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Abstract

In this dissertation, the problem of partitioning a set of treatments with respect to a control treat-

ment is considered. Since early 1950’s a number of researchers have worked on this problem

and have proposed competing alternative solutions to this statistical problem. In Tong (1979), the

author proposed a formulation to solve this problem and since then hundreds of researchers and

practitioners have used that formulation for the partition problem. However, Tong’s formulation

is somewhat rigid and unpractical for the practitioners if the distance between the “good” and the

“bad” treatments is large. Under such a scenario, the indifference zone gets quite large and the

undesirable feature of the Tong’s formulation to partition the populations in the indifference zone,

without any penalty, can potentially lead Tong’s formulation to produce misleading or unpractical

partitions. In this dissertation, a generalization of the Tong’s formulation is proposed, under which,

the treatments in the indifference zone are not partitioned as “good” or “bad”, but are partitioned

as a identifiable set. For this generalized partition, a fully sequential and a two-stage procedure is

proposed and its theoretical properties are derived. The proposed procedures are also studied via

Monte Carlo Simulation studies. The thesis concludes with some non-parametric partition proce-

dures and the study of robustness of the various available procedures in the statistical literature.

Keywords: Control population, Correct partition, Nonparametric procedure, Probability of correct

decision, Sequential Procedure, Two-stage procedure, Monte carlo simulations.
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Chapter 1

Introduction

1.1 Backgraound

In everyday life, one decides on the best medicine, best fertilizer, best strategy or the best route

for a destination, among the several available options. In the statistical literature, such selections

have been routinely carried out under the area of multiple comparisons. A commonly used sta-

tistical tool called Analysis of Variance (ANOVA) has been used extensively by practitioners to

test whether or not the given treatments under consideration are all same or not. Generally, the

ANOVA test is followed by some multiple comparisons tests, such as, LSD, Tukey, Scheffe to

name a few, to decide which treatments are different from one another. For example in clinical

trials, the concern is comparing efficacy of the several essentially different varieties of drugs. If

the hypothesis is formulated to test that these different varieties of drugs have the same efficacy,

it will not be a realistic hypotheses. This is so because the efficacy will be naturally different

for the essentially different varieties of drugs, and, with a sufficiently large sample a researcher

can establish this fact at any preassigned level of significance. Thus, the experimenter’s problem

should not be only testing the efficacy of these drugs are equal or not, but rather to select the “best”

one. The definition of the “best” would vary from situation to situation and it is generally for the

experts in the area to dictate what best means in a given situation. For example, in some clinical

trials. Sometimes, practitioners have even incorrectly used the ANOVA tests to even select the best

treatment based on the ranking of the means without realizing that the ANOVA test is designed to
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test if the given treatments are all same or not. The ANOVA test is not designed to select the best

treatment and one cannot associate a probability statement with the selected treatment as being

the best via the ANOVA approach. In a pioneer work, Bechhofer (1954) introduced the concept

of indifference-zone formulation and formulated some methodologies for the problem of selecting

the best treatment from a set of several treatments. The formulation by Bechhofer had the desired

property of selecting the best treatment with the pre-specified probability of correct selection. The

formulation proposed by Bechhofer (1954) is referred to as the indifference-zone formulation in

the statistical literature. Around the same time, Gupta (1956) formulated a strategy which controls

the probability of correct selection in the whole parameter space, as opposed to the preference-

zone which was the case under Bechhofer’s approach. The formulation of Gupta (1956), selects

a subset of random size which includes the best treatment with some pre-specified probability.

The formulation proposed by Gupta (1956) is referred to as the subset-selection formulation in the

statistical literature.

However, in many cases selecting the best treatment may not be good enough for an experi-

menter to choose it! The experimenter may want the best to be some “specified” amount better than

what is already in use (known as Control or Standard). This requirement forced the researchers to

seek out alternative formulations and thus the problem of comparisons with a control originated.

The problem of comparisons with a control has been investigated by many researchers under dif-

ferent types of formulations, and under different criteria to be satisfied by an acceptable procedure.

Among the early investigations, Paulson (1952), Dunnett (1955) and Roessler (1946) provided

some of the earlier research related to comparisons with respect to a control population.

For the problem of partition with respect to a control, we address the theoretical and practical

aspects of some commonly used sampling methodologies such as the purely sequential procedure

and the two-stage procedure, and other multistage sampling methodologies. This thesis was written

to consolidate research in the area and to improve upon the methodologies currently available in

the statistical literature.
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1.2 Current Methodology to Partition Problem

Assume that there are (k + 1) independent populations, π0, π1, · · · , πk, with unknown location

parameters µi, i = 0, 1, · · · , k, but common scale parameter σ2. Denote π0 as the standard or

control population. Given arbitrary but fixed constants δ1 and δ2, and δ1 < δ2, define three subsets

along the lines of the Bechhofer’s (1954) indifference zone formulation, as

ΩB = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},

ΩI = {πi : µ0 + δ1 < µi < µ0 + δ2, i = 1, · · · , k},

ΩG = {πi : µi ≥ µ0 + δ2, i = 1, · · · , k}.

(1.2.1)

We refer to ΩG as the set of “good populations” and ΩB as the set of “bad populations”. It is

important to note that the choice of the constants δ1 and δ2 is generally provided by the experts in

the area. We are interested in the correct partition of the populations belonging to two sets. The

set ΩI is considered as the indifference zone set and a correct decision puts no restrictions on the

partition of the populations belonging to this set. Next, with high accuracy, we want to partition

the set Ω into two disjoint subsets SB and SG, such that, ΩB ⊆ SB and ΩG ⊆ SG. Such a partition

is known in the literature as a correct decision (CD). In other words, given a pre assigned number

P ∗, 2−k < P ∗ < 1, we seek statistical methodologies ℘ to determine SB and SG, such that

P{CD|µ, σ2, ℘} ≥ P ∗ ∀ µ ∈ Rk+1, σ ∈ R+. (1.2.2)

here µ = [µ0, µ1, · · · , µk]′.

For the known σ2 case, Tong (1969) gave a single-stage procedure for this problem. Tong

(1969) considered the following decision rule to partition the set of treatments Ω, based on some

appropriately N observations from each of the k treatments and the control population:
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SB = {πi : X̄iN − X̄0N ≤ d, i = 1, · · · , k},

SG = {πi : X̄iN − X̄0N ≥ d, i = 1, · · · , k},
(1.2.3)

where X̄iN is the sample mean from πi, i = 0, 1, · · · , k. Let us write

d = (δ1 + δ2)/2, a = (−δ1 + δ2)/2, λ = σ/a, and,

m =

 k/2 if k is even;

(k + 1)/2 if k is odd.

(1.2.4)

Next, using the above partition rule (1.2.3), Tong (1969) showed that the probability of correct

decision for the normally distributed populations can be expressed as

Inf
µ∈Rk+1

P [CD] =

∫ ( 1
2
N)

1
2

/
λ

−∞
· · ·
∫ ( 1

2
N)

1
2

/
λ

−∞

|Σ|
1
2

(2π)
k
2

exp

(
−y
′Σ−1y

2

)
dy1 · · · dyk, (1.2.5)

where y′ = (y1, · · · , yk) has a multivariate normal distribution with mean 0, the covariance matrix

Σ is given by

Σ =



1 1
2
−1

2
· · · −1

2

. . . ... . . . ...

1
2

1 −1
2
· · · −1

2

−1
2
· · · −1

2
1 1

2

... . . . ... . . .

−1
2
· · · −1

2
1
2

1


,

and the infimum is attained if µ1 = µ2 = · · · = µm = µ0 + δ1 and µm+1 = µm+2 = · · · = µk =

µ0 + δ2. In the statistical literature, this parameter configuration is known as the least favorable
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configuration (LFC). Next, suppose b is a constant satisfying

P ∗ =

∫ b

−∞
· · ·
∫ b

−∞

|Σ|
1
2

(2π)
k
2

exp

(
−y
′Σ−1y

2

)
dy1 · · · dyk. (1.2.6)

Then, if we take a sample of size N, where N > 2λ2b2, and partition the k treatments according to

the partition rule (1.2.3), we have

P [CD] > P ∗, ∀µ ∈ Rk+1, σ ∈ R+. (1.2.7)

The values of b have been tabulated in the Table 1 of Tong (1969) and also in Chapter 10

of Gibbons et al. (1977). The single-stage procedure is designed for the known σ2 case. For

the unknown σ2 case, Tong (1969) also constructed a two-stage and a purely sequential proce-

dure. Recently, for the unknown σ2 case, Datta and Mukhopadhyay (1998) have constructed a

fine-tuned purely sequential procedure and some other multistage methodologies, emphasizing the

second-order asymptotics. In order to minimize the sampling from too inferior or too superior

populations, which is an in-built feature of the vector-at-a-time sampling design, Solanky (2001)

has constructed an elimination type fully-sequential procedure which reduces the sampling cost

considerably. However, the sequential procedures are known to be operationally inconvenient and

rather cumbersome to use, as decisions and computations need to be carried out after each stage

of the sampling process. With that as the motivation, Solanky (2006) constructed a two-stage pro-

cedure with elimination which eliminates too inferior or too superior populations after the stage

one of the sampling process and in the stage two only continues sampling from the competing

treatments. For this problem, Solanky and Wu (2004) considered an unbalanced sampling design

which exploits collecting a larger sample size from the control population in order to reduce the

sample size from the competing treatments.
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Chapter 2

A Generalization of the Partition Problem

2.1 Introduction of the New Methodology

The partition methodology of Tong (1969), as described in (1.2.3) is designed to partition the

given k populations into two sets: “Good populations” and “Bad populations” utilizing the Bech-

hofer(1954) indifference zone formulation. This methodology Means that the populations in the

indifference zone can be partitioned as “Good population” or as a “Bad population” without any

penalty and without changing the probability of correct decision. This feature of the Tong (1969)

methodology is considered undesirable and intuitively it can make the methodology unattractive to

the practitioners. Let’s explain this via an illustration. Suppose in some clinical trials dealing with

curability of a disease it is reasonable to assume at least 60% curability is “Good” effectiveness

and less than 10% curability is “Bad” effectiveness. One will note that in this fictitious illustra-

tion, following the Tong‘s (1969) formulation (1.2.1), any drug with effectiveness between 10%

to 60% would belong to the indifference zone. And, the decision rule of Tong (1969) is designed

to partition all the k populations as either “Good” or “Bad” as defined in (1.2.3). Now, consider

a drug which has 55% curability, it is possible that following Tong’s (1969) rule this drug may

get partitioned as a “Bad population” and on the other hand a drug which has say 12% curability

may get partitioned as a “Good population”. And, such a partition would not alter the probability

of correct decision. Intuitively, this ambiguity is due to the fact that Tong’s (1969) procedure is

designed to partition all the k populations, including the ones in the indifference zone, as either a

6
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r1 r2 
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µ0 +
δ1 +δ2
2
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µ0 µ0 +δ2µ0 +δ1

Figure 2.1: Depiction of the Partition Problem Based on Tong’s Method

“Good populations” or as a “Bad populations”. In this thesis, the partition problem is generalized

so that the experimenter has essentially the choice of not partitioning the populations in the indif-

ference zone as either “Good populations” or as “Bad populations”, but rather such populations

can be partitioned as a separate identifiable group. In addition, under the proposed generalization,

there would be some penalty associated with incorrect partition of the populations belonging to

the indifference zone. In this chapter, first we introduce such a generalization of the Tong’s (1969)

methodology and then we will design a fully-sequential sampling methodology to carry out the

partitioning of the k populations. Following this, the first and second-order theoretical properties

are derived and verified using Monte Carlo Simulation studies. We will also provide the values of

the design constants which are needed to implement the fully-sequential sampling methodology.

In the Figure (2.1), we have visualized the partition rule constructed in Tong (1969). Next, in

the Figure (2.2), we have depicted the conceptual visualization of the proposed generalization of

the Tong’s (1969) partitioning methodology using the location parameter of the normal distribution

to define “Good populations”, “Bad populations”, and the “Medium or Indifferent populations”.

As before, suppose there are (k+1) independent normally distributed populations, π0, π1, · · · , πk,

with unknown location parameters µi, i = 0, 1, · · · , k, and common scale parameter σ2. Denote

π0 as the standard or the control population. Given arbitrary but fixed constants δ1, δ2, δ3 and δ4,
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Figure 2.2: Depiction of the Generalized Partition Problem

δ1 < δ2 < δ3 < δ4, define five subsets of Ω along the lines of Bechhofer’s (1954) indifference-zone

formulation, as

ΩB = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},

ΩI1 = {πi : µ0 + δ1 < µi ≤ µ0 + δ2, i = 1, · · · , k},

ΩM = {πi : µ0 + δ2 < µi ≤ µ0 + δ3, i = 1, · · · , k},

ΩI2 = {πi : µ0 + δ3 < µi ≤ µ0 + δ4, i = 1, · · · , k},

ΩG = {πi : µi > µ0 + δ4, i = 1, · · · , k}.

(2.1.1)

Let us write

d1 = (δ1 + δ2)/2, d2 = (δ3 + δ4)/2, a1 = (δ2 − δ1)/2, a2 = (δ4 − δ3)/2,

to denote some constants which will be used to denote several midpoints and distances in this

chapter. It is important to note that the generalization outlined above relies upon the construction

of two indifference-zones ΩI1 and ΩI2 . However, the size of these two indifference-zones will not

depend upon the experimenters choice of δ1 and δ4 and the experimenter will have full control over

how large or how small these two indifference-zones could be without impacting the definition of

“Good populations” and “Bad populations”.

8



2.2 A Single-Stage Procedure

Based on a sample of size n, let Xij denote the jth observation from the population πi with density

function

f (Xij) =
1√
2πσ

exp−
(Xij−µi)

2

2σ2 , i = 0, 1, · · · , k; j = 1, · · · , n.

Where the parameter µi is the mean for population πi, and σ2 is the common population variance

for all πi’s, i = 0, 1, · · · , k. Define

X̄i =
∑n

j=1
Xij

/
n, S2

i =
∑n

j=1

(
Xij − X̄i

)2/
(n− 1) ,

for i = 0, 1, · · · , k, j = 1, · · · , n. Based on a sample of size n, a natural estimator for σ2 is given

by

S2
n =

∑k
j=0 S

2
j

k+1
. (2.2.2)

However, note that through out this section, we will assume that σ2 is a known parameter. Next,

along the lines of Tong (1969), we propose the partition rule based on the difference of sample

means as the following:

SB = {πi : X̄iN − X̄0N ≤ d1, i = 1, · · · , k},

SM = {πi : d1 ≤ X̄iN − X̄0N ≤ d2, i = 1, · · · , k},

SG = {πi : X̄iN − X̄0N ≥ d2, i = 1, · · · , k},

(2.2.3)

where SB is the set of “Bad populations”, SM is the set of “Medium or Indifferent populations”,

and SG is the set of “Good populations”. Note that without altering the definition of the “Good

populations” or “Bad populations”, which are selected by the practitioners, now one can control

the size of the “Medium or Indifferent populations” by selecting the appropriate values of the

constants δ2 and δ3. These two constants also control the size of the two indifference-zones as

illustrated in the Figure (2.2).
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Next, we will consider a parametric configuration which is most unfavorable for the partition

problem on hand. Such parametric configuration is known as the least favorable configuration

(LFC) in the statistical literature. It is clear that for a mean vector to be a LFC under the procedure

(2.2.3), the set ΩI1 and the set ΩI2 must be empty. Let us redefine the design constants to introduce

some symmetry which would play a key role in establishing the LFC. We write:

(1) δ2 − δ1 = δ4 − δ3 = ra, where r is a known number and 0 < r < 1
2
, a = δ4 − δ1,

(2) r2 + r3 =
[
k
2

]
= k′, r1 + r4 = k − k′, r2 =

[
k′

2

]
, r3 = k′ − r1, r1 =

[
k−k′

2

]
, r4 =

k − k′ − r1, where r1, r2, r3, and r4 denotes the number of populations with the respective

means: µ0 + δ1, µ0 + δ2, µ0 + δ3, and µ0 + δ4, where [x] equals x
2

if x is even and x+1
2

if x is

odd.

Note that the requirement (1) above forces the two indifference-zone’s to be symmetric and

the length of the two indifference-zones have been expressed in terms of the distance between the

“Good populations” and the “Bad populations” via the constant r. When r is close to 1
2
, the size

of the two indifference-zone’s becomes small and the size of “Medium or Indifferent populations”

gets larger. And when r is close to 0, the size of the two indifference-zone’s becomes small and the

size of “Medium or Indifferent populations” is smaller. As noted earlier, the constant r does not

depend on the definition of the “Good populations” and the “Bad populations” and thus allows the

experimenter to control the precision of the partition without altering the baseline requirements.

It is also important to note that without the symmetry requirement (1) above, there does not

exist any general solution to this partition problem. This is so because, without this requirement,

the partition probability would actually depend on the specific parametric configuration and there

would not be any parametric configuration that is LFC as such.

