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ABSTRACT 

 

Nutrient availability regulates eukaryotic cell growth. This study focuses on two 

signaling pathways,  involved in sensing amino acids and carbon sources, which allow 

cells to respond appropriately to their presence. The first part of this study shows that 

Ssy1, a plasma membrane localized sensor in the Ssy1-Ptr3-Ssy5 (SPS) amino acid 

sensing pathway, can detect 19 common L-amino acids with different potencies and 

affinities  based on the physiochemical structure of amino acids.  Substituents around 

alpha carbon are critical for amino acid sensing by Ssy1. Furthermore, a high 

concentration of cysteine is toxic to cells. Inactivation of SPS signaling confers resistance 

to cysteine.  The second part focuses on the regulation of Hap4, the regulatory subunit 

of the Hap2/3/4/5 transcriptional factor complex. Many components of the 25-subunit 

Mediator complex negatively regulate HAP4 expression. Srb8 undergoes post-

translational modification in response to changes of the carbon source. Gal11 and Med3 

positively regulate HAP4 expression.   

 

 

 

Keywords: SPS, Ssy1, Amino Acid Sensing, Cysteine Toxicity, Hap4, Saccharomyces 

cerevisiae, the Mediator complex, Srb8, Gal11, Med3  
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CHAPTER 1: GENERAL INTRODUCTION 

Saccharomyces cerevisiae, commonly known as Baker’s yeast, requires nutrients to 

survive. There are several different environmental nutrient sources, such as carbon 

sources and nitrogen sources, utilized by yeast for cellular metabolic processes.  Two 

signal transduction pathways in yeast that sense amino acids and glucose respectively 

are studied here. 

The SPS Amino Acid Sensing Pathway in Yeast  

Amino acids are nutrients for cellular metabolic processes. In the presence of 

environmental amino acids, the Ssy1-Ptr3-Ssy5 (SPS) amino acid signaling pathway is 

activated and enables yeast cells to import extracellular amino acids [1-3]. Ssy1 is a 

homolog of functional amino acid permeases and consisted of 12 transmembrane 

helices and an N-terminal signaling domain (Figure 1) [4]. Amino acids binding to Ssy1 

initiate the signaling pathway [1, 5].  After sensing amino acids, the N-terminal 

signaling domain of Ssy1 has been proposed to recruit two casein kinase I proteins, 

Yck1 and Yck2, resulting in hyperphosphorylation of the peripheral plasma membrane 

protein Ptr3 [6-8].  Ssy5, a peripheral membrane protein and a chymotrypsin-like serine 

protease, associates with Ptr3 to form a complex [3]. Ssy5 undergoes autocatalytic 

processing to generate an N-terminal prodomain and a C-terminal catalytic domain, 

which remain associated. When the N-terminal prodomain is phosphorylated, it is 

degraded through the ubiquitin/proteasome system, resulting in the activation of the C-

terminal catalytic domain. The active catalytic domain removes an N-terminal 

inhibitory domain from two zinc finger transcription factors, Stp1 and Stp2, resulting in 

their activation [6, 9, 10]. Processed Stp1 and Stp2 then translocate from the cytoplasm 

into the nucleus to activate target gene expression (Figure 1) [11]. The yeast genome 

encodes about 24 amino acid permeases [12, 13]. Expression of seven amino acid 
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permeases, Bap2, Bap3, Agp1, Gnp1, Tat1, Tat2, and Mup1, is induced by extracellular 

amino acids through the activation of the SPS signaling pathway [1, 4, 14-16].  

Expression of these amino acid permeases on the plasma membrane allows amino acid 

uptake.  

Other proteins are also involved in SPS signaling. The effect of Yck1/2 can be 

reversed by the Rts1-containing subcomplex of the trimeric protein phosphatase type 

2A [7]. Grr1 is the F box-containing component of the SCF Grr1 E3 ubiquitin ligase 

complex, which is required for degradation of the N-terminal prodomain of Ssy5 and 

activation of the C-terminal catalytic domain of Ssy5 [4, 7]. Dal81 is a pleiotropic 

transcription factor that is essential for full activation of Stp1/2-target gene expression 

[17]. Shr3, an amino acid permease-specific packaging chaperone in the membrane of 

the endoplasmic reticulum (ER), regulates the SPS signaling pathway by mediating ER 

exit of amino acid permeases and possibly Ssy1 [3, 18].  

Previously, amino acid sensing by Ssy1 was studied using fixed amino acid 

concentrations [4, 19, 20]. It is unclear as to the relative affinity and potency of 20 amino 

acids on Ssy1. In this study, I aim to address this question.  
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citation that shown mup1 is one of the 
targeted permease 
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   Figure 1: Illustration of Ssy1-Ptr3-Ssy5 amino acid sensing pathway  

Hap2/3/4/5 Complex 

The second signal transduction pathway addressed in this study is related to 

mitochondrial biogenesis. Mitochondria are the cellular power plants where ATP is 

produced. Mitochondrial biogenesis in S. cerevisiae is regulated in part by the CCAAT-

binding factors, the Hap2/3/4/5 complex. Eukaryotic messenger RNA synthesis in 

response to changing environments can be initiated by the binding of RNA Polymerase 

II, along with general transcription factors (GTFs such as TFIIA, TFIIB, TFIID, TFIIE, 

TFIIF, and TFIIH), to the promoter sequences of target genes. Transcription factors are 

sequence-specific DNA-binding proteins that are needed for transcriptional regulation 

[21].  CCAAT-binding proteins are transcriptional activators that promote expression of 
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target genes by interacting with CCAAT sequence motifs in target gene promoters [22]. 

S. cerevisiae can grow in either fermentative (glucose) or nonfermentative (ethanol, 

glycerol, lactate, etc.) carbon sources. In cells grown in the presence of a 

nonfermentative carbon source such as ethanol, the Hap2/3/4/5 complex activates 

expression of genes required for respiratory metabolism [23-28]. It has been reported 

that Hap2, Hap3, and Hap5 are constitutively expressed and form a complex at the 

promoters of target genes. Hap4 expression is at basal levels in cells grown in glucose 

medium, and its expression is greatly induced in cells grown in non-glucose medium 

[29].  

Hap4 is a protein of 554 amino acids. It contains two transcriptional activation 

domains: one is a Gcn5- independent at the C-terminus between amino acid residues 

359 and 476; the other is Gcn5-dependent at the N-terminus between amino acid 

residues 124 and 329 [30]. While Hap2/3/5 heterotrimer binds to targeted DNA, Hap4 is 

the main regulatory subunit of Hap complex by binding and activating the entire 

complex, and its protein level determines the activity of this complex.  

Mediator Complex 

The Mediator complex is a 25-protein complex that plays important roles in gene 

expression [31-33]. Its interaction with both transcription factors and RNA Polymerase 

II can increase gene expression [32]. The Mediator complex is conserved and exists in all 

eukaryotic organisms [34, 35]. The Mediator complex can be divided into four groups: 

head, middle, tail, and kinase modules (Figure 2) [36, 37]. The head module consists of 

eight subunits, Med6, Med8, Med11, Srb4/Med17, Srb5/Med18, Rox3/Med19, 

Srb2/Med20 and Srb6/Med22 [38]. Electron microscopy shows that the Mediator head 

module closely associates with the Rpb3/Rpb11 heterodimer of RNA Pol II, the 

Rpb4/Rpb7 subunits, and TBP [39, 40]. The subcomplex Med18/20 is responsible for 
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conformational changes of the head module, which allows the interaction between the 

Mediator complex and RNA Pol II [40]. 

The middle module, which includes eight subunits, Med1, Med4, Nut1/Med5, 

Med7, Cse2/Med9, Nut2/Med10, Srb7/Med21 and Soh1/Med31, is elongated and flexible 

and contributes to one third of the length of the entire mediator complex[41]. The 

Med7/Med21 interface contains a four-helix bundle domain and a coiled-coil protrusion 

connected by a flexible hinge, and Med 6 is the bridge connecting the head and middle 

modules[42],. Med6, Med7, and Med21 are responsible for the mediator complex 

conformational changes at the interface of the head and middle modules upon binding 

of RNA Pol II.  

The tail module contains five subunits, Med2, Pgd1/Med3, Rgr1/Med14, 

Gal11/Med15 and Sin4/Med16 [43]. Two-hybrid and glutathione S-transferase 

interaction assays showed that the Med3 subunit negatively regulates transcription by 

associating directly with the Cyc8-Tup1 transcription co-repressor [44]. It was shown 

that Med2, Med3, and Gal11 form a triad that can be recruited to transcription activator  

Gcn4p independently without interfering with Sin4 [45].  

The kinase module is composed of four subunits, Med12/Srb8, Med13/Srb9, 

Srb11 and Cdk8/Srb10 [46, 47]. In an early study, it was suggested that Srb10 repressed 

activation of genes that enable cells to survive under nutrient deprivation, and Srb10 

expression is greatly reduced when cells enter the diauxic shift [48]. By observation of 

strong defects in Gal4-activated transcription in an srb9 mutation strains, it was shown 

that the kinase module, Srb8-Srb11, is directly involved in GAL1 transcription. The 

binding of Srb9 at the GAL1 gene promoter region induces the recruitment of TBP [49].  
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HAP4 expression is increased approximately ten-fold when yeast cells are grown 

in raffinose medium compared to dextrose media. Despite the importance of 

mitochondria in cellular metabolism and the essential role of Hap4 in mitochondrial 

biogenesis, the regulatory mechanism of HAP4 expression is still unclear. The Mediator 

complex component Sin4 and Cyc8, a general transcriptional co-repressor, have been 

shown in our lab to be negative regulators of HAP4 expression. However, how the 

Mediator complex regulates HAP4 expression is still unknown. 

