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Abstract 
 

This dissertation consists of two essays: the first investigates informed trading in the 

Chinese stock exchanges, and the second examines the persistency of correlation of currency 

future prices.  

For the first essay, using a sample of Chinese firms dual-listed in both the China 

mainland stock exchange and the Hong Kong stock exchange, I investigate the two types of 

informed trading - insider trading and trading derived from better analysis in the A-and H-share 

markets. The results suggest that H-shares have relatively more informed trading based on better 

analysis. In addition, the results from the firm size regression can also be seen as indirect 

evidence that larger firms tend to have trading with better analysis and less insider trading. These 

patterns are also confirmed in the sub-period analysis. However, I find no significant relation 

between informed trading and the relative pricing of A- and H-shares.  

For the second essay I examine the dynamic correlation between currency futures prices, 

focusing on the persistency of correlation of currency prices. Using the Dynamic Conditional 

Correlation model developed by Engle (2002), this study incorporates time-varying correlations 

into the analysis. The sample includes eight currency futures traded on the Chicago Mercantile 

Exchange from 1999 to 2008 and the U.S. dollar index future. The study finds that the Canadian 

dollar has the greater persistency while the Brazilian real has the weakest. No less important, the 

study finds that the time-varying conditional correlation between currency futures and the U.S. 

dollar futures is influenced by two types of liquidity: price impacts (Amihud illiquidity) and the 

logarithm of trading volume. 

Keywords:  informed trading, A- and H-shares, insider trading, currency futures, persistency, 

Amihud illiquidity
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Chapter 1 

Analyzing Informed Trading in Dually-Listed Chinese Stocks 

1. Introduction  

 Informed trading can come from insider information or from better analysis, yet to my 

knowledge there is no study in the literature that empirically separates the two. This study 

attempts to do so by analyzing a large number of Chinese firms dual-listed in both the mainland 

Chinese exchanges (Shanghai and Shenzhen Stock Exchanges) and the Hong Kong Stock 

Exchange. This set of firms presents a natural experiment since, relative to the mainland markets, 

there is no doubt that the Hong Kong market is associated with less insider trading. So, in 

addition to understanding the extent of informed trading in China, China’s unique setting has the 

potential to increase the understanding of two aspects of informed trading – insider trading and 

trading derived from better analysis. An added advantage of this analysis is that because the 

same set of firms is being analyzed, firm characteristics do not need to be controlled. Specifically, 

I investigate the two types of informed trading - insider trading and trading from better analysis 

in the A-and H-share markets, based on the methodology developed by Llorente, Michaely, Saar, 

and Wang (2002). The method primarily utilizes the relation between daily volume and first 

order return autocorrelation for individual stocks in order to infer the extent of informed trading. 

Intuitively, informed trading causes prices to change permanently and tends to be positively 

correlated with price changes; on the other hand, uninformed trading has only a temporary effect 

on prices and tends to be negatively associated with price changes. While Llorente, Michaely, 

Saar, and Wang (2002) analyze U.S. stocks, it does not empirically separate the two aspects of 

informed trading. 
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Given the assumptions that the A-shares market has more insider trading and that it has 

not increased over time, my results suggest that H-shares have relatively more informed trading 

based on better analysis. In other word, there is relatively more trading motivated by better 

analysis in the H-shares market. Together with results from a firm size regression, the 

implication is that larger firms tend to have more trading with better analysis and less insider 

trading. While this conclusion seems intuitive, to my knowledge this is the first study that 

explicitly analyzes the relation between firm size and aspects of informed trading. 

I further examine the different aspects of informed trading by dividing the sample period 

into two sub-periods. More specifically, I examine the changes in coefficients of informed 

trading in the two subsequent sample periods. The sub-period results further confirm that H-

shares have relatively more informed trading based on better analysis: since insider trading 

should not have increased, the substantial increase in the coefficients for informed trading of H-

shares represents further evidence that trading based on better analysis dominates in the H-share 

market. This makes sense because the Hong Kong market has a long experience in analyzing 

stocks, but initially investors in Hong Kong might have difficulty evaluating Chinese firms with 

a host of transparency and political issues. The relatively small increase in the coefficients for 

informed trading of A-shares is indirect evidence that stock valuation has not substantially 

improved over time in A-shares. That is, it has implication for the changes in the Chinese 

investment environment. 

One related question arising for cross-listed securities is whether informed trading in both 

the A- and H-share markets impacts the relative pricing of A-and H-shares. If H-shares have 

higher informed trading coefficients, suggesting that there is relative more trading motivated by 

better analysis in the H-shares market, than these better analyses will bring the stock price more 
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in line to its intrinsic value. On the other hand, given the fact that the A-shares market tends to 

have excess speculative trading or insiders trading, the price might deviate more from its 

intrinsic value. Therefore, I expect that informed trading coefficients for H-shares are negatively 

correlated with the average H-share discount, while informed coefficients for A-shares are 

positively correlated with the H-share discount. However, the empirical results indicate no 

significant relation between informed trading on the relative pricing. 

The remainder of the paper is organized as follows: Section 2 presents the literature 

review, Section 3 provides some background information concerning share structure in China, 

Section 4 describes data and methodology, Section 5 presents empirical results, and Section 6 

gives the conclusion. 

2. Literature Review 

There are relatively few theoretical studies on trading volume, with few exceptions such 

as Wang (1994) and Campbell, Grossman, Wang (1993). Wang (1994) proposes a model of 

competitive stock trading. In this model, investors are heterogeneous in their information and 

private investment opportunities and rationally trade for both informational and non-

informational motives. The author examines the link between the nature of heterogeneity among 

investors and the behavior of trading volume and its relation to price dynamics and finds that 

volume is positively correlated with absolute change in prices and dividends. He further shows 

that informational trading and non-informational trading lead to different dynamic relations 

between trading volume and stock returns. Campbell, Grossman, Wang (1993), on the other hand, 

investigate the relationship between aggregate stock market trading volume and the serial 

correlation of daily stock returns. For both stock indexes and individual large stocks they find the 

first order daily return autocorrelation tends to decline with volume. They explain this finding 
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using a model in which risk-averse market makers accommodate buying or selling pressure from 

liquidity for non-informational traders and reward by changing expected stock returns. The other 

implication for the paper is that a stock price that declines on a high volume day is more likely 

than a stock price that declines on a low volume day to be associated with an increase in the 

expected stock return.  

Gervais, Kaniel, and Mingelgrin (2001) and Bamber, Baron, and Stober (1999) 

investigate other aspects of trading. Gervais, Kaniel, and Mingelgrin (2001) investigate the idea 

that extreme trading activity contains information about future evolution of stock prices and find 

that stocks experiencing unusually high (low) trading volume over a week tend to appreciate 

(depreciated). Over the course of the following months, they argue that this high volume return 

premium is consistent with the idea that shocks in the trading activity of a stock affect its 

visibility and in turn the subsequent demand and price for that stock. Bamber, Baron, and Stober 

(1999) in contrast, provide evidence that differential interpretations are an important stimulus for 

speculative trading. They find two conditions under which differential interpretations play a 

significant role in explaining trading: 1) they present empirical evidence supporting Kandel and 

Pearson (1995) arguing that trading coincident with small price changes reflects investor’s 

differential interpretations of information. This evidence is important because it is inconsistent 

with conventional models of trade that assume homogeneous interpretations and 2) they also find 

that differential interpretations explain a significant amount of the trading occurring in a sample 

where trading volume is higher than the firm specific announcement period average. This is 

consistent with informed traders acting on their differential interpretations when there is enough 

liquidity training to help camouflage their own information based trades. 
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Stickel and Verrecchia (1994) test the hypothesis that price changes are more likely to 

reverse following weak volume support than strong volume support. Since price changes reflect 

demand for a stock and therefore higher volume reflects a greater likelihood that demand 

originates from informed rather than uninformed trade. Consequently, as volume increases the 

probability that price change is informationally driven increases as well. There evidence suggests 

that a large price change on days with weak volume support tends to reverse the next day. They 

point out this volume effect is reinforced by, yet independent of, a bid-ask bounce effect. 

However, returns do not reverse following days of strong volume support. In fact, a large price 

increase with strong volume support tends to be followed by another price increase the next day. 

Kandel and Pearson (1995), present evidence on the volume return relationship around earnings 

announcement and argue that it is inconsistent with models that agents have identical 

interpretations of the public announcement. They also provided additional evidence on revisions 

on analyst forecasts which is also inconsistent with identical interpretations.  

Chae (2005) and Lee and Rui (2002) provide further empirical evidence regarding stock 

volume. Chae (2005) investigates trading volume before scheduled and unscheduled corporate 

announcements to explore how traders respond to private information. The author shows that 

cumulative trading volume decreases by more than 15% prior to scheduled announcements. The 

decline in trading volume is largest when information asymmetry is high, while the opposite 

relation holds for volume after the announcement. In contrast, trading volume before 

unscheduled announcements increases dramatically and shows little relation to proxies for 

information asymmetry. The author argues all the results for scheduled announcements are 

consistent with asymmetric information series, where discretionary liquidity traders decrease 

volume when they know there is much adverse selection. However, discretionary liquidity 
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traders do not seem to read information embedded in prices for before unscheduled 

announcements. In addition, market makers act appropriately by increasing price sensitivity 

before all announcements. This implies that market makers extract timing information from their 

order books. Lee and Rui (2002), however, examine the dynamic relations between stock market 

trading volume and returns (and volatility) for both domestic and cross-county markets by using 

the daily data of the three largest stock markets: New York, Tokyo, and London. Their major 

findings are as follows: 1) trading volume does not cause stock market returns on each of three 

stock markets 2) there exist a positive feedback relationship between trading volume and return 

volatility in all three markets 3) regarding the cross-country relationship U.S. financial market 

variables, in particular U.S. trading volume, contains an extensive predictive power for U.K. and 

Japanese market variables and 4) sub-sample analysis shows evidence of stronger spillover 

effects after the 1987 market crash and increased important of trading volume as an information 

variable after the introduction of options in the U.S. and Japan. 

Also, there are several papers that deal with the dynamics of returns and volume. Gagnon 

and Karolyi (2009) investigate the joint dynamics of returns and trading volume of 556 stocks on 

the U.S. market. They use heterogeneous trading models rationalize how trading volume reflects 

trading quality of trader’s information signals an how it helps to disentangle whether returns are 

associated with portfolio rebalancing trades or information motivated trades. Based on these 

models they hypothesize that returns in the home (U.S.) market on high volume days are more 

likely to continue to spill over into the U.S. (home) market for those cross-listed stocks subject to 

the risk of greater informed trading. Their empirical findings provided support for these 

predictions, which confirms the link between information trading volume and international stock 

return co-movements. Halling, Moulton and Panayides (2011) introduce a volume-based 
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measure of multimarket trading to study the extent to which investors actively exploit 

multimarket environments. By analyzing a large set of cross-listed firms, they find higher 

multimarket trading among markets with similar designs and strong enforcement of insider 

trading laws and for firms with higher institutional ownership. These findings are important for 

firms evaluating the benefits of cross-listing and for markets competing for order flow. 

Menkveld (2008) studies British cross-listed stocks and finds evidence of multimarket trading 

even after controlling for the possibility of local traders in each market simultaneously receiving 

the same private signal and trading on it locally. Chen, Firth, and Rui (2001), in contrast, 

examine the dynamic relation between returns, volume, and volatility of stock indexes. Using the 

data from nine national markets spent over two decades they show that a positive correlation 

between trading volume and the absolute value of the stock price change. They also demonstrate 

that for some countries returns causes volume and volume causes returns. Their results indicate 

that trading volume contributes some information to the trading process.  

Llorente, Michaely, Saar, and Wang (2002) also examine the dynamic relation between 

return and volume of individual stocks. Using a simple model in which investors trade in order to 

either share risk or speculate on private information, they show that returns generated by risk-

sharing trades tend to reverse themselves while returns generated by speculative trades tend to 

continue onward. They test this theoretical prediction by analyzing the relation between daily 

volume and first-order return autocorrelation for individual stocks listed on the NYSE and 

AMEX. They conclude that the cross-sectional variation in the relation between volume and 

return autocorrelations are related to the extent of informed trading. 

Jayaraman (2008) examines whether earnings that are smoother or more volatile than 

cash flows provide or garble information. Consistent with theories that predict more informed 
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trading when public information is less informative, the author finds that bid-ask spreads and the 

probability of informed trading are higher both when earnings are smoother than cash flows and 

also when earnings are more volatile than cash flows. Additional tests suggest that managers' 

discretionary choices that lead to smoother or more volatile earnings than cash flows garble 

information, on average. Perottiand and Thadden (2003) argue that dominant investors can 

influence the publicly available information about firms by affecting the cost of information 

collection. They suggest that under strategic competition, transparency results in higher 

variability of profits and output. Thus, lenders prefer less transparency since this protects firms in 

a weak competitive position, while equity holders prefer more transparency. Market interaction 

creates strategic complementarity in gathering information on competing firms and thus entry by 

transparent competitors will improve price information. Moreover, as the return to information 

gathering increases with liquidity, increasing global trading may undermine the ability of bank 

control to keep firms opaque. Bardong, Bartram, and Yadav (2009) investigate and test 

hypotheses on how informed trading varies with market-wide factors and the structural and 

trading characteristics of a firm. They find strong evidence of commonality in informed trading, 

and a systematic dependence of informed trading on firm characteristics that is largely consistent 

with intuition and earlier theory and empirical evidence, wherever available. They then 

decompose informed trading into two components: one that reflects information asymmetry with 

respect to skilled information processors with potentially private information on systematic 

factors, who generate a private informational advantage using public data; and another 

unpredictable component that reflects truly private information, potentially of traditional insiders. 