Under the requirement (2), we are forcing the number of populations to be situated on all

the four boundaries and in equal number. Intuitively, the symmetry requirement in condition (1)

above, ensures that this would be the parametric configuration which is the LFC. The issue of

10



LFC is visited again in later this Chapter and we have shown via simulations that this parametric

configuration described in condition (2) above is indeed the LFC.

Theorem 1 Assuming σ2 is known, the generalized partition problem (2.1.1) has

P
[
CD|µ0(r1, r2, r3, r4), σ2

]
≥ P ∗ (2.2.4)

for the partition rule (2.2.3), provided that the sample size is at least n∗ = 8b2σ2

(ra)2
. The constant

b = b(k, P ∗) is the solution of an integral equation (2.2.9).

Proof. Without the loss of generality assume that the first r1 populations have the mean µ0 + δ1

the second r2 populations have the mean µ0 + δ2, the third set of r3 populations have the mean

µ0 + δ3, and the last set of r4 populations have the mean µ0 + δ4. let us denote this parametric

configuration as µ0(r1, r2, r3, r4). Then, the probability of correct decision can be expressed as

P
[
CD|µ0(r1, r2, r3, r4), σ2

]
= P

[
X̄i − X̄0 < d1, d1 < X̄j − X̄0 < d2, d1 < X̄m − X̄0 < d2, X̄l − X̄0 > d2,

0 < i ≤ r1, r1 < j ≤ r1 + r2, r1 + r2 < m ≤ r1 + r2 + r3, r1 + r2 + r3 < l ≤ k,

|µ0(r1, r2, r3, r4), σ2
]
.

Next, under the LFC the above expression simplifies to:

P
[
CD|µ0(r1, r2, r3, r4), σ2

]
= P

[ ((
X̄i − µi

)
−
(
X̄0 − µ0

))/√2σ2

n
< (d1 − δ1)

/√2σ2

n
,

(d1 − δ2)
/√2σ2

n
<
((
X̄j − µj

)
−
(
X̄0 − µ0

))/√2σ2

n
< (d2 − δ2)

/√2σ2

n
,

(d1 − δ3)
/√2σ2

n
<
((
X̄m − µm

)
−
(
X̄0 − µ0

))/√2σ2

n
< (d2 − δ3)

/√2σ2

n
,

((
X̄l − µl

)
−
(
X̄0 − µ0

))/√2σ2

n
> (d2 − δ4)

/√2σ2

n
,

1 ≤ i ≤ r1, r1 + 1 ≤ j ≤ r1 + r2, , r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3, r1 + r2 + r3 + 1 ≤ l ≤ k
]

11



= P
[((

X̄i − µi
)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
< ra

/
2

√
2σ2

n
,

−ra
/

2

√
2σ2

n
<
((
X̄j − µj

)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
< (2a− 3ra)

/
2

√
2σ2

n
,

− (2a− 3ra)
/

2

√
2σ2

n
<
((
X̄m − µm

)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
< ra

/
2

√
2σ2

n
,

((
X̄l − µl

)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
> −ra

/
2

√
2σ2

n
,

1 ≤ i ≤ r1, r1 + 1 ≤ j ≤ r1 + r2, r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3, r1 + r2 + r3 + 1 ≤ l ≤ k
]

= P
[
Yi < ra

/
2

√
2σ2

n
, 1 ≤ i ≤ r1, r1 + r2 + r3 + 1 ≤ i ≤ k,

− (2a− 3ra)
/

2

√
2σ2

n
< Yj < ra

/
2

√
2σ2

n
, r1 + 1 ≤ j ≤ r1 + r2 + r3

]
, (2.2.5)

where, Yi = ((X̄i − µi)− (X̄0 − µ0))
/√

2σ2

n
, for 0 < i ≤ r1, and r1 + r2 < i ≤ r1 + r2 + r3,

Yi = −((X̄i − µi)− (X̄0 − µ0))
/√

2σ2

n
, for r1 < i ≤ r1 + r2, and r1 + r2 + r3 < i ≤ k. Note

that under the parameter configuration µ0(r1, r2, r3, r4), Yi has the standard normal distribution,

i = 1, · · · , k. Let us define the (k × k) covariance matrix ΣY = (σij) as

σij = 1 for i = j

= 1/2 for i 6= j, and i, j ∈ [1, r1] ∪ [r1 + r2 + 1, r1 + r2 + r3] ,

or i, j ∈ [r1 + 1, r1 + r2] ∪ [r1 + r2 + r3 + 1, k]

= −1/2 for i ∈ [1, r1] ∪ [r1 + r2 + 1, r1 + r2 + r3] , j ∈ [r1 + 1, r1 + r2] ∪ [r1 + r2 + r3 + 1, k] .

Let us denote ra
/

2
√

2σ2

n
= b and (2a− 3ra)

/
2
√

2σ2

n
= c. Note that the probability of cor-

rect decision can be simplified as

P
[
CD

]
= P

[
Yi < b, 1 ≤ i ≤ r1, r1 + r2 + r3 + 1 ≤ i ≤ k,−c < Yj < b, r1 + 1 ≤ j ≤ r1 + r2 + r3

]
.

If we express

12



A = Yi < b; 1 ≤ i ≤ r1, r1 + r2 + r3 + 1 ≤ i ≤ k,

B = −c < Yj < b; r1 + 1 ≤ j ≤ r1 + r2 + r3,

then the probability of correct decision can be stated as

P [CD] = P [A ∩B] = P [A] + P [B]− P [A ∪B] > P [A] + P [B]− 1 > P ∗ (2.2.6)

and the equality holds if P [A ∪B] = 1.

In the above expression, the two probability expressions can be expressed as:

P [A] =

∫ b

−∞

∫ b

−∞
...

∫ b

−∞
(2π)−(k−k′)/2|Σa|−1/2 exp

(
−1

2
y′Σ−1

a
y

) (k−k′)/2∏
i=1

dyi (2.2.7)

P [B] =

∫ b

−c

∫ b

−c
...

∫ b

−c
(2π)−k

′/2|Σb|−1/2 exp

(
−1

2
y′Σ−1

b
y

) k′/2∏
i=1

dyi (2.2.8)

where the two covariance matrices Σa and Σb are given by

Σa =




1 · · · 1

2

... . . . ...

1
2
· · · 1


r1×r1


−1

2
· · · −1

2

... . . . ...

−1
2
· · · −1

2


r1×r4

−1
2
· · · −1

2

... . . . ...

−1
2
· · · −1

2


r4×r1


1 · · · 1

2

... . . . ...

1
2
· · · 1


r4×r4


(k−k′)×(k−k′)

13



Σb =




1 · · · 1

2

... . . . ...

1
2
· · · 1


r2×r2


−1

2
· · · −1

2

... . . . ...

−1
2
· · · −1

2


r2×r3

−1
2
· · · −1

2

... . . . ...

−1
2
· · · −1

2


r3×r2


1 · · · 1

2

... . . . ...

1
2
· · · 1


r3×r3


k′×k′

One will note that, since 0 < r < 1
2
, we have

−a
/√2σ2

n
< (3r − 2) a

/
2

√
2σ2

n
< −a

/
4

√
2σ2

n
,

and 0 < ra
/

2
√

2σ2

n
< a
/

4
√

2σ2

n
. Combining these two, one can obtain

−ra
/

2

√
2σ2

n
> −a

/
4

√
2σ2

n
> (3r − 2) a

/
2

√
2σ2

n
.

That is, −b > −c, so we can claim that

P [B] >

∫ b

−b

∫ b

−b
...

∫ b

−b
(2π)−k

′/2|Σb|−1/2 exp

(
−1

2
y′Σ−1

b
y

) k′/2∏
i=1

dyi = P2.

Hence, if P [A] + P2 − 1 > P ∗, then P [A] + P [B] − 1 > P ∗. Note that P (A) is associated

with correct classification of the populations belonging to the set of “Good” or “Bad” populations,

whereas, P (B) is associated with correct classification of the populations belonging to the set

of “Medium of Indifferent” populations. If the correct probability equally distributed, that is,

P (A) = P (B) then P [A] = P2 > P ∗+1
2

. Therefore, P2 >
P ∗+1

2
, P [A] > P ∗+1

2
. Next, let b be the

solution of the integral equation:

14



∫ b

−b

∫ b

−b
...

∫ b

−b
(2π)−k

′/2|Σb|−1/2 exp

(
−1

2
y′Σ−1

b y

) k′/2∏
i=1

dyi =
P ∗ + 1

2
. (2.2.9)

Then, if n∗ is the smallest integer satisfying

n∗ ≥ 8σ2b2

(ra)2 (2.2.10)

then the probability requirement (2.2.6) is satisfied. This completes the proof of the Theorem 1.

Remark 1 Note that the constant r satisfying 0 < r < 1
2

determines the potential size of the

“Medium or Indifferent” set and the constant a equals the distance between the “Good” and the

“Bad” populations (a = δ4− δ1). As r approaches 1
2
, the proposed generalized rule will approach

the partition rule proposed in Tong (1969).

The solution b = b (k, P ∗) of (2.2.9) is the equi-coordinate percentage point of a k’-dimensional

multivariate normal distribution with mean vector 0 and the covariance matrix Σb described above.

k is the total number of populations, and k′ =
[
k
2

]
([x] equals x

2
if x is even and x+1

2
if x is odd).

The values of b as a function of P ∗ and k have been tabulated in the Table (2.1). The values of the

constant b satisfying the equation (2.2.9) were calculated by Monte Carlo integration and Bisection

method.

The single-stage procedure, which assumes that σ2 is known, starts with the computation of

the value of n∗ as defined in (2.2.10). The value of the design constant b comes from Table (2.1)

for the given value of k and the target value of the probability of correct decision P ∗. The design

parameters δ1 and δ4 are provided by the experimenter based on the definition of the “Good” and

“Bad” populations. Note that a = δ4 − δ1. The experimenter tolerance for the misclassification of

the populations in-between the “Good” and “Bad” populations determines the value of the design

constant r. The smaller value of r, 0 < r < 1
2
, the larger the value of n∗ would be and smaller the

size of the “Medium” classification set would be. After, the value of n∗ is computed, a sample of

15



Table 2.1: Equi-coordinate percentage points of b of a multivariate normal distribution with mean
vector 0 and covariance matrix Σk′×k′

k
P ∗

0.50 0.75 0.80 0.90 0.95 0.98 0.99
1 1.1504 1.5341 1.6448 1.9600 2.2414 2.5753 2.8052
2 1.1504 1.5341 1.6448 1.9600 2.2414 2.5753 2.8052
3 1.4538 1.8128 1.9165 2.2122 2.4783 2.7957 3.0202
4 1.4538 1.8128 1.9165 2.2122 2.4783 2.7957 3.0202
5 1.6146 1.9611 2.0625 2.3496 2.6082 2.9100 3.1298
6 1.6146 1.9611 2.0625 2.3496 2.6082 2.9100 3.1298
7 1.7218 2.0618 2.1603 2.4420 2.6959 2.9964 3.2030
8 1.7218 2.0618 2.1603 2.4420 2.6959 2.9964 3.2030
9 1.8019 2.1377 2.2348 2.5146 2.7703 3.0428 3.2910

10 1.8019 2.1377 2.2348 2.5146 2.7703 3.0428 3.2910
11 1.8644 2.1954 2.2922 2.5666 2.8110 3.1233 3.3031
12 1.8644 2.1954 2.2922 2.5666 2.8110 3.1233 3.3031
13 1.9160 2.2452 2.3401 2.6089 2.8531 3.1648 3.3634
14 1.9160 2.2452 2.3401 2.6089 2.8531 3.1648 3.3634
15 1.9606 2.2875 2.3831 2.6602 2.8980 3.1767 3.3748
16 1.9606 2.2875 2.3831 2.6602 2.8980 3.1767 3.3748
17 1.9979 2.3229 2.4165 2.6806 2.9252 3.1852 3.4117
18 1.9979 2.3229 2.4165 2.6806 2.9252 3.1852 3.4117
19 2.0318 2.3552 2.4513 2.7271 2.9596 3.2745 3.4792
20 2.0318 2.3552 2.4513 2.7271 2.9596 3.2745 3.4792

Table 2.2: Simulation Result for Single Stage

n∗
P̄
(
std
(
P̄
))

(2, 2, 2, 2) (3, 1, 1, 3) (1, 3, 3, 1) (1, 6, 1) (2, 4, 2) (4, 0, 0, 4)

25
0.9728 0.9760 0.9761 0.9920 0.9869 0.9765
0.0012 0.0011 0.0011 0.0006 0.0008 0.0011

50
0.9702 0.9746 0.9746 0.9923 0.9855 0.9741
0.0024 0.0011 0.0011 0.0006 0.0008 0.0011

100
0.9751 0.9757 0.9766 0.9924 0.9862 0.9769
0.0011 0.0011 0.0011 0.0006 0.0008 0.0011

200
0.9740 0.9763 0.9752 0.9927 0.9863 0.9749
0.0011 0.0011 0.0011 0.0006 0.0008 0.0011

300
0.9743 0.9760 0.9771 0.9929 0.9872 0.9752
0.0011 0.0011 0.0011 0.0006 0.0008 0.0011

400
0.9744 0.9760 0.9745 0.9937 0.9861 0.9759
0.0011 0.0011 0.0011 0.0005 0.0008 0.0011
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size at least n∗ is collected from all the k populations and the control population. After the sample

means are computed, the partition rule (2.1.1) is used to partition the populations with respect to

the control population. Theorem 1 guarantees that the probability of correct decision would be at

least P ∗.

In Table (2.2), we have summarized the performance of the single-stage procedure under vari-

ous parametric configurations for the case when k = 8. Note that the configuration (2,2,2,2) is the

Least favorable Configuration under which there are all equal number of populations on all the four

boundaries as shown in Figure 2.2. And the other parametric configurations summarized in Table

(2.2) are (3,1,1,3), (1,3,3,1), (4,0,0,4), (1,6,1) and (2,4,2). Note that in the last two parametric con-

figurations, not all the populations are located on the boundaries as such. For example, in (2,4,2)

there are 2 populations each on the left and the right most boundary and there are 4 populations in

the midpoint of the two middle boundaries.

The findings in Table (2.2), confirm the theoretical results derived in the Theorem 1 that the

generalized partition procedure satisfies the probability requirement (2.2.5) for all the parametric

configurations we studied. And one will also note that the estimated value of the probability of the

correct decision is least for the parametric configuration (2,2,2,2). That is, this is the configuration

for which the P (CD) is least, or, this is the LFC among all the parametric configurations.

Next, for the unknown σ2 case, we develop a purely-sequential procedure and a two-stage

procedure, for the partition problem which will guarantee the probability of correct decision to be

at least P ∗.

2.3 Purely Sequential Procedure

In this section, we will construct a purely sequential procedure along the lines of Mukhopadhyay

and Solanky (1994). One may also see Robbins et al.(1968), and Robbins (1959) to review a brief

history of the purely sequential procedures. Recall that n∗ = 8σ2b2/(ra)2, which is the optimal

fixed sample size required from each population, had σ been known. As before, based on the
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sample of size n, let Xij denote the jth observation from the population πi with density function

f (Xij) =
1√
2πσ

exp−
(Xij−µi)

2

2σ2 ,

i = 0, 1, · · · , k; j = 1, · · · , n. Where the parameter µi is the mean for population πi, and σ2 is the

common population variance for all πi’s, i = 0, 1, · · · , k. Note that based on a sample of size n, a

natural estimator for σ2 is the usual pooled estimator of variance as defined below:

X̄j =

∑n
i=1 Xij

n
, j = 0, 1, · · · , k.

S2
j =

∑n
i=1

(
Xij − X̄j

)2

n− 1

S2
n =

∑k
j=0 S

2
j

k + 1
. (2.3.11)

We start the purely sequential procedure with m (≥ 2) observations from each of the k popu-

lations and the control population. Then, keep taking one additional sample at a time from each of

the k populations and the control population according to the following stopping rule:

N = N (a) = inf

{
n ≥ m : n ≥ 8b2S2

n

(ra)2

}
. (2.3.12)

For fixed µ̃ , σ2, m, r and a, we first prove that the purely sequential procedure as de-

fined about terminates with probability 1. Note that P (N <∞) = 1 − lim
n→∞

P (N > n) >

1 − lim
n→∞

P
{
n < 8b2S2

n (ra)−2} = 1, since S2
n → σ2 w.p. 1 as n → ∞.That is, one has

P (N <∞) = 1, in other words, the purely sequential procedure (2.3.12) terminates with

probability one. Based on the totality of all samples, that is having Xi1, · · · , XiN from πi,

i = 0, 1, · · · , k, one would next implement the partition rule ℘N given by (2.2.3) to obtain the

generalized partition of the k populations with respect to the control population. Next, we derive

some theoretical properties of the purely sequential procedure (2.3.12).
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Theorem 2 For the purely sequential procedure (2.3.12), we have as a→ 0:

(i) N/n∗ → 1 w.p. 1;

(ii) E (N/n∗)→ 1;

(iii) n∗
1
2 (N − n∗)→ N

(
0, 2
/

(k + 1)
)
;

(iv) lim inf P (CD) > P ∗ under the LFC;

where n∗ = 8b2σ2
/

(ra)2 and the constant b comes from Table (2.1).

