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ABSTRACT 

 

Buckling and postbuckling has been critical design parameters for many engineering 

structures. In recent years, this topic has continued to be of major concern due to (1) the 

discovery of new materials with amazingly superior properties, (2) increasingly more 

stringent safety requirements, (3) lighter, and more durable requirements. Such applications 

can be routinely found in aerospace, naval, civil, and electrical, and nuclear engineering 

structures and especially in the vehicle industries. Koiter is the first one to show that the 

imperfection-sensitivity of a structure is determined by its initial postbuckling behavior. In 

Koiter’s 1945 general postbuckling theory, it defines the initial postbuckling behavior and 

imperfection sensitivity behavior by the postbuckling b coefficient. Hui and Chen (1986) 

were the first to show that the well-known Koiter’s General Theory of Elastic Stability of 

1945 can be significantly improved by evaluating the postbuckling b coefficient at the actual 

applied load, rather than at the classical buckling load. The reason for such significant 

improvement in predicting the imperfection sensitivity is due to the fact that for an 

imperfection-sensitive structure, the slope of the buckling load versus imperfection amplitude 

curve approaches negative “infinity” as the imperfection amplitude approaches to zero. Thus 

for “finite” amplitude of the geometric imperfection, the applied load is significantly lower 

than the classical buckling load, leading to significant overestimate of imperfection using 

Koiter’s General theory of 1945. Such improvement method was demonstrated to be (1) very 

simple to apply with no tedious algebra, (2) significant reduction in imperfection sensitivity 

and (3) although it is still asymptotically valid, there exists a significant extension of validity 



 

xx 

 

involving larger imperfection amplitudes. Strictly speaking, Koiter’s theory of 1945 is valid 

only for vanishingly small imperfection amplitudes. Hence such improved method is termed 

Hui’s Postbuckling method. 

 

This study deals with the Postbuckling and imperfection sensitivity of different kinds of 

cylinders by using the Hui’s postbuckling method. For unstiffened cylinder and laminate 

cylinder, the solution of Hui’s postbuckling method is compared with ABAQUS simulation 

result. A parameter variation of stringer/ring stiffened cylinder is also evaluated. A positive 

shift of the postbuckling b coefficient has been observed, which indicates a significant 

overestimate of the imperfection sensitivity by Koiter's general stability theory. More 

importantly, the valid region is significantly increased by using Hui's postbuckling method 

compared with the Koiter's general stability theory. 
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CHAPTER 1  

 

INTRODUCTION 

 

 

1.1 Motivation and Scope 

 

1.1.1 History 

Thin-walled cylinders are widely used in various engineering approaches. Especially 

speaking, stiffened and unstiffened metallic cylinders are utilized extensively in navigation, 

aviation, space vehicles, and also in the construction of liquid storage tanks, pressure vessels, 

tubes and pipes. Usually they are subject to three kinds of loads, which are axial load, 

external or internal pressure and torsional load. Therefore the buckling strength of the 

thin-wall structure is very important in the safety design of such configurations. The first 

theoretical investigations on the stability of structures with axially loaded cylinders were 

present by Lorenz [1] [2], Timoshenko [3] [4], and Southwell [5]. The first experimental 

studies on this topic are performed by Robertson [6], Flugge [7], Wilson and Newmark [8], 

Lundquist [9]. In the beginning, many assumptions were adapted in the theoretical 

investigation to reduce the governing equation into a linear eigenvalue problem, which is also 

called the classical buckling problem. But there is an unacceptable difference between the 

classical buckling load and experimental buckling load for the thin-walled cylinders. Lots of 

efforts were made to explain this difference between the analytical and experimental study.  
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In the analytical study, some simplification assumptions were reevaluated and removed 

later. Then the studies were focus on the following directions: (1) the effect of prebuckling 

deformations [10] [11] [12]; (2) the effect of in-plane boundary conditions [13] [14] [15] [16]; 

(3) the effect of initial geometric imperfections.  

 

In the beginning, the subject to imperfection sensitivity study of the strict postbuckling 

analyses was perfect structures [17] [18] [19] [20] [21] [22]. Then people start to evaluate the 

imperfection sensitivity of the imperfect structures with non-linear kinematic relations. 

Donnell [23] was the first one to evaluate the stability of imperfection structures. Many 

reports were published by following his analyzing method [24] [25] [26] [27] [28] [29], but 

the results were not satisfying. Koiter [30] is the first one to present the general postbuckling 

theory which can take the presence of simple imperfections and interactions of different 

buckling modes into account when calculating the buckling load of structures. But his theory 

was not well known until translated in English in 1967. His theory is only valid near the 

classical buckling load and for very small imperfections. From then on, many breakthroughs 

have been made in the field of elastic stability theory by those pioneer researchers. Numerous 

papers were published based on Koiter's theory. These results can be found in many reviews 

such as Huthinson and Koiter [31]; Budiansky and Hutchinson [32]; Simitses [33]. Through 

all the theoretical investigation of cylindrical shells, people start to realize that the major 

reason leading to the difference between theoretical and experiment is the presence of 

unavoidable geometric imperfections. The fact that the cylindrical structures are extremely 

sensitive to the initial geometric imperfections has reinforced this effect. 
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Many experimental studies were performed in parallel to the theoretical investigations. 

The results were presented to prove the correctness of Koiter's theory such as Nash [34], 

Weingarten [35], Yamaki and Kodama [36], Kodama et al. [37] . Moreover, Thielemann and 

Esslinger [38] [39] extended their research to include theoretical postbuckling calculation on 

the basis of the experimental results. 

 

Some researchers also paid attention to the buckling and postbuckling behavior of 

stiffened cylindrical shells, since this is an efficient way to improve the properties of the 

cylindrical shell. Huthcinson and Amazigo [40] presented the postbuckling analysis of 

stringer stiffened cylindrical shell under axial compression. Besides, an independent 

investigation of buckling of the above structures under compression incorporating the effects 

of the torsional rigidity of the stiffeners was performed by Singer, Baruch and Harari [41] and 

summarized by Singer [42]. Sheinman and Simitses [43] examined the buckling of stiffened 

cylindrical shells under torsion. Also some experimental studies were carried out for the 

stiffened cylindrical shells [44] [45] [46] [47] [48]. It has been shown that stringer stiffened 

reinforcements will decrease the influence of the initial imperfections. External reinforcement 

is relatively more sensitive to the initial imperfections. This conclusion can be found in many 

papers [49] [50] [51] [52] [53] [54] [29] [55]. Some researchers also compared the theoretical 

result with experiment result of the stringer stiffened cylindrical shells [56] [57] [58]. 

Moreover, some researchers presented the work of buckling and postbuckling of stiffened 

cylindrical shells under combined load [59] [60] [61] [62]. 
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Due to the requirement of light-weight, high-strength properties, the research of 

postbuckling of composite cylindrical shells became a hot topic. Tennyson and Muggeridge 

[63] [64] are the first to investigate the buckling of imperfect anisotropic laminated 

cylindrical shells. Many researchers followed their study, and extend it to more complicate 

situations. Shen [65] [66] [67] [68] [69] has presented many results of postbuckling of 

laminated cylindrical shells using boundary layer theory. People can found many results for 

buckling of thick laminated cylindrical shells in a complete review by Simitses [70]. 

 

Because of the power of commercial finite element software, people start to use these 

software to solve many complex imperfection sensitivity problems of cylindrical shells. For 

example the imperfection caused by single or multy perturbation load [71] [72] [73] and 

stochastic imperfection [74] [75] [76]. Although the finite element method can achieve a 

relatively high accuracy, it costs much more time than the asymptotic method. 
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1.1.2 Motivation 

Hui and Chen [77] and Hui [78] showed that the well-known Koiter’s [30] General 

Theory of Elastic Stability of 1945 can be significantly improved by evaluating the 

postbuckling b coefficient (as first defined by Budiansky and Hutchinson [79] in 1966) at the 

actual applied load, rather than at the classical buckling load. The reason for such significant 

improvement in predicting the imperfection sensitivity is that, for an imperfection-sensitive 

structure, the slope of the buckling load versus imperfection amplitude curve approaches 

negative “infinity” as the imperfection amplitude approaches to zero. Thus, for “finite” 

amplitude of the geometric imperfection, the applied load is significantly lower than the 

classical buckling load, causing significant overestimation of imperfection using Koiter’s 

General theory of 1945. Such improved theory was demonstrated to be (1) very simple to 

apply with no tedious algebra, (2) significant reduction in imperfection sensitivity and (3) 

although it is still asymptotically valid, there exists a significant extension of the range of 

validity involving larger imperfection amplitudes. Strictly speaking, Koiter’s theory of 1945 

is valid only for vanishingly small imperfection amplitudes. Hence such improved method is 

termed as Hui’s Postbuckling method. 

 

But does the improved method also work for closed cylindrical shell? What is the range 

of validity of the improved method? These questions must be answered before this method 

can be used in practical. This is the major motivation for this thesis. In this thesis, we will use 

the Hui's postbuckling method to analyze the postbuckling and imperfection sensitivity of 

different kinds of cylinders to demonstrate this method works for closed cylindrical shell. We 
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will also compare the result with finite element result and determine the valid region of the 

improved method. The other motivation is: nowadays, people usually use the finite element 

method to solve such problems. Despite this method is very accurate, it is computationally 

expensive. The traditional asymptotic method is much faster, about 20 times faster than the 

finite element approach. Also, the commercial software is very expensive compared with 

Hui's postbuckling method which can be accessed by free codes. So this research can provide 

a rough but fast and cheap way for the preliminary design. 
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1.2 Buckling and Postbuckling 

 

1.2.1 Concept of Buckling and Postbuckling 

In mechanical point of view, buckling is a disproportionate increase in displacement 

resulting from a small increase in load, which is characterized by mathematical instability, 

leading to a failure mode. The buckling is caused by a bifurcation in the solution to the 

equations of the equilibrium path. At that point, further load can be sustained in either 

undeformed state or laterally deformed state. This type of problems always can be 

represented as an eigenvalue problem. Postbuckling is the behavior of the equilibrium path 

for the laterally deformed state after the structure buckled. The equilibrium paths represent 

configurations of equilibrium. 

 

1.2.2 Imperfection 

Imperfection denotes the shape difference between the ideal product and design. All the 

products will have imperfections, since there are always manufacture residues. The 

imperfection concept used in this thesis is defined to be lateral displacements occurred before 

the closed cylindrical shell sustains the applied load. The imperfection can be separated into 

three kinds of categories, (1) imperfection which is identical to the buckling mode. (2) 

Imperfection caused by other load [71] [72] [73]. (3) Stochastic imperfection [74] [75] [76] 

[80]. The imperfection which is identical to the buckling mode is easy to be applied to the 

equation, but this type of imperfection is hard to approach from the experiment. Also, this 

type of imperfection is the worst case imperfection which should have the lowest buckling 
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load compared with the other imperfection types with the same amplitude. The imperfection 

caused by other loads is more practical. For example, a small lateral perturbation load 

presents on the cylinder under compression. The imperfection will concentrate on where the 

lateral load applied. The stochastic imperfection is also practical, especially for the 

manufacturing. The product always has small stochastic imperfections due to the residues. 

The imperfection we are using in this thesis is identical to the first buckling mode, which is 

also the restriction to both Koiter's General postbuckling theory and Hui's postbuckling 

method. 

 

1.2.3 Imperfection Sensitivity 

Imperfection sensitivity is a property which denotes the stability behavior of the 

structure. If the buckling load of the structure decreases when it has imperfection, we call this 

structure is imperfection sensitive (unstable). If the buckling load do not change with the 

imperfection, we call this structure is imperfection insensitive (stable). Usually, for 

imperfection sensitive structure, we characterize the sensitivity by the knock down factor 

(KDF) which is the buckling load of imperfect system divided by the buckling load of perfect 

system. We can analyze the imperfection behavior of the structure by calculating KDFs for 

finite number of imperfections and then we can create the curve called knock down curve 

(KDC). This curve is essential to the imperfection sensitive analysis. 
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1.3 Koiter's General Stability Theory 

 

1.3.1 Background 

Koiter is the first one to show that the imperfection-sensitivity of a structure is 

determined by its initial postbuckling behavior. He used an asymptotic approach to 

characterize the total buckling behavior into the combination of prebuckling, buckling and 

initial postbuckling behavior by a single parameter called b coefficient. He also found the 

relation between the buckling load and imperfection, which is asymptotically valid for small 

imperfections. But his theory is not well known until his thesis was translated into English in 

1967 [30]. After that, lots of researchers have published many papers based on his theory [81] 

[40] [82] [83] [84]. The original notation in Koiter's thesis is a little bit hard to understand 

and fortunately, Budiansky [81] has reformulated with the notation which is more commonly 

used. 
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1.3.2 Limitation of Koiter's General Stability Theory 

Koiter's general postbuckling theory is using an asymptotic perturbation approach, but 

there are some limitations (or assumption) for this theory. First, the general theory assumes 

that the deformation of the structure in the prebuckling state is neglectable, and this limitation 

was later removed by Fitch [85]. Second, it assumes that the shape of imperfection of the 

structure should be identical to the buckling mode. Third, the Koiter's general postbuckling 

theory is only valid for sufficiently small imperfection amplitude, which is less than 10 

percent of the skin thickness. It is called the immediate postbuckling and this is pointed out 

by Koiter and Pignataro [86] in the case of simultaneous buckling mode interaction of 

integrally stiffened flat plates under compression. 
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1.3.3 Derive Equations for Koiter's Postbuckling theory 

In order to make this thesis more self-contained, and provide a convenient compendium 

formulas for future use, in this section, we will briefly introduce the Koiter's [30] general 

stability theory, following by Budiansky's [81] reformulation. Here we will derive the 

postbuckling formula for cylindrical shell as an example. This will be clearer to understand. 

The first variation of potential energy for a cylindrical shell can be, 

 

 ^8. �. � e�3^f g 7^_�&;h  (1.1) 

 

Where  

 3 � i 3436346j � i���?,kkg  ?,ll ����?,llg  ?,kk ����1 �  �?,kl j (1.2) 

   

 f � i f4f62f46j � m �?,kk�?,ll�2?,kln (1.3) 

   

 _ � m _4_62_46n �
opp
pq =,kg 12 ?,k!

>,lg ?: g 12 ?,l!=,lg >,kg ?,k ?,lrss
st
 (1.4) 

   

 7 � i 7476746j � u��_4 g  _6���_6 g  _4���1 �  �_46
v (1.5) 
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We can also write the stress-resultants in terms of an Airy stress function as, 

 

 7 � i 7476746j � i ),66),44�),46j (1.6) 

 

The calculus of variations then leads to the equilibrium equations 

 

 

��?,4444g 2?4466 g ?,6666 � g ),44: � ),66 ?,44
� ),44 ?,66g 2),kl ?,kl � �8 

(1.7) 

 

where 8 is the external (inward) pressure. 

 

With the equation (1.4) and (1.5) we can get the compatibility equation as, 

 

 

1�� �),kkkkg 2),kkllg ),llll � � ?,kk:� �?,kl �! � ?,kk ?,ll 

(1.8) 

 

The equilibrium and compatibility equations (1.7) and (1.8) are the famous Karman-Donnell 

equations. 

 

Now we will assume that the applied load is in prebuckling state which is governed by 

the linear theory. If ` denotes a scalar measure of the magnitude of the external loading, it 

can be represented as, 
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 ^8. �. � ` e7w^(&;h  (1.9) 

 

Where  

 7w � ` i 7w47w67w46j (1.10) 

   

 ( � m (4(62(46n � m =,k>,l=,lg >,kn (1.11) 

 

Then the equation (1.1) can be written as, 

 

 

e xi 3436346jy i ^f4^f62^f46j g i 7476746jy i ^(4^(62^(46jh

g i 7476746jy m ?,k ^?,k?,l ^?,l?,k ^?,lg ?,l ^?,knz &;
� ` e i 7w47w67w46jy m (4(62(46n &;h  

(1.12) 

 

The ( is the linear part of _. Now suppose that a bifurcation of the equilibrium state can 

occur at the critical load `V, then we can write the expansion 
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where ` { `V as b { 0, the first, second and third column on the right hand side of the 

above equation represent the prebuckling mode, classical buckling mode and initial 

postbuckling mode respectively, b  can be represented as the contribution of classical 

buckling mode to the initial postbuckling state. 

 

With equation (1.4), (1.11) and (1.13) we can derive the relation as follow, 

 

 m _w4_w62_w46n � m (w4(w62(w46n (1.14) 

   

 m _'4_'62_'46n � m ('4('62('46n (1.15) 

   

 m _!4_!62_!46n � i (!4 g ?',k!(!6 g ?',l!2(!46 g ?',k ?',lj (1.16) 
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 m _#4_#62_#46n � i (#4 g ?',k ?!,k(#6 g ?',l ?!,l2(#46 g ?',k ?!,lg ?',l ?!,kj (1.17) 

 

Substitute equation (1.13) into equation (1.12), we can get, 

 

 

e xi 3'43'63'46jy i ^f4^f62^f46j g i 7'47'67'46jy i ^(4^(62^(46jh

g ` i 7w47w67w46jy m ?',k ^?,k?',l ^?,l?',k ^?,lg ?',l ^?,knz &;
g b e xi 3!43!63!46jy i ^f4^f62^f46j g i 7!47!67!46jy i ^(4^(62^(46jh

g |` i 7w47w67w46jy m ?!,k ^?,k?!,l ^?,l?!,k ^?,lg ?!,l ^?,kn
g i 7'47'67'46jy m ?',k ^?,k?',l ^?,l?',k ^?,lg ?',l ^?,kn}z &;
g b! e xi 3#43#63#46jy i ^f4^f62^f46j g i 7#47#67#46jy i ^(4^(62^(46jh

g |` i 7w47w67w46jy m ?#,k ^?,k?#,l ^?,l?#,k ^?,lg ?#,l ^?,kn
g i 7'47'67'46jy m ?!,k ^?,k?!,l ^?,l?!,k ^?,lg ?!,l ^?,kn
g i 7!47!67!46jy m ?',k ^?,k?',l ^?,l?',k ^?,lg ?',l ^?,kn}z &; g ~ � 0 

(1.18) 
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By letting b { 0, we can get a variation equation for the buckling state which is, 

 

 

e xi 3'43'63'46jy i ^f4^f62^f46j g i 7'47'67'46jy i ^(4^(62^(46jh

g `V i 7w47w67w46jy m ?',k ^?,k?',l ^?,l?',k ^?,lg ?',l ^?,knz &; � 0 

(1.19) 

 

and a consequence of this relation is the ''energy'' equation 

 

 

e xi 3'43'63'46jy i f'4f'62f'46j g i 7'47'67'46jy m ('4('62('46n� &;h

� �`V e xi 7w47w67w46jy i ?',k!?',l!2?',k ?',lj� &;h  

(1.20) 

 

By applying the orthogonality condition, 

 

 

e xi 3'43'63'46jy i f�4f�62f�46j g i 7'47'67'46jy m (�4(�62(�46n� &;h

� �`V e xi 7w47w67w46jy m ?',k ?�,k?',l ?�,l?',k ?�,lg ?',l ?�,kn� &;h � 0 

(1.21) 

For � � 1 , the reason for � � 1  is because the buckling mode is not possible to be 

orthogonal to itself. 
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Note that from the equations (1.2) to (1.5), we can get the following symmetric relation, 

 

 i 3�43�63�46jy i f�4f�62f�46j � i 3�43�63�46jy i f�4f�62f�46j (1.22) 

 i 7�47�67�46jy m _�4_�62_�46n � i 7�47�67�46jy m _�4_�62_�46n (1.23) 

For all � and �. With the use of equations (1.19) to (1.21), and choose  

 

 m ^=^>^?n � m='>'?'n (1.24) 

 

The equation (1.18) then gives, 

 

 

�` � `V� e xi 7w47w67w46jy i ?',k!?',l!2?',k ?',lj� &;h

g 3b2 e xi 7'47'67'46jy i ?',k!?',l!2?',k ?',lj� &;h

g b! e x2 i 7'47'67'46jy m ?',k ?!,k?',l ?!,l?',k ?!,lg ?',l ?!,knh

g i 7!47!67!46jy i ?',k!?',l!2?',k ?',ljz &; g ~ � 0 

(1.25) 
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Then we can write the above equation as, 

 

 
`̀

V � 1 g Bb g Cb! g ~ (1.26) 

Where, 

 

B � � 32`V �e xi 7'47'67'46jy i ?',k!?',l!2?',k ?',lj� &;h

� e xi 7w47w67w46jy i ?',k!?',l!2?',k ?',lj� &;h � 

(1.27) 

   

 

C � � 1̀
V �e x2 i 7'47'67'46jy m ?',k ?!,k?',l ?!,l?',k ?!,lg ?',l ?!,knh

g i 7!47!67!46jy i ?',k!?',l!2?',k ?',ljz &;
� e xi 7w47w67w46jy i ?',k!?',l!2?',k ?',lj� &;h � 

(1.28) 

 

The coefficient B depends only on ?' and )', and vanishes if the postbuckling behavior is 

independent of the sign of the buckling mode. When B � 0, the initial postbuckling behavior 

only depends on C, which requires the determination of ?! and )!,44. 

