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Abstract 

The pressures and impact forces acting on a hull while  experiencing bow wave slamming is analyzed 

using Vorus' Impact Theory. The theory extends the hydrodynamic analysis of planing hulls from simple 

wedges to irregular shapes using a Boundary Element Method. A Fortran-based code developed by the 

Author is used to analyze hullforms. Linear strip theory is used to extend the analysis over a three 

dimensional hull. Post-processing of output data gives hull pressure distributions at different time steps 

and is visually presentable. 

 

Impact pressure, Impact force, Planing, Wave slamming, Bow impact, Vorus' theory, Boundary Element 

Method, Linear strip theory 
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1. Introduction 

The impact problem is one of the present day problems being keenly investigated, especially in 

the realm of high speed hydrodynamics. There has been a fundamental shift in naval ship design 

requirements which has seen a greater emphasis on speed and agility of vessels. In the present 

design environment, vessel designers are striving to design vessels that can achieve greater speed 

and maneuverability with the available power. This provides the impetus for research in high 

speed vessels. A better understanding of the hydrodynamics of lift, drag and impact forces on 

these vessels could provide end users with enhanced operational ability.  

The impact problem is also applicable to the realm of normal displacement hulls for estimation 

of impact forces during wave slamming and similar non-linear phenomena which cannot be 

easily accounted for using linear hydrodynamics. Recent years have seen a spate of regulations 

intended at increasing the operational safety of commercial vessels. 

A better understanding of impact forces and pressure distribution will allow designers to 

strengthen hulls sufficiently to withstand these forces and design hullforms which could prevent 

dangerous excessive pounding of the hull in rough conditions. This would also help class 

societies develop new regulations to ensure adequate safety of vessels in seas, taking into 

account phenomena like bow impact, wave slamming, etc. Regulations regarding impact forces 

can be given more theoretical basis compared to the largely empirical nature of regulations for 

design readiness of vessels in wave impact situations. 

The impact problem has been investigated  since the first half of the 20th century. The first 

investigations into the wave impact problem were by Von Karmen (1929) and Wagner (1932) 



2 

 

independently in USA and Germany respectively. Their work has laid the groundwork for much 

of the theoretical development over the many decades that followed, till present date. Subsequent 

research works on the subject have devised models to predict the lift and drag of a planing body 

executing planing motion. Maruo (1967) assumed the vessel's planing surface as a distribution of 

vortices and tried to solve the problem of pressure distribution using potential theory. Maruo 

subjected the problem to the linearized free surface boundary condition, including gravity 

effects. Shen & Ogilvie (1972) approached the problem applying conformal mapping of contours 

to regular shapes like a line or semi circle and solving the potential of the flow. Taravella & 

Vorus (2010) have applied the theory of Maruo to a series distribution of offsets and successfully 

predicted the lift coefficients, coupling the effects of upstream stations on downstream stations 

on low-aspect ratio hullforms. These theories have, over the decades, come closer and closer to 

realistic predictions of lift and drag for increasingly complex shapes.  

The theories discussed above were initially developed for sea planes and planing hulls. Their 

applicability to semi-planing, semi-displacement and even displacement hulls, have in recent 

years been extended. Taravella (2009) developed a hybrid method for predicting lift / drag on 

semi-planing / semi-displacement hulls.  

Many of the theories mentioned above have focused on lift / drag prediction on hull forms. Only 

a few have focused on the phenomena of impact pressures, Vorus (1996), being one of them. 

Impact, being a non-linear phenomenon has complexities of flow that are different from merely a 

lift force. The theory approximates the geometry using linear approximations, and performs the 

hydrodynamic analysis as a non-linear problem.  
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More recently Ghadimi et al (2011) have investigated the entry of a wedge onto a horizontal 

water surface using Schwartz Christoffel mapping. A subsequent work has been published by 

Ghadimi et al (2013) which computes the pressure distributions and separations across the hull 

cross section using a VOF (Volume of Fluid) scheme in conjunction with FVM (Finite Volume 

Method).  

The present work develops on the work of Vorus (1996). The work of Vorus has been used to 

formulate a code in Fortran which can successfully output the pressure distribution on a hullform 

undergoing impact motion. The theory has been extended to a hullform from a single station 

using Linear Strip theory. The work attains significance in the context of the fact that the theory 

developed by Vorus (1996) was a Boundary Element Method (BEM). BEM methods are 

significantly faster than volume element methods. The present work can help identify regions of 

significant pressures on hullforms due to wave impact and account for structural strengthening 

required at these regions or modify hullform designs to reduce these pressures at the conceptual 

stage of design.  
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2. Literature Survey 

As all studies of theories on impact done before, the literature study for the present theory began 

with a study of the works of Von Karmen (1929) and Wagner (1932). Von Karmen's work 

analyzes the impact pressure experienced by a prismatic wedge hull dropped vertically, striking a 

horizontal water surface. Von Karmen's model approximated this highly non-linear phenomenon 

into a linear formula by applying the requisite simplifications. There is mass added by virtue of 

the hydrodynamic effects. The formulation developed for pressure is based on the conservation 

of momentum. The maximum pressure, located at the middle of the float, is found to be inversely 

proportional to the angle of deadrise, approaching infinity at zero deadrise according to the 

formulation. Von Karmen also proposes a limiting value for force at zero deadrise, i.e., for a flat 

plate. The pressure decreases moving outward  along the length of the span of the wetted region 

of the wedge. Von Karmen suggests that the limiting value suggested by him is an over-

approximation as the wedge is not a completely rigid body and there would be deformation in the 

body by virtue of the applied pressure. 

Wagner's theory (1932) was more detailed in its analysis of the horizontal water surface and the 

effect of the impacting body on the water surface. Wagner's theory introduced the concept of 

"spray root" and the "wetting factor". Wagner also noted the high pressure gradients near the 

spray root. Wagner's solution was divided into different zones, the outer domain - the principal 

region, where the water surface interacts with the surface of the wedge, the splash root, the 

region between the surface and the spray root, and the splash, the jet region of the flow. Wagner's 

theory was the first to apply Schwartz Christoffel mapping to compute the pressure distribution 

on the contour surface. 
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Most theories proposed till 1967 had confined the analysis to a 2D plane, in a station-wise 

fashion. Maruo (1967) laid the theoretical foundation for solving the lift and drag force on a 

three dimensional body by virtue of the incident (forward) velocity. The velocity potential of the 

flow was solved from the Laplace equation. The zero flux of flow across the hull, and the 

radiation condition were used by Maruo as boundary conditions for the problem. The analysis 

was conducted for two limiting cases - the high aspect ratio body, where the behavior is similar 

to that of an aerofoil, using Bassell functions, and the low aspect ratio, which is a good 

approximation for elongated bodies (width << length). The mathematical complexity of the 

equation's formulation led Maruo to assume a high Froude number for the body to simplify the 

solution. Perhaps the most important contribution of Maruo to the field of impact theory was 

introducing the effect of gravity to the lift force formulation acting on a body.  

Aarsnes (1996) had conducted drop tests of ship sections. The work detailed pressure variation 

along  the span of the section, and also the observed water surface profile. Subsequent 

researchers have used results published by Aarsnes as experimental data for testing numerical 

analysis of impact prediction codes. 

Vorus (1996) had proposed a boundary element method which takes a unified approach to the 

flow. Unlike previous theories, the computation for the far and near regions of the flow followed 

the same formulation. Vorus' theory is time dependent and hence could handle shapes / contours 

which are dissimilar in time. The theory is geometrically linear in the way it deals with the flat 

cylinder boundary conditions while simultaneously being hydrodynamically nonlinear by fully 

retaining the large flow perturbation produced by the impacting flat cylinder in the axis boundary 

conditions. The present work has been developed based on this theory. 
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Royce (2001) had extended Vorus' theory to a 2D planing crafts using a hydro-elastic model of 

impact, comparing pressure distributions for impact of 2D surfaces with experimental 

observations. The work also introduced the concept of temporal variations of impacting surface 

during the impact process, referred to as Localflex. 

Maruo's work was further expanded by Taravella (2009)  and Taravella & Vorus (2010). Their 

works extended the solution of the pressure distributions for Froude numbers that are not high 

enough to apply the high Froude number assumption for the low aspect ratio case, as is the case 

in semi-planing and semi-displacement hulls. This was achieved using Fresnel integrals to solve 

the flow potential equations. Taravella, in addition to this, applied Michell's (1897) thin ship 

theory to predict the drag on vessels of moderate Froude numbers. The proposed solutions 

couple the effects of incident velocities on upstream stations onto the solutions for downstream 

stations. These works have expanded the applicability of planing hydrodynamics theories from 

planing hulls to semi-planing and semi-displacement hulls. These works however are not 

applicable to impact problems where the flow is incident from beneath the hull rather than along 

the hull. 

Ghadimi et al (2011) have taken the approach of using conformal mapping to solve the impact 

problem. The formulation takes vertical velocity as the input velocity. The authors have used the 

image method where a Galilean transformation is applied to transform a hull contour to a closed 

shape. The flow potential is solved for this body which is symmetric about y-axis after the 

Galilean transformation. For the purpose of solving the potential of the flow, a Schwartz 

Christoffel transformation is applied to the transformed body. The transformation breaks down 
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the problem of the flow through a rhombus in the physical plane (z-plane) to a uniform vertical 

flow problem in the mapped plane (w=p+iq). The two free surface boundary conditions that 

bound the problem are: (1) Kinematic boundary condition on the free surface, and (2)The 

Dynamic boundary condition on the free surface. The pressure distribution is solved as a 

function of velocity distribution along a line. The potential of the flow is obtained from the 

transformed velocities, and application of the dynamic boundary condition to this gives the 

profile of the free surface of water. 

Ghadimi et al (2013) have also done a recent study for comparison of results of Aarsnes work 

against pressures predicted by a VOF (Volume of Fluid) scheme in conjunction with FVM 

(Finite Volume Method). The code successfully captures the reattachment of flow after the 

primary flow separation. The capturing of this detail predicts peak pressures close to the flow 

separation point. This observation was reported by Aarsnes (1996) in the ship section drop test 

results. 

In the context of classification society rules, Bajic et al (2010) presented a study of major class 

societies' rules on design impact pressures on a containership. The present regulations in relation 

to slamming pressures are empirical in nature. The study shows the variation of design pressures 

along the hull of containership undergoing slamming wave action on the bow section as 

comparison amongst different class societies. The study also reports the variations in pressure 

with variation in hullform coefficients, ship speed, bow flare and ship draught. Their study 

reports a high sensitivity of slamming pressures to the bow flare angle. 
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3. Impact Investigation Theory 

3.1. Vorus' Impact Theory 

The impact analysis is performed according to the theory detailed by Vorus (1996).  At certain 

occasions, certain deviations have been used in the code. For example, using the number of 

segments ni as equal to i, instead of computing this. A correction has been applied to equation 

(49) in Vorus (1996) (Equation (23) in the present work), using ������ ��
�����

	instead of ��������
�����

	 as the 

first coefficient of multiplication. However, the results have been verified against available data 

to ascertain the correctness of the code developed for analysis. 

Vorus' theory offers a single solution field for the hydrodynamic analysis. The principle 

complexity of the flat cylinder theory is the increasing transverse flow perturbation and the non-

linearity associated with increasing flatness. Vorus' theory has been extended to general 

contours, with restrictions, from flat cylinders. An advantage of the Vorus theory is that it 

possible to solve the problem for non-similar, time-dependent flows. The method is a mixed 

theory - geometrically linear, i.e., the flat cylinder boundary conditions are satisfied on the 

horizontal axis, and hydrodynamically nonlinear, as in fully retaining the large flow 

perturbations produced by the impacting flat cylinder in the axis boundary conditions. 

3.2. Flow Physics 

The hydrodynamic model considered is ideal and incompressible. Gravity is not considered in 

the problem. 

 The solution is developed on an impacting flat cylinder model (Figure 1(a) and (b)), Figure 1(b) 

portrays complete penetration of the cylinder (chine wetted flow) into the water surface. The 

point where the continuous hull contour terminates, referred to as the chine, is taken as the point 
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where the flow separates provided  premature separation doesn't happen. In case of premature 

separation, there would be no further advance of the point at which the flow contour has zero 

pressure. The theory is built here on the assumption of symmetry about the y-axis, the vertical 

plane of the cylinder. 

On impact, the free surface is turned back under the contour forming an initially attached jet, as 

shown in Figure 1(a). The "spray root" advances rapidly along the contour, followed closely by 

point C. The contour pressure is zero at C and beyond. Point C moves outward till it reaches the 

chine. Beyond this point, B continues further outward, though C remains fixed on the chine. 

Point C is the point where the flow detaches itself from the contour. On the upper branch of fluid 

flow, demarcated by B, the stream velocity is higher than the impact velocity, and on the lower 

branch, the stream velocity is lower than the impact velocity. Increasing flatness accentuates the 

difference in velocities between the upper and lower branches. For analysis, the cylinder is 

collapsed onto the z-axis. An important character of the flow is the drop in tangential velocity in 

the region zc≤z≤zb by an order of magnitude on the flow becoming a chine wetted flow.  
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Figure 1(a): Cylinder impact (cuw) (Vorus, 1996) 

 

Figure 1(b) Cylinder impact (cw) (Vorus, 1996) 

3.3. Velocity Definitions and Orders of Magnitude 

Understanding the various velocities - contour velocities and perturbations, is key to 

understanding the nature of the theory. The velocities on the flat cylinder is split into Vs and Vn, 

tangential and normal to the surface respectively. The perturbations, v and w, are defined with 

respect to the original axes of the flat cylinder. For the purpose of simplicity, the flat cylinder is 

considered symmetric about the y-axis.  

