
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-20-2013

Semantic Services for Enterprise Data Exchange Semantic Services for Enterprise Data Exchange

James A. Sauvinet
University of New Orleans, jasauvin@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Recommended Citation Recommended Citation
Sauvinet, James A., "Semantic Services for Enterprise Data Exchange" (2013). University of New Orleans
Theses and Dissertations. 1783.
https://scholarworks.uno.edu/td/1783

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1783&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uno.edu%2Ftd%2F1783&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uno.edu%2Ftd%2F1783&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uno.edu%2Ftd%2F1783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1783?utm_source=scholarworks.uno.edu%2Ftd%2F1783&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Semantic Services for Enterprise Data Exchange

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

In partial fulfillment of the

Requirements for the degree of

Master of Science

In

Computer Science

by

James Sauvinet

B.S. University of New Orleans, 2010

December, 2013

ii

Acknowledgement

I would like to thank Dr. Tu for his guidance, encouragement and his seemingly endless

supply of patience as I’ve navigated my graduate career. I also wish to thank Dr.

DePano for once helping a naïve incoming freshman through many challenges. I also

wish to thank Dr. Abdelguerfi for challenging me see a side of Computer Science I had

never considered before.

Finally, I would also like to acknowledge my colleagues, friends, and family for sharing

their collective brilliance and experience.

iii

Table of Contents

List of Figures ... iv
List of Tables ... v
Abstract .. vi
Chapter 1 ..1
Chapter 2: Background ...2
 Resource Description Framework and RDF-Schema2
 Web Ontology Language ..3
 SPARQL Protocol and RDF Query Language ..4
Chapter 3: An Example ...5
Chapter 4: System Design ..8
 Requirement Specification ...8
 Information about Data ...9
 The Data Exchange Intermediary ... 10
 Joining the DEI ... 11
 Search Request Processing ... 12
Chapter 5: Prototype Implementation .. 14
 Introduction .. 14
 The Ontology Manager and Data Exchange Intermediary 15
 The Test for Expressive Completeness .. 18
 The Data Exchange Intermediary Middleware ... 23
 A Use Case Scenerio ... 23
 Define Search Universe ... 24
 Define Data Parameters ... 25
 Perform DEI-Directed Search ... 26
Chapter 6: Sample Architectures .. 28
 Sample DEI Architectures .. 28
References .. 30
Appendix A, Glossary .. 32
Appendix B, Future DEI Use Case .. 33
Appendix C, Sample Entity Relation Diagrams ... 34
 Example FBI Database Schema .. 34
 Example USCIS Database Schema ... 35
 Example DHHS Database Schema .. 36
Vita .. 37

iv

List of Figures

Data dependencies for systems queried in the example scenario5
Logical view of DEI actors ...13
DEI Search Request XML Schema ...15
Class selection for DEI Directed Search ...22
Class property and search parameter selection for DEI Directed Search24
DEI Directed Search results ..25
Sample DEI architecture within a single geographically dispersed organization26
Sample DEI architecture with three physically separated organizations27

v

List of Tables

Sample system database object to DEI Ontology mapping 19

vi

Abstract

Data exchange between different information systems is a complex issue. Each

system, designed for a specific purpose, is defined using a vocabulary of the specific

business. While Web services allow interoperations and data communications between

multiple systems, the clients of the services must understand the vocabulary of the

targeting data resources to select services or to construct queries. In this thesis we

explore an ontology-based approach to facilitate clients’ queries in the vocabulary of the

clients’ own domain, and to automate the query processing. A governmental inter-

department data query process has been used to illustrate the capability of the semantic

approach.

Keywords: Semantic Web, Web Ontology Language, Service Oriented Architecture,

Data Exchange.

1

Chapter 1

Following the horrible attacks of September 11, 2001, information sharing among
governmental agencies, or the lack thereof, was blamed as a contributing factor in the
government’s inability to stop the heinous attacks from occurring. As an attempt to
rectify this deficiency, information sharing for the purposes of antiterrorism has been an
agenda pushed by the administration. The Homeland Security Act of 2002 and the
Intelligence Reform and Terrorism Prevention Act of 2004 are two examples of
legislation that require agencies of the Federal Government to share data amongst each
other [2].

Regulations such as the Homeland Security Act of 2002 provide the catalyst for
information exchange between agencies; however, they do not address the underlying
challenges associated with implementing the exchange of information. For example,
two different agencies may refer to the same concept by different names leading to
vastly different data architectures. Interpretations of the same concepts may vary
greatly depending on the analysts viewing the data. This leads to the question of how
to facilitate effective communication among the vast number of entities, each with their
own technical vocabularies, in order to share information from each domain. A shared
vocabulary is required.

The challenge is further compounded when one considers the diversity in the technical
solutions used to implement existing business requirements. These requirements cover
a broad spectrum of domains from energy production to education, food production to
space travel, national parks to live military combat simulations.

In this thesis, we present a framework that implements search capibilities across
multiple data sources that are potentially defined by different business vocabularies.
Searches are composed of one or more concepts chosen from a shared vocabulary that
is defined in Web Ontology Language.

2

Chapter 2: Background

The goal of this thesis is to provide a framework for data exchange across sources

spanning different business domains. Each of these sources contain data which are

defined in a variety of different business vocabularies making effective communication

difficult. While solutions do exist that facilitate communication between systems (i.e.

web services, database links, etc.) they do not adequately address, for example, a

client’s unfamiliarity with the server’s database schema, nor do they address the client’s

inability to understand the server’s business vocabulary.

Our solution addresses these critical failings by providing a common vocabulary

between all data providing entities. This common vocabulary is composed of OWL

ontology classes that describe data concepts that are then mapped to each provider’s

individual business vocabulary. Users construct search queries over one or more of

these ontology classes to provide a disambiguated view of the data sought.