 

When B � 0 and C � 0, the structure is unstable and imperfection-sensitive. This can 

be demonstrated by the repetition of the above analysis, with equation (1.4) changing to, 
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where ?�  is the initial normal displacement for the imperfection. Let ?� � a?' . The 

expension form can be rewrote as, 
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where lim�{w�lim�{w `� � `V, but lim�{w ` � 0 when a � 0. Consequently we can get, 

 

 �1 � `̀
V� b g Bb! g Cb# g ~ � `̀

V a g ~ (1.31) 

 

for B � 0, the equilibrium path will be, 

 

 �1 � `̀
V� b g Cb# � `̀

V a (1.32) 

 

Figure 1.1 shows the sketches of `/`V vs. b given by equation (1.32) with B � 0 and 

C � 0 for a � 0 and a � 0. 
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Let `�  be the buckling load of the imperfect system, and Koiter first showed for 

negative C coefficient, 

 

 a � 2√�3C$1 � �`�/`V� %#/!3�`�/`V�  (1.33) 

 

Figure 1.2 shows the knock down curve for various b coefficients by equation (1.33). 

 

The above equation can produce the knock down curve which is valid for the 

imperfection amplitude up to few percent of the skin thickness. It can also be called as initial 

postbuckling region. 
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Figure 1.1 Influence of small imperfection 

 

  



 

22 

 

 

 

 

 

 
Figure 1.2 Imperfection-sensitivity curves for various b coefficients 
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1.4 Different Kinds of Cylindrical shell Problems 

 

1.4.1 Introduction to Unstiffened Cylinder under axial compression 

For unstiffened cylinder with isotropic homogeneous material, many studies showed that 

the postbuckling behavior of cylindrical shells is determined by the magnitude of loads 

associated with buckle of finite depth. They find that the post buckling loads evaluated by 

approximate energy methods are usually smaller than the classical buckling load. 

Occasionally, similar approach has also been used in cylinders with imperfection. The perfect 

and imperfect circular cylinder under torsion has been studied in this way by Loo [25] and 

Nash [87]. Koiter is the first to present a different approach which determines the initial 

postbuckling behavior using an asymptotic approximation of the displacement and the stress 

function. It changes the nonlinear Donnell type PDE (partial differential equation) into a 

linear ODE (ordinary differential equation) sets. Then it requires only solving the linear 

problems to find out the stability immediately after buckling. The analysis in this thesis is 

based on the work of Budiansky [81] who presented an initial postbuckling behavior of 

isotropic homogeneous cylindrical shells under torsion by using Koiter's general postbuckling 

theory. In this study, we consider the unstiffened closed cylindrical shell under axial 

compression using Hui's postbuckling method, and compare the result with Koiter's general 

theory and finite element result. The finite element result is generated by ABAQUS. 
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1.4.2 Introduction to Laminate Cylinder 

The cross-ply cylindrical shell is introduced here since there is extensively use of 

light-weight composite materials in modern industry such as aviation, aerospace, and navel. 

So the buckling and postbuckling of laminated cylindrical shells is very important. Lots of 

papers were published in this area. Such as: Booton [88] which considered the effects of 

axisymmetric geometric imperfection on torsional or combined-load buckling of laminated 

cylindrical shells; Hui [82] which consider the asymmetric postbuckling behavior of 

symmetrically laminated cylindrical panel; Hui and Du [89] which present the postbuckling 

study on antisymmetric cross-ply cylindrical shells under torsion. People also can found more 

articles in this area in the review articles by Tennyson [90] and Simitses [70]. But none of 

these papers were using the Hui's postbuckling method to evaluate the postbuckling behavior. 

The study in this thesis is to exam the imperfection sensitivity behavior of antisymmetric 

cross-play laminated cylindrical shells under axial compression using the Hui's postbuckling 

theory. This study is based on the work of Hui and Du [89], but in here the external load is 

axial compression, and some of the results are reproduced to confirm the MATLAB program 

is right. The postbuckling behavior and imperfection sensitivity behavior of antisymmetric 

cross-ply cylindrical shells under axial compression is evaluated using both Koiter's general 

theory and Hui's postbuckling method. Also the results are compared with the finite element 

result by ABAQUS. 
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1.4.3 Introduction to Stringer/Ring Stiffened Cylinder 

Isotropic homogeneous closed cylindrical shells are often reinforced by stiffeners, such 

as stringers (axially) and/or ring (circumferentially), in order to satisfy the light-weight 

requirements of these structures. These stiffened cylindrical shells are frequently used as 

load-carrying structures such as aircraft fuselages and submarines. These structures are 

designed to withstand external loads like axial compression, lateral-hydrostatic pressure and 

torsion. After Van der Neut [91] observed that the buckling load of an outside stringer 

stiffened cylinder under axial compression is much higher than the buckling load of an 

unstiffened cylinder, the stiffened cylinder has been extensively researched. Hedgepeth and 

Hall [92] presented an extensive study of the eccentricity of the stringers effects on axial 

buckling. Baruch and Singer [93] have investigated the buckling of stiffened cylindrical 

shells under hydrostatic pressure. Hui [94] has presented the interaction between local and 

overall buckling modes in axially stiffened cylindrical shells. These studies were based on 

linear buckling theory, which is called classical buckling. The imperfection sensitivity study 

of stiffened cylindrical shells under axial compression was presented by Hutchinson and 

Amazigo [40], by using the Koiter's general stability theory. In this thesis, we are focusing on 

the analysis of isotropic homogeneous stiffened cylindrical shells under axial compression 

which is based on the result presented by Hutchinson and Amazigo [40]. In this study, some 

results of Hutchinson and Amazigo [40] were reproduced for comparison purpose. We also 

apply the Hui's postbuckling method to the same problem and do a parameter variation 

analysis on stringer or ring stiffened cylindrical shells under torsion. 
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1.5 Finite element method 

 

1.5.1 Introduction to finite element method 

The finite element method (FEM) is a numerical technique for finding approximate 

solutions to boundary value problems for differential equations. It uses variational methods 

(the calculus of variations) to minimize an error function and produce a stable solution. 

Analogous to the idea that connecting many tiny straight lines can approximate a larger circle, 

FEM encompasses all the methods for connecting many simple element equations over many 

small subdomains, named finite elements, to approximate a more complex equation over a 

larger domain. The finite element method is treated as the most accurate way to do the 

structure analysis, but it is not computational efficient. Usually it needs lots of computational 

resources and time to calculate the results. In this research we use the commercial finite 

element software ABAQUS to calculate the results as a comparison. 

 

1.5.2 Element selection in ABAQUS 

The shell element used in ABAQUS is S8R5. In ABAQUS documentation, S8R5 is said 

to be a thin conventional shell element in ABAQUS, which imposes the Kirchhoff constraint. 

It works for the shell which thickness is less than 1/15 characteristic length. So this element is 

ideal to this research since the Donnell type governing equation we used in Koiter’s theory 

and Hui’s method are also using the Kirchhoff assumption and also only valid for thin shells. 

The Kirchhoff assumption is: (1) Normals to the undeformed middle plane are assumed to 

remain straight, normal, and inextensional during the deformation, so that the transverse 
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normal and shearing strains may be neglected in deriving the shell kinematic relations; (2) 

Transverse normal stresses are assumed to be small compared with the other normal stress 

components, so that they may be neglected in the stress-strain relations. 

 

1.5.3 Procedure for the ABAQUS simulation 

In ABAQUS simulation, we do the Eigen-buckling first to get the imperfection shape, 

and apply the first buckling mode shape to a perfect cylinder as an imperfection, and then do 

the postbuckling analysis which is a general static process. For Eigen-buckling analysis, we 

are using Lanczos method to get the eigenvalues. For the postbuckling analysis, ABAQUS 

uses Newton's method to solve the nonlinear equilibrium equations. Newton's method has a 

finite radius of convergence. Too large an increment can prevent any solution from being 

obtained because the initial state is too far away from the equilibrium state that is being 

sought—it is outside the radius of convergence. Since the buckling analysis always has a 

large negative increment of load when the structure buckles, so we need a small damping 

factor in postbuckling analysis to let ABAQUS can overcome this sudden drop. Usually we 

set the damping factor as 10E-9 to 10E-10, to prevent an inaccurate result. 

In order to get the most accurate result using the minimum computational resource, we 

are always checking the mesh convergence first. Figure 1.3 shows the buckling load versus 

Degree of freedom (DOF) result. Concerning about the computational efficiency, we choose 

the DOF around 67000 in this research. 
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Figure 1.3 Buckling load versus DOF 
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1.6 Outline of the Thesis 

In this thesis, we will first briefly mention about the general Koiter's theory, and then 

introduce the Hui's postbuckling method. Then we will evaluate the postbuckling behavior 

and imperfection sensitivity for unstiffened cylinders using Hui's postbuckling method, and 

compare it with Koiter's general theory and ABAQUS simulation results. After that we will 

evaluate the postbuckling behavior and imperfection sensitivity for antisymmetric cross-ply 

laminated cylindrical shells under axial compression using Hui's postbuckling method. Later 

we will compare with Koiter's general theory and ABAQUS simulation results. Finally, we 

will evaluate the postbuckling and imperfection sensitivity of stringer/ring stiffened 

cylindrical shells under both axial compression and torsion using Hui's postbuckling method 

with some parameter variation. All the curves plotted in this thesis are curve fitted by 

B-Phline technique except the knock down curves. 
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CHAPTER 2  

 

HUI'S POSTBUCKLING METHOD 

 

 

2.1 Introduction 

 

2.1.1 Background 

In order to extent the valid range of the Koiter's theory, we need to introduce some 

modification in this theory. This idea was motivated by Koiter's remarks, which means the 

general theory of elastic stability can be improved. Koiter [95] [96] pointed out a suggestion 

that, ''A better accuracy, however, may be achieved for larger values of |`' � 1| and |` � 1|, 
if each of the coefficients C' and C! (which is the b coefficient defined by Budiansky and 

Hutchison [79]) is evaluated at the actual load factor `, although we are unable to estimate 

the extended range of validity; we recommend to evaluate both C' and C! at the actual 

values of the load factor in a systematic numerical evaluation of the theory''. But he never 

thoroughly investigated in this idea. From the above Koiter's notation, there is a possibility to 

improve valid range of the Koiter's general postbuckling theory. Although there are lots of 

paper's published on imperfection-sensitivity of structures such as Budiansky [81], 

Hutchinson and Amazigo [40], Citerley [60] [97] [98] [99], Hui [83] [84] [100], Hui and Du 

[89] [101], they were using the Koiter's general theory. Hui and Chen [77] and Hui [78] were 

the first to thoroughly investigate the idea and apply it to the imperfection sensitivity analysis. 
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Only these 2 papers involve the calculations of the postbuckling coefficients at the actual load. 

Hui [78] used the actual load to calculate the postbuckling coefficient of infinite beams. Hui 

and Chen [77] evaluated the imperfection sensitivity of the cylindrical panels under actual 

load. So we can call this method as 'Hui's postbuckling method' or 'Improved Koiter's 

postbuckling theory''. But no literatures were found to evaluate the imperfection sensitivity of 

closed cylindrical shells under actual load and also this improved method was not verified by 

other methods. This thesis is the first one to apply the Hui's postbuckling method to different 

kinds of cylinders. Also, this is the first time to verify the result of Hui's postbuckling method 

by the finite element result using commercial software ABAQUS. 

 

2.1.2 Brief introduction to the idea of Hui’s postbuckling method 

In Koiter’s general theory, the b coefficient is evaluated at the critical buckling load. The 

following equation shows the idea of Koiter’s theory, 

 8����,F��a� � �w�a� g `V�'�a� (2.1) 

 

We can see, this idea only works when the imperfection a is close to zero, since `V 

changes a lot when a is away from zero. That’s why Koiter’s theory only works when the 

imperfection is very small. Hui’s method is to improve the valid region of Koiter’s theory to 

make this theory more practical. It evaluates the potential energy at the actual applied load 

rather than the critical buckling load. So Hui’s method changes the equation (2.1) into the 

following explanation. 

 8�����a� � �w�a� g `�a��'�a� (2.2) 
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When a is close to zero, 8�����a� � 8����,F��a�. But when a is away from zero, 

8�����a� is more accurate than 8����,F��a� since ` changes very fast when a is small. 

 

2.1.3 Advantages and Limitations of Hui's postbuckling Method 

There are three advantages of Hui's postbuckling method, (1) compared with Koiter's 

general postbuckling theory, Hui's postbuckling method significantly increases the valid 

region. (2) It predicts the imperfection sensitivity more accurately than Koiter's general 

postbuckling theory. (3) Although the finite element simulation is the most accurate method, 

Hui's postbuckling method is much faster than finite element method. 

But there are also some limitations which we need to notice, (1) Like the Koiter's 

general theory, the imperfection must be identical to the buckling mode. (2) It is only valid to 

thin wall structures. 
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2.2 Details of Applying Hui's Postbuckling Method 

 

2.2.1 Methodology 

The studies in this thesis are based on a solution of the Donnell-type nonlinear 

equilibrium and compatibility equations using Hui's postbuckling method. The nonlinear 

PDEs are reduced to sets of linear ODEs by using the Koiter-type perturbation method 

asymptotically corresponding to the buckling and initial-postbuckling regimes. These ODEs 

discretized by using a central finite difference scheme (see APPENDIX A). The resulting 

eigenvalue problem and the postbuckling coefficients are calculated out by using MATLAB 

program developed by ourselves. Special care is taken to ensure that, first, the differential 

equations for the second-order problems are solved by retaining the actual value of the 

applied load rather than classical buckling load, second, the value of first order displacement 

and stress function are modified with respect to the rate of the actual value of the applied load 

and classical buckling load, third, the postbuckling coefficient is also evaluated at the actual 

applied load. This procedure is call the Hui's postbuckling method, and will yield the 

improved postbuckling C  coefficient as a function of the applied load. The improved 

imperfection sensitivity curve is fitted by the least square method between 0 and 0.25 times 

of the shell thickness in order to yield the improved postbuckling coefficient. The finite 

element result is reached by commercial software ABAQUS. The imperfection limit is set to 

be one shell thickness. All the examples are using the clamp boundary condition for the 

simplicity reason in finite element simulation in ABAQUS. 
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2.2.2 General Steps 

In this section, we will introduce the details in applying the Hui's postbuckling method 

by using the Donnell type equilibrium equation and compatibility equation for the plates, 

 

 ��?,kkkkg 2?,kkllg ?,llll �
� ),ll ?,kkg ),kk ?,ll� 2),kl ?,kl
g 8 

(2.3) 

   

 
1�� �),kkkkg 2),kkllg ),llll �

� �?,kl �! � ?,kk ?,ll 

(2.4) 

 

where ? is the out of plane displacement, ) is the stress function, 8 is the out of plane 

force. 

 

According to Koiter's [30] theory of elastic stability, the total displacement and the total 

stress function can be expressed as the sum of the prebuckling state, the buckling state and 

the initial postbuckling state as follow, 

 

 ? � ?w g b?L g b!?LL (2.5) 

 ) � )w g b)L g b!)LL (2.6) 

where b is the amplitude of the buckling mode normalized with respect to the skin thickness. 
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The followings are the general steps to apply the Hui's postbuckling method, 

 

Step 1. Calculating the prebuckling state 

 

 
?w � 0 c � �7w4 � �)w,ll S � �7w6 � �)w,kk d � 7w46 � �)w,kl 

(2.7) 

where c, S and d are stress in Y, Z, � direction respectively before buckling. 

 

Step 2. Calculating the classical buckling load (first order field) 

Substituting the equation (2.5) to equation (2.3) and (2.4), collecting the terms which is 

linear to b, then we can get the GDEs for the first order field, 

 

 ��?L ,kkkkg 2?L ,kkllg ?L ,llll � g c?,kkg S?,ll
� 2d?,kl � 0 

(2.8) 

 )L ,kkkkg 2)L ,kkllg )L ,llll � 0 (2.9) 

 

By using the separable solution, we can change the above PDEs to ODE sets, and the 

result will be an general eigenvalue problem �� � `��Y � 0. We can use a build in function 

in MATLAB or Sifted Inverse Power Method (see APPENDIX B) to find the smallest real 

positive eigenvalue and corresponding eigenvector. The eigenvalue we found is the classical 

buckling load cV, SV, or dV. The eigenvector is nomalized to make the largest out-of-plane 

displacement of the buckling mode to be unity. 
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Step 3. Calculate the initial postbuckling state (second order field) 

Substituting the equation (2.5) to equation (2.3) and (2.4), collecting the terms which is 

linear to b!, then we can get the GDEs for the second order field, 

 

 ��?LL ,kkkkg 2?LL ,kkllg ?LL ,llll � g cV?LL ,kk
g SV?LL ,ll� 2dV?LL ,kl
� )L ,ll ?L ,kkg )L ,kk ?L ,ll
� 2)L ,kl ?L ,kl 

(2.10) 

 
1�� �)LL ,kkkkg 2)LL ,kkllg )LL ,llll �

� �?L ,kl �! � ?L ,kk ?L ,ll 

(2.11) 

 

By using the separable solution, we can change the above PDEs to ODE sets. Then we can 

solve the second order field with enough boundary conditions. 
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Step 4. Calculate the regular postbuckling C�FE coefficient for the Koiter's general theory 

using the following equation 

 

 C�FE � �2 e$)L ,kk ?L ,l ?LL ,lg )L ,ll ?L ,k ?LL ,kh
� )L ,kl �?L ,k ?LL ,lg ?L ,l ?LL ,k �%&;
g e$)LL ,kk ?L!,lg )LL ,ll ?L!,kh� 2)LL ,kl ?L ,k ?L ,l %&;�
� �e$cV?L!,lg SV?L!,kh
� 2dV?L ,k ?L ,l %&;� 

(2.12) 

 

 

Step 5. Define the actual load and actual first order field 

We can get the actual applied load simply by the following relation, 

 

 �cD, SD, dD� � S(��(Q< � �cV, SV, dV� (2.13) 

 

Where the ‘S(��(Q<’ is the rate between actual load and critical load. If C�FE � 0, then 

S(��(Q< � 1, if C�FE � 0, then S(��(Q< � 1 
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Also the first order field is modified by the following relation, 

 

 �?RL , )JL� � S(��(Q< � �?L , )L� (2.14) 

 

The reason is when you calculating the second order field at the actual applied load, the 

energy of first order field should also be changed by the actual load. 

