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ABSTRACT 

Metabolomics is an emerging field that entails the detailed characterization of the ensemble 

of metabolites produced by living organisms; subfields include drug metabolism and natural 

environmental toxin production. The first part of the dissertation pursued metabolism of 

glyceollins, i.e., isoflavones produced by soybeans that are potential cancer therapy agents.  In 

vivo glyceollin metabolites produced in rats were investigated by on-line Liquid Chromatography-

Electrospray Ionization Tandem Mass Spectrometry. An odd-electron fragment ion at m/z 148, 

formed in violation of the even-electron rule, and diagnostic of the glyceollin backbone, was 

discovered. Based on this finding, a negative mode precursor ion scanning method was developed 

to screen for glyceollins and their metabolites from biological samples. Products of both Phase I 

and Phase II metabolism were identified, none of which have been previously reported. Sulfated 

metabolites were confirmed by accurate mass measurement, while glucuronide conjugation was 

confirmed by enzyme-assisted glucuronidation by rat liver microsomes. Intact GSH-glyceollin 

conjugates were not observed, but breakdown products of the GSH pathway, i.e., 

cysteinylglyceine, cysteine, and acetylated cysteine, were identified as conjugates of oxygenated 

glyceollins. The identification of GSH by-product conjugates was confirmed in product ion spectra 

acquired in the negative mode (where peptide anions, and glyceollin-bearing cleaved peptide 

portions were observed), as well as in the positive mode (where intact oxygenated glyceollin 

fragments appeared without the initially-present peptide portion). Mass spectral evidence strongly 
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supports a metabolic pathway involving initial epoxidation of glyceollins followed by GSH 

addition at the epoxidation site.  

 The second part of the dissertation undertook the investigation of secondary 

metabolites called microbial volatile organic compounds (MVOCs) produced by fungi (mold) that 

have been reported to have adverse human health effects. MVOCs were collected onto different 

sorbent materials and analyzed by Thermal Desorption Analysis coupled with on-line Gas 

Chromatography-Mass Spectrometry. Fungal MVOCs were characterized from various simulated 

flooding conditions (brackish, freshwater, and saltwater) and different substrates (nutrient rich vs. 

low nutrient) to determine diagnostic MVOCs. Ten fungi from simulated environments were 

identified by genetic sequencing. Cladosporium sp. and Chaetomium sp. were cultivated and their 

emitted MVOCs, 3-furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal, were proposed 

as diagnostic indicators of these fungi. 
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1.1 Abstract 

A method has been developed for screening glyceollins and their metabolites based upon 

precursor ion scanning. Under higher-energy collision conditions employing a triple quadrupole 

mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic 

radical product ion at m/z 148. We propose this resonance-stabilized radical anion, formed in 

violation of the even-electron rule, to be diagnostic of glyceollins and glyceollin metabolites. 

Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) 

established that scanning for precursors of m/z 148 can identify glyceollins and their metabolites 

from plasma samples originating from rats dosed with glyceollins. Precursor peaks of interest were 

found at m/z 337, 353, 355, 417, and 433. The peak at m/z 337 corresponds to deprotonated 

glyceollins, whereas the others represent metabolites of glyceollins. Accurate mass measurement 

confirmed m/z 417 to be a sulfated metabolite of glyceollins. The peak at m/z 433 is also sulfated, 

but it contains an additional oxygen, as confirmed by accurate mass measurement. The latter 

metabolite differs from the former likely by the replacement of a hydrogen with a hydroxyl moiety.  

The peaks at m/z 353 and 355 are proposed to correspond to hydroxylated metabolites of 

glyceollins wherein the latter additionally undergoes a double bond reduction. 
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1.2 Introduction 

Soybean produces isoflavones that are known to have beneficial effects on human 

health.1,2,3,4,5 In recent years, much research has been conducted on genistein, an isoflavone that 

has been proposed to have anti-cancer activity.6,7,8 The potential chemopreventive effect of 

genistein has prompted researchers to investigate soybean further for anticancer agents. A more 

recently investigated type of isoflavones are the glyceollins that are produced by soybeans under 

stressed conditions. The stressful conditions may include exposure to UV light, or fungal (e.g., 

Aspergillus) or bacterial pathogens.9 Because they are produced by a defense mechanism in 

response to pathogen invasion, glyceollins may be referred to as phytoalexins.10  

Glyceollins exist in three isomeric forms, Glyceollin I, II and III (Scheme 1.1).  The 

isomers are derived from a daidzein precursor through several intermediate steps.11 Among the 

biological effects of glyceollins are potential human health benefits including anti-fungal, anti-

oxidant, anti-inflammatory, anti-diabetic, and cancer cell anti-proliferative activity along with 

other beneficial properties.12,13,14 Recently, many studies have proposed glyceollins as prevention 

or therapy candidates for breast, ovarian, and prostate cancers. All three glyceollin isomers have 

exhibited anti-estrogenic effects on estrogen receptor function and estrogen-dependent tumor 

growth. 15, 16  Specifically, glyceollins bind to the estrogen receptor and they inhibit estrogen-

induced tumor progression of breast cancer (MCF-7) and ovarian cancer (BG-1) cells.16  Among 

the three isomers, glyceollin I has the most potent anti-estrogenic activity.17,18  Another in vivo 

study examining post-menopausal monkeys suggested glyceollins reduce breast cancer biomarker 

expression.19 Human prostate cancer cell research demonstrated that glyceollins have multiple 

effects on prostate cancer cells (LNCaP).20 
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Scheme 1.1: Structures of Glyceollin isomers 

 

The inhibition of prostate cancer cell growth by glyceollins is similar to that exhibited by 

genistein, but the former also up-regulate cyclin-dependent kinase inhibitor and down-regulate 

mRNA levels for androgen-responsive genes through androgen-mediated pathways.20  In addition 

to the anti-estrogenic activity, glyceollins normalize glucose homeostasis and improve glucose 

utilization in adipocytes.13,21  The anti-diabetic potential was also noted in prediabetic21 and Type 

2 diabetic rats21 and mice..22 These potential benefits of glyceollins have been well documented, 

but its metabolism is not well understood.23 

Several mass spectrometric approaches that use various ionization techniques such as 

electron ionization (EI), fast atom bombardment (FAB), thermospray (TSP), atmospheric pressure 

chemical ionization (APCI), and electrospray ionization (ESI) have been used to investigate 

flavonoids.24,25,26,27,28 Tandem mass spectrometry using low-energy collision-induced dissociation 
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(CID) to obtain structural information regarding mass-selected precursors has been shown to be 

advantageous in characterizing flavonoids28 and was recently applied in the analysis of glyceollins 

from soy bean extracts.29 Given the propensity for extensive metabolism of flavonoids following 

their ingestion30 and that no research has addressed identification of glyceollins' metabolites in 

animal systems, the significance of the present research is that it investigates glyceollins in plasma 

and presents method development work designed for screening of glyceollins and glyceollin-

related metabolites. 
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1.3 Experimental Methods 

1.3.1 Extraction of Glyceollins isomers 

A mixture of glyceollins I, II, and III was obtained using a procedure developed at the 

Southern Regional Research Center (ARS, USDA, New Orleans, LA).  Briefly, soybean seeds (1 

kg) were sliced and inoculated with Aspergillus sojae.  After 3 days, the glyceollins were extracted 

from the inoculated seeds with 1 L methanol (Aldrich Chemical Co., St. Louis, MO).  The 

glyceollins were isolated using preparative scale HPLC using two Waters (Milford, MA) 25 x 100 

mm, 10 µm particle size µBondapak C18 radial compression column segments that were combined 

using an extension tube.  HPLC was performed on a Waters 600E System Controller combined 

with a Waters UV-Vis 996 detector scanning from 210-400 nm. Elution was carried out at a flow 

rate of 8.0 mL/min  with the following solvent system: A = acetonitrile (Aldrich Chemical Co.), B 

= water (Millipore system, Billerica, MA) 5% A for 10 min, then 5% A to 90% A in 60 min 

followed by holding at 90% A for 20 min.  The injection volume was 20 mL. The fraction 

containing the glyceollins was concentrated under vacuum and freeze-dried.  Confirmation of 

individual glyceollins was based on matching of HPLC retention times and matching of UV-Vis 

absorbance spectra with those of authentic standards isolated at SRRC17. UV-Vis 

spectrophotometry at 285 nm allowed an estimation of mixture contents used in all experiments: 

glyceollin I (68%), glyceollin II (21%), and glyceollin III (11%).  

1.3.2 Glyceollin dosing of rats and plasma sample collection 

The administration of glyceollins to rats and subsequent sample collection have been 

previously described.21 Briefly, glyceollins were dissolved in poloxamer to administer 90 mg/kg 

via oral gavage (3 mL) to male ZDSD rats (PreClinOmics, Indianapolis, IN) that were housed in 

a suspended wire cage and maintained on a 12:12 hr light-dark cycle.  Three hr after administration, 
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rats (approx. 500 g wt.) were euthanized at various time points by decapitation and trunk blood 

was collected into EDTA-coated tubes supplemented with aprotinin.  Plasma was separated and 

stored at -80 ºC until analysis. Glyceollins were extracted for mass spectrometry analysis by 

thawing the samples and transferring 125 µL of plasma into a microcentrifuge tubes. An equivalent 

volume of acetonitrile was then added. The mixture was vortexed and centrifuged at 10,000 rpm 

for 20 min. 100 µL of supernatant was transferred into a clean microcentrifuge tube for analysis.  

1.3.3 Liquid Chromatography-Mass Spectrometry   

LC-MS and LC-MS/MS analyses were conducted on an Agilent 1200 series LC system 

(Agilent, Santa Clara, CA) coupled with a 3200 QTrap triple quadrupole mass spectrometer 

(Applied Biosystems/MDS SCIEX, Foster, City, CA). Separation was performed on an Agilent 

Eclipse - XDB C18 column (4.6 x 150 mm ID, 5 µm). 10 µL was injected onto the column held at 

25 oC. Mobile phase A was water with 0.1% formic acid whereas mobile phase B was acetonitrile 

with 0.1% formic acid. The gradient was 0-2 min 3% B, 2-7 min 3% to 60% B, 7-14 min 60% to 

100% B, 14-20 min 100% B, 20-30 min 100% to 3% B. Flow rate was 0.500 mL/min. The UV 

absorbance detector was set at 210 and 282 nm. 

          All mass spectrometry experiments were performed in the negative ion mode. For LC-ESI-

MS and LC-ESI-MS/MS analyses, electrospray parameters were set at: curtain gas 10 psi, ionspray 

voltage -4000 V, GAS1 60 psi, GAS2 60 psi, source temperature 600 oC, CAD gas pressure 6 psi, 

entrance potential -10 V, collision cell exit potential -3 V. Declustering potential and collision 

energy were optimized to be -75 V and -34 eV, respectively. The information-dependent 

acquisition (IDA) method was employed to perform full scan, tandem MS and precursor ion scans 

sequentially (1 sec/scan). 
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1.3.4 Direct Infustion ESI-MS 

Direct infusion parameters were the same as above except for GAS1, GAS2 and source 

temperature, which were set at 20 psi, 0 psi, and 50 oC, respectively. Samples were infused for 2 

min at a flow rate of 4 µL/min.  Direct infusion data was acquired using multiple-channel 

acquisition (MCA). 