To implement this solution, this thesis makes extensive use of the following

technologies:

Resource Description Framework and RDF-Schema
Resource Description Framework (RDF) is a language used to provide basic

information about concepts contained within a document. It provides a structure that is

divided into statements consisting of subject, predicate, and object [6]. In an RDF

document, resources are uniquely identified by a Uniform Resource Identifier (URI)

which allows for their disambiguation from other resources. In a statement, a subject

and predicate are URI-identified resources while the object can be another resource or

a literal. It is noteworthy to mention while the URIs that identify these resources very

closely resemble Uniform Resource Locators (URL), there is absolutely no requirement

for a URL to be resolvable to any web resource.

Resource Description Framework Schema (RDFS) extends the basic structure provided

by RDF and allows us to model very basic useful relationships between resources that

can be used as part of a semantic interoperability solution. For example, using RDF

and RDFS, one could express a marital relationship between two people using the

subject, predicate, object notation:

3

http://.../A http://.../marriedTo http://.../B

and

http://.../B http://.../marriedTo http://.../A

In this example, we have explicitly defined that A is married to B, AND B is married to A.

Without both of these triples, this marital relationship is not fully defined.

Web Ontology Language
Web Ontology Language, or OWL, provides a deeper level of semantic richness on top

of RDF and RDFS. While RDFS can (and is) used to express simple relationships

among classes of data, OWL gives us the ability to express much more complex details

concerning those relationships.

Our solution organizes types of data into OWL classes that are then separated into

ontologies based on their intrinsic domain (i.e. an ontology describing the concept of

“Person” might be defined within the “Living Thing” ontology.) Each of these OWL

classes is a collection of data and object properties that provide us with the ability to

store details about each independent instance of the class.

A data property allows us to express basic information about a given class, and

therefore has a domain of the class to which it belongs, and a range of the type of data

it will express. For example, if the class “Person” has a data property called

“first_name,” the domain of the property would be “Person” and the range might be

“String.” An example of such a definition is provided below:

<owl:DatatypeProperty rdf:about="http://www.dei.com/person#firstName">

 <rdfs:domain rdf:resource="http://www.dei.com/person#Person"/>

 <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

An object property allows us to express a relationship between one class and another.

For example, if our class “Person” has an object property called “home_address,” we

could model this relationship with an object property whose domain is “Person” and

whose range is “HomeAddress” where both “Person” and “HomeAddress” are distinct

classes. This is an example of an object property definition:

<owl:ObjectProperty rdf:about="http://www.dei.com/person#home_address">

 <rdfs:domain rdf:resource="http://www.dei.com/person#Person"/>

 <rdfs:range rdf:resource="http://www.dei.com/location#HomeAddress"/>

</owl:ObjectProperty>

OWL also provides us with the tools for modeling more complex relationships between

resources. For example, let us revisit our RDF & RDFS example of a marital

relationship. In this example, we defined two tuples to express that A is married to B,

and B is married to A. In OWL, we could reduce this to a single symmetric property

using the http://.../marriedTo predicate. Using this property, A

http://.../marriedTo B now implies that B http://.../marriedTo A.

4

Our solution make use of the OWL-API library [8] to traverse and manipulate the

ontologies composing the semantic vocabulary used to exchange information between

data providers.

SPARQL Protocol and RDF Query Language
SPARQL Protocol and RDF Query Language (SPARQL) is a query language for

traversing RDF documents to locate resources. For example, if we had an ontology

definition file that defines a class “Person” and several of its subclasses, we might use

the following query to retrieve all of the subclasses of “Person”:

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX owl: http://www.w3.org/2002/07/owl#

PREFIX xsd: http://www.w3.org/2001/XMLSchema#

PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#

SELECT ?subclass

WHERE {

?subclass rdf:type owl:Class .

?subclass rdfs:subClassOf <http://.../#Person>

}

SPARQL allows for the use of prefixing which allows us to specify namespace prefixes

to shorten our queries. In our above example, rdf:type, rdfs:subClassOf, and

owl:Class are prefixes, while <http://.../#Person> is non-prefixed. If we removed the

PREFIX directives, we would need to include the full URI of each predicate (Example:

owl:Class would become http://www.w3.org/2002/07/owl#Class)

Our solution makes extensive use of the SPARQL engine provided by the Apache

JENA [7] library in building the shared semantic vocabulary used between the data

providers.

5

Chapter 3: An Example

In this chapter, we frame our discussion around an example scenario. In this example,
several governmental departments, The Department of Justice (DOJ), the Department
of Homeland Security (DHS), and the Department of Health and Human Services
(DHHS) have a requirement to share information with agencies within their respective
departments. We will begin by outlining a factitious process by which the foreign-born
spouse of a United States citizen obtains I-551 status, also known as Permanent
Residency. It is noteworthy to mention that while this process is outlined sequentially,
step execution can occur in parallel.

Our factitious process begins with the citizen and spouse completing several forms
which are then submitted to the United States Citizenship and Immigration Services
(USCIS), an agency within the Department of Homeland Security. From the standpoint
of the citizen and his spouse, the remainder of the process appears to be completely
handled by USCIS; however, several interagency procedures must be completed prior
to issuing a permanent residency card.

After the citizen and his spouse’s forms are entered into the USCIS computer system,
processing begins to determine whether or not immigration benefits should be awarded
to the spouse. The first step in this process is for a USCIS officer to obtain from the
Federal Bureau of Investigations (FBI), an agency within the DOJ, a complete history of
the immigrant’s criminal record. This request is formalized and forwarded by the USCIS
officer to the DOJ for fulfilment by the FBI.

After receiving a request for a person’s criminal history, the DOJ leadership initiates a
“background check” with the Federal Bureau of Investigations (FBI). In addition to
consulting their own records, the FBI will query the National Crime Information Center
(NCIC), an information system maintained by the DOJ, to provide a complete look into
the applicant’s criminal past.

The amount of required coordination among different entities is significant. For
example, if as part of the FBI criminal history check, the FBI communicates with the
DHHS to determine if the applicant has engaged in “drug shopping,” a practice where a
patient obtains several different prescriptions for the same medication from several
doctors without their knowledge. This check would require information exchange
between the FBI and the DHHS.