Proof. Utilizing Lemma 1 of Chow and Robbins (1965), it follows that as a → 0, we have

N →∞, w.p. 1, S2
N → σ2 w.p. 1, and S2

N−1 → σ2 w.p. 1. The above sequential procedure agree

withN = Nν = inf {n ≥ m : n > ΨνTn} (equation 2.4.1 in Mukhopadhyay and Solanky (1994)),

where Ψν = 8b2

(ra)2
, Tn = S2

n. The basic inequality (equation 2.4.3 in Mukhopadhyay and Solanky

(1994)) simplifies to
8b2S2

N

(ra)2 ≤ N ≤ m+
8b2S2

N−1

(ra)2 . (2.3.13)

Now divide throughout (2.3.13) by n∗ and take limits as a → 0. This leads to part (i). Next,

consider the equation (2.3.11), invoke the Helmert’s orthogonal transformation to construct W ′
1,

W ′
2, · · · which are i.i.d. (k + 1)−1 σ2χ2

k+1 so that we can express

S2
n = (n− 1)−1

∑n−1

i=1
W ′
i . (2.3.14)

Let W ∗ = sup
n≥2

{
(n− 1)−1

n−1∑
i=1

W ′
i

}
. From the right hand side of the basic inequality in

(2.3.14), we can write N ≤ m +
8b2S2

n−1

(ra)2
as N ≤ m + 8b2W ∗

(ra)2
, that is Nn∗−1 ≤ m + σ2W ∗

for sufficiently small values of a such that n∗−1 becomes smaller than unity. By Wiener’s (1939)

dominated ergodic theorem one concludes that E (W ∗) < ∞. Now, the dominated convergence

theorem and part (i) together imply part (ii), that is E (N/n∗)→ 1.
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Next, along the lines of Theorem 2.4.1 in Mukhopadhyay and Solanky (1994), we can obtain

a′
1
2 (Nν−a′Ψν)

b′Ψ
1
2

→ N (0, 1), with Ψν = 8b2

(ra)2
. Let a′ = σ2, b′ =

(
k+1

2

) 1
2 σ2, then part (iii) follows

from the Theorem 2.4.1 of Mukhopadhyay and Solanky (1994).

Next, to prove the part (iv), note that following the steps from the Theorem 1, the P (CD)

expression based on the sample of size N can be simplified as

P (CD + 1)

2
≥ P

{
d1 < X̄j − X̄0 < d2, r1 + 1 ≤ j ≤ r1 + r2;

d1 < X̄m − X̄0 < d2, r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3

}
= P

{
d1 − δ2 <

(
X̄j − µj

)
−
(
X̄0 − µ0

)
< d2 − δ2, r1 + 1 ≤ j ≤ r1 + r2;

d1 − δ3 <
(
X̄m − µm

)
−
(
X̄0 − µ0

)
< d2 − δ3, r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3

}
= P

{
d1 − δ2√
σ2/N

<

(
X̄j − µj

)√
σ2/N

−
(
X̄0 − µ0

)√
σ2/N

<
d2 − δ2√
σ2/N

, r1 + 1 ≤ j ≤ r1 + r2;

ra√
σ2/N

<

(
X̄m − µm

)√
σ2/N

−
(
X̄0 − µ0

)√
σ2/N

<
d2 − δ3√
σ2/N

, r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3

}
= P (−b < Zj − Z0 < c, r1 + 1 ≤ j ≤ r1 + r2, −c < Zm − Z0 < b,

r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3)

= P (−b < Zj − Z0 < c, r1 + 1 ≤ j ≤ r1 + r2, −c < Zm − Z0 < b,

r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3),

where,

X̄j ∼ N

(
µj,

σ2

N

)
, µj = µ0 + δ2,

X̄m ∼ N

(
µm,

σ2

N

)
, µm = µ0 + δ3.

δ2 − δ1 = δ4 − δ3 = ra, d1 =
δ1 + δ2

2
, d2 =

δ3 + δ4

2
.

b =
ra√
σ2
/
N
, c =

(2a− 3ra) /2√
σ2/N

.
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Next, as shown in Theorem 1, one can easily verify that −b > −c and b < c, and using these we

can further write

P (CD + 1)

2
≥ P (−b < Zj − Z0 < c, r1 + 1 ≤ j ≤ r1 + r2, −c < Zm − Z0 < b,

r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3)

> P (−b < Zj − Z0 < b, r1 + 1 ≤ j ≤ r1 + r2, −b < Zm − Z0 < b,

r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3)

= P (−b+ Z0 < Zi < b+ Z0, r1 + 1 ≤ i ≤ r1 + r2 + r3)

= E[

∫ +∞

−∞
{Φ(b+ z)− Φ(−b+ z)}r2+r3 φ(z)dz|Z0 = z]. (2.3.15)

Also, from part (i), one gets N
1
2

(
ra
(
2
√

2σ
)−1
)
→ b w.p. 1 as a → 0, and hence (2.3.15)

together with the dominated convergence theorem will lead to part (iv).

Next, for the purely sequential procedure (2.3.12) we will derive a second-order expansion to

determine the amount of over-sampling the procedure does asymptotically. The amount of over-

sampling β is defined below and also tabulated for the practitioners. We will also compare the

validity of the asymptotic expression β for the small and moderate sample sizes.

Theorem 3 For the purely sequential procedure (2.3.12), we have as a→ 0 :

(i) E (N) = n∗ + β + o(1) for all µ ∈ Ω (a) if m ≥ 2 when k ≥ 2;

(ii) P [CD|µ0(r1, r2, r3, r4), σ2] > P ∗+ 2
n∗

{
ν(k)−2
k+1

g′(1) + 1
2(k+1)

g′′(1)
}
−1+o( 1

n∗
) under the

LFC if (a) m1 ≥ 3 when k = 2, 3, (b) m1 ≥ 2 when k ≥ 4 ;

where n∗ = 2b2σ2

(ra/2)2
, P ∗ = 2g(1), g(x) is defined in (2.3.19), g′(x) and g′′(x) are defined in (2.3.20),

β = (k + 1)−1 {ν (k)− 2} and ν (k) is defined in equation (2.3.18). The values of the constant

β = β(k) are provided in Table (2.3).
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Proof. First note that using (2.3.14), we can rewrite S2
n = (n− 1)−1∑n−1

i=1 W
′
i , where W ′

1,

W ′
2, · · · are i.i.d. (k + 1)−1 σ2χ2

k+1 random variables. Let’s write Wi = (k + 1)σ−2W ′
i , with W ′

is

being i.i.d. χ2
k+1. Using this the purely sequential procedure could be rewritten as

N = inf
{
n ≥ m : (k + 1)n (n− 1)n∗−1 ≥

∑n−1

i=1
Wi

}
. (2.3.16)

Note that N = Q+ 1 where

Q = inf
{
n ≥ m− 1 : (k + 1)n2

(
n−1 + 1

)
n∗−1 ≥

∑n

i=1
Wi

}
. (2.3.17)

The stopping variable Q is of the form of Mukhopadhyay and Solanky (1994)’s equation (2.4.7)

with δ = 2, L0 = 1, h∗ = k+1
n∗

, θ = E (W1) = k + 1, r2 = E (W 2
1 ) − θ2 = 2 (k + 1),

β∗ = (δ − 1)−1 = 1, n∗0 = (θ/h∗)β
∗

= n∗, P = β∗2r2θ−2 = 2 (k + 1)−1, b = (k + 1)
/

2, and

ν = ν (k) =
1

2
(k + 3)−

∑∞

n=1
n−1E

[
max

{
0, χ2

n(k+1) − 2n (k + 1)
}]
. (2.3.18)

Next, note that the constant η as defined in the equation (2.4.10) in Mukhopadhyay and Solanky

(1994) simplifies to

η = β∗θ−1ν − β∗L0 −
1

2
δβ∗2r2θ−2

= ν (k + 1)−1 − 1− 2 (k + 1)−1

= (ν − 2)
/

(k + 1)− 1.

Using the Theorem 2.4.8(v) of Mukhopadhyay and Solanky (1994) with w = 1 leads to

E (N) = E (Q) + 1

= 1 + n∗ + η + ◦ (1)
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= n∗ + (ν − 2)
/

(k + 1) + ◦ (1) ,

if m− 1 > 2 (k + 1)−1, that is, if m > 1 + 2 (k + 1)−1. This is part (i).

For part (ii), we have the following from (2.3.15)

P (CD) + 1

2
> E[

∫
{Φ(b+ z)− Φ(−b+ z)}r2+r3 φ(z)dz|Z0 = z]

Let b =
√

2x and

β(x) =

∫ {
Φ(
√

2x+ z)− Φ(−
√

2x+ z)
}r2+r3

φ(z)dz

then

β′(x) =

∫ √
2(r2 + r3) {Φ(b+ z)− Φ(−b+ z)}r2+r3−1 (φ(

√
2x+ z) + φ(−

√
2x+ z))φ(z)dz

β′′(x) =

∫
2(r2 + r3)(r2 + r3 − 1) {Φ(b+ z)− Φ(−b+ z)}r2+r3−2 (φ(

√
2x+ z) + φ(−

√
2x+ z))2

− 2(r2 + r3) {Φ(b+ z)− Φ(−b+ z)}r2+r3−1
(

(
√

2x+ z)φ(
√

2x+ z)

+ (
√

2x− z)φ(−
√

2x+ z))
)
φ(z)dz.

Then, define

g(x) = β(bx
1
2 ), x > 0. (2.3.19)

It is easy to verify that

g′(x) =
1

2
bx

1
2β′(bx

1
2 )

g′′(x) =
1

4
bx−1β′′(bx

1
2 )− 1

4
bx−

3
2β′(bx

1
2 ) (2.3.20)
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and

|g′′(x)| ≤ a1x
− 1

2 + a2x
−1 + a3x

− 3
2 ,

a1, a2 a3 being positive constants.

By using Theorem 3.2.1 of Mukhopadhyay and Solanky (1994), we have

(inf P [CD|µ0(r1, r2, r3, r4), σ2] + 1)

2
> E(g(N

/
n∗)).

Expanding g(x) at x = 1 gives us

g(x) = g(1) + g′(1)(x− 1) + g′′(Z(x))(x− 1)2
/

2,

where Z is positive random variable such that

min(1, N
/
n∗) ≤ Z ≤ max(1, N

/
n∗).

Since |g′′(x)| ≤
∑3

i=1 αi
/
xαi , by Lemma 3.5.1 of Mukhopadhyay and Solanky (1994), for m >

5
k+1

+ 1, one will obtain

E(g(N
/
n∗)) = g(1) + g′(1)E(N

/
n∗ − 1) + E(g′′(Z(x))(N − n∗)2

/
(2n∗2))

= g(1) +
1

n∗
g′(1)E(N − n∗) +

1

k + 1

1

2n∗
g′′(1) + o(

1

n∗
)

Using the Theorem 3, part (i), we have

E(N) = n∗ + (ν(k)− 2)(k + 1)−1 + o(1)

and

E(g(N
/
n∗)) = g(1) +

1

n∗

{
ν(k)− 2

k + 1
g′(1) +

1

2(k + 1)
g′′(1)

}
+ o(

1

n∗
).
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That is,

(inf P [CD|µ0(r1, r2, r3, r4), σ2] + 1)

2
> g(1)+

1

n∗

{
ν(k)− 2

k + 1
g′(1) +

1

2(k + 1)
g′′(1)

}
+o(

1

n∗
).

Hence, we have

P [CD|µ0(r1, r2, r3, r4), σ2] > 2g(1) +
2

n∗

{
ν(k)− 2

k + 1
g′(1) +

1

2(k + 1)
g′′(1)

}
− 1 + o(

1

n∗
).

This completes the proof of the theorem.

Table 2.3: The values of the constant β as defined in Theorem 3

(The value on top is k and the value underneath it is β)

2 3 4 5 6 7 8
0.0348 0.1716 0.2495 0.2991 0.3331 0.3577 0.3762

9 10 11 12 13 14 15
0.3905 0.4019 0.4111 0.4188 0.4252 0.4307 0.4354

16 17 18 19 20 21 22
0.4395 0.4431 0.4463 0.4492 0.4517 0.4540 0.4561

23 24 25 26 27 28 29
0.4580 0.4597 0.4613 0.4628 0.4641 0.4654 0.4666

30 31 32 33 34 35 36
0.4677 0.4687 0.4696 0.4705 0.4714 0.4722 0.4729

37 38 39 40 41 42 43
0.4737 0.4743 0.4750 0.4756 0.4762 0.4767 0.4773

44 45 46 47 48 49 50
0.4778 0.4783 0.4787 0.4792 0.4796 0.4800 0.4804

51 52 53 54 55 56 57
0.4808 0.4811 0.4815 0.4818 0.4821 0.4825 0.4828

58 59
0.4831 0.4833

In the next section, the purely sequential partition procedure (2.3.12) is simulated under several

parametric conditions changing the values of the location of the populations, the values of the

variance σ2, the values of constant r, and the values of the δ1 and δ4. The goal is to confirm the
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LFC and to verify the derived theoretical properties from Theorems 2 and 3 via simulations.

2.4 Monte Carlo Simulation Study of the Purely Sequential Proce-

dure

The purely sequential procedure (2.3.12), starts with m(≥ 2) observations from each of the k

populations and the control population. The procedure takes one additional sample at a time from

each all the k populations and the control population according to the following stopping rule

(2.3.12). For all the simulations reported in this section, we took the value of m = 5, k = 8, and

P ∗ = 0.95. The value of the design constant b was obtained from (2.1) for the given value of k and

the target value of the probability of correct decision P ∗. Recall that the design parameters δ1 and

δ4 are provided by the experimenter based on the definition of the “Good” and “Bad” populations.

Note that a = δ4 − δ1. And the experimenter tolerance for the misclassification of the populations

in-between the “Good” and “Bad” populations determines the value of the design constant r. The

smaller value of r, 0 < r < 1
2
, the larger the value of n∗ would be and smaller the size of the

“Medium” classification set would be. After the value of n∗ is computed, a sample of size at least

n∗ is collected from all the k populations and the control population.

In Table (2.4), we have chosen δ4 − δ3 = δ3 − δ2 = δ2 − δ1 = c, c = 2
√

2bσ√
n∗

, σ = 9, for several

values of the optimal sample size n∗.

Table 2.4: Simulation Result under LFC for (2, 2, 2, 2)

n∗ n̄ std (n̄) P̄ std
(
P̄
)

c
25 25.335 0.0341 0.9718 0.0023 1.5250
50 50.350 0.0484 0.9728 0.0023 1.0784
100 100.343 0.0679 0.9746 0.0022 0.7625
200 200.364 0.0946 0.9764 0.0021 0.5392
300 300.359 0.1140 0.9770 0.0021 0.4402
400 400.593 0.1328 0.9734 0.0023 0.3813

In Table (2.4), we have summarized the performance of the purely sequential procedure under
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parametric configuration given by the LFC for k = 8 giving 2 populations on each of the four

boundaries. Note that this configuration, denoted as (2,2,2,2), is the Least favorable Configuration

under which there are an equal number of populations on all the four boundaries as shown in (2.2).

Note that the average sample size n̄ is fairly close to the unknown optimal sample size n∗ for all

the cases which we considered. Also, note that from Theorem 3, that the second-order expansion

provides that asymptotically the difference between the value of n̄ and n∗ should be β. From

Table (2.3) one obtains that asymptotically this difference should be 0.3762. That is, the purely

sequential procedure (2.3.12) over-samples by a third of a sample asymptotically. The simulated

values in Table (2.4) confirm this asymptotic difference between the n̄ and n∗. Also, note that the

average value of the probability of correct decision P̄ matches the target value of 0.95 in all the

cases considered. The findings in Table (2.4), confirm the theoretical results derived in Theorem 2

and 3 for the purely sequential procedure.

Table 2.5: simulation results for different number of groups at each point with (δ1, δ2, δ3, δ4) =
(5, 15, 25, 35)

(k1, k2, k3, k4) n∗ n̄ std(n̄) P̄ std(P̄ ) b
(2, 2, 2, 2) 47 47.5224 0.0471 0.9732 0.0023 2.6959
(1, 3, 3, 1) 47 47.4224 0.0468 0.9750 0.0022 2.6959
(3, 1, 1, 3) 47 47.4960 0.0473 0.9744 0.0022 2.6959
(4, 0, 0, 4) 47 47.4316 0.0463 0.9772 0.0021 2.6959
(1, 6, 1) 47 47.4408 0.0479 0.9928 0.0012 2.6959
(2, 4, 2) 47 47.4634 0.0471 0.9856 0.0017 2.6959

In Table (2.5) the purely sequential procedure (2.3.12) for the generalized partition procedure

is simulated under several parametric configurations to verify the LFC and to confirm that the prob-

ability requirement (2.2.5) holds for all the parametric configurations. Note that for the parametric

configuration (2,2,2,2), the P (CD) is least, among all the parametric configurations satisfying

(2.1.1). In this table we fixed the value of σ = 9. Let, a1 be the number of populations with mean

µ0 + δ1, a2 is the number with mean µ0 + δ2, a3 is the number with mean µ0 + δ3, and a4 is number

of populations with mean µ0 + δ4. We express this parametric configuration as (a1, a2, a3, a4). Let

27



e denote the mid point between µ0 + δ2 and µ0 + δ3 and the three-tuple (a1, e, a4) denotes the para-

metric configuration in which the populations are located on the three locations only. Note that in

the last two parametric configurations in the Table (2.5), all the populations are not located on the

boundaries as such. For example, in (2,4,2) there are 2 populations each on the left and the right

most boundary and there are 4 populations in the midpoint of the two middle boundaries. Using

this notation, we have reported the performance of several parametric configurations in Table (2.5)

for the values of (δ1, δ2, δ3, δ4) = (5, 15, 25, 35). Note that n∗ is fixed as 47 in this table and we

only vary the location of the populations. The P̄ values show that the configuration (2,2,2,2) is

clearly the LFC and for all the parametric configurations the P̄ value is above the target value of

P ∗ = 0.95.