1.3.5 Accurate mass measurements by ESI-FRICR-MS 

Accurate mass measurements to determine metabolite empirical formulas were performed 

on a Solarix 7T fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer (Bruker 

Daltonics, Bremen, Germany). An ESI voltage of 4500 V was used with 2 Bar nebulizer gas 

pressure; drying gas was delivered at 4 L/min and 200 °C drying temperature. Peaks at m/z 113, 

432, and 602 from ESI Tuning Mix (Agilent Technologies, Santa Clara, CA) were used as internal 

standards in mass spectra consisting of 40 averaged acquisitions. 
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1.4 Results and Discussion 

1.4.1 Collision-Induced Dissociations of Glyceollins 

Isomeric glyceollin I, II, and III standards and plasma samples obtained from rats dosed 

with glyceollins were analyzed and characterized by negative ion MS and tandem MS. [M-H]- 

peaks corresponding to deprotonated forms of glyceollin isomers were observed at m/z 337. Low- 

energy CID of these [M-H]- precursors (Figure 1-1) produced product ion peaks similar to those 

reported by Gruppen et al.29 For instance, m/z 319, 215, 187, 175, 161, 149 were all present in high 

abundances. In addition, low abundance peaks reported by Gruppen et al.29 (m/z 322, 309, and 

293) were also observed. Surprisingly, under higher-energy conditions in the negative ion mode, 

a previously unreported CID peak emerged at m/z 148 with such a strong signal that it became the 

base peak in the product ion spectrum (Figure 1-1).31 We attribute the dominance of this open-

shell fragment in the product ion mass spectrum of glyceollins to its exceptional stability as 

supported by the extensive delocalization of both the charge and the radical over the aromatic ring 

system (see inset, Figure 1-1). Indeed, fragmentation to form this product constitutes a violation 

of the even-electron rule,32  i.e., normally formation of a radical product ion plus a radical neutral 

is forbidden from decompositions of an even-electron precursor. However, homolytic cleavage of 

even-electron ions has been documented to occur especially in cases where exceptional stability is 

acquired by the formed radical ion and radical neutral. 32,33,34,35  Because the m/z 148 product ion 

is formed from the portion of the molecule that is conserved in all of the glyceollin isomers, we 

propose to use the appearance of this unique radical ion in MS/MS spectra as a product ion 

diagnostic of all glyceollins.31 Thus, the presence of this product ion can be used as a signature to 

identify glyceollins and their related metabolites.  As a single caveat, in cases where the D or B 

rings become modified, the m/z 148 ion could be shifted to another even m/z value with a possible 
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decrease in intensity. Notably, this product ion was also observed during low-energy sustained off-

resonance irradiation (SORI) - CID in a FT-ICR. The empirical formula (C8H4O3) of the resonance 

stabilized m/z 148 ion was confirmed by accurate mass measurement. 

 

 

Figure 1-1: Negative ion electrospray product ion mass spectrum (-75 eV CID ) 

of [M-H]- precursor of glyceollin (m/z 337). Under these higher-energy conditions, the 

product ion at m/z 148 appears in high abundance. 
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1.4.2 Optimization of CID conditions  

CID conditions for the triple quadrupole, including the “declustering potential” (V, also 

known as nozzle-skimmer potential) and the collision energy (eV, Elab) were serially adjusted to 

maximize the intensity of the diagnostic product ion at m/z 148 formed from glyceollin [M-H]- 

precursors. Other MS conditions such as ion spray voltage, curtain, nebulizing and turbo gases 

were maintained at constant values (see Experimental section). The declustering potential value 

for precursor m/z 337 was optimized (by ramping up its voltage) to obtain the highest intensity of 

m/z 148 in product ion mode. The optimum declustering potential yielding the maximum intensity 

of m/z 148 was -75 V. Tandem MS of m/z 337 was then performed using a fixed declustering 

potential of -75 V, while ramping up the collision energy. The highest signal for m/z 148 was 

observed at an Elab value of -34 eV. Figure 1-2 shows the automated infusion “quantitative 

optimization” of the declustering potential (Figure 1-2a, m/z 148 only) and Elab (Figure 1-2b, 3 

highest intensity fragments: m/z 148, m/z 149 and m/z 319). The breakdown curves shown in Figure 

1-2b clearly indicate that upon decomposition of m/z 337, m/z 149 has a lower appearance energy 

than m/z 148. This finding can be rationalized by considering that for these closely related 

fragments, production of even-electron m/z 149 (with formation of an additional carbon-hydrogen 

bond and resulting stabilization) requires less energy than formation of odd- electron m/z 148. 

However, as the internal energy uptake is increased, the rate constant of m/z 148 formation 

becomes more favorable and the curves for formation of the respective products cross (Figure 1-

2b inset). This curve-crossing is a classic example36,37 of competitive ion formation where the 

fragment with the lower appearance threshold dominates under lower energy collisions (e.g., 

conditions used by Gruppen et al.29, m/z 149 is favored), whereas the fragment formed by the 

higher frequency factor32 process dominates at higher collision energies (m/z 148, see Figure 1-1). 
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Figure 1-2: (a) The optimum declustering potential value to produce m/z 148 

from CID of m/z 337 precursors was determined by ramping the declustering potential 

in product ion mode. The maximum intensity of m/z 148 was observed at -75 V. (b) 

Optimization of collision energy for m/z product ion formation at fixed declustering 

potential of -75 V. Abundances of three strong peaks: m/z 148, 149, 319 are shown as a 

function of collision energy. The highest signal for m/z 148 was observed at -34 eV (Elab). 

The inset schematically shows the rates of formation of m/z 148 and 149 as a function of 

internal energy of m/z 337. 
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1.4.3 Precursor Ion Scan of m/z 148 

          Upon optimization of CID conditions, m/z 148 was observed as the base peak in the 

product ion mass spectra of [M-H]- precursors from each purified standard of glyceollin I, II, and 

III. To follow through on the idea of using m/z 148 as a diagnostic product ion for glyceollins, the 

above optimized CID conditions maximizing m/z 148 production were used to obtain precursor 

ion scans of m/z 148 using glyceollin mixtures. As expected, [M-H]- at m/z 337 was detected in 

high intensity, thus confirming that precursor ion scans of the diagnostic radical m/z 148 can be 

used to detect glyceollins and glyceollin related compounds.  In principle, one could also consider 

using m/z 149 for precursor ion scans, but in practice, this would be a poor choice because a wide 

variety of phtahlate esters (ubiquitous plasticizers) produce m/z 149 upon ESI-MS/MS.38 

 

1.4.4 LC-ESI-MS and LC-ESI-MS/MS analyses of glyceollins and their metabolites in rat 

plasma 

To test the validity of this method to identify glyceollins and their metabolites, it was 

applied to the analysis of plasma samples derived from rats dosed with glyceollins. For these LC-

ESI-MS and LC-ESI-MS/MS experiments, the MS data acquisition method cycled through a full 

MS scan, a CID precursor ion scan of m/z 148, and a CID product ion spectrum of m/z 337. Once 

the precursors of m/z 148 were identified, in subsequent runs, the CID product ion scans of those 

precursors were added to the acquisition scan cycle. In a plasma sample taken at 20 min following 

a 90 mg/kg dose of glyceollins, the precursor ion scan of m/z 148 showed eluting peaks at 10.5 

and 12.5 min (Figure 1-3a). The peak at 12.5 min corresponds to (unmetabolized) deprotonated 

glyceollins (m/z 337) as shown in the averaged mass spectrum corresponding to this 

chromatographic peak (Figure 1-3 inset). The earlier eluting peak (10.5 min) corresponds to an 
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apparent metabolite of glyceollins which gave a base peak at m/z 417 (Figure 1-3 inset). Notably, 

the employed CID conditions produced enough internal energy uptake to cause consecutive 

decomposition of this metabolite to produce m/z 337 (deprotonated glyceollins). In a different rat 

plasma sample taken at 4 hrs following the dose of glyceollins (90 mg/kg), precursor ion scanning 

of m/z 148 resulted in the appearance of glyceollin metabolites eluting at 3.9, 4.2 and 9.6 min 

(Figure 1-4). These chromatographic peaks correspond to metabolites of m/z 451, 433, and 417, 

respectively (see inset Figure 1-4). Again, consecutive decomposition of the m/z 417 metabolite 

was observed to produce m/z 337. It appears that metabolism was extensive in this case because 

unmodified glyceollins were not detected in this sample. 

 

Figure 1-3: LC-MS/MS precursor ion scans showing total ion current of all precursors of 

m/z 148 from glyceollins dosed rats. The insets show the precursor ion spectra of m/z 148 

averaged over the width of the peaks eluting at 10.5 and 12.5 min showing the presence of 

a metabolite and unmetabolized glyceollins, respectively. 
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Figure 1-4: LC-MS/MS precursor ion scan showing total ion current of all precursors of 

m/z 148 from glyceollins dosed rat plasma. Inset are the averaged mass spectra obtained 

across the three observed chromatographic peaks. 

1.4.5 Identification of glyceollins’ metabolites using LC-ESI-MS and LC-ESI-MS/MS 

The CID product ion spectrum of the m/z 417 precursor (Figure 1-5) shows many of the 

same fragments as observed in the CID product ion spectrum of m/z 337 (Figure 1-1). In 

considering the mass increase of this metabolite, in general, an addition of 80 Da in a biological 

medium may correspond to either a sulfation or a phosphorylation process. The metabolism of 

glyceollins in the digestive tract is not well documented23 and to our knowledge there have not 

been any reports of glyceollins’ metabolites. However, another isoflavone, genistein, has been 

extensively studied, and it has been reported to undergo phase II metabolism by glucuronidation, 

sulfation, and methylation in small intestine and liver.30,39,40  Based on these reports of genistein 

metabolism, and interpretation of the obtained CID spectrum of m/z 417 (Figure 1-5), the peak was 

tentatively assigned as the sulfated metabolite of glyceollins. However, because m/z 417 could 

correspond to either the sulfated or the phosphorylated metabolite (deprotonated forms), to  
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Figure 1-5: LC-MS/MS product ion mass spectrum of m/z 417 precursors from rats 

dosed with glyceollins. The m/z 417 metabolite was assigned as a sulfated form of 

glyceollins. 

definitively identify m/z 417, accurate mass analysis was performed on this ion. The 

addition of a phosphate group implies a molecular formula of C20H18O8P with an exact m/z of 

417.074478, whereas sulfated glyceollins have the molecular formula C20H17O8S with an exact 

m/z of 417.064962. The accurate mass measurement by FT-ICR gave m/z 417.064812 confirming 

the assignment of m/z 417 as a sulfated metabolite of glyceollins (0.360 ppm error). Because the 

CID product ion spectrum of m/z 417 (Figure 1-5) shows similar fragments as the CID product ion 

spectrum of m/z 337 (Figure 1-1), and because there are no fragment ions that are shifted by 80 

m/z units in the former spectrum relative to the latter, we conclude that the sulfate group is the 

most labile moiety of the m/z 417 metabolite. Thus, the first step in decompostion of m/z 417 is 

loss of  SO3 neutral to form deprotonated glyceollins at m/z 337. All of the lower m/z fragments in 

Figure 1-5 are proposed to be formed by consecutive decompositions of m/z 337. Notably, at the 

constant Elab collision energy (- 34 eV) employed throughout this paper, energy is consumed in 
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the decomposition of m/z 417 leading to m/z 337. The m/z 337 ions thereby formed have less 

internal energy available to induce consecutive decompositions as compared to m/z 337 precursors 

that are subjected directly to -34 eV collisions in the central quadrupole. This loss of internal 

energy in the first step of decomposition results in more favorable kinetics for m/z 149 formation 

as compared to m/z 148 (see Figure 1-2b inset) in consecutive decompositions.  