The values of contour velocities are as described at different stages of flow: 

Vn = 0, zc ≤ z ≤ zb 

Vn = V, zc ≤ z, zc=Zch 

Vn = V, Vs = 0, zb ≤ z,  zc≤Zch 
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As described in the previous section, the velocity undergoes significant changes in magnitude 

depending on the behavior of the flow (CUW / CW). The orders of magnitude of the 

perturbations and contour velocities are described in Table 1. 

Table 1: Orders of magnitude of cylinder impact parameters (Vorus, 1996) 

 0≤z≤zc zc ≤ z ≤zb z  > zb 

 (cuw) (cw) (cuw) (cw) (cuw & cw) 

Zc(t)/Zch <1 1 <1 1 ≤1 

v(z,t) O(1) O(1) O(1) O(β) O(β) 

w(z,t) O(1/β) O(1/β) O(1/β) O(1) O(β) 

Vn(z,t) 0 0 O(β) V+ O(β) V+ O(β) 

Vs(z,t) O(1/β) O(1/β) O(1/β) O(1) O(β) 




� 

O(1) O(1) O(1) O(1) O(1) 




� 

O(1/β) O(1/β) O(1/β) O(1) O(1) 

 

3.4. Theoretical formulation 

The impact problem is non-dimensionalized. All impact velocities are non-dimensionalized on a 

reference velocity V0, which could be the velocity upon impact at time 0. The offsets of the 

contour surface are non-dimensionalized on Zch, the offset of the chine. The time is thus non-

dimensionalized with the help of the above defined quantities. 

τ � ��� ��
���   
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Zero gravity is assumed for the problem. For the contour outside the zero pressure point, the 

tangential velocity is assumed to be zero, i.e., Vs = 0 for z ≥ zb. The remaining boundary 

conditions are satisfied with a vortex distribution between the axis and the spray root. 

The solution is scaled by the zero pressure distribution point offset zc(t), i.e., 

ζ = z/zc(t) 

The spray-root offset in the ζ-space  is then: 

b(τ) = zb(τ)/zc(τ) 

The strength of the line vortex distribution in Figure 2 is given by  γ(ζ,τ) = -2Vs(ζ,τ) 

 

Figure 2: Vortex sheet distribution and velocity components along the wetted portion (Vorus, 

1996) 
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3.4.1. Pressure continuity 

Free contour dynamic boundary condition 

 

Figure 3: Definition of variables (Vorus, 1996) 

Referring to Figure 2, zero pressure is required on the free contour beyond ζ=1: 

Cp(ζ,τ) = 0 on  ζ ≥1 

The definition for Cp at 0 ≤ ζ ≤ b, as derived from Bernoulli equation's unsteady form: 

����, �� �  ����� �  ������ �  2 ��! "# �$��, ��%�& �  ��$��, ��'�!�
�&(� ) � 2�� "# �$!��, ��%�& �'�!�

�&(�

 *!�$�*, ��)           0 , � , *���      (1) 

In  (1)  zc(τ) is the non-dimensional zero pressure point offset, and the subscript τ denotes ∂/∂τ. 

Also note that Cp=0 for 1≤ ζ ≤ b. This is satisfied when Vn = 0 for chine unwetted flow (zc < 1) 

and Vn = V(τ) for chine-wetted flow (zc = 1) 

��$ � ��!�� -./
-� � �� -./

-� � 0                1 , � , *���                  (2) 
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This is the nonlinear form of Euler's equation, the one-dimensional inviscid Burger's equation on 

a time and spatially variable stream. Manipulating this equation and applying the condition that 

Cp = 0 in 1≤ ζ ≤ b, we get 

�'! �  ./���,!�1.2��!��.��!�
�./�',!�                (3) 

Thus a definition of the spray root velocity, zbτ, is obtained from the pressure formulation. 

Free vortex sheet distribution. Euler's equation requires that velocity of the particles flowing out 

from the contour onto the free vortex and out into the jet has a constant velocity at its separation 

(at zc(τ')) and for all time τ > τ' thereafter. Applying galean transformation to (2) gives the 

following relations for the position of the particle with velocity Vs(ζ,τ): 

�3��4, �� � ./5�6,!78�!�!7�19:�!7��6
9:�!�             1 , �4 , *��&�, � ; �&              (4) 

�3��, �<� � ./��,!4��!�!4�19:�!4�
9:�!�            � ; � ; �&                                        (5) 

τ0 is the starting time where Vs (ζ,τ) in 1 ≤ ζ ≤ b must be known. The uniform Vs(τ0) is computed 

from the wedge similarity solutions. The spray root velocity is always less than the jet root 

velocity. This implies that the term ζ ˆ[b(τ0),τ] defined in (4) is always greater than the value of 

b(τ). Thus, except at ζ = 1, the free vortex sheet strength is completely defined from equations 

(4) and (5), given b(τ). 

3.4.2. Velocity continuity 

Contour kinematic boundary condition 

The kinematic boundary condition  is satisfied on the contour segment of the z-axis. In the 

downward moving coordinate system: 
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Vn(ζ,τ) = 0 on 0 ≤ ζ ≤ 1      (6) 

Substituting the definition of Vn in terms of vertical perturbation velocity, vorticity and impact 

velocity, the definition becomes  

v(ζ,τ) + 1/2 γ(ζ,τ) sin β(ζ,τ) = -V(τ) 0 ≤ ζ ≤ 1   (7) 

Here β is a function of time as well as the position on the wetted surface. The perturbation 

velocity, v is eliminated using the Biot Savart law: 

1/2 γ(ζ,τ) sin β(ζ,τ) + 1/2π # =�>,?�
�>�>&��

'
�'  = -V(τ)   (8) 

The γ function is split as γc and γs for the wetted region of the contour and the free sheet region 

respectively. This conversion, after being solved using the solution for integral equation of the 

Carleman type and interchange of order and other manipulation processes gives the result: 

@���, �� � � � ��$AB� C��,!�
D���� "���� � �

E # =/�$,!�F$
C�$,!�√$���

'�!�
$(� � ����

E # =/�$,!�F$
C�$,!�√$��� �$�����

'�!�
$(� )                  (9) 

s is a dummy variable of ζ-integration. The function κ(ζ,τ) is defined as 

H��, �� � ∏ J����KLMN�
����KN� J

OBKN �P�
QRS(�                         (10) 

The flow should be continuous from ζ = 0 to ζ = 1 and beyond. The laws of physics require the 

velocity to maintain continuity at all regions of the flow. This requirement serves as one of the 

key boundary conditions that enable the setting up and solving of the equations. In view of the 

non-singular character of κ(ζ,τ) at ζ=1, in order that the value of γc remains finite, it is required 

that: 
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���� � �
E # =/�$,!�F$

C�$,!�√$���
'

$(� �  0                      (11) 

This is known as the "Kutta condition". This gives a relationship between the values of γs, zbτ and 

b. 

3.4.3. Displacement continuity 

As discussed for velocity continuity, the flow has to maintain continuity at all points of the flow. 

This serves as another key boundary condition that allows us to set up and solve equations to 

compute the flow parameters. 

The requirement that has to be met is yc(zb,t) = ys(zb,t). On non-dimensionalizing this problem, 

we get the equation: 

v(z,τ) + 1/2 γc(z,τ) sinβ(z) = -V(t) 0 ≤ z ≤ zb(t)            (12) 

The impact velocity is a function of yc. By rearrangement, application of Biot-Savart law and 

manipulation of the equation, a relation between ys and yc* is obtained. 

T$�U, �� � �
�E  # V:N�W7,!�

W7�W
�

W7(�� %U&                               (13) 

To maintain continuity of displacement at point C, the requirement ys(1,τ) = -Ywl(τ) + hc(1,τ) has 

to be met. 

This is accomplished if: 

XYZ��� � �
E  # [\] AB�$,!�1�:�$,!�

C�$,!�√��$�
�

$(& %^                   (14) 
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3.5. Discretizaton of boundary conditions 

3.5.1. Pressure continuity 

The theorem can be applied for computational purposes on contours only after discretization of 

the equations. The pressure continuity condition presents a jet-head free vortex sheet overlaid on 

the particle velocity distribution: 

�3_1� �  ./7�!��!7�19:7'7
9:�   , �3_ �  ./7�!��!7�19:7

9:�                        

�3̀ �  ./ �a�5!��!�a�819: �a�
9:�  ,                b � 1, c � 1  (15) 

�3& � 1              

The velocity at the indicated particle positions, can also be transposed in time by the relation: 

�$5�3̀ ,�_8 �  �$51, �_�`8 � �$_`                       (16) 

The strength of the vortex sheet at each segment is given by γsij ≡ -2 Vs(ζ¯ij,τ), the length of each 

segment being ∆bij( j =1 to ni), evaluated at the ζij and averaged at the midpoint to get ζ¯ij. The 

distribution extends from ζi0 =0 to ζini = bi. A new segment is added at each step, however, 

provision is made in theory for cases where ni < i (when the deceleration value is sufficiently 

high to reverse the advance of zc). 

�_` � 1 �  ∑ e*_SS̀(� f �_ `�� �  e*_`                    b � 1, … ..  , i_      (17) 

with 

 e*_` �  j9k2��`1�
9:�   ,      e�'_   � ��'_! � ��_!�∆�                        (18) 
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zbiτ used here is the discretized form. Its definition is given by: 

�'_! �  ./��1.2�� �.��� ./��'��                              (19) 

The value of Vsi(bi) is computed from the velocity distribution shown in Figure 4. The value of 

velocity is interpolated from the curve as shown by the red line in Figure 4. 

 

Figure 4: Vsii from ζ distribution (Vorus, 1996) 

∆bi1 is the segment added at time step i at ζ=1. The unknowns in the problem are Vs(1,τ), ∆bi1 in 

addition to ∆τ or zciτ in case of chine-unwetted flow problems. All other ∆bij s are known from 

data from  previous time steps. All Vsij = Vs(ζij,τi) for j>0 are also known from previous steps and 

Vi is externally specified. 
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For chine wetted case, the zci is fed as an input to the solution. The value of zci sets the value for 

∆τi. 

3.5.2. Velocity continuity 

The velocity continuity requirement at ζ=1 as expressed in equation (11) is discretized. The 

discretized form of this equation is: 

0 � �_ � �
�Emno ∑ =/��

C�� �p_` � p_ `�����`(�                (20) 

with 

p_` � ��_�̀ � 1�mno  q5rs_ , rs_ , rs_ � 1, 1 �  �_�̀ 8         (21) 

The function F appearing in the equation is the hypergeometric function of argument 1-ζij
2
. The 

other quantities in the expression are: 

rs_  f  �
� � AB�tNE      with uv_SN � tan��5^ciu��SN, �_�8,       0 , �SN , 1          (22) 

Hs_` f  Hzo 5�s_`8 �  ������ ��
�����

	
aOB�tQ  ∏ J�������

�����
J

OBKNQRS(�                  (23) 

�s_`  f  �
�  5�_` � �_ `��8 { 1        (24) 

The equations for velocity continuity provide a relation for definition of γsi1. This could be 

viewed as eliminating the unknown Vsi0 (as γsi1 is defined in terms of Vsi0 and Vsi1) in terms of 

∆bi1. 
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3.5.3. Displacement continuity 

The displacement condition is employed only in case chine unwetted flows as the value of Ywl is 

a function of both the height of point C (hc) on the contour (which could vary in the case of chine 

unwetted flow) as well as the time step. This is not the case for computation of Ywl in chine 

unwetted flows as hc and zc become constants after chine wetting. 

The discretized equation for definition of Ywl is 

Ri = XYZ_ �  �
E  ∑ [\] AB��N

Co��
R̀(� |5}�_`N � ~_`�'_UǸ85��_ `1� � �� _`8 � ~_`�'_5��_ `1� �  �� _`8�       (25) 

The definitions of hc, Sij, κij, P1ij and P2ij are defined by: 

}�_N �U� �  }�_`N � ~_`�'_5U � UǸ8;      UǸ , U , U`1�N  ;      b � 1, �             (26) 

~_` �  tan u_Ǹ              (27) 

Hs_` �  ���W���
W��

	
aOB�tQ  ∏ �W��N ��WKLMN�

W��N��WKN� �
OBKN �P�

QRS(�               (28) 

��_` � W�N��Ma�n����
����mo��  q51 � rs_ ,1 �  rs_ , 2 �  rs_  ; U�̀8        (29) 

��_` � W�N����a�n����
���

��mo��  q �1 � rs_ , �
� �  rs_, �

� �  rs_  ; U�̀�        (30) 

The relation of Ri to the time step ∆τi is given by  

# ���&�%�&!_
!&(!_�� �  �XYZ _�� �  �_             (31) 
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Converting this equation to discretized form, we get a definition for ∆τi 

∆� �  �
.� �aM ���_�� � ��_��� � 2��_���XYZ_�� � �_��                    (32) 

For constant velocity cases, the time step value is given by 

∆τ = (-Ywli-1 + Ri)/V0       (32a) 
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3.6. Cylinder Pressure and force distribution 

The general pressure coefficient is given by (12). Back substituting the burger's equation (13) 

gives the formulation for Cp: 

��_��� �
 �� �@�_� �1� � @�_� ���� � ��_! "# @�_��&�%�& �  � @�_��� � @�_�1��

�7 ) � ��_ # @�_!��&�%�&�
�&(�           (33) 

The value of the vortex element strength in the equation is computed from the formulation given 

in equation (9), which is result of application of nonsingular contour vortex distribution 

requirement, combining pressure and velocity continuity. The discretized form is as shown 

below: 

@�_��� �  Hs_��� ∑ |~_`��� �  ~_ `������               0 , � , 1��`(�               (34) 

Where j-summation is over i elements of the vortex sheet at τi. F is the hypergeometric function. 