They test the pricing relevance of both these components and find that it is only the predictable 
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component reflecting truly private information that is priced, and is priced more strongly and in a 

manner more robust than total informed trading.  

Lastly, there are several papers than examine information and stocks. Chen, Kim, 

Nofsinger, and Rui (2007) study investment decision making in an emerging market by 

examining single brokerage account data from China. Overall, they find that Chinese investors 

make poor trading decisions. The stocks they purchase tend to underperform those they sell. 

They also find that Chinese investors suffer from three behavioral biases: (i) they tend to sell 

stocks that have appreciated in price, but not those that have depreciated in price (consistent with 

a disposition effect - acknowledging gains but not losses), (ii) they seem overconfident, and (iii) 

they appear to believe that past returns are indicative of future returns (a representativeness bias). 

In comparisons to prior findings, Chinese investors appear more overconfident than U.S. 

investors (i.e., Chinese investors hold fewer stocks, yet trade more often) and seem to suffer 

from a stronger disposition effect. Finally, the authors categorize Chinese investors, based on 

proxy measures of experience, and find that ‘‘experienced’’ investors are not always less prone 

to behavioral biases than are ‘‘inexperienced’’ ones. In contrast, Karolyi and Li (2003) find that 

there is a negative relationship between firm size and information asymmetry and that there is 

also a statistically significant relationship between variations in B-share discount and firm size. 

Sun and Tong (2000) look at the relative volatility of B-share and A-share returns. They argue 

that since both A- and B-stocks represent the same claim to a firm’s assets, any excess A-share 

volatility (comparing to that of B-share) must be due to speculative trading and therefore 

associated with A-share premiums. Chen, Lee and Rui (2001) employ a variance ratio of returns 

to A- and B-shares in order to investigate changes in risk preferences. They do not find a 

statistically significant connection between levels of risk and B-share discounts. 
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3. Background Information 

China began to open its economy in the late 1970’s. After successfully liberalizing farm 

ownership and production China began to shift focus and start building stronger financial 

markets by opening the Shanghai Stock Exchange and the Shenzhen Stock Exchange.1 Most of 

the original companies listed on the two exchanges were state-owned enterprises. The first shares 

traded on the exchanges were A-shares. A-shares are denominated in Renminbi (RMB) and 

issued to local citizens. By 1992 the two exchanges expanded trading by issuing B-shares, which 

were sold specifically to foreigners and denominated in U.S. dollars.  

 In contrast, the Hong Kong Stock Exchange had been operating for almost a century. 

China knew of Hong Kong’s ability to raise large amount of capital within Asia and soon 

approached the exchange with an offer to have Chinese mainland businesses directly listed on 

the Hong Kong Exchange. The Hong Kong Exchange agreed, and since Hong Kong begins with 

the letter “H” the new shares were denoted as H-shares.  

H-shares are stocks traded on the Hong Kong stock market and denominated in Hong 

Kong dollars. In order to sell H-shares companies must meet certain requirements: (1) the 

company must be incorporated in mainland China; (2) the company must have a market 

capitalization of HK $200 million; (3) the company must have earned, 3 years prior to 

application, a profit of HK $5 billion; this means a profit of HK $2 billion the year before the 

application and a total profit of HK $3 billion the two years prior to that; and (4) during the 3 

year period prior to application management must have remained unchanged.  

                                                           
1
Shenzhen was designated by the state as a special economic zone in 1980. Shenzhen was originally a part of the city of 

Guangdong. 
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A-shares generally trade at a premium to H-shares. This might be partially due to the fact 

that the Chinese government restricts mainland Chinese from investing abroad and foreigners, 

located in mainland China, from investing in the H-share market. For mainland Chinese, there 

are three ways for individual investors to invest in H-shares: (1) individual investors can travel to 

Hong Kong to set up an account in Hong Kong to buy H-shares; (2) individual investors can buy 

H-shares through Hong Kong brokerage companies that have offices in China; (3) in selected 

cities, individual investors can purchase H-shares using a special service called “H-share Express” 

provided by the Bank of China. 

Table 1 Panel A shows the difference in stock exchange and investor types for A- and H-  

Share Markets. Table 1 Panel B reports the deceptive statistics for the two markets. In 2011, the  

GDP for China mainland is 6.989 trillion USD vs. for Hong Kong market 242.4 billion USD. For  

the Shanghai Stock Exchange the market capitalization is 2.357 trillion USD vs. Hong Kong 

stock exchange 2.258 trillion USD. As of 2011, there were 1,961companies listed on China’s 

mainland stock exchange vs. 1,496 companies listed on the Hong Kong Stock Exchange. The 

value of shares traded for China mainland is 3,670,156 million USD vs. 1,444,712 million USD 

for Hong Kong. In addition, there are 1,273,276.900 trades happening in China mainland vs. 

168,524,300 trades for Hong Kong. As for the number of shares traded, China mainland is 

2,119,387 million vs. Hong Kong’s 2,953,186 million. The average daily turnover dollar value 

for China mainland is 15,042 million USD while Hong Kong has 5.873 million USD. Further, 

the average value of trades for China mainland is 2,900 USD vs. 8600 USD for the Hong Kong 

market. In sum, relative to size of the economy, Hong Kong has a slightly larger stock market, 

more number of shares traded, lower turnover ratio, larger trade size, and greater trade value - all 

of which are characteristics of a more liquid market. 
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Table 1. A- and H-Share Markets Comparison 

Panel A. Difference between A- and H-Share Markets 

 
A-share H-share 

Stock Exchange 
Shanghai (SSE)  

Shenzhen (SZSE) 
Hong Kong (HKEx) 

Currency RMB HKD 

Investor 
Chinese mainland 

investor 

HK residents, foreigners, 
some Chinese mainland 

investor 

 

 

Panel B. Descriptive A- and H-Share Market 

China mainland 

Shanghai Hong Kong 

GDP US$6.989 trillion US$242.4 Billion 

Market Capitalization US$2.357 trillion US$2.258 trillion 

NO. Companies Listed 1691 (931) 1,496 

Value of share trading 
(Total) ($millions) 3,670,155.70 1,444,711.70 

Number of trades 
(thousands) 1,273,276.90 168,524.30 

Number of shares traded 
(millions) 2,119,387.10 2,953,185.80 

Average daily turnover 
value ($millions) 15,041.60 5,872.80 

Average value of trades 
($thousands) 2.9 8.6 

 

4. Data and Methodology 

The initial sample is constructed using all cross-listed A- and H-shares in both the 

Shanghai and Shenzhen Stock Exchanges for the period 2003 to 2011. For a firm to be included 

in the sample it must have daily price data, daily trading volume, and shares outstanding data 

available for both the A-and H-share market. The final sample covers 68 firms and spans from 
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January 1st, 2003 to December 31st, 2011. Table 2 reports the sample firms and their respective 

industries for the A- and H-shares markets.  

Table 2. Sample of Companies 

This table provides the basic information for the dual-listed A- and H-shares included in the sample. Column 1 provides the name 
of the company; column 2 provides the respective industry. 

Company Name Industry 

ZTECorporation Communications and Related Equipment Manufacturing 

Zoomlion Heavy Industry Science And Technology Co., Ltd. Special Equipment Manufacturing 

Weichai Power Co., Ltd. Transportation Equipment Manufacturing 

Shandong Chenming Paper Holdings Ltd. Paper and Allied Products 

Northeast Electric Development Co., Ltd. Electrical Machinery and Equipment Manufacturing 

Jingwei Textile Machinery Co., Ltd. Special Equipment Manufacturing 

Shandong Xinhua Pharmaceutical Co., Ltd. Medicine Manufacturing 

Angang Steel Company Limited Ferrous Metal Smelting and Extruding 

HisenseKelon Electrical Holdings Company Limited Electrical Machinery and Equipment Manufacturing 

Xinjiang GoldwindScience&TechnologyCo.,Ltd Electrical Machinery and Equipment Manufacturing 

Shandong Molong Petroleum Machinery Co. Ltd. Special Equipment Manufacturing 

BYD Co., Ltd Other Manufacturing 

Huaneng Power International Co., Ltd 
Electric Power, Steam and Hot Water Generation and 

Supply 

Anhui Expressway Co., Ltd Support Service for Transportation 

China Minsheng Banking Co., Ltd. Banking 

China Shipping Development Co., Ltd Water Transportation 

Huadian Power International Co., Ltd. 
Electric Power, Steam and Hot Water Generation and 

Supply 

China Petroleum & Chemical Corporation Oil and Gas Extraction 

China Southern Airlines Co., Ltd Air Transportation 

China Merchants Bank Co., Ltd Banking 

China Eastern Airlines Co., Ltd. Air Transportation 

Yanzhou Coal Mining Co., Ltd. Coal Mining and Quarrying 

Guangzhou Pharmaceutical Co., Ltd. Medicine Manufacturing 

Jiangxi Copper Co., Ltd. 
Non-Ferrous Metal Smelting, Rolling, Drawing, and 

Extruding 

Jiangsu Expressway Co., Ltd Support Service for Transportation 

Shenzhen Expressway Co., Ltd Support Service for Transportation 

Anhui Conch Cement Co.,Ltd Non-metallic Mineral Products 

Tsingtao Brewery Co., Ltd. Beverages 

Guangzhou Shipyard International Co., Ltd. Transportation Equipment Manufacturing 

Sinopec Shanghai Petrochemical Co., Ltd. Petroleum Processing & Coking 

Nanjing Panda Electronics Co., Ltd. Communications and Related Equipment Manufacturing 

Shenji Group Kunming Machine Tool Co.,Ltd Special Equipment Manufacturing 
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Maanshan Iron & Steel Co., Ltd. Ferrous Metal Smelting and Extruding 

Beiren Printing Machinery Holdings Ltd. Special Equipment Manufacturing 

Sinopec Yizheng Chemical Fibre Co., Ltd. Chemical Fibre Manufacturing 

Tianjin Capital Environmental Protectiongroup Co., Ltd. Public Facilities Services 

Dongfang Electric Corporation Limited Electrical Machinery and Equipment Manufacturing 

Luoyang Glass Co., Ltd. Non-metallic Mineral Products 

Chongqing Iron & Steel Company Limited Ferrous Metal Smelting and Extruding 

China Shenhua Energy Company Limited Coal Mining and Quarrying 

Sichuan Expressway Company Limited Support Service for Transportation 

Air China Limited Air Transportation 

China Railway Construction Corporation Limited Civil Engineering Construction 

Agricultural Bank Of China Limited Banking 

Ping An Insurance (Group) Company Of China, Ltd. Insurance 

Bank Of Communications Co., Ltd. Banking 

Guangshen Railway Company Limited Railroad Transportation 

China Railway Group Limited. Civil Engineering Construction 

Industrial And Commercial Bank Of China Limited Banking 

Beijing North Star Company Limited Estate Development and Operation 

Aluminum Corporation Of China Limited Nonferrous Metal  Mining 

China Pacific Insurance (Group) Co., Ltd. Insurance 

Shanghai Pharmaceuticals Holding Co.,Ltd. Medicine Manufacturing 

Metallurgical Corporation Of China Ltd. Civil Engineering Construction 

China Life Insurance Company Limited Insurance 

Shanghai Electric Group Company Limited Electrical Machinery and Equipment Manufacturing 

China South Locomotive & Rolling Stock Co., Ltd. Transportation Equipment Manufacturing 

China Oilfield Services Limited Oil and Gas Extraction 

Petrochina Company Limited Oil and Gas Extraction 

China Shipping Container Lines Company Limited Water Transportation 

Dalian Port (Pda) Co., Ltd. Port 

China Coal Energy Company Limited Coal Mining and Quarrying 

Zijin Mining Group Co., Ltd. Nonferrous Metal  Mining 

China Cosco Holdings Company Limited Water Transportation 

China Construction Bank Corporation Banking 

Bank Of China Limited Banking 

Datang International Power Generation Co., Ltd. 
Electric Power, Steam and Hot Water Generation and 

Supply 

China Citic Bank Corporation Limited Banking 

 

Table 3 provides summary statistics for the 68 firms in the sample. The average (median) 

total asset is 1,102,470.00 (76,912.96) millions of Renminbi, while the average (median) total 
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liabilities is 991,832.00 (41,644.26) millions of Renminbi. The average (median) total 

shareholder’s equity is 110,634.00 (28,087.92) millions of Renminbi. The average (median) net 

profit for the firms in the sample is 17,834.58 (2,446.03) millions of Renminbi. Also, the average 

(median) total number of shares outstanding is 29,356.67 (6,771.08) millions of shares. In 

addition, the average (median) market capitalization is 39,567.80 (14,316.90) millions of 

Renminbi. The mean of tradable A-share is 15,681.03 millions of shares, almost twice of the 

mean of tradable H-shares (8,745.80 millions of shares). 