The hydroxyl sites of glyceollins are preferred sites of sulfation. We assign sulfation to the 

hydroxyl site of the phenol group (see inset,  Figure 1-5) based upon the observed facile loss of 

SO3 neutral which, in this case, leaves a resonance stabilized phenoxy anion (corresponding to 

deprotonated glyceollins at m/z 337). The loss of SO3 neutral from glyceollins sulfated at the alkyl 

hydroxide would be expected to be less favorable. As glyceollins are known to exhibit competitive 

behavior with estrogens, this assignment is supported by the documented preferential sulfation of 

the 3-phenolic hydroxyl relative to the 16-aliphatic hydroxyl in estriol.41 

Another metabolite appearing in Figure 1-4 (retention time 4.2 min corresponding to m/z 

433) was investigated further. The composition of m/z 433 was established to be C20H17O9S by 

accurate mass measurement (m/z 433.059649, 0.524 ppm error). This peak at m/z 433 is proposed 

to correspond to a (deprotonated) sulfated metabolite of glyceollins that contains one additional 

oxygen relative to m/z 417 discussed above. The LC-ESI-MS/MS low-energy CID product ion 

spectrum of the m/z 433  precursor (Figure 1-6) reveals the B fragment peaks (m/z 148, 149) to be 

the same as those in the product ion spectrum of deprotonated glyceollins (m/z 337, Figure 1-1) 

whereas A fragments are shifted by 16 m/z units (i.e., m/z 175 and 227 are shifted to 191 and 243, 

respectively), plus m/z 337 is shifted to 353. This different behavior of A and B fragments allows 

us to narrow down the potential sites of hydrogen replacement with a hydroxyl group that accounts 
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for the 16 Da shift in the mass of the metabolized molecule. All possible hydroxylation sites are 

marked with asterisks on the structure of m/z 433 shown in Figure 1-6.  

 

 

Figure 1-6: Negative ion low-energy CID product ion mass spectrum of m/z 433 from rats 

dosed with glyceollins. Potential sites of replacement of a hydrogen with a hydroxyl group 

are marked with asterisks. The labeling of the ring system has been adopted from Gruppen 

et al.29   
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1.4.6 Screening of glyceollins’ metabolites by direct infusion  

LC separation prior to ESI-MS or ESI-MS/MS analyses offers the theoretical advantage 

that each analyte species may enter the ESI source of the mass spectrometer free from 

interferences. Even so, the sequential isolation and analysis steps of tandem mass spectrometry 

can enable direct mixture analyses in the absence of chromatographic separation. When very 

complex mixtures are under investigation, however, analyte desorption behavior may be affected 

by competing sample species. It is well documented that in ESI-MS, surface-active species tend 

to be desorbed most efficiently, whereas the less surface-active molecules tend to experience signal 

suppression.42 To compare the performance of our precursor ion scanning approach in the presence 

and absence of chromatographic separation, the same rat plasma mixture as used above was 

employed, except that this time precursor ion scans of m/z 148 were performed directly on the 

complex mixture with no prior LC separation. Direct infusion of the acetonitrile extracts of a rat 

plasma mixture resulted in the detection of m/z 148 precursor ions at m/z 337, 353, 355, 417, 433, 

451, and 469 (Figure 1-7). The peak at m/z 337 once again represents unmetabolized deprotonated 

glyceollins. The peaks at m/z 417 and 433 were previously assigned as the sulfated metabolite of 

glyceollins, and the sulfated metabolite of glyceollins with one additional oxygen, respectively. It 

is fair to say that neither the m/z 417 nor the m/z 433 signal was suppressed during ESI-MS/MS 

direct mixture analysis. This may be rationalized by considering that the sulfated conjugates of 

glyceollins have substantial surfactant character, which can explain the favorable signal response 

relative to other components of the complex mixture. 

Notably, peaks at m/z 353, 355, and 469 were detected in direct infusion mixture analysis 

that were absent in LC-ESI-MS/MS. The precursor peaks at m/z 353 and 355 are most likely 

hydroxylated metabolites of glyceollins, wherein the latter contains an additional reduced double 
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bond. The improved detectability in direct infusion ESI-MS/MS may be rationalized if one 

considers the additional acquisition time afforded by direct infusion that serves to improve signal-

to-noise (S/N) ratios. Moreover, in LC-MS/MS experiments, the (S/N) ratios may not be 

maximized if spectra are averaged across the entire width of the chromatographic peak (due to 

weaker signals away from the center of the peak).43 A literature example reports a 20-fold gain in 

sensitivity observed with direct infusion of LC fractions using multichannel acquisition, as 

compared to LC/MS.44 Therefore, we suspect that the conditions employed for LC-ESI-MS/MS 

resulted in a detection limit just above the threshold for observation of these m/z 353, 355, and 469 

signals.   

 

Figure 1-7: Direct infusion negative ion electrospray -75 V CID precursor ion scan of 

m/z 148 from rat plasma derived from rats. 
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1.5 Conclusion 

A precursor ion scan method based on m/z 148 product ion formation was developed and 

optimized to screen for glyceollins and glyceollin related compounds, including metabolites. LC-

ESI-MS/MS analyses with both precursor ion and product ion scans were carried out on a triple 

quadrupole to identify glyceollins and their metabolites in rat plasma. Precursor ion scanning of 

m/z 148 allowed the characterization of glyceollins’ metabolites at m/z 417, 433, 353, and 355. 

After inspection and interpretation of obtained tandem mass spectra, accurate mass measurements 

of m/z 417 and 433 were performed, thus, confirming the in vivo sulfation, and sulfation plus 

oxygen addition, respectively, of glyceollins in rats. In addition, metabolites at m/z 353 and 355 

were observed and were proposed to represent hydroxylated forms of glyceollins wherein the latter 

has one less double bond. Along with developing a method to screen for glyceollins and its related 

compounds, this study is the first to establish hydroxylation and sulfation metabolic pathways of 

glyceollins in dosed animals. 
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2.1 Abstract 

Glyceollin-related metabolites produced in rats following oral glyceollin administration 

were screened and identified by precursor and product ion scanning using liquid chromatography 

coupled on-line with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). 

Precursor ion scanning in the negative ion (NI) mode was used to identify all glyceollin metabolites 

based on production of a diagnostic radical product ion (m/z 148) upon decomposition. Using this 

approach, precursor peaks of interest were found at m/z 474 and 531. Tandem mass spectra of 

these two peaks allowed us to characterize them as by-products of glutathione conjugation. The 

peak at m/z 474 was identified as the deprotonated cysteinyl conjugate of glyceollins with an 

addition of an oxygen, whereas m/z 531 was identified as the deprotonated cysteinylglyceine 

glyceollin conjugate plus an oxygen. These results were confirmed by positive ion (PI) mode 

analyses. Mercapturic acid conjugates of glyceollins were also identified in NI mode as 

deprotonated molecules at m/z 500. In addition, glucuronidation of glyceollins was observed, 

giving a peak at m/z 513 corresponding to the deprotonated conjugate. Production of glucuronic 

acid conjugates of glyceollins was confirmed in vitro in rat liver microsomes.  Neither glutathione 

conjugation by-products nor glucuronic acid conjugates of glyceollins have been previously 

reported. 
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2.2 Introduction 

Cancer is the second leading cause of death in the United States after heart disease,1 yet 

there is still no cure for this disease. Soybean isoflavones have been shown to exhibit anti-cancer 

and anti-proliferative activity toward cancerous cells.2,3 Much of the research concerning 

isoflavones has been conducted on diadzein and genistein.4-8 Among the more recently studied 

isoflavones are the glyceollins that are also produced by soybeans under stressed conditions (e.g., 

UV light exposure or infection by Aspergillus).9,10 Glyceollins, like other soy isoflavones, are non-

steroid compounds that have diphenolic groups which closely resemble the steroid structure of 

estradiol.11 Several propositions have been offered to explain the mechanism of inhibition of 

cancer by soy isoflavones through antiestogenic activity by interfering cancer cells’ ability to 

respond to estradiol.10,17   

Recent investigations have proposed glyceollins as prevention or therapy candidates for 

breast, ovarian, and prostate cancers.12,17 Glyceollins exhibit anti-estrogenic effects on estrogen 

receptor function and estrogen-dependent tumor growth.13,14 Breast cancer (MCF-7) and ovarian 

cancer (BG-1) cell proliferation, which is induced by estrogen, was found to be inhibited by 

glyceollins.15 Furthermore, studies conducted on post-menopausal monkeys and human prostate 

cancer cell line (LNCaP) also showed a reduction in cancer progression by glyceollins.16,17 The 

potential anticancer benefits of glyceollins have been well documented, but its metabolism is not 

well understood18 other than the evidence for sulfation.19  

Typically, drugs are eliminated or detoxified from the body through phase I and II 

metabolism.20 Phase I results in oxidation, reduction, or hydrolysis of a drug.21,22 Phase II 

conjugation is a common pathway for isoflavone metabolism which results in methylation, 
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sulfation, glucuronidation, and glutathione conjugation.23,24,25 Some of the metabolic pathways that 

are involved in drug detoxification, in particular glutathione conjugation, have been shown to 

promote drug resistance and/or additional adverse health effects during cancer treatment.26  

Therefore, it is extremely important to have a thorough understanding of metabolic pathways. 

Metabolism of genistein has been well studied and it is known to undergo sulfation and 

glucuronidation,27,28,29 but much less is known about glyceollins metabolism. A recent study 

conducted on rats reported absorption of glyceollins across the gastrointestinal tract of rats. 

Maximum plasma concentrations of 160 ng/ml were attained in rats within 4 hr of oral 

administration of a single dose of 90 mg/kg.30 The current in vivo study builds upon our previous 

identifications of sulfated metabolites of glyceollins found in rat plasma19 by investigating 

glyceollin metabolites in rat plasma and feces.  
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2.3 Experimental Method 

2.3.1 Extraction of glyceollin isomers 

Using a procedure developed at the Southern Regional Research Center (ARS, USDA, 

New Orleans, LA), a mixture of glyceollins I, II, and III was obtained.  Briefly, after slicing, 

soybean seeds (1 kg) were inoculated with Aspergillus sojae.  Three days later, the glyceollins 

were extracted from the inoculated seeds with 1 L methanol (Aldrich Chemical Co., St. Louis, 

MO).  The glyceollins were isolated using preparative scale HPLC employing two Waters 

(Milford, MA) 25 x 100 mm, 10 µm particle size µBondapak C18 radial compression column 

segments; the column segments were combined using an extension tube.  HPLC was performed 

on a Waters 600E equipped with a Waters UV-Vis 996 detector scanning from 210-400 nm.  The 

injection volume was 20 mL; the flow rate was 8.0 mL/min  using the following solvent gradient: 

A = acetonitrile (Aldrich Chemical Co.), B = water (Millipore system, Billerica, MA) 5% A for 

10 min, then 5% A to 90% A in 60 min followed by holding at 90% A for 20 min.  The fraction 

containing the glyceollins was concentrated under vacuum and freeze-dried.  Confirmation of 

individual glyceollins was based on HPLC retention time and UV-Vis absorbance spectra 

comparison with those of authentic standards isolated at SRRC. UV-Vis spectrophotometry at 285 

nm was used to estimate the percentage of the three isomers used in all experiments: glyceollin I 

(68%), glyceollin II (21%), and glyceollin III (11%).  

2.3.2 Glyceollin dosing of rats and plasma sample collection 

The procedures used for administration of glyceollins to rats and subsequent sample 

collection have been previously described.31 Briefly, glyceollins dissolved in poloxamer were 

administered (90 mg/kg) via oral gavage (3 mL) to male ZDSD rats (PreClinOmics, Indianapolis, 

IN) that were subjected to a 12:12 hr light-dark cycle.  Rats (approx. 500 g wt.) were euthanized 
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at various time points by decapitation; trunk blood was subsequently collected into EDTA-coated 

tubes supplemented with aprotinin.  Plasma was separated and stored at -80 ºC. Upon thawing, 

125 µL of plasma was transferred into microcentrifuge tubes to which an equivalent volume of 

acetonitrile was added. The mixture was vortexed, then centrifuged at 10,000 rpm for 20 min. The 

supernatant was subjected to mass spectrometric analysis.  