 

Figure 2: A structure model of the Mediator complex 
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Research Aims 

The Ssy1 amino acid sensor of the SPS signaling pathway is a functional homolog 

of amino acid permeases. Ssy1 has been shown to have a broad specificity for amino 

acids [4]. However, there has not been a systematic study done to address the binding 

affinity of activity of individual amino acids on Ssy1. I hope to address the issue in this 

study. In the glucose sensing pathway, the expression of HAP4 is not well understood. I 

aim to address the role of individual Mediator complex components on HAP4 

expression.   
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CHAPTER 2: AMINO ACID STRUCTURE DIFFERENTIALLY 

AFFECTS THE SSY1-PTR3-SSY5 AMINO ACID SENSING 

PATHWAY 

Introduction 

The Ssy1-Ptr3-Ssy5 (SPS) amino acid signaling pathway in S. cerevisiae responds 

to and induces the uptake of extracellular amino acids [1-3]. When amino acids bind to 

the Ssy1 sensor on the plasma membrane, Yck1/2 are recruited and phosphorylates Ptr3 

and Ssy5, leading to activation of the C-terminal catalytic domain of Ssy5. Activation of 

Ssy5 enables processing of Stp1 and Stp2 and their subsequent translocation into the 

nucleus to activate target gene expression [1, 3, 6-9, 11].  There have been no systematic 

amino acid titration studies performed to determine the affinity and potency of 

individual amino acids on Ssy1. There has also been no careful analysis of whether the 

physical characteristics of amino acids affect Ssy1 sensing. In this study I subjected yeast 

cells to titrations of individual amino acids and determined the activity of the SPS 

amino acid signaling pathway using an AGP-lacZ reporter gene. Both L- and D- 

isoforms of the amino acids were used as well as structural isoforms that have 

alterations on substituents around the alpha carbon in an effort to characterize the effect 

of physiochemical differences on SPS amino acid sensing.  

Materials and Methods 

Strains, Primers, Plasmids, Growth Media and Growth Conditions 

Yeast strains, primers, and plasmids used in this study are listed in Table 1, Table 

2, and Table 3, respectively. Yeast cells were grown at 30°C in SD medium (0.67% yeast 

nitrogen base and 2% D-glucose) or YPD (2% peptone, 1% Bacto-yeast extract, and 2% 

D-glucose). The amino acids L-leucine, L-lysine, L-histidine, L-methionine, L-
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tryptophan, and/or uracil were added to growth media to a final concentration of 30 

mg/L to meet auxotrophic requirements [50]. Solid media contained 2% agar in addition 

to the components described above when needed. 

Yeast Transformations and β-galactosidase Activity Assays 

Yeast cells were transformed [51]. Liquid cultures were inoculated with a pool of 

several independent transformants and grown overnight in SD medium with specified 

amino acids to an optical density at 600 nm of ~0.6. The cell extracts were prepared by 

using glass bead lysis method. 10 – 90 mL of clear cell extract of independent samples 

were objected to β-galactosidase assays, hydrolyzing o-nitrophenyl-β-D-

galactopyranoside (ONPG) [50]. Protein concentration of individual sample was carried 

out by performing Bradford assay, using bovine serum albumin as the standard. 

Reporter gene activity was calculated in nmoles of hydrolyzed ONPG per minute per 

mg of protein Assays were conducted in duplicate and independent experiments were 

carried out two to three times.  

Amino Acid Titration Assay  

Amino acid titration assays were done by supplementing growth media with 

various concentrations of indicated amino acids as listed in figures and figure legends. 

Cells were analyzed as described for β-galactosidase activity assays. 

EMS Mutagenesis 

Yeast cells (ZLY043) were grown overnight at 30°C in 10 mL YPD liquid media to 

saturation. 1 mL of the saturated culture was pelleted and subjected to EMS 

mutagenesis as described in Methods Enzymology [52]. After EMS mutagenesis, 

cysteine resistant colonies were selected for on SD + 5 mM cysteine plate media. 

Cysteine resistant cells were subject to confirmation by β-galactosidase assays as 

described above. 
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Mating 

MATa and MATα haploid yeast cells were cross streaked and mated on YPD 

plate media for 4 hrs. Diploids were selected for on SD plate media supplemented with 

amino acids to cover auxotrophic markers.  

 

Results  

The Effects of 20 Common L-amino Acids on AGP1-lacZ Expression  

It has been shown previously that, with the exception of proline, the presence of 

a single amino acid in the growth medium induces the expression of the lacZ gene 

under the control of the promoter of high-Affinity Glutamine Permease 1 (AGP1), a 

target gene of SPS signaling. Leucine and tryptophan were found to be strong inducers 

of expression of the AGP1-lacZ reporter. Ssy1-dependent AGP1-lacZ expression can also 

be triggered by nitrogenous compounds other than common amino acids, such as 

citrulline, GABA, and ornithine [14]. However previous experiments were carried out 

using a fixed amino acid concentration. In my study, systematic amino acid titration 

assays were performed in order to obtain information on the affinity and potency of 

individual amino acids on Ssy1. 

First, I performed amino acid titration assays of 20 L-amino acids individually at 

eight different concentrations from 0 to 1.6 mM on the activity of an AGP1-lacZ reporter. 

RBY98661 strain yeast cells containing an integrated AGP1-lacZ reporter gene were 

grown in minimal SD medium overnight in the presence of different concentrations of 

individual amino acids.  Cells were collected at OD600 0.6-0.8 and β-galactosidase assays 

were performed to measure the activity of the AGP1-lacZ reporter gene as described in 

Material and Method.  
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Overall, the results showed that AGP1-lacZ expression was induced to various 

levels by 19 L-amino acids, except proline (Fig. 3). This suggests that the Ssy1 sensor has 

a broad substrate binding specificity; furthermore, Figure 3 shows that expression of 

AGP1-lacZ gradually increases in cells grown in the presence of increasing amounts of 

amino acids until reaching a maximum, and its activity slowly decreases. 

Figure 4 represents a single response curve selected from figure 3. It shows a 

typical response of AGP1-lacZ expression in cells grown in SD medium supplemented 

with titrating amounts of an amino acid, in the case of phenylalanine. AGP1 expression 

starts at zero in the absence of phenylalanine in the growth medium, then peaks, then 

gradually decreases with increasing amounts of phenylalanine.  The (x, y) coordinate of 

the peak point provides two important parameters: the value on the X-axis provides 

information on the affinity and the value on the Y axis on the potency of phenylalanine 

on Ssy1. The concentration of amino acid that gives the maximum AGP1-lacZ 

expression provides information on how tightly it binds to Ssy1: the lower the 

concentration of that amino acid when reaches its maximal activity, the higher the 

affinity of the Ssy1 sensor toward that amino acid. The peak value on the Y axis reveals 

the potency of this amino acid in activating Ssy1: the higher the value on the Y axis of 

the peak point, the more potent that amino acid in activating Ssy1.   
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Figure 3: AGP1-lacZ expression in response to titrating levels of 20 L-amino acids 

individually. AGP1-lacZ expression was determined in RBY98661 strain grown in 

minimal SD medium with titrating concentrations (0-1.6 mM) of 20 different L-amino 

acids individually using β-galactosidase assays.  
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Figure 4: The AGP1-lacZ expression curve in response to increasing levels of 

phenylalanine provides information of its activity and potency on Ssy1. β-

galactosidase assays of AGP1-lacZ expression were conducted for RBY98661 strain cells 

grown in minimal SD medium with titrating concentrations (0~1.6 mM) of 

phenylalanine. The interception of maximal AGP1 expression at the X- axis reveals the 

affinity of Ssy1 for phenylalanine. The interception of maximal AGP1 expression at the 

Y-axis shows the potency of phenylalanine in activating Ssy1.  

 

Amino Acids with Aromatic R Groups Have High Affinity for Ssy1 and High Potency 

in Activating AGP1-lacZ Expression 

Based on the response curve of AGP1-lacZ expression in the presence of titrating 

levels of individual amino acids, Ssy1 has various binding affinities towards different 

amino acids (Figure 3). The potency of different amino acids, represented by the 

(µµµµM) 
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maximum activation of AGP1-lacZ expression in the presence of amino acids, vary as 

well. Therefore, I grouped amino acids based on the physio-biochemical property of 

their R groups and looked separately at the binding affinity and the potency of the Ssy1 

sensor to these amino acids. 

Among the 20 L-amino acids, phenylalanine, tryptophan, and tyrosine possess 

an aromatic R group. AGP1-lacZ expression in the presence of very low amounts of 

these three amino acids (between 25 µΜ to 100 µΜ) was highly induced (between 900 to 

1100 nmoles/min/mg protein) (Fig. 5) suggesting the Ssy1 amino acid sensor has a high 

binding affinity for amino acids with aromatic R groups and these amino acids have a 

high potency for activating Ssy1. 
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Figure 5. AGP1-lacZ expression in response to stimulation with amino acids with 

aromatic R groups.  

β-galactosidase activity assays on AGP1-lacZ expression  were conducted for RBY98661 

strain cells grown in minimal SD medium with titrating concentrations (0-1.6 mM) of 

tyrosine, tryptophan, and phenylalanine. 

 

Amino Acids with Hydrophobic R Groups Have Medium Affinity and medium potency 

on Ssy1 

Alanine, isoleucine, leucine, methionine, valine, and proline contain hydrophobic 

R groups. With the exception of proline, both the binding affinity of Ssy1 towards this 

group of amino acids and the potency of these amino acids in activating fall into the 

middle range (Fig.6). The AGP1-lacZ reporter gene is activated in cells by these amino 

acids at concentrations between 100 µΜ to 400 µΜ, and AGP1-lacZ expression is 
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induced to a level between 400 to ~700 nmoles/min/mg proteins. Consistent with 

previous studies, proline did not activate expression of the AGP1-lacZ reporter gene [4]. 

