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Abstract 

Positional proteomics is emerging as an attractive technique to characterize 

protein termini, which play important biological roles in cells. Even with the 

advances in past decades, there still are areas for improvement. This thesis focuses 

on improving data quality and assignment confidence in positional proteomics.  

A novel workflow was designed for the large-scale identification of protein 

N-terminal sequences. 4-sulfophenyl isothiocyanate (SPITC) is used for N-termini 

sulfonation; Upon higher energy collisional dissociation (HCD), SPITC peptides in 

electrospray ionization ESI generate predominately y-type ion series; such 

simplification of spectra enables the identification of N-termini with high fidelity. 

The presence of b1 + SPITC product ions upon HCD furthers the confidence for N-

terminal identifications.  Secondly, sulfonated N-terminal peptides possess one 

negative charge site at low pH, which was exploited to enrich the SPITC modified 

N-terminal peptides by electrostatic repulsion hydrophilic interaction (ERLIC) 

chromatography. Such enrichment process allows both N-termini enriched and N-

termini deficient fractions to be collected and analyzed by LC-MS/MS. This 

method was applied to an E. coli cell lysate, identifying approximately 350 N-

terminal peptides (85% represented neo-N-termini from protein degradation and 

15% from leading methionine excision). These N-terminal peptides represented 
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274 distinct E.coli proteins, 224 of which were also identified in the analysis of 

flow-through fractions from internal peptides.   

Another approach we took to boost the identification confidence is by 

exploiting iTRAQ (isobaric tag for relative and absolute quantitation) in the 

positional proteomics workflow. This approach allows for multiplexed comparison 

between different samples, and thus is well-suited for degradadomics analyses 

where degraded samples are compared to control samples.  Both control and 

protease treated sample are labeled by different tags which allows direct 

comparison of protein N-termini with neo-N-termini. In addition, samples are 

analyzed duplicate by labeling with two tags, aiming for quick validation of 

peptides by internal replicates. In this study, Asp-N digested E.coli cell lysate is 

taken as a model system. A total of 500 N-terminal peptides, corresponding to 370 

proteins, were identified with high confidence in one experiment, with 87% of 

those proteolytic products matching the expected protease digestion specificity, 

validating the assignment accuracy of this approach. 

Keywords: Positional proteomics; Sulfonation; SPITC; ITRAQ modification. 
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Chapter 1. Introduction 

1.1 Introduction of Proteomics 

Proteomics is the large-scale study of proteins particularly their structures 

and functions.1,2 Proteomics is the next step in the study of biological systems after 

genomics and transcriptomics, since proteins are vital parts of living organisms as 

the main components of the physiological metabolic pathways of cells. Mass 

spectrometry (MS) has increasingly become a key technology for protein sequence 

analysis in the past decade, especially for complex mixtures, due to significant 

advances in instrumentation, sample preparation techniques and data interpretation 

algorithms. 

Large scale, “bottom-up” (also called “shotgun”) characterization of cellular 

proteomes is the most widely adapted method in proteomics study.3,4,5,6,7,8,9,10 A 

typical workflow for high-throughput bottom-up characterization is composed of 

protein extraction from cells, enzymatic digestion, LC-MS/MS analysis and 

database searching which correlate MS/MS spectra with sequence and ultimately 

the parent proteins.  

Proteome systems typically encompass thousands of individual components 

present in concentrations ranging over several orders of magnitude;11 therefore, to 

reduce the complexity, multidimensional liquid chromatography (MDLC) is 
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generally used for fractionation prior to MS analysis.12 , 13  The combination of 

online/offline strong cation exchange (SCX) with reversed-phase (RP) 

chromatography is the most widely used MDLC due to the good orthogonality of 

the methods.14,15,16 Peptides are separated by charge in SCX and by hydrophobicity 

in RP. The use of high concentrations of salt in SCX may cause problems in 

downstream analysis; therefore, online desalting of the collected fractions from 

SCX with the trap column is the common practice,17 even with the drawback of a 

high tendency for autosampler blockage and quick deterioration of the trap 

column. Extensive separation of components aids in the protein coverage; it is now 

possible to identify more than 10,000 proteins from human cells.18,19 

1.2 Isobaric Labeling in Proteomics 

A major aspect of proteome research is quantitative proteomics aiming at 

measuring relative changes in proteins expressed in cells or tissues of different 

states, e.g. healthy versus disease state.20,21,22,23,24 Measurement of relative changes 

is simplified when two or more analytes can be labeled distinctly, combined, and 

analyzed as a mixture. Labeling schemes based on isotopic labeling, in which all 

labeled versions of a single peptide co-elute from LC, are especially powerful, as 

the relative abundance for this peptide corresponds directly to the relative signal 

intensity due to identical ionization efficiencies. Accordingly, a significant effort 



3 

 

has been made to develop stable isotopic labeling methods to facilitate downstream 

MS analysis for direct comparison.25,26,27,28 

Isotopic labeling with stable isotopes is a well-known method for "tagging" 

specific proteins. Such metabolic labeling is applicable to cell culture, e.g., through 

growth in isotope-labeled media (e.g., 15N media29,30). Another approach is stable 

isotope labeling by essential amino acids in cell culture (SILAC)31,32 which  relies 

upon addition of intact isotopically-labeled amino acids. The most commonly used 

stable isotope-encoded amino acids are 13C6-lysine or 13C6-arginine.33,34,35,36 The 

biggest advantage of SILAC compared to other isotope labeling techniques is that 

the SILAC technique offers minimum technical variations in sample processing 

due to the fact that the isotope is introduced into the cell culture, the earliest 

possible sample mixing stage. 

Most in vitro labeling techniques are based on the formation of a covalent 

bond between the labeling reagent and the specific functional groups in 

polypeptides. Isotope-coded affinity tag (ICAT) is among the first of such 

applications reported in 1999.37 ICAT consists of three elements: an iodoacetamide 

group to modify cysteine residues, an isotopically coded linker, and a biotin tag for 

the affinity isolation of labeled proteins/peptides (refer to figure 1.1). The process 

starts with ICAT labeling, followed by trypsin digestion, then, the ICAT labeled 

peptides are enriched by affinity chromatography via a biotin tag, resulting in 
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reduction of sample complexity. The concept is innovative and widely accepted.38 

However, the method provides limited coverage over the proteome, as the cysteine 

content in proteins is fairly low giving poor coverage of the digested peptides, and 

many proteins have no cysteine. 

Among all the isotopic labeling techniques, the iTRAQ (isobaric tags for 

relative and absolute quantification) method shows significant advantages.39,40,41,42 

The iTRAQ reagent reacts with proteolyzed peptides to form an NHS ester 

derivative with primary amino groups. Differentially labeled peptides appear as 

single peaks in MS scans due to the isobaric mass design of the iTRAQ reagent 

(refer to figure 1.1); such multiplication of peptide abundance results in 

improvement of sensitivity. When subjected to MS/MS, the isotope encoded 

reporter ions provide relative quantitative information on peptides and ultimately 

on proteins (refer to figure 1.2). In a complex mixture, iTRAQ samples subjected 

to independent data acquisition in LC-MS/MS have a tendency to allow 

identification of only high abundance proteins in a traditional proteomics 

workflow. Both 4-plex and 8-plex versions of iTRAQ are commercially available.  

In this thesis, effort has been made to incorporate iTRAQ with positional 

proteomics to monitor protease substrates in E. coli cell lysates. 

 



 

Figure 1.1 Scheme for chemical labeling of ICAT and iTRAQ

 

Figure 1.2 Illustration of MS and MS/MS of iTRAQ labeled peptide

 

1.3 Positional Proteomics

The concept of positional proteomics is that a protein can be identified by a 

single, position-defined peptide, with the two most obvious positional locations 

5 

Scheme for chemical labeling of ICAT and iTRAQ

Illustration of MS and MS/MS of iTRAQ labeled peptide

Positional Proteomics 

The concept of positional proteomics is that a protein can be identified by a 

defined peptide, with the two most obvious positional locations 

 

Scheme for chemical labeling of ICAT and iTRAQ 

 

Illustration of MS and MS/MS of iTRAQ labeled peptide 

The concept of positional proteomics is that a protein can be identified by a 

defined peptide, with the two most obvious positional locations 
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within every protein being the N- and C-termini. 43  Sample complexity is 

dramatically reduced in N-terminal or C-terminal enriched samples of proteolytic 

digests. There are two driving forces in this field to motivate the advance of this 

technology. One is the proteome annotation,44 where the termini play important 

roles in protein function, mutation and post translational modification.45 ,46  The 

other is the development of degradomics,47,48 which focuses on the elucidation of 

protease substrate and cleavage sites. The newly generated termini after protease 

treatment are called neo-N-termini or neo-C-termini, in order to differentiate them 

from mature (innate) protein termini. 

To identify terminal peptides, the normal proteomics workflow is no longer 

suitable due to the fact that the terminal peptides are buried in the sea of internal 

tryptic peptides. The sample complexity makes it difficult to select and detect the 

terminal peptides during MS/MS acquisition. Therefore, terminal peptide 

enrichment prior to MS analysis is essential in such workflow development. 

Enrichment greatly simplifies the proteome by using single terminal peptides for 

protein identification, which increases dynamic range and proteome coverage for 

low abundant proteins.  

It is essential to differentiate the termini peptides from the internal peptide in 

positional proteomics, since the same functional groups that define the protein 

termini in the sample, i.e. α-amine and carboxyl groups are presented by internal 



 

proteolyzed peptides.  In addition, primary amine and carboxylic groups are 

present in the side chains of lysine and acidic amino acid residues, respectively. 

The following paragraphs summarize strategi

positional proteomics.  

Positional proteomics workflow can be roughly divided into the following 

modules shown in figure 1.3: (1) labeling of termini, (2) proteolysis, (3) 

enrichment, and (4) LC-MS/MS analysis.

Figure 1.3 Typical positional proteomics workflow

 

The enrichment process can be categorized as either

approach or a negative selection approach. The former modif

tag that enables targeted enrichment of

mixture. The latter takes advantage of the newly generated functional groups 

(primary amine for N-termini and carboxylic acid for C

which can be conjugated to 

enrichment of the targeted termini. 

N- or C-
terminal 
labeling

Protein 
mix

Proteolysis
Labeled 
protein 

mix
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proteolyzed peptides.  In addition, primary amine and carboxylic groups are 

present in the side chains of lysine and acidic amino acid residues, respectively. 

The following paragraphs summarize strategies that have been applied in 

Positional proteomics workflow can be roughly divided into the following 

modules shown in figure 1.3: (1) labeling of termini, (2) proteolysis, (3) 

MS/MS analysis. 

Typical positional proteomics workflow 

The enrichment process can be categorized as either a positive selection 

negative selection approach. The former modifies the termini with a 

tag that enables targeted enrichment of terminal peptides from the digested 

advantage of the newly generated functional groups 

termini and carboxylic acid for C-termini) after digestion, 

which can be conjugated to another matrix and depleted, resul

enrichment of the targeted termini.  

Proteolysis Enrichment
Labeled 
peptide 

mix
LC-MS/MS

Enriched 
labeled 
termini

proteolyzed peptides.  In addition, primary amine and carboxylic groups are 

present in the side chains of lysine and acidic amino acid residues, respectively. 

es that have been applied in 

Positional proteomics workflow can be roughly divided into the following 

modules shown in figure 1.3: (1) labeling of termini, (2) proteolysis, (3) 
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other matrix and depleted, resulting in the 

MS/MS
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1.3.1 Positional Proteomics approach for N-terminal analysis  

1.3.1.1 Enrichment of protein N-termini by positive selection using 

biotinylation 

A method using biotinylation to positive select N-terminal peptides was 

reported by Kuhn et al in 2003.49 This protein tag technology was later on adapted 

and further developed by the Salvesen lab to identify protease substrates.50 In this 

method, the side chains of lysine are first blocked by guanidination, and then free 

alpha-amines (protein N-termini) are reacted with a disulfide-linked biotin 

derivative (sulfosuccinimidyl 2-(biotinamido)-ethyl-1, 3-dithiopropionate (sulfo-

NHS-SS-biotin)). After trypsin digestion, the peptide mixture is incubated with 

immobilized streptavidin beads, which retains the N-terminal peptide. The last step 

of sample preparation is to elute the N-terminal peptide by reducing the disulfide 

bond. This workflow was applied to study in vivo constitutive proteolysis in E. 

coli, yeast, mouse and human samples and determine the specificity of methionine 

aminopeptidases, signal peptidases and mitochondrial peptidases.  

Another biotinylation protocol was reported by Wells et al. based on subtiligase 

in 200851. An engineered variant of subtilisin called subtiligase was used, which 

shows absolute selectivity for ligation of alpha-amines, forming a biotinylated 

peptide ester containing a tobacco etch virus (TEV) protease cleavage site. Proteins 



9 

 

are then denatured, reduced and alkylated before trypsin digestion. Then, the 

biotinylated N-terminal peptides are captured by immobilized streptavidin, 

resulting in the separation from internal and C-terminal peptides. The N-terminal 

peptides are eventually released by TEV digestion, with tagging of Ser-Tyr-

dipeptides at the N-termini as a signature for identification by LC-MS/MS. The 

subtiligase method was validated by analysis of the proteome of living and 

apoptotic Jurkat cells. It was reported that 333 unique cleavage sites in 282 

proteins were identified after aspartic acid residues and were therefore linked to 

caspase activity in etoposide treated apoptotic Jurkat cells. A separate study using 

this technique combined with SILAC in cell culture to identify caspase-1 substrates 

in vitro and in cell-based inflammation models was also reported.52 

A third biotinylation method incorporated Edman degradation in the 

workflow 53 . After protein is denatured, reduced and alkylated, phenyl 

isothiocyanate (PITC) is used to block all primary amines in the proteome. Then, 

trifluroacetic acid is used to break the peptide bond between the first and second 

amino acid of PITC modified proteins, while PITC modified ε-amines (i.e. lysine 

side chains) remain intact in this treatment. The next steps are similar to the 

aforementioned method. The newly generated free α-amine is biotinylated with 

sulfo-NHS-SS-biotin, followed by trypsin digestion. Streptavidin is used to trap 

biotinylated peptides, which is further released by disulfide bond reduction. The 
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enriched N-terminal peptides in this case are one amino acid shorter than the true 

N-termini. This approach was validated by a mixture of known proteins and 

applied to characterize the constitutive N-terminal processing events in Jurkat 

cells. Both known and new caspase substrates were identified in the cisplatin-

induced apoptosis of Jurkat cells. 

A fourth biotinylation-related method in degradomics is called PICS 

(proteomic identification of protease cleavage) developed by the Overall lab54. 

This approach differs from the other approaches in that it is peptide centric and not 

protein/substrate centric. First, proteins are digested by trypsin or endoproteinase 

Glu-C, and then all primary amines are blocked by methylation. The peptide 

mixture is treated as a library and incubated with a protease of interest. Neo-N-

terminal peptides are biotinylated and affinity-selected, followed by LC-MS/MS 

analysis. This approach was applied to profile serine (thrombin, neutrophil 

elastase, cathepsin G), aspartic (HIV-1 protease) and cysteine proteases (cathepsin 

K, caspase-3, caspase-7).55 

The advantage of positive selection using biotinylation is the high efficiency of 

enrichment due to the high specificity between biotin-streptavidin. A drawback of 

this type of technique may arise from amino acid bias during the biotinylation 

reaction. For example, the secondary α-amino group of proline is less reactive 

compared to the primary α-amino group of other amino acids.56 In addition, in 
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positive selection, mature proteins with acetylation, dimethylation or cyclization at 

N-termini will not be detected. 

1.3.1.2 Enrichment of protein N-termini by negative selection using 

biotinylation 

McDonald et al
43 reported a protocol based on biotinylation for negative 

selection in 2005. Here, all the primary amines in a proteome sample are acetylated 

first, followed by trypsin digestion. The internal peptides and C-terminal peptides 

containing an α-amino group at a newly generated N-termini are biotinylated and 

removed by passing through immobilized streptavidin beads. The simplification 

effect was shown in chicken skeletal muscle and E. coli cell lysate.  

1.3.1.3 Enrichment of protein N-termini by negative selection using amine 

reactive reagent 

There are a few reports using amine reactive reagents to scavenge the newly 

generated internal peptides after digestion, thus enriching N-terminal peptides. The 

basic workflow is as follows: (1) The primary amines in proteins are acetylated or 

dimethylated, followed by trypsin digestion. (2) The internal peptides and C-

terminal peptides are scavenged by amine reactive reagent and the flow through, 

which contains enriched N-terminal peptides, is collected.  
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McDonald et al
57 used NHS activated Sepharose beads to scavenge internal 

peptides in 2006 and reported the identification of about 300 E. coli protein N-

termini.  

Mikami and Takao used an isocyanate resin to capture internal peptides.58 The 

performance of isocyanate resin was demonstrated by applying it to several peptide 

mixtures, including proteolytic digests.  

Kleifeld et al
47 employed a self-synthesized dendritic polyglycerol aldehyde 

polymer to capture tryptic and C-terminal peptides, which can be conveniently 

removed by centrifugation.  It is claimed that the binding of tryptic peptides of 

such polymer is up to 2.5 mg peptide/ mg polymer, a more than ten-fold 

improvement in capacity over amine reactive resins. This approach incorporated 

with isotopic labeling under various formats is a valuable venue for N-terminal 

positional proteomics research and it is further explained in the following section 

of N-TAILS.  

1.3.1.4 Protein N-terminal identification by N-terminal amine based 

isotope labeling of substrates (N-TAILS) 

A detailed and streamlined protocol of N-TAILS was described by the Overall 

lab in 2011, 59  based on previous development and applications by the same 

lab.45,60,61 The highlight of TAILS is that it uses negative selection to enrich for all 
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N-terminal peptides and uses primary amine labeling-based quantification as the 

discriminating factor. Labeling is versatile; the authors elaborate dimethylation-

TAILS, SILAC-TAILS and iTRAQ-TAILS in the current protocol. This method is 

suited to many applications, including biochemical and cell culture analysis in 

vitro as well as analysis of tissue samples from animal and human sources in vivo.  

The TAILS workflow is composed of the following steps (refer to figure 1.4): 

protein collection and proteolysis by the test protease; isotopic labeling and 

primary amine blocking followed by tryptic digestion; negative selection by a high 

efficiency polymer (dendritic polyglycerol aldehyde polymers); identification of 

N-terminal peptides by LC-MS/MS; identification of protease substrates by the 

sequence of the cleavage sites, or loss of cleaved natural N-terminal peptides. 

To improve coverage, it is recommended to employ two or more digesting 

proteases other than trypsin, e.g. Glu-C or chymotrypsin.  

 



14 

 

 

Figure 1.4 Scheme for N-TAIL workflow 
59
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proteins, in N. meningitides and 928 N-terminal peptides, corresponding to 572 

proteins, in S. cerevisiae.  

1.3.1.6 Enrichment of protein N-termini by combined fractional diagonal 

chromatography (COFRADIC)  

In 2003, the N-terminal combined fractional diagonal chromatography 

(COFRADIC) technology introduced by the Gevaert lab63 was the first positional 

proteomics technology by which N-terminal peptides were enriched by depleting 

other peptides (refer to figure 1.5). This method progressed in the following 

years64,65,66,67,68and the latest protocol was reported in 2011.69 The protocol can be 

briefly described as the following: Before trypsin digestion, proteins undergo 

denaturation, reduction and alkylation. Then, all primary amines are blocked by 

trideutero-acetylation (to distinguish in vitro acetylation from in vivo acetylation) 

so that trypsin digestion will produce only Arg-ending peptides. The peptide 

mixture is incubated with glutamine cyclotransferases and pyroglutamyl amino 

peptidases, respectively, to convert N-terminal glutamines into pyroglutamates and 

remove these pyroglutamates from the peptide backbone. The above mixture is 

then loaded onto an SCX cartridge at low pH, where N-terminal blocked peptides 

are poorly retained and are collected in the flow through fraction since they carry 

one less positive charge compared to internal peptides at low pH. This peptide 

mixture is then separated in RP-HPLC and primary fractions are collected. Each of 
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the above collected fractions are treated with 2,4,6-trinitrobenzenesulfonic acid 

(TNBS), which reacts with the primary amine of any remaining internal peptides to 

introduce a very hydrophobic trinitrophenyl group with these peptides. Each 

treated fraction is put through the second RP-HPLC separation using identical 

chromatographic conditions as in the first separation, where the N-terminal 

peptides elute within the same time interval as during the primary run, however, 

the TNBS modified internal and C-terminal peptides carrying a large hydrophobic 

group elute much later in RP-HPLC, thus resulting in separation from the neo-N-

terminal and protein N-terminal peptides.  