I use daily returns and trading volume to analyze the impact of information asymmetry on 

the dynamic volume/return relationship. The use of daily data follows that of previous literature 

(Campbell, Grossman, and Wang (1993), Stickel and Verrecchia (1994), Llorente, Michaely, 

Saar, and Wang (2002)). The return series I use for estimation is the daily return series for both 

A- and H-shares of individual stocks from Yahoo Finance.  

Following Llorente, Michaely, Saar, and Wang (2002), I use daily turnover as a measure 

of trading volume for individual stocks. I define a stock’s daily turnover as the total number of 

shares traded that day divided by the total number of shares outstanding. Since the daily time 

series of turnover is non-stationary, the turnover is measured in logs in order to detrend the 

resulting series. To avoid the problem of zero daily trading volume, small constant (0.00000255) 

is added to the turnover before taking the logs. The value of the constant is chosen to make the 

distribution of daily trading volume closer to a normal distribution.2 The resulting series is then 

detrended by subtracting 200 trading day moving average: 

 

                                                           
2
 Richardson, Sefcik, and Thompson (1986); Ajinkya and Jain (1989); and Cready and Ramanan (1991) 
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Table 3. Descriptive Statistics 

Table 3 contains descriptive statistics of the 68 sample firms dual-listed in the A- and H-share market during the period 2003-
2011. Total assets are obtained from the Hong Kong Stock Exchange. Cashflows are obtained from operating cash flows, 
generated from operating activities, and are measured as a ratio relative to the total assets of the firm. Operating revenue is Sales 
minus Cost of Goods Sold (and other expenses), before depreciation and amortization. Debt ratio is measured as the ratio of the 
short-term and long-term debt to the total assets of the firm. Items are in millions of RMBs. Tradable A-share size is the number 
of outstanding A-shares (in millions), while tradable H-share size is number of H-shares (in millions). 

Variable Maximum Minimum Mean Median Std Deviation 

Total Asset 15476900 557.05 1102470 76912.96 3064500 

Long Term Debt 180675 0 27504.46 9042.46 42053.88 

Cash And Cash Equivalents 2762156 56.68 181576.38 7918.48 571080.97 

Total Liabilities 14519000 295.05 991832 41644.26 2879280 

Total Shareholders' Equity 1082570 78.71 110634 28087.92 227508 

Total Liabilities and Shareholder’s Equity 15476900 557.05 1102470 76912.96 3064500 

Market Capitalization 1015780 139.47 39567.8 14316.9 124812 

Total Profit 272311 -6805.55 23079.94 3035.1 54257.25 

Total Operating Revenue 271000 -7807.39 22730.63 2873.73 54100.76 

Net Profit 208445 -8838.83 17834.58 2446.03 41922.51 

Basic Earnings per Share 3.36 -1.02 0.58 0.43 0.71 

Net Cash Flow From Operating Activities 348123 -13480.35 33978.48 1872.31 77217.37 

Total  Number of Shares Outstanding 349083 398.92 29356.67 6771.08 72917.2 

State Shares 268485 0 4421 0 32303.18 

Tradable A Shares 262289 72.62 15681.03 3627.39 43233.64 

Tradable H Shares 214837 100 8745.8 1431.03 29314.8 

 

Table 4 provides summary statistics that describe the return ad volume series used in the 

estimation. The average return for A-shares is 0.03% vs. 0.09% for H-shares. The average size 

for A-shares is 44,196,036,115 RMB vs. 43,108,948,156 RMB. The average turnover for A-
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shares is 0.0204658 vs. 0.0088371 for H-shares. This implies that the trading is more active in 

the A-shares market than in H-share market. The variable of interest, volume, as defined 

previously is -0.1433377 for A-shares vs. -0.0331528 for H-shares. This also captures the much 

more active trading in the A-shares market. Next, I estimate the following relation for each 

individual stock: 

 
 

i,t+1 i i t i i,t t i,t+1Return  = C0  + C1 *Return  + C2 *Volume *Return  + error  
        

 

where i,tVolume is the daily detrended log turnover of an individual stock and i,t+1Return is the 

daily return of an individual stock. 

In principle, trading contains both hedging and speculative elements. The observed 

volume-return relation depends on the relative importance of one type of trade to another. 

Therefore, one should see a statistically significant positive C2 coefficient for stocks largely used 

for speculative trade, while stocks used predominantly for hedging should produce a clearly 

negative C2 coefficient. In addition, stocks for which neither speculative nor hedging trades 

dominate should produce a C2 coefficient that is insignificantly different from zero. In other 

words, the relation between C2 and the significance of a speculative trade, relative to a hedging 

trade, is monotonic. 

Next, I examine the relation between the importance of informed trading, which includes 

both trading coming from better analysis and insider trading and firm size  

 

t t tC2  = a + b*ORDCap  + ERROR ,  
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where ORDCap is a variable representing the ordinal scale of average firm size (market 

capitalization). I expect the coefficient b to be positive (negative) if C2 captures more of trading 

based on better analysis (insider trading).  

Table 4. Summary Statistics 

 

Variable N Mean Median StdDev Minimum Maximum 

A Return 92254 0.0002698710 0.0000000000 0.0296557000 -0.5315488000 0.7361111000 

H Return 92254 0.0008509780 0.0000000000 0.0403189000 -0.6666667000 2.0952381000 

A Size 92254 44196036115 6666425864 152838011020 107020184 2063880000000 

H Size 92254 43108948156 5714685525 127961935142 46497403 2056063000000 

A Turnover 92254 0.0204658000 0.0118731000 0.0281283000 0.0000302930 1.4228630000 

H Turnover 92254 0.0088371000 0.0057767000 0.0116996000 0.0000000000 0.4901600000 

A Log(turnover) 92254 -4.5283590000 -4.4332658000 1.2457820000 -10.3236054000 0.3526728000 

H Log(turnover) 92254 -5.4730336000 -5.1534757000 1.7921738000 -12.8774583000 -0.7130182000 

A Volume 92254 -0.1433377000 -0.1692043000 0.8163219000 -5.1532660000 3.3824509000 

H Volume 92254 -0.0331528000 0.0173589000 1.3874109000 -9.3021912000 11.7304722000 

 

5. Empirical Results 

            In this section, I present the empirical results in testing the dynamic volume-return 

relation, especially in how it relates to the underlying informed trading. I first report the results 

on the C2 coefficient from the ordinary least squares (OLS) regression from the return equation, 

performed separately on A- and H-shares in order to analyze whether C2 captures more of 

trading based on better analysis (insider trading). I then separate my sample into 2 periods and 

examine the change in the C2 to further analyze the different components of informed trading - 

whether it captures increased transparency in the financial market or greater liquidity and trading 

from better analysis.  

Table 5 presents the results from the above regression for individual stocks and how the 

regression coefficients change with the market capitalization. For each stock in the sample, I 
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estimate the parameters C0, C1, and C2 of the above equation. In panel A, I present summary 

statistics for the time-series regressions for both A- and H- Share groups. The table shows that 

the mean value of C2 is 0.0883250 for A-shares and 0.1342797 for H-shares. I further perform a 

non-parametric Wilcoxon rank test to test whether the difference is statistically significant. The 

result indicates that the difference for C2 is indeed statistically significant across A- and H-

shares. This indicates that H-share market is more affected by informed trading. The 

nonparametric analysis points in the same direction: seven out of 68 of the A-share stocks have 

negative coefficients, compared to 0 out of 68 of the H-share stocks. Both parametric and 

nonparametric results are consistent with the intuition that informed trading has a permanent 

effect on prices (positive correlation between volume and price changes) whereas non-informed 

trading tends to have temporary effect and results in price reversal (negative correlation).This 

indicates both A-and H-shares are associated with informed trading. Both C2 coefficients of A- 

and H-shares are positive and statistically different from zero, indicating the importance of 

speculative trading. More important is that the H-share market appears to be associated with a 

greater degree of informed trading. Arguably the H-share market should have less insider trading 

because the insider regulation for A-shares is looser and because the A-share market is the home 

market -- one would expect more insiders in the home market. To the extent this argument is true 

and that informed trading includes both insider trading and trading coming from better analysis, 

the results here present indirect evidence that, relative to the A-share market, in the H-share 

market substantially more informed trading can be attributed to trading based on better analysis. 

This inference is not a trivial contribution because, to my knowledge, no study evaluates the 

relative importance of insider trading and trading coming from better analysis.  
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         In Table 5 Panel B I regress informed trading of A- and H-shares on firm size. The 

coefficient is -0.00035104 for A-shares and 0.00285 for H-shares. As mentioned earlier, I expect 

the coefficient to be positive (negative) if C2 captures more of trading based on better analysis 

(insider trading). The results represent indirect evidence that insider trading and firm size is 

negatively related.  For H-shares, as argued above, informed trading is more from better analysis, 

and it is reasonable to argue larger firms have better analysis because large firms attract more 

attention, can offer greater compensation for analysts, and have greater liquidity and an investor 

base. 

Next, I divide my sample period into two sub-periods. The first subsample covers the first 

half of the sample period, which spans from January 1, 2003 to June 30, 2007. The second 

subsample covers the second half of my sample periods from July 1, 2007 to December 31, 2011. 

Dividing the sample into two sub-periods allows me to examine the change in C2 in the two time 

periods. The transparency in China mainland financial market might have improved over the last 

decade. For example, China initiated a split-share reform in 2005. The reform allows investors 

with non-tradable shares to be able to convert them into tradable shares. This should enhance 

market liquidity and allows controlling shareholders to sell their shares at market prices. Before 

the Split-share Structure Reform, two-thirds of the A-shares outstanding were non-tradable 

shares owned mainly by the Chinese government and its affiliates and legal persons. The non-

tradable shares were transacted on contract base and subject to the approval of regulatory 

authorities. The tradable shares were largely held by institutional and individual investors. The 

purpose of establishing such dual share structure was to enable the state-owned enterprises (SOE) 

to raise capital and the government to retain control. However, the structure fostered serious 

speculations and agency problems. Therefore, the Split-share Structure Reform was carried out 
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in an effort to help the Chinese market to function as a more efficient entity. If this is true and if 

C2 decreases considerably, then C2 might capture more of insider trading since insider trading 

should also have declined with increased transparency. On the contrary if C2 increases, then it 

probably captures more of trading from better analysis, which is also another aspect of informed 

trading. By dividing the sample into 2 subsamples, one can better understand the nature of C2. 

           
 Table 5. The Influence of Volume on the Autocorrelation of Stock Returns 

in A- and H-Share Markets - Full Sample 

  

This table shows the relation between information asymmetry and the influence of volume on the autocorrelation of stock returns. 

The average daily market capitalization of a stock over the sample period (AvgCapi) is used as a proxy for information 

asymmetry. For each stock the parameter C2i from the following regression measures the influence of volume on the 

autocorrelation of stock returns: Returni,t+1 = C0i + C1i*Returnt + C2i*Volumei,t*Returnt + errori,t+1 where Volumei,t is the daily 

detrended log turnover of an individual stock and Returni,t is the daily return of an individual stock. In Panel A, I report the mean 

value of each parameter for both A-and H-shares of the information asymmetry proxy (AvgCap), the number of negative 

parameters, and the number of statistically significant (at the 10% level) parameters. In panel B, I provide an analysis using the 

following cross-sectional regression: C2t = a + b*ORDCAPt + ERRORt, where ORDCAP is a variable representing the ordinal 

scale of AvgCap. Standard errors appear in parentheses. 

Panel A. Categorical Analysis 

  C0 C1 C2 t-stat(C0) t-stat(C1) t-stat(C2) R-Square 

  #<0 #<0 #<0 |#|>1.64 |#|>1.64 |#|>1.64 (%) 

        

A Share -0.0003853 0.0132361 0.0883250 -0.4635294 0.6816667 2.4434286 5.55 

 
(0.0008041) (0.0631140) (0.1081990) 

    

n=68 46 22 7 8 23 54   

        

H Share 0.0004036 -0.0066256 0.1342797 0.3222059 -0.4166176 3.1685294 5.70 

 
(0.0013601) (0.0390351) (0.0591813) 

    

n=68 26 39 0 8 28 57   

        

Wilcoxon Z 3.6173*** -3.2191*** 1.8122**     
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Panel B. Regression Analysis 

 
Dependent Variable a b R-Square (%) Observations 

      

A Share C2 0.10079*** -0.00035104*** 1.4 68 

  
(0.04606) (0.00113) 

  

      

H Share C2 0.0343 0.00285*** 4.87 68 

  
(0.06243) (0.00153) 

  

 

           Table 6 presents the results from the first half of the sample period. For the first 

subsample there are 43 cross-listed A/H stocks. For each stock in the sample I estimate the 

parameters C0, C1, and C2 similar to the regression used in Table 5. In Table 6 Panel A, I 

present summary statistics for the time series regression for both A- and H-share groups. The 

table shows that the mean value of C2 is 0.0868305 for A-shares and 0.0709947 for H-shares. 

The nonparametric analysis points in the same direction: 9 out of 43 of the A-share stocks have 

negative coefficients, compared to only 5 out of 43 of the H-share stocks. This indicates both A-

and H-Shares are associated with information asymmetry. However, only C2 coefficients of H-

shares are positive and statistically different from zero, indicating the importance of speculative 

trading. In Table 6 Panel B the firm size coefficient is -0.003466173 for A-share and 

0.001823691 for H-Share. This result also suggests that A-shares have more informed trading 

that comes from insider trading, while H-shares have more informed trading based on better 

analysis. 
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Table 6. The Influence of Volume on the Autocorrelation of Stock Returns 

in A- and H-Share Markets (January 2003 – June 2007) 

  

This table shows the relation between information asymmetry and the influence of volume on the autocorrelation of stock returns. 

