
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-20-2013

A Wedge Impact Theory Used to Predict Bow Slamming Forces A Wedge Impact Theory Used to Predict Bow Slamming Forces

Ashok Benjamin Basil Attumaly
aattumal@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Aerodynamics and Fluid Mechanics Commons, Ocean Engineering Commons, and the

Other Engineering Commons

Recommended Citation Recommended Citation
Attumaly, Ashok Benjamin Basil, "A Wedge Impact Theory Used to Predict Bow Slamming Forces" (2013).
University of New Orleans Theses and Dissertations. 1721.
https://scholarworks.uno.edu/td/1721

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=scholarworks.uno.edu%2Ftd%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/302?utm_source=scholarworks.uno.edu%2Ftd%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholarworks.uno.edu%2Ftd%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1721?utm_source=scholarworks.uno.edu%2Ftd%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

A Wedge Impact Theory Used to Predict Bow Slamming Forces

A Thesis

Submitted to the graduate faculty of the

University of New Orleans

In partial fulfillment of the

requirements of the degree

Master of Science

in

Engineering

Naval Architecture and Marine Engineering

by

Ashok Benjamin Basil Attumaly

B.Tech, Indian Institute of Technology Delhi, 2010

December, 2013

ii

Acknowledgements

 Seafaring vessels and the perils they face at sea have fired my imagination since I was child in

my hometown of Kochi, India. In the process of pursuing my masters, during my first internship

at Elliott Bay Design Group, I was intrigued by the forces of slamming that act on vessels and

the theoretical modeling of the phenomenon of bow wave slamming. Fortunately, the department

of Naval Architecture and Marine Engineering at UNO have a long tradition of research in that

field.

 I would like to thank Dr Brandon Taravella for the guidance he has given me over the course of

my project. His knowledge and youthful energy provided me with the backing I need for an

endeavor like writing a thesis. I would like to thank Dr Lothar Birk and Dr Chris McKesson for

their valuable inputs as part of my evaluation committee. The support extended by my team at

North American Shipbuilding has also been incredible.

I'd like to thank my parents and my brother for their continued support over the years. Finally, I'd

like to thank my friends in New Orleans who have made graduate school a memorable

experience and work, a pleasure.

iii

Table of Contents

List of Figures .. iii

List of Tables ... iv

Abstract .. v

1. Introduction ... 1

2. Literature Survey .. 4

3. Impact Investigation Theory .. 8

3.1. Vorus' Impact Theory ... 8

3.2. Flow Physics .. 8

3.3. Velocity Definitions and Orders of Magnitude ... 10

3.4. Theoretical formulation ... 11

3.4.1. Pressure continuity ... 13

Free contour dynamic boundary condition ... 13

3.4.2. Velocity continuity .. 14

3.4.3. Displacement continuity ... 16

3.5. Discretizaton of boundary conditions .. 17

3.5.1. Pressure continuity ... 17

3.5.2. Velocity continuity .. 19

3.5.3. Displacement continuity ... 20

3.6. Cylinder Pressure and force distribution .. 22

3.7. Initial Condition .. 23

3.7.1. Pressure continuity ... 23

3.7.2. Velocity continuity .. 23

3.7.3. Displacement continuity ... 24

3.8. Computation of pressure coefficients over a 3D contour - Linear Strip Theory 25

3.8.1. Time steps and pressure distributions ... 25

4. Solution methodology and algorithm .. 27

4.1. Algorithm .. 29

5. Verification of accuracy of code .. 31

5.1. Velocity comparison ... 31

iv

5.2. Keel pressure comparison .. 34

6. Validation of predicted results against experimental results .. 39

6.1. Discussion of the comparison .. 43

7. Time varying impact force variation in a hull form .. 44

7.1. Characteristics of the hull form .. 44

7.2. Theoretical background.. 45

7.3. Problem set-up ... 45

7.4. Comparison and discussion of results .. 48

8. Conclusions .. 53

8.1. Further research suggested .. 53

9. Works Cited .. 55

Appendix A: Fortran code for processing of input data... 57

Appendix B: Post processing code for data output by code vsheet228.for 86

Appendix C1: Input format (inpf.txt) for offset based section definition 90

Appendix C2: Input format (inpf.txt) for angle based section definition 92

VITA .. 93

iii

List of Figures

Figure 1(a): Cylinder impact (cuw) (Vorus, 1996).. 9

Figure 1(b) Cylinder impact (cw)... 10

Figure 2: Vortex sheet distribution and velocity components along the wetted portion

(Vorus, 1996).. 12

Figure 3 Definition of variables (Vorus, 1996).. 12

Figure 4: Vsii from ζ distribution (Vorus, 1996).. 18

Figure 5: Discretization of 3D hull form into 2D sections (Bajic et al , 2010) 25

Figure 6: Sample pressure contour output after post processing in Excel...................................... 26

Figure 7: Hard chine contours (Vorus, 1996)... 31

Figure 8: Particle velocity, zc, and zb (Vorus, 1996)... 32

Figure 9(a): 20-10 Vs/10 distribution... 33

Figure 9(b): 20-20 Vs/10 distribution... 33

Figure 9(c): 20-30 Vs/10 distribution... 34

Figure 10: Keel pressure coefficient Cp (0,τ) (Vorus, 1996).. 35

Figure 11(a): Keel pressure coefficient on 20-10 contour.. 36

Figure 11(b): Keel pressure coefficient on 20-20 contour.. 36

Figure 11(c): Keel pressure coefficient on 20-30 contour.. 37

Figure 12: Bow section (left) and experimental setup (right) considered by Aarsnes(1996)......... 39

Figure 13: Figure 13: Pressure distribution on the bow section, experimental vs. VOF method

(Ghadimi et al, 2013)... 40

Figure 14: Discretized contour of the section used by Aarsnes (1996)... 41

Figure 15: Comparison of code prediction versus Ghadimi et al (2013) & Aarsnes (1996)

at τ=0.5351... 42

Figure 16: Comparison of fluid particle flow in Ghadimi et al (2013) and particle velocity........ 43

Figure 17: Bajic et al (2010) analysis hullform... 44

Figure 18: Discretized hull form contours... 46

Figure 19: Waterline (YWL) at various time steps.. 47

Figure 20(a): Impact force distribution at τ=0.07.. 48

Figure 20(b): Impact force distribution at τ=0.10.. 48

Figure 20(c): Impact force distribution at τ=0.20.. 48

Figure 20(d): Impact force distribution at τ=0.30.. 48

Figure 21: Pressure prediction using various class societies' rules (Bajic et al, 2010).................. 49

Figure 22: Comparison of impact force vs. Pressure on Level 1... 49

Figure 23(a): Cp distribution on frames at τ=0.07... 50

Figure 23(b): Cp distribution on frames at τ=0.10... 50

Figure 23(c): Cp distribution on frames at τ=0.20... 50

Figure 23(d): Cp distribution on frames at τ=0.30... 50

Figure 24(a): Cp contour distribution on wetted portion of hull at τ=0.07.................................... 51

Figure 24(b): Cp contour distribution on wetted portion of hull at τ=0.10................................... 51

Figure 24(c): Cp contour distribution on wetted portion of hull at τ=0.20.................................... 52

Figure 24(d): Cp contour distribution on wetted portion of hull at τ=0.30................................... 52

iv

List of Tables

Table 1: Orders of magnitude of cylinder impact parameters (Vorus, 1996)........... 11

v

Abstract

The pressures and impact forces acting on a hull while experiencing bow wave slamming is analyzed

using Vorus' Impact Theory. The theory extends the hydrodynamic analysis of planing hulls from simple

wedges to irregular shapes using a Boundary Element Method. A Fortran-based code developed by the

Author is used to analyze hullforms. Linear strip theory is used to extend the analysis over a three

dimensional hull. Post-processing of output data gives hull pressure distributions at different time steps

and is visually presentable.