Table 2.6: Simulation Result for (2, 2, 2, 2) with (δ1, δ2, d) = (10, 15, 15)

σ n∗ n̄ std(n̄) P̄ std(P̄ )
1 3(2.33) 5.000 0.0000 0.9998 0.0002
2 10(9.30) 9.633 0.0228 0.9740 0.0023
3 21(20.93) 21.263 0.0321 0.9742 0.0022
4 38(37.21) 37.600 0.0415 0.9742 0.0022
5 58(58.14) 58.526 0.0520 0.9752 0.0022
6 84(83.73) 84.115 0.0615 0.9768 0.0021
7 114(113.96) 114.368 0.0727 0.9780 0.0021
8 149(148.85) 148.256 0.0804 0.9754 0.0013
9 189(188.38) 188.795 0.0925 0.9758 0.0022

10 233(232.57) 233.011 0.1020 0.9750 0.0022
12 335(334.90) 335.285 0.1236 0.9764 0.0021
14 456(455.84) 455.924 0.1414 0.9752 0.0022
16 596(595.38) 595.903 0.1615 0.9764 0.0021
20 931(930.29) 930.706 0.2028 0.9766 0.0021

Next, in Table (2.6), we have further explored the LFC configuration (2,2,2,2). Let us define

d as the distance from point µ0 + δ1 to point µ0 + δ3. In this Table we have fixed the values of

(δ1, δ2, d) = (10, 15, 15), and we have varied the values of σ. Recall that theoretically from the

Theorem 3, the purely sequential procedure (2.3.12) over-samples by a third of a sample asymp-

totically. The simulated values in Table (2.6) confirm this asymptotic difference between the n̄
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and n∗ in every instance. Also, note that the average value of the probability of correct decision

P̄ matches the target value of 0.95 in all the cases considered. The findings in Table (2.6) also

confirm the theoretical results derived in Theorem 2 and 3 for the purely sequential procedure.

Table 2.7: Simulation Result for (2, 2, 2, 2) with (δ, δ + r ∗ a, δ + (1− r) ∗ a, δ + a)

a r n∗ n̄ std(n̄) P̄ std(P̄ )

10.7836

0.100 50 50.380 0.0486 0.9770 0.0021
0.075 89 89.259 0.0630 0.9758 0.0022
0.050 200 200.458 0.0937 0.9748 0.0022
0.025 800 800.438 0.1877 0.9722 0.0023

7.6252

0.200 25 25.346 0.0344 0.9770 0.0021
0.100 100 100.370 0.0685 0.9744 0.0022
0.075 178 178.154 0.0895 0.975 0.0022
0.050 400 400.486 0.1342 0.9750 0.0022

5.3918

0.200 50 50.344 0.0484 0.9750 0.0022
0.100 200 200.345 0.0941 0.9764 0.0021
0.075 356 355.699 0.1259 0.9758 0.0022
0.050 800 800.613 0.1932 0.9746 0.0022

3.8126

0.400 25 25.342 0.0343 0.9710 0.0024
0.300 45 44.857 0.0456 0.9742 0.0022
0.200 100 100.408 0.0667 0.9732 0.0023
0.100 400 400.209 0.1362 0.9760 0.0022
0.075 711 711.278 0.1809 0.9762 0.0022

In Table (2.7) we consider another parametric configuration under which the leftmost and the

rightmost have fixed locations but we vary the location of the middle two positions. Say, the length

of indifference zone δ2 − δ1 = δ4 − δ3 = ra. We took µ0 = 0, σ = 1, and let δ = 10 to create the

parametric configuration (µ0 + δ1, µ0 + δ2, µ0 + δ3, µ0 + δ4) = (δ, δ + ra, δ + (1 − r)a, δ + a).

The simulated values in Table (2.7) confirm this asymptotic difference between the n̄ and n∗ in

every instance. Also, note that the average value of the probability of correct decision P̄ matches

the target value of 0.95 in all the cases considered. The findings in Table (2.7) also confirm the

theoretical results derived in the Theorem 2 and 3 for the purely sequential procedure.

To conclude, the purely sequential procedure (2.3.12) for the generalized partition procedure is

able to partition the populations as “Good populations”, “Bad populations”, also as a separate iden-

29



tifiable group “Medium or Indifferent populations” with a high degree of precision matching the

pre-specified target probability. The simulations confirm the nature of the LFC and the theoretical

properties of the purely sequential procedure (2.3.12).
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Chapter 3

Two-Stage Procedure

3.1 Two Stage Procedure

In this Chapter we will propose a two-stage procedure for the generalized partition problem intro-

duced in the chapter 2 for the unknown σ2 case. The two-stage procedures are operationally more

convenient to implement than the purely sequential procedures. This is so because unlike for the

purely sequential procedure, in which the experimenter has to decide whether or not to continue

sampling after each sample, in the two-stage procedure the sample size is determined only once.

Meaning, the experimenter would select a small pilot sample and then based on that pilot sample

it is determined how many additional samples need to be collected. This feature of the two-stage

procedure makes it more user friendly and operationally convenient. For more literature on the

two-stage procedures, the reader is recommended to Solanky (2006).

Next, we describe the a two-stage procedure to obtain the generalized partition problem pre-

sented in the chapter 2.

Stage I. Letm (≥ 2) denote the common starting sample size from k treatments and the control

group. The procedure begins by taking a sample Xij from πi; i = 0, 1, · · · , k; j = 1, · · · ,m. Let

X̄i =
∑m

j=1
Xij

/
m,

i = 0, 1, · · · , k, denote the sample means based on the stage I sampling. Also, let Um be the usual
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pooled estimator of σ2, where

Um =
∑k

i=0
S2
im

/
(k + 1) , S2

im =
∑m

j=1

(
Xij − X̄i

)2/
(m− 1) .

Note that the pooled estimator Um has f = (k + 1) (m− 1) degree of freedom and fUm
/
σ2 has

the χ2
f distribution.

Stage II. In the second stage, N−m additional samples are taken from π0 and πi, i = 1, · · · , k,

where N is defined as

N = max
{
m,
[
2τ 2Um

(
ra
/

2
)−2
]}

. (3.1.1)

The constant τ = τ (k,m, P ∗) is a positive constant defined in (3.2.8), and [x] denotes the smallest

integer greater than or equal to x. Note that, if N = m, we do not take any samples from any

population in the stage II. However, if N > m then we sample the difference from each π and the

control population in the second stage.

3.2 Asymptotic Properties of The Two-stage Procedure

In this section, we will derive some asymptotic theoretical properties of the proposed two-stage

procedure (3.1.1).

Theorem 4 For the two-stage procedure (3.1.1), with τ defined in (3.2.8), we have as a→ 0:

(i) P (CD) ≥ P ∗ for all µ ∈ Ω (a);

(ii) 2τ 2σ2
(
ra
/

2
)−2 ≤ E (N) ≤ m+ 2τ 2σ2

(
ra
/

2
)−2;

(iii) E
(
N
/
n∗
)
→ τ 2

/
b2 (> 1) as a→ 0;

(iv) lim inf P (CD) ≥ P ∗, under LFC as a→ 0;

where n∗ = 2τ 2σ2
/(
ra
/

2
)2 and τ comes from the Tables (3.1) and (3.2).
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Proof. We start by noting that the basic inequality based on the definition of the sample size N

from (3.1.1) is

2τ 2U2
m

(
ra
/

2
)−2 ≤ N ≤ m+ 2τ 2U2

m

(
ra
/

2
)−2 (3.2.2)

and now taking expectations throughout leads to part (ii), since E(Um) = σ2. Next, dividing

throughout the expressions in part (ii) by n∗ and the taking limit as a→ 0 leads to part (iii).

For this procedure, the probability of correct decision can be expressed as

P
[
CD|µ0(r1, r2, r3, r4), σ2

]
= P

[
X̄i − X̄0 < d1, d1 < X̄j − X̄0 < d2, d1 < X̄m − X̄0 < d2, X̄l − X̄0 > d2,

0 < i ≤ r1, r1 < j ≤ r1 + r2, r1 + r2 < m ≤ r1 + r2 + r3, r1 + r2 + r3 < l ≤ k,

|µ0(r1, r2, r3, r4), σ2
]
.

Next, under the LFC the above expression simplifies to:

P
[
CD|µ0(r1, r2, r3, r4), σ2

]
= P

[ ((
X̄i − µi

)
−
(
X̄0 − µ0

))
< (d1 − δ1)

/√2σ2

n
,

(d1 − δ2)
/√2σ2

n
<
((
X̄j − µj

)
−
(
X̄0 − µ0

))/√2σ2

n
< (d2 − δ2)

/√2σ2

n
,

(d1 − δ3)
/√2σ2

n
<
((
X̄m − µm

)
−
(
X̄0 − µ0

))/√2σ2

n
< (d2 − δ3)

/√2σ2

n
,

((
X̄l − µl

)
−
(
X̄0 − µ0

))/√2σ2

n
> (d2 − δ4)

/√2σ2

n
,

1 ≤ i ≤ r1, r1 + 1 ≤ j ≤ r1 + r2, , r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3, r1 + r2 + r3 + 1 ≤ l ≤ k
]

= P
[((

X̄i − µi
)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
< ra

/
2

√
2σ2

n
,

−ra
/

2

√
2σ2

n
<
((
X̄j − µj

)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
< (2a− 3ra)

/
2

√
2σ2

n
,

− (2a− 3ra)
/

2

√
2σ2

n
<
((
X̄m − µm

)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
< ra

/
2

√
2σ2

n
,

((
X̄l − µl

)
−
(
X̄0 − µ0

))/
2

√
2σ2

n
> −ra

/
2

√
2σ2

n
,
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1 ≤ i ≤ r1, r1 + 1 ≤ j ≤ r1 + r2, r1 + r2 + 1 ≤ m ≤ r1 + r2 + r3, r1 + r2 + r3 + 1 ≤ l ≤ k
]

= P
[
Yi < ra

/
2

√
2σ2

n
, 1 ≤ i ≤ r1, r1 + r2 + r3 + 1 ≤ i ≤ k,

− (2a− 3ra)
/

2

√
2σ2

n
< Yj < ra

/
2

√
2σ2

n
, r1 + 1 ≤ j ≤ r1 + r2 + r3

]
, (3.2.3)

where,

Yi = ((X̄i − µi)− (X̄0 − µ0))
/√2σ2

n
,

for 0 < i ≤ r1, and r1 + r2 < i ≤ r1 + r2 + r3,

Yi = −((X̄i − µi)− (X̄0 − µ0))
/√2σ2

n
,

for r1 < i ≤ r1 + r2, and r1 + r2 + r3 < i ≤ k. Note that under the parameter configuration

µ0(r1, r2, r3, r4), Yi has the standard normal distribution, i = 1, · · · , k. Let us define the (k × k)

covariance matrix ΣY = (σij) as

σij = 1 for i = j

= 1/2 for i 6= j, and i, j ∈ [1, r1] ∪ [r1 + r2 + 1, r1 + r2 + r3] ,

or i, j ∈ [r1 + 1, r1 + r2] ∪ [r1 + r2 + r3 + 1, k]

= −1/2 for i ∈ [1, r1] ∪ [r1 + r2 + 1, r1 + r2 + r3] , j ∈ [r1 + 1, r1 + r2] ∪ [r1 + r2 + r3 + 1, k] .

Since 0 < r < 1
2
, we have

−a
/√2σ2

n
< (3r − 2) a

/
2

√
2σ2

n
< −a

/
4

√
2σ2

n
,

and 0 < ra
/

2
√

2σ2

n
< a
/

4
√

2σ2

n
. Combining these two, one can obtain

−ra
/

2

√
2σ2

n
> −a

/
4

√
2σ2

n
> (3r − 2) a

/
2

√
2σ2

n
.

34



Hence, we can claim that

P
[
CD|µ0(r1, r2, r3, r4), σ2

]
≥ E

[
P

(
Yi ≤

ra/2√
2σ/
√
n
, i = 1, · · · , r1, r1 + r2 + r3 + 1, · · · , k

)
+P

(
− ra/2√

2σ/
√
n
≤ Yj ≤

ra/2√
2σ/
√
n
, j = r1 + 1, · · · , r1 + r2 + r3 + 1

)
− 1

]
.(3.2.4)

under LFC. Since N ≥ τ 2Um
/

(ra/2)2 w.p.1, which follows from the left hand side of (3.2.2),

then

inf
µ∈Ω(a)

P (CS) = E

[
P

(
Yi ≤

τU
1
2
m1√
2σ

, i = 1, · · · , r1, r1 + r2 + r3 + 1, · · · , k

)
(3.2.5)

+P

(
−τU

1
2
m1√
2σ
≤ Yj ≤

τU
1
2
m1√
2σ

, j = r1 + 1, · · · , r1 + r2 + r3 + 1

)

−1|Um1

]
.

Let

Ti =
Yi

U
1
2
mσ−1

,

i = 1, · · · , k, then (T1, T2, · · · , Tk) is distributed as k dimensional multivariate t with equicorrela-

tion = 1
2
, and the degree of freedom = (k + 1) (m− 1), so the (3.2.5) can be written as

inf
µ∈Ω(a)

P (CS) ≥ P

(
Ti ≤

τ√
2
, i = 1, · · · , r1, r1 + r2 + r3 + 1, · · · , k

)
(3.2.6)

+ P

(
− τ√

2
≤ Tj ≤

τ√
2
, j = r1 + 1, · · · , r1 + r2 + r3 + 1

)
− 1.

In other words, we determine τ = τ (m, k, P ∗) in such a way that

P

(
Ti ≤

τ√
2

)
+ P

(
− τ√

2
≤ Tj ≤

τ√
2

)
− 1 ≥ 2P

(
− τ√

2
≤ Tj ≤

τ√
2

)
− 1 = P ∗, (3.2.7)
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where i = 1, · · · , r1, r1 + r2 + r3 + 1, · · · , k, j = r1 + 1, · · · , r1 + r2 + r3 + 1.

This completes the proof of part (i). Actually, (3.2.7) is equivalent to determine τ =

τ (m, k, P ∗) by

P

(
− τ√

2
≤ Tj ≤

τ√
2

)
=
P ∗ + 1

2
,

which can be simplified as:

∫ τ√
2

− τ√
2

· · ·
∫ τ√

2

− τ√
2

Γ
(

1
2

(k′ + (k′ + 1) (m− 1))
) (

1 +
y′Σ−1

k′ y

(k′+1)(m−1)

)− 1
2

(k′+(k′+1)(m−1))

(π (k′ + 1) (m− 1))
1
2
k′ Γ

(
1
2

(k′ + 1) (m− 1)
)
|Σk′|

1
2

k′∏
i=1

dyi (3.2.8)

for j = r1 + 1, · · · , r1 + r2 + r3 + 1. The Σ′k is the k′ × k′ matrix defined by

Σ′k =




1 · · · 1

2

... . . . ...

1
2
· · · 1


r2×r2


−1

2
· · · −1

2

... . . . ...

−1
2
· · · −1

2


r2×r3

−1
2
· · · −1

2

... . . . ...

−1
2
· · · −1

2


r3×r2


1 · · · 1

2

... . . . ...

1
2
· · · 1


r3×r3


k′×k′

.

Here, k′ =
[
k
2

]
, r2 =

[
k′

2

]
, and r3 = k′ − r2, where where [x] equals x

2
if x is even and x+1

2
if x is

odd.

For part ( iv ), since N
1
2 (ra/2) → τU

1
2
m, w.p.1 as a → 0, from (3.2.4) and the dominated

convergency theorem, one obtains

lim
µ∈Ω(a)

inf P (CS) ≥ E

[
P

(
Yi ≤

τU
1
2
m√

2σ

)
+ P

(
−τU

1
2
m√

2σ
≤ Yj ≤

τU
1
2m√
2σ

)
− 1

]
(3.2.9)

i = 1, · · · , r1, r1 + r2 + r3 + 1, · · · , k, j = r1 + 1, · · · , r1 + r2 + r3 + 1, for all µ̃ ∈ Ω(a). Hence,

part ( iv ) follows from the (3.2.5)-(3.2.7).
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To get the design constant τ = τ(m, k, P ∗) as defined in (3.2.8), we have next provided the

values of hv = τ/
√

2 for P ∗ = 0.5, 0.75, 0.80, 0.90, 0.95, 0.99 when starting sample size m1 =

5, 10 in the Table (3.1) and (3.2). That is hv = hv(m, k, P
∗).