This may be due to the distinctive, rigid cyclic structure of proline’s side chain.  

 

 

Figure 6:  AGP1-lacZ expression in response to stimulation with amino acids with 

hydrophobic R groups 

β-galactosidase activity assays on AGP1-lacZ expression was conducted for RBY98661 

cells grown in minimal SD medium with titrating concentrations (0-1.6 mM) of 

isoleucine, leucine, valine, alanine, methionine, and proline. 
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Amino Acids with Uncharged Hydrophilic R Groups Have Medium to Low Affinity and 

Potency on Ssy1  

Glutamine, asparagine, cysteine, serine, threonine, and glycine contain 

uncharged hydrophilic R groups. AGP1-lacZ expression is only fully activated by 

relatively high concentrations of these amino acids (>200 µΜ) and AGP1-lacZ expression 

reaches maximum between 250 to 700 nmoles/min/mg proteins (Fig. 7). These data 

suggest that amino acids with uncharged hydrophilic R groups have medium to low 

binding affinity on Ssy1, and medium to low potency in activating Ssy1. Interestingly, 

expression of AGP1-lacZ did not reach its peak in the presence of 1.6 mM cysteine or 

glycine, the highest concentration tested in our assays. Threonine had a higher affinity 

and potency on Ssy1 as compared to other amino acids of this group, which is similar to 

amino acids with non-aromatic hydrophobic R groups. This may be due to the presence 

of a methyl group on the side chain of threonine.  
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Figure 7:  AGP1-lacZ expression in response to stimulation with amino acids with 

uncharged hydrophilic R groups 

β-galactosidase activity assays on AGP1-lacZexpression  were conducted for RBY98661 

cells grown in minimal SD medium with titrating concentrations (0-1.6 mM) of 

threonine, asparagine, cysteine, glutamine, serine, and glycine. 

 

Effect of Amino Acids with Charged R Groups on AGP1-lacZ Expression 

Arginine, histidine and lysine contain positively charged R groups, while 

glutamic acid and aspartic acid contain negatively charged R groups. Figure 8 shows 

that in the presence of 400 µΜ glutamic acid, AGP1-lacZ expression reached a maximum 

of 600 nmoles/min/mg proteins; and in the presence of 800 µΜ aspartic acid, AGP1-lacZ 

expression reached a maximum of 350 nmoles/min/mg protein. Compared to the 

negatively charged amino acids, cells grown in the presence of positively charged 
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amino acids did not fully activate AGP1-lacZ expression at the highest concentration 1.6 

mM, suggesting that the binding affinity of Ssy1 for positively charged amino acids is 

extremely low.  

 

 

Figure 8:  AGP1-lacZ expression in response to stimulation with amino acids with 

charged R groups 

β-galactosidase activity assays of AGP1-lacZ expression  were conducted for RBY98661 

cells grown in minimal SD medium with titrating concentrations (0-1.6 mM) of glutamic 

acid, aspartic acid, arginine, histidine, and lysine. 
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The Effect of Very High Concentrations of Glycine, Histidine, Arginine and Lysine on 

AGP1-lacZ Expression 

Out of twenty L-amino acids, glycine, histidine, lysine, arginine, and cysteine did 

not lead to maximum induction of AGP1-lacZ expression at a concentration of 1.6 mM. 

Hence, further titration assays were performed on these amino acids to examine their 

effect on AGP1-lacZ expression at very high concentrations, up to 12.8 mM.  

Remarkably, Figure 9 shows that AGP1-lacZ expression is highly induced by 12.8 mM 

glycine or histidine, but the induction still did not reach its maximum. AGP1-lacZ 

expression appears to be fully induced in cells grown in the presence of 400 µM 

arginine, and it plateaus in the presence of higher amounts of arginine. In the case of 

lysine, AGP1-lacZ expression appears to reach maximum at 6.4 mM lysine (Figure 9). 

Based on the generation time of cells grown in the presence of 1.6 mM individual amino 

acids, cysteine is the most toxic. In the presence of 1.6 mM cysteine, yeast cells have 

severe growth defects. Therefore, no further analysis was done on cysteine beyond 1.6 

mM concentration.  
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Figure 9:  AGP1-lacZ expression in response to stimulation with very high levels of 

glycine, histidine, lysine, and arginine.  

β-galactosidase activity assays on AGP1-lacZ expression  were conducted on RBY98661 

cells grown in minimal SD medium with titrating concentrations (0-12.8 mM) of glycine, 

histidine, lysine, and arginine.  
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Position of Alanine’s R-Group is Critical for Sensing via Ssy1 

Each common amino acid has four substituents around the Cα carbon: the R 

group, the carboxyl group, the amino group, and the hydrogen atom. To determine 

whether the position of the R-group around the Cα carbon affects sensing by Ssy1, I 

compared AGP1-lacZ expression in cells grown in the presence of L-alanine versus β-

alanine, in which the amino group linked to the Cβ carbon. Figure 10 shows that β-

alanine only weakly activates AGP-lacZ expression, suggesting that the position of the R 

group of common amino acids is important for amino acid sensing by Ssy1.  

 

 

Figure 10:  AGP1-lacZ expression is affected by the position of alanine’s  R-group 

β-galactosidase activity assays on AGP1-lacZ expression were conducted for 

RBY98661 cells grown in minimal SD medium with titrating concentrations (0-1.6 mM) 

of L-alanine versus β-alanine. 
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The Hydrogen Atom Linked to the Cα Carbon is Critical for Sensing via Ssy1 

Next we examined whether the hydrogen atom attached to the Cα carbon is 

important for amino acid sensing by Ssy1. We performed amino acid titration assays on 

AGP1-lacZ expression using L-phenylalanine and L-α-methyl-phenylalanine, in which 

the hydrogen atom is replaced with a methyl group at the Cα carbon. Figure 11 shows 

that AGP1-lacZ expression is highly induced in the presence 50 µΜ phenylalanine, but 

L-α-methyl-phenylalanine has no effect on AGP1-lacZ expression even at 0.8 mM 

concentration, suggesting that the hydrogen atom around the Cα carbon of amino acids 

is critical for amino acid binding to and/or activation of Ssy1. 

 

 

Figure 11: AGP1-lacZ expression induced by L-phenylalanine is abolished by the 

substitution of the hydrogen atom linked to the Cα carbon with a methyl group. 

β-galactosidase activity assays of AGP1-lacZ expression  were conducted for RBY98661 

cells grown in minimal SD medium with titrating concentrations (0-900 µM) of L-α-

methyl-phenylalanine versus L-phenylalanine . 
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D-Amino Acids Have Variable Effects on Ssy1 Activation  

L-amino acids are the building blocks of proteins, metabolic fuels for cells, and 

precursors for biosynthesis [53]. D-amino acids are not as common, but they can be 

found in bacterial cell walls, in antibiotics produced in bacteria and fungi, and in small 

peptides found in both vertebrates and invertebrates [54, 55]. Since Ssy1 has a broad 

binding specificity for L-amino acids and other nitrogen compounds[14], I wondered 

whether a change in the entire configuration of an amino acid around the Cα carbon 

affects Ssy1 sensing. To test this, I compared the effects of 14 pairs of D- and L-amino 

acids on AGP1-lacZ expression using β-galactosidase activity assays. The results 

showed that the D-isoforms of L-amino acids have variable effects on Ssy1 activation. 

Based on relative ability of D-amino acids in activating Ssy1 as compared to their L-

amino acid counterparts, I divided these 14 pairs of L- and D-amino acids into three 

groups. 

 Group 1, including leucine and aspartic acid, showed that the D-isoform 

appeared to have the same affinity but higher potency for activating Ssy1 as compared 

to its L-isoform counterpart (Figure 12).  
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Figure 12:  The D- isoforms of Group 1 amino acids have the same affinity and higher 

potency on Ssy1 activation.     

β-galactosidase activity assays of AGP1-lacZ expression  were conducted for RBY98661 

cells grown in minimal SD medium with titrating concentrations of (A) D- and L- 

leucine and (B) D-and L-aspartic acid.  
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Group 2 amino acids, including alanine, phenylalanine, serine, tyrosine, 

asparagine, methionine, and arginine showed that the D-isoforms had much lower 

affinity yet similar or greater potency on Ssy1 as compared to their L-isoform 

counterparts (Fig. 13). Interestingly, although L-arginine is a weaker activator of Ssy1 

(Fig. 9), D-arginine induced AGP1-lacZ expression to a level similar to that achieved by 

the most potent L-aromatic amino acids. Group 3 amino acids, lysine, glutamic acid, 

glutamine, valine, and proline, the D-isoforms had little or no activity on Ssy1.  
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Figure 13:  The D- isoforms of Group 2 amino acids have lower affinity but similar or 

higher  potency for Ssy1.  

β-galactosidase activity assays of AGP1-lacZ expression  were conducted for  RBY98661 

cells grown in minimal SD medium with titrating concentrations (0-12.8 mM) of the D- 
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and L-isoforms of (A) serine, (B) tyrosine, (C) alanine, (D) phenylalanine, (E) 

methionine, (F) arginine, or (G) asparagine.  

 

 

Figure 14:  The D- isoforms of Group 3 amino acids had little or no activity in 

activating Ssy1.     
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β-galactosidase activity assays of AGP1-lacZ expression were conducted for RBY98661 

cells grown in minimal SD medium with titrating concentrations (0-12.8 mM) of the D- 

or L-isoforms of (A) glutamine, (B) glutamic acid, (C) lysine, (D) valine, or (E) proline. 