Impact pressure, Impact force, Planing, Wave slamming, Bow impact, Vorus' theory, Boundary Element

Method, Linear strip theory

1

1. Introduction

The impact problem is one of the present day problems being keenly investigated, especially in

the realm of high speed hydrodynamics. There has been a fundamental shift in naval ship design

requirements which has seen a greater emphasis on speed and agility of vessels. In the present

design environment, vessel designers are striving to design vessels that can achieve greater speed

and maneuverability with the available power. This provides the impetus for research in high

speed vessels. A better understanding of the hydrodynamics of lift, drag and impact forces on

these vessels could provide end users with enhanced operational ability.

The impact problem is also applicable to the realm of normal displacement hulls for estimation

of impact forces during wave slamming and similar non-linear phenomena which cannot be

easily accounted for using linear hydrodynamics. Recent years have seen a spate of regulations

intended at increasing the operational safety of commercial vessels.

A better understanding of impact forces and pressure distribution will allow designers to

strengthen hulls sufficiently to withstand these forces and design hullforms which could prevent

dangerous excessive pounding of the hull in rough conditions. This would also help class

societies develop new regulations to ensure adequate safety of vessels in seas, taking into

account phenomena like bow impact, wave slamming, etc. Regulations regarding impact forces

can be given more theoretical basis compared to the largely empirical nature of regulations for

design readiness of vessels in wave impact situations.

The impact problem has been investigated since the first half of the 20th century. The first

investigations into the wave impact problem were by Von Karmen (1929) and Wagner (1932)

2

independently in USA and Germany respectively. Their work has laid the groundwork for much

of the theoretical development over the many decades that followed, till present date. Subsequent

research works on the subject have devised models to predict the lift and drag of a planing body

executing planing motion. Maruo (1967) assumed the vessel's planing surface as a distribution of

vortices and tried to solve the problem of pressure distribution using potential theory. Maruo

subjected the problem to the linearized free surface boundary condition, including gravity

effects. Shen & Ogilvie (1972) approached the problem applying conformal mapping of contours

to regular shapes like a line or semi circle and solving the potential of the flow. Taravella &

Vorus (2010) have applied the theory of Maruo to a series distribution of offsets and successfully

predicted the lift coefficients, coupling the effects of upstream stations on downstream stations

on low-aspect ratio hullforms. These theories have, over the decades, come closer and closer to

realistic predictions of lift and drag for increasingly complex shapes.

The theories discussed above were initially developed for sea planes and planing hulls. Their

applicability to semi-planing, semi-displacement and even displacement hulls, have in recent

years been extended. Taravella (2009) developed a hybrid method for predicting lift / drag on

semi-planing / semi-displacement hulls.

Many of the theories mentioned above have focused on lift / drag prediction on hull forms. Only

a few have focused on the phenomena of impact pressures, Vorus (1996), being one of them.

Impact, being a non-linear phenomenon has complexities of flow that are different from merely a

lift force. The theory approximates the geometry using linear approximations, and performs the

hydrodynamic analysis as a non-linear problem.

3

More recently Ghadimi et al (2011) have investigated the entry of a wedge onto a horizontal

water surface using Schwartz Christoffel mapping. A subsequent work has been published by

Ghadimi et al (2013) which computes the pressure distributions and separations across the hull

cross section using a VOF (Volume of Fluid) scheme in conjunction with FVM (Finite Volume

Method).

The present work develops on the work of Vorus (1996). The work of Vorus has been used to

formulate a code in Fortran which can successfully output the pressure distribution on a hullform

undergoing impact motion. The theory has been extended to a hullform from a single station

using Linear Strip theory. The work attains significance in the context of the fact that the theory

developed by Vorus (1996) was a Boundary Element Method (BEM). BEM methods are

significantly faster than volume element methods. The present work can help identify regions of

significant pressures on hullforms due to wave impact and account for structural strengthening

required at these regions or modify hullform designs to reduce these pressures at the conceptual

stage of design.

4

2. Literature Survey

As all studies of theories on impact done before, the literature study for the present theory began

with a study of the works of Von Karmen (1929) and Wagner (1932). Von Karmen's work

analyzes the impact pressure experienced by a prismatic wedge hull dropped vertically, striking a

horizontal water surface. Von Karmen's model approximated this highly non-linear phenomenon

into a linear formula by applying the requisite simplifications. There is mass added by virtue of

the hydrodynamic effects. The formulation developed for pressure is based on the conservation

of momentum. The maximum pressure, located at the middle of the float, is found to be inversely

proportional to the angle of deadrise, approaching infinity at zero deadrise according to the

formulation. Von Karmen also proposes a limiting value for force at zero deadrise, i.e., for a flat

plate. The pressure decreases moving outward along the length of the span of the wetted region

of the wedge. Von Karmen suggests that the limiting value suggested by him is an over-

approximation as the wedge is not a completely rigid body and there would be deformation in the

body by virtue of the applied pressure.

Wagner's theory (1932) was more detailed in its analysis of the horizontal water surface and the

effect of the impacting body on the water surface. Wagner's theory introduced the concept of

"spray root" and the "wetting factor". Wagner also noted the high pressure gradients near the

spray root. Wagner's solution was divided into different zones, the outer domain - the principal

region, where the water surface interacts with the surface of the wedge, the splash root, the

region between the surface and the spray root, and the splash, the jet region of the flow. Wagner's

theory was the first to apply Schwartz Christoffel mapping to compute the pressure distribution

on the contour surface.

5

Most theories proposed till 1967 had confined the analysis to a 2D plane, in a station-wise

fashion. Maruo (1967) laid the theoretical foundation for solving the lift and drag force on a

three dimensional body by virtue of the incident (forward) velocity. The velocity potential of the

flow was solved from the Laplace equation. The zero flux of flow across the hull, and the

radiation condition were used by Maruo as boundary conditions for the problem. The analysis

was conducted for two limiting cases - the high aspect ratio body, where the behavior is similar

to that of an aerofoil, using Bassell functions, and the low aspect ratio, which is a good

approximation for elongated bodies (width << length). The mathematical complexity of the

equation's formulation led Maruo to assume a high Froude number for the body to simplify the

solution. Perhaps the most important contribution of Maruo to the field of impact theory was

introducing the effect of gravity to the lift force formulation acting on a body.

Aarsnes (1996) had conducted drop tests of ship sections. The work detailed pressure variation

along the span of the section, and also the observed water surface profile. Subsequent

researchers have used results published by Aarsnes as experimental data for testing numerical

analysis of impact prediction codes.

Vorus (1996) had proposed a boundary element method which takes a unified approach to the

flow. Unlike previous theories, the computation for the far and near regions of the flow followed

the same formulation. Vorus' theory is time dependent and hence could handle shapes / contours

which are dissimilar in time. The theory is geometrically linear in the way it deals with the flat

cylinder boundary conditions while simultaneously being hydrodynamically nonlinear by fully

retaining the large flow perturbation produced by the impacting flat cylinder in the axis boundary

conditions. The present work has been developed based on this theory.

6

Royce (2001) had extended Vorus' theory to a 2D planing crafts using a hydro-elastic model of

impact, comparing pressure distributions for impact of 2D surfaces with experimental

observations. The work also introduced the concept of temporal variations of impacting surface

during the impact process, referred to as Localflex.