 

Step 6. Calculate the second order field under the actual applied load 

We can solve the second order field again by changing the classical buckling load to 

actual applied load, 

 

 ��?LL ,kkkkg 2?LL ,kkllg ?LL ,llll � g cD?LL ,kk
g SD?LL ,ll� 2dD?LL ,kl
� )JL ,ll ?RL ,kkg )JL ,kk ?RL ,ll
� 2)JL ,kl ?RL ,kl 

(2.15) 

   

 
1�� �)LL ,kkkkg 2)LL ,kkllg )LL ,llll �

� �?RL ,kl �! � ?RL ,kk ?RL ,ll 

(2.16) 

 

By using the separable solution, we can change the above PDEs to ODE sets. Then we can 

solve the second order field with enough boundary conditions under actual applied load. 
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Step 7. Calculate the postbuckling C coefficient under actual applied load 

b coefficient also needs to be calculated under actual applied load, by applying the actual 

applied load and second order field calculated in Step 6 and modifying first order field in the 

following equation, 

 

 CD � �2 e$)JL ,kk ?RL ,l ?LL ,lg )JL ,ll ?RL ,k ?LL ,kh
� )JL ,kl �?RL ,k ?LL ,lg ?RL ,l ?LL ,k �%&;
g e$)LL ,kk ?RL!,lg )LL ,ll ?RL!,kh� 2)LL ,kl ?RL ,k ?RL ,l %&;�
� �e$cD?RL!,lg SD?RL!,kh
� 2dD?RL ,k ?RL ,l %&;� 

(2.17) 

 

Step 8. Calculate the actual imperfection and deflection 

If C�FE � 0, then the structure is imperfection sensitive. We use the following equation 

to calculate the actual imperfection, 

 

 aD � 2��3CD$1 � S(��(Q< %#/!3S(��(Q<  (2.18) 

 

where aD is the imperfection amplitude divide by the shell thickness. As we mentioned 

above, S(��(Q< � `D/`V. Where `D represents the actual applied load and `V represents 
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the classical buckling load. We can see, if `D � `V the imperfection is 0. 

 

If C�FE � 0, then the structure is imperfection insensitive, we cannot use equation (2.11) 

anymore. So we need to use the equation for the load deflection curve to calculate the actual 

deflection as follow, 

 

 b � $�S(��(Q< � 1�/CD %w.  (2.19) 

where b is the deflection amplitude divide by the shell thickness. 

 

2.2.3 Algorithm for Getting The Improved Postbuckling b Coefficient 

Now we can do the iteration to get the curves we want. Here is the algorithm, 

i. Choose a step size Q. For a better accuracy, always choose a small number, for 

example Q � 0.02. 

ii. Let S(��(Q< � 1 to calculate out the C�FE. 

iii. If C�FE � 0, let S(��(Q<GF¡ � S(��(Q<�¢N � Q; if C�FE � 0, let S(��(Q<GF¡ �
S(��(Q<�¢N g Q. Use the S(��(Q<GF¡ to calculate out the CD, aD £� ^D.  

iv. Repeat step iii, until the aD £� ^D reaches 25% of the shell thickness. 

v. Use the least square curve fit to fit the aD or bD with equation (2.11) or (2.12) 

respectively, then we can get C�HI for the Hui's postbuckling method. 
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CHAPTER 3  

 

IMPERFECTION SENSITIVITY OF UNSTIFFENED 

CYLINDER UNDER AXIAL COMPRESSION USING HUI'S 

POSTBUCKLING METHOD 

 

 

3.1 Introduction 

Here we are using the Hui's postbuckling method to analyze the postbuckling and 

imperfection sensitivity behavior of unstiffened cylindrical shell under axial compression. We 

will compare the solution of Hui’s postbuckling method with the Koiter's general 

postbuckling theory and ABAQUS simulation results. This analysis is based on the work of 

Budiansky [81], which presented an initial postbuckling behavior of isotropic homogeneous 

cylindrical shells under torsion. The Donnell type non-linear partial differential equations of 

the unstiffened cylindrical shell are reduced to a set of linear ordinary differential equations 

corresponding to the buckling and initial-postbuckling regimes by using the separation of 

variables technique employed by Budiansky [81]. These equations are discretized using a 

central-finite difference scheme (see APPENDIX A). By applying the Hui's postbuckling 

method, three special cares are taken, (i) the applied load in the differential equations of the 

second order field is using the actual value of the applied load rather than the classical 

buckling load, (ii) the value of first order displacement and stress function are modified with 

respect to the rate of the actual value of the applied load and classical buckling load, (iii) The 
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postbuckling coefficient is also evaluated at the actual applied load. The resulting knock 

down curve is fitted by the least square curve fit technique for the imperfection amplitude 

between 0 and 0.25 to get the improved postbuckling b coefficient. 

 

3.2 Governing Equations and First Order Field 

 

3.2.1 Governing Equations 

The Donnell type governing PDEs of equilibrium and compatibility equations for an 

unstiffened cylindrical shell in out-of-plane displacement and stress function are (Budiansky 

[81]), 

 

 ��?,kkkkg 2?,kkllg ?,llll � g 1: ),kk
� ),ll ?,kkg ),kk ?,ll� 2),kl ?,kl 

(3.1) 

   

 
1�� �),kkkkg 2),kkllg ),llll � � 1: ?,kk

� �?,kl �! � ?,kk ?,ll 

(3.2) 

 

where, ?  is the out-of-plane displacement, )  is the stress function, @  is the axial 

coordinate, A is the circumferential coordinate, : is the radius of the cylinder, � is the 

skin thickness, � is the Young's modulus, � � ��#/$12�1 �  !�% is the flexural rigidity, 

  is the Poisson's ratio.  
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3.2.2 Non-Dimensionalize 

The following non-dimensional quantities are employed, 

 

 X � ?/�, K � )/���# �, �Y, Z� � �@, A�/�:��'/! (3.3) 

 

Thus, the non-dimensional equilibrium and compatibility equations becomes, 

 

 
112�1 �  !� �X,4444g 2X,4466g X,6666 � g K,44

� K,66 X,44g K,44 X,66� 2K,46 X,46 

(3.4) 

   

 K,4444g 2K,4466g K,6666� X,44
� �X,46 �! � X,44 X,66  (3.5) 
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3.2.3 Equations for the First Order Field 

According to Koiter's (1945) theory of elastic stability, the total displacement and the 

total stress function can be expressed as the sum of the prebuckling state. The buckling state 

and the initial postbuckling state are as follow, 

 

 

X � Xw g bXL g b!XLL 
K � Kw g bKL g b!KLL (3.6) 

 

where, b  is the amplitude of the buckling mode normalized with respect to the skin 

thickness. The prebuckling stress function can be expressed by the membrane stress 

resultants as follow, 

 

 

�c, S, d� � ��Kw,66 , �Kw,44 , �Kw,46 �
� :��! ��7w4, 0,0� 

(3.7) 

 

Substituting X and K into the equation (3.4) and (3.5) and then collecting terms which 

are linear in b. The equilibrium and compatibility equations for the buckling state are, 

 

 

112�1 �  !� �XL ,4444g 2XL ,4466g XL ,6666 � g KL ,44
g cXL ,44 � 0 

(3.8) 

 KL ,4444g 2KL ,4466g KL ,6666� XL ,44 � 0 (3.9) 
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3.2.4 Solve the First Order Field 

By the analysis of Budiansky (1967), the general solution of the buckling state can be 

written in the following separable form, 

 

 XL�Y, Z� � XV�x� cos�7RZ� g X��Y�sin�7RZ� (3.10) 

 KL�Y, Z� � KV�x� cos�7RZ� g K��Y�sin�7RZ� (3.11) 

 

where, 7R � Q��/:�'/! , Q  is the number of circumferential full-waves. Substituting 

XL�Y, Z� and KL�Y, Z� into the equation (3.8) and (3.9), and collecting the terms involving 

cos�7RZ� and sin�7RZ� respectively, we can get the following ODEs, 

 

 

112�1 �  !� �XV,4444� 27R!XV,44g 7R©XV� g KV,44
g cXV,44 � 0 

(3.12) 

   

 KV ,4444� 27R!KV ,44g 7R©KV � XV,44 � 0 (3.13) 

   

 

112�1 �  !� �X�,4444� 27R!XV ,44g 7R©X�� g K� ,44
g cX�,44 � 0 

(3.14) 

   

 K�,4444� 27R!K� ,44g 7R©K� � X�,44 � 0 (3.15) 
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For the simplicity of simulation in ABAQUS, the clamp boundary condition is applied to 

both ends of the cylindrical shell, 

 

 X � X,k � =,ll � >,l � 0          B< @ � 0 BQ& . (3.16) 

 

For the axially immovable boundary condition =,ll �@ � 0� � 0, it can be derived 

from the following strain-displacement relationship, 

 

 2_46,l� _6,k � =,ll� ?,k: g ?,k ?,ll (3.17) 

 

The above equation can be written in terms of X and K (using ?,l �@ � 0� � 0), 

 

 �K,444 �Y � 0� g ��2 �  �K,466 �Y � 0� � 0 (3.18) 

 

The circumferentially immovable boundary condition >,l �@ � 0� � 0 can be derived 

from >,l � _6 � ?/: � �1/2� �?,l  �! . Then the >,l �@ � 0� � 0  boundary condition 

becomes (using ?�@ � 0� � 0, ?,l �@ � 0� � 0), 

 

 K,44 �Y � 0� �  K,66 �Y � 0� � 0 (3.19) 

 

The same equations are used for Y � ./�:��!. To the buckling state, the equations for the 

boundary conditions will be, 
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XV � XV ,4 � X� � X�,4 � 0         B< Y � 0 BQ& ./�:��!  

 �KV,444 �Y � 0, ./�:��!� g �2 g  �7RKV,4 �Y � 0, ./�:��!� � 0  

 �K�,444 �Y � 0, ./�:��!� g �2 g  �7RK� ,4 �Y � 0, ./�:��!� � 0  

 

KV ,44 �Y � 0, ./�:��!� g  7R!KV�Y � 0, ./�:��!� � 0  

 

K�,44 �Y � 0, ./�:��!� g  7R!K��Y � 0, ./�:��!� � 0  

(3.20) 

 

The above four governing ODEs and eight boundary conditions are discretized using the 

central finite difference scheme (see APPENDIX A). The resulting linear system of equations 

becomes an eigenvalue problem, which can be solved by a build in function in MATLAB or 

using the inversed power method (see APPENDIX B). The amplitude of the buckling state is 

normalized by forcing the largest out-of-plane displacement of the buckling state to be unity, 

which means $XV�Y� g X��Y�%'/! � 1.  
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3.3 Second Order Field And Postbuckling Coefficient 

 

3.3.1 Equations for the Second Order Field 

Substituting X and K into the equation (3.4) and (3.5) and then collecting terms which 

are linear in b!, the equilibrium and compatibility equations for the initial postbuckling state 

are, 

 

 

112�1 �  !� �XLL ,4444g 2XLL ,4466g XLL,6666 � g KLL ,44
g cDXLL ,44
� KL ,66 XL ,44g KL ,44 XL ,66� 2KL ,46 XL ,46 

(3.21) 

   

 

KLL ,4444g 2KLL ,4466g KLL ,6666� XLL ,44
� �XL ,46 �! � XL ,44 XL ,66 

(3.22) 

where cD is the actual applied load. 
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3.3.2 Solve the Second Order Field 

It is clear that the solution for the second order field should be, 

 

 

XLL�Y, Z� � X��Y� g X/�Y� cos�27RZ�
g X0�Y�sin �27RZ� 

(3.23) 

   

 

KLL�Y, Z� � K��Y� g K/�Y� cos�27RZ�
g K0�Y�sin �27RZ� 

(3.24) 

 

Then the second order field can be separated into two sets of ODEs. One is 

$X��Y�, K��Y�% and the other is $X/�Y�, X0�Y�, K/�Y�, K0�Y�%. The first sets of ODEs is, 

 

 

112�1 �  !� X�,4444g K�,44g cX�,44
� � 7R!2 $X�K� g XVKV%,44 

(3.25) 

   

 K�,4444� X�,44 � 7R!4 $X�! g XV!%,44 (3.26) 

 

The second sets of ODEs will be, 

 

 
�'! � 7R!2 �X�,44 K� � XV ,44 KV g X�K�,44� XVKV ,44

� 2X�,4 K�,4g 2XV,4 KV,4 � 

(3.27) 
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 �'# � 7R!2 $�X�,4 �! � �XV,4 �! � X�X�,44g XVXV ,44 % (3.28) 

   

 
�'© � � 7R!2 �XV,44 K� g X�,44 KV g XVK�,44g X�KV ,44

� 2XV,4 K�,4� 2X�,4 KV,4 � 

(3.29) 

   

 �'  � 7R!2 �XVX�,44g X�XV,44� 2X�,4 XV ,4 � (3.30) 

 

where �'!, �'#, �'© and �'  can be obtained from the left hand side of equations (3.12) to 

(3.15) by replacing 7R, XV, X�, KV, K� by 27R, X/, X0, K/, K0 respectively. The boundary 

conditions can also be obtained by following the above replacement of the boundary 

condition equations in the first order field. Note that, the applied load used to calculate the 

second order field should use the actual applied load rather than the classical buckling load. 

Moreover, XV, X�, KV, K� used in the second order field must be multiplied by the ratio of 

actual load and applied load. 
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3.3.3 Equations for the Postbuckling Coefficient 

The postbuckling b coefficient evaluates the stability of the structures. If the b 

coefficient is positive then the structure has a stable postbuckling behavior; if the b 

coefficient is negative, the structure has an unstable postbuckling behavior. The imperfection 

sensitivity is measured by the magnitude of the postbuckling b coefficient. The path of 

equilibrium is formulated as, 

 

 Cb# g ª1 � `�`V« b � a `�`V (3.31) 

 

where, `� is the buckling load of the imperfect system, `V is the classical buckling load of 

the perfect system, a is the imperfection amplitude normalized by the shell thickness. The 

imperfection amplitude is related to the buckling load by the following formula (only for 

b<0), 

 

 a � 2√�3C$1 � �`�/` �%#/!3�`�/`�  (3.32) 

 

The formula of postbuckling b coefficient is (Budiansky (1967), Hui and Du (1987a)), 

 

 C � �' g �!|�'|  (3.33) 
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where, 

 

�' � 2 e e ¬KL ,66 XL ,4 XLL ,4g KL ,44 XL ,6 XLL ,6®
4¯w

6°
6¯w

� KL ,46 �XL ,4 XLL ,6g XL ,6 XLL ,4 �±&Y&Z 

(3.34) 

   

 

�! � e e ²KLL ,66 �XL,4 �! g KLL ,44 �XL ,6 �!®
4¯w

6°
6¯w

� 2KLL ,46 XL ,4 XL ,6 ³&Y&Z 

(3.35) 

   

 �' � e e �cDXL!,4 �&Y&Z®
4¯w

6°
6¯w  (3.36) 

 

In the above, Z � 2´:/�:��'/! and the reduced-Batdorf parameter �� � ./�:��'/!. 

Substituting the buckling state and the postbuckling state into the above formulas, and 

integrating in the circumferential direction analytically, we can obtain, 
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�' � 7R!Zw e ²X,4� ��K�X�,4� KVXV ,4 �®
4¯w

g 12 X/,4 �K�X�,4� KVXV ,4 �
� 12 X0,4 �K�XV ,4g KVX�,4 �
� X/�K�,44 X� � KV,44 XV�
g X0�K�,44 XV g KV ,44 X��
g X/�K�,4 X�,4� KV ,4 XV,4 �
� X0�K�,4 XV,4g KV,4 X�,4 �
� X,4� �K�,4 X� g KV ,4 XV�
� 12 X/,4 �K�,4 X� � KV ,4 XV�
� 12 X0,4 ��K�,4 XV � KV ,4 X��³&Y 

(3.37) 

   

 

�! � 7R!Zw e ²�K/$�XV,4 �! � �X�,4 �!%®
4¯w

� 2K0X�,4 XV,4g 12 K,4� �XV! g X�!�
g 14 K/,44 �X�! � XV!� � 12 K0,44 X�XV
g K/,4 �X�X�,4� XVXV,4 �
� K0,4 �XVX�,4g X�XV ,4 �³&Y 

(3.38) 

   

 �' � 7R!Zw e ²12 cD$�XV,4 �! g �X�,4 �!%³&Y®
4¯w  (3.39) 

 

Note that, postbuckling b coefficient is also calculated by using the actual applied load 

cD, then the b coefficient should be a function of applied load numerically.  
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3.4 Result and Discussion 

 

3.4.1 Example Cases 

 

In here, we are concentrating on demonstrating the improvement of the Hui's 

postbuckling method by comparing it with the Koiter's general stability theory and ABAQUS 

simulation. So, we will not do a complete parameter variation of the cylindrical shells. The 

example problem is chosen to be unstiffened cylindrical shell made of Aluminum materials. 

The material parameters are, 

� � 70*8B,    � 0.33  

 

For the simplicity of simulating in ABAQUS, the clamp boundary condition is applied to 

both sides of the cylindrical shells, 

X � X,k � =,ll � >,l � 0          B< @ � 0 BQ& .  

 

The geometry of the cylindrical shell can be represented by the reduced-Batdorf 

parameter ��, and four geometric cases are concerned here,  

i. Medium cylinder: : � 30µµ,      . � 50µµ,     � � 0.1µµ, 
ii. Long cylinder: : � 30µµ,      . � 100µµ,     � � 0.1µµ, 
iii. Short cylinder: : � 30µµ,      . � 20µµ,     � � 0.1µµ, 
iv. Large cylinder: : � 1736µµ,      . � 7013µµ,     � � 50µµ, 
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3.4.2 How to Apply the Hui's Postbuckling Method to this Problem 

The detail of calculating this problem by the Hui's postbuckling method will be 

presented in here. The coupled ODEs are discretized in the axial direction using the central 

finite difference method (see APPENDIX A). The boundary conditions at both ends are also 

discretized in the same scheme. For a given wave number Q, the smallest eigenvalue is found 

by using the build-in function in MATLAB or inverse power method (see APPENDIX B). 

Find the minimum eigenvalue through all possible wave numbers, and the resulting 

eigenvalue and wave number are the classical buckling load `V  and buckling mode 

respectively. The actual applied load is defined to be some percent of classical buckling load, 

such as from 100% to 20% of the classical buckling load `V. The actual applied load 

`D � S(��(Q< � `V. For the unstiffened cylinder we do not modify the first order field, which 

is different from the General Steps we mentioned above. The equation (2.14) should be 

changed to this, 

 

 �XRV, XR�, K¶V , K¶�� � �XV, X�, KV , K�� (3.40) 

 

where �XRV, XR�, K¶V , K¶�� is the first order field under the actual applied load. This modification 

only works for the unstiffened cylinder. For other types of cylinders, we still need to use 

equation (2.14). Since the interaction between the buckling state and the postbuckling state is 

very complicate, it is impossible to figure out the exact effect of the changes of applied load 

to the first order field. But we can assume the influence in such way by empirical analysis. It 

is easy to accept that if we decrease the applied load, it will also decrease the potential energy 
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of the first order field. We are assuming this change is linear, so the amplitude of the first 

order field will decrease by the same percent of the applied load. The second order field and 

postbuckling b coefficient can be calculated out for each applied load. Then we can get the b 

coefficient for each applied load. Use that b coefficient to calculate the normalized 

imperfection amplitude a by using equation (3.32), in which we let `� � `D. Then we can 

get the normalized imperfection amplitude for that applied load. By evaluating several 

applied loads, we can get the knock down curve numerically. This means the b coefficient is a 

function of applied load numerically. This curve can be called as the knock down curve of 

Hui's postbuckling method.  