6

Also as an additional portion of the FBI’s criminal history check, the spouse’s previous
immigration history is checked. This mission is carried out by the Customs and Border
Protection (CBP) who tracks movement into as well as out of the country. If the spouse
has ever overstayed beyond the terms of her admission into the United States, CBP
would have this information and would, at this step, provide it to the FBI as part of the
spouse’s criminal history. This check would require information exchange between the
FBI and the CBP.

After all of the results are compiled by the FBI, they are sent back to the USCIS. Once
the USCIS receives the complete criminal record for the individual, the officer
completing the case is required to make a determination whether or not the intending
immigrant poses a significant health risk to the United States. Affliction with specific
communicable diseases may disqualify her from obtaining permanent residency. Prior
to filing the application paperwork for the permanent residence process, the applicant is
required to appear before a “Civil Surgeon” in her state of residence for a medical exam
which includes laboratory work. At the completion of the exam, the civil surgeon enters
the results of the exam into a Department of Health and Human Services (DHHS)
database. The USCIS officer handling the case queries the DHHS system for the
corresponding information.

After the USCIS receives both a complete criminal history of the prospective immigrant
and her medical records, the US citizen and his spouse are summoned for a mandatory
interview with a USCIS officer. After the interview is concluded, the officer makes a
determination as to whether or not the spouse should receive permanent residency
within the US.

If the applicant is granted permanent residence, her new legal status is forwarded to
several other government entities. First, the Internal Revenue Service (IRS) is notified
to ensure the new resident files an accurate tax return. Next the Social Security
Administration (SSA) is notified. This SSA update allows the new immigrant to qualify
for an unrestricted social security card which must be obtained prior to accepting
employment.

While all of these exchanges seem routine, it is important to recognize that each new
informational requirement could require software modification across multiple agencies.
Figure 3-1 presents a graphical representation of the data dependencies between the
different US Government agencies consulted during this facticious process.

7

Figure 3-1

Data dependencies for systems
queried in the example scenario.

Figure 3-1 is a visual representation of the tasks required to grant permanent residency to the

spouse of a United States citizen in the facticious scenario detailed above. Steps are labeled

one through ten with decimals indicating the opportunity for concurrency. If new requirements

are added, a best case scenario affords us the ability to utilize an existing “link” between

systems. However, any new business requirements will necessitate further software

development implying significant cost.

8

Chapter 4: System Design

Requirement Specification
In our example scenario, all data exchanges are conducted electronically, and figure 3-1

shows a connection scheme that links all pertinent data sources. There are a number

of methods to facilitate data exchange. For example, creating a database link between

the source and target database systems is a solution found in many legacy systems.

A database link allows a user (with appropriate permissions) on one side to query data
stored physically on the other side. While this does permit data to be exchanged
between two end systems, a precondition is that the querying party (user and/or
software application) understands the schema of the target database.

The database link solution has at least three serious drawbacks. First, it requires the
exchange of database login credentials between two separate business entities which
presents serious security concerns. Second, the user side is completely dependent
upon the relational schema of the target database. A modification to the target
database’s schema may “break” user queries. Finally, such a solution requires large
amounts of planning, maintenance, and auditing which makes it costly.

For example, let us assume that at some point in the future a new organization is
created within the Department of Homeland Security that tracks a certain metric that
becomes required in the permanent residency application process. In this case, a new
link between USCIS and the new agency would need to be built. After the link is built,
application code will need to be created (on both sides) to request and display the
required information. This process will repeat for every new “data link” added, not just
for the newly created system, but also include any existing system that utilizes the new
system’s data.

Another viable technology to facilitate data exchange is the Web Service. Using web
services alieviates the database credential concern originating from the database link
solution. It also removes the user’s dependency on the target database’s schema.
Even though calling the operations of a web service do not require knowledge of the
database schema, the user must still know two things: (1) where to ask for the data (i.e.
from which agency), and (2) what the required data is called in the domain of discourse
for the target agency.

9

For example, if the United States Army wants to assist veterans with career placement,
it should be aware of the Department of Labor’s (DOL) job data and career placement
services. On the other hand, if the DOL wants to provide automated job-seeker
services for veterans, its information systems must understand the skills each veteran
has acquired during their military service. These skills are usually described by military
skill codes such as NCD, NC, or NR [12] [13].

We propose a solution to help the users query data using their own business language,
and search across multiple sources, each in their own (potentially different) business
language. The following guidelines summarize its interoperability:

1. A potential solution shall not require a change to the existing data architecture or
code base of any existing system.

2. A potential solution shall provide a method for a user to locate data in the custody
of another entity without a priori knowledge of the database schema.

3. A potential solution shall allow exchange of data regardless of the specific
database technology being used to store the data.

4. A potential solution shall not require data owners to relinquish ownership of their
data to a central, “authoritative” source.

Guideline one can be seen expressed in the SOA-implementing technology of Enterprise
Service Bus (ESB). An ESB is a technology that allows for message passing between
information systems participating in a SOA environment. It facilitates the interoperation
[5] of systems via its ability to, at a low level, translate protocols between each other [10].

Guideline two addresses items scoped within the goal of UDDI: the ability to locate and
utilize some service [11]. In our case, a user should utilize some functionality to locate
specific data without having to know the specifics of how the data is stored.

Guideline three addresses the realities involved in exchanging data between database
implementations and requires interoperability with all such systems. This requirement
again lends itself to the goals implemented by the ESB.

Guideline four provides the assertion that our solution does not consolidate data into an
authoritative source, and must leverage the existing data sources to fulfil data search
requests (interoperability over integration [5]).

Information about Data
Conceptually, our solution is metadata-centric. In addition to the details about the data,
we also need to understand how each domain of data relates to eachother on a
conceptual level. To achieve this, our design makes extensive use of the Web Ontology
Language, a World Wide Web Consortium (W3C) recommendation.

10

According to the W3C, OWL “is designed for use by applications that need to process
the content of information instead of just presenting information to humans.” [1] It
leverages the flexibility of eXtensible Markup Language (XML) to allow us to describe
data classes and their individual properties (i.e. a Human has the property of being male
or female.) In addition to describing data, it also provides a platform for defining formal
axioms such as asserting an object belongs to a specific domain (i.e. Eric is a Human),
or defining the domain and range of a specific property. With these axioms defined
within an OWL ontology, information systems are able to become aware of the
concerned domains of discourse.