Maruo's work was further expanded by Taravella (2009) and Taravella & Vorus (2010). Their

works extended the solution of the pressure distributions for Froude numbers that are not high

enough to apply the high Froude number assumption for the low aspect ratio case, as is the case

in semi-planing and semi-displacement hulls. This was achieved using Fresnel integrals to solve

the flow potential equations. Taravella, in addition to this, applied Michell's (1897) thin ship

theory to predict the drag on vessels of moderate Froude numbers. The proposed solutions

couple the effects of incident velocities on upstream stations onto the solutions for downstream

stations. These works have expanded the applicability of planing hydrodynamics theories from

planing hulls to semi-planing and semi-displacement hulls. These works however are not

applicable to impact problems where the flow is incident from beneath the hull rather than along

the hull.

Ghadimi et al (2011) have taken the approach of using conformal mapping to solve the impact

problem. The formulation takes vertical velocity as the input velocity. The authors have used the

image method where a Galilean transformation is applied to transform a hull contour to a closed

shape. The flow potential is solved for this body which is symmetric about y-axis after the

Galilean transformation. For the purpose of solving the potential of the flow, a Schwartz

Christoffel transformation is applied to the transformed body. The transformation breaks down

7

the problem of the flow through a rhombus in the physical plane (z-plane) to a uniform vertical

flow problem in the mapped plane (w=p+iq). The two free surface boundary conditions that

bound the problem are: (1) Kinematic boundary condition on the free surface, and (2)The

Dynamic boundary condition on the free surface. The pressure distribution is solved as a

function of velocity distribution along a line. The potential of the flow is obtained from the

transformed velocities, and application of the dynamic boundary condition to this gives the

profile of the free surface of water.

Ghadimi et al (2013) have also done a recent study for comparison of results of Aarsnes work

against pressures predicted by a VOF (Volume of Fluid) scheme in conjunction with FVM

(Finite Volume Method). The code successfully captures the reattachment of flow after the

primary flow separation. The capturing of this detail predicts peak pressures close to the flow

separation point. This observation was reported by Aarsnes (1996) in the ship section drop test

results.

In the context of classification society rules, Bajic et al (2010) presented a study of major class

societies' rules on design impact pressures on a containership. The present regulations in relation

to slamming pressures are empirical in nature. The study shows the variation of design pressures

along the hull of containership undergoing slamming wave action on the bow section as

comparison amongst different class societies. The study also reports the variations in pressure

with variation in hullform coefficients, ship speed, bow flare and ship draught. Their study

reports a high sensitivity of slamming pressures to the bow flare angle.

8

3. Impact Investigation Theory

3.1. Vorus' Impact Theory

The impact analysis is performed according to the theory detailed by Vorus (1996). At certain

occasions, certain deviations have been used in the code. For example, using the number of

segments ni as equal to i, instead of computing this. A correction has been applied to equation

(49) in Vorus (1996) (Equation (23) in the present work), using ������ ��
�����

	instead of ��������
�����

	 as the

first coefficient of multiplication. However, the results have been verified against available data

to ascertain the correctness of the code developed for analysis.

Vorus' theory offers a single solution field for the hydrodynamic analysis. The principle

complexity of the flat cylinder theory is the increasing transverse flow perturbation and the non-

linearity associated with increasing flatness. Vorus' theory has been extended to general

contours, with restrictions, from flat cylinders. An advantage of the Vorus theory is that it

possible to solve the problem for non-similar, time-dependent flows. The method is a mixed

theory - geometrically linear, i.e., the flat cylinder boundary conditions are satisfied on the

horizontal axis, and hydrodynamically nonlinear, as in fully retaining the large flow

perturbations produced by the impacting flat cylinder in the axis boundary conditions.

3.2. Flow Physics

The hydrodynamic model considered is ideal and incompressible. Gravity is not considered in

the problem.

 The solution is developed on an impacting flat cylinder model (Figure 1(a) and (b)), Figure 1(b)

portrays complete penetration of the cylinder (chine wetted flow) into the water surface. The

point where the continuous hull contour terminates, referred to as the chine, is taken as the point

9

where the flow separates provided premature separation doesn't happen. In case of premature

separation, there would be no further advance of the point at which the flow contour has zero

pressure. The theory is built here on the assumption of symmetry about the y-axis, the vertical

plane of the cylinder.

On impact, the free surface is turned back under the contour forming an initially attached jet, as

shown in Figure 1(a). The "spray root" advances rapidly along the contour, followed closely by

point C. The contour pressure is zero at C and beyond. Point C moves outward till it reaches the

chine. Beyond this point, B continues further outward, though C remains fixed on the chine.

Point C is the point where the flow detaches itself from the contour. On the upper branch of fluid

flow, demarcated by B, the stream velocity is higher than the impact velocity, and on the lower

branch, the stream velocity is lower than the impact velocity. Increasing flatness accentuates the

difference in velocities between the upper and lower branches. For analysis, the cylinder is

collapsed onto the z-axis. An important character of the flow is the drop in tangential velocity in

the region zc≤z≤zb by an order of magnitude on the flow becoming a chine wetted flow.

10

Figure 1(a): Cylinder impact (cuw) (Vorus, 1996)

Figure 1(b) Cylinder impact (cw) (Vorus, 1996)

3.3. Velocity Definitions and Orders of Magnitude

Understanding the various velocities - contour velocities and perturbations, is key to

understanding the nature of the theory. The velocities on the flat cylinder is split into Vs and Vn,

tangential and normal to the surface respectively. The perturbations, v and w, are defined with

respect to the original axes of the flat cylinder. For the purpose of simplicity, the flat cylinder is

considered symmetric about the y-axis.

The values of contour velocities are as described at different stages of flow:

Vn = 0, zc ≤ z ≤ zb

Vn = V, zc ≤ z, zc=Zch

Vn = V, Vs = 0, zb ≤ z, zc≤Zch

11

As described in the previous section, the velocity undergoes significant changes in magnitude

depending on the behavior of the flow (CUW / CW). The orders of magnitude of the

perturbations and contour velocities are described in Table 1.

Table 1: Orders of magnitude of cylinder impact parameters (Vorus, 1996)

 0≤z≤zc zc ≤ z ≤zb z > zb

 (cuw) (cw) (cuw) (cw) (cuw & cw)

Zc(t)/Zch <1 1 <1 1 ≤1

v(z,t) O(1) O(1) O(1) O(β) O(β)

w(z,t) O(1/β) O(1/β) O(1/β) O(1) O(β)

Vn(z,t) 0 0 O(β) V+ O(β) V+ O(β)

Vs(z,t) O(1/β) O(1/β) O(1/β) O(1) O(β)

�

O(1) O(1) O(1) O(1) O(1)

�

O(1/β) O(1/β) O(1/β) O(1) O(1)

3.4. Theoretical formulation

The impact problem is non-dimensionalized. All impact velocities are non-dimensionalized on a

reference velocity V0, which could be the velocity upon impact at time 0. The offsets of the

contour surface are non-dimensionalized on Zch, the offset of the chine. The time is thus non-

dimensionalized with the help of the above defined quantities.

τ � ��� ��
���

12

Zero gravity is assumed for the problem. For the contour outside the zero pressure point, the

tangential velocity is assumed to be zero, i.e., Vs = 0 for z ≥ zb. The remaining boundary

conditions are satisfied with a vortex distribution between the axis and the spray root.

