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Abstract

We propose that most data stores for large organizations are ill-designed for the future, due to
limited searchability of the databases. The study of the Semantic Web has been an emerging technology since
�rst proposed by Berners-Lee. New vocabularies have emerged, such as FOAF, Dublin Core, and PROV-
O ontologies. These vocabularies, combined, can relate people, places, things, and events. Technologies
developed for the Semantic Web, namely the standardized vocabularies for expressing metadata, will make
data easier to utilize. We gathered use cases for various data sources, from human resources to big enterprise.
Most of our use cases re�ect real-world data. We developed a software package for transforming data into
these semantic vocabularies, and developed a method of querying via graphical constructs. The development
and testing proved itself to be useful. We conclude that data can be preserved or revived through the use of
the metadata techniques for the Semantic Web.

Ontology, Graph Databases, RDF, Jena, Provenance, Hyperspectral, Bathymetry, Enterprise Data, Social
Networking

viii



1 Introduction

Through a survey on the topics of the Semantic Web and databases, we have observed numerous
cases of poor data management. Repeatedly, the mass of data always got out of hand eventually. They were
often caused from old methods of archiving data as tapes shoved into a back room in a storage facility. The
data eventually becomes impossible to manage, and remains as archives which serve little use aside from
providing the curators of such data a little bit of comfort in that their �data is still there.� The data may be
there, but it has now become inaccessible unless massive e�orts are undertaken to analyze and evaluate the
utility of said data.

For now, we focus on organizations who have �lost� data in the aforementioned manner, and who
are actively attempting to reclaim said data and make it available to researchers. This is mainly due to
the fact that very few groups (who are not semantic web and ontology researchers) are actively interested
in restructuring their data so that it is easier to manage. This data management is seen as just another
expense. A feasible way to make data management widely accepted is to make it something interesting, and
something more powerful than what was previously available. Just replicating a relational database system
in a semantic web facade is not enough. More powerful queries must be available, and they must be easier to
manipulate than with SQL. More relationships between all kinds of objects must be supported by a software
system. And data should be stored in an accessible manner, or if not possible, should be referenced in an
un-ambiguous way.

The purpose of the development of our framework is providing a way for users to make queries
based on ontology vocabularies. While traditional database queries can be used to this purpose, and there
are many toolsets available for making such activities easier, our software is designed for the case where the
user does not fully understand the schema itself. Some basic �eld knowledge in a subject area will be required
in order to explore the schema. However, our software is designed in such a way that domain experts can
easily explore a subject area's ontology as well as other related ontologies. These other ontologies can serve
as meta-ontologies to further aid in understanding of the schema.

2 Background

We utilized a number of technologies and toolkits to develop the framework of semantic assistance.
This section describes the extent of our use of each of the given technologies. A few of the technologies listed
here were not really utilized, though these include only the most notable alternatives.

2.1 Technologies

2.1.1 Resource Description Format and XML

Resource Description Format (RDF) is a data model with similar semantics to Extensible Markup
Language (XML). It is a World Wide Web Consortium (W3C) supported format, much like XML, albeit
being a much more recent development. Unlike XML, which has a single speci�ed serialization, RDF o�ers
standardized serializations[1] including XML.[2] Like XML, RDF data can be stored in nonstandard formats
for various di�erent purposes: making the data more human-readable, and making the data more conducive
to random access through traditional database technologies.

While RDF is simply a data model, and does not in itself provide any means to work with the
data, a wide array of tools and standards have been developed around it to support semantic data. This is
antithesis to XML, which although containing schema support, requires the use of proprietary tools such as
Saxon-SA (Schema Aware) to validate. The schema support in RDF is more mature, and is standardized in
the form of RDFS.

An RDF data set, whether represented in textual form or in a database, has only a single data
structure from which any other can be derived. This is called the triple, by analogy of a tuple from relational
calculus. The three components of each triple are the subject, the predicate, and the object. These were
named after the concepts of natural languages. A subject is what the metadata is about. A predicate is how
the subject relates to another. An object is what the subject relates to, which is in itself another potential
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Algorithm 1 Linked List

@prefix group: <http :// example.info/groups#> .

@prefix example: <http :// example.info/example#> .

group:Alice

group:name "Alice" .

group:Bob

group:name "Bob" .

group:Carl

group:name "Carl" .

_:list1

example:head group:Alice ;

example:tail _:list2 .

_:list2

example:head group:Bob ;

example:tail _:list3 .

_:list3

example:head group:Carl ;

example:tail example:Empty .

group:Developers

group:members _:list1 .

subject. This simple data structure does not limit what RDF can be used to represent, as triples can be
used to represent any other data structures in many ways.[3]

A Simple Example: Linked Lists

We want to be able to represent lists in RDF, as they are a very common and useful data structure.
Let's assume we want a property to represent group members for a hypothetical groups vocabulary.

This demonstrates how �exible RDF can be. However, despite this �exibility, we would probably
like a more concise representation of a list. If using a format for serialization such as NTriples, which is
simply a list of triples (without any pre�x substitution) separated by newlines, we have no choice but to
emit data such as this. However, with serializations such as Notation3, we can represent data in a far more
compact way.[4]

This is the same exact data, in fact the same representation in low level triples, as the �rst part of
the example. In the �rst part of the example, we created a list in the same manner as one would be created

Algorithm 2 Notation3 Linked List

@prefix group: <http :// example.info/groups#>

group:Developers

group:members

( [ group:name "Alice" ], [ group:name "Bob" ],

[ group:name "Carl" ] ) .

2



Algorithm 3 Spreadsheet

@prefix ss: <http :// example.info/spreadsheet#>

ss:Sheet

ss:tables ( ss:Table1 , ss:Table2 ) .

ss:Table1

ss:name "Table 1" .

ss:CellT1A1

ss:table ss:Table1 ;

ss:row 1 ;

ss:col 1 ;

ss:data "532"^^ xsd:double .

ss:CellT1A2

ss:table ss:Table1 ;

ss:row 2 ;

ss:col 1 ;

ss:data "123"^^ xsd:integer .

ss:CellT1B1

ss:table ss:Table1 ;

ss:row 1 ;

ss:col 2 ;

ss:data "Example Text" .

ss:CellT1B2

ss:table ss:Table1 ;

ss:row 2 ;

ss:col 2 ;

ss:data <http :// example.info/groups#Developers > .

ss:CellT2A1

ss:table ss:Table2 .

in a functional programming language such as Lisp, as that is the representation that RDF uses internally.
This serialization is, nonetheless, far more concise and easier to read. Nonetheless, it takes the same amount
of storage space in a database, unless the given database was designed to handle lists in a more optimized
way.

A More Complex Example: Spreadsheet

This example is a little bit more complicated, but it will demonstrate that not only default structures
available in popular serializations can be produced. We will create a representation of a simple spreadsheet
which contains a number of tables (this is achieved through a list), and whose actual cells can contain any
type of data.

As one can see, the �rst table has four cells which are �lled-in with data. The second table has
no associated cells. The cells are represented as the subjects, with a property representing which table,
which row, which column, and which data element the cell contains. This representation of data looks quite
cumbersome to actually use, but the query techniques we will explore within this paper demonstrate how
we can e�ectively select and manipulate a range of cells.
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This example is not intended to suggest that a valid use for this language is creating a spreadsheet
application. This is a quite ine�cient and complex way of representing data for something so trivial. However,
this does mean a spreadsheet can be very trivially converted into an RDF representation. Of course, one
may transform the data in RDF format to make it more usable for developers attempting to implement
queries on the data, and for integration with other schemas.

2.1.2 OWL (Web Ontology Language)

An ontology is simply a formal representation of a knowledge domain. There are many technologies,
in various stages of development, for representing ontologies. They are used in information systems for
applying machine learning concepts to data.

The core concept of an ontology, from which other concepts are derived, is the shared vocabulary. A
vocabulary is a prede�ned set of data structures which represent concepts. These concepts can be tangible,
such as real-world objects.

The Web Ontology Language, or OWL, is actually a series of languages: OWL Lite, OWL DL,
and OWL Full. These three languages, in ascending order of capabilities, are formal languages representing
frame languages.[5] Specialized software designed for parsing and actually using OWL vocabularies are called
Inference Engines, and one such library which supports integration with these Inference Engines is called
Jena. This powerful library for working with semantic data will be explored further. Inference Engines are
powerful tools, which require a lot of processing power due to their usage of machine learning techniques.
For this reason, and because de�ning a set of restrictions and inferences is a complex task which requires
understanding of machine learning concepts, the query builder environment which we propose does not
initially consider the use of inferencing. Furthermore, these techniques do not scale well for the data we are
focusing on, which is more suited to large static database implementations. Instead, we focus on developing
customized views for data, which provides another more �exible way for individuals to create inferences for
data.

2.1.3 SPARQL

SPARQL is the SPARQL Protocol and RDF Query Language. It is a query language, the a popular
and standard query language for RDF.[6] However, it is incredibly powerful, providing most of the syntactical
features of SQL. In this project, we focus solely on the select and construct query semantics, which,
unsurprisingly, re�ect the SQL select query. Select queries return a result table exactly like SQL. Construct
queries are similar to select queries, though instead of representing a tabular set of results as SQL does,
return an RDF graph (a list of RDF triples) which can be used as a view for another query, returned in a
notation such as Turtle for easier reading, or returned as an actual graphical representation of the data.