The Data Exchange Intermediary
Our approach proposes the creation of an intermediate system which we refer to as the
Data Exchange Intermediary, or DEI. This is a metadata portal that provides the user
with the functionality to perform a search. The DEI presents the user with the domains
of discourse that are composed of a vocabulary defined in OWL. This allows the user to
specify a search based on his or her domain knowledge about entities and the
relationship between them within one or multiple domains. The DEI then serializes the
request into a transportable format and forwards the request onward for fulfillment.

Defining metadata formally using an ontology has serious advantages over performing
simple key-word searches. Instead of defining a search in terms of a word or phrase,
the DEI allows the users to select classes (concepts) from their domain knowledge.

For example, imagine a novice network engineer needs to perform a search for network
hardware technologies deployed across the world. Without a semantic definition of
what “networking” means, a search will return results ranging in topic from Ethernet
switches to popular social NETWORKing websites such as Facebook and Linked-In.
On the other hand, selecting NETWORK under the concept “telecommunication” helps
eliminate confusion and directs the search.

As the custodian of the ontologies for all participating data resources, the DEI helps

users to find relevant data. This interactive process is accomplished by forwarding user

requests to the participant data resources. From the comprehensive ontology list

hosted at the DEI, a user chooses his or her desired domain. In this familiar business

language, the user can easily locate the desired data classes and select the appropriate

attributes within them. Since each class and property has a unique URI, the user’s

selection will never be ambiguous.

After the user has selected the required search class and properties, a search request

is created and serialized as an XML document. This document contains the unique

property and class URIs to disambiguate all of the vocabulary used in the search

request.

11

Joining the DEI
When an organization decides to join the DEI, several steps must be taken. The first
major step in joining the DEI is to prepare one or more ontologies that describes the
data and business activities the organization desires to offer to the partners. These
ontologies will primarily be constructed based on existing standard ontologies such as
OE-gov [13]. In addition, many ontologies referenced by individual fields such as those
listed in [9] will also be referenced.

The principle guiding the construction of ontologies is to use the existing classes as
much as possible. Each participating organization can define their own classes as a
composition of existing classes from the standard ontologies or other existing
ontologies. Typically, exposing ontologies has a very low security risk as long as the
definitions do not describe concepts that are confidential.

On the other hand it is illogical to assume all database architectures can be described
with a set of common guidelines. We advise prospective Data Exchange Intermediary
Partners (DEIPs), the system joining the DEI, to carefully review their individual data
architectures and devise their own test for completeness. As an example of such a test,
we provide the guidelines used to test the expressive completeness of one of our
example system’s data schemas.

1. For every attribute a in the data set, there exists at least one data property p that
describes the attribute. [∀ a ∃ p { p uniquely describes a }]

a. Exception: The value of a changes the interpretation of the relation to
which it belongs.

2. For every relationship between relations t1 and t2, there exists at least one object
property o whose domain describes t1 and whose range describes t2. [∀ t1, t2 ∃ o
{ domain(o) describes t1 && range(o) describes t2}]

We exclude attributes that serve as program-created keys because they do not describe
a concept in the physical world and therefore should not be modeled with an ontology.
For example, imagine the relation Person defined by the following fields:

Person(person_id, first_name, last_name, address_id)

If the “person_id” attribute represents a concept in the physical world such as a social
security number, or employee number, condition (1) holds. If “person_id” is program-
generated at insertion time by a sequence, we exclude it from condition (1).

In the Person relation we also see the attribute “address_id” which has no direct
representation in the physical world but is a foreign key into the Address relation. It
should be described in an ontology with an object property where the domain of the
property is Person and the range is Address.

12

The exception A for guideline one refers to the case where the value of an attribute
changes the interpretation of the entire relation for a specific tuple. For example,
imagine the relation Charge is defined with the following definition:

Charge(date, person_id, description, convicted).

Since accused individuals are innocent until proven guilty in the author’s home country,
a tuple in this relation with the value “false” for the attribute “convicted” can be
interpreted completely differently than a tuple with the value “true” for “convicted.” In this
case, the DEIP may choose to represent the relation with another class that describes a
conviction instead of a charge, in order to more accurately represent the data.

The second step in joining the DEI is taken if the set of ontologies is not expressively

complete. If new ontologies are required, the joining DEIP shall create them and submit

them for approval by the DEI entity. After acceptance into the DEI, the DEIP shall

define the ontology to database-field mappings in the DEIM database and enable the

DEIM. After this step is completed, the DEIP has fully joined the DEI and will actively

be sharing information with other DEIPs.

Caution should be taken when building ontologies using automated tools. Some tools
will generate ontologies and their relationships based on the underlying database
schema. In doing so, the ontology classes and their attributes are derived from the
technical, relational schemas and not concepts. These aspects of schema information
must be removed before submitting to the DEI. Any ontology utilized by the DEI must
provide the user with the relationships and properties of his or her business vocabulary.
When a DEIP wishes to join the DEI, any ontologies added to the DEI library must
conform to this important restriction.

Search Request Processing
After the search parameters are generated and converted into a transportable format by
the DEI, they are forwarded to every data resource system that participates in the DEI
network: the Data Exchange Intermediary Partners. We define a DEIP as simply any
system that maintains custodianship over one or more data sets. This definition allows
flexibility in system architecture and permits scaling at multiple organizational levels.

DEIPs receive the search request details from the DEI via the Data Exchange
Intermediary Middleware (DEIM) agent. The DEIM is a component that resides in the
DEIP’s network and executes concurrently. The DEIM interacts with existing software
by connecting to databases utilizing standard connection protocols.

Prior to fulfiling a DEI search request, a DEIP must have prepared an Ontology-to-
Database mapping with the DEIM present within its network. An example of this
process is detailed in chapter 5.