The average daily market capitalization of a stock over the sample period (AvgCapi) is used as a proxy for information 

asymmetry. For each stock the parameter C2i from the following regression measures the influence of volume on the 

autocorrelation of stock returns: Returni,t+1 = C0i + C1i*Returnt + C2i*Volumei,t*Returnt + errori,t+1where Volumei,t is the daily 

detrended log turnover of an individual stock and Returni,t is the daily return of an individual stock. In Panel A, I report the mean 

value of each parameter for both A-and H-shares of the information asymmetry proxy (AvgCap), the number of negative 

parameters and the number of statistically significant (at the 10% level) parameters. In panel B, I provide an analysis using the 

following cross-sectional regression: C2t = a + b*ORDCAPt + ERRORt, where ORDCAP is a variable representing the ordinal 

scale of AvgCap. Standard errors appear in parentheses.  

Panel A. Categorical Analysis 

 
C0 C1 C2 t-stat(C0) t-stat(C1) t-stat(C2) R-Square 

 
#<0 #<0 #<0 |#|>1.64 |#|>1.64 |#|>1.64 (%) 

        
A Share 0.0017431 -0.0525420 0.0868305 0.9660000 -0.3822222 1.4937209 3.80 

 
(0.0018854) (0.0720453) (0.1280795) 

    
n=43 7 25 9 13 11 24 

 

        
H Share 0.0021729 -0.0331833 0.0709947 1.5453488 -0.5962791 2.1639535 7.80 

 
(0.001606) (0.0678428) (0.0963158) 

    
n=43 2 28 5 21 11 28 

 
        

Wilcoxon Z 2.5481** -0.2381 -0.1396     

        

 

Panel B. Regression Analysis 

 
Dependent Variable a b R-Square (%) Observations 

      
A Share C2 0.163086279 -0.003466173* 2.86 43 

  
(0.079758205) (0.003157658) 

  

      
H Share C2 0.030873455 0.001823691* 1.31 43 

  
(0.062515493) (0.002475012) 

  

 

         Next, I analyze the second half of my sample period to see if there are changes in C2 

coefficients. Table 7 presents the results from the second half of my sample period. For the 
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second subsample there are 68 cross-listed A/H stocks. For each stock in the sample I estimate 

the parameters C0, C1, and C2 similar to the regression used in Table 5 and Table 6. In Table 7 

Panel A, I present summary statistics for the time series regression for both A- and H-share 

groups. The table shows that the mean value of C2 is 0.0987509 for A-shares and 0.1428814 for 

H-shares. The nonparametric analysis points in the same direction: 4 out of 68 of the A-share 

stocks have negative coefficients, compared to 0 out of 68 of the H-share stocks. The non-

parametric results shows that for both A-and H-Shares market, the numbers of firms have 

negative coefficients are smaller than the first half of my subsample. Both C2 coefficients of A- 

and H-shares are positive and statistically different from zero. In Table 7 Panel B I again use A- 

and H-share as proxies for information asymmetry and the coefficient is -0.001283962 for A-

share and 0.002976575 for H-Share. This result is again consistent with my expectation that the 

coefficient b to be positive (negative) if C2 captures more of trading based on better analysis 

(insider trading). This implies that A-shares have more informed trading that comes from insider 

trading while H-shares have more of informed trading based on better analysis. 

From the above analysis the C2 coefficients for both A- and H-shares increases in the 

second half of my sample period. As argued earlier, an increase in C2 suggests that C2 captures 

more of trading based on better analysis. The result here is consistent with this argument because 

the analysis and valuation of these firms should have improved over time. Stated differently, the 

result is inconsistent with C2 capturing more than insider trading because insider trading should 

not have increased with the increased transparency in the Chinese firms. The different degrees of 

C2 increase between the A- and H- markets are also noteworthy. In particular, for H-shares, C2 

increased from 0.0709947 to 0.142881. The coefficient for the second half of the subsample 

almost doubles the coefficient in the first half for the H-shares. However, for the A share market, 
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the increase in C2 is much lower. The much less pronounced change in A-share’s C2 is 

consistent with the earlier conclusion that C2 captures more of insider trading in the A-share 

market. As argued above, informed trading derives more from better analysis and also from large 

firms since large firms tend to attract more attention, have greater compensation for analysts, and 

have greater liquidity and investor base.  

 Table 7.The Influence of Volume on the Autocorrelation of Stock Returns 

in A- and H- Share Markets-(July 2007 – December 2011) 

  

This table shows the relation between information asymmetry and the influence of volume on the autocorrelation of stock returns. 

The average daily market capitalization of a stock over the sample period (AvgCapi) is used as a proxy for information 

asymmetry. For each stock the parameter C2i from the following regression measures the influence of volume on the 

autocorrelation of stock returns: Returni,t+1 = C0i + C1i*Returnt + C2i*Volumei,t*Returnt + errori,t+1where Volumei,tis the daily 

detrended log turnover of an individual stock and Returni,t is the daily return of an individual stock. In Panel A, I report the mean 

value of each parameter for both A-and H-shares of the information asymmetry proxy (AvgCap), the number of negative 

parameters and the number of statistically significant (at the 10% level) parameters. In panel B, I provide an analysis using the 

following cross-sectional regression: C2t = a + b*ORDCAPt + ERRORt, where ORDCAP is a variable representing the ordinal 

scale of AvgCap. Standard errors appear in parentheses.  

Panel A. Categorical Analysis 

 
C0 C1 C2 t-stat(C0) t-stat(C1) t-stat(C2) R-Square 

 
#<0 #<0 #<0 |#|>1.64 |#|>1.64 |#|>1.64 (%) 

        
A Share -0.0007802 0.0251611 0.0987509 -0.8262319 1.0491304 2.3272464 7.20 

 
(0.0011523) (0.0672457) (0.1146480) 

    
n=68 62 15 4 7 26 46 

 

        
H Share -2.198E-05 -0.0088177 0.1428814 -0.1917391 -0.384058 2.7547826 5.60 

 
(0.0015384) (0.0435726) (0.0645906) 

    
n=68 40 43 0 4 21 53 

 
        

Wilcoxon Z -4.1071*** 4.5635*** 1.9769**     
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Panel B. Regression Analysis 

 
Dependent Variable a b R-Square (%) Observations 

      
A Share C2 0.14368954 -0.001283962* 1.8 68 

  
(0.046592368) (0.001157002) 

  

      
H Share C2 0.038701309 0.002976575** 5.17 68 

  
(0.062720092) (0.001557492) 

  

 

         As an additional test to confirm the above findings, I employ the variance ratio test in 

French and Roll (1986). Specifically, they analyze the ratio of the variance during trading period 

(weekday) to the variance of trading during non-trading period (weekend). If uninformed trading 

or noise represents a considerable part of trading, the weekday variance should be greater than 

that of weekend, adjusted for the number of days. In Table 8, I measure weekday and weekend 

volatility for both A- and H-stocks. Weekend variance is measured over 2+ days while weekday 

is daily. Volatility should increase proportionally with time, assuming other factors held constant. 

As the table shows, weekend variance measured over 2+ days is far less than 2+ times of 

weekday variance, suggesting a strong presence of noise trading. The average return weekday 

volatility for H-share is 0.0014922 and 0.000833701 for A-shares, almost double that of A-share 

return volatility, which further indicates that there is more informed trading in H-share markets 

that come from better analysis. The variance ratios for the A-shares and H-shares are 0.8774 and 

0.8138 respectively. The greater the ratio, the greater the noise implied. The result indicates that 

H-share has less noise. This is consistent with the earlier conclusion that the H-share market has 

relatively more trading coming from informed analysis. 

           Given the assumptions that A-share has more insiders trading and that it has not increased 

over time, the results suggests that the H-share market has relatively more informed trading 

based on better analysis. With the assumption lower insider trading and the previous results of  
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the C2 coefficients, the fact that H-shares have higher C2 coefficients suggests that there is 

relative more trading motivated by better analysis in H-shares market. I interpret the results as 

indirect evidence that larger firms tend to have trading with better analysis and less insider 

trading. 

 

           The sub-period results further confirm that H-shares have relatively more informed 

trading based on better analysis because insider trading should not have increased, and therefore 

the substantial C2 increase is further evidence that trading based on better analysis dominates in 

H-shares. This makes sense because Hong Kong shares market has a long experience n analyzing 

stocks. But initially, investors in Hong Kong might have difficulty evaluating Chinese firms with 

low degree of transparency and political factors. The relatively small C2 increase in A-shares is 

also indirect evidence that stock valuation has not substantially improved over time in A-shares. 

That is, it has implication on the changes in the Chinese investment environment. The results 

here also suggest the methodology developed by Llorente, Michaely, Saar, and Wang (2002), for 

established stocks, captures more of trading based on better analysis. 

             One related question arising for these cross-listed securities is whether informed trading 

in both the A- and H-shares market impacts the relative pricing of A-and H-shares. If H-shares 

have higher C2 coefficients, suggesting that there is relative more trading motivated by better 

analysis in H-shares market, these better analyses will bring the stock price more close to its 

intrinsic value. On the other hand, given the fact that the A-shares market tends to have excess 

speculative trading or insiders trading, the A-share price may deviate more from its intrinsic 

value. Given the assumption that the Hong Kong market has better transparency than the Chinese 

mainland stock market, the H-share price is more close to the stock’s intrinsic value. Therefore, I 

expect that informed trading coefficients for H-shares to be negatively correlated with the 
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average H-share discount, while informed coefficients for A-shares to be positively correlated 

with the H-share discount. To carry out this analysis, I first compute the discounts or premiums 

for H-shares as follow:   

 

Discount_H
i,t
=
Pi,t
H
×�RMB HKD� �

Pi,t
A -1                     

where Discounti, t  is the discount (premium) for H-shares i if it is negative (positive). Pi,t
H  is the 

H-share price from the Hong Kong Stock Exchange, HKD RMB�  is the exchange rate for Hong 

Kong dollars to one Renminbi, and Pi,t
A  is the underlying A-share price from the Shanghai and 

Shenzhen Stock Exchange. I then average the discount over the entire sample period. 

            

 

 

 

 

Table 8. Average Ratios of Weekdays and Weekends Variances for A- and H-Shares 

 

Return N Mean StdDev Variance Weekday /weekend variance Ratio 

A Share 
    

 

Weekdays 56158 -0.000216525 0.0288739 0.000833701  

     0.8774 
Weekends 36026 0.0010229 0.0308252 0.00095019  

     
 

      

H Share 
    

 

Weekdays 56158 0.000202364 0.0386291 0.0014922  

     0.8138 

Weekends 36026 0.0018462 0.0428209 0.0018336  
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∆ Return N Mean StdDev Variance Weekday /weekend variance Ratio 

A Share 
    

 

Weekdays 56157 0.0000001375 0.0409646000 0.0016781000  

     0.9649 

Weekends 36025 0.0000009546 0.0417038000 0.0017392000  

      

     
 

H Share 
    

 

Weekdays 56157 -0.0000010279 0.0557001000 0.0031025000  

     0.8686 

Weekends 36025 0.0000000521 0.0597648000 0.0035718000  

      

      

 

        Next, I perform correlation and regression analysis to see how C2 coefficients for both A- 

and H-shares are related with the average H-share discount. The negative coefficients indicate 

that the variables in question have the effect of making the H-share discount bigger, i.e., more 

negative. Table 9 Panel A shows that C2 coefficients for A-share are positively correlated with 

the probability of discount, while that C2 coefficient for H-share is negatively correlated with the 

probability of discount. Although both C2 coefficients are correlated with the average discount, 

the correlation is insignificant. This positive/negative correlation is also confirmed in the 

regression analysis. In the regression analysis, I use the average discount as dependent viable 

while that C2 coefficient for A- and H-shares as independent variable:    

 

Average H � 
������� � ��������� � C2 coef icients %A& � C2 coef icients %H& � Error    

 

            Table 9 Panel B provides the regression results, and both coefficients are insignificant. 

Therefore, there is no conclusive evidence regarding the relation between informed trading and 

the relative pricing of A- and H-shares. 
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Table 9. H-Share Discount and Informed Trading 

 

Panel A. Correlation Matrix for the Average Discount and Informed Trading 

 Average discount C2 (A-shares) C2(H-shares) 

    

Average discount 1.00000 0.09372 

-0.13133 

 

C2 (A-shares)  1.00000 0.02909 

C2(H-shares)   1.00000 

    

 

 

Panel B. Regression Analysis for the Average Discount and Informed Trading 

 

Average discount Parameter Estimate Standard Error t statistics 

Intercept -0.171975239 0.051303309 -3.35 

C2 (A-shares) 0.181877289 0.224649176 0.81 

C2 (H-shares) -0.17999801 0.161764707 -1.11 

R-Square (%) 2.68   

 

6. Conclusion 

 In this study, I adopt the methodology developed by Llorente, Michaely, Saar, and Wang 

(2002) to study a sample of Chinese firms dual-listed in both the China mainland stock exchange 

and the Hong Kong stock exchange. In particular, I investigate the two types of informed 

trading--insiders trading and better analysis in A-and H-shares market. With the unique two-
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market system one can better understand the nature of C2. That is, in addition to understanding 

the extent of informed trading in China, this unique setting helps one to understand the nature of 

C2. Llorente, Michaely, Saar, and Wang (2002) do not distinguish the two different aspect of 

informed trading – insider trading and trading comes from better analysis. However, the analysis 

in this paper provides new evidence on these two aspects of informed trading.  