 

In order to compare the Hui's postbuckling method with the Koiter's general theory, we 

need to get a single b coefficient for Hui's postbuckling method. This is the reason for us to 

do the least square curve fit. Fit the knock down curve of the Hui's postbuckling method 

using equation (3.32) by the least square technique in the range of imperfection amplitude 

form 0 to 25 percent of the shell thickness. One example is given in Figure 3.1. After we get 

the improved b coefficient, we can use it to compare with the usual b coefficient calculated 

by the Koiter's general postbuckling theory. 
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Figure 3.1 Example for least-square curve fit through imperfection form 0 to 25% of shell 

thickness 
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3.4.3 Medium Length Cylinder 

Figure 3.2 shows the Knock down curves for cylindrical shell under axial compression 

at the reduced Batdorf parameter �� � 28.8675 calculated by Hui's postbuckling method, 

Koiter's general theory, curve fitting for improved b coefficient and the ABAQUS finite 

element simulation respectively. In ABAQUS simulation, the geometric parameters are set as, 

: � 30µµ,      . � 50µµ,     � � 0.1µµ   

where : is the radius of the cylinder, . is the length of the cylinder, � is the shell 

thickness of the cylinder. The geometric parameter shows this is a typical medium length 

cylinder. The classical buckling load calculated by ABAQUS is 0.6137, compared with the 

classical buckling load calculated by Koiter's theory which is 0.6124, there is less than 1% 

error, which proved the program for Koiter's theory is right. From the figure, we can see that 

the knock down curve of Hui's postbuckling method fits the ABAQUS result very well when 

the imperfection is up to almost 30% of the shell thickness. Then it starts to diverge from the 

ABAQUS result. Same phenomenon happens to the knock down curve created by the curve 

fitting of improved b coefficient. In contrast, the knock down curve from the usual b 

coefficient by Koiter's general stability theory only fits the ABAQUS result when the 

imperfection is less than 5% of the shell thickness. So the valid region for Hui's postbuckling 

method is 6 times more than Koiter's general theory. The improved b coefficient from curve 

fitting of the knock down curve of Hui's postbuckling method is about -1.1385, but the usual 

b coefficient computed from Koiter's general theory is about -7.9282. There is a significant 

difference between these two C coefficients. The positive shifting from usual b coefficient to 

improved b coefficient is almost 86%. This tells us, for the unstiffened cylinder with metallic 
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material, the Koiter's general stability theory significantly overestimates the imperfection 

sensitivity of the structure. The Koiter’s general theory is only valid when the imperfection is 

few percentage of the total shell thickness. This is not practical for the real industry 

application. For the Hui's postbuckling method, the valid region is increased up to the 

imperfection around 30% of the shell thickness, and the improved C coefficient shows the 

imperfection sensitivity is much lower than the Koiter's general stability theory. Compared 

with the commercial finite element software ABAQUS, the Hui's postbuckling method also 

has its own advantage. Although the result from ABAQUS is the most accurate one, it takes 

more than 30 times of the time to compute the knock down curve than using the Hui's 

postbuckling method. Furthermore, ABAQUS is an expensive commercial software, but 

people can use any free programming language, such as Python or Fortran, to achieve the 

Hui's postbuckling method. Also the result is good up to 30% imperfection of the shell 

thickness, which is practical to the real industry. Here we need to note that although the Hui's 

postbuckling method is more accurate than the Koiter's general stability theory, sometime it 

may slightly underestimate the buckling load like in this example. So it is important to have 

some proper safety factors taking into account when practically use it. From ABAQUS 

simulation result, we can see the buckling load decreases very fast at first. It fits the result 

from Hui's postbuckling method very well. In this region the imperfection is not that large 

compared with the geometric size of the cylinder, so the physical behavior fits for the 

Donnell type equations for the shells. After this region, the ABAQUS simulate curve starts to 

diverge from the curve of Hui's postbuckling method, and even increases after the 

imperfection goes to more than 50% of the shell thickness. This may be due to the 
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imperfection is so large compared with the geometric of the structure, and it starts to deform 

continuously which exceeds the valid region of the Donnell type equation. So there is no 

buckling behavior in the valid region of the Donnell type governing deferential equations 

(GDEs). This is the reason that the result starts to diverge from the Hui's postbuckling method. 

The reason that the buckling load of ABAQUS simulation starts to increase after some 

imperfection level may be that the deflection caused by the imperfection is so large which 

may behave like stiffener. This means it changes the structure shape before buckling starts, so 

the equations for the unstiffened cylinder are not valid any more. 
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Figure 3.2 Knock down curve for cylindrical shell under axial compression at the reduced 

Batdorf parameter �� � 28.8675 calculate by different method 
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3.4.4 Long Cylinder 

Figure 3.3 shows the Knock down curves for cylindrical shell under axial compression 

at the reduced Batdorf parameter �� � 57.7350 calculated by Hui's postbuckling method, 

Koiter's general theory, curve fitting for improved b coefficient and the ABAQUS finite 

element simulation, respectively. In ABAQUS simulation, the geometric parameter is set as, 

: � 30µµ,      . � 100µµ,     � � 0.1µµ   

 

The geometric parameter shows this is a long cylinder. The classical buckling load 

(0.6118) calculated by ABAQUS is same with the classical buckling load calculated by 

Koiter's theory which is also 0.6118. This proves the program for Koiter's theory is right. The 

purpose to choose this example is to demonstrate the Hui's postbuckling method is also valid 

for long cylinders. From the figure, we can see that the knock down curve of Hui's 

postbuckling method fits the ABAQUS result very well when the imperfection is up to almost 

30% of the shell thickness. After that it starts to diverge from the ABAQUS result. We can 

also get the similar result for the knock down curve created by the curve fitting of improved b 

coefficient. This result shows the similar properties to the middle length cylinder. Again, the 

knock down curve from the usual b coefficient by Koiter's general stability theory only fits 

the ABAQUS result when the imperfection is less than 5% of the shell thickness. So the valid 

region of Hui's postbuckling method is 6 times more than Koiter's general theory, same as the 

conclusion for the middle length cylinder. The improved b coefficient from curve fitting of 

the knock down curve of Hui's postbuckling method is -1.0966, and the usual b coefficient 

from the Koiter's general stability is -5.4185. We can see there is still a significant difference 
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between the improved b coefficient and the usual b coefficient. The positive shifting from 

usual b coefficient to improved b coefficient is about 80%. Again, this shows the Koiter's 

general stability theory significantly overestimates the imperfection sensitivity of the 

structures and it is also only valid when the imperfection is few percentage of the total shell 

thickness. In this example, the knock down curve from Hui's postbuckling method fits even 

better than the previous one in the valid region which has the imperfection up to 30% of the 

shell thickness. There is no underestimate situation occurred in this example. This shows that 

by changing the structure of the cylinder, the fitness will also change. We cannot guarantee 

the Hui's postbuckling method is always under or overestimating the buckling load. So we 

always need a safety factor to make sure it will not underestimate the buckling load. 
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Figure 3.3 Knock down curve for cylindrical shell under axial compression at �� �57.7350 calculate by different method 
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3.4.5 Short Cylinder 

Figure 3.4 shows the Knock down curves for cylindrical shell under axial compression 

at the reduced Batdorf parameter �� � 11.5470 calculated by Hui's postbuckling method, 

Koiter's general theory, curve fitting for improved b coefficient and the ABAQUS finite 

element simulation, respectively. In ABAQUS simulation, the geometric parameter is set as, 

: � 30µµ,      . � 20µµ,     � � 0.1µµ   

 

The geometric parameter shows this is a short cylinder. The classical buckling load 

calculated by ABAQUS is 0.6162, compared with the classical buckling load calculated by 

Koiter's theory which is 0.6178, there is less than 1% error, which proves the program for 

Koiter's theory is right. The purpose to choose this example is to demonstrate the Hui's 

postbuckling method is also valid for short cylinders. From the figure, we can see that the 

knock down curve calculated by Hui's postbuckling method fits the ABAQUS simulate result 

quite well when the imperfection is up to 18% of the shell thickness. Although the valid 

region decreases from 30% to 18% from above result, compared with the Koiter's general 

theory which the valid region is when the imperfection less than 2% of the shell thickness, it 

is still an significant improvement of valid region for Hui's postbuckling method. So the valid 

region of Hui's postbuckling method is about 8 times more than Koiter's general theory for 

this short cylinder. The improved b coefficient from curve fitting of the knock down curve of 

Hui's postbuckling method is -1.0336, and the usual b coefficient from the Koiter's general 

stability is -4.8179. We can see there is still a significant difference between the improved b 

coefficient and the usual b coefficient. The positive shifting from usual b coefficient to 
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improved b coefficient is about 79%, this shows the Koiter's general stability theory 

significantly overestimates the imperfection sensitivity of the structures again. In this 

example, we can see that the Hui's postbuckling method slightly overestimates the buckling 

load at the imperfection region which is up to 4% of the shell thickness. And when the 

imperfection is from 5% to 14% of the shell thickness, the Hui's postbuckling method slightly 

underestimates the buckling load. This proves the conclusion we get from above example. 

Although the Hui's postbuckling method is more accurate than Koiter's general theory, we 

cannot guarantee the Hui's postbuckling method always under or overestimates the buckling 

load. So we always need a safety factor to make sure it will not underestimate the buckling 

load. This example also shows that the valid region for the Hui's postbuckling method is 

changing case by case. In above cases the valid region is the imperfection up to 30% of the 

total shell thickness, but in this case, the valid region is only 18% of the total shell thickness. 

Depends on our experience, the valid region is always around the imperfection up to 20%-30% 

of the shell thickness. So in practically use, we usually choose the result within the region 

which the imperfection is up to 25% of the shell thickness, unless the finite element result is 

available. 

  



 

67 

 

 

 

 

 

 

Figure 3.4 Knock down curve for cylindrical shell under axial compression at �� �11.5470 calculate by different method 
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3.4.6 Large Cylinder and Parameter Variation 

Table 1 shows the improved b coefficient and usual b coefficient varying by the length 

of cylinder with : � 30, � � 0.1. From the table we can see that the usual b coefficient is 

very sensitive to the geometry of the cylinder. It goes from -5 to -13 and then to -5, the 

variation is about 200% about its average. But the improved b coefficient is relatively 

insensitive with the geometry of the cylinders. The variation is about 20% of its average. We 

can also see that in the whole varying range of length, the Koiter's general theory is always 

significantly overestimating the imperfection sensitivity of the structure. 

 

L ZH b(improve) b(usual) 

20 11.5470 -1.03359 -4.81794 

30 17.3205 -1.1457 -10.5046 

40 23.0940 -1.17314 -13.5785 

50 28.8675 -1.13845 -7.92821 

60 34.6410 -1.21944 -9.19678 

70 40.4145 -0.84459 -6.92347 

80 46.1880 -1.01253 -5.33978 

90 51.9615 -1.04628 -7.89774 

100 57.7350 -1.09655 -5.41846 

Table 3.1 Improved b coefficient and usual b coefficient varying by the length of 

cylinder with the following parameter fixed: : � 30, � � 0.1 

 

Figure 3.5 shows the knock down curve of the large unstiffened cylindrical shell under 

axial compression. Although its length is quite large, the reduced-Batdorf parameter �� is 

only 23.8037 because of the radius and shell thickness. The result shows that the improved 

method also works for large cylinders, and the fitness is quite well up to 40% of the shell 

thickness. Compared with the knock down curve by the Koiter's general theory, the valid 

region for Hui’s postbuckling method is significantly increased. Also we can see the Koiter's 
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general theory significantly overestimates the imperfection sensitivity of the structure by 

comparing improved b coefficient and general b coefficient which are -1.1810 and -2.9568 

respectively. 

 

 

 

Figure 3.5 Knock down curve for large cylindrical shell under axial compression calculate 

by different method, �� � 23.8037 
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3.5 Conclusion 

In this example, we successfully compared the Hui's postbuckling method with 

ABAQUS simulation and Koiter's general theory by analyzing the postbuckling behavior and 

imperfection sensitivity of different length of unstiffened cylindrical shell. The result shows 

the valid region for Hui's postbuckling method is significantly increased compared with the 

Koiter's general theory. The valid region for the Hui's postbuckling method is the 

imperfection up to about 25% of the shell thickness. Also, the Koiter's general theory 

significantly overestimates the imperfection sensitivity of the structures. More than 80% 

positive shift of postbuckling b coefficient was found through all the cases. Even in a large 

dimension case, the Hui's postbuckling method fits much better than Koiter's general theory 

to the ABAQUS result. Although the ABAQUS result is the most accurate one, the time 

consuming is at least 20 times more than that using Hui's postbuckling method. Furthermore, 

ABAQUS is also an expensive commercial software. But there will be no cost if we calculate 

by Hui's postbuckling method using free programming language. We should note that the 

valid region of Hui's postbuckling method is varying case by case. Sometimes it will slightly 

underestimate the buckling load. So it is good to have some safety factor which can overcome 

this situation. Overall, Hui's postbuckling method significantly improves the valid region of 

Koiter's general theory, so that it is more practical to be used in the real industry. 
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CHAPTER 4  

 

IMPERFECTION SENSITIVITY OF ANTISYMMETRIC 

CROSS-PLY CYLINDER UNDER COMPRESSION USING 

HUI'S POSTBUCKLING MEHOD 

 

 

4.1 Introduction 

 

Here we are using the Hui's postbuckling method to analyze the postbuckling and 

imperfection sensitivity of cylindrical shell under axial compression and compare the solution 

with the Koiter's general postbuckling theory and ABAQUS simulation result. This analysis 

is based on the work of Hui and Du [89], which presents the initial postbuckling behavior of 

imperfect, antisymmetric cross-ply cylindrical shells under torsion. In here, the applied load 

is changed to axial compression to fit the consistence of the thesis. The Donnell type 

non-linear partial differential equilibrium and compatibility equations of a cylindrical shell 

are reduced to sets of linear ordinary differential equations corresponding to the buckling and 

initial-postbuckling regimes by using the separation of variables technique employed by 

Budiansky [81]. These equations are discretized using a central-finite difference scheme (See 

APPENDIX A). By applying the Hui's postbuckling method, three special cares are taken, (i) 

the applied load in the differential equations of the second order field are using the actual 

value of the applied load rather than the classical buckling load, (ii) the value of first order 
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displacement and stress function are modified with respect to the rate of the actual value of 

the applied load and classical buckling load, (iii) The postbuckling coefficient is also 

evaluated at the actual applied load. The resulting knock down curve is fitted by the least 

square curve fit technique for the imperfection amplitude between 0 and 0.25 to get the 

improved postbuckling coefficient. 
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4.2 Governing Equations and First Order Field 

 

4.2.1 Governing Equations 

The governing differential equations for the initial postbuckling of imperfect 

antisymmetric cross-ply laminate cylindrical shell are nonlinear Donnell type equilibrium and 

compatibility equations, written in terms of the out-of-plane displacement ? and the stress 

function ), which are (see Hui and Du [89]), 

 

 

.1� �?� g .0� �)� g 1: F,kk
� ),kk ?,llg ),ll ?,kk� 2),kl ?,kl 

(4.1) 

 ./� �)� � .0� �?� � 1: ?,kk � �?,kl �! � ?,kk ?,ll (4.2) 

 

where @ and A are axial and circumferential coordinates respectively, : is the radius of 

the cylindrical shell, The forth order differential operators ./� � �, .0� � �  and .1� � �  are 

defined by Tennyson et al. [63] [102]. 
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4.2.2 Non-Dimensionalize 

Apply the following non-dimensional quantities to equation (4.1) and (4.2), 

 

 

�Y, Z� � @, A:�w.  

X � ?�  

K � )�!�# 

�B��� , C��� , d��� � � ¹��!������ , ����� , �����!�#º 

(4.3) 

 

The non-dimensional equilibrium and compatibility equations become, 

 

 

.N� �X� g .M� �K� g K,44
� K,44 X,66g K,66 X,44� 2K,46 X,46 

(4.4) 

 .D� �K� � .M� �X� � X,44 � �K,46 �! � X,44 X,66 (4.5) 

 

The non-dimensional differential operators then become (Hui and Du [89]), 

 

 

.D� � � � B!!� � �,4444g �2B'!� g B»»� �� �,4466
g B''� � �,6666� 2B!»� � �,4446
� 2B'»� � �,4666 

(4.6) 
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.M� � � � C!'� � �,4444g �C''� g C!!� � 2C»»� �� �,4466
g C'!� � �,6666g �2C!»� � C»'� �� �,4446
� �2C'»� � C»!� �� �,4666 

(4.7) 

 

.N� � � � &''� � �,4444g 2�&'!� g 2&»»� �� �,4466
g &!!� � �,6666g 4&'»� � �,4446
g 4&!»� � �,4666 

(4.8) 

 

4.2.3 Equations for the First Order Field 

Following the analysis of Koiter's [30] theory of elastic stability, the out-of-plane 

displacement and the stress function can be express in the sum of the prebuckling state, the 

buckling state and the initial postbuckling state (Hui and Du [89]), 

 

 

X � Xw g bXL g b!XLL 
K � Kw g bKL g _b!KLL (4.9) 

 

where, b is the amplitude of the buckling mode nomalized with respect to the total shell 

thickness �. Then the prebuckling state will be, 

 

 

�c, S, d� � ��Kw,66 , �Kw,44 , �Kw,46 �
� $:/��!�!�%�74, 0,0� 

(4.10) 

 

Applying the equation (4.9) to the non-dimensional equilibrium and compatibility 
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equations and connecting the term which is linear to b, we can get the equation for the 

buckling state, 

 

 .N� �XL� g .M� �KL� g KL ,44g cX,44 � 0 (4.11) 

   

 .D� �KL� � .M� �XL� � XL ,44 � 0 (4.12) 

 

4.2.4 Solve the First Order Field 

Following the analysis by Budiansky [81], the solution to the buckling state can be 

expressed into the following separation form, 

 

 XL�Y, Z� � XV�x� cos�7RZ� g X��Y�sin�7RZ� (4.13) 

   

 KL�Y, Z� � KV�x� cos�7RZ� g K��Y�sin�7RZ� (4.14) 

 

where 7R � Q��/:�'/! , Q  is the number of circumferential full-waves. Substituting 

XL�Y, Z� and KL�Y, Z� into the equation (4.10) and (4.11), and collecting the terms involving 

cos�7Z� and sin�7Z� respectively, we can get the following ODEs, 

 

 

.N!��XV� g .N#��X�� g .M!��KV� g .M#��K�� g KV ,44
g cXV,44� S7R!XV � 2d7RX�,4 � 0 

(4.15) 
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.N!��X�� � .N#��XV� g .M!��K�� � .M#��KV� g K� ,44
g cX�,44� S7R!X� g 2d7RXV,4 � 0 

(4.16) 

   

 .D!��KV� g .D#��K�� � .M!��XV� � .M#��X�� � XV,44 � 0 (4.17) 

   

 .D!��K�� g .D#��KV� � .M!��X�� � .M#��XV� � X�,44 � 0 (4.18) 

The ordinary differential operators in the above equations are defined as, 

 

 

.D!�� � � B!!� � �,4444� 7R!�2B'!� g B»»� �� �,44
g 7R©B''� � � 

(4.19) 

   

 .D#�� � � �2B!»� 7R� �,444g 2B'»� 7R#� �,4 (4.20) 

   

 

.M!�� � � C!'� � �,4444� 7R!�C''� g C!!� � 2C»»� �� �,44
g 7R©C'!� � � 

(4.21) 

   

 .M#�� � � 7R�2C!»� � C»'� �� �,444� 7R#�2C'»� � C»!� �� �,4 (4.22) 

   

 

.N!�� � � &''� � �,4444� 27R!�&'!� g 2&»»� �� �,44
g 7R©&!!� � �  (4.23) 

   

 .N#� � 47R&'»� � �,444� 47R#&!»� � �,4 (4.24) 
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For the simplicity of simulation in the ABAQUS, the clamp boundary conditions are applied 

to both end of the cylindrical shell, 

 

 X � X,k � =,ll � >,l � 0          B< @ � 0 BQ& . (4.25) 

 

For the axially immovable boundary condition =,ll �@ � 0� � 0, we can get it from the 

following strain-displacement relationship, 

 

 2_46,l� _6,k � =,ll� ?,k: g ?,k ?,ll (4.26) 

 

the above equation can be written in X and K form (see Hui and Du [89]), 

 

 

B'»� K,666g 2B!»� K,446� �B'!� g B»»� �K,466
� B!!� K,444g �C!!� � 2C»»� �X,466
g �2C!»� � C»'� �X,446g C!'� X,444
g X,4 � 0         

B< Y � 0 BQ& ./�:��w.  

(4.27) 

 

The circumferentially immovable boundary condition >,l �@ � 0� � 0 can be derived 

from >,l � _6 � ?/: � �1/2� �?,l  �! , then the >,l �@ � 0� � 0  boundary condition 

becomes (see Hui and Du [89]), 
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B'!� K66 g B!!� K,44� B!»� K,46� C!'� X,44� 2C!»� X,46 � 0        
B< Y � 0 

(4.28) 

 

Note that X�Y � 0� � 0, X,6 �Y � 0� � 0 BQ& X,66 �Y � 0� � 0. The above equations 

for boundary conditions are also available for Y � ./�:��'/!. Substituting the separable 

form of the buckling mode into the boundary conditions and connecting the terms involving 

cos�7Z� and sin�7Z� respectively, we can get the ODEs for the boundary conditions as 

follow, 

 

 XV � X� � XV ,4 � X�,4 � 0  (4.29) 

 

B'»� 7#KV � 2B!»� 7KV,44g �B'!� g B»»� �7!K�,4
� B!!� K�,444� �C!!� � 2C»»� �7!X�,4
� �2C!»� � C»'� �7XV,44g C!'� X�,444
g X�,4 � 0 

(4.30) 

 

�B'»� 7#K� g 2B!»� 7K�,44g �B'!� g B»»� �7!KV ,4
� B!!� KV,444� �C!!� � 2C»»� �7!XV,4
g �2C!»� � C»'� �7X�,44g C!'� XV,444
g XV,4 � 0 

(4.31) 

 

�B'!� 7!K� g B!!� K�,44g B!»� 7KV,4� C!'� X�,44
g 2C!»� 7XV,4 � 0 

(4.32) 

 

�B'!� 7!KV g B!!� KV,44� B!»� 7K�,4� C!'� XV,44
g 2C!»� 7X�,4 � 0 

(4.33) 
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above equations for the boundary are valid at Y � 0 BQ& ./�:��'/!. 