Sij and Qij are defined as: 

~_`��� f  ��$AB����
E mo� �_`���mo�   q5rs_ , rs_ , rs_ � 1 ; �_` ���8     (35) 

�_`��� f  ������� ���
����� ����                         (36) 

The time derivative is given by the relation γcτ = (γci - γci-1)/∆τ 
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3.7. Initial Condition 

The problem initialization is performed on linear assumptions. The contour of the body is 

assumed to have constant nonzero deadrise angle β in the immediate vicinity of the keel. The 

velocity of impact in the small time after the initial impact is considered to be a constant 

velocity, V0. The initial flow in this time interval, 0 ≤ τ ≤ τ0, is considered to be a wedge 

similarity flow. The waterline line level, Ywl is given by the simple relation Ywl = V0 τ for 0 ≤ τ ≤ 

τ0. 

The three continuity requirements could be applied to this condition to get the starting values for 

the non-linear solution. 

3.7.1. Pressure continuity 

For wedge similarity flow, Vs(ζ,τ)=Vs(ζ), i.e., it is independent of time. This constant jet 

velocity, denoted as Vj, gives the non-dimensional jet head velocity: 

�'_! �  .����
�.�                       (37) 

3.7.2. Velocity continuity 

Equation (46) reduces to an equation with a single segment at the initial time step τ0. The vortex 

strength would be defined by γsij = γs = -2Vj. At i=0; ζij = ζ01 = b(τ0) =b0 = b, and κ01 = 1, so (20) 

reduces to: 

1 � =/
E

�'�����
�m  q5rs_ , rs_, rs_ � 1 ; 1 � *�8 � 0                           (38) 

with 

r f �
� � AB

E  ;  uv  f  tan���sin u�   
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3.7.3. Displacement continuity 

In (25), K=1, β*01 = β, hc01= zb0 tanβ, κ01 = 1, ξ=0, P201 = 0, giving 

�&� f  �
E cos uv tan u �'&��&�              (39) 

Taking zb0 = zbτ τ0. This gives a value for zbτ in terms of the values of β as shown in (40). This 

would serve as the starting point of the solution process. 

1 �  �
√E� cos uv tan u  �'! p�r� p ��

� � r�             (40) 
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3.8. Computation of pressure coefficients over a 3D contour - Linear Strip 

Theory 

Strip theory is applied to get the pressure distribution on the contour. The hull contour is 

discretized into equi-spaced stations. The 3D hull surface is discretized into a series of stations 

(2D sections). Vorus' theory is only applicable to 2D sections, so the theory is applied to 

individual stations, and the results finally combined to get a pressure distribution. Figure 5 shows 

a sample discretization of a hull. 

 

Figure 5: Discretization of 3D hull form into 2D sections (Bajic et al, 2010) 

3.8.1. Time steps and pressure distributions 

The value of time at time step i differs with the contour chosen for analysis. Station 1 may be at 

time τi1 at time step i, whereas station 2 may be at time τi2 at time step i. The only case when τi2 = 

τi1 is when the contours are both similar and zc0 is same in both cases. In all other cases, for 

obtaining the distribution of pressure at a time τ = τp, the step corresponding to time τ = τp is 

ascertained individually for each station (say s1, s2, s3,... , sn) The pressure distribution at time 

step s1 is used as the pressure distribution at station 1. Similarly, the pressure distribution at time 
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step s2 is used for station 2, and so on. In this case, τs1 = τs2 = τs3 = ... = τsn = τp. The pressure 

distributions at the time steps mentioned above are combined to get the pressure distribution. 

Figure 6 shows a graphical representation of the non-dimensionalized pressure distribution, with 

the non-dimensionalized stations collapsed onto a plane: 

 

Figure 6: Sample pressure contour output after post processing in Excel 
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4. Solution methodology and algorithm 

The problem is solved via a nested iteration process of the nonlinear system from the established 

values at the initial condition.  

1. The initialization procedure follows the following order 

a. zbτ is obtained for the specific value of β at the deadrise from (40) using the 

displacement continuity condition 

b. The value of zbτ is applied to (37) to obtain Vj form the pressure continuity 

condition 

c. This value of Vj is used to obtain the value of γs (= 2Vj) This is subsequently 

applied to (38) to satisfy the velocity continuity. Solving this equation gives the 

initial value of b. 

2. For the chine unwetted step i, zci is supplied externally as the input 

3. bi-1 is used as the trial iterate of bi. This gives the value of zbi ( = zci bi ) 

4. The value of Ri is using Equation (25). Solving (25) would require (26), (27), (28), (29) 

and (30). 

5. The value of ∆τi is computed for the given value of zci using (32) or (32a) depending the 

value of acceleration. 

6. The computation of ∆τi  gives the time at time step i, τi. This quantity is required for 

computation of the ζ distribution using the relations given in (15). 

7. The trial iterate of bi gives a value for jet velocity at spray root, Vsii via interpolation 

depending on the value of bi on the ζj distribution as shown in Figure 4. 

8. This is used to compute the strength of the outermost element on vortex sheet, all other 

element strengths are available from velocity data from previous time steps. 
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9. This applied in equation (20) gives the value of velocity at the ζ=1. Solving this requires 

(21), (22), (23) and (24). 

10. The obtained value of Vsii also gives a value for ∆bi1 from the expression (18) 

11. The new value of bi is computed from bi-1 and ∆bi1. bi = bi-1 + ∆bi1 

12. The value for ∆τi is computed with this value of bi (using Equation (25) ) and compared 

to the ∆τi previously obtained. If the difference is within the range, 

0.0001+abs(acceleration) x 0.2, the solution proceeds to the next time step. Else the 

solution process returns to Step 6 to recompute values of Vsii, Vsi0, ∆bi and ∆τi. 

13. If the time step value is sufficiently close, velocity distribution obtained is used to 

compute the vortex strength on the contour, given by γc(ε,τ) by equation (34). 

14. The value of γc in the present time step and the previous time step gives the time 

derivative by the relation γcτ = (γci - γci-1)/∆τ 

15. This vortex distribution gives the pressure coefficient distribution by equation (33). 
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4.1. Algorithm 

The algorithm of the problem is as described in the following pages: 
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5. Verification of accuracy of code 

The code was verified against the curves shown in Dr Vorus' paper (1996). Since Dr Vorus' 

theory is the basis for the code, it is a requisite that the results predicted match the results 

described in his paper. 

5.1. Velocity comparison 

Figure 8 shows the non-dimensionalized velocity distributions on 3 planing hull sections: with a 

20-20 contour, a 20-30 contour and a 20-10 contour against time. 

Figures 9(a),(b) and (c) show the distribution obtained using the code. 

 

 

Figure 7: Hard chine contours (Vorus, 1996) 
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Figure 8: Particle velocity, zc, and zb (Vorus, 1996) 
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Figure 9(a): 20-10 Vs/10 distribution 

 

Figure 9(b): 20-20 Vs/10 distribution 
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Figure 9(c): 20-30 Vs/10 distribution 

A comparison between Figure 8, and Figures 9(a),(b) and (c) shows good agreement between the 

results obtained from the program and the results described in Vorus (1996). 

5.2. Keel pressure comparison 

The keel pressure coefficients on the contours as reported in Vorus (1996) are shown in Figure 

10. Figures 11(a),(b) and (c) show the keel pressure coefficients on the hull contours, obtained 

from the code. The values reported by the code are slightly offset from the centerline as there is a 

pressure discontinuity along the centerline. 
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Figure 10: Keel pressure coefficient Cp (0,τ) (Vorus, 1996) 
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Figure 11(a): Keel pressure coefficient on 20-10 contour 

 

Figure 11(b): Keel pressure coefficient on 20-20 contour 
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Figure 11(c): Keel pressure coefficient on 20-30 contour 

A comparison between Figure 10 and Figures 11(a),(b) and (c) shows good agreement at the 

lower ends of the curve, i.e., a very short time after the impact for chine unwetted flow. The 20-

20 contour shows good agreement with the results reported in Vorus (1996) throughout the time 

range. 

However, the pressure coefficient at the keel is over-reported for the 20-10 contour as the flow 

approaches chine wetted flow. On the other hand, the pressure coefficient is underreported for 

the 20-30 contour as the flow approaches chine wetted flow. As the flow approaches separation, 

the pressure coefficient at the keel is the result of summation of the strength of vortcies 

distributed on the wetted surface. Underprediction / overprediction  of the vortex strengths near 

the flow separation region of the wetted region would also influence the rate of change of 

strength of the vortex, which also influences the value of the pressure coefficient.. Thus the 
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differences in the values of pressure coefficients are a result of amplification of  errors in the 

computation of the vortex strengths near the flow separation region of the wetted portion of the 

hull. 
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6. Validation of predicted results against experimental results 

Ghadimi et al (2013) have done a recent study of on the hullform used by Aarsnes (1996). The 

work compares the results presented by Aarsnes (1996) against a VOF scheme with FVM 

formulation. The set up used by Aarsnes used for the experiments is shown in Figure 12. 

 

Figure 12: Bow section (left) and experimental setup (right) considered by Aarsnes(1996). 

Ghadimi et al have compared the results of Aarsnes experimentation with their numerical 

simulation of the experiment at a constant velocity of 2.43 m/s. A pressure comparison has been 

done (Figure 13) against the results from experimentation. Figure 14 presents the pressure 

variation against the non-dimensionalized wetted portion of the hull as reported by Ghadimi et al 

(2013). 

 



 

 Figure 13: Pressure distribution on the bow section, experimental vs. VOF method (Ghadimi et al, 2013)

 

For the purpose of comparison, the 

were fed as input to the impakt 1.3 code. 

for the feeding the offsets into the code

against the half breadth of the hull section.
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Pressure distribution on the bow section, experimental vs. VOF method (Ghadimi et al, 2013)

For the purpose of comparison, the hull section used by Aarsnes was discretized 

were fed as input to the impakt 1.3 code. Figure 14 shows the discretization scheme employed 

feeding the offsets into the code. The discretized contour has been  non-dimensionalized 

against the half breadth of the hull section. 

 

Pressure distribution on the bow section, experimental vs. VOF method (Ghadimi et al, 2013) 

was discretized and the offsets 

shows the discretization scheme employed 

dimensionalized 



 

Figure 14: Discretized contour of the section used by 

Figure 15 shows a comparison between the pressure predictions of the code and the pressure 

prediction from Ghadimi et al (2013) and 

Figure 16 shows a comparison of the flow separations predicted by Ghadimi et al (2013) at 

t=0.06s and a particle flow history 

the present code. 
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Discretized contour of the section used by Aarsnes 

shows a comparison between the pressure predictions of the code and the pressure 

prediction from Ghadimi et al (2013) and Aarsnes (1996) experiments.  

shows a comparison of the flow separations predicted by Ghadimi et al (2013) at 

a particle flow history flow till the equivalent non-dimensionalized time 

shows a comparison between the pressure predictions of the code and the pressure 

shows a comparison of the flow separations predicted by Ghadimi et al (2013) at 

dimensionalized time τ = 0.66 in 
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Figure 15: Comparison of code prediction versus Ghadimi et al (2013) & Aarsnes (1996) at τ=0.5351 

 

Figure 16: Comparison of fluid particle flow in Ghadimi et al (2013) and particle velocity  in the present solution 
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6.1. Discussion of the comparison 

The present code gives a good comparison between Ghadimi et al's  model and the present code 

in terms of flow separation at the time specified. This is shown by the sharp drop in the flow 

particle velocity (Figure 17) at the green dotted line. This corresponds to the region in the flow 

simulation where flow separation was observed using the VOF scheme used in conjugation with 

FVM. 

A comparison of the pressures gives a decent correlation at the lower ends of the curve, near the 

keel. As the flow approaches separation. The first peak in the experimental findings of Aarsnes 

(1996) and Ghadimi et al (2013) is a result of the primary impact of the body on the free surface. 

The second peak in the experimental curve is due to the impact of the separated flow on 

reattachment. Ghadimi et al (2013) have successfully predicted the reattachment and the 

resulting pressure peak on the hull surface The present code predicts the first peak, however, 

does not predict the second peak. This is due to the fact that the code does not capture 

reattachment of the flow and assumes the flow to be separated upon initial separation. 
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7. Time varying impact force variation in a hull form 

Bajic et al(2010) reported results of slamming impact pressures on a container ship at different 

deck levels. A comparison was done between various class societies' rules regulating design 

pressures. Though not an exact comparison, the results presented by Bajic et al (2010) can be 

used as a basis of analysis of impact loads on the hull using a standardized hull form. 

7.1. Characteristics of the hull form 

 The present analysis was performed on the hull used by Bajic et al (2010) for their analysis.  

Figure 17 shows the hull used for the analysis. A non-dimensionalization has been performed on 

the hull on the half breadth and depth of the outermost frame, Frame 312. 

 

Figure 17: Bajic et al (2010) analysis hullform 

The frames used for analysis, Frame 312, 320, 328, 336, 344 and 352, are at 91, 93, 96, 98, 100 

and 103% from the aft end respectively.  
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7.2. Theoretical background 

The equations of motion applied to a single station are applied to all the stations individually. 