My results suggest that H-shares have relatively more informed trading based on better 

analysis. With an assumption of lower insider trading and the result that H-shares have higher C2 

coefficients suggests that there is relative more trading motivated by better analysis in the H-

shares market. Together with the firm size regression, the results can be interpreted as indirect 

evidence that larger firms tend to have trading with better analysis and less insider trading. 

By dividing the sample into two sub-samples, I examine the changes in C2 in the two 

subsequent sample periods. The C2 coefficient for the second half of the subsample almost 

doubles the coefficient in the first half for the H-shares. The sub-period results further confirm 

that H-shares has relatively more informed trading based on better analysis because insider 

trading should not have increased, and therefore the substantial C2 increase is further evidence 

trading based on better analysis dominates in the H-shares market. This makes sense because the 

Hong Kong shares market has a long experience in analyzing stocks. The relatively small C2 

increase in A-shares is also indirect evidence that stock valuation has not substantially improved 

over time in A-shares. That is, it has implication on the changes in the Chinese investment 

environment. Lastly, I also examine whether there is a relationship between informed trading and 

the relative pricing of A- and H-shares, but find no significant relation.   
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Chapter 2 

Dynamic Correlation of Currency Futures Prices and Liquidity 

1. Introduction  

      A currency future is a standardized contract used to exchange, at some future date, one 

type of currency for another at a fixed exchange rate. Investors typically use currency future 

contracts for two distinct purposes: to hedge against foreign exchange risk and speculation and 

arbitrage. In regards to hedging, if an investor were to receive a cashflow denominated in a 

foreign currency, than that investor can lock in the current exchange rate by entering into an 

offsetting currency futures position that expires on the date of the cashflow. However, by 

incurring some amount of risk, investors can also speculate on currency futures and profit from 

the rising or falling of exchange rates.  

As of late 2009 the IMM (International Monetary Market), a division of the Chicago 

Mercantile Exchange, estimated that the average daily notional value for the currency futures 

market was approximately $100 billion. Given the importance of currency futures this study 

investigates the dynamic correlation across currency futures prices to U.S. dollar index futures3, 

with the focus on the persistency of correlation between eight currency futures prices traded on 

the Chicago Mercantile Exchange: Australian dollar, British pound, Brazilian real, Canadian 

dollar, Euro currency, Japanese yen, Russian ruble, and Swiss franc. Using the Dynamic 

Conditional Correlation (DCC) model developed by Engle (2002), I incorporate time-varying 

correlations into the analysis. This study differentiates from previous studies in that it is the first 

to analyze the persistency of relation between currencies future prices. Lyons (2002) shows 

                                                           
3U.S. dollar index futures are listed on the Financial Instruments Exchange (FINEX). 
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currency movement is heavily influenced by trading. Based on this study, liquidity also should 

be an important factor affecting dynamic correlation--that is, this study motivates the study of the 

relation between liquidity and dynamic correlation of currencies future prices. In regards to 

liquidity, there are numerous studies examining liquidity in the spots market; however, there is 

only a handful studies in regards to the futures market. Moreover, there is no previous study on 

how different aspects of liquidity impact the conditional correlation of currency futures. In this 

study, I analyze both price and trading aspects of liquidity of currency futures and how changing 

liquidity potentially affects time-varying conditional correlation. The data concerning liquidity is 

available daily, hence allowing for a more detailed analysis.  

The sample spans from1999 to 2008. The study finds that the persistency of currency 

futures interactions varies substantially across different currencies. The Canadian dollar has the 

greater persistency while the Brazilian real has the weakest. Further, the time-varying conditional 

correlation between other currency futures and U.S. dollar futures are influenced by liquidity. 

The rest of the paper is organized as follows: Section 2 is the literature review, Section 3 

presents data, Section 4 describes the methodology used in the paper, Section 5 presents the 

empirical results, and Section 6 gives the conclusion. 

2.   Literature Review 

             This paper is most related to Lien and Yang (2006), who investigates the effects of spot-

futures spread on the risk and return structure in currency markets. With the use of a bivariate 

GARCH framework, evidence is found that spreads on the risk and return structure of spot and 

futures markets produce asymmetric effects. The implications of these asymmetric effects are 

examined, with special consideration given to the performance of futures hedging strategies. A 

specific strategy, generated from a model incorporating asymmetric effects, is compared to 



38 

 

several alternative models. The in-sample comparison results indicate that the asymmetric effect 

model provides the best hedging strategy for all currency markets examined, except for the 

Canadian dollar. Out-of-sample comparisons suggest that the asymmetric effect model provides 

the best strategy for the Australian dollar, the British pound, the Deutsche mark, and the Swiss 

franc markets, and that the symmetric effect model provides a better strategy (than the 

asymmetric effect model) for the Canadian dollar and Japanese yen. However, this study 

differentiates from Lien and Yang (2006) in that the DCC model is used instead of the bivariate 

GARCH. The DCC model is similar to a bivariate GARCH in spirit, but the DCC places some 

restrictions on how the correlation can change (in essence it is a special case of a bivariate 

GARCH). 

There are also several important studies examining volatility and futures. Harvey and 

Huang (1991) examine the volatility implications of around-the-clock foreign exchange trading 

with transaction data on futures contracts from the Chicago Mercantile Exchange (CME) and the 

London International Financial Futures Exchange; whereas, Han, Kling and Sell (1999) use 

standard deviations and numbers of price changes calculated from tick data for currency futures. 

In Harvey and Huang’s study the authors find higher U.S.-European and U.S.-Japanese 

exchange-rate volatilities during U.S. trading hours and higher European cross-rate volatilities 

during European trading hours. While the disclosure of private information through trading may 

partly explain these volatility patterns, they conclude that the increased volatility is more likely 

driven by macroeconomic news announcements. An analysis of inter- and intraday data also 

reveals that volatility increases at times that coincide with the release of U.S. macroeconomic 

news. In contrast, Han, Kling and Sell (1999) find strong day-of-the-week effects for the 

Deutsche mark and Japanese yen, mild day-of-the-week effects for the British pound, and no 
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effects for the Canadian dollar after controlling for scheduled macroeconomic announcements 

and days to contract expiration. The day-of-the-week effects are found to be caused either by 

Mondays’ low volatility, or by Thursdays’ or Fridays’ high volatility. This result suggests that 

the day-of-the-week effects in the currency futures market is not driven by the announcements of 

macroeconomic indicators as proposed in previous studies, but rather by other factors, such as 

private information-based trading or by market microstructure. The study also finds that the 

announcements are processed equally across the days of the week for all four currency futures. 

In addition, Kho (1996) and Fung and Patterson also examine currencies from a volatility 

perspective. Kho (1996) re-examines the efficiency of foreign currency futures markets by 

evaluating the role of time-varying risk premia and volatility in explaining technical trading rule 

profits. The results show that large parts of the technical rule profits can be explained by time-

varying risk premia estimated from a general model for the conditional CAPM. The bootstrap 

distributions for the profits under the null model average one-third to one-half of the actual 

profits and enclose the actual profits well within the 90% confidence intervals. Time-varying 

conditional volatility explains an additional 10% of the profits. In contrast, Fung and Patterson 

(1999) examine the dynamic interactions among return volatilities, volume, and market depth for 

five currency futures markets. They use vector autoregressive analysis (VAR) to identify not 

only the nature of these relations but also the direction and speed of the information flow 

between variables. They find that return volatility is subject to strong reversal effects from 

trading volume and market depth. The results also indicate that the volatility appears to have 

predictive power on volume, but not market depth. Furthermore, this study finds that volume and 

depth are not endogenously determined, as their lead–lag relationship is asymmetrical. In 
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addition, they observe an increasing trend of integration between offshore and domestic 

information that affects the movement of currency futures prices. 

More recent studies include Levich (2012), Röthig (2004), and Lien and Yang (2006). 

Levich (2012) studies both counterparty risk for financial institutions and currency futures. He 

finds that for the period 2005-2011 the market share for currency futures trading actually grew 

relative to the pre-crisis period of the 2007 Financial Crisis. He hypothesizes that this shift could 

be the result of one of several factors; namely, perceived increase in counterparty risk among 

banks, changes in relative trading costs, or changes in institutional factors. The framework 

Levich utilizes, which is mostly graphical analysis, is very different from Lien and Yang (2006) 

and Röthig (2004), who both utilize GARCH-type models. 

Röthig (2004) examines the impact of currency futures trading on underlying exchange 

rates. Using a VAR-GARCH approach he examines the relationship between currency futures 

trading activity (as measured by number of contracts) and total amount of spot market turbulence 

for the exchange rates from 5 countries (i.e. Australia, Canada, Japan, Korea, and Switzerland) in 

terms of U.S. dollar. The author finds that there is a positive relationship between currency 

futures trading activity and spot volatility and, moreover, that futures trading activity adds 

significantly to spot volatility.  

McCurdy and Morgan wrote several papers together concerning currency futures: 

McCurdy and Morgan (1987) and McCurdy and Morgan (1992). In their 1987 paper the authors 

test the martingale hypothesis for daily and weekly rates of change of futures prices for five 

currencies. Using daily data, they find some evidence against the null hypothesis for each 

currency. Although institutionally imposed limits on daily price changes were found to be 
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frequently binding (often in the earlier years of the sample), the results are not substantially 

different when data affected by limit moves are removed. Trading day effects in foreign currency 

futures and spot prices introduce complicated day-of-the-week patterns in futures price. The 

study concludes with the retesting of the martingale hypothesis using weekly data. They reject 

the null hypothesis for only one currency. One interpretation regarding the evidence for this 

rejected currency is that a time-varying risk premium exists. This was followed by McCurdy 

and Morgan (1992), in which weekly data for foreign currency futures prices is examined for 

evidence of a risk premium. Covariance risks are measured with respect to the excess returns of 

benchmark portfolios for consumption and wealth. When the parameters representing the prices 

of the covariance risks are held constant, no risk premiums are detected. However, when these 

prices are allowed to vary with the conditional expected returns and the variances of the 

benchmark portfolios, possibly reflecting changing investment opportunities, strong evidence of 

risk premiums is obtained. 

In the mid to late 1990s several studies examined currency futures from either option-like 

or statistical perspectives. In Bates (1996), Deutsche mark and yen futures options are examined 

for deviations from the lognormal assumption underlying standard option pricing models. Two 

methods are used: a theoretical skewness premium and daily estimates of moments using a 

model developed for pricing American foreign currency futures options under systematic 

exchange rate jump risk. Substantial variation over time is found in all moments, along with 

implicit skewness and kurtosis. These implicit abnormalities help predict future abnormalities for 

log-differenced U.S. dollar-Deutsche mark futures prices, but not U.S. dollar-Japanese Yen 

futures prices. Pan, Chan and Fok (1997), on the other hand, examines the random walk process 

for four currency futures prices for the period 1977–1987 by using a variance ratio test. The 
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random walk hypothesis is tested through asymptotic standardized statistics as well as by 

computing the significance level, based on a bootstrap method. Both long time-series prices and 

individual contract prices for four currency futures (i.e. the British pound, the German mark, the 

Japanese yen, and the Swiss franc) are analyzed. The results provide little evidence against the 

random walk null hypothesis, though non-randomness is documented in the Japanese yen. 

Additionally, the currency futures markets apparently become more efficient as markets mature 

over time. 

Bhar and Malliaris (1998) propose and test several hypotheses concerning time series 

properties of trading volume, price, short and long-term relationships between price and volume, 

and the determinants of trading volume in foreign currency futures. Contracts for the British 

pound, Canadian dollar, Japanese yen, German mark, and Swiss franc are analyzed in three 

frequencies: daily, weekly and monthly. They find supportive evidence for all five currencies 

that the price volatility is a determinant of the trading volume changes. Furthermore, the 

volatility of the price process is a determinant of the unexpected component of the changes in 

trading volume. They also find that there is a significant relationship between the volatility of 

price and the volatility of trading volume changes for three of the five currencies in the daily 

frequency and for one currency in the monthly frequency. 

  As for liquidity, it has been widely studied with stock markets. Amihud (2002) shows 

that over time, expected market illiquidity positively affects ex-ante stock excess return, 

suggesting that expected stock excess return partly represents an illiquidity premium. This 

complements the cross-sectional positive return–illiquidity relationship. In addition, stock returns 

are negatively related over time to contemporaneous unexpected illiquidity. The illiquidity 

measure here is the average across stocks of the daily ratio of absolute stock return to dollar 
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volume, which is easily obtained from daily stock data for long time series in most stock markets. 