 

The above four governing ODEs and eight boundary conditions are discretized using the 

central finite difference scheme (see APPENDIX A). The resulting linear system of equations 

becomes an eigenvalue problem which can be solved by a build-in function in MATLAB or 

using the inverse power method (see APPENDIX B). The amplitude of the buckling state is 

normalized by forcing the largest out-of-plane displacement of the buckling state to be unity, 

which means that $XV�Y� g X��Y�%'/! � 1. 
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4.3 Second Order Field and Postbuckling Coefficient 

 

4.3.1 Equations for the Second Order Field 

Substituting the equations of the total out-of-plane and total stress function into the 

governing Donnell type equations, respectively, and collecting the terms involving b!, then 

we can get the equilibrium and compatibility equations for the initial postbuckling state (also 

called second order field), 

 

 

.N� �XLL� g .M� �KLL� g KLL ,44g cDXLL ,44
� KL ,66 XL ,44g KL ,44 XL ,66� 2KL ,46 XL ,46 

(4.34) 

   

 .D� �KLL� � .M� �XLL� � XLL ,44 � �XL ,46 �! � XL ,44 XL ,66 (4.35) 

 

Note that instead of using cV to calculate the second order field, we replace them by the 

actual applied load cD, this is one step for the Hui's postbuckling method. The actual applied 

load is defined to be some percent of classical buckling load, for example from 100% to 20% 

of the classical buckling load `V. So the actual applied load `D � S(��(Q< � `V, also for 

each applied load the first order field must be modified like in the General Steps (Note this is 

different from unstiffened cylinder in previous section where we mentioned it is a special 

case),  

 

 �XRV, XR�, K¶V , K¶�� � S(��(Q< � �XV, X�, KV , K�� (4.36) 
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where, �XRV, XR�, K¶V , K¶�� is the first order field of the buckling state under actual applied load. 

Same procedure should be taken place when calculating the postbuckling b coefficient. 

 

4.3.2 Solve the Second Order Field 

It is clear that the solution for the equilibrium and compatibility equations for the initial 

postbuckling state can be expressed as the following separable forms (see Budiansky [81]), 

 

 

XLL�Y, Z� � X��Y� g X/�Y� cos�27RZ�
g X0�Y�sin �27RZ� 

(4.37) 

   

 

KLL�Y, Z� � K��Y� g K/�Y� cos�27RZ�
g K0�Y�sin �27RZ� 

(4.38) 

 

By substituting the above separable form of solution into the equilibrium and 

compatibility equations for the second order field, and collecting the terms involving ''*'', 

cos �27RZ� and sin �27RZ� respectively, we can get two sets of ODEs. The first set involves 

just X��Y� and K��Y�, the second set involves X/�Y�, X0�Y�, K/�Y� and K0�Y�. The first 

set is, 

 

 

&''� X�,4444g C!'� K�,4444g K�,44g cDX�,44
� � 7R!2 �XVKVgX�K��,44 

(4.39) 

 B!!� K�,4444� C!'� X�,4444� X�,44 � 7R!4 �X�! g XV!�,44 (4.40) 
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We can see the two in-plane boundary conditions =,66 �Y � 0 BQ& ./�:��'/!� � 0 

and >,6 �Y � 0 BQ& ./�:��'/!� � 0 are not available now, so we cannot uniquely define 

the K��Y�  just with the remaining two out-of-plane boundary conditions X��Y �
0 BQ& ./�:��'/!� � 0  and X�,4 �Y � 0 BQ& ./�:��'/!� � 0 . Since the postbuckling b 

coefficient only relates to the second derivatives of K��Y�, we can apply the additional 

boundary condition which is the single value requirement of the circumferential displacement. 

This can be derived from 

 

 ¼ >,6 &Z � 0 (4.41) 

 

Form which we can get the following additional boundary condition, 

 

 

K��Y�,44 � C!'�B!!� X��Y�,44g 1B!!� X��Y�
g 7R!4B!!� �X�!�Y� g XV!�Y�� 

(4.42) 

 

Substituting equation (4.40) and (4.42) into equation (4.39) and replacing the term K�,4444 

and K�,44, we can get an ODE involving only X��Y�, which is, 
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½&''� g C!'� !B!!� ¾ X�,4444g ½2C!'�B!!� g c¾ X�,44g 1B!!� X�
� � 7R!2 �X�K� g XVKV�,44
� 7R!C!'�4B!!� �X�! g XV!�,44
� 7R!4B!!� �X�! g XV!�      B< Y
� 0 BQ& .�:��'! 

(4.43) 

 

With two out-of-plane boundary conditions X��Y � 0 BQ& ./�:��'/!� � 0 and X�,4 �Y �
0 BQ& ./�:��'/!� � 0, we can uniquely solve X��Y�, and substitute the solution of X��Y� 

into equation (4.42) to solve K��Y�,44. 

 

The second set of second order field is, 

 

 

.LLN!��X/� g .LLN#��X0� g .LLM!��K/� g .LLM#��K0� g K/,44
g cX/,44� 47R!SX/ � 47RdX0,4
� 7R!2 �X�,44 K� � XV,44 KV g X�K�,44
� XVKV,44� 2X�,4 K� ,4g 2XV,4 KV ,4 � 

(4.44) 
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.LLN!��X0� � .LLN#��X/� g .LLM!��K0� � .LLM#��K/� g K0,44
g cX0,44� 47R!SX0 g 47RdX/,4
� 7R!2 ��XV,44 K� � X�,44 KV � XVK�,44
� X�KV ,44g 2XV,4 K� ,4g 2X�,4 KV,4 � 

(4.45) 

   

 

.LLD!��K/� g .LLD#��K0� � .LLM!��X/� � .LLM#��X0�
� X/,44
� 7R!2 �X�,4!� XV ,4!� X�X�,44
g XVXV , YY � 

(4.46) 

   

 

.LLD!��K0� g .LLD#��K/� � .LLM!��X0� � .LLM#��X/�
� X0,44
� 7R!2 �XVX�,44g X�XV,44� 2X�,4 XV,4 � 

(4.47) 

 

where the linear differential operators .LLD!�, .LLD#�, .LLM!�, .LLM#�, .LLN!� and .LLN#� can be got 

from equation (4.19) to (4.24) by replacing the 7R by 27R resplectively. 

 

The boundary conditions for the second set can be reached from equations (4.28-4.32) 

by replacing the 7R , XV , X� , KV  and K�  by 27R, X/ , X0 , K/  and K0  respectively. The 

second order filed is descrelized by center finite difference scheme and solved by Gauss 

elimination method. 

  



 

86 

 

4.3.3 Equations for the Postbuckling Coefficient 

The postbuckling b coefficient evaluates the stability of the structures. If the b 

coefficient is positive, then the structure has stable postbuckling behavior; if the b coefficient 

is negative, the structure has unstable postbuckling behavior. The imperfection sensitivity is 

measured by the magnitude of the postbuckling b coefficient. The path of equilibrium is 

formulated as, 

 

 Cb# g ª1 � `�`V« b � a `�`V (4.48) 

 

where, `� is the buckling load of the imperfect system, `V is the classical buckling load of 

the perfect system, a is the imperfection amplitude divide by the shell thickness. The 

imperfection amplitude is related to the buckling load by the following formula (only for 

b<0), 

 

 a � 2√�3C$1 � �`�/` � %#/!3�`�/`�  (4.49) 

 

The formula of postbuckling b coefficient is (Budiansky [81], Hui and Du [89]), 

 

 C � �' g �!|�'|  (4.50) 
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where, 

 

�' � 2 e e ¬KL ,66 XL ,4 XLL ,4g KL ,44 XL ,6 XLL ,6®
4¯w

6°
6¯w

� KL ,46 �XL ,4 XLL ,6g XL ,6 XLL ,4 �±&Y&Z 

(4.51) 

   

 

�! � e e ²KLL ,66 �XL,4 �! g KLL ,44 �XL ,6 �!®
4¯w

6°
6¯w

� 2KLL ,46 XL ,4 XL ,6 ³&Y&Z 

(4.52) 

   

 �' � e e �cDXL!,4g SDXL!,6g 2dDXL ,4 XL ,6 �®
4¯w

6°
6¯w  (4.53) 

 

In the above, Z � 2´:/�:��'/! and the reduced-Batdorf parameter �� � ./�:��'/!. 

Substituting the buckling state and the postbuckling state, and integrating in the 

circumferential direction analytically, we can obtain, 
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�' � 7R!Zw e ²X,4� ��K�X�,4� KVXV ,4 �®
4¯w

g 12 X/,4 �K�X�,4� KVXV ,4 �
� 12 X0,4 �K�XV ,4g KVX�,4 �
� X/�K�,44 X� � KV,44 XV�
g X0�K�,44 XV g KV ,44 X��
g X/�K�,4 X�,4� KV ,4 XV,4 �
� X0�K�,4 XV,4g KV,4 X�,4 �
� X,4� �K�,4 X� g KV ,4 XV�
� 12 X/,4 �K�,4 X� � KV ,4 XV�
� 12 X0,4 ��K�,4 XV � KV ,4 X��³&Y 

(4.54) 

 

�! � 7R!Zw e ²�K/$�XV,4 �! � �X�,4 �!%®
4¯w

� 2K0X�,4 XV,4g 12 K,4� �XV! g X�!�
g 14 K/,44 �X�! � XV!� � 12 K0,44 X�XV
g K/,4 �X�X�,4� XVXV,4 �
� K0,4 �XVX�,4g X�XV ,4 �³&Y 

(4.55) 

 �' � 7R!Zw e ²12 cD$�XV,4 �! g �X�,4 �!%³&Y®
4¯w  (4.56) 

 

Note that postbuckling b coefficient is also calculated by using the actual applied load 

cD, then the b coefficient should be a function of applied load numerically. In order to 

compare the Hui's postbuckling method with the Koiter's general theory, we need to get one b 

coefficient for improved Koiter. This is the reason for us to do the least square curve fit. 
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Fitting the knock down curve of the Hui's postbuckling method using equation (4.48) by the 

least square technique in the range of imperfection amplitude form 0 to 25 percent of the shell 

thickness, we can get the improved b coefficient. Then we can use it to compare with the 

usual b coefficient calculated by the Koiter's general postbuckling theory. 
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4.4 Result and Discussion 

 

4.4.1 Example Cases 

Here we concentrate on demonstrating the improvement of the Hui's postbuckling 

method by comparing the result with the Koiter's general stability theory and ABAQUS 

simulation. So we will not do a complete parameter variation of the composite cylindrical 

shells in here. The example used here is antisymmetric laminated cross-ply cylindrical shells 

made of Boron-epoxy materials (see Hui and Du [89]). The material parameters are, 

 

 
�'�! � 10, *'!�! � 0.5,  '! � 0.25 (4.57) 

 

The clamp boundary condition is applied in both ends of the cylindrical shell. Three 

cases are considered in here, 

i. in[0
o
t/90

o
t]out, clamp 

ii. in[90
o
t/0

o
t]out, clamp 

iii. in[90
o
t/0

o
t/90

o
t/0

o
t]out, clamp 

 

The geometric properties of above laminated cylindrical shells used in ABAQUS 

simulation are, 

 : � 30µµ, . � 50µµ, < � 0.05µµ (4.58) 

where < is the thickness of each layer of the laminate. 
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For comparison to the unstiffened cylinder, here we also use the large cylinder case, but 

the material is changed to one kind of carbon fiber, with ten cross-ply [0
o

t/90
o
t]5 layers. The 

material properties are, 

 

 �' � 1425003SB, �! � 87003SB,  '! � 0.28, *'! � 51003SB (4.59) 

 

The geometric properties are the same as for unstiffened ones, which are 

 

 : � 1736µµ, . � 7013µµ, < � 5µµ (4.60) 

 

Some results in Hui and Du [89] are reproduced to check the accuracy of my 

programming. The geometry of the cylindrical shell is described by the reduced-Batdorf 

parameter �� � ./�:��'/!. Where, � is the total thickness of the laminated cylindrical 

shell. The postbuckling coefficients of in[0
o
t/90

o
t]out and in[90

o
t/0

o
t]out antisymmetric cross-ply 

cylindrical shell under torsion are reproduced and presented in Figure 4.1. The result is 

identical to the result presented in Hui and Du's work. This shows that the b coefficient 

changes from positive to negative when �� changes from 3.0 to 5.0 for both cases. When 

�� is between 6.0 and 9.0, the b coefficient of both case reaches their maximum negative, 

which means the most imperfect-sensitivity is occurred in this region for both cases. The 

most negative value of b coefficient of in[0
o
t/90

o
t]out case is about �0.07, and the most 

negative value for in[90
o
t/0

o
t]out case is about �0.055. From the result we can see the 

in[90
o
t/0

o
t]out laminated cylindrical shell is more imperfection sensitive than in[0

o
t/90

o
t]out 
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laminated cylindrical shell. So the b coefficient of Koiter's general theory agrees with the one 

presented by Hui and Du [89] very well. 

 

 

 

Figure 4.1 Postbuckling b coefficient versus the reduced-Batdorf parameters for 

antisymmetric cross-ply cylindrical shells under torsion 
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4.4.2 [0/90] Laminate 

Now we can compare the Hui's postbuckling method with the Koiter's general theory 

and ABAQUS simulation result. Figure 4.2 shows the Knock down factors of in[0
o
t/90

o
t]out 

antisymmetric cross-ply cylindrical shell under axial compression calculated by ABAQUS, 

Hui's postbuckling method, Koiter's general theory and curve fit of the improved b coefficient, 

respectively. From the figure, we can see that the curve for the Hui's postbuckling method can 

fit the ABAQUS result of the imperfection up to 39% of the shell thickness and then it starts 

to diverge from the ABAQUS result. Furthermore, the Koiter's general theory is only valid 

when the imperfection of the cylinder is around 10% of the shell thickness. For the 

comparison purpose, the curve fit for the Hui's postbuckling method is taken place, and the 

improved b coefficient is calculated out. We can see that the knock down curve for the 

improved b coefficient is also valid when the imperfection is up to 30% of the shell thickness. 

Now we can compare the general b coefficient which is �0.4561 with the improved b 

coefficient which is �0.2347. We can find a 50% positive shift of the postbuckling 

coefficient by using the Hui's postbuckling method. This means that the general Koiter’s 

theory significantly overestimates the imperfection sensitivity. Also, there is a significant 

increase of valid region of Koiter's general theory from the imperfection about 10% of the 

shell thickness to 30% of the shell thickness. The improvement of the valid region is about 

300%. This is a significant improvement which means the Hui's postbuckling method is more 

practical than the original one. The cylinder with imperfection within 10% of the shell 

thickness is very hard to make. Although the result of ABAQUS simulation is the most 

accurate one, the time consuming to calculate this knock down curve is at least 30 times more 
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than using Hui's postbuckling method. Also, ABAQUS is an expensive commercial software. 

So the efficiency and the low cost are the advantages of the Hui's postbuckling method. 

 

 

Figure 4.2 Knock down curve for in[0
o
t/90

o
t]out antisymmetric cross-ply cylindrical shell 

under axial compression calculate by different method 
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4.4.3 [90/0] Laminate 

Figure 4.3 shows the Knock down factors of in[90
o
t/0

o
t]out antisymmetric cross-ply 

cylindrical shell under axial compression calculated by ABAQUS, Hui's postbuckling method, 

Koiter's general theory and curve fit of the improved b coefficient, respectively. The result 

shows that, the curve for the Hui's postbuckling method fits the ABAQUS result when the 

imperfection is up to 18% of the shell thickness. Same phenomenon happens for the result 

calculated by the improved b coefficient from curve fitting. Koiter's general theory is only 

valid when the imperfection is less than 5% of the shell thickness. Then it starts to diverge 

from the ABAQUS result. Again, more than 300% percent improvement of valid region was 

found for the Hui's postbuckling method compared with the original one. But we can also see 

that, compared with the previous case; the valid region for the Hui's postbuckling method 

decreases significantly. So the validity region of the Hui's postbuckling method is varying 

from case by case. This conclusion is also valid for Koiter's general theory, and the 

improvement of the valid region is still significant. We can also see the general b coefficient 

is �0.4528, compared with the improved b coefficient which is �0.2290. There is an about 

50% positive shift of the postbuckling b coefficient. This also demonstrates the Koiter's 

general significantly overestimates the imperfection sensitivity. 
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Figure 4.3 Knock down curve for in[90
o
t/0

o
t]out antisymmetric cross-ply cylindrical shell 

under axial compression calculate by different method 

 

Figure 4.4 shows the improved b coefficient and usual b coefficient versus the 

reduced-Batdorf parameters for in[90
o
t/0

o
t]out antisymmetric cross-ply cylindrical shell under 

axial compression. It is important to note that when b coefficient is positive, the curve fitting 

process takes place for the equilibrium path of the load-deflection curve which is specified by 

the equation (1.32). From the result we can see, for stable structure (b coefficient is positive) 

there is almost no difference between Hui's postbuckling method and Koiter's general theory. 

After the structure becomes unstable, the improved b coefficient and usual b coefficient start 

to diverge. The difference of the b coefficient between Hui's postbuckling method and 

Koiter's general theory is stabilized at about 50% positive shifting of usual b coefficient 

throughout the whole region of �� which considered in here. It is clear shows that the 
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Koiter's general theory always significantly overestimates the imperfection sensitivity of the 

structure. But we should note that, the positive shifting is not always 50% for different kinds 

of cylinders. For some type of cylinder the shift is larger, for example the isotropic cylindrical 

shell under axial compression, sometimes the shift is not that much (like in this case). 

 

 
Figure 4.4 Improved b coefficient and usual b coefficient versus the reduced-Batdorf 

parameters for in[90
o
t/0

o
t]out antisymmetric cross-ply cylindrical shell under 

axial compression 
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4.4.4 [90/0/90/0] Laminate 

Figure 4.5 presents the knock down curves for in[90
o
t/0

o
t/90

o
t/0

o
t]out antisymmetric 

cross-ply cylindrical shell under axial compression calculated by ABAQUS, Hui's 

postbuckling method, Koiter's general theory and curve fitting of the improved b coefficient, 

respectively. We can see the knock down curve calculated by the Hui's postbuckling method 

fits the ABAQUS result when the imperfection is up to 23% of the shell thickness. It then 

starts to diverge from the ABAQUS result. The result of the curve fitting is also valid when 

the imperfection is up to about 20% of the shell thickness. Furthermore, the knock down 

curve calculated by the usual b from Koiter's general theory is valid only when the 

imperfection is up to few percent of the shell thickness (about 5% of the shell thickness). 

Again, it shows a significant improvement (more than 300%) of the valid region of Hui's 

postbuckling method compared with the Koiter's general theory. Also we can see the 

improved b coefficient from curve fitting is -0.1375 compared with the usual b coefficient 

from Koiter's general theory, which is -0.2444. There is still an about 50% positive shift from 

usual b coefficient to improved b coefficient. This, again, demonstrates that the Koiter's 

general theory significantly overestimates the imperfection sensitivity. This also shows that 

the valid region is varied case by case. We can only know the valid region once we compare 

it with the finite element result such as ABAQUS simulation. But more or less, the valid 

region is the imperfection up to about 20%-30% of the shell thickness. So without the finite 

element simulation, it is preferred to trust the result when the imperfection is within about 

20%-30% of the shell thickness. After this point, it has the risk to overestimate the buckling 

load significantly. Here, we need to note that, although the Hui's postbuckling method is more 
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accurate than the Koiter's general theory, sometimes it will slightly underestimate the 

buckling load. So it is good to have some safety factor which can overcome this situation. 