Table 3.1: Values of hv = hv (m, k, P ∗) as define in (3.2.8) with m = 5

k
P

0.50 0.75 0.80 0.90 0.95 0.99
1 1.240299 1.713294 1.859482 2.305932 2.751325 3.828689
2 1.240299 1.713294 1.859482 2.305932 2.751325 3.828689
3 1.404046 1.975402 2.106914 2.502561 2.885677 3.774655
4 1.404046 1.975402 2.106914 2.502561 2.885677 3.774655
5 1.693772 2.102810 2.226410 2.591934 2.942414 3.726125
6 1.693772 2.102810 2.226410 2.591934 2.942414 3.726125
7 1.792774 2.186051 2.303701 2.651128 2.979896 3.713427
8 1.792774 2.186051 2.303701 2.651128 2.979896 3.713427
9 1.865686 2.247297 2.361476 2.696991 3.014658 3.749320

10 1.865686 2.247297 2.361476 2.696991 3.014658 3.749320
11 1.923676 2.295958 2.153059 2.732687 3.040290 3.730431
12 1.923676 2.295958 2.153059 2.732687 3.040290 3.730431
13 1.970673 2.336380 2.445635 2.767066 3.064614 3.740755
14 1.970673 2.336380 2.445635 2.767066 3.064614 3.740755
15 2.011149 2.370211 2.482101 2.799736 3.092243 3.745842
16 2.011149 2.370211 2.482101 2.799736 3.092243 3.745842
17 2.045481 2.400764 2.506694 2.810381 3.094848 3.747565
18 2.045481 2.400764 2.506694 2.810381 3.094848 3.747565
19 2.075348 2.429809 2.530986 2.831065 3.095379 3.7490286
20 2.075348 2.429809 2.530986 2.831065 3.095379 3.7490286

3.3 Monte Carlo Simulation Study of the Two-Stage Procedure

In the Tables (3.3) and (3.4), the two-stage procedure (3.1.1) for the generalized partition procedure

is simulated under several configurations with starting sample sizem = 5, 10 to verify the LFC and

to confirm that the probability requirement (3.2.9) holds for all parametric configurations. Note

that the parametric configuration (2, 2, 2, 2) is the LFC, among all the parametric configuration sat-

isfying (2.1.1). In these Tables, we have fixed the value of σ = 9, (δ1, δ2, δ3, δ4) = (5, 15, 25, 35).

Note that n∗ is fixed as 58 for m = 5 and 52 for m = 10, and we only vary the location of the
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Table 3.2: Values of hv = hv (m, k, P ∗) as define in (3.2.8) with m = 10

k
P

0.50 0.75 0.80 0.90 0.95 0.99
1 1.188698 1.609074 1.734192 2.100932 2.445194 3.196301
2 1.188698 1.609074 1.734192 2.100932 2.445194 3.196301
3 1.491817 1.881897 1.997228 2.333527 2.645600 3.320333
4 1.491817 1.881897 1.997228 2.333527 2.645600 3.320333
5 1.649170 2.022076 2.131634 2.452495 2.746304 3.383865
6 1.649170 2.022076 2.131634 2.452495 2.746304 3.383865
7 1.752886 2.115749 2.222135 2.530575 2.814163 3.414983
8 1.752886 2.115749 2.222135 2.530575 2.814163 3.414983
9 1.829937 2.185211 2.288666 2.593141 2.863535 3.438544

10 1.829937 2.185211 2.288666 2.593141 2.863535 3.438544
11 1.890257 2.239930 2.342548 2.406209 2.906977 3.461548
12 1.890257 2.239930 2.342548 2.406209 2.906977 3.461548
13 1.940306 2.285121 2.385681 2.678166 2.942322 3.437621
14 1.940306 2.285121 2.385681 2.678166 2.942322 3.437621
15 1.981928 2.3261077 2.429161 2.701895 2.967613 3.461993
16 1.981928 2.3261077 2.429161 2.701895 2.967613 3.461993
17 2.019229 2.356830 2.455798 2.739006 3.002371 3.703326
18 2.019229 2.356830 2.455798 2.739006 3.002371 3.703326
19 2.051009 2.387428 2.483978 2.764590 3.017216 3.705109
20 2.051009 2.387428 2.483978 2.764590 3.017216 3.705109
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populations to confirm the LFC. The P̄ values shows that the configuration (2, 2, 2, 2) is clearly

the LFC and for all parametric configurations considered the P̄ value is above the target value of

P ∗ = 0.95. Also, the P̄ under m = 5 is over the value of P̄ under m = 10.

Table 3.3: Simulation results for different number of groups at each point with (δ1, δ2, δ3, δ4) =
(5, 15, 25, 35) with m = 5

(k1, k2, k3, k4) n∗ n̄ std (n̄) P̄ std
(
P̄
)

b
(2, 2, 2, 2) 58(57.54) 58.17 0.1912 0.9806 0.0020 2.979896
(1, 3, 3, 1) 58(57.54) 58.03 0.1912 0.9834 0.0018 2.979896
(3, 1, 1, 3) 58(57.54) 58.27 0.1914 0.9828 0.0018 2.979896
(1, 6, 1) 58(57.54) 58.28 0.1938 0.9952 0.0010 2.979896
(2, 4, 2) 58(57.54) 57.67 0.1887 0.9894 0.0014 2.979896

(4, 0, 0, 4) 58(57.54) 58.30 0.1955 0.9826 0.0018 2.979896

Table 3.4: Simulation results for different number of groups at each point with (δ1, δ2, δ3, δ4) =
(5, 15, 25, 35) with m = 10

(k1, k2, k3, k4) n∗ n̄ std (n̄) P̄ std
(
P̄
)

b
(2, 2, 2, 2) 52(51.32) 51.88 0.1142 0.9772 0.0021 2.814163
(1, 3, 3, 1) 52(51.32) 51.79 0.1130 0.9812 0.0019 2.814163
(3, 1, 1, 3) 52(51.32) 51.86 0.1118 0.9816 0.0019 2.814163
(1, 6, 1) 52(51.32) 51.93 0.1161 0.9934 0.0011 2.814163
(2, 4, 2) 52(51.32) 52.01 0.1146 0.9860 0.0017 2.814163

(4, 0, 0, 4) 52(51.32) 51.86 0.1126 0.9808 0.0019 2.814163

Next, in the Tables (3.5) - (3.10), we have further explored the configurations (2, 2, 2, 2),

(3, 1, 1, 3), (1, 3, 3, 1), (1, 6, 1), (2, 4, 2), (4, 0, 0, 4) with starting sample size m = 5, and in the

Tables (3.11) - (3.16) for the starting sample size m = 10. Define d as the distance from point

µ0 + δ1 to the point µ0 + δ3. In this tables, we have fixed the values of (δ1, δ2, d) = (10, 15, 15),

and we have varied the values of σ. Note that the parametric configuration (2, 2, 2, 2) is least favor-

able again, among all the parametric configurations considered satisfying (2.1.1). Also the average

value of probability of correct decision P̄ is above the target value of P ∗ = 0.95.

In the last two Tables (3.17) and (3.18), the LFC configuration (2, 2, 2, 2) is further explored

under (δ1, δ2, d) = (10, 12, 18) and (δ1, δ2, d) = (10, 18, 12) by varying the σ. The results of the
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Table 3.5: Simulation Result for (2, 2, 2, 2) with (δ1, δ2, d) = (10, 15, 15) with m = 5

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.84) 5.00 0.0008 0.9996 0.0003
2 12(11.37) 11.85 0.0379 0.9840 0.0018
3 26(25.57) 26.13 0.0849 0.9814 0.0019
4 46(45.46) 46.14 0.1502 0.9834 0.0018
5 71(70.03) 71.72 0.2413 0.9800 0.0020
6 103(102.30) 102.29 0.3397 0.9806 0.0020
7 140(139.23) 140.16 0.4677 0.9816 0.0019
8 182(181.85) 182.63 0.6017 0.9802 0.0020
9 230(230.16) 230.45 0.7649 0.9762 0.0022

10 284(284.15) 284.36 0.9524 0.9802 0.0020
12 409(409.18) 410.79 1.3531 0.9814 0.0019
14 557(556.94) 557.95 1.8787 0.9804 0.0020
16 728(727.43) 726.11 2.4407 0.9820 0.0019
20 1137(1136.61) 1138.32 3.7712 0.9808 0.0019

Table 3.6: Simulation Result for (3, 1, 1, 3) with (δ1, δ2, d) = (10, 15, 15) with m = 5

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.84) 5.00 0.0009 1.0000 0.0000
2 12(11.37) 11.86 0.0384 0.9850 0.0017
3 26(25.57) 26.18 0.0859 0.9848 0.0017
4 46(45.46) 46.25 0.1559 0.9864 0.0016
5 71(70.03) 71.47 0.2371 0.9818 0.0019
6 103(102.30) 103.22 0.3453 0.9830 0.0018
7 140(139.23) 139.47 0.4609 0.9822 0.0019
8 182(181.85) 182.94 0.6171 0.9846 0.0017
9 230(230.16) 229.98 0.7545 0.9824 0.0019

10 284(284.15) 283.40 0.9435 0.9848 0.0019
12 409(409.18) 408.03 1.3578 0.9830 0.0018
14 557(556.94) 561.21 1.8940 0.9834 0.0018
16 728(727.43) 556.17 1.8362 0.9822 0.0019
20 1137(1136.61) 1139.60 3.8720 0.9818 0.0019
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Table 3.7: Simulation Result for (1, 3, 3, 1) with (δ1, δ2, d) = (10, 15, 15) with m = 5

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.84) 5.00 0.0008 0.9998 0.0002
2 12(11.37) 11.90 0.0383 0.9852 0.0017
3 26(25.57) 26.02 0.0841 0.9842 0.0018
4 46(45.46) 46.03 0.1516 0.9848 0.0017
5 71(70.03) 71.65 0.2397 0.9834 0.0018
6 103(102.30) 103.07 0.3368 0.9840 0.0018
7 140(139.23) 140.16 0.4685 0.9828 0.0018
8 182(181.85) 183.23 0.6000 0.9842 0.0018
9 230(230.16) 230.17 0.7670 0.9846 0.0017

10 284(284.15) 284.79 0.9290 0.9838 0.0018
12 409(409.18) 409.91 1.3501 0.9826 0.0018
14 557(556.94) 558.02 1.8356 0.9818 0.0019
16 728(727.43) 726.59 2.4633 0.9836 0.0018
20 1137(1136.61) 1136.39 3.7768 0.9838 0.0018

Table 3.8: Simulation Result for (1, 6, 1) with (δ1, δ2, d) = (10, 15, 15) with m = 5

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.84) 5.01 0.0010 1.0000 0.0000
2 12(11.37) 11.81 0.0011 1.000 0.0000
3 26(25.57) 26.13 0.0374 0.9950 0.0010
4 46(45.46) 45.94 0.1502 0.9946 0.0010
5 71(70.03) 71.78 0.2377 0.9948 0.0010
6 103(102.30) 103.27 0.3287 0.9960 0.0009
7 140(139.23) 140.44 0.4635 0.9956 0.0009
8 182(181.85) 181.39 0.5935 0.9944 0.0010
9 230(230.16) 231.83 0.7702 0.9956 0.0009

10 284(284.15) 283.04 0.9599 0.9954 0.0010
12 409(409.18) 409.90 3.3596 0.9936 0.0011
14 557(556.94) 561.28 1.8437 0.9946 0.0010
16 728(727.43) 722.88 2.3701 0.9960 0.0009
20 1137(1136.61) 1143.46 2.8168 0.9952 0.0010
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Table 3.9: Simulation Result for (2, 4, 2) with (δ1, δ2, d) = (10, 15, 15) with m = 5

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.84) 5.00 0.0009 1.0000 0.0000
2 12(11.37) 11.88 0.0388 0.992 0.0013
3 26(25.57) 26.12 0.0861 0.9932 0.0012
4 46(45.46) 46.07 0.1508 0.9910 0.0013
5 71(70.03) 71.49 0.2377 0.9884 0.0015
6 103(102.30) 103.08 0.3445 0.9920 0.0013
7 140(139.23) 139.46 0.4684 0.9898 0.0014
8 182(181.85) 183.01 0.6075 0.9908 0.0014
9 230(230.16) 230.26 0.7629 0.9910 0.0013

10 284(284.15) 284.65 0.9701 0.9906 0.0013
12 409(409.18) 406.96 1.3591 0.9914 0.0013
14 557(556.94) 557.08 1.8404 0.9866 0.0016
16 728(727.43) 726.89 2.3692 0.9894 0.0014
20 1137(1136.61) 1141.74 3.8265 0.9902 0.0014

Table 3.10: Simulation Result for (4, 0, 0, 4) with (δ1, δ2, d) = (10, 15, 15) with m = 5

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.84) 5.00 0.0008 1.0000 0.0000
2 12(11.37) 11.87 0.0383 0.9858 0.0017
3 26(25.57) 25.94 0.0853 0.9840 0.0018
4 46(45.46) 46.04 0.1524 0.9858 0.0017
5 71(70.03) 71.44 0.2343 0.9832 0.0018
6 103(102.30) 102.60 0.3357 0.9816 0.0019
7 140(139.23) 139.75 0.4641 0.9820 0.0019
8 182(181.85) 182.40 0.6068 0.9850 0.0017
9 230(230.16) 230.82 0.7635 0.9838 0.0018

10 284(284.15) 284.43 0.9384 0.9836 0.0018
12 409(409.18) 409.14 1.3440 0.9840 0.0018
14 557(556.94) 555.58 1.8293 0.9830 0.0018
16 728(727.43) 727.75 2.4531 0.9842 0.0018
20 1137(1136.61) 1139.80 3.7612 0.9826 0.0018
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Table 3.11: Simulation Result for (2, 2, 2, 2) with (δ1, δ2, d) = (10, 15, 15) with m = 10

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.53) 10.00 0.0000 1.0000 0.0000
2 10(10.14) 10.99 0.0175 0.9854 0.0017
3 23(22.80) 23.32 0.0513 0.9772 0.0021
4 41(40.55) 41.15 0.0899 0.9770 0.0021
5 64(63.36) 63.99 0.1388 0.9764 0.0021
6 92(91.23) 91.75 0.1999 0.9788 0.0020
7 124(124.18) 124.78 0.2760 0.9766 0.0021
8 162(162.19) 162.66 0.3630 0.9784 0.0021
9 206(205.27) 205.38 0.4520 0.9790 0.0020

10 254(253.42) 253.92 0.5526 0.9758 0.0022
12 365(364.93) 365.44 0.8250 0.9776 0.0021
14 497(496.71) 497.13 1.1158 0.9758 0.0022
16 649(648.77) 647.30 1.4403 0.9780 0.0021
20 1014(1013.70) 1015.56 2.2501 0.9728 0.0023

Table 3.12: Simulation Result for (3, 1, 1, 3) with (δ1, δ2, d) = (10, 15, 15) with m = 10

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.53) 10.00 0.0000 1.0000 0.0000
2 10(10.14) 10.97 0.0170 0.9890 0.0015
3 23(22.80) 23.37 0.0512 0.9830 0.0018
4 41(40.55) 40.97 0.0895 0.9818 0.0019
5 64(63.36) 63.91 0.1410 0.9790 0.0020
6 92(91.23) 91.67 0.2034 0.9810 0.0019
7 124(124.18) 124.66 0.2762 0.9810 0.0019
8 162(162.19) 162.97 0.3548 0.9818 0.0019
9 206(205.27) 206.45 0.4622 0.9812 0.0019

10 254(253.42) 253.01 0.5452 0.9812 0.0019
12 365(364.93) 365.79 0.8084 0.9812 0.0019
14 497(496.71) 496.01 1.0894 0.9814 0.0019
16 649(648.77) 646.59 1.4315 0.9800 0.0020
20 1014(1013.70) 1012.11 2.2667 0.9772 0.0021
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Table 3.13: Simulation Result for (1, 3, 3, 1) with (δ1, δ2, d) = (10, 15, 15) with m = 10

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.53) 10.00 0.0000 1.0000 0.0000
2 10(10.14) 10.97 0.0171 0.9858 0.0017
3 23(22.80) 23.22 0.0503 0.9820 0.0019
4 41(40.55) 41.06 0.0900 0.9810 0.0019
5 64(63.36) 63.89 0.1401 0.9790 0.0020
6 92(91.23) 91.87 0.2043 0.9798 0.0020
7 124(124.18) 124.72 0.2746 0.9814 0.0019
8 162(162.19) 162.87 0.3592 0.9808 0.0019
9 206(205.27) 205.89 0.4491 0.9808 0.0019