13

The DEIM’s role in the search process is to first perform a lookup against the DEIP’s
ontology mappings. The lookup data is stored in the DEIM’s management database
and is physically separate from any and all programatic data. The lookup takes as input
details of one or more ontology classes and properties and returns zero or more
database fields and their owning schemas. This step makes it possible for the users to
issue questions without knowing the details of the data schemas.

After the mapping between the ontologies in the search request and the specific fields
within the database is established, the DEIM performs a database search for the
requested data utilizing the data and object properties of the ontologies as potential filter
mechanisms. If the search ontologies map to nothing in the database, we conclude this
DEIP doesn’t know anything about the subject being sought and reports negative
results.

After the DEIM has produced a set of results (positive or negative), the results are once

again serialized into a transportable format and are forwarded back to the DEI for

display to the requesting user. All data to be included in the result report is referenced

by both its ontology class and its unique data or object property identifier, NOT by its

database schema nor column.

14

Chapter 5: Prototype Implementation

Introduction
Our prototype environment is divided into three data resources that implement the
requirements outlined in chapter four. They include the Data Exchange Intermediary,
the Ontology Manager, and the Data Exchange Intermediary Middleware. These
components are complemented with multiple Oracle Database Management System
11g instances which implement the storage layer.

Below is a logical view of our solution architecture showing the actors and map of how
they communicate. We will explain each actor in greater detail following the diagram.

15

Figure 5-1
A logical view of DEI actors.

The Ontology Manager and Data Exchange Intermediary
The Ontology Manager (OM) is a stand-alone Java application that manages the
ontologies maintained by the DEI. It reads the ontology definitions from the files stored
on the DEI server’s file system and parses the class definitions into a hierarchy of Java
objects also used in the graphical interface. The objects created relate to each other
exactly as the ontology classes do which allows for programmatic traversal of the class
trees without the need to reparse the definition file and re-incur additional disk I/O
overhead.

16

The OM makes extensive use of the Apache JENA [7] and OWL-api [8] libraries for the
parsing and querying of the ontology definition files. The OM begins by obtaining a list
of all classes contained within the ontology models over which it has custodianship.

The OM then starts to construct a hierarchical graph of the ontology classes and their
relationships. Since the libraries only provide a flat view of the ontology model, the OM
will unflatten it by making a determination whether each class in the master list of
classes is a subclass of another. The following SPARQL query is invoked against each
ontology definition:

SELECT ?superclass WHERE {
< [Full IRI of class being tested] > rdfs:subClassOf ?superclass .
?superclass rdf:type owl:Class .
FILTER (?superclass != < [Full IRI of class being tested] >)}

After the OM has completed the construction of a class hierarchical graph, all that
remains is to obtain information on the class properties. To accomplish this, the
following two SPARQL queries are invoked against each ontology:

SELECT DISTINCT ?property ?domain ?range
WHERE { ?property a owl:DatatypeProperty .
?property rdfs:domain ?domain .
?property rdfs:range ?range }

and

SELECT DISTINCT ?property ?domain ?range
WHERE { ?property a owl:ObjectProperty .
?property rdfs:domain ?domain .
?property rdfs:range ?range }

The above two queries complete the required graph that will be used by the Data

Exchange Intermediary (DEI). The first query provides the OM with a list of all data

properties and their domains and ranges. The second provides a list of all object

properties and their domains and ranges. The data from the two queries are then

parsed and stored within each class object.

17

The ontology definition files maintained by the DEI contain only classes and property

definitions and do not contain individuals. An individual is an entity that represents a

specific concept or thing in the physical concept modeled by its corresponding ontology

class. This decision was made for two reasons. First, storing individuals within the

Ontology definition file would violate guideline four by storing an “authoritative” copy of

the search data on the DEI. Second, the definition files are RDF documents expressed

in XML: it is much faster to query a relational database management system for the

specific data rather than a file.

Our prototype design implements the DEI as a Web-based application using Java
Server Faces (JSF) running on a Sun-Oracle Glassfish application server. Ontologies
are presented in a tree format through the Web front-end to a user for specifying a
search query.

The crux of any ontology-directed search is the ability for an end-user to specify his or
her search parameters. Our Web application graphically displays the relationship
between ontology classes as a tree graph. The classes displayed in the tree reference
one or more common domains of knowledge shared among all of the DEIPs. It follows
that any end user of the DEI will be competent enough within his or her domain of
discourse to utilize the interface to compose his or her search (i.e. a surgeon will
understand a hierarchy of ontology classes relating to medication dosage.)

After a search query is generated from the user selections, the query is transformed into
an XML document which is broadcasted to every DEIP. The schema of the XML
message is:

<deisearchrequest>

 <deiclass>

 <ontologyuri>http://www.dei.com/person#</ontologyuri>

 <classname>http://www.dei.com/person#Person</classname>

 <property>

 <uri>http://www.dei.com/person#firstName</uri>

 <filter>true</filter>

 <include>true</include>

 <type>data property</type>

 <value>John</value>

 </property>

 <property>

 <uri>http://www.dei.com/person#lastName</uri>

 <filter>true</filter>

 <include>true</include>

 <type>data property</type>

 <value>Public</value>

 </property>

 </deiclass>

</deisearchrequest>

Figure 5-2
DEI Search Request

 XML Schema.

18

When the results from the queries are returned to the DEI, they are displayed to the
user. Although results (including the source of the results) in our prototype
implementation are displayed in a tabular format, this can easily be modified for piping
of the data into some other report engine.

The Test for Expressive Completeness
We begin our completeness experiment by first obtaining a list of all data objects stored
within the database that will be made available to the DEI. Our goal is to provide a
mapping between database field and ontology property for each database object being
shared within the DEI. It is important to remember this test for expressive completeness
only addresses the mapping from ontology to database field and does not address the
correctness of this mapping. Subject matter experts (SMEs) should review the DEIP
mappings for logical correctness.

Our specific sample system is implemented using the Oracle 11g database, so we are
able to take advantage of an important data dictionary view: USER_TAB_COLUMNS.
Data dictionary views are special relations stored within the SYSTEM tablespace that
are used for a variety of reasons such as administrative inquiries, self-tuning, and
statistics.