 

 

Figure 4.5 Knock down curve for in[90
o
t/0

o
t/90

o
t/0

o
t]out antisymmetric cross-ply cylindrical 

shell under axial compression calculate by different method 
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4.4.5 [0/90]5 Large laminated cylindrical shell 

Figure 4.6 shows the Knock down curves for [0/90]5 large antisymmetric cross-ply 

cylindrical shell under axial compression calculate by calculate ABAQUS, Hui's postbuckling 

method, Koiter's general theory and curve fitting of the improved b coefficient, respectively. 

In this example, the dimension is quite large and there are lots of layers. Although the length 

of the cylinder is quite long, the reduced Batdorf parameter is only 23.8037. This is because 

the shell thickness we choose is quite large. In this quite extreme case, we can see before the 

imperfection is less than 20% of the shell thickness, the Koiter's general curve fits the 

ABAQUS result better than Hui's postbuckling method. But when the imperfection increases, 

the Hui's postbuckling method is much closer than the Koiter's general theory. It seems that 

Hui's postbuckling method is tending to match the whole curve, so that it makes the first 20% 

of imperfection less accurate than Koiter's general theory. But after that, the Hui's 

postbuckling method matches the decreasing rate of the knock down curve of ABAQUS very 

well up to one. Again, we can see the Koiter's general theory significantly overestimates the 

imperfection sensitivity of the structure, by comparing the general b coefficient with the 

improved b coefficient which is -0.1403 and -0.0887 respectively. 
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Figure 4.6 Knock down curve for [0/90]5 large antisymmetric cross-ply cylindrical shell 

under axial compression calculate by different method, �� � 23.8037 
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4.5 Conclusion 

In this part of the thesis, we successfully compared the Hui's postbuckling method with 

ABAQUS and Koiter's general theory by four cases of antisymmetric cross-ply cylindrical 

shell under axial compression. The result shows the valid region for Hui's postbuckling 

method is significantly increased compared with the Koiter's general theory. Also the Koiter's 

general theory significantly overestimates the imperfection sensitivity of the structures. An 

about 50% positive shift of postbuckling b coefficient was found through all the cases. 

Although the ABAQUS result is the most accurate one, the time consuming is at least 30 

times more than using Hui's postbuckling method. Furthermore, ABAQUS is also an 

expensive commercial software, compared with no cost needed to calculate by Hui's 

postbuckling method using free programming language. It should be noted that, although the 

Hui's postbuckling method is more accurate than the Koiter's general theory, sometimes it 

will slightly underestimate the buckling load. So it is good to have some safety factor which 

can overcome this situation. Even in a very extreme condition: large dimensions; thick shell 

thickness; small reduced Batdorf parameters; lots of layers, the valid region of Hui's 

postbuckling method is much better than Koiter's general theory. Overall, Hui's postbuckling 

method significantly improves the valid region of Koiter's general theory, so that it is more 

practical to be used in a preliminary design. 
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CHAPTER 5  

 

PARAMETER VARIATION STUDY ON IMPERFECTION 

SENSITIVITY OF STIFFENED CYLINDER USING HUI'S 

POSTBUCKLING MEHOD 

 

 

5.1 Introduction 

Here we are using the Hui's postbuckling method to analyze the postbuckling and 

imperfection sensitivity of stringer or ring stiffened cylindrical shell under axial compression 

and torsion. We are comparing the solution with the Koiter's general postbuckling theory 

result and also performing some parametrical variation investigation. This analysis is based 

on the work of Huchinson and Amazigo [40] which presents the investigation on the 

imperfection sensitivity of eccentrically stiffened cylindrical shells. The Donnell type 

non-linear partial differential equilibrium and compatibility equations of a cylindrical shell 

are reduced to sets of linear ordinary differential equations corresponding to the buckling and 

initial-postbuckling regimes by using the separation of variables technique employed by 

Budiansky [81]. These equations are discretized using a central-finite difference scheme (see 

APPENDIX A). By applying the Hui's postbuckling method, three special cares are taken, (i) 

the applied load in the differential equations of the second order field is using the actual value 

of the applied load rather than the classical buckling load, (ii) the values of first order 

displacement and stress function are modified with respect to the rate of the actual value of 
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the applied load rather than the classical buckling load, (iii) The postbuckling coefficient is 

also evaluated at the actual applied load. The resulting knock down curve is fitted by the least 

square curve fit technique for the imperfection amplitude between 0 and 0.25 to get the 

improved postbuckling b coefficient. 
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5.2 Governing Equations and First Order Field 

 

5.2.1 Governing Equations 

Koiter's theory of elastic stability is used to analyze the buckling and initial postbuckling 

behavior of stringer and /or ring stiffened cylindrical shells under torsion. Koiter's theory was 

reformulated by Budiansky and Hutchinson [79], and for brevity, it will not be redeveloped 

here (see Budiansky [81], Hutchinson and Amazigo [40], Hui and Du [89] [101]). For the 

present single-mode symmetric system, the structure is sensitive to the presence of small 

geometric imperfection if the postbuckling 'b' coefficient is negative, and it is not sensitive to 

imperfection if 'b' is positive. The extent of imperfection-sensitivity depends upon the 

magnitude of the b coefficient. The Koiter-style analysis is restricted to relatively small 

amplitudes of the imperfection. The imperfection shape is identical to that of the buckling 

mode. 

 

The nonlinear Donnell-type equilibrium and compatibility partial differential equation 

for stiffened cylindrical shells, written in terms of an out-of-plane displacement W (positive 

outwards) of the 'skin' middle surface and a stress function of the 'smeared' stiffened shell are, 

(Hutchinson and Amazigo [40]), 

 

 

.1�?� g .2�)�
� ),ll ?,kkg ),kk ?,ll� 2),kl ?,kl 

(5.1) 

 .��)� � .2�?� � �?,kl �! � ?,kk ?,ll (5.2) 
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In the above, @ and A are the axial and circumferential coordinates respectively and 

.1� � , .2� �  and .�� �  are the fourth order linear differential operators defined by 

Hutchinson and Amazigo [40].  

 

5.2.2 Non-Dimensionalize 

The following non-dimensional quantities are employed, 

 

 

X � ?� ,   K � )��# ,   �Y, Z� � �@, A��:��'!  
�.1 � �, .2 � �, .�  � ��

� ª��#.N  � �, �.O  � �, � 1��� .P � �« 

(5.3) 

 

where, E is Young's modulus (taken to be the same for the skin and the stiffeners), R is the 

shell radius and t is the skin thickness. Thus, the non-dimensional equilibrium and 

compatibly equations become, 

 

 .N�X� g .N�K� � K,66 X,44g K,44 X,66� 2K,46 X,46 (5.4) 

   

 .P�)� � .O�?� � �X,46 �! � X,44 X,66 (5.5) 
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The non-dimensional linear differential operators are, 

 

 .N� � � &44� �,4444g 2&46� �,4466g &66� �,6666 (5.6) 

 

 

.O� � � W44� �,4444g 2W46� �,4466g W66� �,6666
g � �,44 

(5.7) 

   

 .P� � � �44� �,4444g 2�46� �,4466g �66� �,6666 (5.8) 

 

where (equation (5.10) differs from Hutchinson and Amazigo's [40] analysis, due to the 

inclusion of the stiffener torsional rigidity, see APPENDIX C), 

 

 

�&44, &66�
� ²1 g �\�, \�� g 12�1 �  !�$1 g �[�, [��%�[�]�!, [�]�!�³$12�1 �  !�[w%  

(5.9) 

   

 

&46 � 112�1 �  !� ²1 g $12 �1 �  !�[�[�]�]�%[wg 12 �^� g ^��³ 

(5.10) 

   

 �W44, W66� � � [�]�,  [�]��[w  (5.11) 

   

 W46 � � ²[�]�$1 g �1 �  !�[�% g [�]�$1 g �1 �  !�[�%³2[w  (5.12) 
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 ��44, �66� � $1 g �[�, [���1 �  !�%[w  (5.13) 

   

 �46 � 1 g  � �  [w� (5.14) 

 

In the above,   is Poisson's ratio. It is taken to be the same for the skin and the stiffeners. 

The stiffener cross-sectional area ratio �[�, [��, the stiffener out-of plane bending-stiffness 

ratio �\�, \��, the stiffener eccentricity ratio �]�, ]�� and the stiffener torsional rigidity ratio 

�^�, ^�� are, 

 

 

 

�[�, [�� � ���, ����&�, &��� 

 

�\�, \�� � ���+�, ��+����&�, &��  

 

�]�, ]�� � �(�, (���  

 

�^�, ^�� � �*�-��&� , *�-��&� � 

(5.15) 

 

In order to simplify the analysis, all the stiffeners in a stiffened shell are assumed to be 

identical and they are equally spaced. Furthermore, ���, ��� is the cross-sectional area of 

any stringer or ring; �&�, &�� is the distance between adjacent stringers or adjacent rings; 

���, ��� is Young's modulus of stringer or ring; �+�, +�� is out-of-plane bending moment of 
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inertia of any one stiffener with respect to its centroid; � is the flexural rigidity of the skin; 

�(�, (�� is the stiffener eccentricity and �*�-�, *�-�� is the torsional rigidity of any one 

stringer or ring. 
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5.2.3 Equations for the First Order Field 

According to Koiter's theory, the total displacement and the total stress function can be 

written as, 

 

 

X, � Xw g bXL g b!XLL 
K, � Kw g bKL g b!KLL (5.16) 

 

where b is the amplitude of the buckling mode normalized with respect to the skin thickness 

and a membrane prebuckling state is assumed. The non-dimensional applied loads are, 

 

 

�c, S, d� � ��Kw,66 , �Kw,44 , �Kw,46 �           
� :��! �74, 76, 746� 

(5.17) 

 

where, 74 is the axial compression force per circumferential length, 76 is the pressure, 

746 is the torsional force per circumferential length. Substituting X, and K, into nonlinear 

differential equations (5.4) and (5.5), then collecting terms which are linear in b , the 

equilibrium and compatibility equations for the buckling state become, 

 

 .N�XL� g .N�KL� g cVXL ,44g SVXL ,66� 2dVXL ,46 � 0 (5.18) 

 

 .P�KL� � .O�XL� � 0 (5.19) 
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5.2.4 Solve the First Order Field 

Following the analysis of Budiansky(1967), the buckling mode can be written in the 

separable form, 

 

 

$XL�Y, Z�, KL�Y, Z�%
� $XV�Y�, KV�Y�% �£À�7RZ� g $X��Y�, K��Y�%À�Q �7RZ� 

(5.20) 

where 

 7R � Q ��:�'/!
 (5.21) 

 

and the integer Q is the number of circumferential full-waves. Substituting XL�Y, Z� and 

KL�Y, Z�  into the linearized equilibrium equations, and then collecting terms involving 

�£À �7RZ� and À�Q �7RZ�, one obtains respectively, 

 

 

&44XV,4444� 27R!&46XV,44g &667R©XV g W44KV,4444
� 27R!W46KV,44g W667R©KV g KV,44
g cVXV,44� 7R!SVXV � 2d7RX�,4 � 0 

(5.22) 

 

 

&44X�,4444� 27R!&46X�,44g &667R©X� g W44K�,4444
� 27R!W46K�,44g W667R©K� g K�,44
g cVX�,44� 7R!SVX� � 2d7RXV,4 � 0 

(5.23) 
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Likewise, collecting terms involving �£À �7RZ�  and À�Q �7RZ�  from the linearized 

compatibility equation for the buckling state, one obtains respectively, 

 

 

�44KV ,4444� 27R!�46KV ,44g �667R©KV
� �W44XV,4444� 27R!W46XV,44
g W667R©XV g XV,44 � � 0 

(5.24) 

 

 

�44K�,4444� 27R!�46K� ,44g �667R©K�
� �W44X�,4444� 27R!W46X�,44
g W667R©X� g X�,44 � � 0 

(5.25) 

 

For simplicity, the boundary conditions are identical at both ends of the stiffened 

cylindrical shell, and X�Y � 0� � 0 ,   X�Y � ./�:<��'/!�  � � 0 . The out-of-plane 

boundary conditions are either clamped ?,k �@ � 0� � 0 or simply-supported 34�H�@ �
0� � 0, where 34�H is the bending moment for the 'smeared' shell, which can be derived 

from the terms involving ^?,44 in the first variation of potential energy (see APPENDIX C). 

The effective bending moment for the 'smeared' shell is, 

 

 

34�H � ��²�1 g \��?,kkg  ?ll
� Á(��Â ��1 � �46�),ll� �44),kk
� �44?,kk� �46?,ll �³ 

(5.26) 
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Thus, the boundary condition 34�H�@ � 0� � 0 can be written in non-dimensional form, 

 

 

$1 g \� g 12�1 �  !�]��J44%X,44 �Y � 0�
� 12�1 �  !�]���1 � �46�K,66 �Y � 0�
� �44K,44 �Y � 0�� � 0 

(5.27) 

 

The in-plane axial boundary condition is =,ll �@ � 0� � 0 or ),ll �@ � 0� � 0 and 

the in-plane circumferential boundary condition is >,l �@ � 0� � 0. 

 

Further more =,ll �@ � 0� � 0 can be obtained from equation (C.2), 

 

 2_46,l� _6,k � =,ll� �?,k: � g ?,k ?,ll (5.28) 

 

so that the boundary condition =,ll �@ � 0� � 0 becomes, 

 

 

� �44 � �64�K,444 �Y � 0�
g ��2�1 g  � g  �46 � �66�K,466 �Y � 0�
g � �J44 � �J64�X,444 �Y � 0�
g � �J46 � �J66�X,466 �Y � 0� g X,4 �Y � 0� � 0 

(5.29) 

 

 

 



 

114 

 

Finally, using >,l � _6 � ÁÃÄ Â � '! �?,6 �!
, the >,l �@ � 0� � 0 boundary condition is 

(using ?�@ � 0� � 0, ?,l �@ � 0� � 0, ?,ll �@ � 0� � 0), 

 

 

��64 �  �44�K,44 �Y � 0�
g ��66 �  �46�K,66 �Y � 0�
g ��J64 �  �J44�X,44 �Y � 0� � 0 

(5.30) 

 

where the non-dimensional quantities ��44, �46, �64, �66�  and ��J44, �J46, �J64, �J66�  are 

defined by Hutchinson and Amazigo [40], which are listed in Table 5.1. 

 

�44 �  [�[w  �66 �  [�[w  �46 � 1 g [�[w  �64 � 1 g [�[w  

�J44
� [�[��1 g [��[w  

�J66 � [�[��1 g [��[w  �J46 �  [�[�]�[w  �J64 �  [�[�]�[w  

[w � �1 g [���1 g [�� �  ![�[� 

Table 5.1 Stiffened cylinder parameters 

 

The above four ordinary differential equations and four boundary conditions at each end 

of the shell are discretized using the central finite difference scheme (see APPENDIX A). The 

resulting linear system of equations constitutes an eigenvalue problem which can be solved 

by using a build-in function in MATLAB or using the inverse power method (see APPENDIX 

B). The amplitude of the buckling mode is normalized by $XV�Y� g X��Y�%'/! � 1 , such 

that the largest out-of-plane displacement of the buckling mode is unity. 
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5.3 Second Order Field and Postbuckling Coefficient 

 

5.3.1 Equations for the Second Order Field 

Substituting the total displacement X,  and stress function K,  into the governing 

nonlinear differential equations (5.4) and (5.5), and collecting terms which involve b!, one 

obtains the equilibrium and compatibility equations for the second order fields, respectively 

 

 

.N�XLL� g .O�KLL� g cDXL ,44g SDXL ,66� 2dDXLL ,46
� KL ,66 XL ,44g KL ,44 XL ,66� 2KL ,46 XL ,46 

(5.31) 

 

 .P�KLL� � .O�XLL� � �XL ,46 �! � XL ,44 XL ,66 (5.32) 

 

Note that instead of using SV, cV and dV to calculate the second order field, we replace 

them by the actual applied load SD, cD and dD respectively. This is one step for the Hui's 

postbuckling method. The actual applied load is defined to be some percent of classical 

buckling load, for example from 100% to 20% of the classical buckling load `V. So the 

actual applied load `D � S(��(Q< � `V, also for each applied load the first order field must 

be modified like in the General Steps in section 2.2.2 (Note this is different from unstiffened 

cylinder in previous section which we mentioned as a special case),  

 

 �XRV, XR�, K¶V , K¶�� � S(��(Q< � �XV, X�, KV , K�� (5.33) 
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where �XRV, XR�, K¶V , K¶�� is the first order field of the classical buckling state. Same procedure 

should be used when calculating the postbuckling b coefficient. 

 

5.3.2 Solve the Second Order Field 

Substituting the separable form of the buckling mode XL and KL into the right hand 

side of the above equations, it is clear that the second order fields can be written in the form, 

 

 

XLL�Y, Z� � X��Y� g X/�Y� �£À�27RZ�
g X0�Y�À�Q �27RZ� 

(5.34) 

 

 

KLL�Y, Z� � K��Y� g K/�Y� �£À�27RZ�
g K0�Y�À�Q �27RZ� 

(5.35) 

 

Thus, the second order equations are uncoupled into two sets of ordinary differential 

equations involving $X��Y�, K��Y�%  and $X/�Y�, X0�Y�, K/�Y�, K0�Y�%  respectively. The 

first set of equilibrium and compatibility equations is, 

 

 

&44X�,4444g W44K�,4444g K�,44g cDX�,44
� � 7R!2 �X�K� g XVKV�,44 

(5.36) 

 

 �44K�,4444� W44X�,4444� X�,44 � 7R!4 �X�! g XV!�,44 (5.37) 
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The second set of four coupled ordinary differential equations is, 

 

 
.'Å � 7R!2 �X�,44 K� � XV,44 KV g X�K�,44� XVKV,44

� 2X�,4 K�,4g 2XV,4 KV,4 � 

(5.38) 

 

 
.!w � 7R!2 ��XV,44 K� � X�,44 KV � XVK�,44� X�KV ,44

g 2XV,4 K�,4g 2X�,4 KV,4 � 

(5.39) 

 

 .!' � 7R!2 ��X�,4 �! � �XV,4 �! � X�X�,44g XVXV,44 � (5.40) 

 

 .!! � 7R!2 ��2X�,4 XV,4g XVX�,44g X�XV,44 � (5.41) 

 

where .'Å, .!w, .!', and .!! can be obtained from the left had side of equations (5.22) to 

(5.25) by replacing 7R, XV, X�, KV , K� by 27R, X/, X0, K/, K0 respectively. Solving the 

above equation sets by the Gauss Elimination, we can get the second order field. 
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5.3.3 Equations for the Postbuckling Coefficient 

The postbuckling b coefficient (see [40] [81]) is to examine the stability of the system 

after initial buckling. The structure has stable postbuckling behavior (imperfection-insensitive) 

if b is positive; and it has unstable postbuckling behavior (imperfection-sensitive) if b is 

negative. The degree of imperfection sensitivity is measured by the magnitude of the 

postbuckling b coefficient. The equilibrium path is specified as follow, 

 

 Cb# g ª1 � �`�`V�« b � a �`�`V� (5.42) 

 

where d is the buckling load of the imperfect system, dV is the classical buckling load of 

the perfect system, and a is the imperfection amplitude normalized with respect to the total 

thickness of the cylindrical shell. Let `� denote the maximum value of d when a � 0, 

Koiter first showed the relation between `� and a is (valid only if C � 0), 

 

 
3√32 a√�C �`�`V� � ª1 � �`�`V�«#/!

 (5.43) 

 

The b coefficient is defined to be (Budiansky [81], Hui and Du [89]), 

 

 C � ��' g �!�|�'|  (5.44) 
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where, 

 

�' � 2 e e ¬KL ,66 XL ,4 XLL ,4g KL ,44 XL ,6 XLL ,6®
4¯w

6°
6¯w

� KL ,46 �XL ,4 XLL ,6g XL ,6 XLL ,4 �±&Y&Z 

(5.45) 

 

 

�! � e e ²KLL ,66 �XL,4 �! g KLL ,44 �XL ,6 �!®
4¯w

6°
6¯w

� 2KLL ,46 XL ,4 XL ,6 ³&Y&Z 

(5.46) 

 

 

�' � 7R!Zw e ²12 7!SD�XV! g X�!�®
4¯w

g 12 cD$�XV,4 �! g �X�,4 �!%
g dD7�X�XV ,4� XVX�,4 �³&Y 

(5.47) 

In the above, Zw � 2´:/�:<�'/!  and the reduced-Batdorf parameter �� � ./�:<�'/!   . 