The present solution is not equipped to handle the effects of forward motion on impact forces, so 

at present the analysis is restricted to cases where the forward motion is zero. The heave velocity 

of all the stations would be the same. The vertical velocity of each station would be a 

superimposition of the velocity by virtue of heave as well as the pitching rate. 

The time variation of the velocity would be also be a superimposition of the heave accelearation 

as well as the pitch acceleration. 

V� � V& � z�t � LCF�  � �ω � αt�   (41) 

Where Vo is the heave velocity of the hullform, z�  is the heave acceleration, ω is the pitching rate 

and α is the pitch acceleration. LCFi  is the distance of Station i from the LCF. 

7.3. Problem set-up 

The discretized hull form used for analysis is shown in Figure 18. 

The impact force distribution on the frames at times τ= 0.07, 0.10, 0.20 and 0.30 are analyzed 

The waterlines at the analyzed time steps are shown in Figure 19. The discretized contour offsets 

are fed as input to the vsheet228.exe program. The post processing is performed using the 

rum1.exe file. 
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Figure 18: Discretized hull form contours 

An important difference in the present analysis is that the initial draught in Bajic et al's analysis 

is 8.5m, whereas  in the present analysis, the initial draught is 0 m, i.e., there is bow emergence. 

Another difference is that the rules have been applied on the vessel by Bajic et al at a service 

speed of 22 knots. The present analysis is performed at 0 knots forward speed using the present 

code. Bajic et al, however, do indicate the impact velocity calculated on the different frames. The 

assumption used here is that the impact velocity is the only factor that influences the pressure on 

the hullform, i.e., the coupling effect of forward velocity is ignored. 

 



47 

 

 

Figure 19: Waterline (YWL) at various time steps 
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7.4. Comparison and discussion of results 

The impact force distribution along the hull at various time steps are shown in Figure 20 

(a),(b),(c) and (d). 

  

Figure 20(a) Impact force distribution at τ=0.07         Figure 20(b) Impact force distribution at τ=0.10 

 

  

Figure 20(c) Impact force distribution at τ=0.20           Figure 20(d) Impact force distribution at τ=0.30 

These results is compared with the results described in Bajic et al's results. The trend of 

slamming pressures predicted by various class societies' for level 1 should be a good indicator of 

the force acting on the frame in question. Figure 21 shows the pressure variation at level 1 (Bajic 

et al, 2010) along the hull. A comparison of the obtained results with those described by Bajic et 
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al shows that the impact force predicted by the present code follows the predicted pressure 

variation by class societies' rules on slamming pressure. 

 

Figure 21: Pressure prediction using various class societies' rules (Bajic et al, 2010) 

 

Figure 22: Comparison of impact force vs. Pressure on Level 1 

The pressure variation along the span of the wetted portion of the hull at time steps τ = 0.07, 

0.10, 0.20 and 0.30 are shown in Figures 23 (a), (b), (c) and (d). 



50 

 

  

Figure 23(a): Cp distribution on frames at τ=0.07       Figure 23(b): Cp distribution on frames at τ=0.10 

  

Figure 23(c): Cp distribution on frames at τ=0.20        Figure 23(d): Cp distribution on frames at τ=0.30 

Contour pressure distributions have also been developed for the wetted portion of the hull at 

different time steps, τ=0.07, 0.10, 0.20 and 0.30. 
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Figure 24(a): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.07 

 

Figure 24(b): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.10 
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Figure 24(c): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.20 

 

 

Figure 24(d): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.30 
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8. Conclusions 

Vorus' theory was successfully implemented using the code developed in the present study. The 

code compares very well with Vorus' results (1996) and could be applied to shapes more 

complex than wedges. 

The verification of accuracy of the code with regard to irregular shapes (such as a bow section) 

by comparison gives results that are sufficiently close. Aarsnes' (1996) experiments provided 

data for this verification. Different schemes are being developed for prediction of bow impact 

pressures and forces. Ghadimi et al (2013) have detailed a method for pressure and flow contour 

analysis. A good correlation was observed with the results predicted by Ghadimi et al. The 

difference in variation of pressure along the span can be traced to the inability of the Vorus' 

theory to incorporate effects of flow reattachment. 

The application of the present theory to a 3D hullform using linear strip theory was also 

attempted in the study. Comparison of the obtained data with predicted pressures using class 

societies' rules on wave impact pressures as detailed in Bajic (2010) show that the trend of force 

variation along the hull follows a similar pattern as the pattern predicted by the societies for 

wave slamming pressures. Thus the theory confirms to the empirical laws employed by many 

societies and may be used to improve upon them. 

8.1. Further research suggested 

Further research suggested for the present theory from the analysis and data presented in this 

thesis are as follows: 

(1) Incorporating effects of flow reattachment to the Vorus' theory. This would be helpful in 

predicting peak pressures near the point of flow separation. 
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(2) Investigation of coupling of impact velocities on the stations and the effect of this coupling 

on the force distribution on the hullform 

(3) Incorporation of oblique velocities and gravity into the formulation. This would be helpful in 

investigation of cases of wave slamming in rough seas where the vessel undergoes forward 

translation in addition to the vertical slamming motion. A more comprehensive model for lift 

prediction can be built by combining the theories detailed in the present study and oblique 

velocity theories such as the theory detailed by Taravella & Vorus (2010). 
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Appendix A: Fortran code for processing of input data  

! vsheet228.for 

! Working code for 20-20,20-30,20-10 

! Includes CW computation 

! Convergence criterion is Vsi0 

! Shorter Vsi0 comparison,  only recalculates Vsii, not entire dt 

! Includes CP comp. 

! Maximum number of variables used. Cannot use any more variables, reuse. 

! VorC computation achieved. 

! dvorC/dt achieved. 

! Cp working & GOOD 

! Working Cp distribution 

! Clean code 

! 15 Stations max 

! Offset based hullform definition possible 

! 30 points max for definition of hull contour 

! Using ni=i for Cp computation 

! Good Cp comparison with Vorus results 

! Acceleration provision introduced into equation, only CONSTANT acc. 

! Can take pitch motions in calculation 

! Pitch rate provision introduced into equation, only CONSTANT pitch rate. 

! Correction to dt-dtn (10% variation) time step to account for acceleration 

! Provision for identifying premature separation added. 

! Subroutines HYGFX(A,B,C,X,HF), GAMMA(X,GA) & PSI(X,PX) from [13] 

 

        program vortexsheet 

            real*8,dimension(450)::Vs,eta,zc,hc,S,R,zeta, 

     &      Sij,zeta_c,Vs_c 

            real*8::VorC(450,3),beta(101,2),Cp(100,450,15),Fim(450) 

     &      ,xy(30,2,15),t(450,15),Cp_time(100,15),betac(2,15) 

            real*8::lambda,kij,C,betat,eta_cavg,zeta_cavg,betatKe,Dd, 

     &  dt,dtn,Vsii,Rn,zbt,zct,kim,dzc,Ft,t_an,time,dv,V,St,betaKe11, 

     &  Qij,SHF,b,bn,Vj,delb,VorS,intg1,intg2,pit,LCF,prate,betaKep, 

     &  zccw,Stnspace 

            integer::tm,Ke,p,Stn,Stnn,n_sel,np,npp,nppp,sepflag,nps(15) 

             

            double precision::pi 

            parameter (pi = 3.14159) 

             

            tm=120 

            Stnn=10 

            Ke=90 

            dv=0.0 

            dzc=0.009 

            zc0=0.10 
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            betaKe11=0. 

            zccw=1.0 

            sepflag=0 

             

            open (21,file="Vel_data.dat")    

            open (22,file="Cp_data.dat")    

            open (23,file="Cp_rawdata.dat") 

            open (11,file="inpf.txt")    

            open (96,file="who.dat")    

                   read (11,*) Stnn 

                   read (11,*) Stnspace 

                   read (11,*) LCF 

                   read (11,*) n_sel 

                   do Stn=1,Stnn 

                        if (n_sel.eq.1) then 

                            read (11,*) np 

                   !         write (6,*) np 

                            do j=1,np 

                                read (11,*) XY(j,1,Stn), XY(j,2,Stn) 

                            enddo 

                            nps(Stn)=np 

                        else 

                            read (11,*) betac(1,Stn),betac(2,Stn) 

                        endif 

                    enddo             

             

            ! Definition of eta steps 

            do j=1,(Ke+1) 

                eta(j)=REAL(j-1)/REAL(Ke) 

            enddo 

            d_eta=eta(2)-eta(1)             

            write (6,*) '                      Impakt v1.3' 

            write (6,*) '                      ===========' 

            write (6,*) '                Author: A. Benjamin Attumaly' 

            write (6,*) '' 

            write (6,200,advance='yes') 

200     format('Welcome to impakt v1.3. The non-dimensionaled offset ') 

            write (6,201,advance='yes') 

201     format('data has been read from inpf.txt') 

            write (6,*) '' 

            write (6,*) Stnn,' Station(s) ' 

            write (6,*) '' 

            write (6,202,advance='no') 

202     format('Please input the acceleration (non-dimensionalized)') 

            write (6,203,advance='no') 

203     format(' of the body: ') 
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            read (5,*) dv 

 

            write (6,302,advance='no') 

302     format('Please input the pitch rate (non-dimensionalized)') 

            write (6,303,advance='no') 

303     format(' of the body (+ve Bow down): ') 

            read (5,*) pit 

 

            write (6,304,advance='no') 

304     format('Please input the pitch rate acceleration ') 

            write (6,305,advance='no') 

305     format('(non-dimensionalized) of the body (+ve Bow down): ') 

            read (5,*) prate 

 

             

            write (6,*) '' 

             

            write (6,204,advance='yes') 

204     format('Please input the number of time steps to compute Cp') 

            write (6,205,advance='no') 

205     format(' data for ( >100 = CW flow ): ') 

            read (5,*) tm 

             

            write (6,*) '' 

 

            write (23,*) Stnn 

            write (23,*) tm 

            write (23,*) Ke 

            write (23,*) dzc 

            write (23,*) zc0 

             

             

            write (6,*) 'Processing input, please wait.' 

            write (6,*) 'This may take a few minutes.' 

             

            do Stn=1,Stnn 

!                write (6,*) 'Station ',Stn 

!                write (6,*) '====================' 

!                write (6,*) 'Time Step No.    ','Vsi0       ', 

!     &              '          Time' 

!                write (6,*) '=======================================', 

!     &              '==========================' 

                write (21,*) ' ' 

                write (21,*) 'Station ',Stn 

                write (21,*) '====================' 

                write (21,*) 'TimeStep         ','    Time       ', 
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     &          '          Vsi0    ','              zc           ', 

     &                    '        zb      ','        Cp(keel)      ' 

                write (21,*) '=======================================', 

     &              '=================================================', 

     &              '==============================' 

                 

                b=1.0001 

                dzc=0.009 

                v0=1. 

                Vj=0.0 

                zc0=0.1 

                ns=1 

                ni=1 

                zeta0=1.00 

                delb=b-zeta0 

                bn=b 

                ci=0 

                R0=0. 

                zccw=1.0 

                if(n_sel.eq.1) then 

                    zccw=XY(nps(Stn),1,Stn) 

                endif 

                sepflag=0 

            ! beta matrix 

             

                p=2 

                do k=1,Ke+1 

                    if (n_sel.eq.1) then 

                        beta(k,1)=atan((XY(p,2,Stn)-XY(p-1,2,Stn))/ 

     &                  (XY(p,1,Stn)-XY(p-1,1,Stn))) 

                        if(XY(p,1,Stn)<eta(k+1)) then 

                            p=p+1 

                        endif 

                    else 

                        beta(k,1)=(betac(1,Stn)+eta(k)* 

     &                  (betac(2,Stn)-betac(1,Stn)))*pi/180. 

                        !write (6,*) beta(k,1) 

                    endif 

                enddo 

 

                 

 

            ! Initialization Routine 

            np=1 

            do k=1,Ke+1 

                if(eta(k)*zc0>eta(np+1)) then 
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                    np=np+1 

                endif 

                beta(k,2)=beta(np,1)+(eta(k)*zc0-eta(np))/ 

     &          (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1)) 

            enddo 

            betatKe=atan(sin(beta(Ke,2))) 

            lambda=0.5-betatKe/pi                 

 

            call GAMMA(lambda,Qij) 

            call GAMMA(1.5-lambda,SHF) 

             

            zbt=(pi**1.5)/(2*cos(betatKe)*tan(beta(Ke+1,2))*Qij*SHF) 

            !write (6,*) zbt 

            Vj=zbt+sqrt(zbt**2+1) 

 

            call hygfx(lambda,lambda,lambda+1,(1-b**2),SHF) 

             

            do while(((-2.0*Vj/pi)*((b**2-1)**lambda/(2*lambda))* 

     &           SHF+1)>0.001) 

                b=b+.0001 

                call hygfx(lambda,lambda,lambda+1,(1-b**2),SHF) 

            enddo 

            !write (6,*) b 

            bn=b 

                         

 

            ! END OF INITIALIZATION ROUTINE 

            ! vorticity for first time step 

            zeta_c(1)=1.00 

            zeta_c(2)=b 

             

            do m=1,Ke 

                eta_cavg=(eta(m+1)+eta(m))/2. 

                kim=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi) 

                C=1.0 

                do k=1,Ke 

                    betat=atan(sin(beta(k,2))) 

                    C=C*abs((eta_cavg**2-(eta(k+1))**2)/ 

     &              (eta_cavg**2-(eta(k))**2))**(betat/pi) 

                enddo 

                kim=kim*C 

                 

                VorC(m,1)=0. 