The solution is scaled by the zero pressure distribution point offset zc(t), i.e.,

ζ = z/zc(t)

The spray-root offset in the ζ-space is then:

b(τ) = zb(τ)/zc(τ)

The strength of the line vortex distribution in Figure 2 is given by γ(ζ,τ) = -2Vs(ζ,τ)

Figure 2: Vortex sheet distribution and velocity components along the wetted portion (Vorus,

1996)

13

3.4.1. Pressure continuity

Free contour dynamic boundary condition

Figure 3: Definition of variables (Vorus, 1996)

Referring to Figure 2, zero pressure is required on the free contour beyond ζ=1:

Cp(ζ,τ) = 0 on ζ ≥1

The definition for Cp at 0 ≤ ζ ≤ b, as derived from Bernoulli equation's unsteady form:

����, �� � ����� � ������ � 2 ��! "# �$��, ��%�& � ��$��, ��'�!�
�&(�) � 2�� "# �$!��, ��%�& �'�!�

�&(�

 !�$�, ��) 0 , � , *��� (1)

In (1) zc(τ) is the non-dimensional zero pressure point offset, and the subscript τ denotes ∂/∂τ.

Also note that Cp=0 for 1≤ ζ ≤ b. This is satisfied when Vn = 0 for chine unwetted flow (zc < 1)

and Vn = V(τ) for chine-wetted flow (zc = 1)

��$ � ��!�� -./
-� � �� -./

-� � 0 1 , � , *��� (2)

14

This is the nonlinear form of Euler's equation, the one-dimensional inviscid Burger's equation on

a time and spatially variable stream. Manipulating this equation and applying the condition that

Cp = 0 in 1≤ ζ ≤ b, we get

�'! � ./���,!�1.2��!��.��!�
�./�',!� (3)

Thus a definition of the spray root velocity, zbτ, is obtained from the pressure formulation.

Free vortex sheet distribution. Euler's equation requires that velocity of the particles flowing out

from the contour onto the free vortex and out into the jet has a constant velocity at its separation

(at zc(τ')) and for all time τ > τ' thereafter. Applying galean transformation to (2) gives the

following relations for the position of the particle with velocity Vs(ζ,τ):

�3��4, �� � ./5�6,!78�!�!7�19:�!7��6
9:�!� 1 , �4 , *��&�, � ; �& (4)

�3��, �<� � ./��,!4��!�!4�19:�!4�
9:�!� � ; � ; �& (5)

τ0 is the starting time where Vs (ζ,τ) in 1 ≤ ζ ≤ b must be known. The uniform Vs(τ0) is computed

from the wedge similarity solutions. The spray root velocity is always less than the jet root

velocity. This implies that the term ζ ˆ[b(τ0),τ] defined in (4) is always greater than the value of

b(τ). Thus, except at ζ = 1, the free vortex sheet strength is completely defined from equations

(4) and (5), given b(τ).

3.4.2. Velocity continuity

Contour kinematic boundary condition

The kinematic boundary condition is satisfied on the contour segment of the z-axis. In the

downward moving coordinate system:

15

Vn(ζ,τ) = 0 on 0 ≤ ζ ≤ 1 (6)

Substituting the definition of Vn in terms of vertical perturbation velocity, vorticity and impact

velocity, the definition becomes

v(ζ,τ) + 1/2 γ(ζ,τ) sin β(ζ,τ) = -V(τ) 0 ≤ ζ ≤ 1 (7)

Here β is a function of time as well as the position on the wetted surface. The perturbation

velocity, v is eliminated using the Biot Savart law:

1/2 γ(ζ,τ) sin β(ζ,τ) + 1/2π # =�>,?�
�>�>&��

'
�' = -V(τ) (8)

The γ function is split as γc and γs for the wetted region of the contour and the free sheet region

respectively. This conversion, after being solved using the solution for integral equation of the

Carleman type and interchange of order and other manipulation processes gives the result:

@���, �� � � � ��$AB� C��,!�
D���� "���� � �

E # =/�$,!�F$
C�$,!�√$���

'�!�
$(� � ����

E # =/�$,!�F$
C�$,!�√$��� �$�����

'�!�
$(�) (9)

s is a dummy variable of ζ-integration. The function κ(ζ,τ) is defined as

H��, �� � ∏ J����KLMN�
����KN� J

OBKN �P�
QRS(� (10)

The flow should be continuous from ζ = 0 to ζ = 1 and beyond. The laws of physics require the

velocity to maintain continuity at all regions of the flow. This requirement serves as one of the

key boundary conditions that enable the setting up and solving of the equations. In view of the

non-singular character of κ(ζ,τ) at ζ=1, in order that the value of γc remains finite, it is required

that:

16

���� � �
E # =/�$,!�F$

C�$,!�√$���
'

$(� � 0 (11)

This is known as the "Kutta condition". This gives a relationship between the values of γs, zbτ and

b.

3.4.3. Displacement continuity

As discussed for velocity continuity, the flow has to maintain continuity at all points of the flow.

This serves as another key boundary condition that allows us to set up and solve equations to

compute the flow parameters.

The requirement that has to be met is yc(zb,t) = ys(zb,t). On non-dimensionalizing this problem,

we get the equation:

v(z,τ) + 1/2 γc(z,τ) sinβ(z) = -V(t) 0 ≤ z ≤ zb(t) (12)

The impact velocity is a function of yc. By rearrangement, application of Biot-Savart law and

manipulation of the equation, a relation between ys and yc* is obtained.

T$�U, �� � �
�E # V:N�W7,!�

W7�W
�

W7(�� %U& (13)

To maintain continuity of displacement at point C, the requirement ys(1,τ) = -Ywl(τ) + hc(1,τ) has

to be met.

This is accomplished if:

XYZ��� � �
E # [\] AB�$,!�1�:�$,!�

C�$,!�√��$�
�

$(& %^ (14)

17

3.5. Discretizaton of boundary conditions

3.5.1. Pressure continuity

The theorem can be applied for computational purposes on contours only after discretization of

the equations. The pressure continuity condition presents a jet-head free vortex sheet overlaid on

the particle velocity distribution:

�3_1� � ./7�!��!7�19:7'7
9:� , �3_ � ./7�!��!7�19:7

9:�

�3̀ � ./ �a�5!��!�a�819: �a�
9:� , b � 1, c � 1 (15)

�3& � 1

The velocity at the indicated particle positions, can also be transposed in time by the relation:

�$5�3̀ ,�_8 � �$51, �_�`8 � �$_` (16)

The strength of the vortex sheet at each segment is given by γsij ≡ -2 Vs(ζ¯ij,τ), the length of each

segment being ∆bij(j =1 to ni), evaluated at the ζij and averaged at the midpoint to get ζ¯ij. The

distribution extends from ζi0 =0 to ζini = bi. A new segment is added at each step, however,

provision is made in theory for cases where ni < i (when the deceleration value is sufficiently

high to reverse the advance of zc).

�_` � 1 � ∑ e*_SS̀(� f �_ `�� � e*_` b � 1, … .. , i_ (17)

with

 e*_` � j9k2��`1�
9:� , e�'_ � ��'_! � ��_!�∆� (18)

18

zbiτ used here is the discretized form. Its definition is given by:

�'_! � ./��1.2�� �.��� ./��'�� (19)

The value of Vsi(bi) is computed from the velocity distribution shown in Figure 4. The value of

velocity is interpolated from the curve as shown by the red line in Figure 4.