 

Figure 1.5 Scheme for COFRADIC for N-terminal peptides 
63
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The COFRADIC technology has been applied in various biological systems 

and has been proved to be a reliable approach for protease-related studies. Stable 

isotopes for labeling purpose are introduced in the protocol in biological 

applications. Oxygen-18 was used to label peptides during trypsin digestion in a 

human Jurkat cell culture; a total of 93 in vivo protease-processed sites in 71 

proteins associated with Fas-induced apoptosis were identified. Oxygen-18 

labeling together with COFRADIC was also used to map the proteolytic process in 

anthracycline-induced acute myelogenous leukemia cell death.66 

SILAC can also be incorporated into the COFRADIC workflow (refer to 

figure 1.5), Arginine is chosen for SILAC labeling, since tryptic digestion 

produces arginine-ending peptides. The control cells use regular arginine in cell 

culture while the sample cells use 13C6 arginine in cell culture. Purified proteins in 

the heavy labeled cells are treated with protease, and then combined with the 

purified proteins in control cells. The following steps are the same as normal 

COFRADIC. More than 800 cleavage sites in 332 human and 282 mouse 

substrates for granzyme b were identified using SILAC combined with 

COFRADIC.70  

1.3.2 Positional Proteomics approach for C-terminal analysis  
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Generally speaking, C-terminal analysis is not as widely available as the N-

terminal analysis due to the formidable technical difficulties of selective activation 

of carboxylic acids. Current methods of isolating C-terminal peptides are 

predominantly affinity-based procedures. The application of mass spectrometry to 

C-terminal analysis in the literature related to our topics is as follows: 

1.3.2.1 Use anhydrotrypsin-lysine affinity to isolate the C-terminal 

peptides 

An elegant approach to isolate C-terminal peptides was reported in 2000.71 

Basically, a sample is digested with endoprotease Lys-C, and then anhydrotrypsin 

coupled onto agarose beads is applied to the digest sample. Anhydrotrypsin is a 

catalytically inert variant of trypsin capable of binding peptides with C-terminal 

lysine or arginine. Thus, the N-terminal and internal peptides are bound to 

anhydrotrypsin beads; after centrifuging to get rid of beads, the supernatant only 

contains the original C-terminal peptides for further analysis. However, this 

method is not suitable for proteins ending with lysine or arginine (~ 84% of 

proteins do not end with lysine or arginine). This approach lacks robustness; the 

amount of anhydrotrypsin beads was adjusted for each of the proteins investigated. 

The reason is that a small amount of anhydrotrysin beads is not sufficient to 

capture the internal peptides, while a large excess of beads will induce non-specific 
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binding of C-terminal peptides to the beads. For a complex system with a large 

dynamic range, the integrity of the results cannot be ensured.  

1.3.2.2 Use of DITC resin to isolate C-terminal peptides 

In an approach described by Kuyama et al., a sample is initially digested with 

endoprotease Lys-C, then TMPP modification is selectively applied to cap the N-

terminal amino group. The reagent for TMPP modification is 

succinimidyloxycarbonylmethyl tris (2,4,6-trimethoxyphenyl) phosphonium 

bromide (TMPP-Ac-Osu). p-Phenylenediisothiocyanate (DITC) resin is used to 

scavenge the lysine-containing peptides from a Lys-C digest. Isolated C-terminal 

peptides are then de novo sequenced using MALDI-MS/MS.72 This method has 

been further optimized73 to use diisothiocyanate coupled glass beads. This method 

is not suitable for proteins ending with lysine or arginine.  

1.3.2.3 Use of polymer-based enrichment for C-terminal peptides 

Overall et al
74 reported a polymer-based enrichment approach to profile protein 

C-terminal peptides. Briefly, the workflow is as follows (refer to figure 1.6): 

protein thiol groups are reduced and alkylated, carboxyl groups of C termini, 

aspartate and glutamate side chains are then protected by carbo-diimide-mediated 

(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC) and N-

hydroxy succinimide-assisted condensation with 1 M excess of ethanolamine. The 
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derivatized proteins are then digested by trypsin. To prevent cross-reactivity, 

peptide concatamerization or cyclization, free amines are protected with methyl 

groups. The internal tryptic and N-terminal tryptic peptides are removed by 

coupling with polyallylamine (MW ~56000, sigma) mediated with EDC. 

Ultrafiltration is used to remove the polymer, retaining the enriched C-terminal 

peptides in solution. LC-MS/MS follows to analyze the sample.  

This approach is the first that allows proteome-wide C-terminal analysis.  In the 

same report, C-terminal amine-based isotope labeling of substrates (C-TAILS) was 

also described, in which heavy isotope formaldehyde is used during both reductive 

methylation steps. C-TAILS was tested using a Glu-C digested E. coli cell lysate 

model system. The result showed that more than 90% of the peptides identified had 

C-termini corresponding to the Glu-C cleavage site.  
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Figure 1.6 scheme of proteome wide C-termini analysis by Overall lab 
74
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o The C-terminal ends with lysine or arginine.  

o Trypsin digestion has a missed-cleavage, resulting in peptides with 

multiple basic residues. 

In such circumstances, the terminal peptides will possess at least two free 

amines, thus their charge properties change and they are no longer able to be 

separated from the internal peptides. The author also pointed out that the selective 

recovery of acetylated N-terminal and C-terminal peptides depends on the trypsin 

digestion integrity.  

1.3.3.2 Combined fractional Diagonal Chromatography (COFRADIC) for 

simultaneous N and C terminal proteomics 

In 2010, the Gevaert lab48 published a COFRADIC workflow for both N and 

C- terminal peptide identification in a single sample preparation. This COFRADIC 

workflow follows the procedures described in N-terminal COFRADIC, except that 

after the primary fraction collection, peptides are reacted with an N-hydroxy-

succinimide ester of butyric acid, butyrylating the C-terminal peptides. Such 

modification allows C-termini to elute 4-12 min after N-termini in secondary RP-

HPLC. The pooled N-terminal and C-terminal peptides are ready for LC-MS/MS 

analysis. The authors used this COFRADIC based approach to study processing by 

the human endoprotease granzyme B in K-562 cell lysates. SILAC of 13C6 arginine 
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cell lysate is used as substrate pool for granzyme B, with 12C6 arginine cell lysate as 

control. Thus, upon trypsin digestion, neo-N-terminal peptides can be 

differentiated from the N-termini background of the cell lysate. C-termini are 

differentiated by using N-hydroxysuccinimide (NHS) esters of 12C4 or 13C4 butyric 

acid. In this study, a total of 1621 annotated N-termini and 760 annotated C-

termini were identified, with 334 neo-C termini resulting from granzyme B 

processing and 16 neo-C termini resulting from carboxypeptidase A4 processing.  

1.3.4 Thesis overview 

With all the efforts and advances in positional proteomics, the inherent main 

drawback of such techniques still needs to addressed, which is how to validate the 

identified substrates due to the “one hit wonder” in such technique.  The strength 

of positional proteomics arise from the dramatically reduced complexity of 

proteome samples, however, the strength turns into weakness if the question is 

asked how you can validate the results. In this thesis, we propose an approach 

which separates the enriched N-termini fraction for positional proteomics from the 

peptide mixtures, while preserving the rest of the peptide mixture. Therefore, MS 

analysis of the remaining peptide mixtures can serve as validation for the results of 

positional proteomics. Such direct experimental validation is meaningful and 

convincing considering both analyses use the same starting material. The above 

goal is achieved by utilizing 4-sulfophenyl isothiocyanate (SPITC) to modify the 
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N-termini and separate the SPITC modified peptides from others using 

electrostatic repulsion hydrophilic interaction chromatography (ERLIC). 

Moreover, the confidence of N-termini identification is further strengthened by 

exploiting the unique fragmentation behavior of SPITC peptides, thus we conclude 

that our approach offers high fidelity assignment of N-terminal peptides. This work 

is presented in chapter 3.  

Another attempt to simultaneously validate the results of positional 

proteomics is by use of iTRAQ-4plex. In this study, both control and protease 

treated samples are labeled by different tags which allows direct comparison of 

protein N-termini with neo-N-termini. In addition, samples are analyzed in 

duplicate by labeling with two tags (i.e. tag 116 and tag 117), aiming for quick 

validation of peptides by internal replicates. A new workflow is designed which 

incorporates iTRAQ into positional proteomics to study the specificity of protease. 

This work is presented in chapter 4.  

Experimental optimization is shown in chapter 2. A summary of study is 

presented in chapter 5.  
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Chapter 2 Experiments toward a streamlined workflow for 

positional proteomics 

2.1 Overview of method 

The workflow starts by converting lysine to homoarginine by guanidination, 

followed by sulfonation of N-termini by 4-sulfophenyl isothiocyanate (SPITC). 

After trypsin digestion, electrostatic repulsion hydrophilic interaction (ERLIC) 

chromatography is used to enrich SPITC modified peptides. Both the flow-through 

fraction (containing internal and C-terminal peptides) and eluted fraction 

(containing SPTIC modified N-terminal peptides) are analyzed by LC-MS/MS. A 

specialized N-terminal database with sequentially trimmed N-termini is used to 

identify N-terminal peptides from degraded proteins.  

2.2 Consideration for development 

The two critical aspects for any positional proteomics workflow are terminal 

labeling and enrichment. To identify minor species in a complex mixture, some 

sort of enrichment for the minor species is required.  There are various approaches 

and efforts described for this topic in the literature as summarized in chapter 1. N-

terminal enrichment approaches can be categorized into three pathways, namely 

chemically or enzymatically positive selection of N-termini,1,2 negative selection 

(scavenging the internal and C-terminal peptides) 3  and the application of ion 
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exchange chromatography4 based on the charge differences among N-terminal , C-

terminal and internal peptides. Both negative and positive selection approaches 

were tested in our study, the results of which are described later in this chapter.   

The second critical aspect is the manner of labeling of the protein termini. 

Here we choose to use SPITC for labeling N-termini. SPITC derivatization is 

predominantly applied to proteolytic peptides in the literature,5 so our development 

effort was focused on modifying the protocol to make it work on complex mixtures 

of intact proteins with high efficiency. Guanidination was performed prior to 

SPITC, which converted lysine to homoarginine by blocking the side chain of 

lysine. Therefore, SPITC derivatization only occurred at the N-terminal site and 

was assigned as such during data interpretation. 

Besides the two aspects mentioned above, the overall workflow was 

streamlined, particularly with respect to protein/peptide purification steps.  

2.3 Optimization 

Experiments designed to optimize each step are presented in this section in 

the same order as the steps in the workflow. These are: guanidination reaction, 

SPITC reaction, protein purification, trypsin digestion, enrichment, LC-MS/MS 

and database searching.  

2.3.1 Guanidination reaction 
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The purpose of guanidination is to selectively cap the side chain of lysine, 

thus leaving only the N-terminal amine for the next step in the SPITC reaction. The 

reaction is selective, except when glycine is the N-terminal amino acid; in such 

cases the primary amine group of glycine can also be modified.6 The guanidination 

reaction is performed as reported by Reilly et al.7 

A standard peptide with the sequence 

TNEIVEEQYTPQSLATLESVFQELGK  (m/z 2952.4; m/z for guanidination 

product is 2994.4) was used to monitor this reaction. The conversion rate was 

computed as the area of m/z 2994.4 divided by the sum of the areas of m/z 2952.4 

and m/z 2994.4 obtained from LC-MS. The concentration for isourea was 300 mM, 

the starting material of peptide was 0.12 mM and only 1 µL was used for each 

reaction. 10 µl NH4OH with 15 µL isourea is the recommended condition by the 

kit vendor (Sigma Aldrich).  The conversion was around 90%. Doubling the use of 

isourea or hydroxide did not increase the conversion rate. Due to the downstream 

SPITC derivatization of primary amines, the introduction of a large quantity of 

ammonium ions is undesirable, so NH4OH was replaced with 10 µL of 0.1 M 

NaOH.  While this change in the base caused the conversion rate to drop 

significantly to around 25%, further study determined that titrating the reaction 

with NaOH to pH 10 produced a comparable conversion rate to that for the 

reaction using NH4OH (Table 2.1).   
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Table 2.1 Guanidination optimization 

base  isourea (µl) 
conversion 
rate 

NH4OH-10 µl 15 85.7% 
NH4OH-10 µl 15 92.0% 
NH4OH-10 µl 30 85.0% 
NH4OH-20 µl 30 89.6% 
NaOH (0.1 M)-10 µl 30 24.6% 
NaOH (0.1M)-10 µl 30 25.2% 
NaOH pH 10 15 89.7% 
NaOH pH 10 15 87.4% 

 

Notably, the reaction completeness is 90% in our measurement using LC-

MS/MS, which is lower than in a reported study by MALDI-MS.7  Such 

discrepancy may arise from the mass spectrometer employed.  In MALDI-MS, the 

high gas-phase basicity of guanidinated lysine facilitates proton capture and 

charging in the positive ion mode. Thus, ionization of guanidinated lysine peptides 

occurs more efficiently than for the non-guanidinated lysine-containing peptides 

that are characterized by a lower gas-phase basicity. When the two are present as a 

mixture, the former can capture protons more efficiently, and thereby, the signal of 

the latter may be suppressed.  In contrast, in LC-ESI-MS, the non-guanidinated 

standard peptide and the guanidinated reaction product were separated by LC 

before MS detection, facilitating detection of the minor species.  

2.3.2 SPITC labeling 
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The SPITC reaction protocol followed the description by the Cotter lab.8 

Specifically, a solution of SPITC was freshly prepared at 50 mg/mL in 20 mM 

sodium bicarbonate buffer (pH 9). The guanidinated protein mixture was adjusted 

to pH 9 by addition of NaOH (1 N). A 100-fold molar excess of SPITC was added 

to the mixture.  The mixture was then incubated at 65 °C for 1 hour.  

Using the peptide AAAAK (1 mg/mL in water) as a model compound, the 

SPITC modification (50 mg/mL in 20 mM sodium bicarbonate buffer (pH 9)) was 

100% complete as determined by LC-MS after incubating at 65 °C for one hour 

with all tested conditions listed in Table 2.2. This reaction is robust as long as 

ammonium-based buffer is avoided.  

Table 2.2 Evaluation of SPITC reaction conditions 

AAAAK (µl) SPITC (µl) conversion 

10 20 100% 

10 40 100% 

10 60 100% 

10 80 100% 

  

2.3.3 Isolation/Purification 

It is easy to test reaction conditions with peptides, where the contaminant 

reagents can be diverted to waste by an on-line valve switch in HPLC or be 
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removed by off-line C18 cartridge clean-up. When dealing with protein 

purification, it is common to use trichloro-acetic acid (TCA) or ice cold acetone to 

precipitate protein into pellet and to follow with a wash. However, once the 

proteins aggregate into pellets, it is extremely difficult to bring them back into 

solution. While solubilization can be promoted using urea or guanidine 

hydrochloride, these denaturants are problematic for the downstream trypsin 

digestion and require additional cleanup efforts. Therefore, we endeavored to find 

an approach that avoided protein precipitation entirely. Alternatively, the excess 

reagents can be removed by dialysis.  However, this method usually takes days to 

complete and is therefore undesirable.  

A desalting Zeba column (7k MWCO) from Thermo Scientific was used to 

isolate/purify proteins in our workflow, allowing the proteins to remain in solution 

all along the process.  The success of this approach may arise from the increase of 

the basicity of lysine due to the guanidination reaction; this increased basicity 

promotes the solubility of denatured proteins in mild buffer. Following the 

protocol depicted in the product booklet, Zeba spin desalting columns are buffer 

exchanged 4 times with 300 µL of 50 mM ammonium acetate (or other buffer 

suitable for the following enzymatically digestion) by centrifuging for 1 min at 

1500 g, then no more than 130 µL of protein is loaded on top of the resin bed, and 
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samples are collected after centrifuging for 2 min at 1500 g. The whole process 

takes less than 10 min. We adapted this process in the final workflow. 

2.3.4 Trypsin digestion 

Trypsin (Promega, sequence grade) is added at an enzyme/substrate ratio of 

1:50 to the buffer exchanged sample. The sample is then incubated at 37 degrees 

overnight. No further modification was made to the digestion condition.  

2.3.5 Enrichment  

The enrichment step occurs after trypsin digestion.  Two enrichment 

methods were tested. In the end, the iTRAQ application (Chapter 4) used NHS 

activated agarose beads for enrichment, while the SPITC approach (Chapter 3) 

used the ERLIC method. 

2.3.5.1 N-termini enrichment by NHS activated agarose spin column 

We first tested negative selection by scavenging the internal and C-terminal 

peptides through commercially available NHS activated agarose spin columns 

(Thermo Scientific), due to the simplicity of this approach. Following the protocol 

in the brochure, the whole process took one hour. After desalting using C18 

cartridge, the sample was analyzed using LC-MS/MS. The effectiveness was 

demonstrated in Figure 2.1 using BSA (50 µg starting material) as a testing 

protein.  Before enrichment, the modified N-termini were at a low abundance level 



 

(insert of the top figure in figure 2.1) compared to other peptides when averaging 

the total ion chromatogram (TIC) over the range of HPLC elution. After 

enrichment, the abundance of N

as one of the major components in 

six most abundant m/z values 

430.26, 561.32, 547.32 and 464.25

these six peptides are also marked in Figure 2.1B. S

observed for all six peptides. 
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(insert of the top figure in figure 2.1) compared to other peptides when averaging 

the total ion chromatogram (TIC) over the range of HPLC elution. After 

bundance of N-terminal peptides was raised and became 

as one of the major components in the TIC over the full HPLC elution range. 

values before enrichment including m/z at 480.61, 516.79, 

430.26, 561.32, 547.32 and 464.25 are marked in Figure 2.1A, the counterparts of 

these six peptides are also marked in Figure 2.1B. Significant intensity drop

observed for all six peptides.   
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Figure 2.1 Comparison between before (A) and after (B) enrichment by NHS activated 

agarose resin spin column for BSA sample.  N

DTHK(guandinyl)SEIAHR   m/z= 484.20

This approach also worked well for the iTRAQ

4). However, unsatisfactory results were obtained using the NHS

resin spin column to process an 

peptides. For 100 µg of E. coli

annotated N-terminal peptides. A second round of enrichment generated a total of 

13 annotated N-terminal peptides, while a third round of enrichment produced only 

9 annotated N-terminal peptides. Non

NHS-activated resin may be 

the resin enrichment. Due to the inefficiency of this approach, we switched to 

charge-based enrichment for SPITC modification.

2.3.5.2 SPITC peptide enrichment by ERLIC
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Comparison between before (A) and after (B) enrichment by NHS activated 

agarose resin spin column for BSA sample.  N-terminal peptides (SPITC

DTHK(guandinyl)SEIAHR   m/z= 484.20
3+

). 

This approach also worked well for the iTRAQ-based application (Chapter 

). However, unsatisfactory results were obtained using the NHS-activated agarose 

resin spin column to process an E. coli cell lysate sample with SPITC modified 

E. coli starting material, we were able to obtain 62 

l peptides. A second round of enrichment generated a total of 

terminal peptides, while a third round of enrichment produced only 

terminal peptides. Non-specific interactions of peptides with the 

be the reason for the loss of N-terminal peptides during 

the resin enrichment. Due to the inefficiency of this approach, we switched to 

based enrichment for SPITC modification. 