2.3.3 Urine sample treatment 

A urine sample obtained from a 24 hr collection period that commenced following a single 

90 mg/kg oral dose to a rat was acidified with 1% TFA, vortexed, and centrifuged at 10,000 rpm 

for 10 min. The supernatant was diluted with 1:1 0.2% formic acid in 10% acetonitrile and stored 

at -80 oC until ready for LC-MS analyses. 

 

2.3.4 Fecal sample collection 

Feces from rats were collected prior to, and after the dosage of glyceollins (90 mg/kg).  In 

the latter case, samples were obtained following 2-weeks of once-daily dosing.  Both the pre- and 

post-dosed fecal pellets were weighed and a 1:2 (pellet weight: vol) ratio of deionized water was 

added to each group. A smooth paste was created in a glass mortar and pestle. The paste was then 

transferred to a polypropylene tube and diluted with CH3CN 1:2 (paste wt: vol). The tubes were 

centrifuged for 5 min at 1000 rpm. Supernatant was collected and transferred to fresh tubes; then 

approximately 0.1 g of ammonium acetate was added progressively with gentle vortexing. Tubes 

were subsequently centrifuged for 5 min at 1000 rpm. The supernatant (acetonitrile layer) was 

collected and stored at -70 oC until analysis.  

2.3.5 Liver Microsomes treatment with UDPGA cofactor 

Samples were prepared in triplicate for both the control and the experimental group. 134 

µL of KH2PO4 buffer, 20 µL of 20 mg/mL rat liver microsomes, and 4 µL of 5 mg/mL alamethicin 
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was added to 1.5 mL eppendorf tubes, vortexed, and incubated for 15 min. 20 µL of MgCl2 and 2 

µL of 1 mM substrate were then added, vortexed and incubated for 3 min. 20 µL of KH2PO4 buffer 

and 20 µL of 10 mM UDPGA were added to control and experimental groups, respectively. The 

tubes were incubated for 60 min at 37 oC.  200 µL of cold acetonitrile was added to each tube to 

terminate the incubation. Tubes were then vortexed followed by centrifugation for 5 min at 4000 

rpm.  Supernatant was transferred to fresh tubes and stored at -70 oC until analysis.  

 

2.3.6 Liquid Chromatography-Mass Spectrometry 

 LC-ESI-MS and LC-ESI-MS/MS analyses were conducted on an Agilent 1200 

series LC system (Agilent, Santa Clara, CA) coupled to a 3200 QTrap triple quadrupole mass 

spectrometer (Applied Biosystems/MDS SCIEX, Foster, City, CA). Separation was performed on 

an Agilent Eclipse - XDB C18 column (4.6 x 150 mm ID, 5 µm). 10 µL was injected onto the 

column held at 25 oC. The binary mobile phase consisted of mobile phase A (water with 0.1% 

formic acid) and mobile phase B (acetonitrile with 0.1% formic acid). The gradient was 0-104 min 

5% B to 100% B. Flow rate was 0.500 mL/min. The UV absorbance detector was set at 285 nm. 

  For negative ion LC-ESI-MS and LC-ESI-MS/MS analyses, electrospray 

parameters were set at: curtain gas (CUR) 20 psi, ionspray voltage (IS) -4500 V, GAS1 60 psi, 

GAS2 60 psi, source temperature 600 oC, CAD gas pressure 6 psi, entrance potential (EP) -10 V, 

collision cell exit potential (CXP) -3 V. Declustering potential (DP) and collision energy (CE) 

were optimized to be -55 V and -34 eV, respectively. For positive ion experiments, CUR, IS, EP, 

CXP, DP and CE were maintained at 10 psi, 5000 V, 10 V, 5 V, 40 V, and 30 eV, respectively. 

All other parameters were the same as for negative ion mode. The information-dependent 
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acquisition (IDA) method was employed to perform full scan and precursor ion scans sequentially 

(scan rate = 1 sec/200 Da). Tandem spectrometry was then carried out on precursors of interest.  
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2.4 Results and Discussion 

2.4.1 Precursor ion scans of m/z 148 

In our previous work, we proposed a precursor ion scan method to screen for isomeric 

glyceollins and their metabolites based on a diagnostic radical product ion.19,32 The high energy 

CID product ion spectrum of glyceollins yields an exceptionally stable radical at m/z 148, which 

serves as a “signature” common to all three glyceollins isomers.19 Employing this negative ion 

developed methodology based upon scanning for precursors of m/z 148, plasma and feces samples 

from rats dosed with isomeric glyceollins I, II, and III were screened for the glyceollins and their 

metabolites by LC-ESI-MS and LC-ESI-MS/MS. The precursor ion scanning of m/z 148 for rat 

feces samples resulted in the appearance of many more metabolites compared to rat plasma 

samples. Figure 2-1 shows a representative LC chromatogram of a rat feces sample. All three 

unmetabolized isomers of glyceollins (m/z 337) were detected. Peaks labeled 9, 8 and 10 on the 

LC chromatogram correspond to glyceollin I, II, and III, respectively.  

Little is known about glyceollins metabolism, but our findings from rat feces indicate that 

extensive oxidation of glyceollins has occurred. Peaks 5, 1, and 6 represent m/z 148 precursors at 

m/z 353, 371, and 387, respectively. Relative to deprotonated glyceollins (m/z 337), these three 

metabolites are proposed as products of epoxidation and/or OH/H replacment of glycoleollins (m/z  

353); diol addition at a double bond (m/z 371), , and a combination of the two processes above, 

i.e., diol addition at a double bond plus epoxidation and/or OH/H replacment (m/ 387). Two of the 

three above-mentioned peaks observed in rat feces (m/z 371, 387) were also detected in rat urine, 

as was m/z 451 (the latter likely represents glyceollins that are both hydrolyzed and sulfated). The 

above peaks were only observed in rat feces. LC-ESI-MS/MS precursor ion scanning of m/z 148 

from rat feces showed additional peaks eluting at 14.4, 16.8, 19.3, 30.9, and 35.3 min. These 
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chromatographic peaks correspond to glyceollins metabolite precursors at m/z 531, 474, 433, 417, 

along with deprotonated glyceollins at m/z 337, respectively. These latter five precursors of m/z 

148 were also found in rat plasma, whereas m/z 531 and 474 were observed from rat urine (data 

not shown). Sulfation and sulfation plus an oxygen of glyceollins account for the peaks observed 

at m/z 417 (peak 7) and 433 (peak 4), respectively, as discussed previously.19 Two remaining 

precursor peaks of interest appear at m/z 474 and 531. These were considered as phase II 

metabolites of glyceollins and were further investigated by tandem mass spectrometry as discussed 

in the following section.  

 

 

Figure 2-1: LC-ESI-MS/MS precursor ion scans showing total ion current of all precursors of 

m/z 148 from feces of rats dosed orally once-daily for two weeks with 90 mg/kg of the 

glyceollin isomeric mixture. 
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2.4.2 Identification of Glyceollins’ metabolites by LC-ESI-MS and LC-ESI-MS/MS 

A chromatographic peak corresponding to the m/z 531 precursor from feces samples eluted 

at 14.4 min (Figure 2-1) and an identical peak was also observed from rat plasma. The NI mode 

LC-ESI-MS/MS CID product ion mass spectrum of this m/z 531 precursor (Figure 2-2a) from 

feces summed across the entire chromatographic peak showed a fragment at m/z 353, which 

corresponds to a loss of 178 Da. Appearing in Figure 2-2b is the NI mode LC-ESI-MS/MS CID 

product ion mass spectrum of m/z 474 corresponding to a chromatographic peak eluting at 17.0 

min (Figure 2-1). Similar to the result shown in Figure 2-2a, the m/z 474 also yields a fragment at 

m/z 353, indicating this time, a loss of 121 Da. The combined information extracted from Figures 

2.2a and 2.2b point to the deduction that glutathione conjugation has occurred to glyceollins and 

that subsequent metabolic by-products of glutathione breakdown are present in both the rat feces 

and plasma samples. We propose that the loss of 178 Da (Fig. 2.2a) corresponds to departure of 

intact cysteinylglycine from the m/z 531 precursor that corresponds to a cysteinylglyceine 

conjugate of an oxygenated form of glyceollins. Strongly supporting this proposition is the 

appearance of a cysteinyl-glycine fragment ion at m/z 143 (Fig. 2.2a). To complement this 

information, the 121 Da loss from the m/z 474 precursor (Fig. 2.2b) is proposed to correspond to 

intact cysteine loss from the cysteinyl conjugate of oxygenated glyceollins. Further evidence to 

support this assignment is given by the appearance of m/z 387 that corresponds to decomposition 

of the cysteine amino acid (Fig. 2.2b). 
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Figure 2-2: LC-ESI-MS/MS product ion spectrum of: (a) m/z 531 precursor and (b) m/z 

474 precursor in negative ion mode. One site of hydroxylation and one site of peptide 

addition is shown; Scheme 1 shows other possible isomeric structures. 
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To further support these structural assignments, we consider that isoflavones are generally 

biotransformed into metabolites with increased water solubility compared to the original forms in 

order to facilitate excretion from the body. The major pathway through which these isoflavones 

are converted into metabolites is through phase II metabolism. Among the various detoxification 

mechanisms of drugs, the glutathione (GSH) metabolic pathway plays a major role in phase II 

detoxification.34 GSH, consisting of glutamine (glu), cysteine (cys), and glycine (gly) amino amino 

acids.33,34 forms conjugates with drugs and other xenobiotics with the assistance from Glutathione 

S-transferases (GSTs).35 The first step of GSH breakdown, even when conjugated, involves 

hydrolysis of the γ-glutamyl bond by γ-glutamyltranspeptidase to form glutamic acid and 

(conjugated) cysteinylglycine; the cysteinylglycine can be further broken down into glycine and 

(conjugated) cysteine.36,37 The cysteine  conjugates can then be further metabolized via acetylation 

of the N-terminal amine of cysteine to form mercapturic acid conjugates.38  

The glyceollin metabolites detected in rat plasma, urine and feces appear to have undergone 

glutathione conjugation. Although NI mode LC-ESI-MS/MS CID product ion mass spectra of 

potential m/z 660 and 644 precursors (corresponding to oxygenated and non-oxygenated GSH-

glyceollins, respectively) were acquired from rat plasma, urine, and feces samples, no intact 

glutathione conjugates of glyceollins were found. This can be attributed to the fast kinetics of 

enzymatic glutamine cleavage from GSH-glyceollins complex that results in cysteinylglyceine 

conjugates of glyceollins (m/z 531, Figure 2-2a). As mentioned above, cysteinylglyceine 

conjugates are subsequently broken down into cysteine conjugates. The product ion spectrum of 

the m/z 474 precursor (Figure 2-2b) corroborates the presence of cysteinyl conjugates of 

glyceollins. These proposed metabolites are observed in oxygenated forms, i.e., in addition to the 

cysteinyl sulfur linkage, an oxygen atom has been added. We propose that the addition of oxygen 
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(Phase I metabolism) facilitates the subsequent addition of GSH (Phase II metabolism). Enzymatic 

formation of epoxides followed by glutathione conjugation has been well documented.39,40 

Epoxide formation at a double bond leads to a reactive intermediate that is highly susceptible to 

GSH complex formation. There are four possible 1,2-addition products (Scheme 2.1). 