We used SPARQL to implement the simple type of inferencing which was desired for our framework.
SPARQL provided one syntax to do all manipulation of RDF data, making the implementation of the query
builder far simpler. Likewise, the single interface developed for the purpose of inferencing and querying
reduced the learning curve of the framework signi�cantly. The semantics are also much more familiar for
SQL users, further reducing the learning curve. As a construct query can return a graph, it can return data
to be treated as inferences. This inferred data can then be left in memory as an RDF database in itself, or
materialized by updating the original data. This �exibility allowed us to provide one interface for all desired
manipulations on the data, which allows individual freedom in how to generate their own views of the data.
Some users of the query engine will prefer simplistic views suited to a tabular notation, while others will
certainly need to utilize the graph structure to a fuller extent.

2.2 RDF Data Store

The databases we considered for this framework were, for the most part, limited to RDF triple stores
and SPARQL query engines. However, some other databases were considered, notably XML databases for
their similar ability to use schemas and tree-like structures. However, the decision to use RDF was reached
due to the prevalence of the technology in data aggregation. The ability to use a fully directed graph also
a�orded a lot more �exibility than a tree-like structure in XML, and RDF allows for more extensibility of
schemas with other related schemas.
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2.2.1 OpenLink Virtuoso

OpenLink Virtuoso is a powerful RDF triple store, coupled with many data processing utilities for
extracting data from XML with GRDDL, as well as RDBMS.[7] User Interface Softwaret �les. It is open
source software with commercial perks, though the backend server required none of these. Nevertheless,
the major issue we had with OpenLink Virtuoso was the fact that it was quite heavy-weight and had no
apparent advantages over simple triple stores for the goals we were trying to achieve. It also required a lot
more con�guration, as it was apparent that this software was designed for large distributed system.

2.2.2 4store

4store is a Triple Store, developed in C++, intended to be a fast and powerful RDF database and
SPARQL implementation allegedly capable of scaling up to 15 billion triples.[8] For our �rst use case, the
employee database, we utilized 4store for the backend data storage which was queried by our visual query
builder. 4store included its own HTTP backend which interfaced quite well with our frontend. Despite the
e�ciency gains, for further use cases, we reconsidered the use of 4store as SPARQL 1.1 support was not yet
completely implemented.

2.2.3 Jena

Jena is an RDF API for Java, with an embedded triple store and a SPARQL query engine.[9] In
addition to standard RDF data models, inferencing models are available which can automatically generate
inferenced views based on OWL restrictions. Despite the issues with Jena's performance, we decided that
Jena was a far more mature API for implementing the backend. The query builder backend we implemented
with Jena was a Java HTTP servlet. For our translation backend, Jena was integrated within the translation
software.

2.2.4 Zorba XQuery

The Zorba XQuery engine is a tree-structured database system which is designed for data in XML
formats.[10] It uses a binary representation of XML for e�ciency purposes, yet exposes interfaces for the
XML query languages such as XPath and XQuery, with various di�erent extensions as options. As of 2012,
Zorba was a mature XML Database following NoSQL principles. There was no SQL-like query language, as
well as an obscure methodology for extending XQuery functions. The standard libraries included for data
manipulation were rather limited. It was, however, one of those most powerful XQuery implementations
which did not depend on proprietary extensions for necessary features such as XML Schema support. For
those reasons, we decided that Zorba was not a viable option for our database backend. In current times,
things may have been di�erent, as Zorba has matured to have support for advanced SQL constructs. Addi-
tionally, there are now a lot more APIs, such as Data Converters, Formatters, Data Cleaning, far more Excel
function analogues, as well as Geological Projections. Many of the tools that were made available in Zorba
would have greatly assisted us in the implementation of our framework, though they were not implemented
features at the time of implementation.

2.3 User Interface Software

As this project is intended to provide a user-facing application that is both easy to use and powerful,
we decided that a major portion of the framework should focus around having a powerful user interface for
the development of queries. As queries need to be performed by those who are working in �elds other than
Computer Science and IT, we came up with a design which did not require a lot of technical knowledge
relating to semantic data, or any incredibly steep learning curve for its users to perform most complex tasks.

2.3.1 DHTMLX

For the development of a Javascript Web Application frontend to the visual query builder software,
we decided on using a user interface library to provide the necessary visual elements. DHTMLX was one
of our options, and was used in the construction of the initial prototype of the frontend. This proved to
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be quite in�exible, and required far more time (for library workarounds) than even implementing a simple
user interface of our own. Many issues arose from the fact that the library was GPL licensed open source
software, however there was a paid commercial version. It turned out that the DHTMLX codebase was
heavily obfuscated and any modi�cations were very tedious. In addition, many features which later turned
out to be somewhat necessary were only in the commercial version of the software.[11]

2.3.2 Sencha (ExtJS)

The Sencha toolkit was the second option, and was used to revise the toolkit which was initially pre-
pared for DHTMLX. The development e�ort with Sencha was far smoother, quickly allowing the placement
of all needed visual elements such as the vocabulary tree, instance panel, and main query builder panel.
Sencha suggests and provides for a Model View Controller development pattern with Models, Stores, Views,
and Controllers.[12] This allowed for simple integration with the query server. We used a custom JSON
data format for serializing the vocabulary on the server to be provided to the client, as parsing RDF data in
Javascript would have performed poorly and would have required the implementation of a specialized library.
The server was also designed to return a list of instances of a given class, implemented via a SPARQL query
on the database. Additionally, the server responded to SPARQL queries generated by the user (client-side)
explicitly. This simplistic design decision has potential security risks which may need to be reviewed before
this project can be considered production-safe.

2.4 Data Manipulation Software

Before this project was truly o� the ground, we surveyed numerous di�erent RDF and Data Ma-
nipulation technologies. This list describes which applications were seriously considered in the development.
We also note the rationale described for using, or not using, any given piece of software.

2.4.1 ARC2 RDF Backend

The ARC2 RDF backend, a now-discontinued PHP library for handling RDF data, was used in the
visual query builder backend. It o�ers a simple model for querying objects for their properties,[13] and was
primarily used in the generation of the class hierarchy. Initially used to generate an instance list, it was
replaced by the native HTTP SPARQL endpoint which 4store provided. This improved performance quite
signi�cantly and removed a dependency to the now deprecated software. The class hierarchy implementation
remains in ARC2, but this is a trivial backend to reimplement in either Jena with Java Servlets or another
server-side web development language that has a native RDF library. The ARC2 backend uses �at �les to
be deserialized and converted into a class hierarchy, which would also become a performance bottleneck in
large systems.

2.4.2 Protege

One of the initial tools we investigated was Protege, an OWL vocabulary and database editor from
Stanford.[14] Protege contains options for editing vocabularies, creating inferences, and de�ning instances
of objects. Many plugins are available for Protege, some of which provide visualizations and others which
allow for querying data. We decided that Protege was a good option for initially constructing several test
databases on a small scale. However, for larger scale databases the instance editor functionality of Protege
is mostly useless, as the database must be stored as a large �at �le that is loaded into memory each time it
is edited.

2.4.3 HDF-Java

In order to translate HDF data used in the hyperspectral imagery use case, we utilized the HDF-Java
library available from the HDF Group.[15] We used a static mapping from the most important components of
the HDF document which we believed to be the most suitable for metadata. Likewise, the data within HDF
itself was not included, due to considerations that it was not useful for our purposes and would only lead to
massive memory usage. As a compromise between availability of data and querying power, we added a set
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of statistical functions from the Apache Commons Math library as metadata. As it was a static mapping
from two HDF databases from the same �eld of endeavor, running the translation against a general HDF
document may not return the best set of metadata obtainable for that document. Nevertheless, this was a
compromise between �exibility and obtainability, as we had a limited subset of HDF data to work with.

2.4.4 Marc4j

For translation of MARC and MARCXML records used in the library database use case, we used
Marc4j, an interface for these formats in Java. These formats are machine-readable catalogue formats,
developed by the Library of Congress during the 1960s.[16] As expected due to its age, long before linked
data became prevalent through the World Wide Web, the data format is �at in nature. Also due to the
�at �le model, as opposed to HDF-Java, Marc4j's model resembles evented SAX rather than XML DOM.
Nevertheless, implementing the translation layer was more trivial than the other translation layers we used.
As with our use of HDF-Java, we created a static mapping between the MARC format and the RDF format.
However, MARC is speci�ed for only a single domain, therefore the static mapping should equally apply to
all data sets using one of these formats. No additional information was added from external sources, due to
the nature of the source format being solely metadata.

3 Architecture

The framework developed for this research involves three di�erent major components, as described
in Figure (1). The �rst component developed was a visual query builder written in C++ (4store database
backend), PHP (backend glue) and JavaScript (frontend). This necessitated the creation of a database in
RDF format, which was initially generated manually in Protege for the Employee Database use case. For
the Bathymetry database, we used Taverna to track process provenance information between di�erent steps
of data processing, and excluded the entity provenance information because this information was not readily
available to use. After these use cases, we decided that di�erent types of data sources were required, for
example Excel (CSV), HDF, and XML. Therefore, we developed a translation software which utilized the
Apache Jena library to convert tabular and hierarchical data into a temporary schema for further translation.
To visualize the results of various queries, we settled on the rapper command line utility to generate directed
graphs of query results and the GraphViz graph visualization library.

3.1 The Translation Component

3.1.1 Transitory Mappings

The mapping component of this query is not required for all of the use cases, just the ones which
use real-world data which is not native to RDF/XML.