10 254(253.42) 253.65 0.5667 9.9820 0.0019
12 365(364.93) 366.21 0.8269 0.9788 0.0020
14 497(496.71) 498.82 1.1090 0.9792 0.0020
16 649(648.77) 650.21 1.4233 0.9802 0.0020
20 1014(1013.70) 1012.39 2.2312 0.9764 0.0021

Table 3.14: Simulation Result for (1, 6, 1) with (δ1, δ2, d) = (10, 15, 15) with m = 10

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.53) 10.00 0.0000 1.0000 0.0000
2 10(10.14) 10.99 0.0174 0.9950 0.0010
3 23(22.80) 23.34 0.0503 0.9938 0.0011
4 41(40.55) 41.08 0.0900 0.9956 0.0009
5 64(63.36) 63.87 0.1409 0.9946 0.0010
6 92(91.23) 91.81 0.2067 0.9944 0.0010
7 124(124.18) 124.54 0.2736 0.9946 0.0010
8 162(162.19) 162.18 0.3634 0.9942 0.0011
9 206(205.27) 205.59 0.4622 0.9936 0.0011

10 254(253.42) 254.19 0.5515 0.9932 0.0012
12 365(364.93) 365.51 0.8178 0.9952 0.0009
14 497(496.71) 497.25 1.0977 0.9946 0.0010
16 649(648.77) 650.10 1.4291 0.9942 0.0011
20 1014(1013.70) 1019.13 2.2676 0.9942 0.0011
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Table 3.15: Simulation Result for (2, 4, 2) with (δ1, δ2, d) = (10, 15, 15) with m = 10

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.53) 10.00 0.0000 1.0000 0.0000
2 10(10.14) 10.99 0.0173 0.9918 0.0013
3 23(22.80) 23.30 0.0508 0.9910 0.0013
4 41(40.55) 41.07 0.0908 0.9876 0.0016
5 64(63.36) 63.73 0.1397 0.9888 0.0015
6 92(91.23) 91.65 0.1990 0.9864 0.0016
7 124(124.18) 124.84 0.2754 0.9876 0.0016
8 162(162.19) 162.88 0.3605 0.9922 0.0012
9 206(205.27) 206.25 0.4636 0.9876 0.0016

10 254(253.42) 253.00 0.5559 0.9904 0.0014
12 365(364.93) 365.94 0.8143 0.9862 0.0016
14 497(496.71) 495.78 1.1093 0.9870 0.0016
16 649(648.77) 650.68 1.4442 0.9872 0.0016
20 1014(1013.70) 1013.69 2.2622 0.9864 0.0016

Table 3.16: Simulation Result for (4, 0, 0, 4) with (δ1, δ2, d) = (10, 15, 15) with m = 10

std n∗ n̄ std (n̄) P̄ std
(
P̄
)

1 3(2.53) 10.00 0.0000 1.0000 0.0000
2 10(10.14) 10.98 0.0175 0.9868 0.0016
3 23(22.80) 23.36 0.0509 0.9846 0.0017
4 41(40.55) 41.10 0.0898 0.9792 0.0020
5 64(63.36) 63.87 0.1428 0.9800 0.0020
6 92(91.23) 91.82 0.2017 0.9804 0.0020
7 124(124.18) 124.70 0.2789 0.9798 0.0020
8 162(162.19) 163.05 0.3606 0.9810 0.0019
9 206(205.27) 205.53 0.4605 0.9800 0.0020

10 254(253.42) 253.21 0.5618 0.9792 0.0020
12 365(364.93) 366.53 0.8129 0.9834 0.0018
14 497(496.71) 496.86 1.1096 0.9772 0.0021
16 649(648.77) 649.87 1.4270 0.9800 0.0020
20 1014(1013.70) 1014.06 2.2349 0.9826 0.0018
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simulations are similar to the results obtained in the earlier Tables.

Table 3.17: Simulation Result for (2, 2, 2, 2) with (δ1, δ2, d) = (10, 12, 18)

starting sample std n∗ n̄ std (n̄) P̄ std
(
P̄
)

m=5 1 18(17.76) 18.19 0.0592 0.9830 0.0018
2 71(71.03) 71.95 0.2405 0.9838 0.0018
3 160(159.36) 160.22 0.5351 0.9828 0.0018
4 284(284.15) 284.27 0.9608 0.9804 0.0020
5 444(443.99) 445.57 1.5052 0.9802 0.0020
6 640(639.34) 641.26 2.1365 0.9820 0.0019
7 870(870.21) 870.16 2.9484 0.9820 0.0019
8 1137(1136.61) 1132.11 3.7346 0.9816 0.0019
9 1439(1438.52) 1447.64 4.9001 0.9836 0.0018
10 1776(1775.96) 1770.72 5.9065 0.9824 0.0019
12 2558(2557.38) 2558.28 8.4012 0.9830 0.0018
14 3481(3480.87) 3500.72 11.5976 0.9820 0.0019
16 4547(4546.45) 4541.79 15.3050 0.9880 0.0015
20 7104(7103.82) 7123.40 23.2683 0.9814 0.0019

m=10 1 16(15.84) 16.39 0.0360 0.9802 0.0020
2 64(63.36) 63.95 0.1422 0.9740 0.0023
3 143(142.55) 142.88 0.3170 0.9786 0.0020
4 254(253.42) 254.09 0.5751 0.9772 0.0021
5 396(395.98) 396.16 0.8719 0.9782 0.0021
6 571(570.20) 571.90 1.2631 0.9786 0.0020
7 776(776.11) 777.90 1.7084 0.9772 0.0021
8 1014(1013.70) 1011.00 2.2409 0.9760 0.0022
9 1283(1282.96) 1278.94 2.8283 0.9754 0.0022
10 1583(1583.90) 1579.39 3.4873 0.9768 0.0021
12 2281(2280.82) 2273.33 4.9799 0.9796 0.0020
14 3105(3104.45) 3115.03 7.0656 0.9792 0.0020
16 4055(4054.79) 4063.83 8.8890 0.9768 0.0021
20 6336(6335.61) 6310.97 14.4452 0.980 0.0020
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Table 3.18: Simulation Result for (2, 2, 2, 2) with (δ1, δ2, d) = (10, 18, 12)

starting sample std n∗ n̄ std (n̄) P̄ std
(
P̄
)

m=5 1 1(1.11) 5.00 0.0000 1.0000 0.0000
2 5(4.44) 5.40 0.0099 0.9954 0.0010
3 10(9.99) 10.51 0.0339 0.9884 0.0015
4 18(17.76) 18.26 0.0595 0.9838 0.0018
5 28(27.75) 28.06 0.0919 0.9844 0.0018
6 40(39.96) 40.54 0.1326 0.9828 0.0018
7 55(54.39) 54.83 0.1810 0.9854 0.0017
8 71(71.04) 71.73 0.2399 0.9840 0.0018
9 90(89.91) 90.22 0.3010 0.9874 0.0016
10 111(110.99) 111.88 0.3710 0.9844 0.0018
12 160(159.84) 160.35 0.5279 0.9824 0.0019
14 218(217.55) 217.41 0.7335 0.9830 0.0018
16 284(284.15) 285.05 0.9482 0.9828 0.0018
20 444(443.99) 445.56 1.4894 0.9844 0.0018

m=10 1 1(0.99) 5.00 0.0000 1.0000 0.0000
2 4(3.96) 5.38 0.0098 0.9936 0.0011
3 9(8.91) 10.32 0.0101 0.9898 0.0014
4 16(15.84) 16.35 0.0360 0.9792 0.0020
5 25(24.75) 25.24 0.0548 0.9796 0.0020
6 36(35.64) 36.15 0.0791 0.9778 0.0021
7 48(48.51) 49.10 0.1081 0.9744 0.0022
8 64(63.36) 63.84 0.1413 0.9776 0.0021
9 80(80.19) 80.75 0.1797 0.9780 0.0021
10 99(98.99) 99.28 0.2195 0.9776 0.0021
12 143(142.55) 143.31 0.3177 0.9750 0.0022
14 194(194.03) 194.85 0.4367 0.9788 0.0020
16 254(253.42) 254.53 0.5576 0.9770 0.0021
20 396(395.97) 395.11 0.8894 0.9780 0.0021
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Chapter 4

A Nonparametric Procedure

4.1 Introduction

In the Chapters 1-3, we have focused on partitioning a set of normally distributed populations with

respect to a control. In this Chapter, we will generalize the assumption of the normality of the

distribution by not assuming that the populations are from a known distribution. In order for the

partition problem to be well defined, we will assume that the distributions are symmetric.

Let π0, π1, π2, · · · , πk, (with π0 as the standard or the control population) denote k + 1 inde-

pendent populations with cumulative distribution function F (x−∆0), F (x−∆1), · · · , F (x−∆k)

respectively. Note that the cumulative distribution function F (x) is assumed to be continuous and

symmetric with ∆0, ∆1, · · · , ∆k are the centers of symmetry of the respective distribution. Here,

the function F (x) and the parameters ∆0, ∆1, · · · , ∆k are all assumed to be unknown. The prob-

lem considered in this chapter is to partition all k populations as “Good” and “Bad” populations

by comparing the comparing the centers of symmetry ∆i, i = 1, · · · , k with the control popula-

tion ∆0. We will require that the partition satisfies a pre specified probability of correct decision

(CD), P ∗, 2−k < P ∗ < 1. Denote Λ as a subclass of continuous and symmetric distribution sat-

isfying certain regularity conditions to be specified later, and Ω as the set of all populations with

ω = (∆1,∆2, · · · ,∆k). In this chapter, we will construct a purely sequential procedure which

satisfies the requirement lim inf P (CD) > P ∗ for all ω ∈ Ω and all F ∈ Λ. Given two arbitrary

but fixed numbers δ1, δ2, and δ1 < δ2, as in Tong (1969), let us denote the three subsets for Ω along
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the lines of Bechhofer’s (1954) indifference-zone formulation as:


ΩL = {πi : ∆i ≤ ∆0 + δ1}

ΩM = {πi : ∆0 + δ1 < ∆i < ∆0 + δ2}

ΩR = {πi : ∆i ≥ ∆0 + δ2.}

(4.1.1)

Note that, as in chapter 1, ΩL is the set of “Bad” populations, ΩR is the set of “Good” popula-

tions, and ΩM is set of “Indifferent” populations.

Having recorded an independent sample of size n, Xi1, Xi2, · · · , Xin from πi, an appropriate

statistic Li (n) is proposed to estimate the center of symmetry ∆i, where it is assumed that Li (n)

has aN (∆i, 1/(nA2)), as n→∞ for i = 1, · · · , k, F ∈ Λ. HereA is a finite and positive function

of F . For the literature of nonparametric procedures in the area of selecting the best population the

reader is refereed to Geertsema (1972) and Mukhopadhay and Solanky (1993). In Mukhopadhay

and Solanky (1993) the authors constructed a nonparametric accelerated sequential procedure to

select the population with the largest center of symmetry.

A natural decision rule will be to compare each ofLi(n), i = 1, · · · , k, withL0(n) and partition

according to the rule:

 PL = {πi : Li(n)− L0(n) < d, i = 1, · · · , k}

PR = {πi : Li(n)− L0(n) ≥ d, i = 1, · · · , k},
(4.1.2)

where d = (δ1 + δ2)/2. we write δ∗ = (δ2 − δ1)/2. Along the lines of Geertsema (1972) and

Mukhopadhyay anf Solanky (1993) we will assume that the following regularity conditions are

satisfied by the distribution and the stopping rule which determines the sample size N : noindent

Assumptions: For all ω(δ∗) ∈ Ω and F ∈ Λ

1. n1/2 (Li (n)−∆i) = A−1Zi (n) + o (1) a.s. as n → ∞ where Zi (n) is a standardized

average of independent and identically distributed random variables having finite second
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moment and 0 < A = A (F ) <∞.

2. limS2
n = A−2 a.s. as n→∞.

3. The set {δ2N (δ) : δ > 0} is uniformly integral.

4.2 Nonparametric Purely Sequential Procedure

First we will construct a purely sequential procedure which has the desired property that

lim inf P (CD) ≥ P ∗ whenever θ ∈ Ω(δ∗) and F ∈ Λ, as δ∗ → 0. Next, following the

steps from Chapter 2, one can derive that P (CD) is asymptotically (as δ∗ → ∞) at least P ∗ if

n ≥ n∗ = 2b2(Aδ∗)−2, where “b” is a constant which depends on the values of k and P ∗. The

values of constant b = b(k, P ∗) have been tabulated in Tong (1969) and also in Solanky and Wu

(2004). However, not that n∗ defined above is unknown since A is unknown. In order to overcome

this, we have constructed a purely sequential procedure. The purely sequential procedure starts

with m (a suitable positive integer) observations from each population πi, i = 0, 1, · · · , k. And,

we continue sampling one observation at a time according to the taking stopping rule:

N = N (δ∗) = inf
{
n ≥ m : n ≥ 2b2S2

n

/
δ∗2
}

(4.2.3)

where S2
n is an appropriately defined estimator of A based on the control and all k populations.

Note that the estimator S2
n depends on the choice of the nonparametric estimator being used to

estimate the center of symmetry ∆i, i = 0, 1, · · · , k. Next, we provide a therem to summarize the

basic properties of the purely sequential procedure.

Theorem 5 Under the Assumptions described above, the purely sequential procedure satisfies the

following properties for all ω (δ∗) ∈ Ω and F ∈ Λ:

1. N (δ∗)→∞ monotonically as δ∗ → 0 a.s..

2. E (N (δ∗))→∞ as δ∗ → 0.
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3. lim δ∗2N (δ∗) = 2b2/A2 a.s..

4. lim inf P (CD) ≥ P ∗ as δ∗ → 0.

Proof. First we introduce an estimator for the center of symmetry. Let Li(n) be the Hodges-

Lehmann estimator for the center of symmetry of the ith population based on n observation, i.e.,

the sample median of the n (n+ 1)/2 quantiles (Xij +Xij′)/2 for j ≤ j′, j, j′ = 1, · · · , n;

i = 0, 1, · · · , k. Choose the following estimator of A−2

S2
n =

n((k+1)K2
α)
−1

4

k∑
i=0

(
Wn,a(n) (i)−Wn,b(n) (i)

)2
. (4.2.4)

Where Wn,1 (i) ≤ Wn,2 (i) ≤ · · · ≤ Wn,n(n+1)/2 (i) are the ordered (Xij +Xij′)/2 for 1 ≤ j ≤

j′ ≤ n and for i = 0, 1, · · · , k. The sequence {a (n)} and {b (n)} are now given by

b (n) = max
{

1,
[
n (n+ 1)/4−Kα (n (n+ 1) (2n+ 1)/24)

1
2

]}
a (n) = n (n+ 1)/2− b (n) + 1 (4.2.5)

here [x] is the largest integer less than or equal to x. Kα is defined by φ (Kα) = 1 − α for

some 1/2 < α < 1. It is well known in the statistical literature that Li(n), the Hodges-Lehmann

estimator, is a consistent estimator of the center of symmetry.

Next, note that N(δ∗1) ≥ N(δ∗2) w.p. 1 if 0 < δ∗1 < δ∗2 , that is N(δ∗) is nondecreasing in

δ∗. Now the assumption 1.1 will lead to part (1). Part (2) follows by applying the monotone

convergence theorem. Since the stopping rule is

N (δ∗) = inf
{
n ≥ m0 : n ≥ 2b2S2

n

/
δ∗2
}
,
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then the basic inequality (2.4.3) for proof of theorem 2.4.1 in Mukhopadhyay and Solanky (1994)

simplifies to

2b2S2
n

/
δ∗2 ≤ N ≤ m0 + 2b2S2

n−1

/
δ∗2. (4.2.6)

Now multiply δ∗2 through out (4.2.6) and take limits as δ∗ → 0, this leads to part (3). For the

population πi, statistic Li(N) is proposed to estimate ∆i. For θ ∈ Ω(δ∗), we have

P
(
CD|µ0 (r) , σ2, R

)
= P {Li (N)− L0 (N) < d, 0 < i ≤ r;Lj (N)− L0 (N) ≥ d, r < j ≤ k}

= P

{
((Li (N)−∆i)− (L0 (N)−∆0))

√
n∗A√

2
< (d− (∆i −∆0))

√
n∗A√

2
, 0 < i ≤ r;

((Lj (N)−∆j)− (L0 (N)−∆0))

√
n∗A√

2
≥ (d− (∆j −∆0))

√
n∗A√

2
, r < j ≤ k

}
= P

{
Zi − Z0√

2
<

√
n∗Aδ∗√

2
, 0 < i ≤ r;

Zj − Z0√
2
≥ −
√
n∗Aδ∗√

2
, r < j ≤ k

}
= P

{
Yi (N) ≤

√
n∗Aδ∗√

2
, i = 1, · · · , k

}
(4.2.7)

Where

Zi(N) =
√
n∗A (Li(N)−∆i)

for i = 1, . . . , k,

Yi(N) =
Zi(N)− Z0(N)

2
, Yj(N) =

Z0(N)− Zj(N)

2

for 0 < i ≤ r, r < j ≤ k. If we define the (k × k) covariance matrix Σr = (σij) by

σij = 1, for i = j;

=
1

2
, for 0 < i, j ≤ r or r < i, j ≤ k;

= −1

2
, for 0 < i ≤ r and r < j ≤ k.
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then

P
(
CD|µ0 (r) , σ2, R

)
=

∫ √
n∗Aδ∗√

2

−∞
· · ·
∫ √

n∗Aδ∗√
2

−∞
(2π)−

k
2 |Σr|−

k
2 exp

(
−1

2
y′Σ−1

r y

) k∏
i=1

dyi

(4.2.8)

Equation (4.2.8) gives the infimum of the P (CD) under R for the set of all configurations such

that there are r populations from ΩL (Bad populations) and (k − r) populations from ΩR (Good

populations). The rhs of (4.2.8) achieves a minimum over all r (0 < r ≤ k) under the LFC.