 

Note that postbuckling b coefficient is also calculated by using the actual applied load 

�cD, SD, dD�. Then the b coefficient should be a function of applied load numerically. In order 

to compare the Hui's postbuckling method with the Koiter's general theory, we need to get 

one b coefficient for the Hui’s postbuckling method. This is the reason for us to do the least 

square curve fit. By fitting the knock down curve of the Hui's postbuckling method using 

equation (5.43) by the least square curve fit technique in the range of imperfection amplitude 

form 0 to 25 percent of the shell thickness, we can get the improved b coefficient. Then we 

can use it to compare with the usual b coefficient calculated by the Koiter's general 

postbuckling theory.  
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5.4 Result and Discussion 

 

5.4.1 Cases We Concerned in Here 

For a stringer and/or ring stiffened cylindrical shell, the stringer and ring parameters 

(subscripts ‘s’ and ‘r’ respectively) are the area ratio �[�, [��, the out-of plane bending 

stiffness ratio �\�, \��, the eccentricity to skin thickness ratio �]�, ]�� and the torsional 

rigidity ratio �^�, ^��. Further, the in-plane bending stiffness of the stiffeners is assumed to 

be negligible. For all the examples in this section, stringers or rings are assumed to be of 

rectangular shape. In this section, we use two kinds of boundary conditions which are, 

�ÇBµS: X � X,4 � =6 � >6 � 0  
;�µSÇZ ;ÉSS£�<: X � 34�H � 74 � >6 � 0  

First, we compare the result of Hui's postbuckling method with the General Koiter's 

theory by analyzing the postbuckling behavior of stringer stiffened cylindrical shell under 

axial compression. Second, a parameter variation will be taken on stringer and/or ring 

stiffened cylindrical shell under torsion using both General Koiter's theory and Hui's 

postbuckling method. Due to the complexity of parameters which are involved in stringer or 

ring stiffened cylindrical shells, only three problems involving parameter variations will be 

considered: (i) prescribing skin thicknesses while keeping stiffeners' dimensions fixed, (ii) 

prescribing the number of stiffeners while keeping the area ratios [� and [� fixed and (iii) 

prescribing the reduced-Batdorf parameter. The regular b coefficient is just used for 

comparison purpose, since here we believe the improved b coefficient is much more accurate 

than regular b coefficient. The variation of Length is from ZH=5 to 60, and step size is 1. 
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5.4.2 Stringer Stiffened Cylinder Under Axial Compression 

For the stringer stiffened cylinder under axial compression, simply support boundary 

condition is applied to both ends of the cylinder, in order to compare the result with the paper 

presented by Huchinsion and Amazigo [40]. The data for Classical buckling load and 

imperfection-sensitivity of simply supported stringer stiffened cylinders under axial 

compression in light, medium and heavy stiffening conditions are present in Figure 5.1 to 

Figure 5.6 respectively. From the Figures, we can see that, both critical load and regular C 

coefficient are identical to the result presented by Huchinsion and Amazigo [40]. This shows 

our calculation for the General Koiter's theory is right. From Figure 5.1, for the light 

stiffening, the classical buckling load decreases rapidly when �� � 15, then the classical 

buckling load seems unchanged when ��  increases. Also, when �� � 12, the classical 

buckling load for inside stiffening is larger than that of center stiffening. After that, center 

stiffening becomes larger than inside stiffening. But the outside stiffening always has the 

largest classical buckling load. From Figure 5.2, we can see outside stiffening is more 

unstable than center stiffing, which is more unstable than inside stiffening. But when �� 

increases, the imperfection sensitivity starts to be identical. We can also see, there are always 

some positive shifting from regular C to improved C, which means the general Koiter's 

theory always overestimates the imperfection sensitivity. However, when �� is small, the 

difference between regular C and improved C is large. But when the regular C goes to very 

small, regular b and improved C  seems to be converging. So the positive shifting is 

depending on how large the regular C is. If the regular C is relatively large, the positive 

shift rate is large. The result shows that, it is very unstable for short outside light stiffening 
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cylinder. The imperfection sensitivity for the three cases becomes identical for long cylinder, 

also long cylinder is much more stable than short cylinder. 

 

 

Figure 5.1 Classical buckling load of simply supported, stringer stiffened cylinders under 

axial compression in light stiffening condition 

 

  



 

123 

 

 

 

 

 

 

Figure 5.2 Imperfection sensitivity of simply supported, stringer stiffened cylinders under 

axial compression in light stiffening condition 
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Figure 5.3 and Figure 5.4 show the classical buckling load and the imperfection 

sensitivity of medium stiffening cylinder. We can see the classical buckling for medium 

stiffening cylinder is much higher than light stiffening cylinder. The changing tendency for 

the classical buckling is similar to light stiffening cylinder, but the classical buckling load for 

the outside and inside stiffened cylinder is similar for short cylinder when �� � 10. Again, 

the classical buckling load for the outside stiffened cylinder is always the largest one. From 

Figure 5.4, if the regular b coefficient is very negative, then the positive shift rate from 

regular C to improved C is very large, but if the regular C is close to zero, then the positive 

shift becomes very small. The reason for this is because, when C is very negative, it means 

that the structure is very imperfection sensitive, so the difference between classical buckling 

load and actual applied load is very large. That’s why when we calculate the improved C 

coefficient with the actual applied load, the large positive shift is expected. When regular C 

coefficient is close to zero, the structure is not much imperfection sensitive, so the difference 

between classical buckling load and actual applied is very small. That’s why the improved C 

is similar to regular C. By increasing the reduced Batdorf parameter ��, the improved C 

coefficient of outside stiffening cylinder starts close to zero at first and then rapidly changes 

to about -0.075, and then decreases gradually until it is close to zero. This shows that the 

imperfection sensitivity of outside stiffening cylinder is sensitive to the shape when the 

cylinder is short. Similar to light stiffening cylinder, the improved C coefficient is very small 

for inside stiffening. For the center stiffening, the improved C gradually decreases to almost 

zero. Again, when the cylinder becomes longer and longer, the structure becomes more stable 

except inside stiffening which is not sensitive to the reduced Batdorf parameter ��. 
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Figure 5.3 Classical buckling load of simply supported, stringer stiffened cylinders under 

axial compression in medium stiffening condition 
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Figure 5.4 Imperfection sensitivity of simply supported, stringer stiffened cylinders under 

axial compression in medium stiffening condition 
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Figure 5.5 and Figure 5.6 show the classical buckling load and the imperfection 

sensitivity of heavy stiffened cylinder. At first, we can see, the classical buckling load is 

much larger than the previous two cases. When �� � 10, the classical buckling load for 

inside and outside stiffening is almost the same. Again, the decreasing tendency of classical 

buckling load for these three stiffened type are similar to the previous two cases. For the 

postbuckling C coefficient, we get similar result as we mentioned above, which is the 

positive shift rate changes with the magnitude of regular C coefficient. Compared with 

above two cases, the heavy stiffening cylinder is much more stable, since the largest 

magnitude of improved C is -0.027. Also, we can see for outside stiffening cylinder, the C 

coefficient is sensitive to the geometry when �� is between 10 and 20. For the inside 

stiffening cylinder, the improve C coefficient is always positive, which means the structure 

is stable, and imperfection insensitive. From the above three cases, we can make several 

conclusions: (1) classical buckling load increases when increasing the stiffening level; (2) 

classical buckling load for outside stiffened cylinder is always the largest one compared with 

inside and center stiffening; (3) the positive shift rate of regular C coefficient to improved C 

coefficient is changing with the magnitude of the regular C coefficient. When the magnitude 

of regular C is large, the change rate is large; otherwise, it is very small if regular C is close 

to zero; (4) long cylinders are more stable than short cylinders. 

  



 

128 

 

 

 

 

 

 

Figure 5.5 Classical buckling load of simply supported, stringer stiffened cylinders under 

axial compression in heavy stiffening condition 
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Figure 5.6 Imperfection sensitivity of simply supported, stringer stiffened cylinders under 

axial compression in heavy stiffening condition 
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5.4.3 Parameter Variation of Stringer/Ring Stiffened Cylinder Under Torsion 

For the second problem, parameter variation is taken on stringer and/or ring stiffened 

cylindrical shell under torsion using both General Koiter's theory and Hui's postbuckling 

method. In this problem, we use both boundary conditions: clamp and simply support. As we 

mentioned above, three cases are considered in here. 

 

In the first case, we keep the stiffeners' dimensions fixed, and changing the skin 

thickness. The detailed dimensional data are given in Table 5.2. The torsional buckling loads 

and the postbuckling C coefficients are also presented in this table. It can be seen that the 

classical torsional buckling load for a ring stiffened shell is much higher than a stringer 

reinforced one. All the postbuckling C coefficients including regular C and improve C are 

found to be very small, and the magnitude of C is smaller for ring stiffened shells than that 

for stringer stiffened ones. Since all the regular C coefficients are very small, very little 

positive shifting is found from regular C to improved C. Thus, the sensitivity of the buckling 

load to unavoidable geometric imperfection is very small. From the point of view of high 

buckling load and low imperfection-sensitivity, the ring stiffened shell is better than the 

stringer reinforced one. Also we can see, the torsional rigidity ^� (which was ignored in 

Hutchinson and Amazigo's [40] analysis) of the stringers considerably raises the buckling 

load and also causes some changes of C coefficient (by comparing the shell with ^� � 0). 

This is because the stringer is under torsion so that the torsional rigidity is no more negligible. 

This point is proved by the result of ring stiffened shell. It shows that the influence of the 

torsional rigidity ^� to both the buckling load and b coefficient is very small. This is because 
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the rings are under tension or compression when the cylindrical shell is under torsion, so the 

torsional rigidity is negligible in such conditions. In the following examples, we always use 

the results with torsional rigidity. 
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t 0.02 in 0.0254 in 0.03 in 0.035 in 0.04 in 0.05 in 

αË 1.4324 1.1279 0.9549 0.8185 0.7162 0.5730 

βË 188.0018 89.6820 55.7042 35.0890 23.5002 12.0321 

γË 6.7500 5.4213 4.6667 4.0714 3.6250 3.0000 

δË 43.2499 21.1142 12.8148 8.0699 5.4062 2.7680 ZÍ 38.8909 34.5101 31.7543 29.3987 27.5000 24.5967 

Clamp#1 w � w,U � UÐ � VÐ � 0 

τÒ�δË � 0� 0.9568 

(N=0.64) 

0.7221 

(N=0.64) 

0.6055 

(N=0.69) 

0.5282 

(N=0.75) 

0.4717 

(N=0.70) 

0.4053 

(N=0.78) 

τÒ�δË � 0� 0.7039 

(N=0.71) 

0.5760 

(N=0.72) 

0.5124 

(N=0.69) 

0.4592 

(N=0.75) 

0.4258 

(N=0.70) 

0.3754 

(N=0.78) bÓÔÕ�δË � 0� -0.0017 -0.0024 -0.0048 -0.0058 -0.0089 -0.0110 bÖ×Ø�δË � 0� -0.0015 -0.0022 -0.0042 -0.0051 -0.0077 -0.0094 bÓÔÕ�δË � 0� -9.2442e-4 -0.0034 -0.0061 -0.0069 -0.0103 -0.0121 bÖ×Ø�δË � 0� -7.9944e-4 -0.0030 -0.0053 -0.0060 -0.0088 -0.0103 

The following torsional buckling loads and b coefficients are for ring stiffened shells with �αË, βË, γË, δË� being replaced by �αÓ, βÓ, γÓ, δÓ�. 

τÒ�δË � 0� 4.3833 

(N=0.28) 

3.1411 

(N=0.32) 

2.5187 

(N=0.35) 

2.0507 

(N=0.37) 

1.7212 

(N=0.40) 

1.2946 

(N=0.45) 

τÒ�δË � 0� 4.2327 

(N=0.28) 

3.0499 

(N=0.32) 

2.4541 

(N=0.35) 

2.0039 

(N=0.37) 

1.6858 

(N=0.40) 

1.2724 

(N=0.45) bÓÔÕ�δË � 0� -2.0459e-4 -3.5745e-4 -5.2358e-4 -7.4767e-4 -0.0010 -0.0017 bÖ×Ø�δË � 0� -1.9323e-4 -3.3755e-4 -4.9439e-4 -6.9328e-4 -9.4316e-4 -0.0015 bÓÔÕ�δË � 0� -2.1361e-4 -3.7004e-4 -5.3934e-4 -7.6730e-4 -0.0010 -0.0017 bÖ×Ø�δË � 0� -2.0166e-4 -3.4932e-4 -5.0913e-4 -7.1129e-4 -9.6504e-4 -0.0016 

Table 5.2 Data for a stringer or ring stiffened cylindrical shell under torsion changing 

with shell thickness with the following parameters being held fixed, R � 4 in, L � 11 in, E � EË � 4 � 10  psi, v � 0.4, MË � 24, AË �0.03 in!, QË � 0.25 in 
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The shell parameters in the second case are given in Table 5.3. By keeping the area ratio 

constantly being 0.7, the number of stiffeners increases, the eccentricity ratio and the 

torsional rigidity parameter both decrease. Result shows that the classical buckling load is 

decreasing when the number of stiffener increases. Again, a ring stiffened shell has a much 

higher torsional buckling load than a stringer reinforced one. This advantage of ring over 

stringer stiffened shell is offset by the improved postbuckling C coefficient. From the table, 

we can see the first four improved C coefficients of stringer stiffened shell are positive 

compared with the ring stiffened ones which are negative improved C coefficients. This 

means, although the buckling load for the stringer stiffened shell is much lower than the ring 

stiffened shell, in some conditions, the stringer stiffened shell is a postbuckling stable 

structure under torsion, compared with all the ring stiffened shell is postbuckling unstable 

structure under torsion. Note that, when the structure is postbuckling stable, there is almost 

no difference between regular C coefficient and improved C coefficient. Although the ring 

stiffened shell has all negative improved C coefficients, it is always very small. So when the 

stringer stiffened shell changes to a postbuckling unstable structure (negative C coefficient), 

the advantage disappears. It is also interesting to note that the decreasing rate of the improved 

C coefficient of stringer stiffened shell is much more than the ring stiffened shell by 

increasing the number of stiffener. 
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MË 6 8 10 12 14 16 18 a 1.2217 0.9163 0.733 0.6109 0.5236 0.4581 0.4072 

βË 351.0392 197.4757 126.3638 87.7814 64.4819 49.3528 38.9948 

γË 12.7170 9.6630 7.8300 6.6090 5.7360 5.0810 4.5720 

δË 4.5389 4.4392 4.3392 4.2400 4.1400 4.0398 3.9403 MË 20 22 24     a 0.3665 0.3332 0.3054     

βË 31.5909 26.1125 21.9346     

γË 4.1650 3.8320 3.5540     

δË 3.8411 3.7422 3.6427     

Clamp#1 w � w,U � UÐ � VÐ � 0 MË 6 8 10 12 14 16 18 

τÒ 1.5419 

(N=0.89) 

1.0745 

(N=0.78) 

0.8245 

(N=0.78) 

0.6806 

(N=0.78) 

0.5884 

(N=0.78) 

0.5199 

(N=0.67) 

0.4699 

(N=0.67) bÓÔÕ 0.0242 0.0102 0.0057 0.0022 -5.4762e-4 -0.0052 -0.0064 bÖ×Ø 0.0246 0.0103 0.0057 0.0022 -4.9642e-4 -0.0045 -0.0055 MË 20 22 24     

τÒ 0.4324 

(N=0.67) 

0.4034 

(N=0.67) 

0.3802 

(N=0.67) 

    

bÓÔÕ -0.0074 -0.0082 -0.0088     bÖ×Ø -0.0064 -0.0071 -0.0077     

The following torsional buckling loads and b coefficients are for ring stiffened shells � βË, γË, δË� being replaced by � βÓ, γÓ, δÓ�. MÓ 6 8 10 12 14 16 18 

τÒ 5.0049 

(N=0.22) 

4.3501 

(N=0.34) 

3.7915 

(N=0.34) 

3.2818 

(N=0.34) 

2.7630 

(N=0.34) 

2.3952 

(N=0.34) 

2.1236 

(N=0.35) bÓÔÕ -5.5307e-6 -1.9835e-5 -4.1819e-5 -4.2214e-4 -4.8256e-4 -5.5175e-4 -6.5928e-4 bÖ×Ø -5.2525e-6 -1.9466e-5 -4.0152e-5 -3.9813e-4 -4.5538e-4 -5.2060e-4 -5.7615e-4 MÓ 20 22 24     

τÒ 1.9160 

(N=0.34) 

1.7529 

(N=0.34) 

1.6217 

(N=0.34) 

    

bÓÔÕ -6.9384e-4 -7.6732e-4 -8.9300e-4     bÖ×Ø -6.4223e-4 -7.0974e-4 -7.7905e-4     

Table 5.3 Data for a stringer or ring stiffened cylindrical shell under torsion changing 

with stiffener number with ZÍ � 31.3050  and �αË � 0.7, αÓ � 0.7�  and 

being held fixed. ( E � EË � 4 � 10  psi, v � 0.4, R � 4, L � 14, h �0.05, b � 0.12), a is the height of stiffener 
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Finally, in the third case, the following outside stiffened stringer parameters are held 

fixed: [� � 1.0, \�  � 63.9687, ]� � 4.8633 and ^� � 5.7150. We will use two types of 

boundary conditions which are: Clamp and Simply Support. The reduced-Batdorf parameter 

is permitted to vary. Note that as the reduced-Batdorf parameter increases, there are three 

possibilities: the shell becomes longer, the radius gets smaller or the thickness of the shell 

becomes smaller. For ring stiffened cylindrical shells without stringer, the parameters are the 

same as that of the stringer-stiffened shells except that the subscript 's' is replaced by 'r'. Also, 

the 'simultaneous' stiffening of both stringers and rings for a reinforced cylindrical shell is 

considered. The volume of stingers and rings is the same, and the total volume ratio of 

stiffener is the same as stringer only or ring only stiffened cylindrical shells as mentioned 

before. So the parameter should be: 

 �[�, [�� � 0.5, �\�, \�� � 7.9962, �]�, ]�� � 2.6817 and �^�, ^�� � 2.2675. 

 

Figure 5.7 and Figure 5.8 show the classical buckling load and Imperfection sensitivity 

of stiffened cylinders under torsion with clamp boundary condition varying by 

reduced-Batdorf parameter. We can see when ZH is small (ZH <12), the buckling load for the 

stringer stiffened shell is larger than the ring stiffened shell. The 'simultaneous' stiffened shell 

is somewhere sitting between them. But when ZH goes large (ZH >12), which means the shell 

become longer, the buckling load for the stringer stiffened shell becomes much smaller than 

the ring stiffened one. Again, the 'simultaneous' one is in between. For the postbuckling C 

coefficient, we can see the stringer stiffened one is positive (stable) when ZH is less than 24. 

The regular C and improved C is the same value when they are positive, comparing with 
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the ring stiffened one, which is negative (unstable) for all ZH. Since the magnitude of regular 

C is very small, the difference between improved C and regular C is also small. Again, the 

'simultaneous' one is between them, which is positive when ZH<9. But when ZH>25, the 

improved b coefficient goes much negative than both ring stiffened one and 'simultaneous' 

one. So combining the buckling load and improved C coefficient, we find that when ZH<10, 

stinger stiffened one is better than 'simultaneous' one, which is better than ring stiffened one. 