.3.5.2 SPITC peptide enrichment by ERLIC 

 

Comparison between before (A) and after (B) enrichment by NHS activated 

terminal peptides (SPITC-

based application (Chapter 

activated agarose 

cell lysate sample with SPITC modified 

starting material, we were able to obtain 62 

l peptides. A second round of enrichment generated a total of 

terminal peptides, while a third round of enrichment produced only 

specific interactions of peptides with the 

terminal peptides during 

the resin enrichment. Due to the inefficiency of this approach, we switched to 
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We refer to the protocol by Alpert 9  for ERLIC-based enrichment. A 

PolyWAX LP, 5-µm, 300 Å, 2.1 mm x 50 cm (Poly LC Inc., Columbia, MD) 

column was used, with mobile phase A as 20 mM ammonium formate, pH 2.2 with 

70% acetonitrile; and mobile phase B as 900 mM ammonium formate, pH 2.2 with 

10% acetonitrile. To facilitate downstream MS analysis, the column was used in a 

solid phase extraction fashion and only two fractions were collected. Therefore, 

100% A was applied at the beginning for 3 minutes for the first fraction. Then, the 

mobile phase was switched to 100% mobile phase B with a one minute gradient 

and held for 10 minutes for the second fraction. The salt is volatile and is removed 

by vacuum centrifuge.  

2.3.6 Mass spectrometer selection  

High mass accuracy of parent ions and fragment ions is extremely important 

for accurate peptide sequence identification. Both Orbitrap XL (Thermo) and 

QExactive (Thermo) were used in this study. With the Orbitrap XL instrument, a 

typical workflow involves a survey scan at high resolution mode (R=30,000, FT 

mode), followed by 10 MS/MS scans at low resolution mode (trap mode). In the 

follow-up database search, mass accuracy for the parent ions was set to be 10 ppm 

and for the fragment ions at 0.8 Da.  Such low mass accuracy of fragment ions may 

very well contribute to the false identification of peptide and proteins in our 

opinion. It is possible to acquire data in high resolution mode for both survey scan 
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and MS/MS scan using Orbitrap XL, however, the cycle time is accordingly 

prolonged and the duty cycle is reduced drastically, which means much less input 

into the database, leading to less peptide and protein identification. This feature of 

the Orbitrap XL instrument impairs its application in complex system (e.g. 

proteomics) in our proposed workflow.  

Instead, QExactive is much better fit to the proposed workflow. With its 

high speed (5X faster than Orbitrap XL), both survey scans and MS/MS scans can 

be performed in high resolution mode. In the final set-up, data is acquired using 

QExactive, with one survey scan followed by 12 MS/MS scans at FT mode for 

both types of experiments. HCD mode of activation is employed for activation of 

ions. An example is shown in figure 3.5 (Chapter 3) that demonstrates that HCD 

offers much more signature ions in MS/MS spectra for peptide sequencing.  

2.3.7 Database searching 

The analysis of mass spectrometric raw data was carried out using Proteome 

Discovery 1.3 software (Thermo Fisher Scientific, Bremen, Germany) applying 

standard settings unless otherwise noted. The E. coli K12 strain database (Uniprot) 

prepared in the fashion similar to that described by Dormeyer et al
10 was used for 

searching. Specifically, all protein sequences in the database were cut at arginine, 

and for each resulting peptide, multiple sequence database entries were generated 
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that represented sequential truncations of N-terminal amino acids.  Only sequences 

with 6 amino acids or longer were retained in the database. The workflow utilizing 

both SEQUEST and Mascot search was used as shown in Figure 2.2, with the 

convergence handled by Percolator. Decoy database searches were performed with 

False Discovery Rate (FDR) tolerances set to 5% and 1% for modest and high 

confidence filtering settings, respectively. Other settings are depicted in Chapter 3.   

 

Figure 2.2 Workflow for database searching 

2.4 Summary 

This chapter described method development for several key steps in the 

workflow. The application of these methods is shown in chapter 3 and chapter 4.  
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Chapter 3 High Fidelity Approach for Proteomic Scale 

Enrichment and Identification of N-termini 

3.1 ABSTRACT 

A novel workflow was designed for the large-scale identification of protein 

N-terminal sequences. The workflow started with converting lysine to 

homoarginine by guanidination, followed by reaction with sulfonation of N-termini 

by 4-sulfophenyl isothiocyanate (SPITC). Upon trypsin digestion, the N-terminal 

peptides possessed one negatively charged sulfonate site at low pH, while all 

amino acids of internal and C-terminal peptides were neutral or positively charged. 

This difference was exploited to enrich the SPITC modified N-terminal peptides by 

electrostatic repulsion hydrophilic interaction (ERLIC) chromatography in which 

the internal and C-terminal peptides eluted at the void volume, and the SPITC 

peptides were retained in the column due to the hydrophilicity and electrostatic 

attraction of the sulfonyl group to the stationary phase. Both the flow-through 

fraction (containing internal and C-terminal peptides) and eluted fraction 

(containing SPTIC modified N-terminal peptides) were analyzed by LC-MS/MS. 

A specialized N-terminal database with sequentially trimmed N-termini was used 

to identify N-terminal peptides from degraded proteins. Upon HCD, SPITC 

peptides in ESI generated predominately y-type ion series, similar to what has been 
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previously noted for MALDI MS/MS spectra of N-sulfonated species; such 

simplification of spectra enables the identification of N-termini with high 

confidence. The appearance of b1 + SPITC product ions upon HCD further boosts 

the confidence for N-terminal identifications. This method was applied to an E. 

coli cell lysate, thus allowing the identification of approximately 350 high 

confidence N-terminal peptides (85% represented neo-N-termini from protein 

degradation and 15% from leading methionine excision). These N-terminal 

peptides represented 274 distinct E. coli proteins, 224 of which were also identified 

in the analysis of flow-through fractions from internal peptides. The approach 

presented here resulted in an approximately 10-fold enrichment of N-terminal 

peptides, and greatly improved confidence for each MS/MS assignment over other 

positional proteomics approaches. 

3.2 INTRODUCTION 

Protein isoforms at N-termini and C-termini are diverse for several reasons. 

They may be generated during the course of protein biosynthesis due to alternative 

initiation of transcription within genes, by transcription processes that are 

independent of annotated gene boundaries,1-2 from post translational modification 

by mRNA splicing3 or by enzymatic protein processing.4-5  The structural changes 

occurring at protein termini often correlates with function alteration. Many human 

diseases are associated with proteolytic truncation or terminal modification;4-7 
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therefore, it is essential to characterize protein N-termini and C-termini for 

functional annotation of proteomes of interest.  

Mass spectrometry (MS) driven techniques show advantages in such 

applications due to their sensitivity, speed and selectivity in identification of 

proteins (even in complex systems such as a whole cell lysate or serum samples). 

Several strategies have been reported to selectively isolate protein N-terminal 

peptides. The technique called combined fractional diagonal chromatography 

(COFRADIC), developed by the Gevaert group, has been applied to map protease 

processed sites in human Jurkat cell cultures8, anthracycline-induced acute 

myelogenous leukemia cells9, and human A549 nonsmall-cell lung carcinoma 

cells10. In this method, the free amine of N-termini and lysine side-chains were 

tagged by acetylation with either a natural or isotopically labeled reagent, followed 

by trypsin digestion. N-termini (including the original N-termini of proteins and 

neo-N-termini generated upon proteolytic cleavage) and C-termini were enriched 

by strong cation exchange chromatography at low pH. Secondary enrichment was 

also performed using TNBS derivatization. The hydrophobicity of TNBS causes C-

termini peptides to elute at later retention times on reversed-phase columns, 

whereas N-terminal peptides elute earlier.   

In an alternative method, McDonald et al. reported a protocol for positional 

proteomics where free amine groups in proteins were first blocked by acetylation, 
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followed by N-termini enrichment by NHS-activated sepharose resin and MS 

analysis.11 Recently, the terminal amine isotopic labeling of substrates (TAILS) 

method was reported by Kleifeld et al. for identifying acetylated, cyclized N-

termini and matrix metalloproteinase (MMP)-2 cleavage sites in mouse fibroblast 

secretomes12. Here, reductive dimethylation reactions were performed on N-

termini and lysine side-chains; internal and C-terminal peptides were covalently 

bonded with dendritic polyglycerol aldehyde polymers, which were later removed 

by centrifugation. Another approach utilizing unbiased selective isolation of N-

terminal peptides using phospho-tagging (PTAG) and TiO2-based depletion was 

shown to be effective for N-terminal identification. In this approach, dimethylation 

was first performed to label N-terminal and lysine side chain amino groups at the 

protein level. Proteins were then enzymatically digested, and the newly formed 

internal peptides were modified with PTAG reagent and further depleted from the 

solution by binding onto TiO2. The high conversion rate of PTAG and high 

selectivity of TiO2 toward phospho-peptides makes this approach very attractive.  

Frequently, the value of positional proteomics is questioned due to the 

reliance on single peptides, or so-called ‘one hit wonders’13 to identify whole 

proteins, as this approach is expected to be susceptible to many false positives. 

Previous efforts to reject the false identifications involved tailoring the search 

space in the database14-15 or building post-processing tools16-17. The work herein 
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aims to reduce the number of false identifications by improving MS/MS spectral 

quality. We utilize 4-sulfophenyl isothiocyanate (SPITC), which serves to 

simultaneously aid the generation of more diagnostic MS/MS spectra and improve 

N-terminal enrichment.  

3.3 MATERIALS AND METHODS 

3.3.1 Materials  

E. coli cell lysate was obtained from McLab (San Francisco, CA in USA). 

Bovine serum albumin (BSA), 4-sulfophenyl isothiocyanate, dithiothreitol and 

iodoacetamide were purchased from Sigma Aldrich (St. Louis, MO in USA). 

Trypsin Gold (mass spectrometry grade) was obtained from Promega (Madison, 

WI in USA), whereas the Zeba spin desalting column (7K MWCO) was from 

Pierce Biotechnology(Rockford, IL in USA) 

3.3.2 Protein denaturation, reduction and alkylation 

Sample, consisting of either 100 µg of BSA or 500 µg of E. coli cell lysate 

was dissolved to 5 mg/mL in 6 M urea and 20 mM sodium phosphate buffer (pH 

8). 50 mM dithiothreitol (DTT) was used to reduce disulfide bonds by incubating 

for 1 hr at 37 °C. Free sulfhydryls were alkylated with 50 mM iodoacetamide 

(IAM) at 25°C for 30 min. The unreacted IAM was quenched with DTT.   

3.3.3 Guanidination 
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The guanidination kit was obtained from Sigma-Aldrich. An o-

methylisourea hemisulfate solution was prepared at 6 mg/mL in water. The protein 

solution was adjusted to pH 10 by addition of NaOH (1 N) and a 100-fold molar 

excess of o-methylisourea hemisulfate was added. The mixture was then incubated 

at 65 °C for 30 min. The reaction was quenched by formic acid addition to pH 3.   

3.3.4 SPITC modification of N-termini 

A solution of SPITC was freshly prepared at 50 mg/mL in 20 mM sodium 

bicarbonate buffer (pH 9). The guanidinated protein mixture was adjusted to pH 9 

by addition of NaOH (1N). A 100-fold molar excess of SPITC was added to the 

mixture.  The mixture was then incubated at 65 °C for 1 hr.  

A Zeba spin desalting column (7K MWCO) was used to clean the sample. 

Briefly, the spin column was buffer exchanged with 50 mM ammonium acetate by 

centrifuging four times at 1500 g for one min.  A 130 µL aliquot of the sample was 

applied on top of the compact resin bed and centrifuged at 1500 g for 2 min to 

collect the sample.   

3.3.5 Trypsin digestion 

Trypsin was added to the buffer exchanged sample at an enzyme : substrate 

ratio of 1:50, and the sample was then incubated at 37 °C overnight. The reaction 

was quenched with addition of formic acid to a pH of 2 to 3. To prepare for ERLIC 
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injection, acetonitrile was added to the sample to reach 70% acetonitrile in the final 

solution.  

3.3.6 N-terminal enrichment by ERLIC 

An Agilent 1200 HPLC system, and a PolyWAX LP, 5-µm, 300 A, 2.1mm x 

50cm (Poly LC Inc., Columbia, MD) column were used for ERLIC. The stationary 

phase consists of a silica-based material with an adsorbed, cross-linked coating of 

linear polyethyleneimine. The flow rate was 300 µL/min and the column 

temperature was 25 °C. The UV detection wavelengths were set to 215 nm and 280 

nm. Mobile phase A was 20 mM ammonium formate, pH 2.2, with 70% 

acetonitrile. Mobile phase B was 900 mM ammonium formate, pH 2.2, with 10% 

acetonitrile. The column was used in a solid phase extraction fashion and only two 

fractions were collected. Therefore, 100% A was applied at the beginning for 3 

minutes to obtain the first fraction. Then, the mobile phase was switched to 100% 

mobile phase B with a one minute gradient and held for 10 minutes to obtain the 

second fraction. The first fraction (the flow through) predominately contained 

neutral and positively charged peptides; the second fraction is enriched in SPITC 

labeled peptides and other negatively charged peptides. Both fractions were dried 

using a SpeedVac evaporator (Thermo Electron) and then re-dissolved with 30 µL 

of water and subjected to LC-MS/MS analysis or stored at -20 °C for further 

analysis.  
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3.3.7 LC-MS/MS analysis 

LC-MS/MS was performed on a Dionex RSLC nano system (Thermo 

Scientific, San Jose, CA) coupled to a Q Exactive orbitrap mass spectrometer 

(Thermo Scientific, San Jose, CA).  An Easy Spray column from Thermo 

Scientific (50 cm* 75 µm, pepmap C18, 2 µm particle) was used with mobile 

phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in 

acetonitrile). Peptides were eluted over 180 min by linearly increasing mobile 

phase B from 0 to 30%. Mass spectrometry data were acquired automatically using 

Xcalibur software (Thermo Scientific) in data dependent acquisitions, with both 

survey scans and MS2 scans in the FT mode (resolution set at 35000 for parent 

ions and 17500 for fragment ions). Each survey scan was followed by 12 MS/MS 

scans. MS/MS spectra were acquired in the HCD mode using a normalized 

collision energy (NCE) of 25.  

3.3.8 Peptide identification 

Peptides were identified using the Thermo Proteome Discovery 1.3 software 

package (Thermo Scientific). Peptide and protein identifications were obtained 

using Sequest and Mascot algorithms. The E. coli K12 strain database prepared in 

a fashion similar to that described by Dormeyer et al
14 was used for searching. 

Specifically, all protein sequences in the database were cut at arginines, and for 

each resulting peptide, multiple sequence database entries were generated that 
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represented sequential truncations of N-terminal amino acids.  Only sequences 6 

amino acids or longer were retained in the database.  Mass tolerance for parent ions 

was set to 10 ppm and 0.1 Dalton for fragment ions. Trypsin cleavage only at 

arginine residues was applied with up to 1 missed cleavage in the search. 

Carboamidomethylation of cysteine (+57.021Da) was set as a static modification. 

Dynamic modification included guanidination for lysine (+42.022 Da) and  N-

terminal or (to account for incomplete guanidination) lysine modification with 

SPITC (+215.971Da).  Percolator®, embedded in the proteome discovery software 

package, was used for peptide filtering, with a peptide false discovery rate (FDR) 

threshold set to 0.01.  

3.4 RESULTS AND DISCUSSION 

The strategy of the developed method was to first convert lysine to 

homoarginine by guanidination. In a second step, N-termini were sulfonated with 

4-sulfophenyl isothiocyanate (SPITC), thus permitting enrichment based on the 

newly acquired N-terminal negative charge. The downstream analysis strategy was 

to employ HCD activation for ion dissociation, coupled with high resolution 

MS/MS acquisitions.  

3.4.1 Overall workflow description 
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As depicted in the flow diagram in Figure 1, proteins were first denatured, 

reduced and alkylated. Prepared proteins were then subjected to guanidination 

resulting in conversion of lysine residues to homoarginine. Afterwards N-termini 

were sulfonated by reaction with 4-sulfophenyl isothiocyanate (SPITC), which has 

been shown to be useful for a variety of proteome applications. 22-24 Following 

trypsin digestion, SPITC modified N-terminal peptides were enriched by 

electrostatic repulsion hydrophilic interaction (ERLIC) chromatography. Both the 

flow-through fraction (containing predominantly internal and C-terminal peptides) 

and eluted fraction (enriched for SPTIC modified N-terminal peptides) were 

analyzed by LC-MS/MS.  
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Figure 3.1 Flow chart for N-terminal identification by SPITC modification 

and ERLIC enrichment. 

The above described derivatization procedure offers several advantages. 

First, 4-sulfophenyl isothiocyanate (SPITC) introduces a negatively charged 

sulfonic acid group to the N-teruminus. Upon dissociation, the negative charge 

neutralizes N-terminal ions (a and b ions), thereby promoting the generation and 

survival of C-terminal ions (y ions).  Therefore, the overall effect of SPITC 
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derivatization is to improve tandem mass spectra by generating predominantly y-

type ions. An additional benefit is that often the [b1 + SPITC] product ion is 

present, which confirms that modification of the N-terminus had indeed occurred. 

These spectral features/characteristics increase confidence in identifying N-

terminal peptides and allow discrimination between SPITC derivatization 

occurring at the desired N-terminus position from those potentially occurring at 

lysine side-chains.  

A second advantage of SPITC derivatization is that the negative charge 

obtained upon sulfonylation allows differentiation of N-terminal peptides from 

other peptides in the mixture, and therefore can be used to selectively enrich N-

terminal peptides. ERLIC enrichment entails N-terminal peptides retention on the 

column due to hydrophilic interaction and electrostatic attraction, while all the 

other peptides elute at close to the void volume due to electrostatic repulsion.  

A third advantages related to the guanidination reaction that the positive 

charge from lysine is retained, thus preserving solubility and ionization efficiency. 

The guanidination reaction converts lysine to homoarginine, conserving the 

positive charge, as opposed to other chemical modifications such as dimethylation 

or acetylation where the side chain of lysine is converted to an uncharged group. 

The guanidination reaction increases the basicity of lysine thus promoting the 

solubility of denatured proteins, and increasing the charged character of the 
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peptides which leads to improved ionization efficiency. The relatively high 

solubility of these modified proteins in mild buffer solutions facilitates clean-up 

prior to trypsin digestion.  In the current protocol, excess reagent was removed and 

buffer was exchanged directly to the trypsin digestion buffer (50 mM ammonium 

acetate) by Zeba Spin desalting column (7K MWCO) in 10 min.  

A fourth advantage of the combination of guanidination and SPITC 

derivatization in terms of streamlining the workflow is that the modification 

reactions are relatively rapid, as it takes 30 min to complete the guanidination 

reaction, and one hour to finish the SPITC modification. This time scale is 

comparable to that of the acetylation reaction (2h), but much shorter than the 

dimethylation reaction (overnight).  In addition, there is no need for clean-up until 

all the reactions are completed, because any excess reagent from one step does not 

interfere with the next step.  

Lastly, the current workflow obviates more laborious procedures such as 

protein precipitation and peptide desalting, making it more convenient for higher 

sample throughput. Instead of precipitating proteins, Zeba Spin desalting columns 

(7K MWCO) were used to clean up samples, enabling numerous samples to be 

processed in 10 min using a centrifuge. 

3.4.2  Chemical modification of free amine groups in proteins 
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After denaturing, reduction and alkylation of sulfuryl groups in proteins, the 

free amine groups were modified by a stepwise procedure. First, selective 

modification was performed on the ε-amine of the side chain of lysine to convert 

lysine to homoarginine (the reaction is shown in Figure 3.2). It has been reported 

that the reaction can be completed in approximately 5 min, because after this time 

interval, no signals from unguanidinated-lysine containing peptides were observed 

by MALDI-MS.19 The reaction efficiency of this reaction was tested using the 

model peptide TNEIVEEQYTPQSLATLESVFQELGK and it was found by LC-

ESI-MS that the reaction proceeded to approximately 90% completion under 

optimum conditions. After guanidination, SPITC modification (Figure 3.3) was 

performed. Using the peptide AAAAK as a model compound, SPITC modification 

proceeded to 100% completion upon incubating at 65 °C for one hour with 20 mM 

sodium bicarbonate as buffer. 
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Figure 3.2 Schematic illustration for the guanidination reaction 

 

 

 

 

 

 

Figure 3.3 Schematic illustration of SPITC modification 
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3.4.3 Trypsin digestion specificity after guanidination 

Upon guanidination, lysine was converted to homoarginine. The selectivity 

of trypsin digestion at homoarginine was evaluated using BSA. As expected, the 

cleavage capacity at the now modified lysine was dramatically reduced. Taking the 

N-terminal peptide of BSA as an example, the sequence for zero missed cleavages 

is DTHK (m/z 757.2 +, lysine converted to homoarginine, N-terminus modified by 

SPITC), the sequence for one missed cleavage is DTHKSEIAHR (m/z 725.8 2+ and 

484.2 3+; lysine converted to homoarginine; N-terminus modified by SPITC). The 

ratio of the peak area (the combination of doubly and triple charged peaks) in the 

extracted ion chromatogram for the one missed cleavage product versus the area 

for the zero missed cleavage product was 116 : 1.  In a control sample, trypsin 

digestion for BSA without guanidination indicated that the peak area ratio for the 

same pair was 0.45 : 1. The conversion of lysine to homoarginine therefore 

hindered the trypsin activity on this site, and the majority of trypsin digested 

product of guanidinated protein resulted in peptides ending with arginine at the C-

termini.  