The �rst part of the translation component of our framework involves a set of transitory mappings
between the following formats and RDF:

� HDF (Hierarchical Data Format)

� CSV (Comma Separated Values)

� MARC

� XML

The HDF translation source was utilized in the Hyperspectral data set, in order to convert the metadata
and do some slightly more advanced calculation of statistical information. The CSV translation source was
used to implement the Enterprise Projects data set. XML was used to implement the Structured Descriptive
Data use case.

This part of the translation framework was implemented in Java using the Apache Jena framework
for RDF data. The jCSV library was used for iterating through CSV tables generated from Excel documents.
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Figure 1: High-Level Architecture Diagram

The Marc4j library was used to deserialize MARC databases for the library database use case. Java's JAXP
DOM was used for deserializing XML.

These frameworks were chosen due to previous experience with Web Applications, PHP, and ARC2,
as well as the various graphical toolkits often used in these applications. We also evaluated the viability of
using various di�erent RDF libraries for di�erent languages, such as the Redland RDF library for C, but
Java was chosen because it integrated well with the various libraries which would later be used for mapping
di�erent types of data into RDF. Namely, the HDF parser library for Java is very mature, and there are
also connectors for using CSV, XLS, MARC, and other high level format parsers. Not only reducing the
amount of parsing implementation which was available, Apache Jena took care of the serialization and the
deserialization of RDF, both in RDF/XML and RDF/N3. N3 is essentially the Turtle format, and is used
throughout information about this project as it is much more human-readable than RDF/XML.

3.1.2 Deepening Mappings

During work with the hyperspectral imaging use case, as well as merging the hyperspectral and
bathymetric data sets together through the enterprise data use case, we realized that the massive �at data
structures provided were just about as confusing as data subsumed into a relational database schema. There-
fore, we wanted ways of making links between di�erent key points of the transitory mappings. Therefore, we
would not have to sacri�ce the mapping but would also gain a cross-transitory-schema method of querying
for basic derived information.

We still experimented with these transitory mappings for some time, as they were much more
powerful than working with the data outside of di�erent vocabularies. We integrated many vocabularies,
both pre-existing and not, in order to make di�erent sets of data more compatible with each other. However,
for example, in the Hyperspectral use case we decided that we were doing far too much text manipulation
with regular expressions in our queries. We were being limited with the �at data model, so we wrote several
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mapping queries which translated the �at data model into something with a more hierarchical structure. To
achieve this, we mainly utilized categorization tags. These categorization tags proved to be so invaluable to
building queries, we implemented them in a generic way that could be speci�ed through the use of a very
simple tabular text �le. This enabled the potential of deepening any other data sources through using sets
of text �les containing these mapping tuples.

A simple tagging scheme is incapable of providing more than a �at map of tags. These tags are
powerful search tools, but provide little more than plain-text search. Additionally, these tags are a lot less
likely to be organized in a reasonable manner, and thusly, making normalization of data far more di�cult.
This tagging scheme reads strings found in textual data, and according to matches of regular expressions,
outputs an estimated tag set for any data object. For some types of highly speci�ed data formats, this
tagging will be a nearly perfect match, and for others which involve highly variable notations, there will be
a lot of visible mistakes. The only current solution we have discovered for this problem is to have mappings
for individual data sets.

3.2 The Query Builder Component

The most signi�cant and novel component of our framework is the visual query builder software itself,
shown in Figure (2). It was initially developed in JavaScript and PHP, using the user's choice of database
with the ARC2 RDF database interface library. Later, the frontend remained in JavaScript but the backend
was migrated to an Apache Jena Servlet, as ARC2 was never updated and implementing a SPARQL 1.1
parser in PHP was determined to be much more di�cult than simply replacing the PHP glue code. The
query builder allows the construction of most types of desired queries. Support for execution and viewing
the results of such queries is supported, however, it was not designed to execute the complex translational
queries as seen in the mapping component of the framework. This is mainly due to the extreme data volume
of such translations, and the design of this component is focused on availability as a web application for
quick online operations. Queries used for data translation may be exported from the query builder and run
externally, howerver.

The query builder works by providing the user three panels to work in. The �rst panel is the
vocabulary tree, which shows the user the tree view of a given vocabulary and allows him or her to select
Classes and Properties. This panel was �rst suggested while working on the Employee Database use case,
as there are many di�erent classes and relations, and a user must not be expected to manually input this
level of data.

The second panel is an Instance Viewer, which provides a listing of a given set of instances for a
Class. This panel makes it easy to select, for example, a given job position in a database, as it can be selected
from the Instances panel.

The third panel is the query tree itself. This tree is the most complex part of the query builder, and
is designed to still remain easy to read for most normal users who have some level of skill in the given �eld.
The query tree supports basic graph patterns, unions, and comparisons. It also supports as a literal value
anything which can be retrieved through either the �rst or the second panes, and it does support variables
for unknown values to be returned by either a select or a construct query.

3.3 The Visualization Component

Visualization for the query results, subsets of databases, or even queries themselves can be quite
di�cult to generate due to the very large number of possible nodes and edges. However, we decided that
the best possible visualization would be a very small subset of edges and nodes, when it comes to subsets of
databases. As far as displaying query results, we attempted to tabularize the outputs to some extent, which
makes viewing these particular results somewhat tolerable.

The use of this visualization component over large sets of data, such as entire graphs from one run
of the Hyperspectral translation, proved impractical. We generated vector graphics from the RDF data,
however there were so many nodes and so many connections between nodes that viewing in an image viewer
was not a realistic option. After attempting to format the graphics to print on a large plotting machine,
we determined that the space required for such a visualization (not to mention the paper and toner used!)
would be crazy. Therefore, we reconsidered visualizing such large databases in this manner. This type of
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Figure 2: Visual Query Builder Overview
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data is more easily and realistically viewed through linked data applications and interactive viewers which
only display a small subset of the graph at any given time. Likewise, a query engine also provides a way of
cutting back on the amount of data viewed at any given time.

For these reasons, automatic visualization wasn't useful unless they could be generated from the
actual query results. Fortunately, this only required a basic implementation of the construct query format
in the query builder. This was necessary anyway, as this lacked query type was also required to be used in
the hyperspectral use case for presenting the results of the use cases in a textual, hierarchical form.

Probably the simplest component to work with, as we have already generated the query at this
stage, as well as executed it and retrieved results. To display the query results on the screen, �rst we use the
Redland RDF tool �rapper� to convert the XML/RDF into dot notation. Then, a series of transformations
are applied to the data for more readable graphs, if the query designer utilized visualization labeling. Finally,
the dot graphviz application can be used to draw an undirected graph, which is essentially a more human
readable view of the textual SPARQL results.

The visualization component provides a bene�t to most users which are not familiar with the
SPARQL notation, and that is that they do not need to learn the graph language in order to read the
resulting graph.

4 Use Cases, Use Case Realizations, and Implementations

We have worked on a number of use cases in the process of testing our prototype framework. Most
of them were developed in-house. We did get expert input for some of the test cases, which greatly improved
our ability to debug user issues with the framework and �ll in the feature gaps.

The use cases were developed in a variety of ways. The �rst use case, namely the Employee Database
use case, was generated manually via the RDF database editor tool Protege. The Social Networking Database
was generated directly from social networking websites' own native RDF/XML providers, and the examined
subsets of vocabularies are thus very limited (namely, to FOAF and very little else). The Structured Descrip-
tive Data use case was handled by a automatic conversion process in Java which converted SDD/XML into
RDF. With the Library Database, we utilized a similar conversion process with a library designed speci�cally
for MARC catalog handling. Likewise with the Hyperspectral Database, except the source of the data was
HDF. The Bathymetry Data use case was produced via Taverna Workbench and manually converting the
process model of the original scientists' (likely using Matlab, though it is undetermined) into a new process
model which has provenance tracking information. The Enterprise Data use case was produced by combin-
ing the Bathymetry, Hyperspectral, and a manually generated database in Excel Spreadsheet format. These
three components were used as the basis of the use case.

These test cases were designed to simulate real-world tasks, and demonstrate how much easier they
can be achieved than through more traditional database systems. We limited our consideration of scalability
to moderately scaled systems, leaving out the possibility of a distributed database system. Nevertheless, it
should be quite easy to install a more decentralized database system into the framework as long as it has a
SPARQL endpoint. Unsurprisingly, virtually all scalable database backends will have an endpoint available.

In each of these test cases we will also describe several sample databases, in which the Visual Query
Builder software will be used in an environment similar to one which would be found in a corresponding
real-life organization. Despite being designed for students which are not experienced in a particular �eld
of endeavor, this data set is intended to resemble realistic data as much as possible. The databases which
follow include things as disparate as enterprise data to hyperspectral imagery. One single factor unites all of
them, the fact that each of the databases are within a single �eld of endeavor, and are intended on allowing
researchers to more easily work together by allowing semantic structures to form naturally.