We continue by logging into the Oracle 11g instance that implements the data store for
our sample FBI database. We log in using the “FBI_OWNER” user, which is the
schema owner for all objects used in the factitious FBI application.

The *_TAB_COLUMNS view provides over 30 pieces of data that describe data and
columnar information for the instance [3]. There are three incarnations of this view:
USER_TAB_COLUMNS, ALL_TAB_COLUMNS, and DBA_TAB_COLUMNS, each
providing a slightly different data set. In our specific example, we begin by constructing
a query over the USER_TAB_COLUMNS data dictionary view which will return data
specific to the tables and columns which are owned by the current user’s schema. We
do this as the “fbi_owner” user, the schema owner for all tables used to implement the
data for the sample system.

SELECT table_name, column_name
FROM USER_TAB_COLUMNS

 ORDER BY table_name

For our sample database, this query returns 35 rows, the complete set of tables and
columns within the “fbi_owner” schema. For brevity, we will combine the output from
this query with the table in the next section. Next, we need to evaluate the expressive
completeness of the available DEI ontologies.

19

Table 5-1 contains a complete listing of the columns provided by the above query as
well as an exhaustive list of the applicable ontology classes and their properties used by
this DEIP. We begin this next step by reviewing the list of columns in conjunction with
the master list of ontologies provided by the DEI. When an ontology object (data or
object property) is satisfactory to describe the database object (column), we include the
details in table 5-1.

Some of the mappings require special conditions to describe them. In this case, the
DEIM provides two types of statements to model conditional logic: WHERE and
DYNAMIC WHERE. A WHERE conditional functions exactly the same as a standard
SQL WHERE clause in. A DYNAMIC WHERE clause is used to implement conditions
that join two or more tables at lookup runtime. We will explain the DYNAMIC WHERE in
greater detail later.

20

Table
Name

Column Name Ontology Class Attribute Conditio
n Type

Condition

Address state Address state N/A N/A
Address zip_code Address zipCode N/A N/A

Address country Address country N/A N/A
Address previous_address Address previousAddress N/A N/A
Address city Address city N/A N/A
Address street_name Address streetName N/A N/A
Address street_number Address streetNumber N/A N/A
Address address_id EXCLUDED.

Charges disposition Charges chargeDisposition N/A N/A
Charges statute Charges statute dynamic

where
Charges.statute =
{display:The unique ID
of this statute.}

Charges date_time_of_offens
e

Charges chargeDate N/A N/A

Charges person_id Charges accused dynamic
where

Charges.person_id
={display:This persons
unique identifier.}

Charges charges_id EXCLUDED.
Conviction charge_id Conviction convictionCharge dynamic

where
Conviction.charge_ID =
{display:The unique ID
of this charge.}

Conviction conviction_date Conviction convictionDate N/A N/A

Conviction sentence Conviction sentence dynamic
where

Conviction.conviction_i
d = {display:The unique
ID of this sentence.}

(table continued)

21

Conviction isfelony Conviction or
FelonyConviction.

Exception 1-A. where Conviction.isfelony =
'YES' or
Conviction.isfelony =
'NO’

Conviction conviction_id EXCLUDED.

Person dob Person dateOfBirth N/A N/A
Person address Person address
Person ssn Person socialSecurityNumber N/A N/A
Person last_name Person lastName N/A N/A
Person first_name Person firstName N/A N/A
Person person_id EXCLUDED.
Sentence duration_years Sentence sentenceDurationYears N/A N/A

Sentence duration_lifetimes Sentence sentenceDurationLifetimes N/A N/A
Sentence duration_months Sentence sentenceDurationMonths N/A N/A
Sentence sentence_id EXCLUDED.
Sentence type Sentence,

CommunityService,
Jail, or Probation.

Exception 1-A. where SENTENCE.type =
'COMMUNITY
SERVICE' or
SENTENCE.type =
'INCARCERATION' or
SENTENCE.type =
'PROBATION'

Sentence duration_days Sentence sentencedurationdays N/A N/A
Statute short_name Statute Shortname N/A N/A

Statute law Statute Law N/A N/A
Statute paragraph Statute paragraph N/A N/A
Statute subsection Statute subsection N/A N/A
Statute statute_id EXCLUDED.

Table 5-1

Sample system database object to

DEI Ontology mapping.

22

From table 5-1, we can see the data set maps completely onto the domain of discourse
ontologies provided by the DEI. That is to say that for each element of data stored
within the back-end database, there is a corresponding ontology attribute. Table 5-1
enumerates these relations, excluding columns that exist simply to implement a relation
between two tables as they do not model a real-world concept.

Our results also show two invocations of exception 1-A (see chapter four, “Joining the
DEI”): Sentence.type and Conviction.isfelony. This exception allows us to skip mapping
a field directly to an ontology property if the value in the database changes the
interpretation of the row. In the case of the “Conviction.isfelony” field, a value of TRUE
indicates that the conviction is a felony conviction which often imposes much heftier
punishments than those which are not. It follows from the table that this field can be
mapped to either of two ontology classes: Conviction or FelonyConviction, depending
on the value of “Conviction.isfelony.”

Another important tool used within the ontology to database schema mapping is the
dynamic where clause. The dynamic where clause is a binary, boolean operation that
expresses the need to join two tables in order to appropriately map an ontology
property. The left hand operator denotes the domain of the property and the right hand
operator will be evaluated to denote the range. The evaluation takes the string after the
“display” instruction and replaces it with the specific database value from the column
described by the presentation text from the string parameter.

We choose to use presentation text for the “display” instruction within a dynamic where
clause mainly because it is unlikely to change. If the DEIP uses a logical backup
scheme for disaster recovery, there is a chance that the specific id generated from a
sequence could change if data are reordered in the export. Another reason refers back
to the first guideline for our solution. Since we should not force change on the DEIP’s
data providing system, we move the responsibility for mapping to the correct database
field to the DEIM.