                 

                kij=1.0 

                do j=1,ni 
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                    VorS=-2.0*Vj 

                    betat=atan(sin(beta(m,2))) 

                    Qij=(eta(m)**2)*((zeta_c(j+1))**2-1)/((zeta_c(j+1)) 

     &                    **2-(eta(m)**2)) 

                    call hygfx(lambda,lambda,lambda+1,Qij,SHF) 

                    Sij(1)=(cos(betat)/(pi*lambda))*(Qij**lambda)*SHF 

                    Qij=(eta(m)**2)*((zeta_c(j))**2-1)/((zeta_c(j))**2- 

     &                    (eta(m)**2)) 

                    call hygfx(lambda,lambda,lambda+1,Qij,SHF) 

                    Sij(2)=(cos(betat)/(pi*lambda))*(Qij**lambda)*SHF 

                    VorC(m,1)=VorC(m,1)+kim*VorS*(Sij(1)-Sij(2))/kij 

                enddo 

            enddo 

             

            Vsi0=Vj 

            Vs(1)=Vj 

            dt=1.0  ! Initializations to enter the do-while loop inside i 

            dtn=1.1 ! Initializations to enter the do-while loop inside i 

             

            ! For time step 0, need to compute Ywl0, ie, R0 

            zb=b*zc0 

            np=1 

            do k=1,Ke+1 

                if(eta(k)*zb>eta(np+1)) then 

                    np=np+1 

                endif 

                beta(k,2)=beta(np,1)+(eta(k)*zb-eta(np))/ 

     &          (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1)) 

            enddo 

            betatKe=atan(sin(beta(Ke+1,2))) 

            lambda=0.5-betatKe/pi 

                             

            

            do k=1,(Ke+1) 

                S(k)=tan(beta(k,2)) 

                     

                if (k.eq.1) then 

                    hc(k)=0.0 

                else 

                    hc(k)=hc(k-1)+zb*d_eta*S(k) 

                endif 

            enddo 

             

            do j=1,Ke 

                betat=atan(sin(beta(j,2))) 

                ! Computation of kij 
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                eta_cavg=(eta(j+1)+eta(j))/2 

                kij=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi) 

                C=1.0 

                do k=1,Ke 

                    betat=atan(sin(beta(k,2))) 

                    C=C*abs((eta_cavg**2-(eta(k+1))**2)/ 

     &                  (eta_cavg**2-(eta(k))**2))**(betat/pi) 

                enddo 

                kij=kij*C 

 

                ! *********** END OF COMPUTATION **************** 

                R0=R0+2.0/pi*cos(betat)/kij*((hc(j)- 

     &          S(j)*zb*eta(j))* 

     &          (Py1(lambda,eta(j+1))-Py1(lambda,eta(j)))+S(j)*zb* 

     &          (Py2(lambda,eta(j+1))-Py2(lambda,eta(j))))             

            enddo 

 

            Dd=(R0+XY(1,2,Stn)) 

            if (dv.eq.0) then 

                t0=Dd/V0 

            else 

                t0=(-V0+sqrt(V0**2+2*dV*Dd))/dV 

            endif 

            ! Definition of initial time from velocity and R0. 

             

            do i=1,tm ! Computations for time step i 

                write(22,*) ' ' 

                write(22,*) '*****************************************' 

                write(22,*) 'i= ',i, ', Station ',Stn 

!                write(6,*) '******************************************' 

!                write(6,*) 'i= ',i, ', Station ',Stn 

                Fim(i)=0. 

                ! Updation of Zc 

                zc(i)=.10+dzc*i 

              if (zc(i).lt.zccw) then 

             

            ! Updation of definition of b 

                do j=1,1 

                    b=b+delb/10 

                enddo 

 

                ! Updation of Vs array 

                do j=i,1,-1 

                    Vs(j+1)=Vs(j) 

                enddo 

                Vs(1)=Vsi0 
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                ! ******************** 

                 

                ! dt=1, and dtn=0, set to enter do-while loop 

                ci=0 

                cn=0 

                dt=1. 

                dtn=0. 

 

                do while (abs(dt-dtn)/dt>0.1)   ! exit if within 10%                      

                    b=bn 

                    ! vsi0=1, and vsi0p=0, set to enter do-while loop 

                    vsi0=0. 

                    vsi0p=1. 

                    ci=0    ! Inner Loop Counter (vsi0 loop) 

                         

                    ! Water line at time step i 

                    R(i)=0. 

                 

                    ! COMPUTATION OF HC (I,J)    

                    zb=b*zc(i) 

                    np=1 

                    do k=1,Ke+1 

                        if(eta(k)*zb>eta(np+1)) then 

                            np=np+1 

                        endif 

                        beta(k,2)=beta(np,1)+(eta(k)*zb-eta(np))/ 

     &                  (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1)) 

                    enddo 

                    npp=np 

                    betaKe11=betatke 

                    betatKe=atan(sin(beta(Ke+1,2))) 

 !                   write(6,*) 'betatke',betatKe 

                    lambda=0.5-betatKe/pi                 

                        

                    do k=1,(Ke+1) 

                        S(k)=tan(beta(k,2)) 

                         

                        if (k.eq.1) then 

                            hc(k)=0.0 

                        else 

                            hc(k)=hc(k-1)+zb*d_eta*S(k) 

                        endif 

                    enddo 

                     

                    do j=1,Ke 

                        betat=atan(sin(beta(j,2))) 



65 

 

                        ! Computation of kij 

                        eta_cavg=(eta(j+1)+eta(j))/2 

                        kij=((1-eta_cavg**2)/eta_cavg**2)** 

     &                  (-betatKe/pi) 

                        C=1.0 

                        do k=1,Ke 

                            betat=atan(sin(beta(k,2))) 

                            C=C*abs((eta_cavg**2-(eta(k+1))**2)/ 

     &                  (eta_cavg**2-(eta(k))**2))**(betat/pi) 

                        enddo 

                        kij=kij*C 

                    ! *********** END OF COMPUTATION **************** 

 

                        R(i)=R(i)+2.0/pi*cos(betat)/kij*((hc(j)- 

     &              S(j)*zb*eta(j))* 

     &              (Py1(lambda,eta(j+1))-Py1(lambda,eta(j)))+S(j)*zb* 

     &              (Py2(lambda,eta(j+1))-Py2(lambda,eta(j))))                     

                    enddo 

                     

                     

                    if(i.eq.1) then 

                        if (dv.eq.0) then 

                            V=V0                     

                            dt=(R(1)-R0)/V0 

                            t(i,Stn)=t0+dt 

                        else 

                            V=V0+dv*t0+pit*(LCF-Stnspace*(Stn-1))+ 

     &                      prate*(LCF-Stnspace*(Stn-1))*t0                     

                            dt=1/dV*(-V+sqrt(V**2+2*dv*(R(1)-R0))) 

                            t(i,Stn)=t0+dt 

                        endif 

                    else 

                        if (dv.eq.0) then 

                            V=V0 

                            if(R(i).gt.R(i-1)) then 

                                dt=(R(i)-R(i-1))/V0 

                            else    ! Premature flow separation 

                                dt=t(i-1,Stn)-t(i-2,Stn)                                 

                                zccw=zc(i) ! flow separation point 

                                sepflag=sepflag+1 

                            endif 

                           

                            if(dt.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then 

                                dt=t(i-1,Stn)-t(i-2,Stn)                                                 

                                zccw=zc(i) ! flow separation point 

                                sepflag=1 
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                            endif 

                           

                            t(i,Stn)=t(i-1,Stn)+dt 

                        else 

                           V=V0+dv*t(i-1,Stn)+pit*(LCF-Stnspace*(Stn-1)) 

     &                      +prate*(LCF-Stnspace*(Stn-1))*t(i-1,Stn)  

                            if(R(i).gt.R(i-1)) then 

                              dt=1/dV*(-V+sqrt(V**2+2*dv*(R(i)-R(i-1)))) 

                            else        ! Premature flow separation 

                                dt=t(i-1,Stn)-t(i-2,Stn)                                 

                                zccw=zc(i)     ! flow separation point 

                                sepflag=sepflag+1 

                            endif 

                           

                            if(dt.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then 

                                zccw=zc(i) ! flow separation point 

                                sepflag=1 

                                dt=t(i-1,Stn)-t(i-2,Stn)                 

                            endif 

                            t(i,Stn)=t(i-1,Stn)+dt 

                        endif 

                    endif 

                     

                        ! Updation of zeta matrix 

                    zeta0=1. 

                    zeta(i+1)=(Vj*(t(i,Stn)-t0)+zc0*b)/zc(i) 

                    zeta(i)=(Vj*(t(i,Stn)-t0)+zc0)/zc(i) 

                    do j=1,i-1 

                     zeta(j)=(vs(j)*(t(i,Stn)-t(i-j,Stn))+zc(i-j))/zc(i) 

                    enddo 

                    ! Computation of ns 

                    ns=0 

                    do j=1,i+1 

                        if (b>zeta(j)) then 

                            ns=ns+1 

                        else 

                            ns=j 

                            exit 

                        endif 

                    enddo 

!                    write(6,*) 'ns ',ns 

                     

                    do while ((abs(vsi0-vsi0p)>0.005)) 

                        vsi0p=vsi0 

                     

                    ! Computation of Vsii 
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                        if ((ns.eq.1).and.(ci.eq.0)) then 

                            Vsii=Vs(1) 

                        else if ((ns.eq.1).and.(ci.ne.0)) then 

                            Vsii=Vsi0+(b-zeta0)/(zeta(1)-zeta0)* 

     &                  (Vs(1)-Vsi0) 

                        else 

                            Vsii=Vs(ns-1)+(b-zeta(ns-1))/(zeta(ns) 

     &                  -zeta(ns-1))* 

     &                  (Vs(ns)-Vs(ns-1)) 

                        endif 

                         

                ! Velocity matrix for computation 

                        do j=1,ns-1 

                            Vs_c(j)=Vs(j) 

                        enddo 

                        Vs_c(ns)=Vsii 

                         

 

                         

                    ! Zeta matrix for computation 

                        do j=1,ns-1 

                            zeta_c(j)=zeta(j) 

                        enddo 

                        zeta_c(ns)=b 

 

                    ! Computation of zbt 

                       if (zc(i).lt.1.0) then 

                            zbt=(Vsii**2-V**2)/(2*Vsii) 

                        else 

                            zbt=Vsii/2 

                        endif 

                     

                    ! Computation of zct 

                        if (i.eq.1) then 

                            zct=(zc(1)-zc0)/dt 

                        else 

                            zct=(zc(i)-zc(i-1))/dt 

                             

                        endif 

 

                    ! Computation of delbij 

                        do j=1,1 

                            delb=((zbt-zct)*dt-j+1)/zc(i) 

                        enddo 

                             

                    ! Computation of Vsi0 
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                        St=V 

                        ! Redefine beta_Ke in terms of zc.     

                        np=1 

                        do k=1,Ke+1 

                            if(eta(k)*zc(i)>eta(np+1)) then 

                                np=np+1 

                            endif 

                            beta(k,2)=beta(np,1)+(eta(k)*zc(i)-eta(np))/ 

     &                     (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1)) 

                        enddo 

                        betatKe=atan(sin(beta(Ke+1,2))) 

                        lambda=0.5-betatKe/pi 

                        !if (i.eq.14) then 

                        !    write (6,*) np 

                        !endif                 

 

                        do j=ns,2,-1 

                           ! Computation of kij 

                            zeta_cavg=(zeta_c(j)+zeta_c(j-1))/2 

                            kij=((zeta_cavg**2-1)/zeta_cavg**2)** 

     &                      (-betatKe/pi) 

                            C=1.0 

                            do k=1,Ke 

                                betat=atan(sin(beta(k,2))) 

                                C=C*((zeta_cavg**2-(eta(k+1))**2)/ 

     &                          (zeta_cavg**2-(eta(k))**2))**(betat/pi)                             

                            enddo 

                            kij=kij*C 

                          ! End of kij computation 

                           if (stn.eq.4) then 

!                           write (6,*) zeta_c(j) 

                           endif 

                           St=St-(1/(2.*pi*lambda))*(Vs_c(j)+Vs_c(j-1))/ 

     &                     kij*(Tij(zeta_c(j),lambda)-Tij(zeta_c(j-1), 

     &                     lambda)) 

                        enddo 

                        ! kij for j=1 

                        zeta_cavg=(zeta0+zeta_c(1))/2 

                        kij=((zeta_cavg**2-1)/zeta_cavg**2)** 

     &                  (-betatKe/pi) 

                        C=1.0 

                        do k=1,Ke 

                            betat=atan(sin(beta(k,2))) 

                            C=C*((zeta_cavg**2-(eta(k+1))**2)/ 

     &                      (zeta_cavg**2-(eta(k))**2))**(betat/pi)                             

                        enddo 
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                        kij=kij*C 

                        ! kij for j=1 computation complete 

                        Vsi0=St*2.0*pi*lambda*kij/ 

     &                  Tij(zeta_c(j),lambda)-Vs_c(1) 

                        if (Stn.eq.4) then 

                        !write(6,*) 'zeta_c(j)',zeta_c(j) 

                        endif 

                        ci=ci+1 

                         

!                        write (6,*) ci 

                    enddo 

                    ! End of vsi0 Loop 

                     

                    bn=b 

                    do j=1,1 

                        bn=bn+delb/10 

                    enddo 

 

                    zb=zc(i)*bn 

                    np=1 

                    do k=1,Ke+1 

                        if(eta(k)*zb>eta(np+1)) then 

                            np=np+1 

                        endif 

                        beta(k,2)=beta(np,1)+(eta(k)*zb-eta(np))/ 

     &                  (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1)) 

                    enddo 

                    betatKe=atan(sin(beta(Ke+1,2))) 

                    lambda=0.5-betatKe/pi                 

 

                    Rn=0. 