Cysteine Toxicity  

As I mentioned previously, excess amounts of amino acids inhibit yeast cell 

growth. Cells started to die in response to increased amounts of amino acids present in 

the growth medium (data not shown). Among the twenty essential L-amino acids I 

assayed, cysteine appeared to be the most toxic to the cells. It took 48 hours to grow 6 

generations of yeast cells in 1.6 mM cysteine while the wild type cells took less than 24 

hours to grow 6 generations. Growth of yeast cells was not observed at cysteine 

concentrations beyond 1.6 mM. Hence I questioned why is cysteine, among all other 

amino acids, the most toxic? Also, how does cysteine cause growth deficiency in cells? 

To answer these questions it was necessary to isolate cysteine resistant mutants.  

Cysteine is part of the methionine biosynthesis superpathway; it can be 

produced from methionine degradation (Fig 15). I suspected that cells grown in high 

concentration of cysteine results in accumulation of intracellular cysteine, the end 

product of methionine degradation, which triggers negative feedback that inhibits 

breakdown or usage of methionine in the cell. To that end, I grew PLY126K1 cells in the 

presence of 1.6 mM cysteine, and in the presence of 0.2 mM methionine or/and 0.2 mM 

threonine respectively. By comparing the growth of cells in the absence or presence of 

cysteine, the additional methionine or threonine did not improve the growth defect of 

cells in the presence of cysteine (data not shown). The result suggests that cysteine 

toxicity in cells may not due to inhibition of methionine degradation, but may inhibit 

other pathways which cysteine is involved in.  
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Figure 15:  Methionine metabolic pathway  

 

Isolation Cysteine Resistant Mutants 

Since the presence of cysteine activates AGP1-lacZ expression through the SPS 

amino acid signaling pathway [4], I first sought to determine whether mutations to 

SSY1, PTR3, or SSY5,  which block the SPS signaling pathway and uptake of cysteine, 

could confer resistance to cysteine toxicity. To that end, I tested the growth of ssy1∆, 

ptr3∆, ssy5∆ strains generated previously in Liu’s lab and the WT cells on SD versus SD 

+ 5mM cysteine plates. Figure 16 shows that the deletion of SSY1, PTR3, or SSY5 can 

confer resistance to cysteine toxicity, indicating that toxicity of cysteine involves, at the 

very least, sensing it in the extracellular environment.
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Figure 16:  ssy1∆∆∆∆, ptr3∆∆∆∆, and ssy5∆∆∆∆ mutations confer resistance to cysteine toxicity.    

WT, ssy1∆, ptr3∆, and ssy5∆ strains were grown on SD plates without or with 5 mM 

cysteine.  WT strains were not able to grow on medium contain high concentration of 

cysteine, but ssy1∆, ptr3∆, and ssy5∆ strains showed resistance to cysteine toxicity.  

 

The discovery that deleting SSY1, PTR3, or SSY5 confers resistance to cysteine 

toxicity is not surprising since the SPS amino acid sensing pathway requires these 

proteins to sense and respond to extracellular amino acid [2]. This information however, 

does not provide enough information to answer the question of how or why cysteine is 

toxic to cells. To that end I conducted a genetic screen to identify mutations that can 

confer resistance to high concentrations of cysteine other than mutations in Ssy1, Ptr3, 

and Ssy5. In order to do that, I transformed PLY126K1 cells, integrated with the AGP1-

lacZ reporter gene, with plasmids pRS416-STP1p-STP1C and pRS417-GPD1-STP1-

myc3-2. It has been shown that overexpressing STP1 activation domain leads to 

constitutive activation of transcription in SPS signaling pathway, meaning 
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transformants could bypass Ssy1, Ptr3, and Ssy5 to constitutively express AGP1-lacZ 

reporter gene [6].  I intentionally increased the WT cell’s ability to uptake extracellular 

cysteine, which would theoretically prevent isolation of mutation in Ssy1, Ptr3 and 

Ssy5.   Then the transformants were mutagenized with ethyl methanesulfonate (EMS), 

which produces mutations in the DNA via guanine alkylation which generates random 

G-C nucleotide substitution [52]. EMS treated cells were diluted and plated directly on 

solid SD + 5 mM cysteine plate. Single colonies that were resistant to cysteine toxicity 

were isolated and assayed on solid SD versus SD + 5 mM cysteine plates for their ability 

to grow normally compared to the growth deficiency of the WT cells (Table 1).  10 

colonies were further confirmed to be cysteine resistant.  

These 10 colonies were grown in SD + 0.02% leucine to activate SPS amino acid 

sensing and analyzed via β-galactosidase activity assays, which allowed me to 

phenotypically analyze different mutations. Figure 17 shows that of the 10 cysteine 

resistant mutants, 7 showed no AGP1-lacZ reporter gene activity. This observation 

indicates that these 7 mutations were due to mutation in the SPS signaling pathway 

leading to defects in activation of AGP1 reporter gene, even though I had intentionally 

minimized the possibility of isolating SPS pathway defect mutations.  

Mutants 1 and 2 expressed the AGP1-lacZ reporter gene to a similar level to WT 

cells, and mutant 10 had a 0.5 fold increase in AGP1-lacZ activity than WT cells. Because 

these three mutants have expression of the AGP1-lacZ gene, amino acids appears to be 

transported into yeast cells normally in these mutants; hence, this observation suggests 

that cysteine resistance in these three mutants are not due to deficiency in uptake of 

extracellular cysteine caused by mutation in SPS signaling pathway, but may be due to 

the intracellular processing of cysteine.  
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Table 1. Mutants generated from EMS mutagenesis are resistant to high levels of 

cysteine. Wild type and mutant strains were streaked onto SD plates with or without 5 

mM cysteine and incubated at 30 C for 3-4 days.  

 WT Mut 

1 

Mut 

4 

Mut 

5 

Mut 

6 

Mut 

8 

Mut 

10 

Mut 

11 

Mut 

13 

Mut 

14 

Mut 

16 

Relative growth rate in SD 

Medium 

4 4 5 5 5 5 5 5 5 5 5 

Relative growth rate in SD 

+ Cys 

0 4 5 5 5 5 5 5 5 5 5 

 

Identification of Cysteine Resistant Mutants 

As shown previously, cysteine resistance can be caused by mutations in 

components involved in the SPS amino acid signaling pathway. These mutations likely 

block extracellular cysteine uptake into yeast cells. Even though I tried to generate 

mutants that bypass SSY1, PTR3, and SSY5, β−galatosidase results in Figure 17 showed 

some mutants were defective in expressing AGP1-lacZ reporter gene. To identify the 

mutations responsible for cysteine resistance, especially the ones which were defective 

in SPS signaling pathway, I first sought to identify whether some of the cysteine 

resistant colonies were still due to mutations in SSY1, PTR3, or SSY5. To that end, I first 

streaked mutants on YPD plate to lose their plasmids, then transformed MATa WT and 

the 10 cysteine resistant mutants with pRS416 empty vector containing the URA3 

marker. I also transformed MATα WT, ssy1∆, ptr3∆ ssy5∆, ssy5∆, dal81∆, and shr3∆ 

strains containing the AGP1-lacZ reporter gene, which all are essential components in 

activating the SPS amino acid signaling pathway, with the pRS417 empty vector 

containing the LYS2 marker for selection purposes. I mated MATa transformants to the 

MATα deletion strains and then assayed the expression of AGP1-lacZ in the resulting 
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diploids.  Of the 10 mutants, mutant 1 failed to mate indicating that mutant 1 may have 

a mutation in a gene involved in the mating process. Diploid cells from the remaining 9 

mutant groups were grown in SD media + 0.02% leucine to activate SPS amino acid 

sensing and assayed individually via β-galatosidase assays. Figure 18A shows that 

diploids resulting from mating with WT cells showed activation of AGP1-lacZ 

expression indicating mutations leading to cysteine resistance are recessive. When 

cysteine mutants mated with ssy1∆ strain, AGP1-lacZ activities of mutants 5, 11, 13, 14, 

and 16 were completely abolished, indicating that these mutants are resistant to 

cysteine due to the mutation in the gene encoding the Ssy1 sensor (Fig.18 B). Similarly, 

AGP1-lacZ activity was abolished in diploids from mutant 6 mated with ssy5∆ cells 

indicated that mutant 6 is resistant to cysteine because of a mutation in the gene 

encoding the Ssy5 protease (Fig.18 D).  

Mutant 8 mated to the double ptr3∆ ssy5∆ double mutant had no AGP1-lacZ 

activity (Fig. 18C); yet, mating mutant 8 with the single ssy5∆ mutant had AGP1-lacZ 

expression similar to WT (Fig. 18D). This suggests that mutant 8’s cysteine resistance is 

likely due to a mutation in the gene encoding the Ptr3 protease.  

Diploids resulting from mutants 4 and 10 showed varying AGP1-lacZ activities 

compared to WT and none showed abolishment of  AGP1-lacZ activity (Fig.18) 

indicating that these mutations are in ssy1∆, ptr3∆ ssy5∆, ssy5∆, dal81∆, or shr3∆. 

Specific mutated sites of mutant 4 and 10 are still unknown.  

Overall, seven mutants which abolished AGP1-lacZ activity were found to be due 

to mutations in components that lead to malfunctions of the Ssy1-Ptr3-Ssy5 amino acid 

signaling pathway. This observation confirms that defective SPS amino acid signaling 

pathway can block uptake of extracellular cysteine and result in cell resistance of 

cysteine toxicity. 
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Figure 17:   AGP1-lacZ gene expression in 10 cysteine resistant mutants  

Cultures of 10 cysteine resistant mutant cells grown in SD medium + 1.5mM leucine 

were assayed for AGP1-lacZ activity via β-galactosidase assay. 7 out of 10 mutant 

cysteine resistant strains are due to SPS signaling pathway defects, but the 3 mutations 

are not.  
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Figure 18:   Identification of cysteine resistant mutants  

AGP1-lacZ activity in diploids of 9 haploids mutated cells mated to (A) WT cells,  (B) 

ssy1∆ mutant cells, (C) ptr3∆ ssy5∆ double mutant cells, (D) ssy5∆ mutant cells, (E) 

dal81∆ mutant cells, and (F) shr3∆ mutant cells. Diploid cells were grown in SD media + 

0.02% leucine and assayed via β-galactosidase assay. 