 

 

Scheme 2.1: Glutathione conjugation to two most favorable epoxide forms of glyceollin I. 
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 The CID product ion mass spectra of m/z 531 (Figure 2-2a) and 474 (Figure 2-2b) each 

yield a fragment at m/z 353 corresponding to the loss of cysteinylglycine or cysteine, respectively,  

with abstraction of a neighboring hydrogen and double bond (or epoxide) formation on the 

glyceollins in each case. In addition, Figures 2.2a and 2.2b each show the presence of m/z 149, i.e., 

the B fragment ion formed from decomposition of the glyceollin backbone.19 In our previous study, 

the CID product ion spectrum of the sulfated metabolite of glyceollins with an additional oxygen 

(m/z 433) showed B fragments (m/z 148, and 149) were the same as those found for unmetabolized 

deprotonated glyceollins, whereas A fragments (m/z 191 and 243) were shifted higher by 16 mass 

units. These combined observations allowed the localization of oxygen attachment on 

glyceollins.19 For the GSH breakdown products, the appearance of the m/z 149 fragment suggests 

that the oxygen and cysteinylglyceine dipeptide or cysteine are not located on the B fragments. 

More importantly, the A fragment expected at m/z 2157,19 has been shifted to m/z 231 (Figure 2-

2b), thus indicating that oxygen addition had occurred on the A fragment. Structures of oxygenated 

cysteinylglyceine- and cysteinyl- glyceollin conjugates are proposed in Figure 2-2a and 2.2b, 

respectively. Based upon our evidence for initial epoxidation followed by GSH attachment, 

combined with the CID data presented above, we conclude that there are only four possible 

structures for the oxygenated cysteinylglyceine- and cysteinyl- glyceollin conjugates (Scheme 

2.2). These assignments of oxygenated cysteinylglyceine (m/z 531 in NI mode) and oxygenated 

cysteinyl (m/z 474 in NI mode) glyceollin conjugates were further confirmed by acquiring data in 

positive ion mode. Figure 2-3a and 2-3b show the PI mode LC-ESI-MS/MS CID product ion mass 

spectra of m/z 533 (protonated cysteinylglyceine glyceollins with an additional oxygen) and m/z 

476 (protonated cysteinyl glyceollins with an additional oxygen). The appearance of m/z 355 

corresponds to the loss of 178 Da from m/z 533 (Figure 2-3a) and 121 Da from m/z 476 (Figure 
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2-3b), indicating a loss of intact cysteinylglyceine or cysteine, respectively, that mirror the losses 

observed in the NI mode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.2: Isomeric structures of oxygenated cysteinyl glyceollin I. 
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Cysteine conjugates can be further metabolized and acetylated, resulting in mercapturic 

acid conjugates as mentioned above. However, these anticipated conjugates were not detected in 

the precursor ion scan of m/z 148. Consequently, screening for mercapturic acid conjugates of 

glyceollins was directly performed by product ion scanning. The NI mode LC-ESI-MS/MS CID 

product ion mass spectrum of m/z 516 (corresponding to the previously detected m/z 474 cysteinyl 

glyceollins with additional oxygen peak that had potentially undergone acetylation) was performed 

on rat plasma, urine, and feces samples. Only feces eluted a chromatographic peak corresponding 

to m/z 516 that appeared at 22.9 min. The NI mode LC-ESI-MS/MS CID product ion mass 

spectrum of the m/z 516 precursor showed a fragment at m/z 353 corresponding to the loss of 

mercapturic acid (163 Da) from the oxygenated mercapturic acid conjugates of glyceollins. Other 

fragments similar to those in the CID product ion spectrum of deprotonated glyceollins were 

detected at m/z 148, 149, and 161; however, the signal for m/z 148 was very low.  
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Figure 2-3: LC-ESI-MS/MS product ion spectra of (a) m/z 533 precursor and (b) m/z 

476 precursor in positive ion mode. 
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2.4.3 Glucuronidation of glyceollins 

Because glucuronide conjugates have been reported for isoflavones,41,42,43 the decision was 

made to screen for glucuronide conjugates of glyceollins by performing product ion scans. In 

general, an addition of 176 Da in biological medium is well documented to be characteristic of 

addition of glucuronic acid.28,44 Thus, the LC-ESI-MS/MS CID product ion scan of m/z 513 was 

carried out on rat plasma, urine, and feces samples, but a corresponding chromatographic peak 

appeared at 27.6 min from rat plasma and urine samples only. The averaged product ion mass 

spectrum (Figure 2-4) shows a peak at m/z 337 corresponding to deprotonated glyceollins 

production after loss of glucuronic acid. In addition, the highest abundance fragment appears at 

m/z 175. Even though a low abundance product ion at m/z 175 had been observed during CID of 

deprotonated glyceollins (m/z 337),7,19 the high abundance of m/z 175 in Fig. 5 is better 

rationalized as release of glucuronate anion.  No fragment ions in Figure 2-4 are shifted by 176 

mass units relative to the product ions in the CID spectrum of m/z 337 (deprotonated glyceollins), 

indicating that the glucuronide moiety is the most labile substitutent of the m/z 513 precursor. 

Other CID product ions are assigned as consecutive decompositions of m/z 337, including m/z 319 

(water loss) and m/z 149 production, but m/z 148 is absent. This latter product ion is not always 

observed upon consecutive decompositions as it requires relatively high energy CID conditions.19 

That is, owing to the energy consumed in decomposing m/z 513 to m/z 337, less energy remains 

for m/z 337 to undergo consecutive decomposition, which results in more favorable kinetics for 

m/z 149 production relative to m/z 148. This also rationalizes the absence of m/z 513 in the scan 

for precursors of m/z 148 spectrum. 

Glucuronide conjugates of glyceollins for LC-ESI-MS/MS method development are not 

commercially available. Nonetheless, in vitro glucuronidation is often performed with the aid of 
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uridine diphosphoglucuronosyl-transferase enzymes (UGTs).45  The UGT enzymes are present in 

abundance in rat liver microsomes. Using this approach, rat liver microsomes were treated with 

glyceollins to generate glucuronide conjugates of glyceollins. LC-ESI-MS/MS analyses were then 

carried out. The retention time and the similar fragmentation pattern in product ion spectrum of 

m/z 513 (Figure 2-4b) confirmed our assignment of glucuronidated metabolite of glyceollins from 

rat plasma and urine samples.  
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Figure 2-4: LC-ESI-MS/MS product ion spectrum of m/z 513 precursor corresponding to 

glucuronic acid conjugates of glyceollins acquired from (a) rat urine and (b) rat liver 

microsomes.  
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2.5 Conclusion 

LC-ESI-MS/MS analyses were carried out on a triple quadrupole to identify glyceollins 

and their metabolites from rat plasma, urine, and feces. The precursor ion scan of m/z 148 allowed 

screening for glyceollin-related compounds. Peaks of interest were found at m/z 474 and 531 in rat 

plasma, urine, and feces samples, which were further investigated by product ion scanning. 

Tandem mass spectra of m/z 474 and 531 acquired in negative ion mode provided evidence for the 

glutathione conjugation pathway. The m/z 474 and 531 were identified as cysteine and 

cysteinylglyceine conjugates of glyceollins with an addition of an oxygen, respectively. The 

assignments were further confirmed by examining these conjugates in positive ion mode. We 

proposed that the formation of these Phase II metabolites is facilitated by epoxide formation (Phase 

I metabolism) on glyceollins. Four possible isomeric structures are proposed based upon tandem 

mass spectrometry fragmentation patterns. Oxygenated forms of mercapturic acid conjugates of 

glyceollins (m/z 516) were found to be present in rat feces, but not in rat plasma or urine. On the 

other hand, glucuronide conjugates of glyceollins were detected in rat plasma and urine. The 

identification of glucuronide conjugates of glyceollins was confirmed by in vitro glucuronidation 

of glyceollins by rat liver microsomes. To our knowledge, this is the first study to establish 

glutathione and glucuronide pathways of glyceollin metabolism. Oxygenated and non-oxygentated 

forms of cysteinylglycine, cysteine and mercapturic acid conjugates of glyceollins are reported 

along with glucuronide conjugates of glyceollins from glyceollin-dosed animals. 

The scan for precursors of m/z 148 is thus a powerful method which allowed the 

characterization of glyceollin metabolites which may otherwise be difficult to pin-point, such as 

the newly reported oxygenated GSH by-product conjugates found here. These GSH by-product 

conjugates yielded mostly neutral losses of the peptide portion during tandem mass spectrometry. 
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Thus, these conjugates may have been overlooked if they were screened for by use of conventional 

product ion scans that rely on the appearance of charged peptide fragments. Because the 

appearance of m/z 148 in precursor ion scans requires optimized CID energies, which may vary 

according to the particular metabolite, the only caveat to this method is that all metabolites may 

not be detected using a single experimental condition (as was the case of mercapturic acid and 

glucuronide conjugates in this study).  
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3.1 Abstract 

Mold infestation is a global problem associated with damp environments. Mold produces 

microbial volatile organic compounds (MVOCs) that can vary depending on the implicated fungal 

species and the growth substrate. In this paper, the presence of fungi and their MVOC production 

was monitored from different simulated flooding environments employing freshwater, brackish, 

and saltwater. The MVOCs were analyzed using a modern technology system coupling thermal 

desorption on-line with gas chromatography-mass spectrometry (TDA-GC-MS). 1-Undecanol, 2-

ethylhexanal, and 2-ethylhexanol were found to be present in all simulated flooding environments. 

However, no specific pattern in MVOCs production was observed that was dependent on the 

salinity. Molecular identification of fungi was also performed and 10 species were identified. 

Included in the identified fungi are Cladosporium cladosporioides, Dothideomycetes sp, 

Chaetomium murorum, and Fusarium delphinoides that are commonly associated with damp 

environments. Guided by the above findings, toxic fungi Chaetomium sp. and Cladosporium sp. 

were cultivated on drywall (low nutrient) or potato dextrose agar (PDA, high nutrient) substrates 

and MVOCs produced from these fungi were compared to determine the effects of substrate on 

MVOC production and to identify novel MVOCs that are indicative of growth for each fungus. 3-

Furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal were consistently detected in both 

growth media for each of the mold species. Thus, we propose these latter two MVOCs as novel 

indicators of mold growth for Chaetomium sp. and Cladosporium sp fungi.  
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3.2 Introduction 

Flooding of human dwellings is a global problem and many uncertainties exist concerning 

the assessment of human health risks associated with exposure to consequent mold growth. 

Hurricane Katrina struck New Orleans on August 29th
 2005, and in the aftermath following 

multiple levee breakages, 80% of the city became flooded with water levels as high as 6 m (1). 

Approximately 120,000 homes were flooded and some homes remained under water for several 

weeks (2). Because of the widespread flooding, there was extensive mold growth in the flooded 

areas. A survey conducted by the Centers for Disease Control and Prevention showed that 46% of 

randomly selected houses in the New Orleans area had visible mold growth and 17% had heavy 

mold contamination (3). As determined by indoor and outdoor air sampling, the predominant mold 

species present in the contaminated houses were Aspergillus, Cladosporium, and Penicillium (3,4); 

Stachybotrys was also found in some houses (2). This became an immediate concern because 

adverse public health effects have been associated with species belonging to these genera. 

(2,5,6,7).  The adverse health effects include pulmonary, immunologic, neurologic, and oncologic 

disorders (5). Various illnesses caused by mold include airway infections, compromised immune 

function, bronchitis, asthma, and extreme fatigue (7, 5, 13).   

Fungi affect human health through well-defined mechanisms: generation of harmful 

immune response, direct infection by the microbe, and toxicity/irritation from by-products (27).  

Among the toxic irritants are secondary metabolites that are produced for species protection and 

to promote sporulation (8). Secondary metabolites may also be produced during nutrient 

deprivation, or in the presence of competing coexisting species or environmental stressors (21). 

Secondary metabolites produced by fungi include mycotoxins and volatile organic compounds. 