4.1 Employee Database

This database demonstrates a business application used to solve the issue of resolving con�icting
data without excessive manual intervention. This use case implements an employee database which can
contain a very large variety of information on their employees. These pieces of data can include, but are not
limited to, the following list.
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Algorithm 4 Visualization Labeling Pipeline

# Get all properties as strings (P1)

PREFIX viz: <http :// muckdragon.info/visualization/viz#>

PREFIX fn: <http ://www.w3.org /2005/ xpath -functions#>

CONSTRUCT {

?subject viz:property ?property

?property viz:proptext ?proptext

} WHERE {

?subject viz:property ?property

?property viz:name ?propname

?property viz:value ?propvalue

BIND(fn:concat("<B>", ?propname , " </B>: ", ?propvalue) AS ?proptext)

}

# Get list of all properties as a property string (P2)

PREFIX viz: <http :// muckdragon.info/visualization/viz#>

PREFIX fn: <http ://www.w3.org /2005/ xpath -functions#>

PREFIX afn: <http :// jena.hpl.hp.com/ARQ/function#>

CONSTRUCT {

?subject viz:propstring ?propstring

} WHERE {

?subject viz:property ?property

?property viz:proptext ?proptext

BIND(fn:concat("{", afn:strjoin("|", ?proptext), "}") AS ?propstring)

}

# Get graphviz final output (P3)

CONSTRUCT {

?propstring1 ?predicate ?propstring2

} WHERE {

?subject ?predicate ?object

?subject viz:propstring ?propstring1

?object viz:propstring ?propstring2

}
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Query Node Bound Variable Range Filter Expression

rdf:type N ?q rdfs:Class empl:Employee
- empl:inDivision N empl:Division1
- empl:isEthnicity N empl:Ethnicity empl:NotHispanicLatinoOrSpanishOrigin
- empl:emplId Y ?id xsd:int

Table 1: Query Builder: List all Employees of a Speci�c Ethnicity

� General contact information

� Name, address, telephone number, email, etc.

� Worker type

� e.g. Contract, Salaried

� Citizenship status

� Race and ethnicity

� Disability status

� Authority hierarchy

� Skills and specializations

� Education

� Currently active projects

� Payroll

� Performance reports

4.1.1 List all Employees of a Speci�c Ethnicity

An enterprise database administrator is working with a database for a large, multidepartmental
corporation, which has multiple databases for each department. Many of these databases are updated
independently, and thus are never synchronized with each other. This lead to a major issue where some of
the departments have created an entirely di�erent schema for representation of certain data elements. For
example, there are multiple notations for race and ethnicity provided. The organization has now decided
to consolidate many departmental databases into a centralized schema, with the help of our software. This
would reduce the workload on database administration.

In this initial demonstration, we want to list all of the employees of a speci�ed ethnicity, under a
single division. Here we only want to display the employee ids. This demonstrates the use of a simple query
to retrieve a small subset of data. A diagram of the query which can be used in the query builder is in
Table (1). Note that the Range and Filter Expression are populated through selection in the user interface
from the left and middle panes, the Bound �ag is a single yes or no checkbox, and the Variable is set by the
user of the query builder. This allows the user to focus on the design of the query rather than the syntax of
SPARQL.

4.1.2 Get Metadata Information for Race and Ethnicity

There was initially metadata attached to the race and ethnicity �elds, and the database administrator
wants to review them to compare this data with the original classi�cations in the SQL database. For this, he
devises a query to show all of the race and ethnicity classes, so that he can do likewise on the SQL database
and make a di�erential comparison. In such test, he discovers that the only di�erence are the descriptions of
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Query Node Bound Variable Range Filter Expression

union N
rdf:type Y ?q rdfs:Class empl:USCensusRace
- rdfs:comment Y ?comment rdfs:Literal
rdf:type Y ?q rdfs:Class empl:USCensusHispanic
- rdfs:comment Y ?comment rdfs:Literal

Table 2: Query Builder: Get Metadata for Race and Ethnicity

Query Node Bound Variable Range Filter Expression

rdf:type Y ?q rdfs:Class empl:Employee
- empl:hasSkill Y ?skill empl:Skill
- - empl:subSkillOf N empl:Skill empl:Electrician
- empl:emplId Y ?id xsd:int
- empl:�rst Y ?�rst xsd:string
- empl:last Y ?last xsd:string

Table 3: Query Builder: List Employees with a Given Skill or Skill Set

the races and ethnicities which were automatically gleaned from Census classi�cations rather than manually
entered.

List all of the races and ethnicities and display their type and detailed comment in the table. This
demonstrates use of rdf:* ontology properties and the use of queries with Unions. The diagram of the query
which was used in the query builder is in Table (2).

4.1.3 List Employees with a Given Skill or Skill Set

The enterprise DBA wants to see how linked data can potentially be a better solution than traditional
SQL databases, and is not convinced that the worker skills system is su�ciently better to warrant replacing
the entire system. He wanted to be able to keep track of a list of skill hierarchies, so that individuals skilled
in a �eld could have their specializations (generated either through educational transcripts or �eld experience
working for the company) recorded in the database using a class-based inheritance.

This use case demonstrates building a query, which has multiple levels in the query builder tree. The
Employees ontology has been extended with information regarding the skill sets of the di�erent employees,
so that a member with the proper quali�cations can be found for a speci�c job. In this query, we will search
for employees who are quali�ed as electricians, and we will be able to see their specializations if they have
any.

The query description in English is: �List all of the employees who have the Electrician skill. From the
list, display their employee id, �rst and last names, and the specialization of the aforementioned skill. This
demonstrates the use of a query where instances have a hierarchy.� A diagram of the query in the query
builder is in Table (3).

4.1.4 Resolving Data Con�icts in Migration

The organization initially desired a way to keep track of what employees were in what division.
This was automatically generated from the individual division's database stores. However, many times
an employee who was not terminated but simply moved to another division wasn't removed from a given
division's roster, and so still appears in the listing. Therefore, a simple combination of all data stores is not
su�cient, and they needed to determine which persons were assigned to more than one division.

The query description in English is: �List all employees who match more than one Division. From the list,
display their employee id, �rst and last names, and each division. This sort of query demonstrates the ability
to discover misreported or duplicate data.� A representation in the query builder is in Table (4).
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Query Node Bound Variable Range Expression

rdf:type N ?q rdfs:Class empl:Employee
- empl:emplId Y ?id xsd:int
- empl:inDivision Y ?div
- empl:inDivision N (?div2 != ?div)
- empl:�rstName Y ?�rst xsd:string
- empl:lastName Y ?last xsd:string

Table 4: Query Builder: Resolving Data Con�icts in Migration

4.1.5 Detecting Potential Race and Ethnicity Data Con�icts

In the previous example we mentioned data con�icts arising from the collision between multiple divisions.
However, the public relations team has noted that they appear to have con�icting race and ethnicity data,
which could become an issue for governmental regulation on employment quotas. The database administrator
was not sure what was exactly meant by �con�icting� in this case, only that the race and the ethnicity
combination were not valid for an individual to possess, such as a Filipino who is not Hispanic. In English:
�List all of the valid races for an ethnicity, according to the employees who are currently in the database.
From the list, display the race and the linked ethnicity.� This type of query demonstrates the avoidance of
repeated data with the Distinct option, and may be used to �nd outlying occurrences where some data
was misreported. Table (5) presents this query and its results. As you may notice, there is a small result set
due to the pruning of duplicate entries.

4.2 Social Networking

Social networking sites, as of recently, have begun releasing a lot of their basic information via
RDF/XML as well as other web standards. For this use case, we focused on networks which utilized
RDF/XML, rather than other standards such as RSS.

This example demonstrates the usage of data aggregation techniques applied to RDF/XML gleaned
from social networking sites such as Facebook and Livejournal which o�er the data in a standard semantic
format, using such vocabularies as FOAF and DC.

It is possible to make an aggregate data set with other sources, such as DBPedia, which also o�ers
RDF/XML information derived from Wikipedia's �sidebar� style annotations. Geographic information, no-
table people, statistical information, scienti�c concepts, and more are all available in a format which is more
easily inserted into dynamic query building software such as the aforementioned framework.

This information can be used to infer more information based on location, place of employment,
friends' interests, etc. However, some of these tactics will be required simply to resolve con�icting data, such
as usernames which are di�erent on di�erent social networking sites as well as usernames which are the same
yet refer to completely di�erent people altogether.

4.2.1 Displaying a Person's (Public) Contacts for a Given Site

A social networking site company has decided that, with the advent of RDF for some other social
networking sites, that it would be advantageous to experiment with the retrieval of data from this network to
determine possible links between individuals. They wanted to include this type of data in their own system,
in order to make better guesses between whether two accounts are friends on another network. This would
allow them to make better suggestions to the users of potential friends. The company has tasked one data
mining expert to create a query which would retrieve a graph consisting of links between individual accounts.