 

37 

 

Mutant 8 is Resistant to Cysteine Because of a Mutation in PTR3  

Mutant 8’s cysteine resistance is likely due to a mutation in the gene encoding the Ptr3 

protease. (Fig. 18 C and D). To confirm this, I transformed wildtype PTR3 encoded on a 

centromeric plasmid into mutant 8. If mutant 8 is due to a ptr3∆ mutation, the WT copy 

of PTR3 gene transformed in plasmid will complement its mutation and restore AGP1-

lacZ activity. Figure 19 shows that a WT copy of PTR3 complements the mutation of 

mutant 8 and restores AGP1-lacZ confirming that mutant 8 is resistant to cysteine 

toxicity because of a mutation in PTR3. 

Figure 19:   Mutant 8 contains a mutation in PTR3  

β-galactosidase assay of AGP1-lacZ expression in WT, mutant 8, and mutant 8 

transformed with Ptr3 plasmid grown in SD media + 0.02% leucine respectively were 

analyzed.  
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Discussion 

In this study, I show that the Ssy1 sensor has different binding affinity and 

sensitivity to 20 common L-isoform amino acids, with the exception of proline. Also, 

positioning of the R group and hydrogen atom around the alpha carbon of amino acids 

is crucial to amino acid sensing. Remarkably, the Ssy1 sensor can also sense D-amino 

acids to various degrees. The fact that the Ssy1 sensor can detect the most common 

amino acids in both L- and D- isoforms suggest that the Ssy1 sensor binding pocket is 

likely very large and flexible. The Ssy1 sensor shows strongest affinity and sensitivity to 

amino acids with aromatic groups followed by those with hydrophobic groups, next to 

those with neutral hydrophilic group, then to negative charged group, and lastly has 

the lowest affinity and sensitivity to positively charged amino acids. Based on this 

observation, the Ssy1 sensor more likely contains more hydrophobic amino acids 

residues, and more negatively charged amino acid residues in its binding pocket that 

may play an important role in its sensing activity.  

Among 20 common amino acids, L-cysteine is an amino acid containing a thiol 

group that is nucleophilic and easily oxidized. Cysteine is the precursor of the 

antioxidant glutathione whose thiol group of cysteine undergoes redox reactions and 

forms a peptide linkage to carboxyl group of the glutamate side chain [56, 57]. 

Oxidation of the cysteine thiol group generates a disulfide bond, playing an important 

role in the folding and stability of some proteins. It is also a very important precursor of 

iron-sulfur cluster proteins, which play important roles in oxidation-reduction reaction 

in mitochondria electron transport.  

Like any other living organism, cysteine is essential for cellular metabolism in 

yeast. In S. cerevisiae, cysteine can be synthesized from methionine or be taken up from 

the surroundings. However, high concentrations of cysteine are the most toxic amino 
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acid to cells. Its cysteine toxicity was examined in yeast cells grown in minimal medium 

with up to 5 mM cysteine, and cysteine inhibits growth of yeast in a dose-dependent 

manner [58]. It has been shown that all 7 permeases targeted by the SPS signaling 

pathway (Bap2, Bap3, Agp1, Gnp1, Tat1, Tat2, and Mup1) are able to uptake 

extracellular cysteine in either non-repressing nitrogen source or ammonium-based 

source [19, 59, 60].  High level of expression of cysteine uptake permeases possibly 

explains why cysteine at high concentration is the most toxic to yeast cells compared to 

other amino acids. My results show that mutations in the SPS signaling pathway lead to 

resistance to cysteine toxicity in cells, likely because these mutations inhibit expression 

of cysteine transporter genes and block cysteine uptake from the environment. 

Interestingly, three cysteine resistant mutants were still able to express the AGP1-lacZ 

reporter gene; therefore, cysteine appears to be transported normally into these 

mutants. This observation suggests that cysteine resistance in these three mutants may 

be due to either mutation in an unknown signaling pathway expressing permeases that 

also transport cysteine into the cells, or, more likely, the intracellular processing of 

cysteine.  

The intracellular mechanism that causes cysteine cytotoxicity in yeast has not 

been well studied; therefore, it is difficult to speculate why these three mutants are 

cysteine resistant. One possible explanation of intracellular cysteine resistance could be 

due to mutations in methionine-cysteine biosynthesis. Many enzymes involved in 

nitrogen anabolism are inhibited and their synthesis is repressed upon accumulation of 

the end or intermediate products of biosynthetic pathways [61]. Homocysteine is the 

intermediate in the ubiquitous methionine cycle to synthesize cysteine, and it is 

essential to generate one-carbon methyl groups for transmethylation reactions [62]. 

Cysteine toxicity effects studied in human shown that elevated level of homocysteine 

increases the risk of having cardiovascular diseases [63] and associates with other 
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diseases. A high level of cysteine shows similar toxic effects. Changes in plasma 

cysteine correlates with changes in BMI, cholesterol, and diastolic blood pressure [64]. 

As predicted, total plasma cysteine is also a risk factor for vascular diseases, and 

concentrations of cysteine present in plasma show a U-shape correlation with 

peripheral and cerebrovascular disease [65]. S. cerevisiae, which shares a considerable 

similarity with higher eukaryotic cellular organization and function, has been used as a 

model to study the impacts of elevated level of homocysteine and cysteine on cellular 

physiology and pathology. Kumar and his colleagues observed that additional thiols 

from homocysteine or cysteine down-regulated genes coding for antioxidant enzyme, 

but upregulated genes responsible for ER stress and glycolysis pathway. They 

concluded that cytotoxicity is probably due to ER stress [58]. It is very likely that 

cysteine resistance observed in mutants that could still express AGP1 may be due to 

mutations in genes involved in a methionine signaling pathway (Fig.19), which allows 

bypass of detection and signaling of excess thiol groups in cells.   
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CHAPTER 3: HAP4 EXPRESSION IS REGULATED BY THE 

MEDIATOR COMPLEX 

 

Introduction 

CCAAT-binding proteins (CBPs) are transcription activators that promote 

expression of protein-coding genes by interacting with CCAAT consensus sequence 

motifs within promoters [22]. Under fermentative conditions (in the presence of 

glucose), the CBP of yeast, termed the Hap2/Hap3/Hap4/Hap5 complex, binds to 

CCAAT-box containing upstream activation sites (UASs) to initiate gene responses to 

metabolize non-fermentable carbon sources (galactose/raffinose) [23-28]. Hap2, Hap3, 

and Hap5 form a heterotrimer which is required for CCAAT DNA binding at the 

promoter region [24], however  activation of transcription can only be triggered when 

the Hap4 completes the complex [26]. The regulatory subunit, Hap4, is known to be 

transcriptionally controlled by carbon sources, and contains the activation domain of 

the complex[29]. Increased Hap4 levels results in switching from fermentation to 

respiration in yeast, termed the diauxic shift. However, regulation of HAP4 expression 

has been poorly studied. Previously the Liu Lab observed SIN4, a component of the 

mediator tail region, and CYC8, a general transcription co-repressor with TUP1, showed 

as negative regulators of HAP4 expression. This prompted me to study the mechanism 

underlying HAP4 regulation by the Mediator complex. 
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Materials and Methods 

Strains, Primers, Plasmids, Growth Media and Growth Conditions 

Yeast strains, primers, and plasmids used in this study are listed in Table 1, Table 

2, and Table 3, respectively. Yeast cells were grown at 30 °C in SD medium (0.67% yeast 

nitrogen base and 2% D-glucose), S5%D medium (0.67% yeast nitrogen base and 5% D-

glucose), SR (0.67% yeast nitrogen base and 2% raffinose), YNBcasD (0.67% yeast 

nitrogen base, 1% casamino acids, and 2% D-glucose), YNBcas5%D (0.67% yeast 

nitrogen base, 1% casamino acids, and 5% D-glucose), YNBcasRaff (0.67% yeast 

nitrogen base, 1% casamino acids, and 2% raffinose), and YPD (2% peptone, 1% Bacto-

yeast extract, and 2% D-glucose). The amino acids L-leucine, L-lysine, L-histidine, L-

methionine, L-tryptophan, and/or uracil were added to growth media to a final 

concentration of 30 mg/L to meet auxotrophic requirements [50]. Solid media contained 

2% agar in addition to the components described above when needed. MG132 (50 µM) 

was added to the growth media to inhibit proteasome activity [66] for experiments 

testing proteasome dependent protein degradation. 

Yeast Transformations and β-galactosidase Activity Assays 

Yeast cells were transformed [51]. Transformants carrying the desired plasmids 

were selected on YNBcasD plates. Liquid cultures were inoculated with a pool of 

several independent transformants and grown overnight in YNBcas5%D or into 

YNBcasR medium to an optical density at 600 nm of ~0.6. In glutamate repression 

analysis, liquid S5%D and SR media were used. The cell extracts were prepared by 

using glass bead lysis method. 10 – 90 mL of clear cell extract of independent samples 

were objected to β-galactosidase assays, hydrolyzing o-nitrophenyl-β-d-

galactopyranoside (ONPG) [50]. Protein concentration of individual sample was carried 

out by performing Bradford assay, using bovine serum albumin as the standard. 
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Reporter lacZ activity was calculated in nmoles of hydrolyzed ONPG per minute per 

mg of protein. For each plasmid-strain combination, assays were conducted in duplicate 

and independent experiments were carried out two to three times. 