3.4.4 Effectiveness of N-terminal enrichment  

The SPITC modification introduces a sulfonic acid group to N-terminal 

peptides which remains negatively charged even at low pH. We viewed 

enrichment/purification of these sulfonated N-terminal peptides by ERLIC as an 
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attractive strategy based on reports that tryptic peptides containing only one 

phosphate can be separated from peptides with no phosphates20. In our approach, 

an anion exchange column is essentially used in hydrophilic mode. At pH 2.2, 

basic amino acids and the primary amines of N-termini possess positive charges, 

the carboxylic acid sites at C-termini and on glutamic acid and aspartic acid side 

chains are neutral. Phosphate groups, however, are negatively charged. Thus, by 

operating in the hydrophilic mode, the hydrophilicity of phosphate groups together 

with their electrostatic attraction to positively charged sites on the stationary phase 

overcomes the electrostatic repulsion experienced by protonated amino acid sites 

on the peptides, and allows separation of phosphopeptides from peptides without 

such anionic groups. We reasoned that SPITC peptides (bearing sulfonate groups) 

will interact similarly with the stationary phase as peptides with single phosphate 

groups. However, since phosphorylated peptides are generally present in much 

lower abundances than N-terminal peptides, their interference should be minimal 

when attempting to identify N-terminal peptides. To our knowledge, this is the first 

application of the ERLIC technique for sulfated peptide enrichment from non-

sulfated peptides, and the approach could prove to be useful for analyzing 

important post-translational modifications such as tyrosine sulfation.  

Another aspect worth mentioning concerning ERLIC is that an ammonium 

formate based mobile phase system was used, which simplifies sample clean-up. 
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For each ERLIC analysis, two fractions were collected. The first fraction contained 

the internal and C-terminal peptides, which were positively charged at pH 2.2 and 

were repelled from the column, and thus eluted with the void volume. It is 

reasonable to expect much higher absorbance from the first fraction than from the 

second fraction, since the N-termini only constitute a small portion of the peptide 

pool. We did observe a large absorbance at 215 nm for the first fraction; however, 

the high concentration of ammonium formate (900 mM) skewed the UV 

absorbance reading at 215 nm and no quantitative data was obtainable in terms of 

the ratio of these fractions. Due to the presence of the benzyl group introduced by 

SPITC derivatization, a high UV absorbance at 280 nm was observed for the 

second fraction, demonstrating that these peptides are enriched with SPITC 

peptides as shown in Figure 3.4. Additional comparisons can be found in the 

section describing peptide identification results below. 

Another benefit of ERLIC enrichment was that the internal peptides and C-

terminal peptides were preserved, thus allowing their analysis by LC-MS/MS. The 

obtained information can serve as cross-validation of the N-termini detected from 

the SPITC fraction. The correlation between fraction 1 and fraction 2 helps address 

the “one-hit wonder” problem in positional proteomics. Examples are provided in 

subsequent sections below.  

 



 

 

Figure 3.4 Fraction collections for trypsin digested 

electrostatic repulsion hydrophilic interaction (ERLIC) chromatography; (A) 

UV detection at 215 nm and (B) UV detection at 280 nm.

 

3.4.5 Tandem mass spectra comparison between CID and HCD

To assess the differences in fragmentation

spectra from multiply charged ions of SPITC modified peptides were 

CID using an LTQ OrbiTrap XL and 

spectra of the BSA N-terminal peptide

Figure 3. Upon CID dissociation, several y ions were generated as marked in 

Figure 3.5a. In comparison, HCD dissociation yielded a much higher quality 
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Fraction collections for trypsin digested E.coli cell lysate using 

electrostatic repulsion hydrophilic interaction (ERLIC) chromatography; (A) 

UV detection at 215 nm and (B) UV detection at 280 nm.

Tandem mass spectra comparison between CID and HCD

To assess the differences in fragmentation patterns between CID and HCD, 

spectra from multiply charged ions of SPITC modified peptides were 

CID using an LTQ OrbiTrap XL and to HCD using a Q Exactive. Dissociation 

terminal peptide acquired by CID and HCD are shown 

Figure 3. Upon CID dissociation, several y ions were generated as marked in 

Figure 3.5a. In comparison, HCD dissociation yielded a much higher quality 

 

cell lysate using 

electrostatic repulsion hydrophilic interaction (ERLIC) chromatography; (A) 

UV detection at 215 nm and (B) UV detection at 280 nm. 

Tandem mass spectra comparison between CID and HCD 

patterns between CID and HCD, 

spectra from multiply charged ions of SPITC modified peptides were subjected to 

HCD using a Q Exactive. Dissociation 

by CID and HCD are shown in 

Figure 3. Upon CID dissociation, several y ions were generated as marked in 

Figure 3.5a. In comparison, HCD dissociation yielded a much higher quality 
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tandem mass spectrum (Figure 3.5b), composed of a complete set of y fragment 

ions. The only significant N-terminal fragment ion observed was b1 + SPTIC, 

which pinpoints the SPITC modification to the N-terminus. This process is 

proposed to be promoted by the nucleophilic sulfur atom of the SPITC moiety 

attacking the carbonyl oxygen atom of the adjacent amino acid, resulting in an 

Edman-type degradation.25,26 The lack of other N-terminal ions illustrate that 

SPTIC derivatization at the peptide N-termini can effectively neutralize the 

positive charge of the N-terminal ions (a and b ions) upon activation, thus yielding 

spectra rich in y ions for peptide sequencing. Besides improving spectral quality, 

the generation of high mass accuracy fragment ions is another positive attribute of 

HCD on the Q Exactive Orbitrap. This improved mass accuracy of fragment ions 

improves confidence in peptide filtering via the semi-machine learning Percolator 

algorithm. 

 

 

 

 

 

 



 

 

 

Figure 3.5 MS/MS spectra for BSA peptide SPITC

DTHK(guandinyl)SEIAHR   m/z= 484.20

is attached to N

 

3.4.6 N-termini analysis of E. coli cell lysate

The workflow as described above was applied to an 

Sample preparation followed by LC

and the results reported below represent pooled
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MS/MS spectra for BSA peptide SPITC-

DTHK(guandinyl)SEIAHR   m/z= 484.20
3+

 by (A) CID and (B) HCD. SPITC 

is attached to N-terminal ions labeled in red. 

termini analysis of E. coli cell lysate 

The workflow as described above was applied to an E. coli

Sample preparation followed by LC-MS/MS analysis was performed in triplicate 

and the results reported below represent pooled data acquired from the three runs.  

  

-

by (A) CID and (B) HCD. SPITC 

E. coli cell lysate. 

rmed in triplicate 

from the three runs.  
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A total of 358 N-terminal SPITC-labeled high confidence peptides were identified 

in the bound fraction with a false discovery rate (FDR) less than 0.01 (assessed by 

Percolator). These peptides represented 274 proteins annotated in the E. coli 

database. We found that the presence and location of guanidinyl lysine 

(homoarginine) played an important role in terms of the appearance of MS/MS 

spectra, with higher quality MS/MS spectra obtained for peptides without 

guanidinyl lysine.  For those N-terminal peptides without guanidinyl lysine, the 

MS/MS spectra were dramatically simplified and were composed of predominately 

y-type ion series, as shown in Figure 3.6. There were 315 cases belonging to the 

category of those 358 high confidence N-terminal SPITC labeled peptides. The 

remaining 43 peptides contained guanidinyl lysine, and the peptide fragmentation 

profile changed case-by-case as shown in Figure 3.7. The spectra contained both y 

and b ions for sequence VVINK(guanidinyl) and DTTTIIDGVGEEAAIQGR as 

labeled in Figure 3.7a, the possible explanation might be that homoarginine located 

towards the N-terminal side of peptide may aid in the survival of b ions. Whereas 

the spectra contained predominately the y-ion series for peptide sequence 

LDMLNEELSDK (guanidinyl)ER .  

 

 

 



 

 

 

Figure 3.6 MS/MS spectra for N

(A) sequence MNIIEANVATPDAR, M1

dimethyl-8-ribityllumazine synthase OS=

AVTNVAELNALVER, A2

dehydrogenase OS=Escherichia coli
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MS/MS spectra for N-terminal peptides without guanidinyl lysine; 

(A) sequence MNIIEANVATPDAR, M1-SPITC  protein ID P61714 (6,7

ribityllumazine synthase OS=Escherichia coli) and (B) sequence 

AVTNVAELNALVER, A2-SPITC protein ID P0A9Q7 ( Aldehyde

Escherichia coli). SPITC is attached to N-terminal ions 

labeled in red. 

 

terminal peptides without guanidinyl lysine; 

SPITC  protein ID P61714 (6,7-

(B) sequence 

SPITC protein ID P0A9Q7 ( Aldehyde-alcohol 

terminal ions 
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Figure 3.7 MS/MS spectra of N-terminal peptide containing guanidinyl lysine; 

(A) VVINK(guanidinyl) DTTTIIDGVGEEAAIQGR  protein ID P0A6F5 (60 

kDa chaperonin OS=Escherichia coli ) and (B) LDMLNEELSDK 

(guanidinyl)ER   protein ID P63284(Chaperone protein ClpB OS=Escherichia 

coli). SPITC is attached to N-terminal ions labeled in red. 

 

There were occasions, however, when two sequences were identified for the 

same peptide species, the difference being that one had a guanidinyl lysine and the 

other had an unmodified lysine (see Figure 3.8). Both peptide species were 
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modified at the N-termini by SPITC. The y-ion series in both spectra showed 

similar patterns and intensities up to the y11 ion (just after lysine). For the 

guanidinyl modified peptide, no further y ions were detected, while for the peptide 

with no lysine modification, y12, y13, y14 and y15 were also present in the MS/MS 

spectra.  The assignments of y12 to y15 were valuable since this clarified that the 

SPITC modification occurred at the N-termini, not at the lysine, whose side-chain 

failed to be modified by the guanidination reaction.  

 



 

 

 

Figure 3.8 MS/MS spectra for SPITC peptide ELVTAAKLGGGDPDANPR 

(protein ID P0A8A0; (A) containing unmodified lysine and (B) containing 
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MS/MS spectra for SPITC peptide ELVTAAKLGGGDPDANPR 

(protein ID P0A8A0; (A) containing unmodified lysine and (B) containing 

guanidinyl Lysine. 

 

MS/MS spectra for SPITC peptide ELVTAAKLGGGDPDANPR 

(protein ID P0A8A0; (A) containing unmodified lysine and (B) containing 
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A detailed analysis of the data showed that a single protein may present 

multiple N-termini. This may sound counter-intuitive, but cellular systems are 

complex with the coexistence of various enzymes, which can decompose proteins. 

One example is given for protein P0A850 (Trigger factor OS=Escherichia coli), in 

which three N-termini were observed with high confidence by our approach. The 

three peptides were P0A850from1to13, P0A850from244to255 and 

P0A850from322to334. The annotated peptide (1-13) was in low abundance 

compared to the other two peptides, judging by PSMs (a higher number correlates 

with higher abundance; PSMs for AA1-13 is 1, while PSMs for the other peptides 

are 5). In addition, the assignment of N-termini can be assured by the quality of 

each spectrum. The spectral simplification effect of the SPITC modification was 

present in all three N-termini of P0A850 as depicted in Figure 3.9. Therefore, we 

conclude that all these three peptides are N-terminal peptides derived from protein 

P0A850.  

 

 

 

 



 

 

Figure 3.9 MS/MS spectra for N

factor OS=Escherichia coli); (A) P0A850from1to13, (B) P0A850from244to255, 

and (C) P0A850from322to334. SPITC is attached to N
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MS/MS spectra for N-terminal peptides of protein P0A850 (Trigger 

factor OS=Escherichia coli); (A) P0A850from1to13, (B) P0A850from244to255, 

and (C) P0A850from322to334. SPITC is attached to N-terminal ions labeled 

in red. 

 

terminal peptides of protein P0A850 (Trigger 

factor OS=Escherichia coli); (A) P0A850from1to13, (B) P0A850from244to255, 

terminal ions labeled 
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3.4.7 Comparison of bound and flow-through fractions of E. coli cell 

lysate 

As we described previously, the chemically-modified protein digest was 

fractionated into two parts. One fraction was unbound with ERLIC and the other 

was bound with ERLIC (N-terminal enriched). The unbound fraction was also 

collected and the identified proteins were used to examine the crossover with the 

identified N-terminal peptides. Three sample preparations followed by LC-MS/MS 

analyses were performed for the E. coli cell lysate using the described workflow. 

The findings reported below represent pooled results of peptide identification for 

these data. 

Table 3.1 presents counts and percentages of peptides (and corresponding 

PSMs) determined to be labeled with SPITC (on N-termini and lysines) found in 

both the bound and flow-through fractions.  Consistent with the observations 

reported above on the basis of UV absorbance, the overall intensity of the signal is 

~3-4x higher in the flow-through fraction as compared to the one bound to ERLIC.  

At the same time relative enrichment for N-terminal SPITC tagged peptides is 

about 10x higher in the ERLIC bound fraction as compared to that in the flow-

through (e.g. 14% of peptides in bound fraction were identified as SPITC labeled 

at N-termini as compared to ~1% in the flow-through fraction).  Similar 
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observations can be made on the basis of PSM counts, which are approximate 

indicators of peptide abundance in the mixture – those determined to be labeled 

with SPITC at the N-terminal account for about 10% of the total PSM count in the 

bound fraction versus ~1% in the flow-through fraction. 

Table 3.1 Counts and percentages of peptides and corresponding PSMs 

annotated as labeled with SPITC (on N-termini and lysines) and not in bound 

and flow-through fractions of E. coli cell lysate. 
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 Peptides: PSMs: 

 Lysines N-Term Other Lysines N-Term Other 

Bound 301 (11%) 358 (14%) 1965 (75%) 949 (12%) 918 (11%) 6358 (77%) 

Flowthro

ugh 

124 (2%) 108 (1%) 7270 (97%) 216 (1%) 164 (1%) 23462 (98%) 

 
 

 The pie chart for calculated pI of identified peptides for bound and unbound 

fractions are shown in Figure 3.10. The bound fraction (A) contains mostly acidic 

peptides; since 71% of the peptide population is composed of peptides with pI 

lower than 4.99, with 10% contributed by pI lower than 3.99 and 61% by pI 

between 4-4.99. The unbound fraction (B) shows 38% of peptides with pI lower 

than 4.99, with only 1% from peptides with pI lower than 3.99. This agrees well 

with the ERLIC theory that acidic peptides have weaker electrostatic repulsion 

relative to the basic peptides, and they therefore exhibit higher retention on the 

column.  

 



 

Figure 3.10 pie chart for calculated pI of identified peptides for (A) bound fraction and (B)  
unbound fraction 

 

Figure 3.11 shows the

flow-through and bound fractions.  The majority of the proteins detected in the 

bound fraction irrespective of their SPITC labeling status were also detected in the 

flow-through fraction. Similarly, the majority (~80%) of the proteins iden

labeled with SPITC on the N
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Figure 3.10 pie chart for calculated pI of identified peptides for (A) bound fraction and (B)  

the overlaps between identified proteins detected in the 

through and bound fractions.  The majority of the proteins detected in the 

bound fraction irrespective of their SPITC labeling status were also detected in the 

through fraction. Similarly, the majority (~80%) of the proteins iden

labeled with SPITC on the N-termini were also detected in the flow

Figure 3.10 pie chart for calculated pI of identified peptides for (A) bound fraction and (B)  

detected in the 

through and bound fractions.  The majority of the proteins detected in the 

bound fraction irrespective of their SPITC labeling status were also detected in the 

through fraction. Similarly, the majority (~80%) of the proteins identified as 

termini were also detected in the flow-through 
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fractions with peptides lacking the SPITC label. Proteins identified both in flow-

through fractions and by N-terminal SPITC labeled peptides in the bound fraction 

tend to have higher PSM counts indicative of their higher abundances as compared 

to those that were present only in one of these two sets (Figure 3.12). Comparison 

of the peptides identified in the flow-through and bound fractions provides an 

additional level of support for the reliability of detection of the enriched N-

terminal SPITC labeled peptides in the bound fraction. 

 

 

 

 

Figure 3.11 Overlaps between protein accessions identified in flow-through 

and bound fractions; (A) all proteins identified in each of the fractions and (B) 

all proteins identified in flow-through fractions versus those detected in bound 
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fraction as labeled with SPITC on N-termini.  Areas are approximately 

proportional to the counts shown in the figures. 

 

 

 

 

Figure 3.7 Sums of PSMs for all proteins (A) in flow-through fraction and (B) 

those in bound fraction that were identified as N-terminal SPITC labeled. In 

each case, proteins were split into two groups those that were also present in 

the other set (N-terminal SPITC in bound fraction or all proteins in flow-

through fraction respectively) or only present in the given set.  Proteins 

present in both sets tend to have higher PSM sums, suggesting their higher 

abundance. 
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 3.5 CONCLUSIONS 

The method presented herein shows many improvements over existing 

positional proteomics approaches.  The use of SPITC modification at the N-termini 

enables the generation of high quality MS/MS spectra for high fidelity 

assignments, and enrichment due to the addition of the negatively-charged sulfate 

group. The ERLIC separation was advantageous compared to free amine 

scavenging approaches, due to the lower losses and the isolation of internal and C-

terminal peptides for cross-validation of N-terminal assignments.   
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Chapter 4  iTRAQ Labeling of N-terminal Amines in Complex 

Samples and Its Application in Protease Substrate Degradomics 

4.1 Abstract 

A positional proteomics strategy for proteolytic cleavage sites is presented 

based on iTRAQ labeling at the N-termini of peptides followed by enrichment on a 

NHS-activated agarose spin column. After substrates are treated with protease, a 

guanidination reaction is used to block the primary amine of the lysine side chain; 

subsequent reaction with iTRAQ reagents labels only the primary amine of the N-

termini. A control sample is prepared following the same steps, except that there is 

no protease treatment. All iTRAQ labeled samples are then pooled and treated with 

trypsin. The newly trypsin-digested sample is a mixture of peptides of various 

characteristics: N-terminal peptides (N-termini capped with iTRAQ reagent), 

internal peptides (free N-termini and Arg as C-termini) and C-terminal peptides 

(free N-termini). The latter two portions, which contain primary amines at the N-

termini, can be scavenged by NHS-activated agarose beads, resulting in 

enrichment of iTRAQ labeled peptides. Samples prepared in this manner are 

subjected to LC-MS/MS analysis and database searching, thus, the substrate of the 

protease can be revealed. Since the N-termini of protease cleavage are preserved 

by iTRAQ labeling, the proteomic scale analysis of N-termini will disclose the 
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cleavage sites of protease. In this report, Asp-N digested E.coli cell lysate is taken 

as a model system. A total of 764 N-terminal peptides, corresponding to 377 

proteins, are identified in one experiment, with 91% of those proteolytic products 

matching the expected protease digestion specificity. Our results suggest that 

iTRAQ in combination with N-terminal proteomics is useful for the identification 

of the proteolytic cleavage sites in complex systems as well as for the 

establishment of an in vivo proteolytic signature profile.  