Illiquidity affects more strongly small firm stocks, thus explaining time series variations in their 

premiums over time. Further, liquidity is also studied in dual-listed markets. Chan et al (2008) 

study the liquidity effect in asset pricing by studying the liquidity- premium relationship of an 

American Depositary Receipt (ADR) and its underlying share. Using the Amihud (2002) 

measure, the turnover ratio and trading infrequency as proxies for liquidity, they show that a 

higher ADR premium is associated with higher ADR liquidity and lower home share liquidity, in 

terms of changes in these variables. They find that the liquidity effects remain strong and they 

control for firm size and a number of country characteristics, such as the expected change in the 

foreign exchange rate, the stock market performance, as well as several variables measuring the 

openness and transparency of the home market. Goss (2006) studies liquidity, volume and 

volatility in U.S. electricity futures. However, liquidity in futures is expected to behave 

differently to that of spot markets because of the unique asymmetries in futures markets. 

Liquidity in electricity markets is of interest in countries where markets are being deregulated. 

This study estimates these relationships for the Palo Verde electricity futures contract. The 

results show positive relations between all three pairs of key variables. 

3.   Data  

The initial futures data consists of daily future prices for currency futures over the period 

January 1999 to June 2008. This data is collected from RC Research (www.Price-Data.com) and 

includes open, high, low, and close prices; as well as, volume and open interest. All daily future 

prices are in U.S. dollars. The currency futures included in this study are listed as follows: 

Australian dollar, British pound, Brazilian real, Canadian dollar, Euro currency, Japanese yen, 

Russian ruble, and Swiss franc. All eight currency futures are traded on the Chicago Mercantile 
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Exchange (CME) and all currencies prices are coded the same way—the US$ price of per unit of 

currency. Table 1 provides a summary of the contract size, approximate margin, and minimal 

fluctuation of the 8 currency futures. The weighted U.S. dollar futures are used as a basis for 

comparison. The U.S. dollar index (USDX)4 is an index (or measure) of the value of the United 

States dollar relative to a basket of foreign currencies. The USDX futures contract has two 

features that influence its pricing and its use. First, the USDX index is a geometric average, 

rather than an arithmetic average,5 of the constituent currencies. Second, the foreign exchange 

(FX) rates in the USDX index (in U.S. dollars per foreign exchange rate) are in the denominator 

of the index, implying that a dollar appreciation leads to a higher index level. Both the geometric 

averaging and the use of quoting convention have implication for the use of the USDX futures 

contract in hedging a foreign exchange exposure. Eytan, Harpaz, and Krull (1988) point out, the 

divergence between the geometric and arithmetic averages depend on both the volatilities of the 

individual currencies and their co-movements (sometimes referred to as their “correlations”). 

      Table 1. Sample Periods for Currency Futures Traded in U.S. 

Symbol Futures Contract Sample Period Contract Size Approximate Margin Minimum Fluctuation Observation 

AD Australian Dollar 01/13/1987-06/02/2008 A$100,000 $1,688.00 0.01 c/A$ = $10 5378 

BP British Pound 02/13/1975-06/02/2008 62,500 pound $1,890.00 0.01 c/pound = $6.25 8384 

BR Brazilian Real 11/08/1995-06/02/2008 BR100,000 $3,500.00 0.005 c/BR = $5 3122 

CD Canadian Dollar 1/17/1977-06/02/2008 C$100,000 $1,215.00 0.01 c/C$ = $10 7898 

EC Euro Currency 01/04/1999-06/02/2008 EUR $125,000 $2,700.00 0.01 c/EUR = $12.50 2355 

JY Japanese Yen 08/02/1976-06/02/2008 Yen 12,500,000 $2,430.00 0.0001 c/JY = $12.50 8014 

RU Russian Ruble 2/4/1993-06/02/2008 MRR 2,500,000 $3,000.00 0.001 c/RR = $25 3858 

SF Swiss Franc 02/13/1975-06/02/2008 SF 125,000 $1,958.00 0.01 c/SF = $12.50 8383 

                                                           
4 The short-coming of using the U.S. Currency Futures Index is that it is an unequally weighted index - so, the 
currency that is weighted more heavily, such as Euro, will inherently move more closely with the index. 
5
 This difference between arithmetic and geometric averaging is the source of the divergence between the index (and 

therefore futures contract) performance and the portfolio performance. (The portfolio is constructed as an investor is 
long $1 million in the six constituent currencies of the USDX index, in the proper weights (57.6% in euro, 13.5% in 
yen, etc.).The larger the divergence of performance of the different currencies, the larger the divergence between the 
geometric average and the arithmetic average.  
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         The USDX futures contract began trading on November 20, 1985 on the Financial 

Instruments Exchange, a division of the New York Cotton Exchange, which is now part of the 

New York Board of Trade (NYBOT). The USDX index was originally a geometrically weighted 

average of ten different currencies, with each currency representing a country that was a major 

trading partner with the United States. With the introduction of the Euro, the USDX index 

became a geometrically weighted average of six currencies, which represent five major U.S. 

trading partners and the Euro. Appendix 2 describes the current contract specifications for the 

USDX futures contract. 

 

 

Index Formula 

  The formula for the index level on date t is the product of the six currencies spot rates, 

each raised a power related to a currency-specific weight. The general formula for the index can 

be written as 

 

()
*+ � , -�.*/,+�123
4

/56
 

 

where USDXt  is the calculated level of the USDX index on date t, FXi,t is the foreign exchange 

rate (U.S. dollars per foreign currency unit) for currency i on date t, wi is the weight associated 

with currency i (the weights are determined by the contract specs and sum to one, i.e.,∑ 8/ �4/56

1). N is the number of currencies in the index for the USDX index, (N is currently six and was 
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formerly ten); and K is a constant. Under the current USDX futures contract specs, the USDX 

index is equal to 

 

()
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In other words, it is a weighted geometric mean of the following: 

Euro (EUR), 57.6% weight 

Japanese yen (JPY) 13.6% weight 

Pound sterling (GBP), 11.9% weight 

Canadian dollar (CAD), 9.1% weight 

Swedish krona (SEK), 4.2% weight and 

Swiss franc (CHF) 3.6% weight  

I first begin by checking for stationarity of the price series data and find that the price 

series are non-stationary (the null hypothesis of the unit root is not rejected), while their first 

differences are stationary. This implies that the use of a return series is appropriate, with the 

return being computed as the log of the current price over the previous price. Table 2 provides 

the summary statistics of the daily currency futures returns. The distribution of the daily futures 

returns is not normal, according to the Jarque-Bera test, and characterized by high kurtosis; 

especially, for the Brazilian real and Russian ruble. In addition, the Australian dollar, British 

pound, Brazilian real, Canadian dollar, and Euro currency futures returns are all negatively 

skewed. In contrast, the Japanese yen, Russian ruble, and Swiss franc are all positively skewed. 
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Table 2. Summary Statistics on Daily Currency Futures Returns 

  Australian Dollar British Pound Brazilian Real Canadian Dollar Euro Currency Japanese Yen Russian Ruble Swiss Franc 

 Mean 3.18E-05 -8.46E-06 -7.34E-05 1.13E-06 4.97E-05 5.62E-05 9.07E-05 4.43E-05 

 Median 0.000157581 0 0 0 6.87E-05 0 0.000430829 0 

 Maximum 0.022452484 0.019772928 0.277946112 0.009300023 0.011453081 0.035933091 0.154327806 0.021572106 

 Minimum -0.019667895 -0.022873448 -0.320463148 -0.011405534 -0.011562519 -0.018272159 -0.155461735 -0.033270935 

Variance 8.80676E-06 9.22146E-06 0.000323549 2.47396E-06 7.10789E-06 9.74863E-06 0.000455771 1.14048E-05 

 Std. Dev. 0.002967618 0.003036686 0.017987459 0.001572883 0.002666062 0.00312228 0.021348784 0.003377095 

 Skewness -0.383453315 -0.077403656 -1.328845259 -0.098795122 -0.030307375 0.564362196 0.015603163 0.093215516 

 Kurtosis 5.886010598 7.149241707 172.7144473 6.350768181 3.829401019 8.376932798 34.1886891 5.910303671 

Jarque-Bera 1997.825011 6021.848429 3746507.82 3707.210228 67.83249116 10078.1588 156326.6691 2970.239927 

 Probability 0 0 0 0 1.89E-15 0 0 0 

 

 

Regarding liquidity, I measure liquidity in terms of the price impact of trading and trading activity/ trading volume. For this 

paper I adopt two liquidity measures, since previous literature suggests that liquidity cannot be measured by one metric alone (Sadka 

et al (2008)). The price impact of trading is computed using the Amihud (2002) illiquidity measure, which is the absolute percentage 

price change divided by trading volume. This impact is computed daily and averaged over the sample period. The larger the number 

the greater is the impact of trading on prices, indicating a more illiquid currency future. Amihud illiquidity measures the price impact 

aspect of liquidity and quantifies the price/return response to a given size of trade. Liquidity, also has another aspect – trading. To 

address this aspect, I use the logarithm of trading volume as an alternative liquidity measure and perform a similar analysis. Table 3 

shows the Amihud illiquidity measure, trading volume, and logarithm of trading volume for the eight currency futures included in this 
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study. From this table one can see that the Brazilian real is the most illiquid currency future 

contracts among the eight; also, that the Russian ruble6 is much less liquid than other currency 

futures. Not surprisingly, the euro currency has the lowest number for the Amihud illiquidity 

measure. Most likely this is due to the fact that the euro is considered to be the most popularly 

traded currency futures contract. The Japanese yen also has a very low Amihud illiquidity 

measure number. This also makes sense since the Japanese yen is frequently used as a carry trade 

currency, due to the country’s near zero interest rates. Finally, the trading volume data also tells 

the same story of the eight currency futures. That is, the Brazilian real is the least traded currency 

futures and the Euro currency and Japanese yen are the most common and popularly traded 

futures. 

 

 

Table 3.  Summary Statistics of Liquidity Measures 

Liquidity Measures Mean Median StdDev Minimum Maximum 

Amihud Illiquidity Australian Dollar 0.000011 0.000002 0.000144 0.000000 0.005876 

Amihud Illiquidity British Pound 0.000004 0.000001 0.000063 0.000000 0.002723 

Amihud Illiquidity Brazilian Real 0.001849 0.000057 0.022539 0.000000 0.657169 

Amihud Illiquidity Canadian Dollar 0.000003 0.000000 0.000031 0.000000 0.001110 

Amihud Illiquidity Euro Currency 0.000002 0.000000 0.000024 0.000000 0.000998 

Amihud Illiquidity Japanese Yen 0.000002 0.000000 0.000023 0.000000 0.000706 

Amihud Illiquidity Russian Ruble 0.000005 0.000003 0.000008 0.000000 0.000131 

Amihud Illiquidity Swiss Franc 0.000005 0.000001 0.000046 0.000000 0.001120 

Volume Australian Dollar 3704.010000 2365.000000 4751.650000 0.000000 90210.000000 

Volume British Pound 6289.750000 4316.000000 7280.260000 3.000000 116014.000000 

Volume Brazilian Real 905.167022 1.000000 13039.380000 0.000000 343354.000000 

Volume Canadian Dollar 7902.440000 6214.000000 6909.860000 0.000000 82970.000000 

Volume Euro Currency 13468.880000 10391.000000 17259.540000 6.000000 351187.000000 

Volume Japanese Yen 12856.850000 8563.000000 14709.740000 7.000000 226166.000000 

Volume Russian Ruble 5018.870000 2796.000000 5225.780000 0.000000 47247.000000 

Volume Swiss Franc 8168.680000 6105.000000 7665.540000 0.000000 98763.000000 

                                                           
6
 It should be noted that the Russian ruble had currency controls levied by the government until 2006. 



49 

 

Log(Volume)Australian Dollar 7.792657 7.769801 0.982771 0.000000 11.409896 

Log(Volume) British Pound 8.348629 8.372165 0.996711 1.098612 11.661466 

Log(Volume) Brazilian Real 4.356071 4.537947 2.061767 0.000000 12.746517 

Log(Volume) Canadian Dollar 8.657030 8.734721 0.920326 1.945910 11.326234 

Log(Volume) Euro Currency 9.139480 9.248647 0.941483 1.791760 12.769074 

Log(Volume) Japanese Yen 9.010977 9.055673 1.057654 1.945910 12.329025 

Log(Volume) Russian Ruble 8.007806 7.937018 1.066479 2.708050 10.763144 

Log(Volume) Swiss Franc 8.582162 8.717355 1.098639 1.386294 11.500478 

 

4. Methodology 

  For my analysis I chose to use both a GARCH (1,1) model (with a constant term in the 

mean equation) and a Dynamic Conditional Correlation (DCC) Model. The GARCH (1,1) model 

can be defined as follows:  

( )1

2

1 1

, ~ 0,
t t t t t

t t t

y I N h

h h

µ ε ε

ω αε β
−

− −

= +

= + +
 

The DCC model is merely an extension of the Constant Conditional Correlation (CCC) Model 

(Engle (2002)). The main difference between the DCC model and the CCC model is that the 

DCC model allows the correlation matrix to change over time. The DCC model is therefore 

unique in that it retains the parsimony of a univariate GARCH model while incorporating a 

GARCH-like, time varying correlation. Accordingly, the DCC can be written as:  
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where Q+RSSis the covariance matrix for a vector of k asset returns, R is the possibly time-varying 

correlation matrix, and 
+ is the T @ T diagonal matrix of time-varying standard deviations from 

a univariate GARCH model with UN/,+ on the �+V diagonal. W+ � XY/Z,+[ denotes the conditional 

covariance matrix of the standardized residuals. In addition, A and B are parameter matrices and 

o denotes the Hadamard matrix product operator, i.e. element-wise multiplication. The symbol � 

denotes a vector of ones and S denotes the unconditional covariance matrix of the standardized 

residuals. \+ � X]/,+[ is the standardized, but correlated, residual vector. Its conditional 

correlation matrix is given by the variable Rt. For the �+Velement of Rt, the conditional correlation 

matrix is given by Y/Z,+/UY//,+YZZ,+ . 