                     

                    do k=1,(Ke+1) 

                        S(k)=tan(beta(k,2))             

                        if (k.eq.1) then 

                            hc(k)=0.0 

                        else 

                            hc(k)=hc(k-1)+zb*d_eta*S(k) 

                        endif                     

                    enddo 

                     

                    do j=1,Ke 

                        betat=atan(sin(beta(j,2))) 

                        ! Computation of kij 

                        eta_cavg=(eta(j+1)+eta(j))/2 

                        kij=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi) 
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                        C=1.0 

                        do k=1,Ke 

                            betat=atan(sin(beta(k,2))) 

                            C=C*abs((eta_cavg**2-(eta(k+1))**2)/ 

     &                      (eta_cavg**2-(eta(k))**2))**(betat/pi) 

                        enddo 

                        kij=kij*C 

                        Rn=Rn+2.0/pi*cos(betat)/kij*((hc(j)- 

     &                  S(j)*zb*eta(j))* 

     &                (Py1(lambda,eta(j+1))-Py1(lambda,eta(j)))+S(j)*zb* 

     &                  (Py2(lambda,eta(j+1))-Py2(lambda,eta(j)))) 

                    enddo 

                     

                    if(i.eq.1) then 

                        if (dv.eq.0) then 

                            V=V0 

                            if (Rn.gt.R(i-1))then 

                                dtn=(Rn-R0)/V0 

                            else 

                                dtn=dt 

                            endif 

                        else 

                            V=V0+dv*t0                     

                            if (Rn.gt.R(i-1))then 

                                dtn=1/dV*(-V+sqrt(V**2+2*dv*(Rn-R0))) 

                            else 

                                dtn=dt 

                            endif 

                        endif 

                    else 

                        if (dv.eq.0) then 

                            V=V0 

                            if (Rn.gt.R(i-1))then 

                                dtn=(Rn-R(i-1))/V0 

                            else 

                                dtn=dt 

                            endif 

                           if(dtn.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then 

                                dtn=dt 

                                zccw=zc(i) ! flow separation point 

                                sepflag=1 

                            endif 

                        else 

                            V=V0+dv*t(i-1,Stn) 

                            if (Rn.gt.R(i-1))then 

                               dtn=1/dV*(-V+sqrt(V**2+2*dv*(Rn-R(i-1)))) 
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                            else 

                                dtn=dt 

                            endif 

                           if(dtn.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then 

                                dtn=dt 

                                zccw=zc(i) ! flow separation point 

                                sepflag=1 

                            endif                             

                        endif 

                    endif                     

                    cn=cn+1 

                enddo ! End of dt-dtn verification loop 

                betaKep=betaKe11 

                nppp=npp 

!                write (6,*) 'delb/10',delb/10 

!                write (6,*) 'bn',bn 

              else   ! CW flow 

                sepflag=sepflag+1 

                zc(i)=zccw 

 

                ! Updation of definition of b 

                do j=1,1 

                    b=b+delb/10 

                enddo 

                 

                ! Updation of zb 

                zb=b*zc(i) 

                 

                ! Updation of Vs array 

                do j=i,1,-1 

                    Vs(j+1)=Vs(j) 

                enddo 

                Vs(1)=Vsi0 

                ! ******************** 

                 

                vsi0=0.  ! Reset for inner loop 

                vsi0p=1.  ! Reset for inner loop 

 

                ! Time step obtained from previous computations in CW flow 

                dt=t(i-1,Stn)-t(i-2,Stn) 

                t(i,Stn)=t(i-1,Stn)+dt 

                write (96,*) ' cw dt',dt                 

                ! Updation of zeta matrix 

                zeta0=1. 

                zeta(i+1)=(Vj*(t(i,Stn)-t0)+zc0*b)/zc(i) 

                zeta(i)=(Vj*(t(i,Stn)-t0)+zc0)/zc(i) 
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                do j=1,i-1 

                    zeta(j)=(vs(j)*(t(i,Stn)-t(i-j,Stn))+zc(i-j))/zc(i) 

                enddo 

 

                ! Computation of ns 

                ns=0 

                do j=1,i+1 

                    if (b>zeta(j)) then 

                        ns=ns+1 

                    else 

                        ns=j 

                        exit 

                    endif 

                enddo 

 

                do while ((abs(vsi0-vsi0p)>0.005)) 

                    vsi0p=vsi0 

                     

                    ! Computation of Vsii 

                    if ((ns.eq.1).and.(ci.eq.0)) then 

                        Vsii=Vs(1) 

                    else if ((ns.eq.1).and.(ci.ne.0)) then 

                        Vsii=Vsi0+(b-zeta0)/(zeta(1)-zeta0)* 

     &              (Vs(1)-Vsi0) 

                    else 

                        Vsii=Vs(ns-1)+(b-zeta(ns-1))/(zeta(ns) 

     &              -zeta(ns-1))* 

     &              (Vs(ns)-Vs(ns-1)) 

                    endif 

 

                ! Velocity matrix for computation 

                    do j=1,ns-1 

                        Vs_c(j)=Vs(j) 

                    enddo 

                    Vs_c(ns)=Vsii 

 

                        

                    ! Zeta matrix for computation 

                    do j=1,ns-1 

                        zeta_c(j)=zeta(j) 

                    enddo 

                    zeta_c(ns)=b 

 

                    ! Computation of zbt 

                    if(zc(i).lt.1.0) then 

                        zbt=(Vsii**2-V**2)/(2*Vsii) 
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                    else 

                        zbt=Vsii/2 

                    endif 

                     

                    ! Computation of zct 

                    if (i.eq.1) then 

                        zct=(zc(1)-zc0)/dt 

                    else 

                        zct=(zc(i)-zc(i-1))/dt 

                    endif                          

 

                    ! Computation of delbij 

                    do j=1,1 

                        delb=((zbt-zct)*dt-j+1)/zc(i) 

                    enddo 

 

                    ! Computation of Vsi0 

                    St=V 

                    ! Redefine beta_Ke in terms of zc.     

                    np=1 

                    do k=1,Ke+1 

                        if(eta(k)*zc(i)>eta(np+1)) then 

                            np=np+1 

                        endif 

                        beta(k,2)=beta(np,1)+(eta(k)*zc(i)-eta(np))/ 

     &                  (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1)) 

                    enddo 

                    betatKe=atan(sin(beta(Ke+1,2))) 

                    lambda=0.5-betatKe/pi                 

 

                    do j=ns,2,-1 

                    ! Computation of kij 

                        zeta_cavg=(zeta_c(j)+zeta_c(j-1))/2 

                        kij=((zeta_cavg**2-1)/zeta_cavg**2)** 

     &                  (-betatKe/pi) 

                        C=1.0 

                        do k=1,Ke 

                            betat=atan(sin(beta(k,2))) 

                            C=C*((zeta_cavg**2-(eta(k+1))**2)/ 

     &                  (zeta_cavg**2-(eta(k))**2))**(betat/pi)                             

                        enddo 

                        kij=kij*C 

                        ! End of kij computation 

                        St=St-(1/(2.*pi*lambda))*(Vs_c(j)+Vs_c(j-1))/ 

     &                  kij*(Tij(zeta_c(j),lambda)-Tij(zeta_c(j-1), 

     &                  lambda))                     
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                    enddo 

                    ! kij for j=1 

                    zeta_cavg=(zeta0+zeta_c(1))/2 

                    kij=((zeta_cavg**2-1)/zeta_cavg**2)** 

     &              (-betatKe/pi) 

                    C=1.0 

                    do k=1,Ke 

                        betat=atan(sin(beta(k,2))) 

                        C=C*((zeta_cavg**2-(eta(k+1))**2)/ 

     &                  (zeta_cavg**2-(eta(k))**2))**(betat/pi)                             

                    enddo 

                    kij=kij*C 

                    ! kij for j=1 computation complete 

                    Vsi0=St*2.0*pi*lambda*kij/ 

     &                  Tij(zeta_c(j),lambda)-Vs_c(1) 

                    ci=ci+1 

                enddo 

              endif   ! End of chine wetted / unwetted flow 

              write (23,*) t(i,stn) 

!              write (6,*) i,vsi0,t(i,Stn) 

               

              write (22,*) 'Time =',t(i,Stn) 

!              write (6,*) 'Time =',t(i,Stn) 

                        ! *********** COMPUTATION OF CP ************************ 

                ! Velocity matrix for computation of Cp for present timestep 

 

                ni=i 

                 

                do j=ni,1,-1 

                    Vs_c(j+1)=Vs_c(j) 

                enddo 

                Vs_c(1)=Vsi0             

                         

                ! Zeta matrix for computation of CP 

                do j=ni,1,-1 

                    zeta_c(j+1)=zeta_c(j) 

                enddo  

                zeta_c(1)=zeta0 

 

                ! ******************************** 

     

                !m= Element no. of target element 

                np=1 

                do k=1,Ke+1 

                    if(eta(k)*zc(i)>eta(np+1)) then 

                        np=np+1 
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                    endif 

                    beta(k,2)=beta(np,1)+(eta(k)*zc(i)-eta(np))/ 

     &              (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1)) 

                enddo 

                betatKe=atan(sin(beta(Ke+1,2))) 

                lambda=0.5-betatKe/pi                 

                 

                ! Defining VorC(*,2) as the value of the element in the  

                ! previous timestep 

                 

                do m=1,Ke 

                    Vorc(m,2)=VorC(m,1) 

                    VorC(m,1)=0. 

                    betat=atan(sin(beta(m,2))) 

                    eta_cavg=(eta(m+1)+eta(m))/2 

                    kim=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi) 

                    C=1.0 

                    do k=1,Ke 

                        betat=atan(sin(beta(k,2))) 

                        C=C*abs((eta_cavg**2-(eta(k+1))**2)/ 

     &                  (eta_cavg**2-(eta(k))**2))**(betat/pi) 

                    enddo 

                    kim=kim*C 

 

                    do j=1,ni   

                        VorS=-(Vs_c(j)+Vs_c(j+1)) 

                        if (m.eq.1) then 

                            !write (6,*) 'VorS i',j,VorS 

                        endif 

                        betat=atan(sin(beta(m,2))) 

                        !lambda=0.5-betat/pi 

                        Qij=(eta_cavg**2)*((zeta_c(j+1))**2-1)/ 

     &                  ((zeta_c(j+1))**2-(eta_cavg**2)) 

                        call hygfx(lambda,lambda,lambda+1,Qij,SHF) 

                        Sij(1)=(cos(betat)/(pi*lambda))*(Qij**lambda) 

     &                  *SHF 

                        Qij=(eta_cavg**2)*((zeta_c(j))**2-1)/ 

     &                  ((zeta_c(j))**2-(eta_cavg**2)) 

                        call hygfx(lambda,lambda,lambda+1,Qij,SHF) 

                        Sij(2)=(cos(betat)/(pi*lambda))*(Qij**lambda) 

     &                  *SHF 

 

                    ! Computation of kij 

                        zeta_cavg=(zeta_c(j+1)+zeta_c(j))/2 

                        kij=((zeta_cavg**2-1)/zeta_cavg**2)** 

     &                  (-betatKe/pi) 
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                        C=1.0 

                        do k=1,Ke 

                            betat=atan(sin(beta(k,2))) 

                            C=C*((zeta_cavg**2-(eta(k+1))**2)/ 

     &                      (zeta_cavg**2-(eta(k))**2))**(betat/pi)                             

                        enddo 

                        kij=kij*C 

                        VorC(m,1)=VorC(m,1)+kim*VorS*(Sij(1)-Sij(2))/kij 

                    enddo 

                    vorc(m,3)=(vorc(m,1)-vorc(m,2))/dt 

                enddo 

                !write (6,*) 'i =',i 

                !write (6,*) '================' 

!                write (6,*) '          m      ','      Cp(m)         ' 

!                write (6,*) '=========================================' 

                write (22,*) '          m      ','      Cp(m)         ' 

                write (22,*) '========================================' 

      

                do m=1,Ke 

                ! Integration of VorC from eta(m) to 1.0 

                    p=Ke-m 

                    if(m.le.(Ke-2)) then 

                        if((p/2)*2.eq.p) then ! Even number of segments 

                            Intg1=0. 

                            Intg2=0. 

                            do k=m+2,Ke-2,2 

                               Intg1=Intg1+2.0*vorc(k,1)+4.0*vorc(k+1,1) 

                               Intg2=Intg2+2.0*vorc(k,3)+4.0* 

     &                          vorc(k+1,3) 

                            enddo 

                            Intg1=(Intg1+vorc(m,1)+vorc(Ke,1)+4.0* 

     &                      vorc(m+1,1))*d_eta/3.0 

                            Intg2=(Intg2+vorc(m,3)+vorc(Ke,3)+4.0* 

     &                      vorc(m+1,3))*d_eta/3.0 

                        else        ! Odd number of segments 

                            Intg1=0. 

                            Intg2=0. 