 

4.2 Introduction 

The majority of proteomics studies appearing in the recent literature employ 

a “shotgun” approach,1-3 where the proteins are first digested into peptides, 

typically using trypsin as protease, that are subsequently analyzed by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). Proteome systems 

typically encompass thousands of individual components present in different 

concentrations varying over several orders of magnitude.4 This poses a major 

challenge to achieving high proteome coverage even when employing highly 

advanced instrumentation and workflows. Positional proteomics5-7 has drawn 

attention to the concept that a single peptide with a well-defined position (typically 

N-terminal or C-terminal) can be used to characterize the entire protein. Using this 
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principle, the sample complexity can be drastically decreased and the recovery, 

especially for low abundant proteins, is expected to increase. N-terminal positional 

proteomics has found value in another subfield of proteomics called degradomics8-9 

that focuses on identifying proteases and their corresponding substrates. In the 

human genome, 570 genes are predicted to encode for proteases. The substrates for 

half of those proteases are unknown, while processing of known targets of the 

other half is not well characterized.10 To fully understand the physiological and 

pathological implications of proteases, identifying their substrates and cleavage 

sites is a first step forward in this unknown territory. N-terminal positional 

proteomics has been shown to be a valuable tool in this field.11-13 

The essence of positional proteomics lies in the ability to differentiate 

selected positional peptides from other redundant peptides via the use of chemical 

or enzymatic modification. The relatively high reactivity of the N-terminal primary 

amine compared to the less reactive C-terminal carboxylic acid is a major reason 

that the numbers of N-terminal proteomics reports far exceed those of the latter in 

this subfield of proteomics.  Due to the robustness and simplicity of reaction, as 

well as the availability of isotopic forms of reagents, the most widely used 

chemical modifications in N-terminal proteomics are dimethylation14-15 and 

acetylation16-17. In dimethylation, catalyzed by sodium cyanoborohydride, 

formaldehyde is used to simultaneously label all free amino groups, i.e., the 
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primary amine of lysine, as well as those of each N-terminus. In-solution, online 

and on-column protocols for stable isotope dimethyl labeling were described in 

detail by Boersema et al
15 for sample amounts ranging from sub-micrograms up to 

milligrams. An example of acetylation was described by McDonald et al
16 

employing sulfo-NHS acetate. Similar to the dimethylation reaction, acetylation 

blocks all primary amines in peptides and proteins.  

Isobaric tagging for relative and absolute quantitation (iTRAQ) labeling is a 

useful tool in protein biomarker expression analysis.18-20 The reagent consists of a 

reporter group, a balance group and an amino reactive group, enabling isotopic 

arrangement that permits 4-plex or 8-plex reagents. The unique feature of the 

iTRAQ reagent is that peptides labeled with different reagents have the same 

nominal mass, while upon MS/MS, each individual label produces an exclusive 

reporter ion, which permits relative quantitation of the peptide(s) in each sample. 

Changes in biomarker levels are observable in the peptide reporter ions generated 

by MS/MS, thus allowing one to pinpoint the relevant proteins.   

A strategy using iTRAQ as the labeling reagent in N-terminal proteomics is 

explored in this study.  iTRAQ is used for two purposes; firstly, to serve as tagging 

reagent to differentiate N-terminal peptides from internal peptides, and secondly, 

to provide direct verification for N-terminal peptides when duplicate samples are 

tagged with different iTRAQ labels.   
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4.3 Experiment 

4.3.1 Materials  

E. coli cell lysate was obtained from McLab (San Francisco, CA in USA). 

Guanidination kit, dithiothreitol (DTT) and iodoacetamide (IAM) were purchased 

from Sigma Aldrich (St. Louis, MO in USA). iTRAQ 4-plex was obtained from 

Applied Biosystems (Framingham, MA in USA). Trypsin Gold (mass spectrometry 

grade) was obtained from Promega (Madison, WI in USA). Endoproteinase Asp-N 

(sequencing grade) was purchased from Roche (Indianapolis, IL in USA). Zeba 

spin desalting column (7K MWCO) and the NHS-activated agarose spin column 

were obtained from Pierce Biotechnology (Rockford, IL in USA).  

4.3.2 Reduction and alkylation 

2 mg of E. coli cell lysate was dissolved with 200 µL of Urea (6 M, with 0.1 

M phosphate buffer, pH 7.5). The solution was incubated at 37 °C for 30 min. A 40 

µL aliquot of DTT (0.5M) was added and the mixture was incubated at 37 °C for 

30 min. A 100 µL aliquot of IAM (0.5 M) was added and the sample was 

incubated at room temperature in the dark for 30 min. Another 10 µL aliquot of 

DTT was added to quench the alkylation reaction.  

4.3.3 Guanidination  
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The guanidination kit was obtained from Sigma-Aldrich.  The concentration 

of o-methylisourea hemisulfate was prepared at 6 mg/mL in water. The protein 

sample was adjusted to pH 10 by NaOH (1N) after reduction and alkylation and 

100-fold molar excess of o-methylisourea hemisulfate was added. The mixture was 

then incubated at 65 °C for 30 min.  

A 50 µL aliquot of urea (6M at pH 7.5) was added to make a 5 mg/mL 

protein solution. A Zeba spin desalting column was first buffer exchanged with 

100 mM sodium phosphate buffer (pH 7.5) (300 µL of buffer each time, spin down 

for 1 min at 1000 g, 4 times in total for each spin column).  Two separate Zeba 

spin columns were used, with each loaded with 120 µL of protein sample. The 

flow-through of one sample was used for Asp-N digestion, while the flow-through 

of the other was labeled with iTRAQ directly as a control.  

4.3.4 AspN-digestion 

6 µg of endoproteinase Asp-N was dissolved in 120 µL of water. The 

enzyme was mixed with 60 µg of cell lysate (after guanidination and Zeba spin 

desalting clean-up), and the mixture was incubated at 37 °C for 18 h. The sample 

was freeze-dried prior to iTRAQ labeling.  

4.3.5 iTRAQ labeling 



91 

 

Two 25 µg control portions of cell lysate (after guanidination and Zeba spin 

desalting clean-up) were each diluted with 20 µL of urea (6M, with 0.1 M 

phosphate buffer, pH 8.5) in separate vials.  Each cell lysate vial was mixed with 

the iTRAQ reagent dissolved in 70 µL ethanol; one vial was reacted with iTRAQ 

tag 114 and the other with iTRAQ tag 115. The mixture was incubated for 2 hr at 

room temperature.   

Two replicates of 25 µg of AspN digested cell lysate were each diluted with 

20 µL of phosphate buffer (pH 8.5) in separate vials.  Each digested sample vial 

was mixed with the iTRAQ reagent dissolved in 70 µL ethanol; one vial was 

reacted with iTRAQ tag 116 and the other with iTRAQ tag 117. The mixture was 

incubated for 2 hr at room temperature.    

All the iTRAQ labeled samples were pooled into a single vial and dried by 

centrifuging. The sample was re-suspended in 196 µL of sodium bicarbonate (0.1 

M).  

4.3.6 Trypsin digestion 

4 µg of trypsin (1 µg/µL in water) was added to the pooled iTRAQ solution. 

The solution was incubated at 37 °C overnight.  

4.3.7 N-terminal enrichment by NHS-activated agarose resin 
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PBS buffer (200 µL, 0.1 M sodium phosphate and 0.3 M sodium chloride, 

pH 7.2) was added to the trypsin-digested solution, which was directly added to 

NHS-activated agarose dry resin. After mixing the sample end over end for 1 hr, 

the spin column was centrifuged at 1000 g for 1 min and the flow through was 

collected; this flow-through contained the N-termini enriched portion. The resin 

was further washed twice with 400 µL of PBS buffer, with collection of the flow 

through. These three flow-through portions were combined and desalted by C18 

cartridge. The salt was washed out with 0.1% formic acid in water and the N-

terminal peptides were eluted with 0.1% formic acid in 80% acetonitrile in water. 

After drying the solvent by centrifuge, the N-terminal peptides were re-dissolved 

with 40 µL of water and subjected to immediate LC-MS/MS analysis or stored at 

−20 °C for further analysis.  

4.3.8 LC-MS/MS  

LC-MS/MS was performed on a capillary Dionex U3000 HPLC system 

(Thermo Scientific, San Jose, CA) coupled to a QExactive Orbitrap mass 

spectrometer (Thermo Scientific, San Jose, CA).  A Targa C18 column from 

Higgins Analytics (150 cm* 300 µm, 3 µm particle) was used with mobile phase A 

(0.1% formic acid in water) and mobile phase B (0.1% formic acid in acetonitrile). 

Peptides were eluted over 90 min by increasing mobile phase B from 0 to 30% 

linearly. Mass spectrometry data were acquired automatically using Xcalibur 
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software (Thermo Scientific) in data dependent acquisitions, with both survey 

scans and MS2 scans in the FT mode (resolution set at 35000 for parent ions and 

17500 for fragment ions). Each survey scan was followed by 12 MS/MS scans. 

MS/MS spectra were acquired in HCD mode with normalized collision energy 

(NCE) of 25.  

Peptides were identified by the Thermo Proteome Discovery 1.3 software 

package (Thermo Scientific). Peptide and protein identifications were obtained 

using Sequest and Mascot algorithms. The E. coli K12 strain database prepared in 

a fashion similar to that described by Dormeyer et al
23 was used for searching. 

Specifically, all protein sequences in the database were cut at arginine (C-

terminal); for each resulting peptide (i.e., the series of neo-N-terminal peptides 

created as a result of these cleavages), multiple sequence database entries were 

generated that represented sequential truncations of each N-terminal amino acids.  

Only sequences 6 amino acids or longer were retained in the database.  The mass 

tolerance for parent ions was set to be 10 ppm and 0.1 Dalton for fragment ions. 

Trypsin cleavage was applied with up to 1 missed cleavage in the search. 

Carboamidomethyl of cysteine (+57.021Da) was set as a static modification. 

Dynamic modification included guanidination for lysine (+42.022 Da) and N-

terminal modification with iTRAQ (+144.102 Da). Percolator (Thermo Scientific) 

was used for peptide filtering, with a peptide FDR threshold set to 0.01.  
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4.4 Results and Discussion 

Enoksson et al
21 reported the identification of ten caspase-3 cleavage sites in 

a mixture of 7 purified recombinant E. coli proteins using iTRAQ, with all sites 

corresponding to caspase-3 previously reported cleavage sites.  Prudova et al.
22 

incorporated iTRAQ whole protein labeling with terminal amine isotopic labeling 

(iTRAQ-TAILS) to enrich the N-terminome by negative selection. By this 

approach, substrate degradomes of two closely related matrix metalloproteinase 

MM2 and MM9 were found to be significantly different. We have employed Asp-

N digested E. coli cell lysate as a model system, where a protein database already 

exists and enzyme specificity is mostly known. Our results demonstrate that this 

combination of iTRAQ with N-Terminal proteomics can be used for the 

identification of the proteolytic cleavage sites in complex system and for the 

establishment of proteolytic signature profile in vivo.  

4.4.1 Strategy for the identification of N-terminal proteolytic peptides 

The strategy to identify N-terminal proteolytic peptides is illustrated in 

figure 4.1 using Asp-N as an example. The substrate was E. coli cell lysate. 

iTRAQ tags 114 and 115 were used to label the cell lysate sample, while iTRAQ 

tags 116 and 117 were used to label the Asp-N digested cell lysate sample. Prior to 

iTRAQ labeling, the side chain of lysine in both samples is blocked by the 

guanidination reaction.  After pooling iTRAQ labeled samples, trypsin digestion 
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was performed, followed by N-terminal enrichment employing a NHS agarose spin 

column. LC-MS/MS data was then acquired. In the current workflow, peptides can 

be identified as belonging to the protein N-termini if all four tags are visible in the 

mass spectrum, whereas the peptides originating from Asp-N cleavage will only 

appear with two tags (116 and 117).  Thus, peptides without the 116 and 117 labels 

most likely originate from internal peptides which survive the NHS-activated 

agarose enrichment process. Replicate samples with different tags allow 

simultaneous validation of identified peptides. Therefore, peptides with only one 

tag are ignored in the final peptide counting.  

 



 

Figure 4.1 Scheme for N

 

4.4.2 E. coli cell lysate results using the proposed workflow

A total of 100 µg of 

with one quarter reacted with each iTRAQ tag. The samples were prepared 

according to the workflow as in figure 

Discovery 1.3 software (Thermo Scientific) 

then by modifications (containing N
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Scheme for N-terminal Proteolytic Peptides by iTRAQ labeling

4.4.2 E. coli cell lysate results using the proposed workflow 

g of E. coli cell lysate was used in the current experiment 

with one quarter reacted with each iTRAQ tag. The samples were prepared 

workflow as in figure 4.1. The result table generated 

software (Thermo Scientific) was first filtered by protein accessions, 

then by modifications (containing N-terminal modified with iTRAQ) and lastly by 

 

terminal Proteolytic Peptides by iTRAQ labeling 

 

cell lysate was used in the current experiment 

with one quarter reacted with each iTRAQ tag. The samples were prepared 

1. The result table generated by Proteome 

filtered by protein accessions, 

terminal modified with iTRAQ) and lastly by 
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the confidence level of identification. A total of 500 N-terminal iTRAQ labeled 

peptides with E. coli protein accessions were identified with medium to high 

confidence.  These peptides represented 370 proteins found in the E. coli database.  

Endoproteinase Asp-N is known to cleave peptide bonds N-terminally at 

aspartic and cysteic acid.24-26 Ingrosso et al. reported that Asp-N can also cleave at 

glutamyl residues.27 Thus, the neo-N-terminal peptides produced by endoprotease 

digestion are expected to start predominately with Asp (D) and a lesser amount of 

Glu (E). Of those 764 N-termini iTRAQ peptides identified, 481 peptides had N-

terminal Asp. We also found 215 peptides with N-terminal Glu. Altogether, 

peptides starting with Asp and Glu account for 91% of N-terminal peptides 

identified. There are 6 peptides that start with methionine, and 17 peptides are 

identified as annotated peptide sequences obtained by stripping off the first 

methionine, thus, annotated protein N-termini account for 3% of peptides 

identified.  The origin of the other 6% is unclear.  

An example of the annotated N-terminal peptide is presented in Figure 4.2a. 

This peptide sequence is identified with high confidence to be iTRAQ-MFPEYR 

by Proteome Discovery. With MFPEYR as the N-terminal peptide, the 

corresponding protein is determined to be P0ACW6 (Uncharacterized protein 

YdcH OS=Escherichia coli). The inset of Figure 2a shows the four reporter ions, 

further validating that this peptide is not from Asp-N digestion.   
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An example of an Asp-N digested neo-N-terminal peptide is shown in 

Figure 4.2b. This peptide sequence is identified to be iTRAQ-DVQVFTR through 

software assignment of both b and y series ions. This peptide is determined to be 

the 930 to 936 heptamer in protein P0A8V2 (DNA-directed RNA polymerase 

subunit beta OS=Escherichia coli). As shown in the inset in Figure 2b, only two 

reporter ions (m/z 116, 117) are present for this peptide, validating that this peptide 

is the product of Asp-N digestion.  

 

 

 

 

 

 

 

 



 

Figure 4.2 iTRAQ labeled N

protein P0ACW6 (Uncharacterized protein YdcH OS=

position 1-6     (b) iTRAQ

RNA polymerase subunit beta OS=

4.5 Summary 
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iTRAQ labeled N-terminal peptides (a) iTRAQ-MFPEYR  from 

protein P0ACW6 (Uncharacterized protein YdcH OS=Escherichia coli

6     (b) iTRAQ-DVQVFTR from protein P0A8V2(DNA

RNA polymerase subunit beta OS=Escherichia coli), position 930

 

 

MFPEYR  from 

Escherichia coli), 

DVQVFTR from protein P0A8V2(DNA-directed 

), position 930-936. 
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An Asp-N digested E. coli cell lysate was employed as a model system to 

demonstrate the application of a novel workflow to study proteolytic cleavage sites 

and substrates. This workflow differentiates N-termini and neo-N-termini by 

iTRAQ, and enriches these species for improved sensitivity by negative selection 

using NHS agarose beads. A total of 764 N-terminal peptides were identified in 

one experiment, with 89% of those matching the protease digestion specificity. 

Those 764 peptides correspond to 377 proteins. Compared with dimethylation or 

acetylation modification, the obvious advantage of using iTRAQ as the labeling 

reagent is that 4 or 8 samples can be compared simultaneously with sensitivity 

improvement, which makes it an attractive approach for the establishment of in 

vivo proteolytic signatures.  
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Chapter 5 Summary 

The concept of positional proteomics is that a protein can be identified by a 

single, position-defined peptide, with the two most obvious positional locations 

within every protein being the N- and C-termini. The strength of positional 

proteomics arises from the dramatically reduced complexity of proteome samples, 

however, the strength turns into weakness in protein identification due to risks 

inherent in identifying a protein on the assignment of a single peptide’s 

fragmentation pattern, the so called “one hit wonder” problem. In this thesis, we 

focused on developing methods to identify peptides and proteins with higher 

confidence, by ensuring high quality spectra and/or utilizing internal validation.  

An approach was proposed where the N-termini fraction for positional 

proteomics from the peptide mixtures is enriched, while the rest of the peptide 

mixture is preserved. Therefore, MS analysis of the remaining peptide mixtures 

can serve as validation for the results of positional proteomics. In the process, 4-

sulfophenyl isothiocyanate (SPITC) is used to modify the N-termini and the SPITC 

modified peptides are separated from others using electrostatic repulsion 

hydrophilic interaction chromatography (ERLIC). Moreover, the confidence of N-

termini identification is further strengthened by exploiting the unique 

fragmentation behavior of SPITC peptides, thus we conclude that our approach 
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offers high fidelity assignment of N-terminal peptides. This work was presented in 

chapter 3.  

Another attempt to simultaneously validating the results of positional 

proteomics is to use iTRAQ to modify the peptide N-termini and this workflow 

was tested for its application to identify protease substrates. In this study, both 

control and protease treated sample were labeled by different tags, allowing direct 

comparison of protein N-termini with neo-N-termini. In addition, samples were 

analyzed in duplicate by labeling with two tags (e.g. tag 116 and tag 117), aiming 

for quick validation of peptides by internal replicates. Compared with 

dimethylation or acetylation modification, the dramatic advantage of using iTRAQ 

as labeling reagent is that up to 4 or 8 samples can be compared simultaneously 

with sensitivity improvement, which makes it an attractive approach for the 

establishment of proteolytic signatures in vivo. This work was presented in chapter 

4.  

The proof of concept of these approaches was demonstrated by application 

to  E. coli cell lysates. Further modification or workflow improvement may be 

needed for biological application. One limitation of the current workflow is that it 

will not detect proteins with N-terminal modifications such as acetylation or 

dimethylation, since SPITC only reacts with N-terminal amines. It is feasible to 

use an appropriate enzyme to treat the protein mixture prior to SPITC modification 
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in order to catch these protein N-termini.1 In addition, isotope labeled SPITC can 

be used for direct sample comparison.2  

Furthermore, it is common in proteomics applications to use of multiple 

enzymes for cleavage in order to improve protein coverage. 3 This approach is 

applicable here: instead of using only trypsin for digestion, the same sample can be 

treated with a combination of chymotrypsin, trypsin and/or Glu-C, thus improving 

the chances to produce peptides with the right sizes for high-fidelity MS 

assignment.  