Figure 4: Vsii from ζ distribution (Vorus, 1996)

∆bi1 is the segment added at time step i at ζ=1. The unknowns in the problem are Vs(1,τ), ∆bi1 in

addition to ∆τ or zciτ in case of chine-unwetted flow problems. All other ∆bij s are known from

data from previous time steps. All Vsij = Vs(ζij,τi) for j>0 are also known from previous steps and

Vi is externally specified.

19

For chine wetted case, the zci is fed as an input to the solution. The value of zci sets the value for

∆τi.

3.5.2. Velocity continuity

The velocity continuity requirement at ζ=1 as expressed in equation (11) is discretized. The

discretized form of this equation is:

0 � �_ � �
�Emno ∑ =/��

C�� �p_` � p_ `�����`(� (20)

with

p_` � ��_�̀ � 1�mno q5rs_ , rs_ , rs_ � 1, 1 � �_�̀ 8 (21)

The function F appearing in the equation is the hypergeometric function of argument 1-ζij
2
. The

other quantities in the expression are:

rs_ f �
� � AB�tNE with uv_SN � tan��5^ciu��SN, �_�8, 0 , �SN , 1 (22)

Hs_` f Hzo 5�s_`8 � ������ ��
�����

	
aOB�tQ ∏ J�������

�����
J

OBKNQRS(� (23)

�s_` f �
� 5�_` � �_ `��8 { 1 (24)

The equations for velocity continuity provide a relation for definition of γsi1. This could be

viewed as eliminating the unknown Vsi0 (as γsi1 is defined in terms of Vsi0 and Vsi1) in terms of

∆bi1.

20

3.5.3. Displacement continuity

The displacement condition is employed only in case chine unwetted flows as the value of Ywl is

a function of both the height of point C (hc) on the contour (which could vary in the case of chine

unwetted flow) as well as the time step. This is not the case for computation of Ywl in chine

unwetted flows as hc and zc become constants after chine wetting.

The discretized equation for definition of Ywl is

Ri = XYZ_ � �
E ∑ [\] AB��N

Co��
R̀(� |5}�_`N � ~_`�'_UǸ85��_ `1� � �� _`8 � ~_`�'_5��_ `1� � �� _`8� (25)

The definitions of hc, Sij, κij, P1ij and P2ij are defined by:

}�_N �U� � }�_`N � ~_`�'_5U � UǸ8; UǸ , U , U`1�N ; b � 1, � (26)

~_` � tan u_Ǹ (27)

Hs_` � ���W���
W��

	
aOB�tQ ∏ �W��N ��WKLMN�

W��N��WKN� �
OBKN �P�

QRS(� (28)

��_` � W�N��Ma�n����
����mo�� q51 � rs_ ,1 � rs_ , 2 � rs_ ; U�̀8 (29)

��_` � W�N����a�n����
���

��mo�� q �1 � rs_ , �
� � rs_, �

� � rs_ ; U�̀� (30)

The relation of Ri to the time step ∆τi is given by

���&�%�&!_
!&(!_�� � �XYZ _�� � �_ (31)

21

Converting this equation to discretized form, we get a definition for ∆τi

∆� � �
.� �aM ���_�� � ��_��� � 2��_���XYZ_�� � �_�� (32)

For constant velocity cases, the time step value is given by

∆τ = (-Ywli-1 + Ri)/V0 (32a)

22

3.6. Cylinder Pressure and force distribution

The general pressure coefficient is given by (12). Back substituting the burger's equation (13)

gives the formulation for Cp:

��_��� �
 �� �@�_� �1� � @�_� ���� � ��_! "# @�_��&�%�& � � @�_��� � @�_�1��

�7) � ��_ # @�_!��&�%�&�
�&(� (33)

The value of the vortex element strength in the equation is computed from the formulation given

in equation (9), which is result of application of nonsingular contour vortex distribution

requirement, combining pressure and velocity continuity. The discretized form is as shown

below:

@�_��� � Hs_��� ∑ |~_`��� � ~_ `������ 0 , � , 1��`(� (34)

Where j-summation is over i elements of the vortex sheet at τi. F is the hypergeometric function.

Sij and Qij are defined as:

~_`��� f ��$AB����
E mo� �_`���mo� q5rs_ , rs_ , rs_ � 1 ; �_` ���8 (35)

�_`��� f ������� ���
����� ���� (36)

The time derivative is given by the relation γcτ = (γci - γci-1)/∆τ

23

3.7. Initial Condition

The problem initialization is performed on linear assumptions. The contour of the body is

assumed to have constant nonzero deadrise angle β in the immediate vicinity of the keel. The

velocity of impact in the small time after the initial impact is considered to be a constant

velocity, V0. The initial flow in this time interval, 0 ≤ τ ≤ τ0, is considered to be a wedge

similarity flow. The waterline line level, Ywl is given by the simple relation Ywl = V0 τ for 0 ≤ τ ≤

τ0.

The three continuity requirements could be applied to this condition to get the starting values for

the non-linear solution.

3.7.1. Pressure continuity

For wedge similarity flow, Vs(ζ,τ)=Vs(ζ), i.e., it is independent of time. This constant jet

velocity, denoted as Vj, gives the non-dimensional jet head velocity:

�'_! � .����
�.� (37)

3.7.2. Velocity continuity

Equation (46) reduces to an equation with a single segment at the initial time step τ0. The vortex

strength would be defined by γsij = γs = -2Vj. At i=0; ζij = ζ01 = b(τ0) =b0 = b, and κ01 = 1, so (20)

reduces to:

1 � =/
E

�'�����
�m q5rs_ , rs_, rs_ � 1 ; 1 � *�8 � 0 (38)

with

r f �
� � AB

E ; uv f tan���sin u�

24

3.7.3. Displacement continuity

In (25), K=1, β*01 = β, hc01= zb0 tanβ, κ01 = 1, ξ=0, P201 = 0, giving

�&� f �
E cos uv tan u �'&��&� (39)

Taking zb0 = zbτ τ0. This gives a value for zbτ in terms of the values of β as shown in (40). This

would serve as the starting point of the solution process.

1 � �
√E� cos uv tan u �'! p�r� p ��

� � r� (40)

25

3.8. Computation of pressure coefficients over a 3D contour - Linear Strip

Theory

Strip theory is applied to get the pressure distribution on the contour. The hull contour is

discretized into equi-spaced stations. The 3D hull surface is discretized into a series of stations

(2D sections). Vorus' theory is only applicable to 2D sections, so the theory is applied to

individual stations, and the results finally combined to get a pressure distribution. Figure 5 shows

a sample discretization of a hull.

Figure 5: Discretization of 3D hull form into 2D sections (Bajic et al, 2010)

3.8.1. Time steps and pressure distributions

The value of time at time step i differs with the contour chosen for analysis. Station 1 may be at

time τi1 at time step i, whereas station 2 may be at time τi2 at time step i. The only case when τi2 =

τi1 is when the contours are both similar and zc0 is same in both cases. In all other cases, for

obtaining the distribution of pressure at a time τ = τp, the step corresponding to time τ = τp is

ascertained individually for each station (say s1, s2, s3,... , sn) The pressure distribution at time

step s1 is used as the pressure distribution at station 1. Similarly, the pressure distribution at time

26

step s2 is used for station 2, and so on. In this case, τs1 = τs2 = τs3 = ... = τsn = τp. The pressure

distributions at the time steps mentioned above are combined to get the pressure distribution.

Figure 6 shows a graphical representation of the non-dimensionalized pressure distribution, with

the non-dimensionalized stations collapsed onto a plane:

Figure 6: Sample pressure contour output after post processing in Excel

27

4. Solution methodology and algorithm

The problem is solved via a nested iteration process of the nonlinear system from the established

values at the initial condition.