                            do k=m+3,Ke-2,2 

                               Intg1=Intg1+2.0*vorc(k,1)+4.0*vorc(k+1,1) 

                                Intg2=Intg2+2.0*vorc(k,3)+4.0* 

     &                          vorc(k+1,3) 

                            enddo 

                            Intg1=(Intg1+vorc(m+1,1)+vorc(Ke,1)+4.0* 

     &                      vorc(m+2,1)) 

     &                      *d_eta/3.0+(vorc(m+1,1)+vorc(m,1))/2.*d_eta 

                            Intg2=(Intg2+vorc(m+1,3)+vorc(Ke,3)+4.0* 
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     &                    vorc(m+2,3))*d_eta/3.0+(vorc(m,3)+vorc(m+1,3)) 

     &                      /2.*d_eta 

                        endif 

                    elseif (m.eq.(Ke-1)) then 

                        Intg1=(vorc(m+1,1)+vorc(m,1))/2.*d_eta 

                        Intg2=(vorc(m+1,3)+vorc(m,3))/2.*d_eta 

                    else 

                        Intg1=0. 

                        Intg2=0. 

                    endif 

                    eta_cavg=(eta(m)+eta(m+1))/2. 

                  Cp(m,i,Stn)=0.25*((VorC(Ke,1))**2-(VorC(m,1))**2)-zct* 

     &              (Intg1+eta_cavg*VorC(m,1)-VorC(Ke,1))-zc(i)*Intg2 

!                  write (6,*) m,Cp(m,i,Stn) 

                  write (23,*) Cp(m,i,Stn) 

                  write (22,*) m,Cp(m,i,Stn)                   

                enddo 

                if (sepflag.ne.1) then 

                    write (21,*) i,t(i,Stn),vsi0,zc(i),zb,Cp(1,i,Stn) 

                else 

                    write (21,*) i,t(i,Stn),vsi0,zc(i),zb,Cp(1,i,Stn), 

     &      'flow separation' 

                endif 

            enddo ! End of i loop 

            write (23,*) zccw 

            write (6,*) 'Station ',Stn,'                100% Complete' 

            enddo ! End of out Stn loop 

            ! Find the minimum time, ie, time that can be analysed 

            t_an=t(tm,1) 

            do Stn=2,Stnn 

                if (t_an>t(tm,Stn)) then 

                    t_an=t(tm,Stn) 

                endif 

            enddo 

            write (6,*) '' 

            write(6,*) 'Analysis data written to cp_rawdata.dat' 

             

            time=0.100 

            do Stn=1,Stnn 

!                write (6,*) 'Stn ',Stn 

!                write (22,*) 'Stn ',Stn 

            ! Cp distribution output 

            ! Computation of np 

                    np=0 

                    do j=1,tm 

                        if (time>t(j,Stn)) then 
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                            np=np+1 

                        else 

                            np=j 

                            exit 

                        endif 

                    enddo 

                     

                    do k=1,Ke 

                        Cp_time(k,Stn)=Cp(k,np,Stn)+ 

     &                  (Cp(k,np+1,Stn)-Cp(k,np,Stn))/(t(np+1,Stn)- 

     &                   t(np,Stn))*(time-t(np,Stn)) 

!                       write (6,*) 'Cp at time',Cp_time(k,Stn) 

!                       write (22,*) 'Cp at time',Cp_time(k,Stn) 

                    enddo 

            enddo 

             

            do j=i,1,-1  

                Vs(j+1)=Vs(j) 

            enddo 

            Vs(1)=Vsi0 

     

            endfile(23) 

            close(21) 

            close(22) 

            close(23) 

            close(11) 

            close(96) 

         

         

        end program 

         

         

        SUBROUTINE HYGFX(A,B,C,X,HF) 

C 

C       ==================================================== 

C       Purpose: Compute hypergeometric function F(a,b,c,x) 

C       Input :  a --- Parameter 

C                b --- Parameter 

C                c --- Parameter, c <> 0,-1,-2,... 

C                x --- Argument   ( x < 1 ) 

C       Output:  HF --- F(a,b,c,x) 

C       Routines called: 

C            (1) GAMMA for computing gamma function 

C            (2) PSI for computing psi function 

C       ==================================================== 

C 
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        IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

        LOGICAL L0,L1,L2,L3,L4,L5 

        PI=3.141592653589793D0 

        EL=.5772156649015329D0 

        L0=C.EQ.INT(C).AND.C.LT.0.0 

        L1=1.0D0-X.LT.1.0D-15.AND.C-A-B.LE.0.0 

        L2=A.EQ.INT(A).AND.A.LT.0.0 

        L3=B.EQ.INT(B).AND.B.LT.0.0 

        L4=C-A.EQ.INT(C-A).AND.C-A.LE.0.0 

        L5=C-B.EQ.INT(C-B).AND.C-B.LE.0.0 

        IF (L0.OR.L1) THEN 

           WRITE(*,*)'The hypergeometric series is divergent' 

           RETURN 

        ENDIF 

        EPS=1.0D-15 

        IF (X.GT.0.95) EPS=1.0D-8 

        IF (X.EQ.0.0.OR.A.EQ.0.0.OR.B.EQ.0.0) THEN 

           HF=1.0D0 

           RETURN 

        ELSE IF (1.0D0-X.EQ.EPS.AND.C-A-B.GT.0.0) THEN 

           CALL GAMMA(C,GC) 

           CALL GAMMA(C-A-B,GCAB) 

           CALL GAMMA(C-A,GCA) 

           CALL GAMMA(C-B,GCB) 

           HF=GC*GCAB/(GCA*GCB) 

           RETURN 

        ELSE IF (1.0D0+X.LE.EPS.AND.DABS(C-A+B-1.0).LE.EPS) THEN 

           G0=DSQRT(PI)*2.0D0**(-A) 

           CALL GAMMA(C,G1) 

           CALL GAMMA(1.0D0+A/2.0-B,G2) 

           CALL GAMMA(0.5D0+0.5*A,G3) 

           HF=G0*G1/(G2*G3) 

           RETURN 

        ELSE IF (L2.OR.L3) THEN 

           IF (L2) NM=INT(ABS(A)) 

           IF (L3) NM=INT(ABS(B)) 

           HF=1.0D0 

           R=1.0D0 

           DO 10 K=1,NM 

              R=R*(A+K-1.0D0)*(B+K-1.0D0)/(K*(C+K-1.0D0))*X 

10            HF=HF+R 

           RETURN 

        ELSE IF (L4.OR.L5) THEN 

           IF (L4) NM=INT(ABS(C-A)) 

           IF (L5) NM=INT(ABS(C-B)) 

           HF=1.0D0 
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           R=1.0D0 

           DO 15 K=1,NM 

              R=R*(C-A+K-1.0D0)*(C-B+K-1.0D0)/(K*(C+K-1.0D0))*X 

15            HF=HF+R 

           HF=(1.0D0-X)**(C-A-B)*HF 

           RETURN 

        ENDIF 

        AA=A 

        BB=B 

        X1=X 

        IF (X.LT.0.0D0) THEN 

           X=X/(X-1.0D0) 

           IF (C.GT.A.AND.B.LT.A.AND.B.GT.0.0) THEN 

              A=BB 

              B=AA 

           ENDIF 

           B=C-B 

        ENDIF 

        IF (X.GE.0.75D0) THEN 

           GM=0.0D0 

           IF (DABS(C-A-B-INT(C-A-B)).LT.1.0D-15) THEN 

              M=INT(C-A-B) 

              CALL GAMMA(A,GA) 

              CALL GAMMA(B,GB) 

              CALL GAMMA(C,GC) 

              CALL GAMMA(A+M,GAM) 

              CALL GAMMA(B+M,GBM) 

              CALL PSI(A,PA) 

              CALL PSI(B,PB) 

              IF (M.NE.0) GM=1.0D0 

              DO 30 J=1,ABS(M)-1 

30               GM=GM*J 

              RM=1.0D0 

              DO 35 J=1,ABS(M) 

35               RM=RM*J 

              F0=1.0D0 

              R0=1.0D0 

              R1=1.0D0 

              SP0=0.D0 

              SP=0.0D0 

              IF (M.GE.0) THEN 

                 C0=GM*GC/(GAM*GBM) 

                 C1=-GC*(X-1.0D0)**M/(GA*GB*RM) 

                 DO 40 K=1,M-1 

                    R0=R0*(A+K-1.0D0)*(B+K-1.0)/(K*(K-M))*(1.0-X) 

40                  F0=F0+R0 
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                 DO 45 K=1,M 

45                  SP0=SP0+1.0D0/(A+K-1.0)+1.0/(B+K-1.0)-1.0/K 

                 F1=PA+PB+SP0+2.0D0*EL+DLOG(1.0D0-X) 

                 DO 55 K=1,250 

                    SP=SP+(1.0D0-A)/(K*(A+K-1.0))+(1.0-B)/(K*(B+K-1.0)) 

                    SM=0.0D0 

                    DO 50 J=1,M 

50                     SM=SM+(1.0D0-A)/((J+K)*(A+J+K-1.0))+1.0/ 

     &                    (B+J+K-1.0) 

                    RP=PA+PB+2.0D0*EL+SP+SM+DLOG(1.0D0-X) 

                    R1=R1*(A+M+K-1.0D0)*(B+M+K-1.0)/(K*(M+K))*(1.0-X) 

                    F1=F1+R1*RP 

                    IF (DABS(F1-HW).LT.DABS(F1)*EPS) GO TO 60 

55                  HW=F1 

60               HF=F0*C0+F1*C1 

              ELSE IF (M.LT.0) THEN 

                 M=-M 

                 C0=GM*GC/(GA*GB*(1.0D0-X)**M) 

                 C1=-(-1)**M*GC/(GAM*GBM*RM) 

                 DO 65 K=1,M-1 

                    R0=R0*(A-M+K-1.0D0)*(B-M+K-1.0)/(K*(K-M))*(1.0-X) 

65                  F0=F0+R0 

                 DO 70 K=1,M 

70                  SP0=SP0+1.0D0/K 

                 F1=PA+PB-SP0+2.0D0*EL+DLOG(1.0D0-X) 

                 DO 80 K=1,250 

                    SP=SP+(1.0D0-A)/(K*(A+K-1.0))+(1.0-B)/(K*(B+K-1.0)) 

                    SM=0.0D0 

                    DO 75 J=1,M 

75                     SM=SM+1.0D0/(J+K) 

                    RP=PA+PB+2.0D0*EL+SP-SM+DLOG(1.0D0-X) 

                    R1=R1*(A+K-1.0D0)*(B+K-1.0)/(K*(M+K))*(1.0-X) 

                    F1=F1+R1*RP 

                    IF (DABS(F1-HW).LT.DABS(F1)*EPS) GO TO 85 

80                  HW=F1 

85               HF=F0*C0+F1*C1 

              ENDIF 

           ELSE 

              CALL GAMMA(A,GA) 

              CALL GAMMA(B,GB) 

              CALL GAMMA(C,GC) 

              CALL GAMMA(C-A,GCA) 

              CALL GAMMA(C-B,GCB) 

              CALL GAMMA(C-A-B,GCAB) 

              CALL GAMMA(A+B-C,GABC) 

              C0=GC*GCAB/(GCA*GCB) 
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              C1=GC*GABC/(GA*GB)*(1.0D0-X)**(C-A-B) 

              HF=0.0D0 

              R0=C0 

              R1=C1 

              DO 90 K=1,250 

                 R0=R0*(A+K-1.0D0)*(B+K-1.0)/(K*(A+B-C+K))*(1.0-X) 

                 R1=R1*(C-A+K-1.0D0)*(C-B+K-1.0)/(K*(C-A-B+K)) 

     &              *(1.0-X) 

                 HF=HF+R0+R1 

                 IF (DABS(HF-HW).LT.DABS(HF)*EPS) GO TO 95 

90               HW=HF 

95            HF=HF+C0+C1 

           ENDIF 

        ELSE 

           A0=1.0D0 

           IF (C.GT.A.AND.C.LT.2.0D0*A.AND. 