Another application of the current concept is in the field of C-terminal 

proteomics. The negative charge introduced by SPITC at peptide N-termini, causes 

the neutralization of N-terminal ions (a and b ions) upon HCD, thereby promoting 

the generation and survival of C-terminal ions (y ions).  Therefore, the overall 

effect of SPITC derivatization is to improve tandem mass spectra by generating 

predominantly y-type ions. Similarly, study has shown that Lys-N digested 

peptides generate predominantly b ions in tandem mass spectra 4 . Thus, high 

fidelity for C-termini in proteomics scale should be achievable by incorporating 

Lys-N digestion. Such approach is going to be a valuable alternative for the 

currently under-utilized C-terminal proteomics.   
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Appendix 

 Appendix table 1 N-terminal peptides by SPITC modification 

sequence PSMs protein accessions Modification MH+(Da

) 

ADAQK 3 P0AES9from22to1

10 

N-Term(SPITC) 747.244

4 

ISQEVR 2 P30136from593to

598 

N-Term(SPITC) 946.379

6 

GQINIPEGR 1 P39321from1066t

o1074 

N-Term(SPITC) 1198.49

1 

KSDQNVR 8 P0A7L0from54to6

0 

N-Term(SPITC) 1061.41

4 

KTGNTPDGR 8 P09373from616to

624 

N-Term(SPITC) 1160.45 

QATKDAGR 7 P0A6Y8from152to

159 

N-Term(SPITC) 1061.41

6 

KPVNDLSR 12 P0A9M8from685t

o692 

N-Term(SPITC) 1143.49

8 

GLSAKSFDGR 18 P62399from116to

125 

N-Term(SPITC) 1252.50

6 

PWFIKALR 1 P33341from750to

757 

N-Term(SPITC) 1245.58

2 

SPDPFER 1 P37653from394to

400 

N-Term(SPITC) 1062.36

8 

EAAEQAKR 2 P0A705from135to

142 

N-Term(SPITC) 1117.44

6 

TFYAQLR 1 P75860from143to

149 

N-Term(SPITC) 1113.45

3 

MATKDGR 2 P65294from26to3

2 

N-Term(SPITC) 993.363 

VKLDEAGVR 4 P0AGE9from84to

118 

N-Term(SPITC) 1201.53 

KAPAEPQR 2 P0A9P0from256to

263 

N-Term(SPITC) 1111.46

5 
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sequence PSMs protein accessions Modification MH+(Da

) 

FTESEVISR 1 P75990from276to

284 

N-Term(SPITC) 1282.52

1 

LKNENPR 4 P0ACW6from12to

18 

N-Term(SPITC) 1085.45

6 

VMVLDIDEER 2 P0AG67from330t

o339 

N-Term(SPITC) 1433.56

7 

ENNAQTTNESAGQK 1 P0AFH8from29to

122 

N-Term(SPITC) 1706.64

4 

KAIGEAK 6 P0ABT2from134to

153 

N-Term(SPITC) 931.401

2 

VLIHPASLPEER 1 P28722from128to

139 

N-Term(SPITC) 1575.72

4 

LFLGVDAIDLER 2 P0ACK2from183to

194 

N-Term(SPITC) 1575.71

6 

VAEFFGKEPR 2 P0A6Y8from353to

362 

N-Term(SPITC) 1394.59

5 

VEQKVAR 5 P25553from337to

343 

N-Term(SPITC) 1044.46

4 

GIQPEEVER 1 P37353from361to

369 

N-Term(SPITC) 1271.50

4 

KLTETDQR 2 P0A7F3from34to4

1 

N-Term(SPITC) 1205.49

3 

AIQSEKAR 5 P0A7U7from11to

18 

N-Term(SPITC) 1117.47

9 

KLEAGDEVR 6 P0AA39from59to

67 

N-Term(SPITC) 1231.51

2 

VDALTNEVR 1 P30855from260to

268 

N-Term(SPITC) 1231.50

7 

PADAIDR 1 P76473from532to

538 

N-Term(SPITC) 972.357 

AVKAPGFGDR 1 P0A6F5from275to

284 

N-Term(SPITC) 1232.52 

TQQESLQKALR 1 P00968from390to

400 

N-Term(SPITC) 1516.69

5 
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sequence PSMs protein accessions Modification MH+(Da

) 

KSDNPSITR 8 P0A6H1from192t

o200 

N-Term(SPITC) 1232.50

8 

LLMEDLNDGLR 1 P09053from18to2

8 

N-Term(SPITC) 1503.61

9 

AIVKADNR 2 P0A6V8from201t

o208 

N-Term(SPITC) 1101.47

9 

TTQTVSGR 2 P0AGI1from2to9 N-Term(SPITC) 1064.41

5 

KPATAGMENR 4 P15288from59to6

8 

N-Term(SPITC) 1289.50

4 

AQNTAAYIGNGDR 3 P06996from226to

238 

N-Term(SPITC) 1565.61

1 

STIEER 7 P0A6A8from2to7 N-Term(SPITC) 949.341

3 

ELKDAGADR 2 P00968from427to

435 

N-Term(SPITC) 1189.46

3 

ILQNEDKR 1 P13035from247to

254 

N-Term(SPITC) 1230.52

3 

VDKDAVSR 7 P0A8M0from292t

o299 

N-Term(SPITC) 1104.44

8 

TSHVEYDTPTR 5 P0CE47from65to7

5 

N-Term(SPITC) 1520.56

6 

IDAGKTTTTER 7 P0A6M8from19to

29 

N-Term(SPITC) 1407.58

5 

VQAIEKNR 3 P0A6H5from113t

o120 

N-Term(SPITC) 1172.52

2 

KWTDQSGQDR 2 P0AGE0from88to

97 

N-Term(SPITC) 1435.54

2 

VTVKTDGGPR 3 P0AEG8from7to1

6 

N-Term(SPITC) 1244.54

8 

EAAATAGEKEDAPR 2 P45577from123to

136 

N-Term(SPITC) 1630.64

9 

AKASQLDEAR 2 P62620from354to

363 

N-Term(SPITC) 1303.54

4 
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sequence PSMs protein accessions Modification MH+(Da

) 

SPEQQKVVDR 4 P0ADI4from102to

111 

N-Term(SPITC) 1400.58

8 

LPDINNEASLR 2 P75961from64to7

4 

N-Term(SPITC) 1456.62

8 

ILSKDEGGR 7 P0CE47from311to

319 

N-Term(SPITC) 1189.50

2 

KDLTAADGQTR 4 P77395from245to

255 

N-Term(SPITC) 1390.57

6 

KASVEIDR 2 P0A7L3from85to9

2 

N-Term(SPITC) 1132.47

9 

STGTSGAGSDVEKVR 6 P0A9M8from592t

o606 

N-Term(SPITC) 1665.68

6 

AEQAALQADKR 1 P0AFK0from144to

154 

N-Term(SPITC) 1415.61

8 

KSPFDSGGR 2 P07012from204to

212 

N-Term(SPITC) 1165.43

6 

EAAGSALKGDR 2 P0ACB2from206t

o216 

N-Term(SPITC) 1289.52

5 

LQQVGDKPR 4 P0AFG0from115t

o123 

N-Term(SPITC) 1255.56 

SQGQEEAEKLR 1 P0ABC3from240t

o250 

N-Term(SPITC) 1489.60

7 

EQEAAELKR 2 P0A705from177to

185 

N-Term(SPITC) 1288.53

3 

ALGKDDEVR 10 P09373from674to

682 

N-Term(SPITC) 1217.49

2 

QLSNDVNAMR 1 P69776from43to5

2 

N-Term(SPITC) 1362.51

1 

IPEKSVSQSDR 1 P0ABH9from436t

o446 

N-Term(SPITC) 1460.61

8 

SNQFGDTR 6 P0AEH5from2to9 N-Term(SPITC) 1139.38

5 

KLLDEGR 14 P0CE47from264to

270 

N-Term(SPITC) 1045.44

6 
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sequence PSMs protein accessions Modification MH+(Da

) 

EVKELTER 5 P0ADG7from108t

o115 

N-Term(SPITC) 1218.51

4 

VAKIYGDR 3 P0AFG3from574t

o581 

N-Term(SPITC) 1136.49

7 

VYKNYDPR 3 P0ABH7from308t

o315 

N-Term(SPITC) 1269.50

2 

DAFTLVLAR 3 P76254from233to

241 

N-Term(SPITC) 1220.53

9 

GDKSMALR 3 P02359from112to

119 

N-Term(SPITC) 1092.42

9 

DLLKEQNNR 2 P0A742from127to

135 

N-Term(SPITC) 1344.57

1 

ALQSSINEDKAH 2 P0AD24from64to

75 

N-Term(SPITC) 1527.62 

ISIKDTR 4 P22259from450to

456 

N-Term(SPITC) 1047.46

6 

AENQYYGTGR 6 P0A7X3from2to11 N-Term(SPITC) 1373.49

2 

NIDADKVNPR 2 P0AFG8from876t

o885 

N-Term(SPITC) 1356.56

7 

IQAEKSQQSSY 6 P69913from51to6

1 

N-Term(SPITC) 1483.58

2 

VKAPGFGDR 1 P0A6F5from276to

284 

N-Term(SPITC) 1161.48

4 

HAQAEGIR 2 P0AFI0from40to4

7 

N-Term(SPITC) 1096.43

8 

QLGDKPADVR 8 P15254from849to

858 

N-Term(SPITC) 1313.56

3 

MELSSLTAVSPVDGR 3 P0AB89from1to15 N-Term(SPITC) 1776.76

2 

VDGTKPVAEVR 3 P69441from196to

206 

N-Term(SPITC) 1385.62

7 

TLGADALEPKR 1 P0A9W3from537t

o547 

N-Term(SPITC) 1385.62

4 
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sequence PSMs protein accessions Modification MH+(Da

) 

TIVR 1 P32717from253to

270 

N-Term(SPITC) 703.289

6 

ISNVELSKR 2 P0ACJ0from29to3

7 

N-Term(SPITC) 1260.57

7 

IAPLDADR 2 P16685from116to

123 

N-Term(SPITC) 1085.44

2 

AISTIAESKR 3 P69908from22to3

1 

N-Term(SPITC) 1290.58 

KGSENYALTTNQGVR 6 P21179from73to8

7 

N-Term(SPITC) 1852.79

1 

ITKEDIER 3 P0ABK2from366t

o373 

N-Term(SPITC) 1218.51

6 

VKAEMENLR 1 P09372from65to7

3 

N-Term(SPITC) 1304.55

4 

AKDGLALSSR 4 P31663from180to

189 

N-Term(SPITC) 1232.54

3 

TPDQVKEIAR 5 P33570from528to

537 

N-Term(SPITC) 1371.60

9 

YAPNAKDLAGR 4 P0AC41from276to

286 

N-Term(SPITC) 1390.59 

LAKEDPSFR 15 P0A6M8from438t

o446 

N-Term(SPITC) 1277.53

3 

IAAGADISKAAAGR 2 P0ACF4from10to2

3 

N-Term(SPITC) 1486.68

3 

LLKAANTGPHAAR 1 P0ADH5from21to

33 

N-Term(SPITC) 1534.72

8 

GIPADKISAR 3 P0A910from289to

298 

N-Term(SPITC) 1242.56 

KAELESAALNAR 8 P08312from75to8

6 

N-Term(SPITC) 1487.65

6 

QTVDEALKDAQTR 6 P0AEX9from381to

393 

N-Term(SPITC) 1689.72

7 

IDDGELHGESPGDR 1 P64503from12to2

5 

N-Term(SPITC) 1711.63

2 
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sequence PSMs protein accessions Modification MH+(Da

) 

PAITEDEIR 1 P39283from8to16 N-Term(SPITC) 1258.50

6 

AESFTTTNR 2 P0ADN2from2to1

0 

N-Term(SPITC) 1241.45

4 

SHLDEVIAR 3 P64455from2to10 N-Term(SPITC) 1254.53

2 

IKEAFDTGVR 3 P0A853from155to

164 

N-Term(SPITC) 1350.57

7 

AFDQIDNAPEEKAR 17 P0CE47from46to5

9 

N-Term(SPITC) 1818.73

7 

VAQVDKTAVDTYR 2 P36683from830to

842 

N-Term(SPITC) 1680.73

5 

NLTGKEADAALGR 3 P0A825from327to

339 

N-Term(SPITC) 1530.67

2 

LSPKESEVLR 5 P69407from151to

160 

N-Term(SPITC) 1372.62

8 

NKDGIPAVVER 22 P60422from70to8

0 

N-Term(SPITC) 1412.61

8 

GIGPAYEDKVAR 9 P0A7D4from133t

o144 

N-Term(SPITC) 1490.63

5 

ILDPTKVTR 3 P0A6F5from493to

501 

N-Term(SPITC) 1257.59

7 

AEQTVEAPSVDAR 1 P08506from28to4

0 

N-Term(SPITC) 1587.63

9 

NEPDAVAEKLAR 3 P0A8L1from9to20 N-Term(SPITC) 1527.64

9 

AKIVDEIGLPR 2 P25553from189to

199 

N-Term(SPITC) 1425.69 

QYIEKDAALER 1 P63284from321to

331 

N-Term(SPITC) 1550.66

6 

FNSLTKEQQQDVITR 5 P09373from740to

754 

N-Term(SPITC) 2021.90

6 
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sequence PSMs protein accessions Modification MH+(Da

) 

KFEELVQTR 12 P0A6Y8from528to

536 

N-Term(SPITC) 1364.58

7 

MSTIEER 4 P0A6A8from1to7 N-Term(SPITC) 1080.38

2 

FNMHLWLSPEIAR 1 P39172from140to

152 

N-Term(SPITC) 1828.78

9 

VGFFNPIASEKEEGTR 2 P0A7T3from36to5

1 

N-Term(SPITC) 1995.85 

KENNLGADVVLR 6 P07118from456to

467 

N-Term(SPITC) 1542.69

8 

LGISTLDDVLTDIR 1 P77541from59to7

2 

N-Term(SPITC) 1745.80

3 

MQIDSKPEELDR 3 P63284from403to

414 

N-Term(SPITC) 1675.68

9 

VAIFNAATGKADR 4 P60624from70to8

2 

N-Term(SPITC) 1548.70

1 

VKAALELAEQR 11 P0A7V8from155t

o165 

N-Term(SPITC) 1442.67

4 

TLTQEDVEALEKR 3 P0A8M3from111t

o123 

N-Term(SPITC) 1746.75

8 

FLSALAGENDPEAKR 3 P04079from294to

308 

N-Term(SPITC) 1832.78

9 

ELVTAAKLGGGDPDANPR 2 P0A8A0from31to

48 

N-Term(SPITC) 1995.89

6 

VLQEAADKSNPLIER 1 P0A7B1from21to3

5 

N-Term(SPITC) 1897.88

8 

GVTVDKMTELR 5 P0A7J3from32to4

2 

N-Term(SPITC) 1463.63

2 

ILENGEVKPLDVK 1 P0A6F9from48to9

7 

N-Term(SPITC) 1668.80

4 

KGFIDVEQVR 4 P37744from261to

270 

N-Term(SPITC) 1405.62 
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sequence PSMs protein accessions Modification MH+(Da

) 

VKLDTTGLIDR 2 P0A953from52to6

2 

N-Term(SPITC) 1445.67

3 

IETLNFMEPQSAADLIR 1 P0ABZ1from107to

123 

N-Term(SPITC) 2162.95

7 

LFGKPEIDGSR 4 P33221from352to

362 

N-Term(SPITC) 1433.61

5 

GITINTSHVEYDTPTR 2 P0CE47from60to7

5 

N-Term(SPITC) 2018.86

3 

AYADDKAIVGGIAR 6 P0ABD5from94to

107 

N-Term(SPITC) 1634.73

7 

ESYTKEDLLASGR 5 P0A6Q3from6to1

8 

N-Term(SPITC) 1683.68

9 

ILLDTKGPEIR 6 P0AD61from63to

73 

N-Term(SPITC) 1469.71

5 

IFDLGNVIVDIDFNR 3 P0A8Y3from4to18 N-Term(SPITC) 1964.89

9 

AKVDQLSNDVNAMR 8 P69776from39to5

2 

N-Term(SPITC) 1775.76

1 

NILNELQKDGR 2 P0ACJ0from18to2

8 

N-Term(SPITC) 1514.67

2 

ATYYSNDFR 3 P0A6N4from2to1

0 

N-Term(SPITC) 1351.46

8 

DKLEPYFTEGR 2 P00961from623to

633 

N-Term(SPITC) 1569.64 

LGEYLKPLAER 2 P0A9S5from21to3

1 

N-Term(SPITC) 1503.69

6 

KDDTIPAIISHDE 2 P0AE18from252to

264 

N-Term(SPITC) 1668.68

5 

VVSMPSTDAFDKQDAAYR 2 P27302from580to

597 

N-Term(SPITC) 2215.91

7 
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sequence PSMs protein accessions Modification MH+(Da

) 

TLNDAVEVKHADNTLTFG

PR 

8 P0AG55from36to

55 

N-Term(SPITC) 2413.08

4 

LTTDKGEWLLYR 2 P00961from108to

119 

N-Term(SPITC) 1709.75

2 

GFAVTPPELTKDDER 3 P62707from118to

132 

N-Term(SPITC) 1889.79 

AEHWIDVR 5 P23857from20to2

7 

N-Term(SPITC) 1240.49 

SEFITVAR 6 P0ABA4from2to9 N-Term(SPITC) 1137.46

8 

QAGELQEKLIAVNR 4 P0A7W1from5to2

0 

N-Term(SPITC) 1783.84

1 

SQVSTEFIPTR 4 P0AEZ9from2to12 N-Term(SPITC) 1479.61

7 

FGVPLVR 1 P00864from386to

392 

N-Term(SPITC) 1002.46

1 

NKVTDAEIAEVLAR 6 P63284from529to

542 

N-Term(SPITC) 1743.81 

SGITFSQELKDSGMR 2 P0A953from31to4

5 

N-Term(SPITC) 1870.77

3 

VGGSTYQVPVEVR 2 P02359from80to9

2 

N-Term(SPITC) 1605.69

2 

ALYDSEKDAYLIGR 2 P22106from125to

138 

N-Term(SPITC) 1828.77

9 

LASSPSPLNPGTNVAR 2 P0AE22from24to3

9 

N-Term(SPITC) 1795.80

1 

WQTLSAKSFPLPR 1 P45423from129to

141 

N-Term(SPITC) 1745.82

6 

TSGGELDKLLAAGR 1 P16700from324to

337 

N-Term(SPITC) 1602.73

5 
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sequence PSMs protein accessions Modification MH+(Da

) 

KIDGIPALLDR 16 P37769from68to7

8 

N-Term(SPITC) 1425.68

3 

PVITLPDGSQR 2 P0A8M3from2to1

2 

N-Term(SPITC) 1397.62

8 

QTFAQKAQAFEQDR 3 P0AEU7from92to

105 

N-Term(SPITC) 1882.78 

INKALDFIAER 3 P04805from457to

467 

N-Term(SPITC) 1504.69 

NIAEAASGIDKLVSR 3 P0ABU5from197t

o211 

N-Term(SPITC) 1758.81

5 

TELLNSSYDVSR 5 P16700from26to3

7 

N-Term(SPITC) 1598.64

2 

NVYIKEAFDTGVR 21 P0A853from152to

164 

N-Term(SPITC) 1726.75

8 

MNIIEANVATPDAR 4 P61714from1to14 N-Term(SPITC) 1729.74

2 

ALLPLVEEKADR 5 P07003from318to

329 

N-Term(SPITC) 1568.74

3 

MSHLDEVIAR 2 P64455from1to10 N-Term(SPITC) 1385.56

5 

SANIALVLYKDGER 3 P60422from88to1

01 

N-Term(SPITC) 1763.81

4 

SLVWDEAQKLTGR 3 P21179from301to

313 

N-Term(SPITC) 1717.78 

AAILSQSQLTALFGQYR 1 P37177from151to

167 

N-Term(SPITC) 2081.97

1 

IWDSTDALELKEVPER 3 P0A9P0from162to

177 

N-Term(SPITC) 2115.92

7 

IIDQEVKALIER 3 P0AAI3from544to

555 

N-Term(SPITC) 1641.79

1 

MYQDLIR 1 P63224from1to7 N-Term(SPITC) 1153.45 
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sequence PSMs protein accessions Modification MH+(Da

) 