Cellular Extract Preparation and Immunoblotting 

Total cellular protein extracts were prepared by lysing yeast cells in extraction 

buffer (1.85 N NaOH – 7.5% β-mercaptoethanol) followed by precipitation with 

trichloroacetic acid (TCA) [67]. TCA was neutralized and total cellular proteins were 

structurally linearized in 1M un-buffered Tris, 1M dithiothreitol, and 1X SDS-PAGE 

loading buffer followed by heat treatment. Proteins were separated by SDS-PAGE gel, 

and transfer onto nitrocellulose membrane via Western blotting.   

myc- and HA- tagged proteins were probed with anti-myc primary antibody and 

anti-HA primary antibody (3F10, Roche), respectively. Primary antibodies were 

detected by HRP conjugated goat anti-mouse secondary antibody and HRP conjugated 

goat anti-rat secondary antibody, respectively. Chemiluminescence was induced by an ECL 

reagent. Chemiluminescence images of Western blots were captured using the Bio-Rad 

Chemi-Doc photo documentation system. (Bio-Rad Laboratories, inc., Hercules, CA). 

For loading control visualization, blots were deprobed in stripping buffer (2%SDS-

0.08% β-mercaptoethanol) for 45 min at 60 °C with shaking, and then be reprobed with 

anti-PGK1 (3-phosphoglycerate kinase) primary antibody, followed by HRP conjugated 

goat anti-rabbit secondary antibody. Chemiluminescence was induced by an ECL reagent.  

Images of reprobed blots were captured using the Bio-Rad Chemi-Doc photo 

documentation system.  

Library Complementation of a HAP4 Expression Activating Mutation 

One highly activating HAP4 expression mutant (DCY125-13) was transformed 

with myc-tagged LEU2 CEN mediator plasmids, which were constructed in this study. 
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Transformants were selected for on SD plate media supplemented with histidine and 

methionine (SD+HM). After 2-3 days, pools of colonies from each transformation were 

grown in 10mL SD+HM liquid media. Potential candidates containing a complementing 

plasmid were selected by their growth on plates and further phenotype confirmation 

via β-galatosidase assay.  

Cycloheximide Chase Assay 

Cells expressing indicated myc-tagged proteins were grown in liquid S5%D+HM 

or SR+HM medium to OD600 0.6 – 0.8. Protein synthesis was inhibited by addition of 50 

µg/mL cycloheximide. Every 30 minutes, a 1 mL sample of the cell culture was 

withdrawn and immediately subjected to TCA precipitation. Total cellular extracts were 

prepared, and myc-tagged protein levels were determined by probing Western blots as 

described above.  Loading controls were obtained by stripping the membrane and 

reprobed with anti-PGK1 (3-phosphoglycerate kinase) primary antibody.  

Determination of Srb8 Half-life 

Erg6Δ mutant cells, expressing HA-tagged Srb8 were treated with 50 mM and 

100 mM MG132 and no treatment, and grown in liquid YNBcas5%D or YNBcasRaff 

medium. Once cells reached OD600 between 0.6 and 0.8 they were subjected to 

cycloheximide chase assay. Srb8-HA protein levels were detected by Western blot, and 

Srb8 protein half-life was estimated from observation of different protein levels 

expressed in every 30 minutes. 

Mating and Tetrad Dissection  

MAT a and MAT α haploid yeast cells were mated on YPD plate media for 4 hrs. 

Diploids were selected for on SD plate media supplemented with amino acids to cover 

auxotrophic markers. Diploids were induced to undergo sporulation by growing in 
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sporulation media (1% potassium acetate, 0.1% Bacto-yeast extract, 0.05% raffinose) for 

6-10 days. Tetrads were dissected on YPD plates using a micromanipulator.  

 

Results 

Hap4 Expression is Regulated by the Mediator Complex 

HAP4 expression increases approximately ten-fold when yeast cells are grown in 

raffinose media compared to dextrose media. Despite the importance of mitochondria 

in cellular metabolism and the essential role of hap4 in mitochondrial biogenesis, the 

regulatory mechanism of HAP4 expression is still unclear. The mediator complex of 

yeast has been shown in Liu’s lab to be involved in negative regulation of HAP4 

expression. Recently, Med8, another component of the Mediator complex, has been 

implicated in the carbon catabolite repression pathway [68]. Therefore, I sought to 

characterize the role of each component of the Mediator complex in Hap4 regulation. 

HAP4 expression was analyzed in cells lacking 15 non-essential mediator 

components. These mutant strains, transformed with plasmid carrying HAP4-lacZ 

reporter gene, were already made in the Liu lab. Transformants were grown in S5%D or 

SR liquid medium overnight to OD600 0.6-0.8, and assayed for Β−galactosidase activity. 

Figure 20 shows that in S5%D grown cells, deletion of mediator components results in 

increased of HAP4-lacZ gene expression, up to 10 fold compared to basal HAP4-lacZ 

activity in WT cells. However, two of the 14 non-essential mediator complex component 

mutations did not increase HAP4-lacZ activity, a med3∆ resulted in HAP4-lacZ activity 

comparable to WT and deletion of GAL11 resulted in a 0.5 fold decrease in HAP4-lacZ 

activity. In SR liquid medium, deletion of mediator components results in up to a 5 fold 

increase in HAP4-lacZ activity. Similar to dextrose grown cells, the exception to this is 

that a med19∆ mutation results in HAP4-lacZ activity comparable to WT and gal11∆, 
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med3∆, hxk2∆, and med20∆ mutations result in a decrease in HAP4-lacZ activity. These 

data suggest that some of the non-essential mediator components negatively regulate 

HAP4-lacZ expression while others may positively regulate it. 
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Figure 20:   The Mediator complex regulates expression of HAP4-lacZ  

HAP4-lacZ activity in non-essential mediator component deletion mutants compared to 

WT cells. Cells were grown in S5%D medium (A) or SR medium (B) and assayed using 

β-galactosidase assays.   

 

A 

B 



 

48 

 

Myc-tagged Mediator Components are Functional 

The non-essential mediator components were shown to regulate HAP4-lacZ 

expression to various degrees (Fig. 20). It is possible that posttranslational modifications 

or protein levels of the mediator complex components may vary depending on growth 

conditions and affect HAP4 expression. To test this possibility, I first constructed 

centromeric LEU2 plasmids encoding myc-tagged mediator components individually 

and tested their functionality (see Table 2).  

Centromeric LEU2 plasmids containing non-essential myc-tagged mediator 

components were transformed in their corresponding mediator component knockout 

strains, containing plasmid of HAP4-lacZ reporter gene, and analyzed for β-

galactosidase activity. Figure 21 shows that myc-tagged proteins restored derepressed 

Hap4 activity to wild type HAP4-lacZ level; in term, non-essential myc-tagged mediator 

component were functional. Non-essential myc-tagged mediator components in their 

corresponding mediator component deletion strains complemented the effect a 

mediator component deletion mutation has on the expression of HAP4-lacZ.  
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Figure 21:   Non-essential myc-tagged mediator components are functional. 

HAP4-lacZ activities in non-essential mediator component deletion strains without or 

with respective myc-tagged mediator component confirm the functionality of non-

essential myc-tagged mediator component plasmids. Cells were grown in YNBcas5%D 

or S5%D medium and assayed via β-galactosidase assay. 

 

Deletion of essential mediator components is lethal to yeast cells. To examine the 

functionality of the constructed essential myc-tagged mediator component plasmids, I 

transformed these plasmids into their respective diploid MED/med∆::kanMX4 strain. 

Transformants were subjected to sporulation, and yeast tetrads were dissected onto 

YPD plates by Tammy Pracheil and tetrad analysis was done by undergraduate 

Adrienne McGihn. Tetrads that showed viability of all four spores were selected for 
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further analysis on the basis that two spores must contain the wildtype MED gene and 

two must have the med∆ with a plasmid based wildtype myc-tagged MED gene. 

Viability of all four spores already indicates functionality of the myc-tagged essential 

mediator component.  

Confirmed essential myc-tagged mediator component plasmids were 

transformed into WT cells with the plasmid based HAP4-lacZ reporter gene. 

Transformants were then subjected to β-galatosidase assay to examine whether mild 

overexpression of essential MED genes from centromeric plasmids affects Hap4 

promoter activity. Figure 22 shows that expression of essential myc-tagged mediator 

components did not grossly affect HAP4-lacZ gene expression.  
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Figure 22:  Overexpression of essential myc-tagged mediator components do not 

effect HAP4 expression. 

HAP4-lacZ activities in essential mediator component deletion strains with respective 

myc-tagged mediator components were not significantly affected compared to HAP4 

expression in WT cells. Cells were grown in S5%D medium and assayed via β-

galactosidase assay. 

 

Carbon Source Affects Myc-Tagged Mediator Components Expression and Processing  

It is possible that regulation of HAP4 expression by the mediator complex 

involves posttranslational modification or proteolytic processing of mediator 

components depending on carbon source availability. To test this, non-essential 
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mediator deletion strains with corresponding myc-tagged plasmids and wild type 

strains with  myc-tagged essential mediator gene used in earlier experiments were 

grown in S5%D and SR medium overnight to OD600 0.6-0.8. Cell extracts were prepared 

and proteins were separated by SDS-PAGE and visualized by Western-blotting. Figure 

23 shows there were seven MED genes that showed a difference in protein expression in 

cells grown in dextrose versus raffinose medium. Protein expression of Med4, Med10, 

Med20, and Med31 genes were at least twice as strong in dextrose versus raffinose 

grown cells. Conversely, protein expression of Gal11 and Srb9 were stronger in 

raffinose versus dextrose grown cells. 
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Figure 23:   Effect of carbon source on Mediator Complex components  
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Myc-tagged mediator component protein expressions were detected in dextrose versus 

raffinose grown cells.  