Referred to as microbial volatile organic compounds (MVOCs), these are small-molecules that are 
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produced as end products of the metabolism of organic material (9, 21).  Elevated amounts of 

indoor MVOCs create a potential health hazard to humans (10, 11). While some studies suggest 

that there is no correlation between fungal MVOCs and human health, other studies link MVOCs 

to an increase in nasal lavage biomarkers, frequent blinking and a decrease in forced vital capacity 

(FVC) (12, 13).  MVOCs are also associated with “sick building syndrome.” (15) The latter refers 

to a ‘higher than normal’ prevalence of symptoms affecting the eyes, head, upper respiratory tract 

and skin associated with a particular building (36,37).  

Visual mold growth is an obvious indication of the presence of mold. However, only 10-

20% of the mold in an affected building is typically visible (16). Often mold remains hidden behind 

shelves, carpets, wallpaper, wardrobes or covered ceilings. Hidden mold can be detected by 

analysis of material collected from surfaces, or by sampling and analysis of MVOCs (16). The 

analysis of MVOCs is typically carried out by first capturing MVOCs on an adsorbent using active 

or passive sampling. The collected analytes can be extracted from the adsorbent by either classical 

solvent extraction or by the newer approach of thermal desorption (29,30). In thermal desorption, 

trapped volatiles and semi-volatiles are released from adsorbents by rapid heating with recapture 

of the desorbed products on a cold trap. Afterwards, the cold trap is rapidly heated in preparation 

for the analysis step. The thermal desorption technique provides the advantage of eliminating the 

solvent dilution step of conventional solvent extraction procedures. By avoiding a solvent 

extraction step, the extraction efficiency of thermal desorption can approach 100% from porous 

polymer or charcoal sorbents (29).  

A well-established (39,40) approach for volatile and semi-volatile analysis is the 

combination of gas chromatography (GC) separation followed by electron ionization mass 

spectrometry (EI-MS) detection. The rapid desorption from the cold trap of a Thermal Desorption 
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Analyzer (TDA) is highly compatible with the requirement to introduce all desorbed species onto 

the GC column in a narrow band. The powerful combination of TDA-GC-EI-MS is a very 

convenient, sensitive and selective approach for trapped volatile and semi-volatile analysis that 

has been gaining increasing attention in recent years (22,23).  

The combination of TDA-GC-EI-MS has been used to analyze environmental air samples 

from various mold growth scenarios. Researchers have proposed that certain MVOCs (mainly 

aldehydes, alcohols, ketones, furans and terpenes) can be used as indicators of mold contamination 

in indoor environments (21).  Chemical markers which have been reliably connected to fungal 

growth include 3-methylfuran, octan-3-one, hexan-2-one, heptan-2-one, 1-octen-3-ol, 3-octanol, 

and 3-octanone among others (14, 17, 18, 19, 35). The MVOCs 1-octen-3-ol and 3-methylfuran 

have been suggested to cause acute irritation to the eyes, throat, and respiratory airways (14,38). 

However, much of the MVOC data that can be found in the literature concerning flooded 

environments was assessed months after the actual flooding event (18, 22, 23, 24, 25, 28). Other 

MVOC analyses have investigated emissions from individually cultivated fungal species that were 

usually chosen based on suspected toxicity of the fungus (18, 22, 23, 24, 25, 28).  

The study described in this paper uses an integrated two-pronged approach to assess 

MVOC production from fungal species appearing in flooded environments. Flooding events 

simulating actual flooding conditions in southern Louisiana (using different water salinities) were 

carried out in glass containers. MVOC analyses of volatiles and semi-volatiles were performed as 

was DNA sequence analysis of visible fungal growth. Toxic fungi identified by DNA sequencing 

were then investigated in isolation. MVOCs of cultivated fungi and simulated flood fungi were 

compared. The aim of the present study is uncover unique MVOCs of fungi that can serve as 

diagnostic MVOCs to establish the type of mold present in damp environments. 
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3.3 Method and Materials 

3.3.1 Simulated flooded environment 

Flooded home simulations were created in one-gallon glass containers. Each container held 

a 6 x 4-inch piece of gypsum board that was “flooded” with one liter of either brackish, fresh, or 

salt water. Another container was flooded with freshwater to which plant food was added to 

investigate the effects of nutrients. Brackish water was obtained from Lake Pontchartrain, LA 

(accessed from New Orleans near Elysian Fields Blvd.), whereas freshwater and saltwater were 

obtained from the Mississippi River (accessed from Kenner, LA near Williams Blvd.) and Saint 

Louis Bay (accessed from Slidell, LA), respectively. The containers were closed with lids and 

were set in a greenhouse where temperatures reached above 90 oF during the summer. Four 

openings were drilled in the lids of the glass containers for air intake and sampling. A glass tube 

filled with glass wool was placed in the air inlet to reduce circulation and to prevent a vacuum 

from being created during the air sampling period. The other 3 openings were used to hold sorbent 

tubes during air sampling; these openings were closed with cork at all other times. 

3.3.2  MVOC sampling of simulated flood chambers  

Microbial volatile organic compounds were collected on days zero, four, nine, and 

fourteen. Volatile sampling was carried out using AirChek 52 pumps (SKC Gulf Coast Inc, 

Houston, TX). Low flows were maintained by a Tri Adjustable Low Flow Holder (Gulf Coast Inc, 

Houston, TX). Three sorbent tubes, 4 ½” x 4 mm ID packed with Carboxen 1000, Carbosieve SIII, 

and Tenax-TA (CDS Analytical Ins, Oxford, PA), were placed on the lids of each container that 

were connected to a pump through the tri-manifold. All samples were collected in triplicate. 

Volatile sampling was performed for 60 min at the flow rate of approximately 8.3 mL/min for a 

total (calibrated) sampling volume of 0.5 L per tube. The three replicates allowed a total of 1.5 L 
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of air to be sampled per container. EPA method TO-17 recommends limiting volumes to 0.5 L per 

tube when water is present or to 2 L when there is only high humidity (30). Each time that volatile 

sampling was performed, greenhouse air and lab air were also collected to serve as controls.  

3.3.3 On-line thermal desorption-gas chromatography-ion trap mass spectrometry  

The sorbent tubes used for volatile sampling of the simulated flooded environments were 

thermally desorbed at 300 oC for 15 min using a Dynatherm 9300 thermal desorption analyzer 

(TDA) (CDS Analytical Inc, Oxford, PA). After recapture on the “trap” of the TDA, this trap was 

heated at 310 oC for 5 min to desorb all MVOCs into the transfer line leading to the GC-MS. GC 

transfer line and interconnect line temperatures were kept at 300 oC. Helium was used as the carrier 

gas at a flow rate of 60 mL/min for thermal desorption. The injection port temperature of the GC 

(Varian 450 GC, Walnut Creek, CA) was kept at 250 oC with injections performed in split mode 

using an injection ratio of 1/20. The GC carrier gas flow rate was 1.0 mL/min. The oven 

temperature was programmed from 40 oC to 250 oC at 8 oC/min with a hold time of 5 min. The 

initial hold time of the oven was 2 min. The MS (Varian 240 MS, Walnut Creek, CA) transfer line 

temperature was 280 oC. Samples were analyzed in EI mode using 70 eV electron energy. A 2 min 

post-injection filament delay was used, during which time no data was acquired on the mass 

spectrometer. To qualify as a detected signal, a signal-to-noise ratio of greater than 3 was required 

in the obtained EI mass spectrum. The NIST library was used to identify eluted compounds. These 

identifications were confirmed by manual interpretation of mass spectra. When the spectrum of 

the library did not match closely with the spectrum of the compound detected, the compound was 

treated as an unknown. This method is based upon EPA TO-15 (32) with slight modifications. 
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3.3.4 Mold collection and identification  

Samples of the individual mold colonies that were imbedded on the drywall were obtained 

by removing a speck with sterile tweezers. The samples were placed in microcentrifuge tubes. 

Fungal DNA was obtained using the commercially available fungal genomic DNA kit 

“MasterPureTM Yeast DNA Purification Kit” (Epicenter Biotechnologies, Madison, WI). Genetic 

identification of fungal species was performed using polymerase chain reaction (PCR) assays 

directed towards a broad range of fungal genera. PCR-amplification with ITS4 and ITS5 primers 

was carried out in a thermocycler (BioRad, Hercules, CA). These primers, as described by White 

et al. (31), amplify the conserved regions of 28S (ITS 4) and 18S (ITS 5) rRNA genes. Sequences 

of primers are as follows: ITS 4, 5’-TCCTCCGCTTATTGATATGC-3’ and ITS 5, 5’-

GGAAGTAAAAGTCGTAACAAGA-3’. Thermal cycling consisted of 95o C for 4 min, followed 

by 30 cycles of 95 oC for 1 min, 52 oC for 1 min, and 72 oC for 1 min, and final extension at 72 oC 

for 7 min.  The sequencing reaction was performed by Davis Sequencing, Inc (Davis, CA) and 

sequence analyses and alignments were carried out using Sequencher Software. The BLAST 

algorithm at the NCBI website was used to identify the fungal sequences.  

3.3.5 Laboratory cultivation  

Two nutrient media were used, either gypsum board (drywall, low nutrient) or potato 

dextrose agar (PDA, high nutrient). Gypsum board was selected because it is the most common 

wall building material in the New Orleans region, whereas PDA was employed because it is the 

most commonly used laboratory medium for cultivation of fungi. Potato dextrose agar plates were 

prepared by autoclaving 9.75 g of PDA in 250 mL of deionized water. Drywall plates were made 

the same way, except that drywall was pulverized and suspended in the agar. The plates were 

cooled and stored at 4 oC until inoculation. Chateomium (M1.903) and Cladosporium (M1.881) 
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were separately inoculated on petri plates on both media. The petri plates were stored at 4 oC for 

at least one week before inoculation, so that any media gaseous emission would not interfere with 

MVOCs sampling. After inoculation, the petri plates were placed in cultivation chambers (one-

gallon glass containers similar to those used for simulated floods) with four openings on screw-

top lids. One opening of each container was fitted with glass wool-packed glass tubes for air 

exchange, whereas the other three were closed when sampling was not being performed.  

Containers were left to incubate for 20 days before sampling for MVOCs. Volatiles sampling for 

these cultivated fungi was carried out in a manner analogous to what was described above for 

simulated flooded environments. TDA-GC-EI-MS conditions employed for volatile analyses were 

also the same as those used for simulated floods.     
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3.4 Results and Discussion  

The first part of our study employs simulated flooding environments to investigate mold 

growth and MVOCs production over time in the presence of coexisting species. Flood conditions 

were simulated by the use of fresh or salt water to investigate the species of mold that proliferate 

on gypsum board building material. Gypsum board, commonly known as drywall, is primarily a 

source of carbon as well as co-factors such as Ca2+, K+, and other nutrients. Nutrients for mold 

growth are usually also present in flood water; moreover, nitrogen fixing bacteria present in the 

environment, can provide a source of fixed nitrogen needed for fungal growth.  In New Orleans, 

flooding of homes by freshwater is common. Such floods are often due to intense rain events that 

overwhelm pumping station capacities. In nearby areas, freshwater flooding caused by intense rain 

and high river levels is also common.  On the other hand, the storm surge associated with hurricane 

causes salt water flooding along coastal communities in Louisiana. For this reason, variable 

salinity levels were employed in our simulated flooding to probe the effects of salt content on the 

variety of mold species that proliferate and the types of MVOCs that are produced in flooded 

environments. 

3.4.1  PART I: MVOC analyses of simulated flood environments 

Statistically significant amounts of MVOCs were detected by Day 4 of sampling. The 

variety and quantities of MVOCs were monitored over time. Table 3.1 lists MVOCs detected over 

three different sampling periods along with their relative peak areas. The changes in the peak areas 

over a two week time period allowed calculation of the temporal variation in concentration of each 

MVOC. No visible mold growth was observed during the two week period; however, MVOC data 

indicates that mold growth activity was occurring. A few of the detected and identified MVOCs 

have been reported in the literature as mold indicators, such as 
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Table 3-1: Peak areas of MVOCs found from freshwater, salt, and brackish water simulated 

floodings.  “nd” indicates not detected. 