VVAILLNDEVR 1 P21179from602to

612 

N-Term(SPITC) 1455.69

1 

LGEGDKVVSLIVPR 2 P0AES4from726to

739 

N-Term(SPITC) 1696.83

6 

EQIIFPEIDYDKVDR 3 P62399from134to

148 

N-Term(SPITC) 2094.90

7 

TSENPLLALR 4 P0A9J8from2to11 N-Term(SPITC) 1328.59

4 

MESLTLQPIAR 2 P0A6D3from1to1

1 

N-Term(SPITC) 1473.65

5 

VQELAEKLYSELR 2 P16659from489to

501 

N-Term(SPITC) 1792.82

3 

YLDVSTLKELAR 1 P0A784from131to

142 

N-Term(SPITC) 1622.76 

AVTNVAELNALVER 4 P0A9Q7from2to1

5 

N-Term(SPITC) 1713.78 

LDELNNVDDFR 1 P32171from441to

451 

N-Term(SPITC) 1564.61

9 

MENYLIDNLDR 2 P0ACI6from1to11 N-Term(SPITC) 1610.63

5 

MQDPIADMLTR 1 P0A7W7from3to1

3 

N-Term(SPITC) 1505.59

1 

MSVVPVADVLQGR 2 P0A8M0from1to1

3 

N-Term(SPITC) 1585.71

9 

QLPDKAIDLIDEAASSIR 2 P63284from385to

402 

N-Term(SPITC) 2170.01

8 

TMYATLEEAIDAAR 1 P25738from2to15 N-Term(SPITC) 1769.72

8 

MDALELLINR 1 P0ACY1from1to10 N-Term(SPITC) 1402.61

8 

STQLDPTQLAIEFLR 1 P64476from2to16 N-Term(SPITC) 1946.89

8 
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sequence PSMs protein accessions Modification MH+(Da

) 

ILLNDEVR 1 P21179from605to

612 

N-Term(SPITC) 1186.52

6 

ELLMALR 1 P0AF10from111to

117 

N-Term(SPITC) 1060.45

4 

VKAQDVQR 1 P68919from72to7

9 

N-Term(SPITC) 1158.50

6 

GTVVTGR 1 P0CE47from225to

231 

N-Term(SPITC) 904.366

9 

NDDAKAVQR 2 P0AG16from484t

o492 

N-Term(SPITC) 1231.48

6 

KTLAEGQR 2 P0A972from42to4

9 

N-Term(SPITC) 1117.48 

KAIATPDR 2 P0ABJ1from221to

228 

N-Term(SPITC) 1086.47

5 

TTLSTDPKR 1 P22259from230to

263 

N-Term(SPITC) 1233.53

1 

EEIKEVAPHR 2 P0A6H1from50to

59 

N-Term(SPITC) 1422.61

1 

ATVSMR 2 P0A7V0from2to7 N-Term(SPITC) 879.316

2 

IISAKDHGDSFR 1 P37902from181to

192 

N-Term(SPITC) 1560.66 

NAVVTAADKASANR 1 P00805from153to

166 

N-Term(SPITC) 1602.71

3 

LTGKEADAALGR 2 P0A825from328to

339 

N-Term(SPITC) 1416.62

3 

KDLANAIR 2 P33570from4to11 N-Term(SPITC) 1115.50

5 

GAPTITKDGVSVAR 1 P0A6F5from45to5

8 

N-Term(SPITC) 1586.73

5 

MNEQYSALR 1 P00864from1to9 N-Term(SPITC) 1326.49

3 

TTIVSVR 2 P0A7B8from2to8 N-Term(SPITC) 990.436 
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sequence PSMs protein accessions Modification MH+(Da

) 

TDLTAQEPAWQTR 1 P33599from2to14 N-Term(SPITC) 1731.70

8 

VDYPLPPTGSR 1 P76193from24to3

4 

N-Term(SPITC) 1416.59

3 

VTYPLPTDGSR 1 P0AAX8from25to

35 

N-Term(SPITC) 1420.59

2 

MQVSVETTQGLGR 1 P0A850from1to13 N-Term(SPITC) 1620.68

4 

DLQSIADYPVKVR 1 P23830from420to

432 

N-Term(SPITC) 1718.78

9 

LIVIDFIDMTPVR 5 P21513from342to

354 

N-Term(SPITC) 1746.81

1 

TTIVDSNLPVAR 1 P39160from2to13 N-Term(SPITC) 1500.67

4 

DWYVVDATGKTLGR 3 P0AA10from14to

27 

N-Term(SPITC) 1795.76

6 

MFEINPVNNR 2 P07012from1to10 N-Term(SPITC) 1448.56

9 

SAQPVDIQIFGR 1 P0ADS2from2to1

3 

N-Term(SPITC) 1545.69

8 

MIDTTLPLTDIHR 1 P22333from1to13 N-Term(SPITC) 1740.77

7 

TQTLSQLENSGAFIER 1 P33195from2to17 N-Term(SPITC) 2008.87

6 

SVVPVADVLQGR 4 P0A8M0from2to1

3 

N-Term(SPITC) 1454.66

8 

SQNVYQFIDLQR 5 P09832from2to13 N-Term(SPITC) 1725.73

2 

TSLVVPGLDTLR 1 P0AAY6from2to1

3 

N-Term(SPITC) 1485.71

2 

SNDVIQDDVFR 1 P52643from265to

282 

N-Term(SPITC) 1522.60

9 

GVEVIAVDR 1 P33221from35to4

3 

N-Term(SPITC) 1172.50

9 
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sequence PSMs protein accessions Modification MH+(Da

) 

VDAYDR 1 P77690from213to

218 

N-Term(SPITC) 953.308

3 

ESLLLPSPFDYSR 1 P76257from418to

430 

N-Term(SPITC) 1738.74

3 

IDPR 1 P08244from27to3

9 

N-Term(SPITC) 715.253

7 

EQWDAQR 1 P37672from77to8

3 

N-Term(SPITC) 1147.39

5 

ISGADLTR 1 P37610from18to2

5 

N-Term(SPITC) 1047.42

2 

GDEAYSGSR 1 P0A853from70to7

8 

N-Term(SPITC) 1156.36

3 

HGESQWNKENR 1 P62707from11to2

1 

N-Term(SPITC) 1599.59

6 

QAKDVAESDR 2 P36683from371to

380 

N-Term(SPITC) 1333.50

7 

EQEKGLDR 2 P0A853from118to

125 

N-Term(SPITC) 1189.45

9 

PEAIPELLER 1 P0AFD1from155t

o164 

N-Term(SPITC) 1381.61

7 

VIYVAADR 1 P76157from14to3

5 

N-Term(SPITC) 1121.48

2 

EDEGLADR 1 P0AE08from113to

120 

N-Term(SPITC) 1119.38 

PDNAGILR 1 P46879from58to6

5 

N-Term(SPITC) 1070.44

2 

PQGQLQDIER 1 P15043from356to

365 

N-Term(SPITC) 1398.57

3 

YEGIDER 1 P0A873from115to

121 

N-Term(SPITC) 1096.37 

EQQVALR 1 P71229from139to

145 

N-Term(SPITC) 1058.44

2 

EHLSQEVLGKR 1 P0AE88from179to

189 

N-Term(SPITC) 1510.67

2 
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sequence PSMs protein accessions Modification MH+(Da

) 

YPEGTKLTGR 2 P0AG67from274t

o283 

N-Term(SPITC) 1336.56

4 

VGVETFKAEVER 2 P17846from314to

325 

N-Term(SPITC) 1578.67

9 

EFYEKPTTER 1 P68679from36to4

5 

N-Term(SPITC) 1514.59 

VLEEKGFR 1 P0A9L8from242to

249 

N-Term(SPITC) 1192.50

9 

SQLNYSEENLKQAR 1 P21888from300to

313 

N-Term(SPITC) 1894.80

8 

AEGLFKEER 1 P0AB77from18to2

6 

N-Term(SPITC) 1293.52

2 

EDGTIDFDDGSKTENTR 1 P22259from317to

333 

N-Term(SPITC) 2114.79

1 

TYDDDPTKYQDLR 2 P0AEM9from175t

o187 

N-Term(SPITC) 1844.70

4 

LDYSKGLPER 1 P31677from264to

273 

N-Term(SPITC) 1392.58

7 

IKEEDFIDR 1 P0AES4from572to

580 

N-Term(SPITC) 1379.55

3 

YAIDAEKIGR 1 P37759from304to

313 

N-Term(SPITC) 1350.57

8 

IINGEVPEGLKGR 1 P63284from223to

235 

N-Term(SPITC) 1596.74 

AKITVPVDATEEQVR 2 P07813from812to

826 

N-Term(SPITC) 1870.87

8 

HGYAFNELDLGKR 1 P0ADN2from38to

50 

N-Term(SPITC) 1734.73

5 

AGEGAKVIELQGIAGTSAA

R 

2 P02925from126to

164 

N-Term(SPITC) 2114.00

6 

LTLDLGGEKR 2 P00959from601to N-Term(SPITC) 1316.59
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sequence PSMs protein accessions Modification MH+(Da

) 

610 5 

EHWIDVR 1 P23857from21to2

7 

N-Term(SPITC) 1169.44

4 

VPGLDFKR 1 P15639from374to

381 

N-Term(SPITC) 1146.50

6 

SIVPNALGKDDEVR 1 P09373from669to

682 

N-Term(SPITC) 1727.76

4 

IAFVNKMDR 1 P0A6M8from138t

o146 

N-Term(SPITC) 1308.55

4 

FDPEFEKISR 1 P13029from382to

391 

N-Term(SPITC) 1482.6 

LFADEPTGNLDR 1 P0A9T8from168to

179 

N-Term(SPITC) 1562.61

6 

ATVNQLVR 1 P0A7S3from2to9 N-Term(SPITC) 1115.49

7 

SLIGPDGEQYKLPR 1 P0A9Q1from150t

o163 

N-Term(SPITC) 1787.8 

AIGEAKDDDTADILTAASR 2 P0ABT2from134to

153 

N-Term(SPITC) 2147.90

8 

EAEGQDFQLYPGELGKR 1 P0A8P3from13to2

9 

N-Term(SPITC) 2151.91

5 

EITASLVKELR 1 P0A6P1from3to13 N-Term(SPITC) 1473.70

5 

GSLPIALDEVITDGHKR 2 P0A9Q7from465t

o481 

N-Term(SPITC) 2035.95

1 

QLNITGNNVEITEALR 1 P0AFX0from2to17 N-Term(SPITC) 1999.92

3 

VYSKLTSENPIDLVR 2 P0A991from259to

273 

N-Term(SPITC) 1948.91 
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sequence PSMs protein accessions Modification MH+(Da

) 

ELLSQYDFPGDDTPIVR 1 P0CE47from156to

172 

N-Term(SPITC) 2179.93

9 

EVTYGDVTLDFGKPFEK 2 P0A8N3from310t

o330 

N-Term(SPITC) 2159.93

5 

LYTTNADGELITIDTADNKI

LSR 

2 P76116from199to

221 

N-Term(SPITC) 2752.27

2 

ETEGQALKALIEQR 1 P23839from146to

159 

N-Term(SPITC) 1800.82

5 

ANQANIPVITLDR 1 P02925from103to

115 

N-Term(SPITC) 1639.75 

SGIIELPADAPIGTDIR 1 P07395from132to

148 

N-Term(SPITC) 1952.91

5 

SNQEPATILLIDDHPMLR 1 P0AF28from2to19 N-Term(SPITC) 2278.02

6 

QLIDGIKDLAVQYR 2 P0AB89from149to

162 

N-Term(SPITC) 1846.87

4 

LPDWDAKIANLSGGER 2 P0A9W3from153t

o168 

N-Term(SPITC) 1956.84

3 

IVGLEIGADDYIPKPFNPR 1 P0AA16from92to

110 

N-Term(SPITC) 2329.09

5 

VTPTVLQKGR 1 P34749from306to

315 

N-Term(SPITC) 1313.63

6 

SVLQVLHIPDER 1 P0A6K3from2to13 N-Term(SPITC) 1620.74

8 

EFEKAAASR 1 P00448from116to

124 

N-Term(SPITC) 1223.47

7 
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) 

CGIVGAIAQR 3 P17169from2to11 N-Term(SPITC); 

C1(Carbamido

methyl) 

1259.52

8 

CAQVEALEIIVTAMLR 1 P0AAN9from23to

38 

N-Term(SPITC); 

C1(Carbamido

methyl) 

2031.94

6 

SQVQSGILPEHCR 3 P76536from2to14 N-Term(SPITC); 

C12(Carbamido

methyl) 

1725.71

3 

AASEAVKDAALSCDQFFV

NHR 

3 P0A7V0from75to

95 

N-Term(SPITC); 

C13(Carbamido

methyl) 

2551.06

5 

LCNQKGVER 1 P0AAJ8from176to

184 

N-Term(SPITC); 

C2(Carbamido

methyl) 

1318.54

4 

ECISENQILKR 2 P0A9C0from70to8

0 

N-Term(SPITC); 

C2(Carbamido

methyl) 

1604.67

9 

TICPDQKGLIAR 1 P37051from11to2

2 

N-Term(SPITC); 

C3(Carbamido

methyl) 

1586.70

4 
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) 

QVCAKLSASASDYLR 1 P77439from218to

232 

N-Term(SPITC); 

C3(Carbamido

methyl); 

K5(Guanidinyl) 

1925.83

6 

ALPCPVR 1 P05827from172to

178 

N-Term(SPITC); 

C4(Carbamido

methyl) 

1027.42

5 

FLTCGSVDDGKSTLIGR 1 P23845from30to4

6 

N-Term(SPITC); 

C4(Carbamido

methyl) 

2040.87

8 

GALDCSGVKDR 7 P0A7S3from100to

110 

N-Term(SPITC); 

C5(Carbamido

methyl) 

1392.53 

IVQACTQDKQANFK 2 P0AES9from83to1

10 

N-Term(SPITC); 

C5(Carbamido

methyl) 

1865.79

9 

LLSLCGPFDDNIKQLER 1 P0A9K3from18to3

4 

N-Term(SPITC); 

C5(Carbamido

methyl) 

2233.00

6 

KVEADCR 8 P60422from183to

189 

N-Term(SPITC); 

C6(Carbamido

methyl) 

1092.39

6 
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) 

TGFAECAFEDAAR 1 P0A9U8from250t

o262 

N-Term(SPITC); 

C6(Carbamido

methyl) 

1659.58 

LIIFLICLLVFWLWLHK 2 P0AFS1from167to

188 

N-Term(SPITC); 

C7(Carbamido

methyl) 

2442.29

5 

TFFAEFASCLTELQTR 1 P16694from675to

690 

N-Term(SPITC); 

C9(Carbamido

methyl) 

2135.87

4 

DHTASLGACEIPR 1 P0A8P1from192to

204 

N-Term(SPITC); 

C9(Carbamido

methyl) 

1641.64

7 

GKSVEEILGK 5 P0A7W1from158t

o167 

N-Term(SPITC); 

K10(Guanidinyl) 

1316.59

4 

SATPEQELGKLPLGSR 1 P00864from684to

699 

N-Term(SPITC); 

K10(Guanidinyl) 

1939.89

9 

PLSLTLIPESKPGNGK 6 P0AEH1from282t

o319 

N-Term(SPITC); 

K11(Guanidinyl) 

1907.94

7 

IWDSTDALELKEVPER 2 P0A9P0from162to

177 

N-Term(SPITC); 

K11(Guanidinyl) 

2157.95

3 
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) 

ILENGEVKPLDVK 1 P0A6F9from48to9

7 

N-Term(SPITC); 

K13(Guanidinyl) 

1710.82

4 

ALLYEETAESVEKR 1 P0ACG8from82to

95 

N-Term(SPITC); 

K13(Guanidinyl) 

1894.81

7 

SSGDPADQKYVELK 1 P0AEH5from27to

42 

N-Term(SPITC); 

K14(Guanidinyl) 

1793.75 

TPFAPIVNTATSLKPVR 1 P0A996from106to

122 

N-Term(SPITC); 

K14(SPITC) 

2241.99

9 

LANELSDAAENKGTAVK 4 P02359from120to

138 

N-Term(SPITC); 

K17(Guanidinyl) 

1987.88

7 

IASDNVLGGKIAGDYIAK 1 P02925from126to

164 

N-Term(SPITC); 

K18(Guanidinyl) 

2061.99

1 

TKSELIER 1 P0A6Y1from2to9 N-Term(SPITC); 

K2(Guanidinyl) 

1232.53

7 

AKSFIVR 1 P46850from318to

324 

N-Term(SPITC); 

K2(Guanidinyl) 

1077.50

5 
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) 

GKTVINFDNAIIAAGSR 1 P0A9P0from132to

148 

N-Term(SPITC); 

K2(Guanidinyl) 

2003.95

2 

NKVTDAEIAEVLAR 1 P63284from529to

542 

N-Term(SPITC); 

K2(Guanidinyl) 

1785.81

5 

TKTGELSIHCTELR 1 P0A8N3from102t

o144 

N-Term(SPITC); 

K2(Guanidinyl); 

C10(Carbamido

methyl) 

1901.81

8 

IHKNMSIER 1 P0ADG7from70to

78 

N-Term(SPITC); 

K3(Guanidinyl) 

1384.59

1 

AGKAGVEVDDR 1 P0A9P0from282to

292 

N-Term(SPITC); 

K3(Guanidinyl) 

1373.56

3 

AAKSDNGASNLLR 1 P0ABC7from366t

o378 

N-Term(SPITC); 

K3(Guanidinyl) 

1573.68 

TDKLTSLR 1 P0A870from2to9 N-Term(SPITC); 

K3(Guanidinyl) 

1190.52

4 
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) 

TTKLHVHDENNECGIGDV

VEIR 

1 P0AG63from41to

62 

N-Term(SPITC); 

K3(Guanidinyl); 

C13(Carbamido

methyl) 

2792.2 

SAKTENELEEIK 1 P30958from1032t

o1049 

N-Term(SPITC); 

K3(Guanidinyl); 

K12(Guanidinyl) 

1689.72

8 

LQKIFPIR 1 P0A8G0from145t

o152 

N-Term(SPITC); 

K3(SPITC) 

1444.57

4 

VIKHPHAVLLLDEIEK 2 P0ABH9from553t

o592 

N-Term(SPITC); 

K3(SPITC) 

2284.04

3 

LSKVLPNPDNVELIR 1 P77397from257to

271 

N-Term(SPITC); 

K3(SPITC) 

2136.93

9 

DEKTSEWDER 1 P15640from320to

329 

N-Term(SPITC); 

K3(SPITC) 

1724.50

2 

ANIK 1 P52143from596to

730 

N-Term(SPITC); 

K4(Guanidinyl) 

702.269

5 

SEFKNPER 1 P39277from208to

215 

N-Term(SPITC); 

K4(Guanidinyl) 

1263.48

5 
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) 

PSEK 1 P21507from386to

402 

N-Term(SPITC); 

K4(Guanidinyl) 

717.231

4 

APTKSLQQAAR 4 P0A6X1from391to

401 

N-Term(SPITC); 

K4(SPITC) 

1600.60

5 

ADAQK 1 P0AES9from22to1

10 

N-Term(SPITC); 

K5(Guanidinyl) 

789.263

8 

ADAQKAADNK 1 P0AES9from22to1

10 

N-Term(SPITC); 

K5(Guanidinyl) 

1288.51

1 

VDGTKPVAEVR 1 P69441from196to

206 

N-Term(SPITC); 

K5(Guanidinyl) 

1427.65

1 

LMTDKYEIDAR 1 P09836from13to2

3 

N-Term(SPITC); 

K5(Guanidinyl) 

1611.65

2 

GEVNKVIEQAR 1 P00956from817to

827 

N-Term(SPITC); 

K5(Guanidinyl) 

1499.68 

FNQQKNTLLVLSHESR 1 P39382from211to

226 

N-Term(SPITC); 

K5(Guanidinyl) 

2171.00

9 
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) 

EALEKAEEAGVDLVEISPN

AEPPVCR 

1 P0A707from41to6

6 

N-Term(SPITC); 

K5(Guanidinyl); 

C25(Carbamido

methyl) 

3079.36

5 

IIDFKTALTASGR 1 P27254from253to

265 

N-Term(SPITC); 

K5(SPITC) 

1822.73

2 

SLINTK 2 P0AE08from2to32 N-Term(SPITC); 

K6(Guanidinyl) 

932.396

2 

DPTLAK 1 P52101from80to9

1 

N-Term(SPITC); 

K6(Guanidinyl) 

901.350

2 

WADASKADR 1 P09147from300to

308 

N-Term(SPITC); 

K6(Guanidinyl) 

1276.47

1 

NAVDAAKALGIDAR 1 P0ABP8from137t

o150 

N-Term(SPITC); 

K7(Guanidinyl) 

1641.73

1 

APLMTDKYEIDAR 1 P09836from11to2

3 

N-Term(SPITC); 

K7(Guanidinyl) 

1779.73

6 

ELVTAAKLGGGDPDANPR 1 P0A8A0from31to

48 

N-Term(SPITC); 