Interestingly, Srb8-myc was processed into truncated fragments in dextrose 

grown cells as compared to raffinose grown cells. One of the possible explanations is 

that Srb8 is degraded by ubiquitin dependent proteolytic processing in dextrose grown 

cells. To examine this possibility, erg6∆ mutant cells expressing Srb8-myc were grown in 

dextrose medium and treated with 50µM and 100µM MG132 (see Material and 

Methods). Total cellular proteins with or without treatment of MG132 were 

precipitated, separated by SDS-PAGE and Srb8-myc protein was visualized by western 

blotting. An erg6∆ mutation increases MG132 permeability [66] . MG132 inhibits 

ubiquitin-dependent protein degradation via the proteasome.  If Srb8 protein 

processing is ubiquitin-dependent, treatment of MG132 should be efficient to block the 

degradation of Srb8 protein as I expected to detect a full length Srb8 protein. However, 

figure 24 shows no difference in protein expression with or without treatment of MG132 

and treatment of MG132 did not inhibit processing of Srb8-myc in dextrose grown cells. 

This observation suggested that Srb8 protein processing in dextrose grown cells is not 

due to proteasomal degradation.  
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Figure 24:   Processing of Srb8 in dextrose grown cells is proteasome independent.   

Cells expressing in myc-tagged Srb8 were grown in dextrose medium with or without 

treatment of MG132 proteasome inhibitor.    

 

Mutant 125-13 is Identified as SRB8 Mutation 

Previously, a former member of Liu’s lab, Denise Capps, isolated an unknown 

mutant DCY125-13 which fully activates HAP4-lacZ activity in the BY4741 background 

dextrose-grown cells. I sought to identify the mutation responsible for the phenotype 

observed in mutant. Therefore, I transformed two known negative transcription 

regulators, HXK2 or TUP1, or plasmid based myc-tagged mediator components into 

DCY125-13 to examine whether these genes could complement the mutation in 

DCY125-13. Figure 25 shows that only introduction of SRB8 significantly reduced the 

HAP4-lacZ expression in mutant from ~900 nmols/min/mg protein to ~200 
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nmols/min/mg protein. This approximately 4 fold reduction of HAP4-lacZ activity 

suggested that the DCT125-13 mutant was caused by mutation in Srb8 gene of mediator 

complex. 

 

 

 

Figure 25:   SRB8 mediator component complements HAP4-lacZ activating mutation.   

DCY125-13 mutant cells expressing in myc-tagged mediator components were grown in 

S5%D medium and assayed via β-galactosidase assay. 
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Since Srb8 is a subunit of kinase module of mediator complex. I wanted to 

confirm that DCY125-13 mutant is due to srb8 deletion only. To that end, I mated MATa 

srb8∆, srb9∆, srb10∆ and srb11∆ strains containing the plasmid of AGP1-lacZ reporter 

gene with MATα 125-13 strain and then assayed the expression of AGP1-lacZ in the 

resulting diploids.  Figure 26 showed that high HAP4-lacZ activity in 125-13 mutant 

was restored to WT cells level by complementing with srb9, srb10, srb11 deletion strain, 

but not srb8∆. This observation further confirmed that 125-13 mutant was caused by 

mutation in Srb8 gene of mediator complex.  

 

 

Figure 26:  High HAP4-lacZ activity remains in srb8 deletion diploid. 

DCY125-13 mutant mated with srb8∆, srb9∆, srb10∆, and srb11 ∆ diploid cells were 

grown in YNBcas5%D medium and assayed via β-galactosidase assay  
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Effect of Overexpression of Mediator Components on Expression of HAP4 

Previously, I showed that the protein levels of Med4, Med10, Med20 and Med31 

are stronger in dextrose grown cells as compared to raffinose grown cells; however, no 

significant impacts of these genes on HAP4-lacZ activity were observed in earlier 

experiments. One explanation for this could be that overexpression of these genes could 

affect HAP4 expression. To test this possibility, I cloned these myc-tagged MED genes 

into 2 micron plasmids which would greatly induce promoter transcription activity of 

these genes. I then transformed the 2 micron plasmids containing these MED genes into 

BY4741 WT background cells and confirmed they were overexpressed.  Figure 27 shows 

that protein expression of the myc-tagged MED genes encoded in 2 micron  plasmids 

resulted in higher protein levels compared to myc-tagged MED genes encoded in 

centromeric plasmids grown in both dextrose and raffinose medium. 
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Figure 27:   Overexpression of myc-tagged Mediator components. 

Protein expression show comparison of centromeric plasmid based myc-tagged 

mediator components versus 2µ plasmid based myc-tagged mediator components 

grown in dextrose versus raffinose medium.  
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Once 2 micron plasmid based myc-tagged MED genes were confirmed to be 

overexpressed, I analyzed the effect of their over expression on HAP4-lacZ expression. 

Figure 28 shows that overexpression of MED4, MED10, MED20 or MED31 did not 

significantly affect HAP4-lacZ activity in dextrose grown cells, but overexpression of 

MED4, MED10, MED20 or MED31 did reduce HAP4-lacZ expression in raffinose grown 

cells. My previous data showed that Med4, Med10, Med20, and Med31 protein levels 

were reduced in raffinose grown cells. Therefore, the data suggests that Med4, Med10, 

Med20, and Med31 might play a negative regulatory role in inducing HAP4 promoter 

activity since an overexpression of these MED genes correlates with a decrease in 

HAP4-lacZ activity in raffinose grown cells, and we can infer that the decrease in 

expression of these MED genes seen in raffinose grown cells correlates with an increase 

in HAP4-lacZ activity to a level that matches that found in dextrose grown cells.  
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Figure 28:   Effect of overexpression of myc-tagged Mediator components on HAP4-

lacZ activity.  

HAP4-lacZ activity in cells overexpressing Med4, Med10, Med20 and Med31 were 

grown in dextrose (A) versus raffinose (B) medium and were assayed via β-

galactosidase assay. 
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Overexpression of GAL11 Increases HAP4 Expression 

Earlier experiment suggested that Gal11 and Med3 might be positive regulators 

of HAP4 expression. In order to test this hypothesis, I transformed plasmids encoded 

Gal11-myc and Med3-myc into BY4741 WT cells containing the HAP4-lacZ reporter 

gene to see whether additional copies of Gal11 and Med3 would increase HAP4-lacZ 

activity. Figure 29 showed that slight overexpression of GAL11 resulted in a 3-fold 

increase in HAP4-lacZ activity in dextrose grown cells, and a 0.5-fold increase in HAP4-

lacZ expression in raffinose grown cells as compared to WT cells. Surprisingly, slight 

overexpression of MED3 in WT cells had no effect on HAP4-lacZ activity in cells grown 

in both dextrose and raffinose medium.    

It is possible that Med3 is a positive regulator of HAP4 expression but to a lesser 

extent than Gal11 and thus would require stronger overexpression to see an effect on 

HAP4-lacZ activity. To that end, I constructed 2µ plasmids encoding MED3 or GAL11 

and transformed them into WT cells containing the HAP4-lacZ reporter gene. 

Transformants were subjected to β-galatosidase assays. Figure 29 shows that high 

overexpression of GAL11 further increases HAP4-lacZ activity 10-fold as compared to it 

is mild overexpression, but high overexpression of MED3 still no significant effect on 

HAP4-lacZ activity.  
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Figure 29:   Effect of overexpression of GAL11 and MED3 on HAP4-lacZ activity 

HAP4-lacZ activity in cells overexpressing GAL11 and MED3 on centromeric or 2µ 

plasmids grown in dextrose versus raffinose medium. 

 

Med3 and Gal11 Function Together as a Positive Regulator of HAP4 Expression  

Neither a MED3 deletion nor overexpression of MED3 affects HAP4-lacZ activity 

in WT cells; however, it is possible that Med3 might regulate HAP4-lacZ activity 

through Gal11. Therefore, I constructed a gal11∆ med3∆ double deletion mutant strain. 

WT, gal11∆, med3∆ single and double deletion mutant cells were transformed with the 

HAP4-lacZ reporter gene and grown in YNBcas5%D and YNBcasR media and analyzed 

for β-galactosidase activity. Figure 30 shows that a double deletion of GAL11 and MED3 

does not completely abolishes HAP4-lacZ reporter gene activity but shows a similar 

regulatory effect on  HAP4 expression as  it is shown in single gal11∆ mutant strain in 

figure 20. This observation suggests that the regulatory effect of Med3 is redundant. 
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There are other factors that regulate HAP4 expression. By forming a complex with 

Gal11, Med3 may positively regulate HAP4 expression in conjunction with Gal11. 

 

 

Figure 30:   HAP4-lacZ activity in med3∆∆∆∆ gal11∆∆∆∆ double mutant   

HAP4-lacZ activity of WT, med3∆, gal11∆, and med3∆ gal11∆ double deletion strains 

were assayed via β-galatosidase in cells grown in dextrose versus raffinose medium.  

 

Discussion 

In this study, I report that the mediator complex components either positively or 

negatively regulate HAP4-lacZ activity. Out of 25 mediator components, Med4, Med10, 

Med20, and Med31 likely play a negative regulatory role in inducing HAP4 promoter 

activity. The kinase, Srb8 is processed in response to glucose medium, and its deletion 
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greatly induced HAP4-lacZ activity (Fig. 20, 23). Gal11 appears to be a positive regulator 

of HAP4 promoter activity. Sin4 and Hxk2 were previously shown in the Liu lab to 

negatively regulate HAP4 promoter activity; my results further suggest that the 

mediator complex interacts with a HAP4 transcription factor and each component of 

mediator have specific regulatory roles in inducing HAP4 promoter activity. Since the 

mediator complex is composed of 25 subunits, they often interact with each other in 

regulating transcription; therefore, deletion of one mediator component may have an 

effect on neighbor subunits in their regulation of HAP4 promoter activity.   