Let b = b(P, k) be the solution of the equation

P =

∫ b

−∞

∫ b

−∞
· · ·
∫ b

−∞
(2π)−

k
2 |Σk|−

k
2 exp

(
−1

2
y′Σ−1

k y

) k∏
i=1

dyi

Also, for any real number c and q, let

Pq (c) =

∫ c

−∞

∫ c

−∞
· · ·
∫ c

−∞
(2π)−

q
2 |Σq|−

q
2 exp

(
−1

2
y′Σ−1

q y

) q∏
i=1

dyi (4.2.9)

where the (q × q) covariance matrix Σq = (σij) is such that

σij = 1, for i = j;

=
1

2
, for i 6= j.

Define

A = [Yi ≤ b, i = 1, · · · , r]

B = [Yi ≤ b, i = r + 1, · · · , k]

then

Pr (b)+Pk−r (b) = 1+P ∗ ⇒ P (A ∩B) = P {Yi (N) ≤ b, i = 1, · · · , k} = P
(
CD|µ0 (r) , σ2, R

)
≥ P ∗
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i.e. lim inf P (CD) ≥ P ∗, which is the part (4). This completes the proof of the theorem.

4.3 Mote Carlo Simulation Results

In our simulation study, we considered k = 8 independent populations and one control population.

To construct the LFC, we generated 4 populations with the center of symmetry equal to µ0 − δ,

and remaining 4 populations are generated to have the center of symmetry as µ0 + δ. The control

population is generated to have the center of symmetry as µ0. Without loss of generality, we set

µ0 = 0. For k = 8 and P ∗ = .95, the value of the constant b equals 2.44177 from Solanky and Wu

(2004). Next, we considered the following symmetric distributions: normal distribution, Laplace

distribution, t-distribution, uniform distribution, and mixture of two normal distributions. For these

distributions, the parameter A2 is given by

A2 = 12

(∫
f 2 (x)dx

)2

f (x) is the density function for normal distribution, Laplace distribution, t-distribution, uni-

form distribution and mixture of two normal distributions,respectably. In our simulations,

Normal (0, 1), the Laplace distribution with µ = 0, b =
√

2/2, t-distribution with df = 5,

U (−1, 1), and two mixed normal distribution: 0.35N (x1; 0, 1)+0.65N (x2; 0, 2) and 0.8N (x1; 0, 1)+

0.2N (x2; 0, 5) were used here.

A2
Normal = 12

(∫ +∞

−∞

(
1√
2π
e−

x2

2

)2

dx

)2

= 12

(∫ +∞

−∞

1

2π
e−x

2

dx

)2

= 0.9549

A2
Laplace = 12

(∫ +∞

−∞

(
1√
2
e−
√

2|x|
)2

dx

)2

= 12

(∫ +∞

−∞

1

2
e−2
√

2|x|dx

)2

= 1.5

A2
Uniform = 12

(∫ 1

−1

(
1

b− a

)2

dx

)2

= 12

(∫ 1

−1

(
1

2

)2

dx

)2

= 3
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A2
t = 12

∫ +∞

−∞

(
Γ
(
v+1

2

)
√
vπΓ

(
v
2

) (1 +
x2

v

)− v+1
2

)2

dx

2∣∣∣∣∣∣
v=5

= 0.7447

A2
Mixed1 = 12

(∫ +∞

−∞

(
0.35

1√
2π
e−

x2

2 + 0.65
1

2
√

2π
e−

x2

2·22

)2

dx

)2

= 0.3689

A2
Mixed2 = 12

(∫ +∞

−∞

(
0.80

1√
2π
e−

x2

2 + 0.20
1

5
√

2π
e−

x2

2·52

)2

dx

)2

= 0.5183

After, we obtained the value of the A2 for each distribution, the value of δ was determined

by δ =
√

2b2

n∗A2 . The values of n∗ which we selected were 50, 100, 200, 400, and 800. For each

value of n∗, the corresponding value of δ was obtained and those values have been summarized in

the Tables (4.1) to (4.6). As described earlier, the estimator S2
n as described in (4.2.4) is used to

estimate the unknown parameter A−2. Note that the purely sequential rule does not rely upon the

knowledge of A2.

Next, we generated data from the normal distribution with σ = 1, Laplace distribution with

λ =
√

2
/

2, t-distribution with df = 5, uniform distribution, two mixed normal distribution given

by 0.35N (x1; 0, 1)+0.65N (x2; 0, 2) and 0.8N (x1; 0, 1)+0.2N (x2; 0, 5), respectively. Recall that

from the section 4.3, the Hodges-Lehmann estimator holds for 1/2 < α < 1. In the simulations

we have considered several possible choices of the α and studied the impact of α on the estimation

of A2. The simulation results are reported in the Tables (4.1) - (4.6).

Table 4.1: Simulation Results for Normal distribution with σ = 1

α δ n∗ n̄ std (n̄) P̄ std
(
P̄
)

0.75

0.499 50 52.050 0.143 0.867 0.011
0.353 100 102.298 0.189 0.870 0.011
0.250 200 202.597 0.263 0.870 0.011
0.177 400 402.507 0.376 0.877 0.010
0.125 800 803.636 0.492 0.847 0.011

0.85

0.499 50 52.958 0.122 0.865 0.011
0.353 100 103.046 0.180 0.865 0.011
0.250 200 203.638 0.255 0.855 0.011
0.177 400 403.382 0.365 0.857 0.011
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From the Tables (4.1) and (4.2), note that the purely sequential procedure (4.2.3) is over sam-

pling by roughly 2-3 observation when the population is normally distributed and by just below 10

observations for the Laplace distribution. Also, note that the estimated probability of correct selec-

tion is below the target value of .95 for the normal case. However, for the Laplace distribution, the

estimated probability of correct selection matches the target value of .95 quite well. This feature of

the statistical estimation should not come as a surprise. The Hodges-Lehmann estimator is more

appropriate when the distribution has tails longer than normal distribution tails. That is, when

the distribution is close to being normally distributed then the partition procedures designed for

normally distributed populations, such as the ones described in the Chapters 1-3 work quite well.

However, if the tails are significantly longer than the normal tails, like for the Laplace distribution,

then the nonparametric partition procedures are more appropriate.

Table 4.2: Simulation Results for Laplace distribution with λ =
√

2
2

α δ n∗ n̄ std (n̄) P̄ std
(
P̄
)

0.75

0.399 50 55.570 0.183 0.970 0.005
0.282 100 106.486 0.264 0.978 0.005
0.199 200 206.231 0.351 0.969 0.005
0.141 400 408.060 0.514 0.975 0.005
0.099 800 808.374 0.687 0.975 0.005

0.85

0.399 50 56.872 0.175 0.976 0.005
0.282 100 107.685 0.244 0.975 0.005
0.199 200 207.481 0.347 0.978 0.005
0.141 400 409.598 0.505 0.969 0.006

In the Table (4.3), the underlying distribution is t-distribution with 5 degrees of freedom. The

distribution has tails longer than a normal distribution but shorter than the Laplace distribution.

Note that the estimated probability of correct selection is somewhat below the target value of .95

for smaller values of α. However, as α increases the estimated probability of correct selection is

approaching the target value of .95.

Next, we have considered the Uniform distribution case which have tails even shorter than the

normal tails. One will note that the estimated probability of correct selection is well below the
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Table 4.3: Simulation Results for T-distribution with df = 5

α δ n∗ n̄ std (n̄) P̄ std
(
P̄
)

0.75

0.566 50 52.981 0.159 0.896 0.010
0.400 100 103.358 0.224 0.898 0.010
0.283 200 202.923 0.269 0.893 0.010
0.200 400 403.129 0.423 0.901 0.009

0.85

0.566 50 54.494 0.147 0.901 0.009
0.400 100 104.488 0.209 0.909 0.009
0.283 200 204.676 0.293 0.913 0.009
0.200 400 404.660 0.413 0.918 0.009

0.90
0.566 50 54.605 0.144 0.928 0.008
0.400 100 105.242 0.213 0.893 0.010
0.283 200 204.816 0.280 0.913 0.009

0.95
0.566 50 55.769 0.135 0.929 0.008
0.400 100 105.988 0.208 0.912 0.009
0.283 200 205.799 0.279 0.926 0.008

Table 4.4: Simulation Results for Uniform distribution

α δ n∗ n̄ std (n̄) P̄ std
(
P̄
)

0.60
0.282 50 42.792 0.564 0.487 0.016
0.199 100 104.732 0.409 0.599 0.016
0.141 200 210.747 0.236 0.621 0.015

0.75
0.282 50 56.769 0.117 0.641 0.015
0.199 100 110.106 0.129 0.64 0.015
0.141 200 214.045 0.175 0.62 0.015

0.85
0.282 50 58.122 0.094 0.653 0.015
0.199 100 111.698 0.114 0.610 0.015
0.141 200 216.071 0.146 0.604 0.015

0.99
0.282 50 63.737 0.070 0.719 0.014
0.199 100 118.374 0.089 0.648 0.015
0.141 200 224.796 0.119 0.654 0.015

target value of .95. This feature is again along the lines of comments made earlier in this section

about the Hodges-Lehmann estimator being more appropriate when the distribution has tails longer

than normal distribution tails.

Next, we have considered the mixture of two normal populations. In the first case, we have

considered the 0.35N (x1; 0, 1)+0.65N (x2; 0, 2) which is mixture of two normal populations with
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Table 4.5: Simulation Results for Mixture of two normal distributions: X = 0.35N (x1; 0, 1) +
0.65N (x2; 0, 2)

α δ n∗ n̄ std (n̄) P̄ std
(
P̄
)

0.75
0.804 50 52.859 0.162 0.903 0.009
0.569 100 103.243 0.213 0.905 0.009
0.402 200 203.962 0.303 0.911 0.009

0.85
0.804 50 53.685 0.140 0.916 0.007
0.569 100 104.216 0.216 0.926 0.008
0.402 200 204.205 0.285 0.912 0.009

0.90
0.804 50 54.817 0.143 0.909 0.009
0.569 100 104.823 0.203 0.902 0.009
0.402 200 204.928 0.290 0.900 0.009

0.95
0.804 50 55.676 0.142 0.928 0.008
0.569 100 105.801 0.202 0.918 0.009
0.402 200 206.601 0.271 0.913 0.009

somewhat long tails. The first population is the mixture has variance 1 and the second has variance

of 2. In the second mixture of the two normal populations considered, we have 0.8N (x1; 0, 1) +

0.2N (x2; 0, 5). This second mixture has two normal populations again, but the two variances

being 1 and 5 respectively, are farther apart. Intuitively, these two mixture cases are symmetric but

are not unimodal like normal distribution or other distributions considered earlier. The two Tables

below again exhibit the same behavior, the longer the tails, the better is the performance of the

Hodges-Lehmann estimator.

4.4 An Example

In this section, we study the performance of the nonparametric sequential procedure via an a real-

world data set. Zelazo et al. (1972) conducted a pilot investigation to see if active exercise can

preserve the walking beyond the 2nd month. In this experiment, newborn children were randomly

placed into one of four treatment groups: (1) Active exercise group; (2) Passive exercise group;

(3) No exercise group (these were observed weekly); and (4) Control group (observed once after 8

weeks). Traditional 12 months has been known as the mean time infants take to walk. The statisti-
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Table 4.6: Simulation Results for Mixture of two normal distributions: X = 0.8N (x1; 0, 1) +
0.2N (x2; 0, 5)

α δ n∗ n̄ std (n̄) P̄ std
(
P̄
)

0.75
0.678 50 54.424 0.187 0.952 0.007
0.480 100 104.593 0.259 0.935 0.008
0.339 200 205.031 0.351 0.932 0.008

0.85

0.678 50 55.826 0.169 0.934 0.008
0.450 100 106.334 0.254 0.926 0.008
0.339 200 206.534 0.332 0.933 0.008
0.240 400 406.497 0.486 0.942 0.007

0.90
0.678 50 56.762 0.177 0.955 0.007
0.480 100 106.746 0.244 0.924 0.008
0.339 200 207.888 0.351 0.935 0.008

0.95
0.678 50 58.671 0.173 0.959 0.006
0.480 100 108.742 0.235 0.947 0.007
0.339 200 208.019 0.332 0.931 0.008

cal analysis confirmed that the walking-data is normally distributed with somewhat equal variance.

Adopting a 12.5% improvement as significant and anything else than 8% as not significant. We

took δ1 = −1.5 months, δ2 = −1.0 months, k = 3, and the starting sample size m = 5.

Table 4.7: Comparison of various Statistical Methodologies

Procedure simulated sample size
Two-stage 71
Purely Sequential 66
Seq-Elimination-type 43
Two-stage with Elimination 201
Nonparametric Sequential 42 (α = 0.75)

52 (α = 0.80)
53 (α = 0.85)
60 (α = 0.90)
67 (α = 0.95)

The data was analyzed via the following five procedures: (1) Two-stage procedure of Tong

(1969); (2) Purely sequential procedure of Datta and Mukhopadhyay (1998); (3) Sequential

elimination-type procedure of Solanky (2001); (4) Two-stage with elimination procedure of

Solanky (2006); (5) Nonparametric sequential procedure proposed in this thesis. Additional sam-
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ples as needed were generated via SRSWR and saved to have same data for all five procedures.

Note that all the five sampling methodologies yielded the same result, that is, the active exercise

group was partitioned as better than control, the passive and no exercise group were partitioned as

bad compared to the control since the improvement was lower than 8%. The sample size for these

five methodologies is reported in the Table above. One will note that for this example:

1. The sample size was somewhat larger for nonparametric sequential procedure. And, it in-

creased further when the parameter α was increased. However, this was quite expected since

the data is normally distributed in this case and the procedures based on normal distribution

assumption are bound to perform better. Note that from the simulations, the true advantage

of the non parametric procedure is when the data is not normal and has long tails.

2. The two-stage procedure with elimination needed much more samples than other methods.

Again, this is not unexpected. The elimination type procedure is designed to eliminate non-

competing populations early enough during the sampling process. And, if there are no non-

competing populations than the two-stage procedure with elimination is unable to eliminate

any population early enough to reduce the overall sample size.