     &         C.GT.B.AND.C.LT.2.0D0*B) THEN 

              A0=(1.0D0-X)**(C-A-B) 

              A=C-A 

              B=C-B 

           ENDIF 

           HF=1.0D0 

           R=1.0D0 

           DO 100 K=1,250 

              R=R*(A+K-1.0D0)*(B+K-1.0D0)/(K*(C+K-1.0D0))*X 

              HF=HF+R 

              IF (DABS(HF-HW).LE.DABS(HF)*EPS) GO TO 105 

100           HW=HF 

105        HF=A0*HF 

        ENDIF 

        IF (X1.LT.0.0D0) THEN 

           X=X1 

           C0=1.0D0/(1.0D0-X)**AA 

           HF=C0*HF 

        ENDIF 

        A=AA 

        B=BB 

!        IF (K.GT.120) WRITE(*,115) 

!115     FORMAT(1X,'Warning! You should check the accuracy') 

        RETURN 

        END 

 

 

        SUBROUTINE GAMMA(X,GA) 

C 

C       ================================================== 



83 

 

C       Purpose: Compute gamma function â(x) 

C       Input :  x  --- Argument of â(x) 

C                       ( x is not equal to 0,-1,-2,úúú) 

C       Output:  GA --- â(x) 

C       ================================================== 

C 

        IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

        DIMENSION G(26) 

        PI=3.141592653589793D0 

        IF (X.EQ.INT(X)) THEN 

           IF (X.GT.0.0D0) THEN 

              GA=1.0D0 

              M1=X-1 

              DO 10 K=2,M1 

10               GA=GA*K 

           ELSE 

              GA=1.0D+300 

           ENDIF 

        ELSE 

           IF (DABS(X).GT.1.0D0) THEN 

              Z=DABS(X) 

              M=INT(Z) 

              R=1.0D0 

              DO 15 K=1,M 

15               R=R*(Z-K) 

              Z=Z-M 

           ELSE 

              Z=X 

           ENDIF 

           DATA G/1.0D0,0.5772156649015329D0, 

     &          -0.6558780715202538D0, -0.420026350340952D-1, 

     &          0.1665386113822915D0,-.421977345555443D-1, 

     &          -.96219715278770D-2, .72189432466630D-2, 

     &          -.11651675918591D-2, -.2152416741149D-3, 

     &          .1280502823882D-3, -.201348547807D-4, 

     &          -.12504934821D-5, .11330272320D-5, 

     &          -.2056338417D-6, .61160950D-8, 

     &          .50020075D-8, -.11812746D-8, 

     &          .1043427D-9, .77823D-11, 

     &          -.36968D-11, .51D-12, 

     &          -.206D-13, -.54D-14, .14D-14, .1D-15/ 

           GR=G(26) 

           DO 20 K=25,1,-1 

20            GR=GR*Z+G(K) 

           GA=1.0D0/(GR*Z) 

           IF (DABS(X).GT.1.0D0) THEN 
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              GA=GA*R 

              IF (X.LT.0.0D0) GA=-PI/(X*GA*DSIN(PI*X)) 

           ENDIF 

        ENDIF 

        RETURN 

        END 

 

 

        SUBROUTINE PSI(X,PS) 

C 

C       ====================================== 

C       Purpose: Compute Psi function 

C       Input :  x  --- Argument of psi(x) 

C       Output:  PS --- psi(x) 

C       ====================================== 

C 

        IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

        XA=DABS(X) 

        PI=3.141592653589793D0 

        EL=.5772156649015329D0 

        S=0.0D0 

        IF (X.EQ.INT(X).AND.X.LE.0.0) THEN 

           PS=1.0D+300 

           RETURN 

        ELSE IF (XA.EQ.INT(XA)) THEN 

           N=XA 

           DO 10 K=1 ,N-1 

10            S=S+1.0D0/K 

           PS=-EL+S 

        ELSE IF (XA+.5.EQ.INT(XA+.5)) THEN 

           N=XA-.5 

           DO 20 K=1,N 

20            S=S+1.0/(2.0D0*K-1.0D0) 

           PS=-EL+2.0D0*S-1.386294361119891D0 

        ELSE 

           IF (XA.LT.10.0) THEN 

              N=10-INT(XA) 

              DO 30 K=0,N-1 

30               S=S+1.0D0/(XA+K) 

              XA=XA+N 

           ENDIF 

           X2=1.0D0/(XA*XA) 

           A1=-.8333333333333D-01 

           A2=.83333333333333333D-02 

           A3=-.39682539682539683D-02 

           A4=.41666666666666667D-02 
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           A5=-.75757575757575758D-02 

           A6=.21092796092796093D-01 

           A7=-.83333333333333333D-01 

           A8=.4432598039215686D0 

           PS=DLOG(XA)-.5D0/XA+X2*(((((((A8*X2+A7)*X2+ 

     &        A6)*X2+A5)*X2+A4)*X2+A3)*X2+A2)*X2+A1) 

           PS=PS-S 

        ENDIF 

        IF (X.LT.0.0) PS=PS-PI*DCOS(PI*X)/DSIN(PI*X)-1.0D0/X 

        RETURN 

        END 

 

        real function Tij(zeeta1,lambda) 

            real*8:: lambda,zeeta1,HA 

            call hygfx(lambda,lambda,lambda+1.,1-(zeeta1**2),HA) 

            Tij=(((zeeta1**2)-1.0)**(lambda))*HA 

        return 

        end 

 

        real function Py1(lambda1, eta1) 

            real*8::lambda1,eta1,HA 

            call hygfx(1.0-lambda1,1.0-lambda1,2.0- 

     &      lambda1,eta1**2,HA) 

            Py1=eta1**(2*(1-lambda1))/(2*(1-lambda1))*HA 

        return 

        end 

 

        real function Py2(lambda1,eta1) 

            real*8::lambda1,eta1,HA 

            call hygfx(1-lambda1,1.5-lambda1,2.5-lambda1,eta1**2,HA) 

            Py2=eta1**(2*(1.5-lambda1))/(2*(1.5-lambda1))*HA 

        return 

        end 
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Appendix B: Post processing code for data output by code vsheet228.for 

! Post processing program 

        program pprocess 

            real*8::t_max,t_min,t(450,15),time,Cp(100,450,15), 

     &      Cp_time(100,15),dzc,zci(15),zc0,dx,Fim(15),zccw(15) 

            character(len=1024) :: filename,ffname,dat 

            character(len=1024) :: format_string 

            integer :: ci,np,tm,Stnn,Ke,kim,Stn 

             

            open (11,file="cp_rawdata.dat",action='read',status='old') 

            read (11,*) Stnn 

            !write (6,*) Stnn 

            read (11,*) tm 

            !write (6,*) tm 

            read (11,*) Ke 

            !write (6,*) Ke 

            read (11,*) dzc 

            !write (6,*) dzc 

            read (11,*) zc0 

            !write (6,*) zc0 

             

            do Stn=1,Stnn 

                do i=1,tm 

                    read(11,*) t(i,Stn) 

                    do m=1,Ke 

                        read(11,*) Cp(m,i,Stn) 

                        !write (6,*) Cp(m,i,Stn) 

                    enddo 

                enddo 

                read(11,*) zccw(Stn) 

            enddo 

            close(11) 

            write (6,*) '                 Impakt v1.0 Postprocessor' 

            write (6,*) '                 =========================' 

            write (6,*) '                Author: A. Benjamin Attumaly' 

            write (6,*) '' 

            write (6,200,advance='yes') 

200     format('Welcome to impakt v1.0 Postprocessor. ') 

 

            write (6,*) 'Raw data completely loaded from data file' 

            write (6,*) '' 

             

             

            t_max=t(tm,1) 
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            do Stn=2,Stnn 

                if (t_max>t(tm,Stn)) then 

                    t_max=t(tm,Stn) 

                endif 

            enddo 

 

            t_min=t(1,1) 

            do Stn=2,Stnn 

                if (t_min<t(1,Stn)) then 

                    t_min=t(1,Stn) 

                endif 

            enddo 

             

            write(6,100)  t_min,t_max 

100         format ('Time impact data avaialble between ',F6.4,' and ', 

     &       F6.4,' seconds.') 

      

            write (6,*) ' ' 

            write (6,101,advance='no')  

101         format ('Enter time to analyze: ') 

            read (5,*) time 

             

            ci=0 

             

            do while (time>0.) 

                ci=ci+1 

                do Stn=1,Stnn 

                    !write (6,*) Stn 

                    !write (22,*) Stn 

!                   Cp distribution output 

!                   Computation of np 

                    np=0 

                    do j=1,tm 

                        if (time>t(j,Stn)) then 

                            np=np+1 

                        else 

                            np=j 

                            exit 

                        endif 

                    enddo 

                    !write (6,*) 'np ',np 

                     

                    if ((zc0+dzc*np).lt.zccw(Stn)) then 

                        zci(Stn)=zc0+dzc*np 

                    !    write (6,*) 'zci ',zci(Stn) 

                    else 
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                        zci(Stn)=zccw(Stn) 

                    !    write (6,*) 'zci ',zci(Stn) 

                    endif 

                     

                    dx=zci(Stn)/Ke 

                    !write (6,*) dx 

                    Fim(Stn)=0. 

                    do k=1,Ke 

                        Cp_time(k,Stn)=Cp(k,np,Stn)+ 

     &                  (Cp(k,np+1,Stn)-Cp(k,np,Stn))/(t(np+1,Stn)- 

     &                   t(np,Stn))*(time-t(np,Stn)) 

                        !Impact force per unit length 

                        Fim(Stn)=Cp_time(k,Stn)*dx*2+Fim(Stn) 

                    enddo 

                enddo 

                if (ci < 10) then 

                    format_string = "(A8,I1)" 

                else if (ci<100) then 

                    format_string = "(A8,I2)" 

                else 

                    format_string = "(A5,I3)" 

                endif 

             

                write (filename,format_string) "timedata", ci 

                dat='.dat' 

                ffname=(trim(filename)//dat) 

                 

                open (12,file=trim(ffname)) 

                write (12,109) time 

109              format('Pressure distribution at time ',F6.4) 

                do Stn=1,Stnn 

                    write (12,103,advance='no') Stn 

103                 format('     ',I2,'     ') 

                enddo 

                write (12,*) '' 

                do Stn=1,10     

                    write (12,104,advance='no')  

104                 format('============') 

                enddo 

                write (12,*) '' 

                do Stn=1,Stnn 

                    write (12,120,advance='no') zci(Stn) 

120                 format('     ',F9.4,'     ') 

                enddo 

                write (12,*) '' 

                do m=1,Ke 
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                    if (m<10) then 

                        write (12,106,advance='no') m 

                         

106                     format (I1,' ') 

                    else if (m<100) then 

                        write (12,107,advance='no') m 

107                     format (I2,' ') 

                    else 

                        write (12,108,advance='no') m 

108                     format (I3,' ') 

                    endif 

                    do Stn=1,Stnn 

                        write (12,105,advance='no') Cp_time(m,Stn) 

105                     format(F9.4,'   ') 

                    enddo 

                    write (12,*) '' 

                enddo 

                write (6,*) '' 

                write (12,*) '' 

                do Stn=1,Stnn 

                    write (6,112) Stn,Fim(Stn) 

                    write (12,112,advance='no') Stn,Fim(Stn) 

112    format('Impact force on station ',I2,' : ',F9.4,' / unit length') 

                    write (12,*) '' 

                enddo 

                close(12) 

                write (6,*) '' 

                write (6,*) 'Cp distribution written to ',trim(ffname) 

                write (6,*) '' 

                write (6,*) 'Enter a new time point to analyze or ', 

     &                'input "0" to quit analysis' 

                write (6,*) '' 

                write (6,101,advance='no') 

102             format ('Enter time to analyze: ') 

                read (5,*) time 

            enddo 

            write (6,*) 'Exiting...' 

             

        endprogram 
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Appendix C1: Input format (inpf.txt) for offset based section definition 

 
5       Number of stations 

 

0.30       Station spacing (Non-dimensionlized on B/2) 

       B = Beam of vessel, H = Depth of vessel hullform 

 

6.66       LCF  w.r.t 1st station (Non-dimensionlized on B/2) 

 

1       Input 1 for offset based input 

20       Number of points in definition of Stn 1 

 

0 0 

0.05 0.03 

0.1 0.08 

0.13 0.16 

0.12 0.27 

0.06 0.36 

0.08 0.46 

0.13 0.54     Offsets of Stn 1 (Non-dimensionalized on B/2 and H) 

0.17 0.575 

0.2 0.6 

0.25 0.635 

0.3 0.66 

0.4 0.71 

0.5 0.77 

0.6 0.82 

0.7 0.875 

0.72 0.89 

0.77 0.93 

0.8 0.955 

0.86 1 

 

18       Number of points in definition of Stn 2 

 

0 0 

0.05 0.03 

0.1 0.07 

0.13 0.115 

0.15 0.2 

0.13 0.32 

0.17 0.435 

0.2 0.47     Offsets of Stn 2 (Non-dimensionalized on B/2 and H) 

0.25 0.51 

0.3 0.55 

0.4 0.61 

0.5 0.67 

0.6 0.72 

0.7 0.78 

0.8 0.85 

0.9 0.94 

0.93 0.98 

0.94 1 

 

15       Number of points in definition of Stn 3  
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0 0 

0.05 0.03 

0.1 0.06 

0.15 0.11 

0.2 0.26 

0.25 0.395 

0.3 0.44 

0.4 0.52     Offsets of Stn 3 (Non-dimensionalized on B/2 and H) 

0.5 0.58 

0.6 0.63 

0.7 0.695 

0.8 0.77 

0.9 0.86 

0.95 0.95 

0.97 1 

 

15       Number of points in definition of Stn 4 

 

0 0 

0.05 0.03 

0.1 0.05 

0.15 0.09 

0.2 0.15 

0.25 0.25 

0.3 0.33 

0.4 0.42     Offsets of Stn 4 (Non-dimensionalized on B/2 and H) 

0.5 0.49 

0.6 0.54 

0.7 0.61 

0.8 0.68 

0.9 0.79 

0.95 0.87 

0.99 1 

 

15       Number of points in definition of Stn 5 

 

0 0 

0.05 0.015 

0.1 0.035 

0.15 0.07 

0.2 0.115 

0.25 0.175 

0.3 0.235 

0.4 0.335     Offsets of Stn 5 (Non-dimensionalized on B/2 and H) 

0.5 0.405 

0.6 0.47 

0.7 0.535 

0.8 0.61 

0.9 0.71 

0.95 0.78 

1 1 
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Appendix C2: Input format (inpf.txt) for angle based section definition 
 
3       Number of stations 

 

0.30       Station spacing (Non-dimensionlized on B/2) 

       B = Beam of vessel 

 

6.66       LCF  w.r.t 1st station (Non-dimensionlized on B/2) 

 

2       Input 2 for angle based input 

 

 

20.0 30.0     Definition of Stn 1 (Angle at keel, Angle at hard chine) (deg) 

20.0 20.0     Definition of Stn 2 

20.0 10.0     Definition of Stn 3 
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