In an early study, it was suggested that Srb10 repressed activation of genes that 

enable cells to survive under nutrient deprivation, and that Srb10 expression is greatly 

reduced when cells enter diauxic shift [48]. However, changes in SRB10 expression in 

nutrient depleted medium was not observed in this study which may due to the 

difference in non-glucose sources I used, raffinose compared to galactose they 

previously used. Interestingly, I found that another component of kinase complex, Srb8, 

underwent processing in cells grown in dextrose. However Srb8 processing is not due 

to ubiquitin-dependent degradation and the type of post-translational modification is 

still unknown.   

 Previously, research found that mutation of Srb8 induced invasive growth in 

haploid strains [69]. Mutation of Srb8 alleviates repression by Cyc8-Tup1 in vivo. Srb8 

can positively regulate the function of Srb10, and balance between the activities of 

Srb8+Srb10 and Srb11 is important for normal growth of the cells [70]. Srb8, 9, 10, and 

11 tightly interact with each other and form a Kinase complex that positively or 

negatively regulates different targeted gene transcription. As their role individually in 

regulating HAP4 transcription factor, it seems that Srb8 is a negative regulator of HAP4; 
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in glucose grown cells, Srb8 interferes with Srb10 and its expression is repressed in 

fermentative growth condition.  

Another mediator component Gal11 also plays an important role in Hap4 

regulation. Gal11/Med15 in the mediator tail module contains four N-terminal 

activator-binding domains that are crucial for interaction with transcription activators 

[71, 72]. Gal11, Med2 and Med 3 form a triad which is capable of binding the promoter 

region of Gcn4 activator as a free subcomplex. The entire tail module is essential for 

recruitment and stabilization of mediator complex to Gcn4p[73]. Western analyses and 

column binding assays show that Gal11 directly interacts with gene-specific 

transcriptional activators[74]. Not only Gal11 required for interaction of mediator 

complex and gene-specific transcription activator, but it also required for the efficient 

recruitment of RNA polymerase II holoenzyme to a promoter via activator-specific 

interactions for transcriptional repression or derepression of many genes[75] . In Hap4 

regulation, it is reasonable to believe that the activator-binding domain of Gal11 directly 

binds to the Hap4 transcription factor and positively regulates HAP4 promoter activity, 

by interfering with Med3 subunit which is not absolutely required.  

Overall, both amino acids signaling pathways for nitrogen-based nutrient 

sensing and mitochondria biogenesis metabolism for carbon source sensing are very 

important in yeast growth. By using S. cerevisiae as a model and studying its cellular 
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mechanism responding to different nutrient sources can help us understand the overall 

physiological system of sensing and utilizing nutrient in eukaryotes.   

 

FUTURE WORK 

Genomic DNAs of three unknown cysteine-resistant mutants have been generated and 

will be sequenced to pinpoint the mutations behind the cysteine resistance phenotype. 

Once the mutated genes are revealed, studies will be directed to understand the role of 

these genes in cysteine toxicity. My results have shown that Srb8 processing does not 

require the 26S proteasome. The underlying mechanism of Srb8 processing will be 

studied. 
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APPENDIX 

Stain Genotype 

MCY106 MATa ura3∆  leu2∆  his3∆  met15∆  med1::kanMX4 HAP4-lacZ  

MCY107 MATa ura3∆  leu2∆  his3∆  met15∆  med9::kanMX4 HAP4-lacZ 

MCY108 MATa ura3∆  leu2∆  his3∆  met15∆  srb5::kanMX4 HAP4-lacZ 

MCY109 MATa ura3∆  leu2∆  his3∆  met15∆  srb11::kanMX4 HAP4-lacZ 

MCY112 MATa ura3∆  leu2∆  his3∆  met15∆  sin4::kanMX4 HAP4-lacZ 

MCY205 MATa ura3∆  leu2∆  his3∆  met15∆  srb8::kanMX4 HAP4-lacZ  [pMC139] 

MCY206 MATa ura3∆  leu2∆  his3∆  met15∆ srb9::kanMX4 HAP4-lacZ  [pMC141] 

MCY208 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC144] 

MCY209 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC146] 

MCY210 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC158] 

MCY211 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC148] 

MCY212 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC160] 

MCY213 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ   [pMC162] 

MCY214 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ   [pMC150] 

MCY215 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC152] 

MCY229 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pZL1634] 

MCY230 MATa ura3∆  leu2∆  his3∆  met15∆  srb8::kanMX4 HAP4-lacZ  [pZL1634] 

MCY231 MATa ura3∆  leu2∆  his3∆  met15∆ srb9::kanMX4 HAP4-lacZ  [pZL1634] 

MCY232 MATa ura3∆  leu2∆  his3∆  met15∆  srb10::kanMX4 HAP4-lacZ [pZL1634] 

MCY240 MATa ura3∆  leu2∆  his3∆  met15∆  srb10::kanMX4 HAP4-lacZ [pMC142] 

MCY242 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC164] 

MCY243 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC155] 

MCY244 MATa ura3∆  leu2∆  his3∆  met15∆  med3::kanMX4 HAP4-lacZ  [pZL1634] 

MCY245 MATa ura3∆  leu2∆  his3∆  met15∆  med5::kanMX4 HAP4-lacZ  [pZL1634] 

MCY246 MATa ura3∆  leu2∆  his3∆  met15∆  med5::kanMX4 HAP4-lacZ  [pMC179] 

MCY247 MATa ura3∆  leu2∆  his3∆  met15∆  gal11::kanMX4 HAP4-lacZ  [pMC201] 

MCY248 MATa ura3∆  leu2∆  his3∆  met15∆  med31::kanMX4 HAP4-lacZ  [pZL1634] 

MCY249 MATa ura3∆  leu2∆  his3∆  met15∆  med31::kanMX4 HAP4-lacZ  [pMC227] 

MCY250 MATa ura3∆  leu2∆  his3∆  met15∆  med20::kanMX4 HAP4-lacZ [pZL1634] 

MCY251 MATa ura3∆  leu2∆  his3∆  met15∆  med20::kanMX4 HAP4-lacZ  [pMC172] 

MCY252 MATa ura3∆  leu2∆  his3∆  met15∆  med3::kanMX4 HAP4-lacZ  [pMC180] 

MCY253 MATa ura3∆  leu2∆  his3∆  met15∆  med19::kanMX4 HAP4-lacZ  [pMC170] 

MCY254 MATa ura3∆  leu2∆  his3∆  met15∆  gal11::kanMX4 HAP4-lacZ  [pZL1634] 

MCY257 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ   [pMC226] 

MCY258 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ   [pMC205] 

MCY259 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ   [pMC206] 

MCY260 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ   [pMC208] 

MCY306 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC148] 

MCY307 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ   [pMC201] 

MCY308 MATa ura3∆  leu2∆  his3∆  met15∆  med5::kanMX4 HAP4-lacZ  [pMC179] 

MCY310 MATa ura3∆  leu2∆  his3∆  met15∆-13u3 HAP4-lacZ  [pZL1634] 

MCY311 MATa ura3∆  leu2∆  his3∆  met15∆-13u3 HAP4-lacZ  [pMC139] 

MCY320 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC172] 

MCY321 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC167] 

MCY322 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC227] 

MCY323 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC180] 

MCY328 MATa ura3∆  leu2∆  his3∆  met15∆  erg6::kanMX4  [pMC139] 

MCY329 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC233] 

MCY331 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ  [pMC243] 

RBY98661 MATa ura3 iAGP1-lacZ-kanMX4 

DCY125 MATa ura3∆  leu2∆  his3∆  met15∆  HAP4-lacZ 

ZLY043 MATα  ura3-52 lys2-201 iAGP1-lacZ 

ZLY034 MATα   ura3-52 AGP1-lacZ dal81-6 

ZLY1940 MATα  ura3 lys2 AGP1-lacZ ssy5::kanMX4 

ZLY2816 MATα  lys2  iAGP1-lacZ ssy1 
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Table 2: Plasmids used in this study
Plasmid Plasmid description 

pMC142 pRS415-ADH1p-SRB10-Amyc 

pMC139 pRS415-ADH1p-SRB8-Amyc-his12 

pMC141 pRS415-ADH1p-SRB9-Amyc-his12 

pMC201 pRS415-GAL11-myc 

pMC162 pRS415-MED10-myc 

pMC150 pRS415-MED11-myc 

pMC164 pRS415-MED14-myc 

pMC215 pRS415-MED17-myc 

pMC170 pRS415-MED19-myc 

pMC172 pRS415-MED20-myc 

pMC152 pRS415-MED21-myc 

pMC155 pRS415-MED22-myc 

 pMC144 pRS415-MED2-myc 

ZLY3163 MATα  ura3 lys2 ptr3 ssy5 iAGP1-lacZ::kanMX4 

RBY98217 MATα  ura3 leu2 lys2 rtg2::LEU2 shr3::URA3-4 
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pMC167 pRS415-MED31-myc 

pMC180 pRS415-MED3-myc 

pMC146 pRS415-MED4-myc 

pMC179 pRS415-MED5-myc 

pMC158 pRS415-MED6-myc 

pMC148 pRS415-MED7-myc 

pMC160 pRS415-MED8-myc 

pTP479 pRS415-MED1-HA 

pTP501 pRS415-MED9-HA 

pMC101 pRS415-SIN4-HA 

pTP507 pRS415-SRB11-HA 

pTP504 pRS415-SRB5-HA 

pMC205 pRS425-MED4-myc 

pMC206 pRS425-MED10-myc 

pMC208 pRS425-MED20-myc 

pMC227 pRS425-MED31-myc 

pMC233 pRS425-MED3-myc 

pMC243 pRS425-GAL11-myc 

pMC226 pRS425-ADH1p-Ala10-myc 

pWCJ-HAP4p-lacZ pWCJ-HAP4p-lacZ 

pZL1634 pRS415-ADH1p-myc3 (vector) 

B1254 pRS416-STP1p-STP1C 

B1306 pRS417-GPD1-STP1-myc3-2 
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