:05:13 - 2012-09-24T22:05:13

 logs:

 Windows/System32/winevt/Logs/Security.evtx

9.6 Appendix G: M57-Patent Scenario

Charlie

charlie-2009-11-12.raw

charlie-2009-11-12start.raw

61

charlie-2009-11-16.raw

charlie-2009-11-17.raw

charlie-2009-11-18.raw

charlie-2009-11-19.raw

charlie-2009-11-20.raw

charlie-2009-11-23.raw

charlie-2009-11-24.raw

charlie-2009-11-30.raw

charlie-2009-12-01.raw

charlie-2009-12-02.raw

charlie-2009-12-03.raw

charlie-2009-12-04.raw

charlie-2009-12-07.raw

charlie-2009-12-08.raw

charlie-2009-12-09.raw

charlie-2009-12-10.raw

charlie-2009-12-11.raw

Jo

jo-2009-11-12.raw

jo-2009-11-12start.raw

jo-2009-11-16.raw

jo-2009-11-17.raw

jo-2009-11-19.raw

jo-2009-11-20-newComputer.raw

jo-2009-11-20-oldComputer.raw

jo-2009-11-23.raw

jo-2009-11-24.raw

jo-2009-11-30.raw

jo-2009-12-01.raw

jo-2009-12-02.raw

jo-2009-12-03.raw

jo-2009-12-04.raw

jo-2009-12-07.raw

jo-2009-12-08.raw

jo-2009-12-09.raw

jo-2009-12-10.raw

jo-2009-12-11-001.raw

jo-2009-12-11-002.raw

Pat

pat-2009-11-12.raw

pat-2009-11-12start.raw

pat-2009-11-16.raw

pat-2009-11-17.raw

pat-2009-11-18.raw

pat-2009-11-19.raw

pat-2009-11-20.raw

pat-2009-11-24.raw

pat-2009-11-30.raw

pat-2009-12-01.raw

pat-2009-12-02.raw

pat-2009-12-03.raw

62

pat-2009-12-04.raw

pat-2009-12-07.raw

pat-2009-12-08.raw

pat-2009-12-09.raw

pat-2009-12-10.raw

pat-2009-12-11.raw

Terry

terry-2009-11-12.raw

Anomaly

 real (created): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 real (written): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 anomaly (created): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 anomaly (written): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 logs:

 Windows/System32/winevt/Logs/System.evtx

Anomaly

 real (created): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 real (written): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 anomaly (created): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 anomaly (written): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-11-12start.raw

terry-2009-11-16.raw

Anomaly

 real (created): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 real (written): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 anomaly (created): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 anomaly (written): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 logs:

 Windows/System32/winevt/Logs/System.evtx

Anomaly

 real (created): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 real (written): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 anomaly (created): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 anomaly (written): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-11-17.raw

Anomaly

 real (created): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 real (written): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 anomaly (created): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 anomaly (written): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 logs:

 Windows/System32/winevt/Logs/System.evtx

Anomaly

 real (created): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 real (written): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 anomaly (created): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 anomaly (written): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-11-18.raw

63

Anomaly

 real (created): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 real (written): 2009-11-12T18:38:52 - 2009-11-12T18:39:07

 anomaly (created): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 anomaly (written): 2009-11-12T20:41:40 - 2009-11-12T20:41:40

 logs:

 Windows/System32/winevt/Logs/System.evtx

Anomaly

 real (created): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 real (written): 2009-11-12T20:41:40 - 2009-11-12T20:40:16

 anomaly (created): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 anomaly (written): 2009-11-12T18:39:07 - 2009-11-12T18:39:07

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-11-19.raw

terry-2009-11-20.raw

terry-2009-11-23.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-11-24.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-01.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-02.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-03.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-04.raw

64

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-07.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-08.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-09.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

terry-2009-12-11-002.raw

Anomaly

 real (created): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 real (written): 2009-11-19T18:02:06 - 2009-11-19T20:09:03

 anomaly (created): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 anomaly (written): 2009-11-19T17:03:17 - 2009-11-19T18:19:56

 logs:

 Windows/System32/winevt/Logs/System.evtx

65

10 Vita

The author was born in Metairie, Louisiana. He obtained his Bachelor’s degree in

computer science from the University of New Orleans in 2004. He joined the University

of New Orleans computer science graduate program to pursue a Masters in Science,

focusing on Computer security and Information Assurance in 2007.

	Automated Timeline Anomaly Detection
	Recommended Citation

	Microsoft Word - 338134-text.native.1366640168.docx