It is possible to traverse a social networking site using solely linked data, to get a person's direct
and indirect contacts. For this, we will want to specify a maximum depth to search by chaining queries,
as we will not want an entire site database contacts. For each contact, there may be some basic contact
information, limited to email addresses, web pages, and instant messenger names. However, in this use case
we would like to show only names to reduce visual intensity.
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Options: Distinct
Query Node Bound Variable Range Filter Expression

rdf:type N ?q rdfs:Class empl:Employee
- empl:isEthnicity Y ?ethn empl:Ethnicity
- empl:isRace Y ?race empl:Race

Race Ethnicity

PuertoRican White
PuertoRican BlackAfricanAmerican

OtherHispanicLatinoOrSpanishOrigin White
OtherHispanicLatinoOrSpanishOrigin Filipino
NotHispanicLatinoOrSpanishOrigin Japanese
NotHispanicLatinoOrSpanishOrigin White
NotHispanicLatinoOrSpanishOrigin Samoan
NotHispanicLatinoOrSpanishOrigin BlackAfricanAm
NotHispanicLatinoOrSpanishOrigin AmericanIndianOrAlaskaNative
NotHispanicLatinoOrSpanishOrigin OtherAsian
NotHispanicLatinoOrSpanishOrigin Chinese
NotHispanicLatinoOrSpanishOrigin Vietnamese
NotHispanicLatinoOrSpanishOrigin NativeHawaiian
NotHispanicLatinoOrSpanishOrigin GuamanianOrChamorro
NotHispanicLatinoOrSpanishOrigin AsianIndian
NotHispanicLatinoOrSpanishOrigin Filipino
NotHispanicLatinoOrSpanishOrigin Korean
NotHispanicLatinoOrSpanishOrigin White

Table 5: Query Builder: Detecting Race/Ethnicity Data Con�icts

Algorithm 5 SPARQL Query: List User Contacts

PREFIX rdfs: <http ://www.w3.org /2000/01/ rdf -schema#>

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

PREFIX mydata: <http :// muckdragon.info/foaf/names#>

CONSTRUCT

{

?ljfoaf foaf:nick "arven"

?ljfoaf foaf:knows ?level1

?level1 foaf:nick ?name1

?level1 foaf:knows ?level2

?level2 foaf:nick ?name2

} WHERE

{

?ljfoaf foaf:nick "arven"

?ljfoaf foaf:knows ?level1

?level1 foaf:nick ?name1

?level1 foaf:knows ?level2

?level2 foaf:nick ?name2

}
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Query Node Bound Variable Range Filter Expression

Construct

foaf:nick Y ?ljfoaf xsd:string �arven�
- foaf:knows Y ?level1 foaf:Person
- - foaf:nick Y ?name1 xsd:string
- - foaf:knows Y ?level2 foaf:Person
- - - foaf:nick Y ?name2 xsd:string
Where

foaf:nick Y ?ljfoaf xsd:string �arven�
- foaf:knows Y ?level1 foaf:Person
- - foaf:nick Y ?name1 xsd:string
- - foaf:knows Y ?level2 foaf:Person
- - - foaf:nick Y ?name2 xsd:string

Table 6: Query Builder: List User Contacts

Algorithm 6 Command Line: Display Contact Map

#!/bin/sh

rapper -i turtle -o dot names.rdf > names.dot

dot names.dot -Tpdf -o names.pdf

4.2.2 Displaying a Logical Map of Contacts

The developer in charge of utilizing the framework for their social networking site was tasked with
providing a visual representation of what the query he developed in the previous example was doing. They
wanted a way to visualize the connections between friends, and provide this sort of visualization ability
to their users. This would provide a user-interface feature that was sorely lacking in their platform, and
potentially draw more visitors.

Graphical 'mind maps' have gained a lot of popularity on the web over the years, as they are
powerful tools for reviewing linked structures. These are very closely related to undirected graphs. This
use case demonstrates the display of a 'map' of one particular person's contacts, as in the �rst use case.
Undirected edges link the contacts together, emphasizing the re�exive nature of the relationships seen in the
FOAF vocabulary. The output of this use case is a formatted text �le which can be read and displayed by
the Unix directed graph visualization utility known as �dot.�

4.2.3 Lessons Learned in Visualization Component

This was the �rst use case in which a useful visualization was developed using the Unix utility dot
(including in the popular GraphViz package). One may note our use of a specialized viz vocabulary that
seems to serve no purpose other than to make the output results more complex. On the contrary, we use a
vocabulary that has no meaning in RDF, that is processed in a specialized pipeline described in Algorithm
(4). After this processing, a form of RDF suitable for viewing but unsuitable for data manipulation is
generated. This serves to remove some of the indirection provided by RDF, to provide a more viewer-friendly
representation.

4.3 Library Database Aggregation

A group of public libraries has a set of online card catalog databases that they are trying to make
more useful to potential users, by linking data with other library databases. The main purpose of this e�ort
was to make library users able to �nd a resource regardless of whether they had the resource in stock at the
current time. They wanted to allow users to look up titles and authors just as they had originally, with the
additional feature that they could track where a particular book was available if known.
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Figure 3: Uni�ed Conversion Software

Many libraries have settled on an ISO-2709 based data format for the storage and retrieval of their
bibliographic information called MARC21 (binary representation) and MARCXML (XML representation),
developed by the Library of Congress. This is a relatively arcane schema, which uses data �elds annotated
with tags, indices, and codes. These codes are not obvious without reading the actual MARC schema
speci�cation. However, unlike we noticed in the �rst major use case we implemented, the employee database,
these records are an actual standard and should not require any normalization of data before converting into
RDF. The database that is returned will be hierarchical, and the vocabulary used will be simple and mostly
'�at'.

4.3.1 Generating Materialized RDF View from XML Documents

This �rst use case demonstrates the power of the Marc to RDF conversion software, which transforms
Marc metadata information into RDF. Initially this conversion is done using a prede�ned mapping table,
which presents a hierarchical database (as the input binary does) using a �at vocabulary model. We are
using a Marc4j Java API with the Framework we have developed for conversion (Fig. 3) derived from
the Hyperspectral use case. However, this is a far simpler case, intended as a proof of concept that this
framework is scalable outward to other �elds. We used the Open Access Bibliographic Records created by
the University of Michigan totaling 684,597 records. This is a large data set, unlike the earlier Hyperspectral
use case which was a small subset of one scientist's work. As the database is licensed under the Creative
Commons Zero license, we are able to readily work with the large data set without the hassle of getting
permission to use each data set. This way we are more readily able to test the scalability of our framework
to large databases. Likewise, as it is a large data set that is pre-normalized, we may eliminate the step of
normalization of data and can simply allow the user to provide queries to the query engine directly without
inferencing.

4.3.2 Output Bibliographic Listings from a List of Titles

A student interested in several titles relating to archaeology has found some interesting books about
the topic on the Internet, but needs to �nd where they can be located. He goes to his library, and discovers
they have implemented a new card catalog system. It is a simpli�ed version of the original query builder, to
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Query Node Variable Range Expression

Union

rdf:type bibliographic:Record
- bibliographic:hasDataField
- - bibliographic:hasDataFieldTag �245�
- - bibliographic:hasSubField
- - - bibliographic:hasCode xsd:string
- - - bibliographic:hasData ?title contains(�these ruins are inhabited�)
- bibiographic:hasDataField
- - bibiographic:hasSubField
- - - bibliographic:hasCode ?code xsd:string
- - - bibliographic:hasData ?value
rdf:type bibliographic:Record
- bibliographic:hasDataField
- - bibliographic:hasDataFieldTag �245�
- - bibliographic:hasSubField
- - - bibliographic:hasCode xsd:string
- - - bibliographic:hasData ?title contains(�south asian archaeology�)
- bibiographic:hasDataField
- - bibiographic:hasSubField
- - - bibliographic:hasCode ?code xsd:string
- - - bibliographic:hasData ?value

Table 7: Query Builder: Bibliographic Listings

make multiple queries easier to perform as well as to make it easier to search for common attributes such as
title and author. From here, the student simply selects that he would like to look up titles, and enters the
two titles he was interested in.

This use case demonstrates simple querying operation on the generated view. The user will input
queries for individual titles of books, unifying the results together with the SPARQL union operator. A
query template in the format of the full-featured query builder is shown in Table (7).

4.3.3 Generating a Bibliography for a Given Author or Characteristic

The student in question now discovers that one such book is available from a nearby library, and
none are available at his own. He decides to drive there to check the book out quickly, but �rst he wants to
�nd out what books are available written by a particular author he favors, �Alice Brown�. He �nds several
books, but none particularly catch his interest as he has read all of the ones available from the library.

Another use of this type of data is generating a bibliographical listing for a given author. In this
case, no union is needed as the author remains the same. There are many other possibilities, but we use the
author as a criterion simply because it is likely to produce an amount of data suitable for human readability.
Another query, slightly modi�ed from the �rst, was described in the query builder. A representation of it
can be seen in Table (8).

4.3.4 Post-Mortem: Performance Issues

Unfortunately and unsurprisingly given the nature of the software in question, Jena was of very poor
performance when generating the initial model. In an e�ort to avoid having to rewrite the entire framework
for testing this use case, we have limited the size of the queried database to around 50,000 records. Jena's
database, like other triple store databases (and classical relational databases), tends to get slower and slower
with the more triples that are added. Quite often, a software application invoking Jena's database features
will hang waiting on Jena inde�nitely. Figure (4) demonstrates the loading of the entire University of
Michigan Library's free bibliographical database, where it appears to stall at loading 96000 records on a
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Query Node Variable Range Expression

rdf:type bibliographic:Record
- bibliographic:hasDataField
- - bibliographic:hasDataFieldTag �100�
- - bibliographic:hasSubField
- - - bibliographic:hasCode xsd:string �a�
- - - bibliographic:hasData ?authorl contains(�Brown�)
- - - bibliographic:hasData ?authorf contains(�Alice�)
- bibiographic:hasDataField
- - bibiographic:hasSubField
- - - bibliographic:hasCode ?code xsd:string
- - - bibliographic:hasData ?value

Table 8: Query Builder: Bibliographic Listings

system with 16GB of RAM and a AMD Phenom II X4 955c. There are con�guration options which would
likely speed up Jena slightly, but for the most part an entirely di�erent triple store infrastructure will be
needed. For a more performant and scalable infrastructure, a database system which can handle distributed
computing such as OpenLink Virtuoso should be used.

4.4 Ocean Bathymetry

Bathymetry is the study of the depths of ocean �oors and other bodies of water, equivalent to
topography of land. Through work with the NRL, I learned about the format of actual data real scientists
produced. Data relating to bathymetry and other geographic data is very contextual. It is important to
know not only what location some data was gathered on, but at what time and date as well as the exact
type of data one is dealing with. Data may be in gridded form or it may be a series of points. Normally,
this data is stored in a text sequence of �oating point values. It may not always be obvious whether data is
in gridded form or a series of points, so some level of detection and conversion is necessary. In this use case,
we already knew the type of data we were working with as well as when and where the data was collected.