When 10<ZH<25, if the buckling load is critical, then ring stiffened one is better than stringer 

stiffened one, which is better than 'simultaneous' one; if the improved C coefficient is the 

critical issue, then stringer stiffened one is better than ring stiffened one, which is better than 

'simultaneous' one. For ZH>25, the ring stiffened one is better than 'simultaneous' one, which 

is better than ring stiffened one. 
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Figure 5.7 Classical buckling load of stiffened cylinders under torsion with clamp 

boundary condition 
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Figure 5.8 Imperfection sensitivity of stiffened cylinders under torsion with clamp 

boundary condition 
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Figure 5.9 and Figure 5.10 show the classical buckling load and Imperfection sensitivity 

of stiffened cylinders under torsion with simply support boundary condition varying with 

reduced Batdorf parameter. Since the Simply Support is much weaker than clamp boundary 

condition, the buckling load for stringer and 'simultaneous' reinforcement types are much 

lower than the clamp condition mentioned above, but the ring stiffened one did not decrease 

that much. From the two boundary conditions, we can see the change of buckling load for the 

ring stiffened one is very small compared with the other two reinforce types. Also the 

buckling load decreases very slowly when the shell becomes longer. In this case, the 

improved C  coefficient for both ring and 'simultaneous' stiffened cylinders are always 

negative through the whole range of ZH. When ZH<14, the improved b coefficient for stringer 

stiffened cylinder is positive (stable). When ZH>17, the improve b coefficient is more 

negative than the other two stiffening types. Again, because of small regular b coefficient, the 

difference between improved C and regular C is very small. So, here we can conclude: for 

pure torsional buckling of cylindrical shell, the buckling load for the ring stiffened cylindrical 

shell is not sensitive to the boundary conditions and the length change of cylindrical shell.  

The improved C coefficient for stringer stiffened shell under Simply Support boundary 

condition decreases faster than Clamp case. It becomes negative before ZH=14. The improved 

C coefficient for 'simultaneous' stiffened cylinder is much more different than Clamp one 

since it is always negative. Also the C coefficient for 'simultaneous' one is always smaller 

than the ring stiffened one under Simply Support boundary condition. So, in Simply Support 

boundary condition, when ZH<9, Stinger stiffened one is better than 'simultaneous' one, 

which is better than ring stiffened one. When 9<ZH<14, if the buckling load is critical, then 
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ring stiffened one is better than stringer stiffened one, which is better than 'simultaneous' one. 

If the C coefficient is the critical issue, then stringer stiffened one is better than ring stiffened 

one, which is better than 'simultaneous' one. For ZH>14, the ring stiffened one is better than 

'simultaneous' one, which is better than ring stiffened one. 

For the improved C coefficient for stringer stiffened cylinder, we find that the curve is 

some kind zigzag. This is because of the changing of mode number. Each zigzag represents 

an increase of one mode. Since we are changing the length of cylinder, once the length 

increases to a certain amount which can reach the minimum eigenvalue at higher mode, then 

the shape of buckling mode will change and this will directly influence the postbuckling C 

coefficient. 
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Figure 5.9 Classical buckling load of stiffened cylinders under torsion with simply 

support boundary condition 
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Figure 5.10 Imperfection sensitivity of stiffened cylinders under torsion with simply 

support boundary condition 
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For comparison purposes, we reproduce the torsional buckling loads of isotropic 

homogeneous cylindrical shells analyzed by Budiansky [81] by setting �[�, [�� � �\�, \�� �
�]�, ]�� � �^�, ^�� � 0 . Then compare it with the buckling loads of stringer stiffened 

cylindrical shells under Clamp boundary condition. The total volume of isotropic 

homogeneous cylindrical shell and stringer stiffened cylindrical shells is the same, so the 

stiffener parameters are chosen to be [� � 1.0, \�  � 63.9697, ]� � 4.8633 and ^� �
5.7150 and the result is showed in Figure 5.11 and Figure 5.12. From the result we can see 

the buckling load for stringer stiffened shell is always larger than the unstiffened one. 

Especially when ZH<20, the buckling load of stringer stiffened shell is at least 2 times larger 

than unstiffened one. Also for the C coefficient, the unstiffened shell is always negative, but 

the C coefficient for stringer stiffened shell is positive before ZH=25. Furthermore, even 

when it goes to negative, it is always larger than unstiffened one. So we can conclude the 

stringer stiffened cylindrical shell is always better than unstiffened shell in torsional buckling. 
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Figure 5.11 Classical buckling load of stringer stiffened cylinder and unstiffened cylinder 

under torsion with clamp boundary condition 
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Figure 5.12 Imperfection sensitivity of stringer stiffened cylinder and unstiffened cylinder 

under torsion with clamp boundary condition 
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5.5 Conclusion 

Postbuckling and imperfection sensitivity of stringer stiffened cylinder under axial 

compression and the torsional buckling and initial postbuckling behavior of out-side stringer 

and/or ring-stiffened cylindrical shells under different boundary conditions have been 

examined using Hui's postbuckling method. For stringer stiffened cylinder under axial 

compression, we found that the short cylinder is much unstable than the long cylinder. The 

positive shift rate from regular C coefficient to improved C coefficient depends on the 

magnitude of regular C  coefficient. If the regular C  coefficient is more negative, the 

positive shift is more significant. When the structure is imperfection insensitive (positive C 

coefficient), then there is no difference between regular C and improved C. Consider the 

torsional buckling and postbuckling of stringer/ring stiffened cylinder, the magnitude of b 

coefficient is always very small, so the positive shifting of regular C to improved C is also 

very small. In all cases, it is found that ring-stiffened shells are relatively insensitive to the 

two boundary conditions compared with other two types of reinforcements. Also, 

ring-stiffened shells are more effective than others for long shells. For short shells, if the 

boundary conditions are important, the stringer stiffened shells are more effective than the 

ring-stiffened one, and the 'simultaneous' one usually sits in the middle. This observation is 

generally valid in terms of the two criteria of having high buckling load and low 

imperfection-sensitivity. Nevertheless, stiffened shells are more effective against torsion than 

unstiffened equivalent-weight shells. It appears that an optimum design for torsional buckling 

of cylindrical shell would involve ‘simultaneous’ ring- and stringer-reinforced stiffeners 

within a certain range of the reduced-Batdorf parameter.  
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CHAPTER 6  

 

SUMMARY AND FUTURE WORKS 

 

 

6.1 Summary 

 

This research is the first time to verify the Hui's postbuckling method with the finite 

element commercial software ABAQUS, and also it is the first time to apply this method to 

different kinds of closed cylindrical shells. Closed cylindrical shell is heavily used in the 

industry. In this research unstiffened cylinder, laminate cylinder and stiffened cylinders are 

considered. 

 

Koiter's general theory has a significant deficiency: the theory is valid only when the 

imperfection is few percent of the shell thickness. This deficiency makes the Koiter's general 

theory not practical, because in the industry the imperfection is usually out of its valid range. 

In the industry, people usually use the commercial finite element software such as ABAQUS 

and ANSYS. These softwares are powerful, but expensive and need lots of computational 

time. Hui's postbuckling method can increase the valid region more than 200% compare with 

Koiter's general theory, which makes it more practical. But before this research, people do not 

know what is the valid region for the Hui's postbuckling method, and also how much it will 

improve compared with the Koiter's general theory. 
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For unstiffened cylindrical shells, the Hui's postbuckling method fits the finite element 

result very well up to the imperfection is about 40% of the shell thickness, which is much 

better than Koiter's general theory. And also we find the Koiter's general theory significantly 

overestimates the imperfection sensitivity of the unstiffened cylinders. This is because the 

unstiffened cylinder is a very unstable structure. 

 

For antisymmetric cross-ply laminate cylindrical shells, the valid region for the Hui's 

postbuckling method varies from case to case. But all the cases show that the Hui's 

postbuckling method is much better than Koiter's general theory. Again, it shows that Koiter's 

general theory overestimates the imperfection sensitivity. But the positive shift of b 

coefficient of Hui's postbuckling for laminate cylindrical shells is not as much as the 

unstiffened one. This is because the laminate cylindrical shell is more stable than the 

unstiffened cylindrical shell. Also we find out that the change of the imperfection sensitivity 

of the laminate cylinders by increasing the reduced Batdorf parameter is getting smaller. 

 

For stringer and ring stiffened cylindrical shells, they are very stable compared with the 

above two. That is the reason for the difference between Koiter's general theory and Hui's 

postbuckling method is very small. The result of stiffened cylindrical shell under torsion 

shows that when the structure is stable, there is no difference between Koiter's general theory 

and Hui's postbuckling method. But once the structure becomes unstable, there is always a 

small positive shift of Hui's postbuckling method compared with the Koiter's general theory. 

Not like the laminate cylinders, the stiffened cylinder will become more and more stable 
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when the reduced Batdorf parameter increases. So from this case, we know that the difference 

between Hui's postbuckling method and Koiter's general theory becomes smaller and smaller 

when the structure gets more and more stable. Furthermore, when the structure is 

imperfection insensitive, the Hui's postbuckling method and Koiter's general theory give the 

same result. 

 

Generally speaking, in this research, we successfully compared the Hui's postbuckling 

method with Koiter's general theory and ABAQUS result. Moreover, this is the first time to 

point out the valid region for Hui's postbuckling method, and also the first time to apply the 

Hui's postbuckling method to closed cylindrical shells. The result demonstrates that Hui's 

postbuckling method has much better valid region compared with Koiter's general theory, and 

also demonstrates that the Koiter's general theory always overestimates the imperfection 

sensitivity of a structure. 

 

Since Hui's postbuckling has improved a lot compared with Koiter's general theory, it 

makes this improved method more practical. Compared with ABAQUS, although Hui's 

postbuckling can only solve the problem with imperfection which is identical to the first 

buckling mode, the time consuming for Hui's postbuckling method is much lesser than 

ABAQUS. It is more than 20 times faster than finite element method. This make Hui's 

postbuckling method an ideal method for the optimization and preliminary design. 
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6.2 Suggestion for Future Works 

 

Since this research demonstrates that correctness of Hui's postbuckling method, and 

shows that the valid region for this method is much better than Koiter's general theory, it 

opens a way to do several kinds of future research: first, we can reevaluate all the papers in 

the past which were using Koiter's theory; second, we can do some optimization depending 

on Hui's postbuckling method; last but not least, we can explore this method to be valid for 

other imperfection types. 
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APPENDIX A  

 

FINITE DIFFERENCE METHOD 

 

The finite difference method is one of the most often used numerical methods of solving 

differential equations which comes from the minimization of functional. This method is 

superior to the problem here, since we reduced the PDEs into ODE sets, due to its simplicity, 

guaranteed convergence for sufficiently small step size and efficiency in terms of 

computation time. 

 

This section aims to provide a typical example of a buckling problem to be solved using 

the central finite difference scheme. The resulting eigenvalue problems and linear equations 

are solved by highly efficient MATLAB functions; also you can solve it using inverse power 

method and Gauss elimination method with some free program code. Moreover, for 

simplicity, only ordinary differential equations are considered as they are of primary concern 

in this thesis and extensions to partial differential equations should be relatively straight 

forward. 

 

Here we are concerning the derivative up to 4th order. Then the formulas for the central 

difference of the derivatives of out-of-plane displacement are, 
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X,6666 � 1∆Y© �X�ä! � 4X�ä' g 6X� � 4X�å' g X�å!� 

X,666 � 12∆Y# �X�ä! � 2X�ä' g 2X�å' � X�å!� 

X,66 � 1∆Y! �X�ä' � 2X� g X�å'� 

X,6 � 12∆Y �X�ä' � X�å'� 

(A.1) 

where ∆Y is the finite difference step size. 

 

So the governing equation such as equation (3.12) to (3.15) which can be discretize by 

the above formula and we will get, 

 

 

�æ1 XV�å! g æ2 XV�å' g æ3 XV� g æ2 XV�ä' g æ1 XV�ä!�
g �æ4 KV�å' g æ5 KV� g æ4 KV�ä'�
g cæ6�XV�å' g 2XV� g XV�ä'� � 0 

(A.2) 

 

�æ1 X��å! g æ2 X��å' g æ3 X�� g æ2 X��ä' g æ1 X��ä!�
g �æ4 K��å' g æ5 K�� g æ4 K��ä'�
g cæ6�X��å' g 2X�� g X��ä'� � 0 

(A.3) 

 

�æ7 KV�å! g æ8 KV�å' g æ9 KV� g æ8 KV�ä' g æ7 KV�ä!�
g �æ10 XV�å' g æ11 XV� g æ10 XV�ä'� � 0 

(A.4) 

 

�æ7 K��å! g æ8 K��å' g æ9 K�� g æ8 K��ä' g æ7 K��ä!�
g �æ10 X��å' g æ11 X�� g æ10 X��ä'� � 0 

(A.5) 
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We can easily see that the above equations can be rearranged as a general eigenvalue 

problem, 

 

 �� � c��Y � 0 (A.6) 

 

Such eigenvalue problem can be solved by the build in function (''[X V]=eig(A,B)'', where X 

is the eigenvalues and V is the eigenvectors) in MATLAB or Shifted Inversed Power Method 

(see APPENXID B). 

The mesh convergence also should be checked in here, to make sure the best 

computation efficiency. In this research we are using 121 nodes along the length of the 

cylinders. The following figure shows the grid independency study. 

 

Figure A.1 Buckling load versus node amount 
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APPENDIX B  

 

SHIFTED INVERS POWER METHOD 

 

In the field of mechanical engineering, we can found the eigenvalue problem �Y � cY 

everywhere, such as buckling, vibration problems. But we usually care about the first few 

eigenvalues, which are the smallest, second smallest and so on. The eigenvalue problem like 

this is often solved by the power method which is the most efficient and well documented, 

and it will not be redeveloped here. The eigenvalue problems in this thesis is the general 

eigenvalue problem, 

 

 �Y � c�Y (B.1) 

 

where the matrices A and B are real, non-symmetric matrix. We only interest in the smallest 

real positive eigenvalue and its eigenvector. The shifted inverse power method present by 

Hui(1983) are used here to find the smallest eigenvalue of the above general eigenvalue 

problem. For convenient, we will simply introduce the algorithm in here for someone who 

cannot access the MATLAB. 

 

Take the initial guess of the lower bound of all the eigenvalues, 

 cE�F�� � �£QÀ<. (B.2) 
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Then the general eigenvalue problem can be expressed as follow, 

 

 �Y � �c g cE�F����Y (B.3) 

 

which implies the actual eigenvalue is 

 

 cDV�D¢ � c g cE�F�� (B.4) 

 

Equation A3 can be re-arranged in the form as, 

 

 �� � cE�F���� ª�1c� Y« � �Y (B.5) 

 

Then the algorithm for the shifted inverse power method is: 

i. Compute �� � cE�F����  and assume an initial guess for the eigenvector so that 

Y � YE�F�� 

ii. Compute �Y and then solve for Z in the following equation, 

 

 �� � cE�F����Z � �Y (B.6) 

 

iii. Suppose that the largest element (in magnitude) of y found in step (ii) is &w, then set Y 

to be, Y � Z/&w, Repeat steps (ii) and (iii) until the eigenvector Y converges. 

iv. The smallest eigenvalue is c�HD¢¢F�, � �1/&w� g cE�F��. Alternatively, it can also be 
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computed in a more laborious way c�HD¢¢F�, � �Yy�Y�/�Yy�Y� without the inclusion 

of cE�F��. 

 

In general, the above algorithm will converge to the smallest eigenvalue. It is safe to 

choose the initial guess which would be the lower bound of all the eigenvalues. If the initial 

guess is not available, one can simply set 

 

 cE�F�� � 0 (B.7) 

 

 YE�F�� � 1√Q �1,1,1, … ,1� (B.8) 

 

where n is the dimension of the square matrix � so that the norm of Y is one. Furthermore, 

it should be noted that the convergence of the eigenvector implies the convergence of the 

corresponding eigenvalue whereas the converse is not true. Thus, convergence of the 

eigenvector in steps (ii) and (iii) will guarantee the convergence of the eigenvalue in step (iv). 

In general, convergence of the eigenvalue to half a percent is achieved in only a few iterations 

and it is not unusual that one or two iterations will suffice. Moreover the case when the 

matrix B is singular does not affect the above algorithm. 
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APPENDIX C  

 

EQUILIBRIUM EQUATION IN CORPORATING STIFFENER 

TORSIONAL RIGIDITY 

 

This appendix aims to derive the out-of-plane governing equilibrium equation of stringer 

and/or ring stiffened cylindrical shells. In particular, the important effects of stringer and/or 

ring torsional rigidity are incorporated in the analysis which was previously ignored by 

Huchinson and Amazigo [40]. 

 

The potential energy of the stiffened cylindrical shell consists of the sum of an area 

integral for the skin and two single integrals for the stringer and rings respectively (all 

symbols not defined in the appendix are defined in the body of the paper), 

 

8. �. � 12 e e ¬74_4 g 76_6 g 2746_46è
k¯w

!éÄ
l¯w
g 34�5��?,kk � g 36�5��?,ll �
g 2346�5��?,kl �±&@&A
g 3�2 e ²�����_��! g ��+��?,kk �!è

k¯w
g *�-��?,kl �! g ��+,��>,kk �!³&@
g 3�2 e ²�����_��! g ��+��?,ll �!è

k¯w
g *�-��?,kl �! g ��+,��=,ll �!³&A 

(C.1) 
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In the above expression, �+,�, +,�� is the in-plane bending moment of inertia of stringer 

or ring with respect to its centroid; the in-plane strains at the skin middle surface �_4, _6, _46� 

are related to the axial, circumferential and out-of plane displacements of the skin middle 

surface �=, >, ?� by, 

 

 

_4 � =,kg 12 �?,k �! 

_6 � >,lg ?: g 12 �?,l �! 

_46 � 12 �=,lg >,k � g 12 ?,k ?,l 

(C.2) 

 

The bending stress resultants of the 'skin' (superscript 'sk') are, 

 

 

34�5 � ���?,kkg  ?,ll � 

36�5 � ���?,llg  ?,kk � 

346�5 � ���1 �  �?,kl 

(C.3) 

 

and �74, 76, 746� are the membrane stress resultants of the skin. Further, �MË, MÓ� are the 

number of equally spaced stringers or rings such that 3�&� � 2´: and 3�&� � .. 

The strains for the stringer and ring are, 

 

 
_� � _4 � (�?,kkg (�!2 �?,kl �! 

_� � _6 � (�?,llg (�!2 �?,kl �! 

(C.4) 
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The stress function of a 'smeared-out' cylindrical shell is defined: 

 

 

),ll � 74 g 7� 

),kk � 76 g 7� 

),kl � �746 

(C.5) 

where  

 

7� � ����_�&�  

7� � ����_�&�  

(C.6) 

 

Introducing the membrane stress resultant of the skin �NU, NÐ� in terms of W and F 

(see Hutchinson and Amazigo [40]). 

 

 74 � �44),kkg �46),llg �44?,kkg �46?,ll (C.7) 

 

 76 � �66),llg �64),kkg �66?,llg �64?,kk (C.8) 

 

Using the principal of virtual work, assuming that the in-plane bending stiffness of the 

stiffeners is negligible, the in-plane equilibrium equations with respect to = and > vanish. 

The out-of-plane equilibrium equation can be obtained by setting the integrand of the 

following integral to zero: 
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^8. �. � e e ì),kk: � ),ll ?,kk� ),kk ?,llè
k¯w

!éÄ
l¯w

g 2),kl ?,klg (��44),kkkk
g (��66),llll
g �(���46 � 1� g (���64 � 1� �),kkll
g ª(��44 g � �1 g ��+��&��« ?,kkkk
g ª(��66 g � �1 g ��+��&� �« ?,llll
g ª(��46 g (��64
g � �2 g *�-��&� g *�-��&� �« ?,kkll
g (�!�$�),ll� 74�?,kl %,kl
g (�!���),kk
� 76�?,kl �,kl � ^?&@&A 

(C.9) 

 

Ignoring the small terms involving (�! and (�!, it can be seen that the effects of stiffener 

torsional rigidity can be incorporated in Hutchinson-Amazigo's(1967) formulation by 

redefining,  

 

 

&46 � 112�1 �  !� ²1 g $12 �1 �  !�[�[�]�]�%[wg 12 �^� g ^��³ 

(C.10) 

 

where ^� and ^� are defined in equation 12.  
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Finally, the strains at the skin middle surface can be written in the form, 

 

 

_4 � 1�< �74 �  76�
� 1�< $�),ll� 7�� �  �),kk� 7��% 

_6 � 1�< �76 �  74�
� 1�< $�),kk� 7�� �  �),ll� 7��% 

_46 � 1�< �1 g  �746 � � 1�< �1 g  �),kl 

(C.11) 

 

It can be seen that the compatibility equation, 

 

 

_4,llg _6,kk� 2_46,kl
� �?,kl �! � ?,kk ?,llg ?,kk:  

(C.12) 

 

is unaffected by the stiffener torsional rigidity. 
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