For example, if during the mapping phase we set the presentation text for the
Charges.charge_id database column to “The unique ID of this charge,” a dynamic
where condition with the “display:The unique ID of this charge” instruction will replace all
values on the right side operator with the charge id of the referenced row or rows. It is
noteworthy to mention that although Charges.charge_id does fall under the exclusion
criteria listed above, it is used in a whole class query for the purposes of implementing
relational logic between database objects.

23

Whole class queries are used in scenerios where a user desires all the data of a
specific class. For example, if a user needed to see a list of all data stored on all people
across all of the DEIPs, the search request might reference the Person class’s IRI. In
the case of our factitious FBI database, such a query would return mappings to all of the
fields composing the Person table including the primary key, person_id, which would
otherwise be excluded from a targeted search. Although the primary key is included, it
is tagged as a non-displayable field and is used only to implement relational logic. Non-
displayable fields are never returned as search results.

The Data Exchange Intermediary Middleware
The Data Exchange Intermediary Middleware application functions as the search

request fulfillment agent. In our prototype implementation, it’s a Java application that

utilizes an Oracle 11g database for search requests. It is noteworthy to remind the

reader that this application connects to two separate databases. The first is the Oracle

11g instance which stores the mappings of the DEI ontologies to the actual data fields.

We will refer to the first database as the “mapping database.” The second database

stores the actual data fields of the DEIP which are being shared among all of the DEIPs.

We will refer to the second database as the “back-end database.”

After the DEIM receives a search request from the DEI, the XML from the request is
decoded into traversable objects representing the search. The search request data are
then mapped by its class and data/object property URI to an actual database field using
the mapping database. After the ontology to database field mapping is complete, a
dynamically generated Structured Query Language (SQL) query is created over the
requested fields and is run against the back-end database.

The results of the dynamic query are then prepared for transport back to the DEI. If the
results were negative (i.e. no data was found for the given search criteria,) a message is
returned stating no data was located. If data was found, it is transformed into XML
along with the URI of the search class as well as the URIs for all search properties and
a descriptive “presentation” text (defined by the DEIP) that can be used by the DEI or
whatever user interface is available.

A Usecase Scenerio
In this section we present a basic usage scenario and provide the use case

specification documents used to implement the prototype. In this scenario, a DEI user

is seeking the first name, last name, date of birth, and social security number of “John

Doe.”

24

Define Search Universe
Use Case Name: Define Search Universe.

Use Case Actors: User, Data Exchange Intermediary (DEI).

Use Case Goal: The goal of the use case is to define the domain(s) of discourse for the

DEI-directed search. In this use case, the user specifies the type of data being sought.

Use Case Primary Flow:

Pre-Conditions:

1. The user must have logged into the DEI.

Post-Conditions:

1. The DEI presents the user with the details of his or her chosen

Ontology classes.

Use Case Steps:

1. The DEI presents the user with a list of Ontology Web Language

(OWL) classes that express the data being sought.

2. User selects one or more of the classes to be used in the search.

The use case ends.

Figure 5-3

The user has selected the
Person class for an Ontology

directed search.

25

Define Data Parameters
Use Case Name: Define Data Parameters.

Use Case Actors: User, Data Exchange Intermediary (DEI).

Use Case Goal: The goal of the use case is to allow the user to provide specific

elements of data he or she is seeking based on the domain(s) of discourse chosen in

the Define Search Universe use case.

Use Case Primary Flow:

Pre-Conditions:

1. The user must have completed the primary flow outlined in the Define

Search Universe use case.

Post-Conditions:

1. The DEI is configured to perform a directed search for specific data

elements.

Use Case Steps:

1. The use case begins with the user selecting zero or more data and/or

object properties from the chosen Ontology that represents the data being

sought.

2. The user specifies any filter conditions as necessary.

3. The user performs the SEARCH action outlined in the Perform DEI-

Directed Search use case.

4. The use case ends.

26

Figure 5-4

The user has selected
attribute and entered

search criteria.

Perform DEI-Directed Search
Use Case Name: Perform DEI-Directed Search

Use Case Actors: User, Data Exchange Intermediary (DEI), DEI Middleware, Data

Exchange Intermediary Partners (DEIPs)

Use Case Goal: The goal of the use case is to implement the search of the data owned

by the DEIPs based on the user’s specified domain of discourse and requested data

elements.

Use Case Primary Flow:

Pre-Conditions:

1. The user must have completed the primary flow outlined in the Define

Search Parameters use case.

Post-Conditions:

1. The DEI Middleware returns all available data to the user based on his

or her search parameters and permissions.

27

Use Case Steps:

1. The use case begins with the user initializing the search request.

2. The DEI serializes the search request for network transport.

3. The DEI forwards the request to the known DEIP’s DEI Middleware.

4. The DEIP Middleware agent(s) perform the specific searches required

to implement the request.

5. The DEIP Middleware agent(s) forward the results to the DEI.

6. The DEI presents the results to the user.

The use case ends.

Figure 5-5

The DEI reports the results
of the search.

28

Chapter 6: Sample Architectures

Sample DEI Architectures
Below are two architectures that could be used to implement the DEI process within
either a single, geographically dispersed organization or alternatively between separate
organizations, each residing within some physically segregated networks.

Figure 6-1
A sample DEI architecture within a single
geographically dispersed organization.

Figure 6-1 depicts a potential implementation of the DEI architecture. In this
implementation the factitious organization, Company XYZ, is a geographically dispersed
organization with major branches in the United States and Europe. The DEI, although
not shown within a logical location, can reside anywhere as long as it has network
connectivity with the DEIPs it knows of. The physical location of the users who will
query the DEI is not important as long as they have network access with the DEI.

29

Figure 6-2
A sample DEI architecture with three
physically separated organizations

Figure 6-2 depicts another potential implementation of the DEI architecture. In this
implementation, three independent, physically separate organizations have agreed to
share a subset of the datasets over which they maintain ownership. Data will be
exchanged via a DEI that is also physically separated. As was the case with the
example shown in figure 6-1, as long as the DEI is able to initiate network
communications with each of the DEIPs it knows about, the DEI process is able to
successfully operate.