4.4.1 Create a Provenance Work�ow for DeLaunay Triangulation

Provenance is the tracking of how events are related to data. These events occur at a speci�c
time and end at a speci�c time. Events can be started by people, living things, environmental processes,
and computer programs. Events can happen at a particular place, be triggered by another event, start
other events unfolding, etc. There are many possibilities for describing cause and e�ect relationships with
provenance.

We initially developed a Provenance work�ow(5) for a simple task dealing with Bathymetric data,
namely parsing a set of data and running DeLaunay Triangulation on it. This data resulted in a three-
dimensional colored mesh with vertex coloring. We developed the described Work�ow in Taverna Workbench,
a Provenance-aware process work�ow editor. This works in much the same way as a BPEL (Business Process
Execution Language) or BPM (Business Process Management) work�ow. The output of Taverna was a �at
�le representation as is used by the research scientists in this �eld, as well as a metadata �le containing RDF
resources.

4.4.2 Data Availability by Date: Bathymetry

Research scientists were interested in converting some of the bathymetry data with attached color
heights into three dimensional representations for a simulation. They wanted to �nd a large area which was
scanned fairly recently, as they wanted an interesting simulation that had a good chance of being notable.

The bathymetry data set available to us had some basic temporal information attached, which
was appended to the process provenance returned by Taverna. Having this provenance information allows
researchers to reuse data which may not even be able to be collected again given certain conditions (e.g.
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Figure 4: Jena Database Poor Performance
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Figure 5: Taverna Work�ow for DeLaunay Triangulation
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Query Node Variable Range Expression

Construct

category:hasCategoryTag ?q category:bathymetry
- prov:startedAtTime ?start
- prov:endedAtTime ?end
Where

category:hasCategoryTag ?q category:bathymetry
- measure:hasMeasurementTag measure:depth
- prov:startedAtTime ?start
- prov:endedAtTime ?end

Table 9: Query Builder: Bathymetry Data Timestamps

Query Node Variable Range Expression

Construct

category:hasCategoryTag ?q category:bathymetry
- space:hasBoundingBox ?bbox @wgs84:bboxintersect(N1,E1,N2,E2)
Where

category:hasCategoryTag ?q category:bathymetry
- measure:hasMeasurementTag measure:depth
- space:hasBoundingBox ?bbox @wgs84:bboxintersect(N1,E1,N2,E2)

Table 10: Query Builder: Bathymetry Data Timestamps

weather, major geological and oceanographic events, etc.) The cost savings due to not having to collect data
again for testing new methods or models would also be very bene�cial to the research scientist.

In this example, we have designed a graph query in the visual query builder, which is shown in Table (9).

4.4.3 Data Availability by Place: Bathymetry

The research scientists were not pleased with their simulation, nor was it really visually appealing
to anyone not in their �eld, as all the data was mostly �at. They wanted to be able to show some real
underwater terrain and some very deep extremes, so they decided to do a query for some data within a large
range containing some relatively interesting terrain. They got back several results, and chose the data set
which appeared to have the most accuracy.

Most types of sensor data is useless without the actual location of a study, and the bathymetry data
lacked any sort of internal metadata including location information. Therefore, this exercise shows the ease
of attaching geographic locations to existing unannotated data. However, once the data is annotated in this
manner, it becomes possible to associate bathymetry data with other data sets which may be related. With
a much larger bathymetry data set, one could correlate various data sets using computer vision algorithms,
if only some contain metadata.

In this example, we have designed a graph query in the visual query builder, shown in Table (10). The
@wgs84:bboxintersect expression is an alias to a prede�ned description of a bounding box in wgs84 format,
and returns all partially and fully intersecting bounding boxes.

4.5 Hyperspectral Imagery

Hyperspectral imagery refers to images taken by imaging equipment designed to capture a much
wider range of light than the visible spectrum. Also working with the NRL, I got another sample of what
real data from research was like there. There was some level of metadata. While the metadata was certainly
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Figure 6: Hyperspectral HDF Metadata

insu�cient for querying a vast range of data sets, it was possible to normalize the data to some extent which
would make it far more accessible to researchers in the future.

The hyperspectral data, stored in HDF, contains a large amount of metadata which must be trans-
formed into RDF vocabularies. These vocabularies handle data statistics, creating categorization tags,
process names and algorithms, as well as data provenance information about the individual data elements.
One such vocabulary, which associates variables with product names and algorithms used to produce said
data, was generated from an APS product list in Excel format.

4.5.1 Conversion of Hyperspectral Data into RDF Resources

The NRL was interested in curating their enormous data set which was mostly relegated to storage
rooms full of external media. Individual researchers had their own data, and this research was not shared well
between departments or within a single department well at all. They were interested in reducing research
costs by removing the need to duplicate the data acquisition process time and time again. Therefore, they
considered a way of extracting metadata and linking it to be a potential solution to their problem.

Initially, we converted the Hyperspectral Data into RDF Resources with the help of a custom piece
of Java software(6) which utilized the Java-HDF and Jena Libraries, and is capable of emitting a desired
serialization of the formats RDF/XML or the Turtle subset of Notation3 (N3). The software also contained
a test framework consisting of numerous di�erent queries, many of which are described in this section along
with their related graphical models.

To use the provenance framework conversion utility, one �rst selects an HDF �le (...) to be processed
into RDF, and then clicks the Load button. The external datasets are for the purposes of further use cases
tying in with the hyperspectral case. The Clear Model button clears the current Jena database for
processing of a di�erent �le. The Xml button toggles the behavior of the emitter to show either RDF/XML
or Turtle. The Save Model button sends the model data to a �le. The Save button simply sends the
results of a query to a �le. The Show Query button shows the currently selected query in the rightmost
text area. The Model button shows the current model in the same area, though this is not recommended
for very large data sets. Fortunately, the Hyperspectral data set is a single HDF �le worth of metadata, so
it is not overwhelming. The purpose of the Load External Dataset functionality will be described in
the later Enterprise Data use case.

4.5.2 Ocean Column Particulate Absorption

For this use case, we looked at the ocean column particulate absorption locations. We create a
bounding box as a search expression, set the measurement category value to �absorption� and the substance
category value to �particulate�. Then we return the location data via a SPARQL Construct query. This
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Algorithm 7 SPARQL Query: Locations for Ocean Column Particulate Absorption

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX prov: <http :// www.w3.org/ns/prov#>

PREFIX proc: <http :// muckdragon.info/data/processing#>

PREFIX sets: <http :// muckdragon.info/data/sets#>

PREFIX space: <http :// muckdragon.info/data/space#>

PREFIX wgs84: <http ://www.w3.org /2003/01/ geo/wgs84_pos#>

PREFIX measure: <http :// muckdragon.info/hyperspectral/tags/measure#>

PREFIX substance: <http :// muckdragon.info/hyperspectral/tags/substance#>

CONSTRUCT {

?variable space:hasBoundingBox (

[wgs84:long ?nw_1; wgs84:lat ?nw_2]

[wgs84:long ?ne_1; wgs84:lat ?ne_2]

[wgs84:long ?se_1; wgs84:lat ?se_2]

[wgs84:long ?sw_1; wgs84:lat ?sw_2] ) .

} WHERE {

?variable prov:wasGeneratedBy/prov:used/proc:produces ?product ;

measure:hasMeasurementTag measure:absorption ;

substance:hasSubstanceTag substance:particulate ;

sets:isContainedIn ?file .

?file space:hasBoundingBox (

[wgs84:long ?nw_1; wgs84:lat ?nw_2]

[wgs84:long ?ne_1; wgs84:lat ?ne_2]

[wgs84:long ?se_1; wgs84:lat ?se_2]

[wgs84:long ?sw_1; wgs84:lat ?sw_2] ) .

}

query is shown in Algorithm (7).

4.5.3 Particulate Absorption Distribution

In the next use case, we looked at the statistical distribution of particulate absorption, for each given
data �le that was a measurement of �absorption�, with a substance of �particulate�. All of the statistical
data, which was calculated by the Java HDF translation software, is returned associated with each data �le.
This query is described in Algorithm (8).

4.5.4 Algorithms in Particulate Absorption

Furthermore, we wanted to examine which algorithms were used to compute the particulate absorp-
tion values. In this case we were not interested in the input and output products, but solely the algorithms
used to generate the �nal product of particulate absorption.

4.5.5 Phytoplankton Absorption Location

The phytoplankton absorption query was essentially the particulate absorption query, with the only
change being the replacement of the substance �particulate� with �phytoplankton� suggesting that the user is
looking for information relating to the measurement of a quanti�able amount of phytoplankton. This query
is shown in Algorithm (7), with the changes described in this section.

4.5.6 Phytoplankton Absorption Distribution

In this case, the new researcher desired to know the statistical distribution of phytoplankton in the
list of data sets. This is the same query as the particulate absorption distribution query, the only changes
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Algorithm 8 SPARQL Query: Particulate Absorption Distribution

PREFIX proc: <http :// muckdragon.info/data/processing#>

PREFIX prov: <http ://www.w3.org/ns/prov#>

PREFIX stat: <http :// muckdragon.info/data/stats#>

PREFIX data: <http :// muckdragon.info/data/info#>

PREFIX measure: <http :// muckdragon.info/hyperspectral/tags/measure#>

PREFIX substance: <http :// muckdragon.info/hyperspectral/tags/substance#>

CONSTRUCT {

?stats

stat:n ?n ;

stat:min ?min ;

stat:max ?max ;

stat:sum ?sum ;

stat:sumsq ?sumsq ;

stat:mean ?mean ;

stat:geometricMean ?gmean ;

stat:variance ?variance ;

stat:standardDeviation ?stdev ;

stat:sumOfLogs ?sumOfLogs ;

stat:secondMoment ?secondMoment ;

stat:populationVariance ?populationVariance .