1. The initialization procedure follows the following order

a. zbτ is obtained for the specific value of β at the deadrise from (40) using the

displacement continuity condition

b. The value of zbτ is applied to (37) to obtain Vj form the pressure continuity

condition

c. This value of Vj is used to obtain the value of γs (= 2Vj) This is subsequently

applied to (38) to satisfy the velocity continuity. Solving this equation gives the

initial value of b.

2. For the chine unwetted step i, zci is supplied externally as the input

3. bi-1 is used as the trial iterate of bi. This gives the value of zbi (= zci bi)

4. The value of Ri is using Equation (25). Solving (25) would require (26), (27), (28), (29)

and (30).

5. The value of ∆τi is computed for the given value of zci using (32) or (32a) depending the

value of acceleration.

6. The computation of ∆τi gives the time at time step i, τi. This quantity is required for

computation of the ζ distribution using the relations given in (15).

7. The trial iterate of bi gives a value for jet velocity at spray root, Vsii via interpolation

depending on the value of bi on the ζj distribution as shown in Figure 4.

8. This is used to compute the strength of the outermost element on vortex sheet, all other

element strengths are available from velocity data from previous time steps.

28

9. This applied in equation (20) gives the value of velocity at the ζ=1. Solving this requires

(21), (22), (23) and (24).

10. The obtained value of Vsii also gives a value for ∆bi1 from the expression (18)

11. The new value of bi is computed from bi-1 and ∆bi1. bi = bi-1 + ∆bi1

12. The value for ∆τi is computed with this value of bi (using Equation (25)) and compared

to the ∆τi previously obtained. If the difference is within the range,

0.0001+abs(acceleration) x 0.2, the solution proceeds to the next time step. Else the

solution process returns to Step 6 to recompute values of Vsii, Vsi0, ∆bi and ∆τi.

13. If the time step value is sufficiently close, velocity distribution obtained is used to

compute the vortex strength on the contour, given by γc(ε,τ) by equation (34).

14. The value of γc in the present time step and the previous time step gives the time

derivative by the relation γcτ = (γci - γci-1)/∆τ

15. This vortex distribution gives the pressure coefficient distribution by equation (33).

29

4.1. Algorithm

The algorithm of the problem is as described in the following pages:

30

31

5. Verification of accuracy of code

The code was verified against the curves shown in Dr Vorus' paper (1996). Since Dr Vorus'

theory is the basis for the code, it is a requisite that the results predicted match the results

described in his paper.

5.1. Velocity comparison

Figure 8 shows the non-dimensionalized velocity distributions on 3 planing hull sections: with a

20-20 contour, a 20-30 contour and a 20-10 contour against time.

Figures 9(a),(b) and (c) show the distribution obtained using the code.

Figure 7: Hard chine contours (Vorus, 1996)

32

Figure 8: Particle velocity, zc, and zb (Vorus, 1996)

33

Figure 9(a): 20-10 Vs/10 distribution

Figure 9(b): 20-20 Vs/10 distribution

34

Figure 9(c): 20-30 Vs/10 distribution

A comparison between Figure 8, and Figures 9(a),(b) and (c) shows good agreement between the

results obtained from the program and the results described in Vorus (1996).

5.2. Keel pressure comparison

The keel pressure coefficients on the contours as reported in Vorus (1996) are shown in Figure

10. Figures 11(a),(b) and (c) show the keel pressure coefficients on the hull contours, obtained

from the code. The values reported by the code are slightly offset from the centerline as there is a

pressure discontinuity along the centerline.

35

Figure 10: Keel pressure coefficient Cp (0,τ) (Vorus, 1996)

36

Figure 11(a): Keel pressure coefficient on 20-10 contour

Figure 11(b): Keel pressure coefficient on 20-20 contour

37

Figure 11(c): Keel pressure coefficient on 20-30 contour

A comparison between Figure 10 and Figures 11(a),(b) and (c) shows good agreement at the

lower ends of the curve, i.e., a very short time after the impact for chine unwetted flow. The 20-

20 contour shows good agreement with the results reported in Vorus (1996) throughout the time

range.

However, the pressure coefficient at the keel is over-reported for the 20-10 contour as the flow

approaches chine wetted flow. On the other hand, the pressure coefficient is underreported for

the 20-30 contour as the flow approaches chine wetted flow. As the flow approaches separation,

the pressure coefficient at the keel is the result of summation of the strength of vortcies

distributed on the wetted surface. Underprediction / overprediction of the vortex strengths near

the flow separation region of the wetted region would also influence the rate of change of

strength of the vortex, which also influences the value of the pressure coefficient.. Thus the

38

differences in the values of pressure coefficients are a result of amplification of errors in the

computation of the vortex strengths near the flow separation region of the wetted portion of the

hull.

39

6. Validation of predicted results against experimental results

Ghadimi et al (2013) have done a recent study of on the hullform used by Aarsnes (1996). The

work compares the results presented by Aarsnes (1996) against a VOF scheme with FVM

formulation. The set up used by Aarsnes used for the experiments is shown in Figure 12.

Figure 12: Bow section (left) and experimental setup (right) considered by Aarsnes(1996).

Ghadimi et al have compared the results of Aarsnes experimentation with their numerical

simulation of the experiment at a constant velocity of 2.43 m/s. A pressure comparison has been

done (Figure 13) against the results from experimentation. Figure 14 presents the pressure

variation against the non-dimensionalized wetted portion of the hull as reported by Ghadimi et al

(2013).

 Figure 13: Pressure distribution on the bow section, experimental vs. VOF method (Ghadimi et al, 2013)

For the purpose of comparison, the

were fed as input to the impakt 1.3 code.

for the feeding the offsets into the code

against the half breadth of the hull section.

40

Pressure distribution on the bow section, experimental vs. VOF method (Ghadimi et al, 2013)

For the purpose of comparison, the hull section used by Aarsnes was discretized

were fed as input to the impakt 1.3 code. Figure 14 shows the discretization scheme employed

feeding the offsets into the code. The discretized contour has been non-dimensionalized

against the half breadth of the hull section.

Pressure distribution on the bow section, experimental vs. VOF method (Ghadimi et al, 2013)

was discretized and the offsets

shows the discretization scheme employed

dimensionalized

Figure 14: Discretized contour of the section used by

Figure 15 shows a comparison between the pressure predictions of the code and the pressure

prediction from Ghadimi et al (2013) and

Figure 16 shows a comparison of the flow separations predicted by Ghadimi et al (2013) at

t=0.06s and a particle flow history

the present code.

41

Discretized contour of the section used by Aarsnes

shows a comparison between the pressure predictions of the code and the pressure

prediction from Ghadimi et al (2013) and Aarsnes (1996) experiments.

shows a comparison of the flow separations predicted by Ghadimi et al (2013) at

a particle flow history flow till the equivalent non-dimensionalized time

shows a comparison between the pressure predictions of the code and the pressure

shows a comparison of the flow separations predicted by Ghadimi et al (2013) at

dimensionalized time τ = 0.66 in

42

Figure 15: Comparison of code prediction versus Ghadimi et al (2013) & Aarsnes (1996) at τ=0.5351

Figure 16: Comparison of fluid particle flow in Ghadimi et al (2013) and particle velocity in the present solution

43

6.1. Discussion of the comparison

The present code gives a good comparison between Ghadimi et al's model and the present code

in terms of flow separation at the time specified. This is shown by the sharp drop in the flow

particle velocity (Figure 17) at the green dotted line. This corresponds to the region in the flow

simulation where flow separation was observed using the VOF scheme used in conjugation with

FVM.