To conclude, the partition procedures based on the normal distribution are quite robust and

hence are recommended when the populations are normally distributed. However, if the distribu-

tion has tails much longer than the normal tails then the nonparametric partition procedures, such

as one based on the Hodges-Lehmann estimator, are shown to be more appropriate.
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Appendix A

R Source Code for Single-stage Procedure

SingleStage<-function(cc){

kk<-8

q1<-4

q2<-0

q3<-0

q4<-4

delta1<-5

std<-1

bb<- 2.6959

csize<-1

itersize<-20000

pvalue<-rep(1.,itersize)

dd <- 2*sqrt(2) * std * bb/sqrt(cc)

cat("q1=",q1,"q2=",q2,"q3=",q3,"q4=",q4,"\n")

cat("bb=",bb,"\n")

cat("standard deviation for each group=",std,"\n")

cat("delta1=",delta1,"dd=",dd,"\n")

cat("No. of Iterations=",itersize,"\n")

cat("kk=",kk,"control size=",csize,"\n")

for(iter in 1:itersize){

m1<-rep(0.,kk)

pzeromean<-rep(0.,csize)

mdat <- matrix(rnorm(kk*cc,0,1), nrow = cc, ncol=kk, byrow=TRUE)

pzero <- matrix(rnorm(csize*cc,0,1), nrow = cc, ncol=csize, byrow=TRUE)

for(j1 in 1:q1){

mdat[,j1]<-std*mdat[,j1]+delta1}

for(j2 in (q1+1):(q1+q2)){

mdat[,j2]<-std*mdat[,j2]+delta1+dd}

for(j3 in (q1+q2+1):(q1+q2+q3)){
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mdat[,j3]<-std*mdat[,j3]+delta1+2*dd}

for(j4 in (q1+q2+q3+1):kk){

mdat[,j4]<-std*mdat[,j4]+delta1+3*dd}

#for(j2 in (q1+1):(q1+q2)){

#mdat[,j2]<-std*mdat[,j2]+delta1+1.5*dd}

for(j in 1:csize){

pzero[,j]<-std*pzero[,j]}

ones <- rep(1., cc)

onescsize <- rep(1.,csize)

#computation of means

for(j in 1:kk){

m1[j]<-(1/cc)*t(ones)%*% mdat[,j]}

for(j in 1:csize){

pzeromean[j]<-(1/cc)*t(ones)%*% pzero[,j]}

pzeromeanallc<-(1/csize)*t(onescsize)%*% pzeromean

for(j1 in 1:q1){

if((m1[j1]-pzeromeanallc)>(delta1+dd/2)) pvalue[iter]<-0}

for(j2 in (q1+1):(q1+q2)){

if((m1[j2]-pzeromeanallc)<(delta1+dd/2) | (m1[j2]-pzeromeanallc)>(delta1+5*dd/2)) pvalue[iter]<-0}

for(j3 in (q1+q2+1):(q1+q2+q3)){

if((m1[j3]-pzeromeanallc)<(delta1+dd/2) | (m1[j3]-pzeromeanallc)>(delta1+5*dd/2)) pvalue[iter]<-0}

for(j4 in (q1+q2+q3+1):kk){

if((m1[j4]-pzeromeanallc)<(delta1+5*dd/2)) pvalue[iter]<-0}

}

pbar <- mean(pvalue)

pvar <- var(pvalue)

pstdev <- pvar^(0.5)/(itersize)^0.5

cat(" cc ", " pbar ", " s(pbar) ","\n")

cat(cc, " ", pbar," ", pstdev,"\n")

itersize

}
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Appendix B

R Source Code for Purely Sequential Procedure

Sequential<-function(cc){

#...you need to enter the optimal sample size to run it

kk<-8

q1<-2

q2<-2

q3<-2

q4<-2

delta1<-5

std<-1

bb<- 2.6959

csize<-1

itersize<-5000

nvalue<-rep(0.,itersize)

pvalue<-rep(1.,itersize)

dd <- 2*sqrt(2) * std * bb/sqrt(cc)

cat("q1=",q1,"q2=",q2,"q3=",q3,"q4=",q4,"\n")

cat("bb=",bb,"\n")

cat("standard deviation for each group=",std,"\n")

cat("delta1=",delta1,"dd=",dd,"\n")

cat("No. of Iterations=",itersize,"\n")

cat("kk=",kk,"control size=",csize,"\n")

for(iter in 1:itersize){

m1<-rep(0.,kk)

pzeromean<-rep(0.,csize)

v1<-rep(0.,kk)

vcontrol<-rep(0.,csize)

totalsize<-2*cc

mdat <- matrix(rnorm(kk*totalsize,0,1), nrow = totalsize, ncol=kk, byrow=TRUE)
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pzerofull <- matrix(rnorm(csize*totalsize,0,1), nrow = totalsize, ncol=csize, byrow=TRUE)

for(j1 in 1:q1){

mdat[,j1]<-std*mdat[,j1]+delta1}

for(j2 in (q1+1):(q1+q2)){

mdat[,j2]<-std*mdat[,j2]+delta1+dd}

for(j3 in (q1+q2+1):(q1+q2+q3)){

mdat[,j3]<-std*mdat[,j3]+delta1+2*dd}

for(j4 in (q1+q2+q3+1):kk){

mdat[,j4]<-std*mdat[,j4]+delta1+3*dd }

#for(j2 in (q1+1):(q1+q2)){

#mdat[,j2]<-std*mdat[,j2]+delta1+1.5*dd}

for(j in 1:csize){

pzerofull[,j]<-std*pzerofull[,j]}

for(n1 in 10:totalsize){

xdat <- matrix(0, nrow = n1, ncol=kk, byrow=TRUE)

pzero <- matrix(0, nrow = n1, ncol=csize, byrow=TRUE)

for(i in 1:n1){

for(j in 1:kk){

xdat[i,j]<-mdat[i,j]}}

for(i in 1:n1){

for(j in 1:csize){

pzero[i,j]<-pzerofull[i,j]}}

ones <- rep(1., n1)

oneskk <- rep(1., kk)

onescsize <- rep(1.,csize)

for(j in 1:kk){

m1[j]<-(1/n1)*t(ones)%*% xdat[,j]}

for(j in 1:csize){

pzeromean[j]<-(1/n1)*t(ones)%*% pzero[,j]}

pzeromeanallc<-(1/csize)*t(onescsize)%*% pzeromean

#for population groups

for(j in 1:kk){

v1[j]<-t(xdat[,j]-m1[j]) %*% (xdat[,j]-m1[j])

}
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v1<-v1/(n1-1)

for(j in 1:csize){

vcontrol[j]<- t(pzero[,j]-pzeromean[j]) %*% (pzero[,j]-pzeromean[j])

}

vcontrol<-vcontrol/(n1-1)

#pooled variance

vppopu<-t(oneskk) %*% v1

vpcontrol<-t(onescsize) %*% vcontrol

vp<-(vppopu+vpcontrol)/(kk+csize)

term<-((csize+1)/csize)*(bb^2)*vp/((dd/2)^2)

if(n1 > term) break

}

nvalue[iter]<-n1

for(j1 in 1:q1){

if((m1[j1]-pzeromeanallc)>(delta1+dd/2)) pvalue[iter]<-0

}

for(j2 in (q1+1):(q1+q2)){

if((m1[j2]-pzeromeanallc)<(delta1+dd/2) | (m1[j2]-pzeromeanallc)>(delta1+(5*dd)/2)) pvalue[iter]<-0

}

for(j3 in (q1+q2+1):(q1+q2+q3)){

if((m1[j3]-pzeromeanallc)<(delta1+dd/2) | (m1[j3]-pzeromeanallc)>(delta1+(5*dd)/2)) pvalue[iter]<-0

}

for(j4 in (q1+q2+q3+1):kk){

if((m1[j4]-pzeromeanallc)<(delta1+(5*dd)/2)) pvalue[iter]<-0

}

}

nbar<-mean(nvalue)

nvar<-var(nvalue)

nstdev <- nvar^(0.5)/(itersize)^0.5

pbar <- mean(pvalue)

pvar <- var(pvalue)

pstdev <- pvar^(0.5)/(itersize)^0.5

cat(" cc nbar ", " s(nbar) ", " pbar ", " s(pbar) "," dd ","\n")

cat(cc, " ", nbar," ", nstdev, " ", pbar," ", pstdev," ", dd,"\n")

itersize

}
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Appendix C

R Source Code for Two-Stage Procedure

TwoStage<-function(n1,cc,std){

#here, the starting sample size could be 5 and 10, the corresponding Tau tables are in Two-stage chapter.

#you need to input the optimal sample size---"cc"

#dd is the distance from point 1 to point 3, is actually same as the distance from point 2 to point 4.

if(n1==10) bb<-2.814163

if(n1==5) bb<-2.979896

delta1<-10

delta2<-18

dd<-12

kk<-8

q1<-2

q2<-2

q3<-2

q4<-2

sigmasq<-std^2

csize<-1

itersize<-5000

totalsize<-4*cc

nvalue<-rep(0.,itersize)

pvalue<-rep(1.,itersize)

cat("Two-Stage procedure","\n")

cat("q1=",q1,"q2=",q2,"q3=",q3,"q4=",q4,"\n")

cat("bb=",bb,"\n")

cat("standard deviation for each group=",std,"\n")

cat("the optimal sample size=",cc,"\n")

cat("the starting sample size=",n1,"\n")

cat("delta1=",delta1,"delta2=",delta2,"dd=",dd,"\n")

cat("No. of Iterations=",itersize,"\n")

cat("kk=",kk,"control size=",csize,"\n")
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for(iter in 1:itersize){

m1<-rep(0.,kk)

pzeromean<-rep(0.,csize)

v1<-rep(0.,kk)

vcontrol<-rep(0.,csize)

mdat <- matrix(rnorm(kk*totalsize,0,1), nrow = totalsize, ncol=kk, byrow=TRUE)

pzerofull <- matrix(rnorm(csize*totalsize,0,1), nrow = totalsize, ncol=csize, byrow=TRUE)

for(j1 in 1:q1){

mdat[,j1]<-std*mdat[,j1]+delta1}

for(j2 in (q1+1):(q1+q2)){

mdat[,j2]<-std*mdat[,j2]+delta2}

for(j3 in (q1+q2+1):(q1+q2+q3)){

mdat[,j3]<-std*mdat[,j3]+delta1+dd}

for(j4 in (q1+q2+q3+1):kk){

mdat[,j4]<-std*mdat[,j4]+delta2+dd }

#the following two is for the populations in the middle point of point 2 and point 3

#for(j2 in (q1+1):(q1+q2)){

#mdat[,j2]<-std*mdat[,j2]+0.5*(delta1+delta2+dd)}

for(j in 1:csize){

pzerofull[,j]<-std*pzerofull[,j]}

#Two-stage procedure starts

xdat <- matrix(0, nrow = n1, ncol=kk, byrow=TRUE)

pzero <- matrix(0, nrow = n1, ncol=csize, byrow=TRUE)

for(i in 1:n1){

for(j in 1:kk){

xdat[i,j]<-mdat[i,j]}}

for(i in 1:n1){

for(j in 1:csize){

pzero[i,j]<-pzerofull[i,j]}}

ones <- rep(1., n1)

oneskk <- rep(1., kk)

onescsize <- rep(1.,csize)

for(j in 1:kk){

m1[j]<-(1/n1)*t(ones)%*% xdat[,j]}
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for(j in 1:csize){

pzeromean[j]<-(1/n1)*t(ones)%*% pzero[,j]}

pzeromeanallc<-(1/csize)*t(onescsize)%*% pzeromean

for(j in 1:kk){

v1[j]<-t(xdat[,j]-m1[j]) %*% (xdat[,j]-m1[j])

}

v1<-v1/(n1-1)

for(j in 1:csize){

vcontrol[j]<- t(pzero[,j]-pzeromean[j]) %*% (pzero[,j]-pzeromean[j])

}

vcontrol<-vcontrol/(n1-1)

vppopu<-t(oneskk) %*% v1

vpcontrol<-t(onescsize) %*% vcontrol

vp<-(vppopu+vpcontrol)/(kk+csize)

term<-((csize+1)/csize)*(bb^2)*vp/(((delta2-delta1)/2)^2)

nvalue[iter]<-max(as.integer(term)+1,n1)

mm<-nvalue[iter]

m_new<-rep(0.,kk)

pzeromean_new<-rep(0.,csize)

xdat_new <- matrix(0, nrow = nvalue[iter], ncol=kk, byrow=TRUE)

pzero_new <- matrix(0, nrow = nvalue[iter], ncol=csize, byrow=TRUE)

for(i in 1:mm){

for(j in 1:kk){

xdat_new[i,j]<-mdat[i,j]}}

for(i in 1:mm){

for(j in 1:csize){

pzero_new[i,j]<-pzerofull[i,j]}}

ones <- rep(1., mm)

oneskk <- rep(1., kk)

onescsize <- rep(1.,csize)

for(j in 1:kk){

m_new[j]<-(1/mm)*t(ones)%*% xdat_new[,j]}
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for(j in 1:csize){

pzeromean_new[j]<-(1/mm)*t(ones)%*% pzero_new[,j]}

pzeromeanallc_new<-(1/csize)*t(onescsize)%*% pzeromean_new

for(j1 in 1:q1){

if((m_new[j1]-pzeromeanallc_new)>(delta1+delta2)/2) pvalue[iter]<-0

}

for(j2 in (q1+1):(q1+q2)){

if((m_new[j2]-pzeromeanallc_new)<(delta1+delta2)/2 | (m_new[j2]-pzeromeanallc_new)>(delta1+delta2)/2+dd) pvalue[iter]<-0

}

for(j3 in (q1+q2+1):(q1+q2+q3)){

if((m_new[j3]-pzeromeanallc_new)<(delta1+delta2)/2 | (m_new[j3]-pzeromeanallc_new)>(delta1+delta2)/2+dd) pvalue[iter]<-0

}

for(j4 in (q1+q2+q3+1):kk){

if((m_new[j4]-pzeromeanallc_new)<(delta1+delta2)/2+dd) pvalue[iter]<-0

}

}

nbar<-mean(nvalue)

nvar<-var(nvalue)

nstdev <- nvar^(0.5)/(itersize)^0.5

pbar <- mean(pvalue)

pvar <- var(pvalue)

pstdev <- pvar^(0.5)/(itersize)^0.5

cat("the starting sample size=",n1,"\n")

cat(" cc nbar ", " s(nbar) ", " pbar ", " s(pbar) ","\n")

cat(cc, " ", nbar," ", nstdev, " ", pbar," ", pstdev,"\n")

itersize

}

72



Appendix D

R Source Code for Nonparametric Procedure By Hodges-Lehmann

Method

LH_normal<-function(cc){

#...This program does the Sequential Procedure by Lehmann-Hodges method

#...you need to enter the optimal sample size to run it

kk <-8

qq <- 4

csize <- 1

itersize <- 1000

bb <- 2.4417695

alpha<-0.75

A_squ<-0.9549

nvalue <- rep(0., itersize)

pvalue <- rep(1., itersize)

delta <- sqrt((((csize+1)/csize) * (bb^2.))/(cc*A_squ))

cat("Normal distribution, Lehmann-Hodges method","\n")

cat(" bb=", bb, "c=", cc, " ...delta=", delta,"alpha=",alpha,"A_squ=",A_squ ,"\n")

cat(" No. of Iterations=", itersize,"\n")

cat(" kk=", kk,"control size=", csize,"\n")

#...........iteration starts............

for (iter in 1:itersize){

totalsize <- cc*2

mdat <- matrix(rnorm(kk*totalsize,0,1), nrow = totalsize, ncol=kk, byrow=TRUE)

control <- matrix(rnorm(csize*totalsize,0,1), nrow = totalsize, ncol=csize, byrow=TRUE)

for (j1 in 1:qq) {

mdat[,j1] <- mdat[,j1]-delta}

for (j1 in (qq+1):kk) {

mdat[,j1] <- mdat[,j1]+delta}

#sequential procedure starts.........
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for(n in 10:totalsize){

xdat<-matrix(0,nrow=n,ncol=kk,byrow=TRUE)

condat<-matrix(0,nrow=n,ncol=csize,byrow=TRUE)

for(j in 1:kk){

for(i in 1:n){

xdat[i,j]<-mdat[i,j]}}

for(j in 1:csize){

for(i in 1:n){

condat[i,j]<-control[i,j]}}

b<-max(1,floor(n*(n+1)/4-qnorm(1-alpha)*sqrt(n*(n+1)*(2*n+1)/24)))

a<-n*(n+1)/2-b+1

ww<-n*(n-1)/2

newdat<-matrix(0,ncol=kk,nrow=ww,byrow=TRUE)

newcon<-matrix(0,ncol=csize,nrow=ww,byrow=TRUE)

upx<- matrix(0,ncol=kk,nrow=ww)

upc<- matrix(0,ncol=csize,nrow=ww)

for(j in 1:kk){

g<-1

for(i in 1:(n-1)){

for(d in 1:(n-i)){

newdat[g,j]<- (xdat[i,j]+xdat[i+d,j])/2

g<-g+1

}}}

for(j in 1:csize){

g<-1

for(i in 1:(n-1)){

for(d in 1:(n-i)){

newcon[g,j]<- (condat[i,j]+condat[i+d,j])/2

g<-g+1

}}}

for(j in 1:kk){

upx[,j]<-matrix(sort(newdat[,j]))}

for(j in 1:csize){

upc[,j]<-matrix(sort(newcon[,j]))}

SS<-t(upx[a,]-upx[b,])%*%(upx[a,]-upx[b,])+t(upc[a,]-upc[b,])%*%(upc[a,]-upc[b,])

SS<-n*SS/(4*(kk+csize)*((qnorm(1-alpha))^2))

term <- ((csize+1)/csize)*(bb^2)*SS/(delta^2)

if(n>term) break
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}

upxdat<-matrix(0,ncol=kk,nrow=n,byrow=TRUE)

upcon<-matrix(0,ncol=csize,nrow=n,byrow=TRUE)

for(j in 1:kk){

upxdat[,j]<-matrix(sort(xdat[,j]))}

for(j in 1:csize){

upcon[,j]<-matrix(sort(condat[,j]))}

md<-rep(0.,kk)

mdc<-rep(0.,csize)

mm<-as.integer(n/2)+1

for(j in 1:kk){

md[j]<-upxdat[mm,j]}

for(j in 1:csize){

mdc[j]<-upcon[mm,j]}

nvalue[iter] <- n

for (j1 in 1:qq) {

if (md[j1]>mdc[1]) pvalue[iter]=0}

for (j1 in (qq+1):kk) {

if (md[j1]<mdc[1]) pvalue[iter]=0}

}

nbar <- mean(nvalue)

nvar <- var(nvalue)

nstdev <- nvar^(0.5)/(itersize)^0.5

pbar <- mean(pvalue)

pvar <- var(pvalue)

pstdev <- pvar^(0.5)/(itersize)^0.5

cat(" cc delta nbar ", " s(nbar) ", " pbar ", " s(pbar) ","\n")

cat(cc, " ", delta, " ", nbar," ", nstdev, " ", pbar," ", pstdev,"\n")

itersize

}
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