} WHERE {

?variable prov:wasGeneratedBy/prov:used/proc:produces ?product ;

data:hasStats ?stats ;

measure:hasMeasurementTag measure:absorption ;

substance:hasSubstanceTag substance:particulate ;

prov:wasGeneratedBy/prov:used ?algorithm .

?stats

stat:n ?n ;

stat:min ?min ;

stat:max ?max ;

stat:sum ?sum ;

stat:sumsq ?sumsq ;

stat:mean ?mean ;

stat:geometricMean ?gmean ;

stat:variance ?variance ;

stat:standardDeviation ?stdev ;

stat:sumOfLogs ?sumOfLogs ;

stat:secondMoment ?secondMoment ;

stat:populationVariance ?populationVariance .

}
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Algorithm 9 SPARQL Query: Particulate Absorption

PREFIX proc: <http :// muckdragon.info/data/processing#>

PREFIX prov: <http ://www.w3.org/ns/prov#>

PREFIX measure: <http :// muckdragon.info/hyperspectral/tags/measure#>

PREFIX substance: <http :// muckdragon.info/hyperspectral/tags/substance#>

CONSTRUCT {

?variable prov:wasGeneratedBy ?aname

} WHERE {

?variable prov:wasGeneratedBy/prov:used/proc:produces ?product ;

measure:hasMeasurementTag measure:absorption ;

substance:hasSubstanceTag substance:particulate ;

prov:wasGeneratedBy/prov:used ?algorithm .

?algorithm proc:name ?aname

}

being the replacement of the substance �particulate� with �phytoplankton� suggesting that the researcher is
looking for information relating to the substance of phytoplankton with the same measured e�ects - namely,
absorption. This query is described in Algorithm (8), with the aforementioned changes.

4.5.7 Algorithms in Phytoplankton Absorption

The new researcher was interested in �nding out what algorithms the original researchers employed
in the calculation of phytoplankton absorption, to determine if there were any potential accuracy gains that
could be made with using alternative algorithms. The only changes to the algorithm listing for particulate
absorption is the replacement of �particulate� with �phytoplankton�, as in the previous case. This query is
described in Algorithm (9), with the aforementioned changes.

4.5.8 Chlorophyll-a Concentration Location

Suspecting incorrectly applied algorithms, the new researcher examined the locations of chlorophyll-
a concentration, which is related to the phytoplankton absorption, in order to compare with overlapping
regions of phytoplankton absorption. The researcher changed the particulate absorption location query to
have a substance of �chlorophyll-a� and a measurement of �concentration�. This query is shown in Algorithm
(7), with the changes described in this section.

4.5.9 Chlorophyll-a Concentration Distribution

The new researcher used the chlorophyll-a concentration distribution to determine if it correlates
well with the phytoplankton absorption. The researcher changed the particulate absorption distribution
query to have a substance of �chlorophyll-a� and a measurement of �concentration�, as in the previous query.
This query is described in Algorithm (8), with the aforementioned changes.

4.5.10 Algorithms in Chlorophyll-a Concentration

To determine what algorithms are used in computing chlorophyll-a concentration, the researcher
repeats a similar query to the one which was utilized for phytoplankton absorption and particulate absorption.
The researcher changed the particulate absorption concentration query to have a substance of �chlorophyll-a�
and a measurement of �concentration�, as in the previous query. This query is described in Algorithm (8),
with the aforementioned changes.

4.5.11 Sea Surface Temperatures Location

Interested in sea surface temperature information relating to weather patterns, a scientist locates
this data set and performs a query on it for what areas of ocean this particular study gathered sensor data.
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The researcher changed the particulate absorption locations query to have no substance quali�er and a
measurement of �temperature�, as in the previous query. This query is shown in Algorithm (7), with the
changes described in this section.

4.5.12 Sea Surface Temperatures Distribution

Having discovered the data to be useful, the researcher looks up the statistical information for the
region in order to make proper comparisons with other regions. The researcher changed the particulate
absorption distribution query to have no substance quali�er and a measurement of �temperature�, as in the
previous query. This query is described in Algorithm (8), with the aforementioned changes.

4.5.13 Algorithms in Sea Surface Temperatures

Not familiar with the algorithms utilized in derivation of sea surface temperature via hyperspectral
imagery, the scientist used the PROV-O vocabulary's wasGeneratedBy/used triple path and speci�ed that
the desired value to be returned was simply the algorithm name. The researcher changed the particulate
absorption algorithms query to have no substance quali�er and a measurement of �temperature�, as in the
previous query. This query is described in Algorithm (8), with the aforementioned changes.

4.5.14 Total Suspended Particles Location

The researcher who was interested in particulate absorption ensures that this data set contains all
of the areas which data was calculated for particulate absorption. The researcher changed the particulate
absorption location query to have two substance quali�ers of �total� and �particulate�, as in the previous
query. This query is shown in Algorithm (7), with the changes described in this section.

4.5.15 Distribution of Total Suspended Particles

The researcher desired to �nd statistical information regarding the number of suspended particles in
the given area. The researcher changed the particulate absorption distribution query to have two substance
quali�ers of �total� and �particulate�, as in the previous query. This query is described in Algorithm (8),
with the aforementioned changes.

4.5.16 Algorithms in Total Suspended Particles

To verify that the algorithms used were properly well-established, the researcher also checked the
algorithms used in generating this data product. The researcher changed the particulate absorption algo-
rithms query to have two substance quali�ers of �total� and �particulate�, as in the previous query. This
query is described in Algorithm (9), with the aforementioned changes.

4.5.17 Data Availability by Date: Chlorophyll Concentration

A scientist interested in chlorophyll concentration, suspecting a major decrease in phytoplankton
after a chemical spill, decides to query all data sets to determine what date data was recorded on, in order
to process statistical information. The query is shown in Algorithm (10).

4.6 Enterprise Data

The enterprise data consists of a superset of the bathymetric and hyperspectral use cases. A project
list was presented to me, which was manually entered into an Excel spreadsheet. Each of the projects
listed was an accepted proposal from a single researcher who was considered the principal investigator. This
investigator was in charge of the project, and project information would be attributed to this person. For
each project, we were given a list of attributes. The �rst attribute, a project identi�er, was a pair of two
separate codes. The �rst numerical code was a �research level� of the given project, the second numerical
code was the two-digit year in which the project was proposed, and the third numerical code was the index
of the research proposal in terms of research level and year.
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Algorithm 10 SPARQL Query: Chlorophyll Concentration Date

PREFIX proc: <http :// muckdragon.info/data/processing#>

PREFIX sets: <http :// muckdragon.info/data/sets#>

PREFIX prov: <http ://www.w3.org/ns/prov#>

PREFIX measure: <http :// muckdragon.info/hyperspectral/tags/measure#>

PREFIX substance: <http :// muckdragon.info/hyperspectral/tags/substance#>

CONSTRUCT {

?file prov:startedAtTime ?start;

prov:endedAtTime ?end

} WHERE {

?variable prov:wasGeneratedBy/prov:used/proc:produces ?product ;

measure:hasMeasurementTag measure:concentration ;

substance:hasSubstanceTag substance:chlorophyll ;

sets:isContainedIn ?file .

?file prov:endedAtTime ?end ;

prov:startedAtTime ?start

}

� Project identi�er

� Scientist identi�er

� Type of data (e.g. temperature, bathymetry)

� Sensors used in experiment

� Purpose of data

� Location where data was acquired

� Title of project

4.6.1 Generate Enterprise Data from Spreadsheet

This enterprise data is relatively useless without a way to connect it with the actual data generated
by a given project. For this, it was required to convert the spreadsheet into an RDF database, using an
autogenerated vocabulary in the RDF translation software. Due to con�dentiality reasons, the numerical
indices referring to the given scientists could not be dereferenced into names or other identifying information.
Therefore, the generated enterprise data was integrated manually with a small subset of actual project data
(namely, the bathymetry and hyperspectral use cases). This small subset of linking information was stored
in enterprise-link.ttl, and the real converted enterprise data was stored in enterprise.ttl. An example of the
converted data is shown in Table (11).

4.6.2 Merge Enterprise Data Together with Provenance Framework

After we have translated the enterprise data into the RDF format we wish to use, we needed to
merge the Enterprise data with the Bathymetry data set as well as the Hyperspectral data set, otherwise we
would not be able to make any sensible queries. We could do trivial tasks such as look up titles of projects,
years project was achieved, or sensors used in a project, but this would be simple enough to implement
in a conventional database. We wished to integrate data, the main goal of the semantic web, and tie the
enterprise data into the other two research projects which we had concrete results from.