K7(Guanidinyl) 

2037.89

8 
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SNVPAELK 1 P0A6T9from2to18 N-Term(SPITC); 

K8(Guanidinyl) 

1114.46

7 

VTTEVTVKLLPKPPVAR 1 P0AEP9from219to

235 

N-Term(SPITC); 

K8(SPITC); 

K12(Guanidinyl) 

2320.09

2 

SLSTEATAK 2 P0ADZ4from2to1

7 

N-Term(SPITC); 

K9(Guanidinyl) 

1164.47 

TIMSPWAAKR 1 P0ACY3from174to

183 

N-Term(SPITC); 

K9(Guanidinyl) 

1417.62

7 

SLLNVPAGK 1 P0A7A9from2to4

4 

N-Term(SPITC); 

K9(Guanidinyl) 

1155.52

6 

AEITASLVK 1 P0A6P1from2to13 N-Term(SPITC); 

K9(Guanidinyl) 

1188.53

7 
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Appendix table 2 N-terminal peptides of AspN digestion by iTRAQ labeling 

Sequence 
Protein Group 

Accessions 

q-

Value 

XCor

r 

SpSco

re 
MH+ [Da] 

Delta 

Mass 

[PPM] 

dLGEPLSLITE

SVFAR 

P00350from272to2

87 
0 5.24 

798.9

5 

1891.024

63 
-4.56 

ePLSLITESVF

AR 

P00350from275to2

87 

0.003

72 
1.73 

115.0

6 

1605.906

91 
3.83 

dFAYQGFAR 
P00509from211to2

19 
0 2.19 

310.4

7 

1218.604

78 
-1.23 

dDVIGTLAR 
P00582from115to1

23 

0.002

84 
2.12 

218.2

7 

1103.621

75 
0.13 

dFVPYFR 
P00864from674to6

83 

0.005

93 
1.73 

226.7

2 

1087.574

51 
1.22 

dDLYGIIR P00956from35to42 
0.001

54 
2.41 

209.0

4 

1108.616

5 
0.65 

dQYPEILR 
P00961from203to2

10 

0.001

54 
2.25 

220.8

9 

1177.636

28 
-0.82 

dLQTLTEEAV

R 

P00961from499to5

09 
0 2.14 225.1 

1418.762

86 
-1.26 

dTIQAVLAR 
P00961from544to5

52 
0 3.02 302.3 

1130.669

85 
0.85 

dQSEQVPGM

IER 
P02358from13to24 0 3.72 

615.7

2 

1532.753

83 
0.25 

eQVPGMIER P02358from16to24 
0.003

72 
1.99 

164.0

2 

1202.640

55 
3.88 

dELETTFR P02358from72to79 0 2.76 
277.5

5 

1154.583

18 
-1.47 

aGEGAKVIEL

QGIAGTSAA

R 

P02925from130to1

64 
0 3.77 

430.3

5 

2043.142

43 
3.42 

gEGAKVIELQ

GIAGTSAAR 

P02925from146to1

64 

0.001

54 
3.92 

306.1

3 

1972.107

03 
4.41 

dEMALGALR 
P02925from216to2

24 
0 3.14 

517.5

9 

1119.597

58 
-1.07 

dAIFIEELR 
P04079from428to4

36 
0 3.03 

534.2

7 

1249.696

58 
1.44 
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dFNPSGIILSG

GPESTTEENS

PR 

P04079from48to70 0 4.9 
459.8

4 

2548.207

92 
-9.58 

dDGYLPEALL

NYLVR 

P04805from252to2

66 
0 3.44 

227.5

2 

1895.016

15 
4.82 

dTFIELVR 
P05020from310to3

17 
0 2.57 

226.8

4 

1136.647

63 
0.48 

dDTLVPFLAG

ETVR 

P05020from330to3

43 
0 2.36 

321.4

3 

1676.899

34 
-1.29 

dISEFAPR 
P05055from547to5

54 

0.003

72 
1.98 

196.8

8 

1078.568

41 
-0.4 

dITELEAFR 
P06959from433to4

41 
0 2.99 

334.3

4 

1237.658

49 
0.09 

dSFTIQPGER 
P06968from106to1

15 

0.003

72 
1.68 95.68 

1293.655

2 
-3.29 

dLTTVIENLR 
P06989from190to1

99 
0 2.74 

228.5

8 

1317.762

01 
6.57 

dTLVLLGTQF

PYR 

P07003from267to2

79 

0.001

54 
2.6 

430.2

6 

1666.928

88 
-2.1 

dIGWGSQIR 
P07012from316to3

24 

0.001

54 
2.51 

223.6

1 

1175.631

64 
-1.02 

dAFSVFR 
P07014from199to2

05 

0.001

54 
1.58 

142.6

9 

985.5254

4 
-0.81 

dEWQAVAPS

WR 

P07395from442to4

52 
0 3.46 

737.0

3 

1488.733

08 
-4.05 

dMVIFR 
P08200from148to1

53 

0.003

72 
1.99 

232.7

5 

924.5109

1 
-2.52 

dWGYQLAR 
P08200from226to2

50 
0 2.69 

341.0

4 

1152.594

9 
-0.71 

dAFLQQILLR 
P08200from283to2

92 
0 2.47 

355.2

4 

1360.807

42 
-2.49 

vAIKGPLTTP

VGGGIR 

P08200from97to11

2 

0.001

54 
4.36 

202.3

1 

1680.032

57 
-0.14 

dEFSMSAISIP

R 

P08839from521to5

32 
0 3.3 

501.7

8 

1496.760

3 
1.89 

dFLTLPGYR 
P08997from522to5

30 

0.002

84 
2.35 

267.5

8 

1225.674

85 
1 
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dWQNEVNV

R 
P09373from19to27 0 2.26 

279.5

3 

1303.653

37 
-1.27 

dLENGVNLE

QTIR 

P09373from207to2

19 
0 3.21 

541.5

4 

1644.878

1 
4.16 

dDLAVDLVER 
P09373from575to5

84 
0 2.91 

300.0

9 

1288.688

28 
-1.67 

dTSMGLTPLE

GLVMGTR 

P0A6A3from227to2

43 
0 4.58 

401.0

2 

1921.979

34 
-4.67 

dYTIELVR 
P0A6B7from367to3

74 

0.001

54 
1.98 

123.7

7 

1152.642

38 
0.34 

dLPLIASNFR P0A6F1from84to93 
0.007

02 
1.98 

217.5

5 

1289.744

07 
5.24 

dANIISVSQR P0A6F3from25to34 0 3.04 
481.7

8 

1246.690

84 
-0.19 

dILGTR 
P0A6F3from425to4

30 
0 1.75 99.17 818.4857 -4.17 

dVEGEALATL

VVNTMR 

P0A6F5from253to2

68 
0 4.87 

648.3

2 

1861.991

61 
3.59 

dGVGEEAAI

QGR 

P0A6F5from334to3

45 

0.003

72 
1.83 71.96 

1345.696

95 
7.58 

eGVVAGGGV

ALIR 

P0A6F5from409to4

21 

0.008

03 
2.2 

189.6

2 

1341.807

3 
4.69 

dLGAAGGM

GGMGGMG

GMM 

P0A6F5from531to5

48 

0.001

54 
3.97 

1048.

54 
1701.705 0.15 

dGTTTATVLA

QAIITEGLK 

P0A6F5from87to11

8 
0 4.46 

433.0

1 

2047.148

41 
2.03 

dLIPELQGR 
P0A6H5from317to3

25 

0.001

54 
1.79 

117.6

9 

1184.676

2 
-2.76 

dAGLNIAPFIT

LTR 

P0A6J8from150to1

63 
0 3.57 

476.8

9 

1645.951

95 
5.26 

dPFVGNLTFF

R 

P0A6M8from327to

337 
0 3.21 452.9 

1456.762

38 
-8.27 

dAPIILER 
P0A6M8from401to

408 
0 2.26 

401.9

9 

1070.636

03 
-0.46 

dWMEQEQE

R 

P0A6M8from51to5

9 
0 2.16 

161.0

5 

1394.614

55 
-1.48 
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eVPLSEMFGY

ATQLR 

P0A6M8from657to

671 
0 5.39 

678.6

6 

1884.970

98 
1.3 

dEAPSNVAQ

AVIEAR 

P0A6M8from688to

702 
0 4.8 

599.8

6 

1713.893

71 
0.57 

dFTIEVER 
P0A6M8from94to1

01 
0 2.1 

283.6

1 

1152.603

93 
-1.47 

eVTGFIR 
P0A6P1from252to2

58 

0.001

54 
2.5 

257.1

6 

965.5570

5 
-0.5 

dIELAIENMR P0A6P1from33to42 0 3.66 706.5 
1347.709

03 
-0.56 

dAGYTAVISH

R 

P0A6P9from192to3

71 
0 4.01 

457.9

8 

1333.692

23 
-7.3 

eVHLEGGFV

GMAAAPSG

ASTGSR 

P0A6P9from24to46 0 4.05 501.8 
2332.150

97 
-0.09 

dLLASGR P0A6Q3from12to18 
0.001

54 
1.73 

152.9

9 

875.5090

2 
-1.79 

dEWIVTR P0A6R0from30to36 0 2.08 
218.5

3 

1062.567

55 
-5.99 

eLFFEEIR P0A6X7from28to35 0 2.78 
352.1

4 

1226.656

3 
-1.11 

dIPITAR P0A6X7from70to76 
0.008

03 
1.79 

178.5

1 

929.5561

4 
-1.51 

dPLAMQR 
P0A6Y8from255to2

61 

0.003

72 
1.92 

252.1

9 

974.5223

3 
-2.61 

aKLESLVEDL

VNR 

P0A6Y8from303to3

15 
0 4.47 

501.8

1 

1629.939

12 
3.68 

dVILVGGQTR 
P0A6Y8from336to3

45 
0 2.96 

464.2

8 

1201.707

2 
0.99 

dNQSAVTIHV

LQGER 

P0A6Y8from431to4

45 
0 4.93 

593.0

9 

1810.955

36 
-0.75 

aADNKSLGQ

FNLDGINPAP

R 

P0A6Y8from448to4

67 
0 4.69 

549.4

2 

2242.178

99 
2.39 

eIFLR P0A6Z3from25to33 
0.005

93 
1.7 219 

821.5018

8 
-2.63 

eQFMPNYLR P0A6Z3from311to3 0.001 2.31 228.9 1341.679 1.24 
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19 54 6 74 

dVIQLPAFLA

R 

P0A715from110to1

20 

0.003

72 
2.64 

578.6

4 

1386.827

81 
0.96 

dGLVEFMTS

GPIVVSVLEG

ENAVQR 

P0A763from61to85 0 4.61 
360.2

7 

2790.456

46 
2.17 

dLLGATNPA

NALAGTLR 

P0A763from88to10

4 
0 5.27 

588.3

6 

1812.016

27 
1.52 

dLLLAGYGGR 
P0A796from274to2

83 
0 2.48 

313.8

1 

1178.668

38 
-0.43 

dVAEGELVVL

ENVR 

P0A799from100to1

13 
0 3.96 

645.8

7 

1685.924

36 
0.83 

eGELVVLENV

R 

P0A799from103to1

13 
0 2.77 

398.2

9 

1400.793

5 
2.16 

dVLVPTPYPL

QPGSVIR 
P0A7A9from71to87 0 4.33 

412.5

4 

1995.142

8 
-0.33 

dLIAIGSGGPY

AQAAAR 

P0A7B8from119to1

35 

0.002

84 
2.58 

296.0

1 

1774.960

86 
0.06 

eTMILR 
P0A7D4from422to4

27 

0.001

54 
2.32 

181.2

9 
906.5208 -3.31 

eAGIPTQME

R 
P0A7D7from63to72 

0.007

02 
1.94 

122.3

1 

1275.647

39 
-3.83 

dAILVPGGFG

YR 

P0A7E5from345to3

56 

0.002

84 
2.35 

226.9

2 
1408.773 -1.02 

lITEWR 
P0A7E5from415to4

20 

0.001

54 
1.88 

206.7

1 

961.5627

9 
0.18 

dIALGAGGLP

MGR 
P0A7G6from49to61 0 2.91 

546.2

9 

1371.757

86 
0.31 

mNQTLLSSF

GTPFER 
P0A7J0from1to15 0 2.03 91.75 

1871.949

51 
0.74 

dAFVGPTLIA

YSMEHPGAA

AR 

P0A7J3from64to94 0 5.11 
545.2

7 

2318.155

86 
-8.66 

dIEAMTR 
P0A7J7from121to1

27 

0.001

54 
1.54 74.12 

979.5008

4 
-3.02 

dLVESAPAAL

K 

P0A7K2from76to12

1 
0 3.71 

673.2

6 

1257.721

12 
0.09 
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eLNTELLNLL

R 

P0A7M6from13to2

3 
0 2.6 

152.1

2 

1471.864

67 
0.48 

eQFNLR 
P0A7M6from24to2

9 

0.001

54 
2.05 

256.7

1 

950.5201

3 
-1.42 

eKSVEELNTE

LLNLLR 
P0A7M6from8to23 0 4.25 

466.5

3 

2044.154

64 
4.91 

aTVNQLVR P0A7S3from2to9 0 2.32 
340.5

4 

1044.630

42 
-1.61 

dSITSQLER 
P0A7V3from118to1

26 

0.008

03 
2.41 

150.4

6 

1192.631

03 
-1.56 

dVVSIR 
P0A7V8from141to1

46 

0.001

54 
2.09 

151.3

4 

832.5020

6 
-3.25 

dYGVQLR P0A7V8from50to56 0 2.48 
291.9

6 

994.5463

7 
-1.32 

aYGSTNPINV

VR 

P0A7W1from116to

138 

0.002

84 
1.82 

137.5

1 

1434.787

4 
0.95 

sMQDPIADM

LTR 
P0A7W7from2to13 0 2.92 

330.5

2 

1521.753

47 
-1.73 

dPIAMENAIN

AIPGVVTVGL

FANR 

P0A7Z0from178to2

01 
0 3.35 

187.9

6 

2626.410

25 
-3.07 

eNAINAIPGV

VTVGLFANR 

P0A7Z0from183to2

01 
0 3.87 

506.4

8 

2099.177

46 
0.26 

dLELTVR 
P0A7Z4from259to2

65 
0 1.99 

125.0

6 

989.5773

8 
-1.3 

dGIVVEYYGT

PTPLR 
P0A805from38to52 0 4.52 

406.3

8 

1823.975

44 
3.04 

eEHIELIASEN

YTSPR 
P0A825from27to42 0 3.71 

596.4

1 

2032.005

22 
-4.46 

eVFLER 
P0A825from300to3

05 

0.005

93 
2.19 

162.7

9 

936.5296

5 
-1.43 

dPLTGPMPY

QGR 

P0A836from150to1

61 

0.008

03 
2.12 

140.8

3 

1475.748

7 
1 

eVGVNVPVV

VR 

P0A836from338to3

48 
0 2.83 

665.1

8 

1310.795

7 
0.41 

dFVLAMGQG

R 

P0A850from184to1

93 
0 2.97 

744.2

3 

1237.653

49 
1.3 
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mQVSVETTQ

GLGR 
P0A850from1to13 0 2.89 

342.5

7 

1549.813

16 
-2.08 

dLEGLER 
P0A853from172to1

78 

0.001

54 
2.73 

264.2

2 

975.5248

9 
-1.79 

dWTIEQITR 
P0A853from242to2

55 
0 3.45 

384.4

9 

1305.693

9 
-1.48 

eAEYKDWTIE

QITR 

P0A853from242to2

55 
0 3.18 240.8 

1925.977

63 
0.62 

eGFPTYGGLE

GGAMER 

P0A853from302to3

17 
0 5.07 

585.7

8 

1814.854

77 
0.47 

dGMNLDWL

AYR 

P0A853from324to3

34 
0 3.09 

156.8

8 

1497.728

81 
-1.85 

dSGTGAVTQ

SMQAAMM

R 

P0A853from53to69 0 5.73 
648.4

4 

1885.865

09 
-4 

dIGAQYIIIGH

SER 
P0A858from71to98 0 5.48 

770.0

1 

1715.923

8 
0.11 

dLPFAQSR P0A862from86to93 
0.001

54 
2.36 275.5 

1077.582

93 
-1.75 

eAGVFLISPF

VGR 

P0A867from168to1

80 
0 2.95 

349.5

9 

1535.880

78 
4.31 

dATTNPSLIL

NAAQIPEYR 
P0A870from31to49 0 5.39 725.8 

2231.193

58 
4.85 

dDLQAVMA

MVR 

P0A8E7from138to1

48 
0 2.61 288.2 

1392.709

28 
-3.04 

dGVLENVPS

AR 
P0A8F0from85to95 0 2.68 

336.9

9 

1300.701

22 
-0.34 

dAIIFGTPTR P0A8G6from70to79 0 2.6 
373.0

4 

1234.696

7 
1.29 

dLEVWIPAQ

NTYR 

P0A8L1from342to3

54 
0 3.32 

422.6

7 

1748.916

06 
1.92 

dLENLPR 
P0A8M0from183to

189 

0.003

72 
1.52 

217.4

7 

1000.555

35 
-2.92 

dVLAPGIGEII

GGSQR 

P0A8M0from381to

396 
0 4.01 293.4 

1725.970

62 
2.96 

dVLEFVR 
P0A8M6from10to1

6 

0.001

54 
2.53 

367.4

2 

1021.582

08 
-1.64 
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dLIELTESLFR 
P0A8N3from289to2

99 
0 2.09 

198.7

7 

1479.818

28 
-2.13 

eAHLIQPTFIT

EYPAEVSPLA

R 

P0A8N3from381to4

02 
0 4.82 

470.6

3 

2626.417

21 
5.16 

eFFIGGR 
P0A8N3from415to4

21 

0.002

84 
2.17 

192.9

4 

969.5273

3 
-4.12 

dITGGLPR 
P0A8T7from1129to

1140 

0.001

54 
1.82 

143.4

7 

972.5613

3 
-2.09 

dFLEGEQVEY

SR 

P0A8T7from1273to

1284 
0 2.55 

203.7

3 

1615.764

09 
-7.34 

dNLQTETVIN

R 

P0A8T7from699to7

09 

0.001

54 
1.99 61.36 

1446.769

33 
-1.01 

dGSIIETPITA

NFR 

P0A8T7from751to7

64 

0.001

54 
2.68 

185.6

3 

1677.904

22 
4.46 

dIVLNPLGVP

SR 

P0A8V2from1095to

1106 
0 3.39 

506.8

7 

1423.846

97 
2.9 

dNLFVR 
P0A8V2from181to1

97 

0.001

54 
2.09 

212.3

2 
907.5128 -3.16 

eYGFLETPYR 
P0A8V2from583to5

92 

0.002

84 
1.57 73.39 

1418.709

03 
-1.48 

dSILVSER 
P0A8V2from814to8

21 
0 2.33 

180.4

8 

1062.589

28 
-5.43 

dVQVFTR 
P0A8V2from930to9

36 

0.002

84 
2.51 

128.5

5 

1008.561

51 
-1.82 

dTGVSPVFA

GGVEYAITPEI

ATR 

P0A910from137to1

59 
0 4.85 

513.8

3 

2494.303

32 
1.91 

dGFVIAGGG

GMVVVEELE

HALAR 

P0A953from227to2

49 
0 4.5 

390.6

5 

2470.291

97 
-0.04 

eIAAIR 
P0A953from308to3

14 
0 2.02 

374.5

6 

816.5071

9 
-3.27 

dIIPETLHQR 
P0A993from299to3

08 
0 2.48 

188.1

5 

1365.763

98 
-0.44 

dEFETVGNTI

R 

P0A9A6from273to2

83 
0 2.47 297.3 

1424.716

23 
-1.03 
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dMGEEIGLAT

VYR 
P0A9A9from45to57 0 2.47 

172.9

8 

1597.805

83 
0.43 

dQAAFLGASI

GR 
P0A9C3from64to75 0 2.63 

347.6

9 

1349.733

81 
0.38 

dAYIALR 
P0A9C5from441to4

47 
0 2.48 

210.5

5 
965.5584 0.9 

dQSLYPANSV

PAVVER 
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