A comparison of the pressures gives a decent correlation at the lower ends of the curve, near the

keel. As the flow approaches separation. The first peak in the experimental findings of Aarsnes

(1996) and Ghadimi et al (2013) is a result of the primary impact of the body on the free surface.

The second peak in the experimental curve is due to the impact of the separated flow on

reattachment. Ghadimi et al (2013) have successfully predicted the reattachment and the

resulting pressure peak on the hull surface The present code predicts the first peak, however,

does not predict the second peak. This is due to the fact that the code does not capture

reattachment of the flow and assumes the flow to be separated upon initial separation.

44

7. Time varying impact force variation in a hull form

Bajic et al(2010) reported results of slamming impact pressures on a container ship at different

deck levels. A comparison was done between various class societies' rules regulating design

pressures. Though not an exact comparison, the results presented by Bajic et al (2010) can be

used as a basis of analysis of impact loads on the hull using a standardized hull form.

7.1. Characteristics of the hull form

 The present analysis was performed on the hull used by Bajic et al (2010) for their analysis.

Figure 17 shows the hull used for the analysis. A non-dimensionalization has been performed on

the hull on the half breadth and depth of the outermost frame, Frame 312.

Figure 17: Bajic et al (2010) analysis hullform

The frames used for analysis, Frame 312, 320, 328, 336, 344 and 352, are at 91, 93, 96, 98, 100

and 103% from the aft end respectively.

45

7.2. Theoretical background

The equations of motion applied to a single station are applied to all the stations individually.

The present solution is not equipped to handle the effects of forward motion on impact forces, so

at present the analysis is restricted to cases where the forward motion is zero. The heave velocity

of all the stations would be the same. The vertical velocity of each station would be a

superimposition of the velocity by virtue of heave as well as the pitching rate.

The time variation of the velocity would be also be a superimposition of the heave accelearation

as well as the pitch acceleration.

V� � V& � z�t � LCF� � �ω � αt� (41)

Where Vo is the heave velocity of the hullform, z� is the heave acceleration, ω is the pitching rate

and α is the pitch acceleration. LCFi is the distance of Station i from the LCF.

7.3. Problem set-up

The discretized hull form used for analysis is shown in Figure 18.

The impact force distribution on the frames at times τ= 0.07, 0.10, 0.20 and 0.30 are analyzed

The waterlines at the analyzed time steps are shown in Figure 19. The discretized contour offsets

are fed as input to the vsheet228.exe program. The post processing is performed using the

rum1.exe file.

46

Figure 18: Discretized hull form contours

An important difference in the present analysis is that the initial draught in Bajic et al's analysis

is 8.5m, whereas in the present analysis, the initial draught is 0 m, i.e., there is bow emergence.

Another difference is that the rules have been applied on the vessel by Bajic et al at a service

speed of 22 knots. The present analysis is performed at 0 knots forward speed using the present

code. Bajic et al, however, do indicate the impact velocity calculated on the different frames. The

assumption used here is that the impact velocity is the only factor that influences the pressure on

the hullform, i.e., the coupling effect of forward velocity is ignored.

47

Figure 19: Waterline (YWL) at various time steps

48

7.4. Comparison and discussion of results

The impact force distribution along the hull at various time steps are shown in Figure 20

(a),(b),(c) and (d).

Figure 20(a) Impact force distribution at τ=0.07 Figure 20(b) Impact force distribution at τ=0.10

Figure 20(c) Impact force distribution at τ=0.20 Figure 20(d) Impact force distribution at τ=0.30

These results is compared with the results described in Bajic et al's results. The trend of

slamming pressures predicted by various class societies' for level 1 should be a good indicator of

the force acting on the frame in question. Figure 21 shows the pressure variation at level 1 (Bajic

et al, 2010) along the hull. A comparison of the obtained results with those described by Bajic et

49

al shows that the impact force predicted by the present code follows the predicted pressure

variation by class societies' rules on slamming pressure.

Figure 21: Pressure prediction using various class societies' rules (Bajic et al, 2010)

Figure 22: Comparison of impact force vs. Pressure on Level 1

The pressure variation along the span of the wetted portion of the hull at time steps τ = 0.07,

0.10, 0.20 and 0.30 are shown in Figures 23 (a), (b), (c) and (d).

50

Figure 23(a): Cp distribution on frames at τ=0.07 Figure 23(b): Cp distribution on frames at τ=0.10

Figure 23(c): Cp distribution on frames at τ=0.20 Figure 23(d): Cp distribution on frames at τ=0.30

Contour pressure distributions have also been developed for the wetted portion of the hull at

different time steps, τ=0.07, 0.10, 0.20 and 0.30.

51

Figure 24(a): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.07

Figure 24(b): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.10

52

Figure 24(c): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.20

Figure 24(d): Non-dimensionalized Cp distribution on wetted contour of hull at τ=0.30

53

8. Conclusions

Vorus' theory was successfully implemented using the code developed in the present study. The

code compares very well with Vorus' results (1996) and could be applied to shapes more

complex than wedges.

The verification of accuracy of the code with regard to irregular shapes (such as a bow section)

by comparison gives results that are sufficiently close. Aarsnes' (1996) experiments provided

data for this verification. Different schemes are being developed for prediction of bow impact

pressures and forces. Ghadimi et al (2013) have detailed a method for pressure and flow contour

analysis. A good correlation was observed with the results predicted by Ghadimi et al. The

difference in variation of pressure along the span can be traced to the inability of the Vorus'

theory to incorporate effects of flow reattachment.

The application of the present theory to a 3D hullform using linear strip theory was also

attempted in the study. Comparison of the obtained data with predicted pressures using class

societies' rules on wave impact pressures as detailed in Bajic (2010) show that the trend of force

variation along the hull follows a similar pattern as the pattern predicted by the societies for

wave slamming pressures. Thus the theory confirms to the empirical laws employed by many

societies and may be used to improve upon them.

8.1. Further research suggested

Further research suggested for the present theory from the analysis and data presented in this

thesis are as follows:

(1) Incorporating effects of flow reattachment to the Vorus' theory. This would be helpful in

predicting peak pressures near the point of flow separation.

54

(2) Investigation of coupling of impact velocities on the stations and the effect of this coupling

on the force distribution on the hullform

(3) Incorporation of oblique velocities and gravity into the formulation. This would be helpful in

investigation of cases of wave slamming in rough seas where the vessel undergoes forward

translation in addition to the vertical slamming motion. A more comprehensive model for lift

prediction can be built by combining the theories detailed in the present study and oblique

velocity theories such as the theory detailed by Taravella & Vorus (2010).

55

9. Works Cited

[1] Von Karmen, T., and Wattendorf, F.L. The Impact on Seaplane Floats During Impact.

NACA Technical Note No. 321, 1929

[2] Wagner, H., Phenomena Associated with Impact and Sliding on Liquid Surfaces. No

4. Vol 12, 1932.

[3] Maruo, H., High and Low-Aspect Ratio Approximation of Planing Surfaces,

Schiffstechnik, 1967.

[4] Ogilvie, T.F., The Waves Generated by a Fine Bow Ship, Ninth Symposium on Naval

Hydrodynamics, Paris, August 1972.

[5] Taravella, Brandon M., and Vorus, William S., A General Solution to Low Aspect

Ratio Flat Ship Theory, Journal of Engineering Mathematics, Vol 71, Issue 2, October,

2011

[6] Ghadimi, Parviz, Saadatkhah, Amir and Dashtimanesh, Abbas, Analytical Solution of

Wedge Water Entry by Using Schwartz-Christoffel Conformal Mapping, International

Journal of Modeling, Simulation, and Scientific Computing, Vol 2, No. 3, 2011.