To this e�ect, we utilized the same Provenance Framework Application(6) which we also used in the
Hyperspectral use case. We simply added a few new queries to test our integration e�orts. We also added a
Load External Dataset button for this use case. If this Enterprise Data dataset is made available to it,
then all of the queries listed in this use case will be available to be tested.
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<http :// muckdragon.info/arv/request /6.1/07/1 >

rdf:type arv:Data;

arv:scientist <http :// muckdragon.info/arv/scientist /1>;

arv:dataType "Hyperspectral imagery", "IR imagery", "topographic LIDAR",

"bathymetric LIDAR", "thermal imagery ";

arv:sensor "hyperspectral", "NASA LIDAR";

arv:purpose "Understand the hydrodynamic sources of features detectable in

IR imagery of water surface ";

arv:location "Virginia Coast Reserve ";

arv:title "Joint LIDAR/Hyperspectral Data Collection ".

Table 11: Conversion Example: Enterprise Data

Algorithm 11 SPARQL Query: Bathymetry Research Enterprise Query

PREFIX : <http :// muckdragon.info/temp/enterprise -query0001#>

PREFIX proc: <http :// muckdragon.info/data/processing#>

PREFIX prov: <http ://www.w3.org/ns/prov#>

PREFIX sets: <http :// muckdragon.info/data/sets#>

PREFIX arv: <http :// muckdragon.info/arv/schema/>

PREFIX dc: <http :// purl.org/dc/elements /1.1/ >

PREFIX measure: <http :// muckdragon.info/hyperspectral/tags/measure#>

PREFIX substance: <http :// muckdragon.info/hyperspectral/tags/substance#>

PREFIX category: <http :// muckdragon.info/hyperspectral/tags/category#>

CONSTRUCT {

?s1 :usedSensor ?sens1 .

} WHERE {

OPTIONAL {

?v1 prov:wasAttributedTo ?s1 .

?r1 arv:scientist ?s1 .

?r1 arv:sensor ?sens1 .

?v1 category:hasCategoryTag category:bathymetry .

?v1 measure:hasMeasurementTag measure:depth .

}

}

4.6.3 Find Scientists: Bathymetry Research, Sensors Used

A researcher studying bathymetry wants to �nd any and all bathymetry related research which has
previously been conducted, and what sensors were used in the research. Therefore, the researcher queries
for the scientists who have been attached via enterprise data to actual projects. The query is shown in
Algorithm (11).

4.6.4 List Scientists' Data: Bathymetry

A researcher knows of a particular scientist's work, for instance they have read a publication by them
and would like to see what actual data sets they used in their research. This query is shown in Algorithm
(12).
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Algorithm 12 SPARQL Query: List Bathymetry Data by Scientist

PREFIX : <http :// muckdragon.info/temp/enterprise -query0001#>

PREFIX proc: <http :// muckdragon.info/data/processing#>

PREFIX prov: <http ://www.w3.org/ns/prov#>

PREFIX sets: <http :// muckdragon.info/data/sets#>

PREFIX arv: <http :// muckdragon.info/arv/schema/>

PREFIX dc: <http :// purl.org/dc/elements /1.1/ >

PREFIX measure: <http :// muckdragon.info/hyperspectral/tags/measure#>

PREFIX subst: <http :// muckdragon.info/hyperspectral/tags/substance#>

PREFIX category: <http :// muckdragon.info/hyperspectral/tags/category#>

CONSTRUCT {

?v1 prov:wasAttributedTo ?s1 .

} WHERE {

OPTIONAL {

?v1 prov:wasAttributedTo ?s1 .

?r1 arv:scientist ?s1 .

?r1 arv:sensor ?sens1 .

?v1 category:hasCategoryTag category:bathymetry .

?v1 measure:hasMeasurementTag measure:depth .

}

}

4.6.5 Find Scientists: Hyperspectral Research, and Sensors Used

A researcher in the hyperspectral �eld wants to locate all scientists who performed hyperspectral
research on a given data set, and also wants to know what sensors are associated with his or her studies. This
is equivalent to the Enterprise query described in Algorithm (11), but is more complex as there are three
di�erent categorizations that we are looking for, phytoplankton absorption, particulate absorption, and sea
surface temperatures.

4.6.6 List Scientists' Data: Hyperspectral

Noting some of the sensor types, the researcher queries the scientists' data which is related to the
hyperspectral imaging. This allows the researcher to decide which, if any, of the listed sensors actually apply
to the data being studied. This is the same as Algorithm(13), with the line in the Construct section �?v1
prov:wasAttributedTo ?s1 .� rather than �?s1 :usedSensor ?sens1�.

4.6.7 Review: Enterprise Data Schema

The enterprise data use case was one of the most successful use cases, as it integrated the Bathymetry
and Hyperspectral use cases with an additional Enterprise schema together under one schema. This schema
became automatically apparent from the union of the three schemas, and a visual representation of such
schema is presented as Figure (7). From here, we are able to see the interaction between the Tags (Substance,
Category, Algorithm, Sensor, Measurement) from the Hyperspectral data set, the Project Requests in the
Enterprise data set, as well as the PROV-O Activities, Entities, and Agents available from both Hyperspectral
and Bathymetry data sets.

5 Discussion

As this framework is for the most part a prototype which has proven itself through real-world use,
there are many design considerations in this system which may change. For instance, the user interface is
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Algorithm 13 SPARQL Query: Hyperspectral Research Enterprise Query

PREFIX : <http :// muckdragon.info/temp/enterprise -query0001#>

PREFIX proc: <http :// muckdragon.info/data/processing#>

PREFIX prov: <http ://www.w3.org/ns/prov#>

PREFIX sets: <http :// muckdragon.info/data/sets#>

PREFIX arv: <http :// muckdragon.info/arv/schema/>

PREFIX dc: <http :// purl.org/dc/elements /1.1/ >

PREFIX measure: <http :// muckdragon.info/hyperspectral/tags/measure#>

PREFIX substance: <http :// muckdragon.info/hyperspectral/tags/substance#>

CONSTRUCT { ?s1 :usedSensor ?sens1 . } WHERE {

OPTIONAL {

?v1 prov:wasGeneratedBy/prov:used/proc:produces ?p1 ;

sets:isContainedIn ?f1 .

?f1 prov:wasAttributedTo ?s1 .

?r1 arv:scientist ?s1 .

?r1 arv:sensor ?sens1 .

?v1 measure:hasMeasurementTag measure:absorption .

?v1 substance:hasSubstanceTag substance:phytoplankton .

} OPTIONAL {

?v1 prov:wasGeneratedBy/prov:used/proc:produces ?p1 ;

sets:isContainedIn ?f1 .

?f1 prov:wasAttributedTo ?s1 .

?r1 arv:scientist ?s1 .

?r1 arv:sensor ?sens1 .

?v1 measure:hasMeasurementTag measure:absorption .

?v1 substance:hasSubstanceTag substance:particulate .

} OPTIONAL {

?v1 prov:wasGeneratedBy/prov:used/proc:produces ?p1 ;

sets:isContainedIn ?f1 .

?f1 prov:wasAttributedTo ?s1 .

?r1 arv:scientist ?s1 .

?r1 arv:sensor ?sens1 .

?v1 measure:hasMeasurementTag measure:temperature .

}

}
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Figure 7: Enterprise Data Schema in Modelio

still not as powerful and intuitive as possible. The user still has to specify variable names for individual
results in a query, and manually type literals which are not string or integer literals.

The design also contained no reference to good security practices, and there are few SPARQL APIs
which provide anything along the lines of SQL Bound Parameters. Another security consideration is the lack
of authentication between the client and the server. For a production system used by a real organization,
authentication as well as user permissions is a must, but for this prototype the user account system would
likely be too large of an undertaking to make into a useful feature. There is also a lack of security on the
database backend itself, with a simple HTTP request all that is necessary to read all of the data contained
within the triple store.

The translation component of the framework would be best suited to be redesigned at least some-
what. The current method of hardcoding mappings between data formats and RDF is in�exible and will
certainly not work for every user's purposes. A more �exible design would likely include a very simple
domain-speci�c language for specifying direct mappings as well as categorization tags for deepening data
structures. While the initial components (such as the categorization tag mapper) are developed, further
development would be required to make things as seamless to the user as possible.

There are quite a few improvements which could be made to the user interface. More varied opera-
tions on return sets from subqueries should be available (full/inner/outer joins, etc), decent drag-and-drop
support in the user interface, and a method of inserting URI literals without a user manually typing them.
A more powerful result set visualization system, rather than the limited options of tabular data or serialized
RDF in Turtle format, would certainly be desired.

5.1 Further Utilization

There are further potential uses for a curation framework such as this. Any collection of data which
is di�cult to navigate in traditional hierarchies may be aided by these methods, and automated ways of
attaching metadata (EXIF, etc) may be utilized as well. The current state-of-the-art desktop environments
such as KDE4 are already starting to use these methods to help users organize their own data. In the case
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of KDE4, they are using OpenLink Virtuoso as well as a basic Qt4 GUI to provide a query builder interface
of their own. This is a good choice for a database server, as Apache Jena would not integrate due to its Java
API, and may lack the performance required for even a single heavy data user's �le management purposes.

6 Conclusions

Through our research into the semantic web, we conclude that there are indeed a very large number
of issues with data traceability and reusability, especially with large organizations that have a mass of data.
This is especially evident in the case of the bathymetry and hyperspectral data, which are real data sets that
were developed in a traditional research setting. There was no framework for cataloging the resources even
in a very primitive way. Bathymetry data had practically no associated metadata and it was all retrieved
manually. Likewise, the enterprise data set was developed over a short period by manual data entry. Despite
the fact that data tends to become unmanageable over time, we have demonstrated methods which can be
used, in part, to mitigate the e�ects of poor data management practices by providing a small amount of data
management in manageable sizes to users, without the requirement of manually creating a comprehensive
schema and database.
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