As previously mentioned in “Restrictions on Ontologies,” the DEI implementation
requires the use of ontologies that provide for maximum expressiveness between user
and application over the domain of data being queried. In the specific case depicted in
figure 6-1, it follows that any user of the DEI implemented by Company XYZ will either
be an employee of or at the very least an interested third party. This is an appropriate
example of limiting the expressiveness of the DEI ontologies to concepts in reality that
are pertinent to the company. On the contrary, unless each of the organizations
depicted in Figure 6-2 share similar data sets, the figure depicts a situation where
maximum expressiveness is desired.

30

References

[1] World Wide Web Consortium (2004). OWL web ontology language overview
 [Abstract]. Retrieved from http://www.w3.org/TR/owl-features

[2] Government Accountability Office (2006). Information sharing (GAO Publication No.
 GAO-06-385). Retrieved from Government Accountability Office website:
 http://www.gao.gov/new.items/d06385.pdf

[3] Oracle (2013). Oracle Database Reference 11g Release 2 (11.2)
 ALL_TAB_COLUMNS. Retrieved from
 http://docs.oracle.com/cd/E11882_01/server.112/e25513/statviews_2103.htm

[4] Rajmohan, R., Padmapriya, N., & Jayakumar, S. (2011). A survey on problems in

distributed UDDI. International Journal of Computer Applications, 36(3), p. 1-7.

[5] Singh, M., & Huhns, M. (2005). Service-Oriented Computing. Chichester: John Wiley

& sons Ltd.

[6] Erl, T. (2005). Service-oriented architecture. Boston, MA: Pearson Education.

[7] Apache Jena (Version 2) [Computer Software]. Retrieved from

http://jena.apache.org/download/index.html

[8] OWL API (Version 2) [Computer Software]. Retrieved from

http://owlapi.sourceforge.net/index.html

[9] DARPA Information Exploitation Office (2006) DAML Ontology Library. Retrieved

from http://www.daml.org/ontologies/

[10] Oracle. (2013). Enterprise Service Bus [White paper]. Retrieved from

http://www.oracle.com/technetwork/articles/soa/ind-soa-esb-1967705.html

[11] Organization for the Advancement of Structured Information Standards. (2004).

UDDI Executive Overview: Enabling Service-Oriented Architecture [White paper].

Retrieved from https://www.oasis-open.org/committees/download.php/9860/

31

[12] Department of The Navy (2012). Manual of Navy enlisted manpower and personnel

classifications and occupational standards (Vol. I, pp. 1-1611). Retrieved from

http://www.public.navy.mil/asnmra/corb/PEB/Documents/References/Rating%20

MOS/Navy%20Rating%20Manual%20Jan%202012/18068F%20%28Enlisted%2

9Jan12.pdf

[13] oeGOV (2010) Ontologies for e-Government. Retrieved from

 http://www.oegov.org/

32

Appendix A: Glossary

User: A user is defined as any entity (person and/or software) authorized to log into a

specific Data Exchange Intermediary application.

Data Exchange Intermediary (DEI): The Data Exchange Intermediary is the entity that

facilitates the lookup and retrieval of data from the partner systems. The DEI does not

contain any data other than the definition ontologies, a list of known Data Exchange

Intermediary Partners, and a list of users authorized to log in.

Data Exchange Intermediary Partners (DEIP): A Data Exchange Intermediary Partner is

an organizational entity that has gone through the formal process of sharing subsets of

the data under their ownership with other DEIPs by subscribing to the DEI process.

DEIPs are responsible for mapping the data they wish to share with other DEIPs onto

ontologies maintained by the DEI, and for suggesting new ontologies that adequately

describe the content of their data sets.

Data Exchange Intermediary Middleware (DEIM): The Data Exchange Intermediary

Middleware agent is the application hosted within any DEIP’s organizational

enclave/network. This application implements the user search request on a specific

DEIP’s network.

Ontology Manager (OM): The Ontology Manager is an application hosted within the

same network/enclave as the DEI. It is responsible for reading the flat ontology

definition files and parsing them into non-flattened data objects which are provided to

the DEI.

Universal Description Discovery and Integration (UDDI)

33

Appendix B: Future DEI Use Case

Use Case Name: Verify Permissions.

Use Case Actors: Data Exchange Intermediary (DEI).

Use Case Goal: The goal of the use case is to decide whether or not a specific user has

permissions to view data owned by one or more DEIP(s).

Use Case Primary Flow:

Pre-Conditions:

1. The user must have completed steps (1) and (2) of the Primary Flow of

the Perform DEI-Directed Search use case.

Post-Conditions:

1. The user is authorized to proceed with the request.

Use Case Steps:

1. The use case begins with the DEI determining if the user is authorized

to view the requested data based on permission lists.

2. The DEI determines the user is authorized to view the requested data.

3. The use case ends.

Use Case Alternate Flow #1:

Pre-Conditions:

1. The user must have completed steps (1) and (2) of the Primary Flow of

the Perform DEI-Directed Search use case.

Post-Conditions:

1. The user is not authorized to proceed with the request.

Use Case Steps:

1. The use case begins with the DEI determining if the user is authorized

to view the requested data based on permission lists.

2. The DEI determines the user is NOT authorized to view the requested

data.

3. The use case ends.

34

Appendix C: Sample Entity Relation Diagrams

Example FBI Database Schema

35

Example USCIS Database Schema

36

Example DHHS Database Schema

37

Vita

James Sauvinet was born in Metairie, Louisiana. He obtained his Bachelor’s degree in

Computer Science from the University of New Orleans in 2010. Mr. Sauvinet was

admitted to the graduate school in 2010 and studied under the direction of Dr. Shengru

Tu. His graduate studies included big data, distributed systems, and database systems.

Mr. Sauvinet is currently employed in the public sector as a database engineer. His

research interests include software engineering, computational complexity, imbedded

systems, machine learning, and data engineering.

	Semantic Services for Enterprise Data Exchange
	Recommended Citation

	Microsoft Word - 2013_MS_Sauvinet_James_FEDIT_After_Def.docx