 

 

A simple DCC in a bivariate case would be 

 

2
11, 12, 11, 1 12, 112, 1, 1 1, 1 2, 1

2
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1
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      
= − − + +      

        

 

where a and b stand for the DCC parameters alpha and beta. In most cases, a and b can substitute 

for more complicated matrices (e.g. A and B). Lastly, q6P`̀ `̀  is the unconditional covariance of the 

two standardized residuals.  

The DCC model is constructed to permit a two-stage estimation of the conditional 

covariance matrix Q+. During the first step, a univariate volatility model is fitted for each of the 

assets and the estimates of N/,+ are obtained. In the second step, the asset returns are transformed 
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by their estimated standard deviations and used to estimate the parameters of the conditional 

correlation.7 

 

The log-likelihood function for the DCC model can be written as follows: 
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One can perform the estimation by means of a quasi-maximum likelihood estimation (QMLE) to 

yield consistent parameter estimates. The log-likelihood function, which can be express as 

 

( ) ( ) ( )1 2 1 1 2, ,Vol CorrL L Lθ θ θ θ θ= +
 

 

can be divided into two parts.  

The volatility part:  
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And the correlation component:  
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7
 The software used to estimation the DCC model is EViews. 
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5. Empirical Results 

 

A. Estimation of DCC Model 

      The estimate results for the DCC model are given in Table 4.The DCC beta parameter for 

the Brazilian real is -0.9079 and the Russian ruble is -0.5178. Both the real and rubble have a 

tendency to be near zero and often change signs—this may contribute to the negative betas for 

the two currencies. The rest of the eight currencies have a positive DCC beta parameter. The 

DCC beta parameter measures persistency of correlation and therefore better captures relative 

stability. For example, the DCC beta parameter for the Euro is only 0.6073. Recall that the Euro 

carries a 57.6% weight in the U.S. dollar index, which implies that a big currency like the Euro 

naturally is more closely related to the index. Therefore, the fact that the Euro comes out with a 

low persistency is even more clear evidence that its stability is low. On the other hand, the 

weight for the Japanese yen, British pound, and Canadian dollar are 13.6%, 11.9%, and 9.1% 

respectively; but the corresponding persistency of the correlation (the DCC beta parameter) is 

0.9715, 0.9581, and 0.9837. This implies that the stability of the Japanese yen, British pound, 

and Canadian dollar are relatively high. Figure 1 shows the dynamic conditional correlation 

between each of the eight currencies with the U.S. dollar futures. Consistent with what has been 

estimated from the DCC model (namely the DCC beta parameter) the conditional correlation, 

noted as rho, between the Brazilian real and the U.S. dollar and the Russian ruble and the U.S. 

dollar have a tendency to be near zero and often change signs. Also, similar to the results of 

Table 4, the Australian dollar, British pound, Canadian dollar, and Japanese yen are the most 

positively correlated with U.S. dollar futures. One can observe that these relationships vary 

dramatically over the sample period.  
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Figure 1. Dynamic Conditional Correlation 

Panel A. Correlation between Australian Dollar and American Dollar Futures 

 

 
 

Panel B. Correlation between British Pound and American Dollar Futures 
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Panel C. Correlation between Brazilian Real and American Dollar Futures 

 

 
 

Panel D. Correlation between Canadian Dollar and American Dollar Futures 
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Panel E. Correlation between Euro Currency and American Dollar Futures 

 

 
 

Panel F. Correlation between Japanese Yen and American Dollar Futures 
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Panel G. Correlation between Russia Ruble and American Dollar Futures 

 

 
 

Panel H. Correlation between Swiss Franc and American Dollar Futures 
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Table 4.  DCC Model Results for Eight Currency Futures 

Futures Contract DCC α Parameter DCC β Parameter Correlation (Return) Correlation (Volatility) Log likelihood 

Australian Dollar 0.0153*** (0.0026) 0.9832*** (0.0031) -0.4766 -0.4710 -6279 

British Pound 0.0331*** (0.0020) 0.9581*** (0.0029) -0.7051 -0.7011 -5806 

Brazilian Real 0.0069*** (0.0021) -0.9079*** (0.2041) 0.0039 -0.0488 -6648 

Canadian Dollar 0.0138*** (0.0031) 0.9837*** (0.0039) -0.3767 -0.3641 -6433 

Euro Currency 0.0728*** (0.0024) 0.6073*** (0.0079) -0.9351 -0.9372 -4083 

Japanese Yen 0.0253*** (0.0033) 0.9715*** (0.0041) -0.4559 -0.4613 -6299 

Russian Ruble 0.0304*** (0.0005) -0.5178*** (0.0032) 0.0983 0.1043 -6638 

Swiss Franc 0.0982*** (0.0073) 0.3075*** (0.0626) -0.8860 -0.8834 -4791 

 

B. The Role of Liquidity 

      Table 3, as previously stated, shows that liquidity varies across different currency futures. 

Table 5 provides further evidence using the correlation matrix coefficients regarding return, the 

time-varying correlation of currency futures and U.S. dollar index futures, and liquidity measures. 

For all the currency futures, the Amihud illiquidity measure is negatively correlated with the 

logarithm of trading volume. 
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 Table 5.  Correlation Matrix of Correlation and Liquidity Measures 
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1 0.00832 0.01982 0.00742 

 

Return 

Japanese Yen 
1 -0.00362 -0.01726 0.00674 

Correlation 

Euro 

Currency 
 

1 0.00893 -0.00907 
 

Correlation 

Japanese Yen  
1 -0.07844 0.15545 

Amihud Euro 

Currency   
1 -0.35878 

 

Amihud 

Japanese Yen   
1 -0.47326 

Log(Volume) 

Euro 

Currency 
   

1 
 

Log(Volume) 

Japanese Yen    
1 

 

Return 

Russian 

Ruble 

Correlation 

Russian 

Ruble 

Amihud 

Russian 

Ruble 

Log(Volume) 

Russian 

Ruble 
  

Return 

Swiss 

Franc 

Correlation 

Swiss Franc 

Amihud 

Swiss 

Franc 

Log(Volume) 

Swiss Franc 

Return 

Russian 

Ruble 

1 0.02585 0.06023 -0.04614 
 

Return Swiss 

Franc 
1 0.01132 0.01745 -0.00377 

Correlation 

Russian 

Ruble 
 

1 -0.01413 0.02745 
 

Correlation 

Swiss Franc  
1 0.0107 0.01341 

Amihud 

Russian 

Ruble 
  

1 -0.63667 
 

Amihud 

Swiss Franc   
1 -0.49249 

Log(Volume) 

Russian 

Ruble 
   

1 
 

Log(Volume) 

Swiss Franc    
1 

 



59 

 

    For five out of eight currency futures, the correlation coefficient between the conditional 

correlations and Amihud measure is negative, which implies that higher illiquidity promotes a 

declining correlation between currency futures and U.S. dollar index futures. The exceptions are 

the Australian dollar, Brazilian real, and Swiss franc futures. For these futures, higher illiquidity 

actually promotes a closer conditional correlation between them and U.S. dollar index futures. 

For six out of eight currency futures the correlation coefficient between the conditional 

correlations and logarithm of trading volume is positive, which implies that more active trading 

promotes a higher correlation between currency futures and U.S. dollar Index futures. The 

exceptions are again the Australian dollar and the Brazilian real futures. For these futures, more 

active trading is related with declaiming conditional correlation between them and U.S. dollar 

index futures.  

      From the above analysis, it can be seen that liquidity does impacts the conditional 

correlations. In order to examine this further, a regression approach is used to examine the extent 

to which variations in the conditional correlations of currency futures and U.S. dollar index 

futures are related to the different aspects of liquidity. More specifically, I run the following 

regression: 

1 2 ( )rho a b Amihud Illquidity b Log trading volume ε= + × + × +
 

Table 6 shows how currency futures liquidity impacts the varied correlations between 

currency futures and U.S. dollar futures. The dependent variable is the correlation (i.e. rho) is 

estimated from the DCC model, while the independent variables are the Amihud illiquidity 

measure as well as the logarithms of the trading volumes for each future. One very striking result 

from Table 6 is that when the currency futures and U.S. dollar futures share a negative 

relationship, the independent variables (Amihud illiquidity and trading volume) do not have 
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explanatory power in regards to the dynamic correlation. An example of this would include the 

results for the Brazilian real and the Russian ruble. However, the liquidity measure does have 

explanatory power for several positive correlations between currency futures and U.S. dollar, 

such as the results for the Australian dollar, British pound, and the Canadian dollar.  

Table 6.  The Varying Correlations and Currency Futures Liquidity 

Futures Contract a b1 b2 t-stat(a) t-stat(b1) t-stat(b2) R-Square  

Australian Dollar -0.3383 -20.7353 -0.0255 -9.42 -0.80 -5.65 0.30 

 
(0.0359) (25.7881) (0.0045) 

    

        

British Pound -0.7805 152.9319 0.0061 -38.02 4.57 2.47 0.1810000 

 
(0.0205) (33.4766) (0.0025) 

    

        

Brazilian Real -0.0494 0.0005 0.0001 -51.50 0.03 0.26 0.01 

 
(0.0010) (0.0181) (0.0002) 

    

        

Canadian Dollar -0.5807 272.1610 0.0191 -16.03 2.57 4.48 0.172 

 
(0.0362) (105.9979) (0.0191) 

    

        

Euro Currency -0.9182 311.7216 -0.0019 -43.08 1.13 -0.77 0.30 

 
(0.0213) (275.1507) (0.0024) 

    

        

Japanese Yen -0.4531 -54.3483 -0.0063 -12.18 -0.33 -1.51 0.21 

 
(0.0372) (166.2133) (0.0042) 

    

        

Russian Ruble 0.1110 -201.2677 -0.0008 11.84 -1.65 -0.71 0.24 

 
(0.0094) (121.6324) (0.0012) 

    

        

Swiss Franc -0.8919 2.5568 0.0011 -120.07 0.14 1.28 0.17 

  (0.0074) (17.7233) (0.0009)         

 

6.  Conclusion 

       This study investigates the dynamic correlation between currency futures prices, focusing 

on the persistency of correlation of currency prices. Using the Dynamic Conditional Correlation 
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model developed by Engle (2002), this study incorporates time-varying correlations into the 

analysis. The sample includes eight currency futures traded on the Chicago Mercantile Exchange 

from 1999 to 2008 and the U.S. dollar index futures. The study finds that the Canadian dollar has 

the greater persistency while the Brazilian real has the weakest. No less important, the study 

finds that the time-varying conditional correlation between currency futures and the U.S. dollar 

futures is influenced by two types of liquidity: price impacts (Amihud illiquidity) and the 

logarithm of trading volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

Appendix 1: Background Information of Each Currency 

Australian Dollar 

Beginning in 1966 the Australian dollar became the official currency of Australia. At that 

time, the global currency market was managed under the Bretton Woods system. This system 

operated throughcountries pegging their currency to the U.S. dollar (USD) by means of a fixed 

exchange rate. When the Bretton Woods system finally collapsed it forced many countries to 

adopt a floating rate of currency, including the Australian dollar in 1971. The Australian dollar’s 

highest value relative to the USD was $0.881 in December of 1988. The lowest value was 

$0.4775 in April of 2001. The Australian dollar is heavily influenced by Australia’s business 

cycle, due to the fact that the Australian economy is so heavily reliant upon commodities. The 

Australian dollar’s exchange rate movement is often opposite the direction to reserve currencies, 

which tend to be stronger during downward turns of the business cycle. 

 

British Pound 

The British Pound has a long and distinguished history. In regards to its more recent 

history the pound officially adopted a floating rate in August of 1971 after the end of the Bretton 

Woods system. Later, in October of 1990 the British government joined the European Exchange 

Rate Mechanism (ERM). However, Britain was forced to quit that system on “Black Wednesday” 

(September 16, 1992) due to the fact that Britain’s economic performance made the exchange 

rate unsustainable. As a member of the European Union, Britain retains the right to adopt the 

euro as the country’s currency; however, the politics involved with such a decision are very 

divisive. In April 2007 the pound hit a 15-year high against the USD with an exchange rate of $2 
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USD to one British Pound. Since the global financial crisis of 2008 the pound has since 

depreciated considerably. 

 

Brazilian Real 

The modern real was introduced in July of 1994 where it was set equal to 1 USD. The 

new currency replaced the short-lived cruzeiro real (CR$). After its introduction, the real 

unexpectedly gained value against the USD. During the 1994-1995 periods it attained its 

maximum dollar value of $1.20. However, between 1996 and 1998 the Central Bank allowed the 

real to depreciate in a slow and smooth manner, so that by the end of 1998 the exchange rate had 

dropped from a 1:1 ratio to about a 1.2:1ratio. The currency's value continued a mostly 

downwards path for the next four years. By October 2002 the exchange rate had reached an 

historic low of almost 4 reals per 1 USD. In May 2007the real finally began to appreciate and 

became valued at more than $0.50 - even though the Central Bank was still trying to keep the 

exchange rate low. The Central Bank feared the effect that a rising exchange rate might have on 

the Brazilian economy due to its reliance on exports. 