 

Type of flooding 

environment  

River (freshwater) 

 

Bay (salt water) Lake (brackish) 

Time of MVCOs 

sampling (days) 

Day 4 Day 9 Day 14 Day 4 Day 9 Day 14 Day 4 Day 9 Day 14 

MVOCs Peak areas given in arbitrary units 

3-Furaldehyde 7.0x10
7 

nd nd       

2,2-diethyl-3-

methyloxazolidine 

5.6x10
6 

nd nd       

I-Undecanol 4.9x10
6 

1.3x10
6 

1.0x10
7 

4.5x10
6
 nd 1.2x10

7
 5.1x10

6 
nd nd 

3-Hexen-2,5-diol nd nd 3.4x10
6
       

4-Methoxy-4-

vinylphenol 

2.5x10
7 

nd nd       

2-Ethylhexanal 1.1x10
7 

7.4x10
5 

2.4x10
6
 1.4x10

7
 8.0x10

5
 1.4x10

7
 nd 2.7x10

7 
nd 

2-Ethylhexanol 5.4x10
5 

8.9x10
6 

1.0x10
7 

3.0x10
7
 8.5x10

5
 4.3x10

7
 9.2x10

7 
5.2x10

7 
3.2x10

7 

Vanillin 2.7x10
7 

nd nd       

4-

Phenylcyclohexene 

   nd nd x    

1-(2-

methylpropyl)-

cyclohexene 

  
 

  5.3x10
6
 2.9x10

6 
1.5x10

6 
1.3x10

6 

3-Heptanone    6.9x10
5 

nd 2.8x10
5 

   

2-Methyl-3-

hydroxy-2,4,4- 

trimethylpentyl 

ester propanoic 

acid 

8.1x10
6 

3.5x10
6 

7.5x10
6 

1.0x10
7
 nd 7.1x10

6
 1.4x10

7 
8.7x10

6 
1.0x10

7 

Thujopsene-13 nd nd 9.9x10
6 

nd nd 7.8x10
6
    

3-Heptanol    nd nd 1.1x10
5 

nd 3.0x10
7 

nd 

3-(4-hydroxy-5-

methoxyphenyl)-2-

propenal 

4.0x10
7 

nd nd       

2-Heptanone 2.2x10
5 

nd nd       
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2-heptanone, 2-ethylhexanol, and 1,1a,4,4a,5,6,7,8-octahydro-2,4a,8,8,tetramethyl-

,(1aS,4aS,8aS)-(-)-cyclopropana[d]naphthalene (thujopsene). (23) While some MVOCs unique to 

each environment were noted, many MVOCs were observed consistently in 2 of the 3 flooding 

conditions or even in all 3 of the flooding conditions. 2-Ethylhexanal, 2-ethylhexanol, 1-

undecanol, 2-Methyl-3-hydroxy-2,4,4-trimethylpentyl ester propanoic acid were common to all 

three flooding conditions. By contrast, thujopsene was detected from freshwater and saltwater 

simulated flooding, whereas 3-heptanol was detected from saltwater and brackish water flooding. 

Thujopsene-13 was not detected from either medium until day 14, while 3-heptanol was detected 

on day 9 from brackish and day 14 from saltwater flooding in high abundance.  Some of the 

freshwater MVOCs were also detected from the saltwater and brackish water, but many more 

MVOCs were detected from freshwater simulated flooding. 4-phenylcyclohexene and 3-heptanone 

were specific to saltwater, whereas 1-(2-methylpropryl)-cyclohexene was found only in brackish 

water. On the other hand, 3-furaldehyde, 2,2-diethyl-3-methyloxazolidine, vanillin, 3-(4-hydroxy-

5-methoxyphenyl)-2-propenal, and 2-heptanone were specific to freshwater simulated flooding.  

From the above mentioned MVOCs, thujopsene and 2-ethyl-1-hexanol are MVOCs 

produced by Stachybotrys chartarum (23). In particular, 2-ethyl-1-hexanol was reported to be 

readily produced by Stachybotrys chartarum on drywall board cultures (23). The detection of these 

two compounds in the freshwater flooded environment suggests the presence of Stachybotrys 

chartarum under these flooding conditions. 2-Heptanone, which is often reported as a mold growth 

marker, was only detected from freshwater MVOC sampling. It is reported to produced by 

Aspergillus sp, Penicillium sp., Eurotium sp, Chaetomium globosum, and Cladosporium 

cladosporoides (9,14,25,26). Thus, it is likely that one or more of these species is present in the 
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freshwater simulated flooding environment. Our results also suggest that the freshwater 

environment allows proliferation of many coexisting species as compared to higher salinity 

conditions. Because mold growth was not visible to the naked eye by day 14 of simulated flooding, 

we consider MVOC analysis to be a more effective approach for monitoring the start of mold 

growth activity.    

3.4.2 PART II: Molecular identification and MVOC results and discussion 

Research has shown that the use of PCR-amplification and DNA sequence analysis of 

fungal internal transcribed spacer (ITS) regions provides a highly complete and accurate 

assessment of fungi present in natural specimens  (33,34). For this reason, the PCR-amplification 

DNA sequencing approach was used in our study. Mold appearing in colonies was scraped from 

above the "water line" in each of the three simulated flood environments. Samples for molecular 

identification were taken on days 40 and 70. The sequencing results suggested mixed populations 

of fungi were present. Mixed populations were observed from every simulated flood environment. 

The sequencing data of the first fungal colony sampling (day 40) indicate that the freshwater 

flooded environment had Cladosporium cladosporioides and Toxicocladosporium irritans 

colonies. Drywall flooded with the brackish water showed Helotiales sp. growth along with an 

unknown fungus which did not match any sequence from BLAST.  While Cladosporium genus 

was detected from freshwater flooding, other expected molds such as Aspergillus, Penicillium, and 

Stachybotrys were not observed. It was surprising to see that sampling results showed no 

appearance of the most predominantly reported mold species associated with damp buildings, i.e.,  

Aspergillus and Penicillium (2-7). Linking these identifications to the findings in Part 1, the 

detection of 2-heptanone can be attributed to the presence of Cladosporium cladosporoides in 

freshwater flooding.  
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 At the second fungal sampling (day 70), Dothideomycetes sp was predominantly found 

from both brackish and freshwater flooding. Regardless of salinity, the fact that one predominant 

species (Dothideomycetes sp) was observed after 2 months suggests that it utilizes the available 

resources effectively, hence, it proliferates even when nutrients are scarce.  Dothideomycetes sp 

are known to effectively degrade biomass and contribute to the carbon cycle (45).  They are also 

tolerant of extreme environments such as heat, humidity, and cold (46). Because the experiment 

lasted for over two months, a diminishing amount of nutrients remained present in the containers 

over time. Since Dothideomycetes sp is capable of fixing its own carbon source and can survive 

harsh conditions, this may account for its advantage in proliferating over other species.  

A simulated flood of freshwater, to which plant food (with additional nutrients) was added, 

showed considerably more fungal species on the second fungal sampling (day 70) compared to 

plain freshwater which showed considerably less visible mold. When searching the BLAST 

database, our obtained sequencing data of the first fungal sampling (day 40) identified the presence 

of Cladosporium cladosporioides, Cochliobolus lunatus and Dothideales sp., whereas the second 

fungal sampling results (day 70) identified Scedosporium dehoogii, Chaetomium murorum, 

Fusarium delphinoides, Cochliobolus lunatus, and an unknown. . Importantly, Cladosporium 

cladosporioides, Chaetomium murorum and Fusarium delphinoides are toxigenic molds that have 

been associated with human health risk. Chaetomium sp. can cause onychomycosis, peritonitis, 

empyema, pneumonia, and invasive/cerebral disease in immuno-compromised persons (41). 

Fusarium sp. has been linked to allergies, wounds and infections of the eyes and fingernails, 

invasive mycoses, inhalation and deep skin incisions to people with weak immune systems (42). 

Cladosporium sp. are known to cause ergotism and chronic hypersensitivity pneumonitis (HP) 
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(43). The sources of these fungal species found in BLAST were soil, water, or moldy paint. These 

results suggest that in the presence of more available nutrients, many fungal species can coexist. 

MVOC sampling was performed prior to each colony sampling for fungal sequencing. The 

MVOCs detected from the freshwater simulated flooding with added nutrients (day 40) include 2-

hexen-1-ol, cyclohexanone, 2,2,6-trimethylcyclohexanone, octanal, and 2,5-

diphenylbenzoquinone. Wilkins et al. (22) found octanal in the dust and material obtained from a 

moldy building, but it was not detected in their air sampling. In the current study, octanal was 

detected from the air of the freshwater simulated flood. Cyclohexanone has been reported to be 

produced by Cladosporium cladosporioides, Aspergillus versicolor, A. niger, A. fumigatus, and 

Penicillium expansum (26). As mentioned above, the genetic sequencing data shows the presence 

of Cladosporium cladosporioides. Thus, cyclohexanone could have been produced by 

Cladosporium cladosporioides. While day 40 showed the presence of several MVOCs from 

freshwater simulated flooding with added nutrients (plant food), no significant amounts of MVOCs 

were detected on day 70. Furthermore, significant amounts of MVOCs were not detected from 

other simulated environments for either sampling period. The number of MVOCs detected at the 

later stage (days 40 and 70) of flooding was much lower than that detected at the earlier stage (days 

4-14). This may be a reflection of the diminishing availability of nutrients as time progressed, 

causing a decrease in mold growth and associated MVOC production.  

Another volatile sampling was performed 4 months (day 120) after the simulated flooding. 

Although mold growth was visible, no MVOCs were detected in any of the simulated flood 

environments. These results were in accordance with the first set of simulated flooding results (day 

70).  Many cultivation studies propose that the largest amounts of MVOCs are produced at the 

beginning of cultivation (9). Mold undergoes exponential growth for 3 days after inoculation and 
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then switches its metabolism to idiophase (stationary phase) to produce spores and MVOCs. Much 

of the cultivation medium is consumed in 15 days (9), so MVOC production decreases. This may 

be the case in the simulated flood where over time, fungi proliferate and eventually a nutrient 

deficiency occurs. At that point, mold can no longer undergo idiophase metabolism to produce 

MVOCs.  

3.4.3 PART III: MVOCs detected from cultivation of fungi 

Cladosporium sp. and Chaetomium sp. fungi were chosen for cultivation since they were 

found in simulated floods and they are often associated with damp environments. Several volatiles 

were detected from the Chaetomium sp. and Cladosporium sp. growth cultivated in nutrient-rich 

medium (PDA) and low nutrient medium (drywall) including several alcohols, aldehydes, ketones, 

and furans that have been suggested to be mold growth indicators. Table 3.2 shows the complete 

list of volatiles found from the two species on both growth media.  

MVOCs observed from Chaetomium sp cultivated on the nutrient-rich medium include 3-

octanol, 3-octanone, 3-furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal. The last two 

MVOCs mentioned were consistently observed from both Chaetomium sp. and Cladosporium sp. 

regardless of the substrate. Chaetomium genus, and in particular Chaetomium globosum produce 

3-octanone and 3-octanol that are commonly associated with mold growth (9). However, the latter 

two common mold growth indicators were not detected from drywall medium. Tiebe et al. (24) 

and Matysik et al. (26) each detected production of 3-octanone from cultivation of fungi on 

nutrient-rich media DG 18 agar and malt extract agar (MEA), respectively, along with many other 

MVOCs. Gao and Martin (23) compared the production of 3-octanone from gypsum board with 

MEA and reported its occurrence from MEA medium only. The absence of 3-octanone from low 

nutrient media thus seems general, and it indicates that this volatile is more likely to appear when 
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mold proliferates in a nutrient-rich environment. For this reason, 3-octanone may not be a good 

‘global’ mold growth indicator in all environments.   