 

Canadian Dollar 

Unlike most currencies in the Bretton Woods system the Canadian dollar actually had a 

floating exchange rate. This floating rate lasted from 1950 to 1962. In 1962 Canada decided to 

switch to a fixed exchange rate, which was set at $0.925. However, with the collapse of the 

Bretton Woods system it was forced to switch back to a floating rate in 1970. It has maintained a 

floating exchange rate ever since. During the 1990’s the Canadian dollar fell in value against the 

USD, and was traded for as little as $0.6179 on January 21, 2002. In more recent years its value 
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has appreciated due to the demand for commodities which Canada exports. By September 28, 

2007, the Canadian dollar had actually closed above the USD for the first time in 30 years at a 

rate of $1.0052 to 1 Canadian dollar.  

 

Euro Currency 

The euro (€) is a currency currently used by 17 countries: Austria, Belgium, Cyprus, 

Estonia, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Malta, the Netherlands, 

Portugal, Slovakia, Slovenia, and Spain. It is considered to be the second largest reserve currency 

in the world as well as the second most traded currency in the world. The euro was originally 

introduced as an accounting currency in January 1999. It was not until 2002 that actual paper 

money and coinage was issued. Since 2002 the euro has traded above the USD with a high of 

US$1.6038 on July 2008. While the euro has many strengths, a relative weakness has been the 

low interest rates tied to the currency. These low interest rates allowed governments that use the 

euro to borrow to excess, eventually causing public deficits to grow uncontrollable. Europe is 

still dealing with its public debt issues. 

 

Japanese Yen 

After World War II, Japan needed help in stabilizing its economy. To that end Japan 

joined the Bretton Wood System in 1949, whereupon it set the value of the yen at a fixed rate of 

¥360 per 1 USD. This exchange rate remained in place until 1971, when the United States 

abandoned the gold standard (thus triggering the end of the Bretton Woods System).Although the 

yen has had a floating exchange rate since the early 1970’s, the Japanese government has 

continuously interfered in the forex market by buying and selling USD in order to manipulate the 
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country’s exchange rate. In the 1990’s the yen declined significantly against the dollar due to the 

bursting of the Japanese asset price bubble, reaching a low of ¥134 to $1 in February of 2002. In 

order to fight the downward pressure placed on the Japanese economy (from the bursting of the 

bubble) the Bank of Japan adopted a zero interest rate policy. This has caused the yen to become 

a major player in the carry trade market, since investors can borrow cheaply in yen and invest in 

other currencies with higher interest rates. The yen continued its decline from the 1990’s all the 

way until 2007when the bursting of another bubble, the U.S. housing market bubble, finally 

caused the yen to appreciate. 

 

Russian Ruble 

Russia, over the years, has had many different rubles. The seventh version of the ruble 

was issued on January of 1998, with one new ruble equaling 1,000 old rubles. This seventh ruble 

was issued for purely psychological reasons. Regardless, the ruble was forced to depreciate 

significantly in August 1998 due to the Russian Financial Crisis. During this period the ruble lost 

almost 70% of its value against the USD. Since that time, the ruble has been doing better, 

although inflation in Russian still undermines much of the value of the currency.  

 

Swiss Franc 

In 1945, Switzerland joined the Bretton Woods system and pegged the Swiss franc to the 

USD at a rate of $1 = 4.30521 francs. Historically, the Swiss franc has been considered a safe 

currency especially because (since the 1920’s) the Swiss franc was linked to gold. However, a 

referendum held in May 2000 delinked the Swiss franc from its gold peg. Nevertheless, this 

currency is still prized due to its extremely low inflation rates. 
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Appendix 2: USDX Futures Contract Specifications 

U.S. Dollar Index (USDX) Futures Specifications (as of June 30, 2002): 

Contract size: $1000 times the USDX index. 

Trading hours: 3:00 a.m. to 8:00 a.m. and 8:05 a.m. to 3:00 p.m. 

Contract months: March, June, September, December 

Ticker symbol: DX 

Price quotation: The U.S. dollar index is quoted as a percent of its value as of March 1973, 

calculated to two decimal places (e.g., on July 31, 2002, the USDX index officially closed at 

107.41) 

Minimum price fluctuation: The minimum price fluctuation, or “tick size” for the USDX index 

is 0.01 USDX point, which is equivalent to $10.00 per futures contract. 

Limit on daily price move: 200 ticks above & below prior day's settlement, except during last 

30 minutes of any trading session when no limit applies. Should the price reach the limit and 

remain within 100 ticks of the limit for 15 minutes, then new limits will be established 200 ticks 

above and below the previous price limit 

Position limits: None 

Last day of trading: 2nd business day prior to the 3rd Wednesday of the expiring month. On the 

last trading day, trading ceases at 10:16 a.m. 

Settlement procedure: Contracts held to expiration are settled in cash, based on the value of the 

USDX index at 10am (New York time) on the last day of trading for an expiring contract. The 

USDX settlement value is computed by Reuters LTD, in accordance to New York Cotton 

Exchange regulations. 

 

 



67 

 

References: 

Amihud, Y., and Mendelson, H. (1986).Asset Pricing and the Bid-Ask Spread.Journal of 

Financial Economics, 17, 223-247. 
 
Amihud, Y., and Mendelson, H. (1991).Liquidity, Maturity, and the Yields on U.S. Treasury 
Securities. Journal of Finance, 46, 1411-1125. 

Amihud, Y. (2002). Illiquidity and Stock Returns: Cross-Section and Time-Series Effects. 
Journal of Financial Markets, 5, 31–56. 
 
Bates, D. S. (1996). Jumps and Stochastic Volatility: Exchange rate processes implicit in 
Deutsche Mark options. Review of Financial Studies, 9 (1), 69-107 
 
Bhar, R., and Malliaris, A. (1998).Volume and Volatility in Foreign Currency Futures Markets. 
Review of Quantitative Finance and Accounting, 10 (3), 285-302. 
 
Black, F. (1990). Equilibrium Exchange Rate Hedging. Journal of Finance, 43, 899-908. 

Bortoli, L., Frino, A., Jarnecic, E., and Johnstone, D. (2006). Limit Order Book Transparency, 

Execution Risk, and Market Liquidity: Evidence from the Sydney Futures Exchange. Journal of 

Futures Markets, 26 (12), 1147-1167. 

Brorsen, B.W. (1989). Liquidity Costs and Scalping Returns in the Corn Futures Market. Journal 

of Futures Markets, 9 (3), 225–236. 

 

Capuano, C. (2006). Strategic Noise Traders and Liquidity Pressure with a Physically 

Deliverable Futures Contract. International Review of Economics and Finance, 15 (1), 1-14. 

Chan, J. S. P., Hong, D., and Subrahmanyam, M.G. (2008).A Tale of Two Prices: Liquidity and 

asset prices in multiple markets.Journal of Banking and Finance, 32 (6), 947–960. 

Chang, E., and Wong, P. K. (2003).Cross-Hedging with Currency Options and Futures. Journal 

of Financial and Quantitative Analysis, 38, 555-74. 
 
Chol, H., and Subrahmanyam, A. (2006).Using Intraday Data to Test for Effects of Index Futures 
on the Underlying Stock Markets. Journal of Futures Markets,14 (3), 293-322. 
 
Chordia, T., Sadka, R., Goyal, A., Sadka, G., & Shivakumar, L. (2009).Liquidity and the post-
earnings-announcement drift. Financial Analysts Journal, 65, 18-32. 
 

Chou, R. Y. (1988). Volatility Persistence and Stock Valuations – Some empirical evidence 
using GARCH. Journal of Applied Econometrics, 3, 279-94. 
 
Ederington, L. H. (1979). The Hedging Performance of the New Futures Markets. Journal of 

Finance, 34, 157-70. 
 



68 

 

Enders, W., and Siklos, P. L. (2001).Cointegration and Threshold Adjustment. Journal of 

Business and Economic Statistics, 19, 166-76. 
 
Engle, R. F., and Granger, C.W. (1987). Cointegration and Error Correction: Representation, 
Estimation, and Testing. Econometrica, 55, 251-76. 
 
Evans, M. D., and Lyons, R. K. (1999). Order Flow and Exchange Rate Dynamics (No. w7317). 
National Bureau of Economic Research.  
 
Eytan, T. H., Harpaz, G., and Krull, S. (1988). The Pricing of Dollar index Futures Contracts. 
Journal of Futures Markets, 8 (2), 127-139.  
 
Fung, H. G., and Patterson, G. A. (1999).The Dynamic Relationship of Volatility, Volume, and 
Market Depth in Currency Futures Markets. Journal of International Financial Markets, 

Institutions, and Money, 9 (1), 33-59. 
 
Glen, J., and Jorion, P. (1993).Currency Hedging for International Portfolios. Journal of 

Finance, 48, 1865-86. 
 
Goss, B. (2006). Liquidity, Volume and Volatility in US Electricity Futures: The case of Palo 
Verde. Applied Financial Economics Letters, 2 (1), 43-46. 
 
Grossman, S. J., and Shiller, R. J. (1981). The Determinants of the Variability of Stock Market 
Prices. American Economic Review, 71, 222-27. 
 
Guo, B. (2003). Currency Risk Hedging with Time-Varying Correlations. Working Paper, 

University of California at Santa Cruz. 

 
Han, L. M., Kling, J. L., and Sell, C. W. (1999). Foreign Exchange Futures Volatility: Day-of-
the-week, intraday, and maturity patterns in the presence of macroeconomic announcements. 
Journal of Futures Markets, 19 (6), 665-693. 
 
Harvey, C. R., and Huang, R. D. (1991).Volatility in the Foreign Currency Futures Market. 
Review of Financial Studies, 4 (3), 543-569. 
 
Kamara, A., Lou, X., and Sadka, R. (2008).The Divergence of Liquidity Commonality in the 
Cross-section of Stocks. Journal of Financial Economics, 89 (3), 444-466. 
 
Kho, B. C. (1996). Time-varying Risk Premia, Volatility, and Technical Trading Rule Profits: 
Evidence from foreign currency futures markets. Journal of Financial Economics, 41(2), 249-
290. 
 
Korajczyk, R. A., and Sadka, R. (2008). Pricing the Commonality across Alternative Measures 
of Liquidity. Journal of Financial Economics, 87 (1), 45-72. 
 



69 

 

Krull, S., and Rai, A. (1992). Optimal Weights and International Portfolio Hedging with US 
Dollar Index Futures: An empirical investigation. Journal of Futures Markets, 12 (5), 549-562.  
 
Levich, R. M. (2012). FX Counterparty Risk and Trading Activity in Currency Forward and 
Futures Markets. Review of Financial Economics. 
 
Lien, D., and Yang, L. (2006). Spot-futures Spread, Time-varying Correlation, and Hedging with 
Currency Futures. Journal of Futures Markets, 26 (10), 1019-1038. 
 
Lou, X., and Sadka, R. (2011).Liquidity Level or Liquidity Risk? Evidence from the financial 
crisis. Financial Analysts Journal, 67, 51-62. 
 

McCurdy, T. H., and Morgan, I. G. (1987).Tests of the Martingale Hypothesis for Foreign 
Currency Futures with Time-varying Volatility. International Journal of Forecasting, 3 (1), 131-
148. 
 
McCurdy, T. H., and Morgan, I. G. (1992).Evidence of Risk Premiums in Foreign Currency 
Futures Markets. Review of Financial Studies, 5 (1), 65-83. 
 
Pan, M. S., Chan, K. C., and Fok, R.C.W. (1997). Do Currency Futures Prices Follow Random 
Walks? Journal of Empirical Finance, 4 (1), 1-15. 
 

Redfield, C. B. (1986). A Theoretical Analysis of the Volatility Premium in the Dollar Index 
Contract. Journal of Futures Markets, 6 (4), 619-627.  
 
Röthig, A. (2004). Currency Futures and Currency Crises (No. 136). Darmstadt discussion 

papers in economics. 

 

Sadka, R. (2010). Liquidity Risk and the Cross-section of Hedge-fund Returns. Journal of 

Financial Economics, 98, 54-71.   

Tse, Y. K., and Tsui, A. K. C. (2002). A Multivariate Generalized Autoregressive Conditional 
Heteroscedasticity Model with Time-varying Correlations. Journal of Business and Economic 

Statistics, 20, 351-62. 

 

 



70 

 

Vita—Eric John Osmer 

Eric Osmer received his Bachelors in Music Education from the University of Georgia in 

2001. He received his Master of Science in Finance from Brandeis University in 2007 and his 

Master of Arts in Economics from Georgia State University in 2009. He published two papers in 

peer-reviewed journals before graduating with his Ph.D. Mr. Osmer is currently scheduled to 

receive his Ph.D. in Financial Economics from the University of New Orleans in May 2013. His 

research interests include investment and international finance.  

 

 


	Two Essays in Financial Economics
	Recommended Citation

	Microsoft Word - 338974-text.native.1367034300.docx