 In comparison with Chaetomium sp., Cladosporium sp. produced a greater number 

of volatile organic compounds on the nutrient rich medium. The MVOCs produced by 

Cladosporium included several aldehydes, ketones, furan, nitrogen containing compounds and a 

few unknowns (see Table 3.2). MVOC 3,3,5-trimethylcyclohexanone was of particular interest 

since its isomer 2,2,4-trimethylcyclohexanone was detected from the freshwater simulated 

flooding with added nutrients. As mentioned above, the genetic sequencing data showed that one 

of the species found from freshwater simulated flooding with added nutrients was Cladosporium 

cladosporioides. The detection of one of two trimethylcyclohexanone isomers from either the 

simulated flooding with added nutrients or cultivation of Cladosporium sp. on PDA medium 

suggests that fungi produce certain unique volatiles when provided with nutrient-rich 

environments. Because neither trimethylcyclohexanone isomer was detected from the drywall 

medium, they cannot be used as biomarkers for Cladosporium sp. This underscores the fact that 

production of MVOCs is strongly dependent on the available nutrients. 

MVOCs found from Chaetomium sp. growth on low nutrient medium include styrene, 3-

furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal along with 3-pyridinol and 2,2-

diethyl-3-methloxazolidine; the latter two contain nitrogen. 3-furaldehyde and 3-(4-hydroxy-3-

methoxyphenyl)-2-propenal were also detected from Cladosporium sp. growth on low nutrient 

medium. Amine containing volatiles were not detected, but every MVOC that was detected from 

Cladosporium sp. growth on low nutrient medium was also observed from nutrient-rich medium. 

The absence of many volatiles from Chaetomium sp. growth on low nutrient medium as compared 

to nutrient-rich medium (see Table 3.2) indicates again that the production of MVOCs is highly 
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dependent on the growth substrate. Other studies have also mentioned that specific MVOC 

production changes with the medium (20,23,25). Styrene has been reported as a MVOC produced 

by Penicillium and Trichoderma (20, 25). The results of our study show that styrene is also 

produced by Chaetomium even in a nutrient-deprived environment.   

 

Table 3-2: List of MVOCs produced by Chaetomium sp. and Cladosporium sp. on PDA and 

drywall media. “nd” indicates not detected 

 

 

  

Microbial Volatile Organic Compounds Chaetomium Cladosporium 

 PDA Drywall PDA Drywall 

                                                                           Peak areas given in arbitrary units 

3-furaldehyde 7.18x10
6 

2.24x10
6
 1.12x10

7
 4.38x10

6
 

3-(4-hydroxy-3-methoxyphenyl)-2-propenal 1.02x10
7
 2.97x10

6
 2.81x10

7
 6.37x10

6
 

3-Octanone 1.54x10
6
 nd   

3-Octanol 1.31x10
6
    

2,2-diethyl-3-methloxazolidine nd 7.90x10
6
 5.26x10

6
  

3,3,5-Trimethylcyclohexanone   1.02x10
6
  

3-Pyridinol nd 2.24x10
6
 1.94x10

6
  

Styrene nd 7.62x10
6
   

Vanillin   8.41x10
6
  

2-Furanmethanol   9.85x10
5
  

Unknown M+. 162   1.19x10
7
 4.55x10

6
 

Unknown M+. 114   1.17x10
7
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No MVOC could be called a biomarker of either Cladosporium sp. or Chaetomium sp. 

because no single volatile was detected from the same fungus grown on both media. Nonetheless, 

3-furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal were consistently observed from 

either growth medium for both of the mold species. Figures 3-1 and 3-2i show the electron 

ionization mass spectra of these MVOCs along with the NIST library match. The spectra were also 

manually interpreted to confirm the MVOCS. Figure 3-3 and 3-4 show the decomposition 

mechanism of 3-furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal, respectively. Many 

substituted furans and substituted propenals have been detected from damp buildings, but to our 

knowledge these two compounds have not been reported as mold MVOCs in the literature. We 

thereby propose 3-furaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal as novel 

indicators of mold growth of Chaetomium sp and Cladosporium sp fungi. 

 

Figure 3-1: EI Mass spectra of 3-furaldehyde. Top spectrum is obtained from MVOC sampling 

of cultivated fungal species. Bottom spectrum is the NIST library match of 3-furaldehyde. 
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Figure 3-2: EI mass spectra of 3-(4-hydroxy-3-methoxyphenyl-2-propenal. Top spectrum 

is obtained from MVOC sampling of cultivated fungal species. Bottom spectrum is the 

NIST library match of 3-(4-hydroxy-3-methoxyphenyl-2-propenal. 

 

 

Figure 3-3: Decomposition mechanism of 3-furaldehyde. 
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Figure 3-4: Decomposition mechanism of 3-(4-hydroxy-3-methoxyphenyl)-2-

propenal. 
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3.5 Conclusion 

TDA-GC-MS analyses were carried out to identify MVOCs from fungi that coexist in 

simulated flooding environments, as well as from fungi cultivated in isolation that were identified 

in these simulated flooding environments. High abundances of MVOCs were detected in the early 

stages (between days 4-14) of simulated flooding, even when no fungal growth was visible to the 

naked eye. This strongly suggests that MVOCs are produced when fungi are actively proliferating. 

By Day 40, and continuing afterwards, no significant amounts of MVOCs were detected from 

saltwater, brackish, and freshwater flooding environments even though mold was visible in all 

simulated environments. The salinity of the flood water did not show a clear correlation with 

production of a specific type of MVOC. 

Low abundances of MVOCs were found on Day 40 only from the freshwater flooding 

environment to which plant food was added. Furthermore, in this latter nutrient-rich environment 

only, the continuous presence of several fungal colonies was observed even at Day 70, suggesting 

that when nutrients are available, a greater number of fungal species continue to grow. Notably, 

no MVOCs were detected from any environment on Day 70 or Day 120. These results clearly 

demonstrate that the decrease in MVOC production over time is highly dependent on fungal 

growth stage. Another temporal aspect of mold growth that was deduced from molecular 

identification data, was the change in the number of species present. After 40 days of flooding, 

multiple fungal species were identified, but at Day 70, one species was found to be dominant 

(Dothideomycetes sp.) in freshwater and brackish water simulated flooding. 

Cultivation data from Chaetomium sp. and Cladosporium sp indicate the production of a 

higher number of MVOCs on PDA compared to dry wall. Not all MVOCs that are produced under 

the former nutrient-rich environment are produced on the latter low-nutrient environment. The 
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MVOCs of particular interest to us that were detected from simulated flooding include 2-

heptanone, 3-furaldehyde, 2,2-diethyl-3-methyloxazolidine, and 3-(4-hydroxy-5-

methoxyphenyl)-2-propenal. 2-Heptanone is notable because it has been previously proposed as a 

mold growth indicator and it is produced by several toxic fungi including Cladosporium 

cladosporioides. The latter fungus was shown by genetic sequencing data to be present in the 

freshwater flooding with added nutrients environment along with other mold species. MVOC 

sampling from this environment showed the presence of 2-heptanone that was likely produced by 

Cladosporium cladosporioides.  

Other MVOCs 3-furaldehyde, 2,2-diethyl-3-methyloxazolidine, and 3-(4-hydroxy-5-

methoxyphenyl)-2-propenal were observed from the freshwater simulated environment (where 

Cladosporium sp was detected) and from cultivation of Cladosporium sp. and Chaetomium sp. 3-

Furaldehyde and 3-(4-hydroxy-5-methoxyphenyl)-2-propenal were consistently observed from the 

freshwater flooding environment, as well as PDA and drywall cultivation of both Cladosporium 

sp. and Chaetomium sp. By contrast, 2,2-diethyl-3-methyloxazolidine was detected only from 

freshwater flooding, Cladosporium sp cultivated on PDA and Chaetomium sp. cultivated on 

drywall. Because 2,2-diethyl-3-methyloxazolidine was not detected from all media, it cannot be 

used as a reliable biomarker for these fungi. On the other hand, 3-furaldehyde and 3-(4-hydroxy-

5-methoxyphenyl)-2-propenal that were consistently observed from Cladosporium sp. and 

Chaetomium sp. when grown in isolation, can serve as indicators of Chaetomium or Cladosporium 

growth. 

The use of TDA-GC-MS for MVOC detection is a convenient method to identify the 

presence of fungi in moldy buildings especially because this technique has the advantage of 

detecting hidden fungal growth. MVOC analyses and genetic identification using PCR 
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amplification are two complementary methods. PCR amplification and sequencing is time 

consuming, but it is a reliable method for identifying the type of mold present when mold is visible 

to the naked eye. On the other hand, MVOC analysis leads to a more rapid indication of fungal 

species at an earlier stage of development (i.e., even before mold growth becomes visible) 

compared to cultivation or sequence analysis. 
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APPENDIX A  

A.1 Mercapturic Acid Conjugates of Glyceollins 

A.1.1 Oxygenated mercapturic acid conjugates of glyceollins 

 

 

 

 

Figure A-1: LC-ESI-MS/MS product ion spectrum of m/z 516 precursor in negative ion 

mode 
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A.1.2 Mercapturic Acid conjugates of glyceollins 

 

 

Figure A-2:  LC-ESI-MS/MS product ion spectrum of m/z 500 precursor in negative ion mode  
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APPENDIX B  
 

B.1 MVOC Analysis Setup  

 

B.1.1 Experimental Setup 

 

 

 

Figure B-1: Schematics of Air Sampling Setup  
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B.1.2 Photos of drywall  fungal growth   

 

 

 

Figure B-2: Pictures of drywall obtained at the end of the experiment from (1) freshwater 

(2) brackish water and (3) freshwater with added plant food simulated flooding 

enviornments. 
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B.1.3 Photos of lab cultivated fungi 

B.1.3.1 Cladosporium sp. 

 

 

Figure B-3: Cladosporium sp. growth on PDA (left) and drywall (right) media after 

20 days of cultivation. 

 

B.1.3.2 Chaetomium sp. 

. 

  

Figure B-4: Chaetomium sp.  growth on PDA (left) and drywall (right) media after 

20 days of cultivation 

more volatile present in PDA media. The list of the PDA growth volatiles is mentioned in table _  

 

                                                                                                          

 

Volatile Eluting Time S/N ratio 

3-Furaldehyde 5.807 68 

Ehtylbenzene 6.392 3 

6-oxa-bicyclo(3.1.0)hexan-3-one 7.592 7 

2,2-diethyl-3-methyloxazolidine 9.206 10 

4,5-dimethyl-1,3-dioxl-2-one 9.898 24 

3,3,5-trimethylcyclohexanone 10.089 5 

3-Pyridinol 11.067 5 

Methyl-3,6-anhydro-beta-D-
glucopyranoside 

12.626 19 

Unknown 17.920 5 

3-(4-hydroxy-3-methoxyphenyl)-2-
propenal 

21.609 22 
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B.2 Gel Electrophoresis  

 

 

 

 

Figure B-5: Stained gel photograph taken after the whole cell PCR of fungal samples 

that were obtained on Day 70 of the simulated flooding.   
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B.3 El-Mass Spectra and Decomposition Mechanisms 

B.3.1 Mass Spectrum and Decomposition mechanism of 3,3,5-Trimethycyclohenanone  
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B.3.2 Mass Spectrum and Decomposition mechanism of 2,26-Trimethycyclohenanone  
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B.3.3 Decompostion Mechanism of 3-octanol 
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APPENDIX C  
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