[7] Parviz Ghadimi, Mohammad A. Feizi Chekab, Abbas Dashtimanesh, A Numerical

Investigation of the Water Impact of an Arbitrary Bow Section. ISH Journal of Hydraulic

Engineering 19:3, 2013.

[8] Vorus, William S., Flat Cylinder Theory for Vessel Impact and Steady Planing

Resistance, Journal of Ship Research, Vol 40, No. 2, June, 1996.

[9] Royce, Richard A., 2-D Impact Theory Extended to Planing Craft with Experimental

Comparisons, Dissertation, University of New Orleans, 2001

[10] Aarsnes, J.V. "Drop test with ship sections – effect of roll angle, Report

603834.00.01.” Norwegian Marine Technology Research Institute, Trondheim, Norway,

1996

[11] Taravella, Brandon M., A Hybrid Method for Predicting Lift and Drag of Semi-

Planing / Semi-Displacement Hull forms, Dissertation, University of New Orleans, 2009

[12] Bajić D, Prpić-Oršić J and Turk A. Bow Flare Impact Loads on Containerships, The

19th Symposium on Theory and Practice of Shipbuilding, SORTA 2010

[13] Shanjie Zhang and Jianming Jin, Computation of Special Functions, John Wiley &

Sons, Inc., 1996

56

[14] Michell, J., Wave Resistance of a Ship, Philosophical Magazine, 1897

57

Appendix A: Fortran code for processing of input data

! vsheet228.for

! Working code for 20-20,20-30,20-10

! Includes CW computation

! Convergence criterion is Vsi0

! Shorter Vsi0 comparison, only recalculates Vsii, not entire dt

! Includes CP comp.

! Maximum number of variables used. Cannot use any more variables, reuse.

! VorC computation achieved.

! dvorC/dt achieved.

! Cp working & GOOD

! Working Cp distribution

! Clean code

! 15 Stations max

! Offset based hullform definition possible

! 30 points max for definition of hull contour

! Using ni=i for Cp computation

! Good Cp comparison with Vorus results

! Acceleration provision introduced into equation, only CONSTANT acc.

! Can take pitch motions in calculation

! Pitch rate provision introduced into equation, only CONSTANT pitch rate.

! Correction to dt-dtn (10% variation) time step to account for acceleration

! Provision for identifying premature separation added.

! Subroutines HYGFX(A,B,C,X,HF), GAMMA(X,GA) & PSI(X,PX) from [13]

 program vortexsheet

 real*8,dimension(450)::Vs,eta,zc,hc,S,R,zeta,

 & Sij,zeta_c,Vs_c

 real*8::VorC(450,3),beta(101,2),Cp(100,450,15),Fim(450)

 & ,xy(30,2,15),t(450,15),Cp_time(100,15),betac(2,15)

 real*8::lambda,kij,C,betat,eta_cavg,zeta_cavg,betatKe,Dd,

 & dt,dtn,Vsii,Rn,zbt,zct,kim,dzc,Ft,t_an,time,dv,V,St,betaKe11,

 & Qij,SHF,b,bn,Vj,delb,VorS,intg1,intg2,pit,LCF,prate,betaKep,

 & zccw,Stnspace

 integer::tm,Ke,p,Stn,Stnn,n_sel,np,npp,nppp,sepflag,nps(15)

 double precision::pi

 parameter (pi = 3.14159)

 tm=120

 Stnn=10

 Ke=90

 dv=0.0

 dzc=0.009

 zc0=0.10

58

 betaKe11=0.

 zccw=1.0

 sepflag=0

 open (21,file="Vel_data.dat")

 open (22,file="Cp_data.dat")

 open (23,file="Cp_rawdata.dat")

 open (11,file="inpf.txt")

 open (96,file="who.dat")

 read (11,*) Stnn

 read (11,*) Stnspace

 read (11,*) LCF

 read (11,*) n_sel

 do Stn=1,Stnn

 if (n_sel.eq.1) then

 read (11,*) np

 ! write (6,*) np

 do j=1,np

 read (11,*) XY(j,1,Stn), XY(j,2,Stn)

 enddo

 nps(Stn)=np

 else

 read (11,*) betac(1,Stn),betac(2,Stn)

 endif

 enddo

 ! Definition of eta steps

 do j=1,(Ke+1)

 eta(j)=REAL(j-1)/REAL(Ke)

 enddo

 d_eta=eta(2)-eta(1)

 write (6,*) ' Impakt v1.3'

 write (6,*) ' ==========='

 write (6,*) ' Author: A. Benjamin Attumaly'

 write (6,*) ''

 write (6,200,advance='yes')

200 format('Welcome to impakt v1.3. The non-dimensionaled offset ')

 write (6,201,advance='yes')

201 format('data has been read from inpf.txt')

 write (6,*) ''

 write (6,*) Stnn,' Station(s) '

 write (6,*) ''

 write (6,202,advance='no')

202 format('Please input the acceleration (non-dimensionalized)')

 write (6,203,advance='no')

203 format(' of the body: ')

59

 read (5,*) dv

 write (6,302,advance='no')

302 format('Please input the pitch rate (non-dimensionalized)')

 write (6,303,advance='no')

303 format(' of the body (+ve Bow down): ')

 read (5,*) pit

 write (6,304,advance='no')

304 format('Please input the pitch rate acceleration ')

 write (6,305,advance='no')

305 format('(non-dimensionalized) of the body (+ve Bow down): ')

 read (5,*) prate

 write (6,*) ''

 write (6,204,advance='yes')

204 format('Please input the number of time steps to compute Cp')

 write (6,205,advance='no')

205 format(' data for (>100 = CW flow): ')

 read (5,*) tm

 write (6,*) ''

 write (23,*) Stnn

 write (23,*) tm

 write (23,*) Ke

 write (23,*) dzc

 write (23,*) zc0

 write (6,*) 'Processing input, please wait.'

 write (6,*) 'This may take a few minutes.'

 do Stn=1,Stnn

! write (6,*) 'Station ',Stn

! write (6,*) '===================='

! write (6,*) 'Time Step No. ','Vsi0 ',

! & ' Time'

! write (6,*) '=======================================',

! & '=========================='

 write (21,*) ' '

 write (21,*) 'Station ',Stn

 write (21,*) '===================='

 write (21,*) 'TimeStep ',' Time ',

60

 & ' Vsi0 ',' zc ',

 & ' zb ',' Cp(keel) '

 write (21,*) '=======================================',

 & '===',

 & '=============================='

 b=1.0001

 dzc=0.009

 v0=1.

 Vj=0.0

 zc0=0.1

 ns=1

 ni=1

 zeta0=1.00

 delb=b-zeta0

 bn=b

 ci=0

 R0=0.

 zccw=1.0

 if(n_sel.eq.1) then

 zccw=XY(nps(Stn),1,Stn)

 endif

 sepflag=0

 ! beta matrix

 p=2

 do k=1,Ke+1

 if (n_sel.eq.1) then

 beta(k,1)=atan((XY(p,2,Stn)-XY(p-1,2,Stn))/

 & (XY(p,1,Stn)-XY(p-1,1,Stn)))

 if(XY(p,1,Stn)<eta(k+1)) then

 p=p+1

 endif

 else

 beta(k,1)=(betac(1,Stn)+eta(k)*

 & (betac(2,Stn)-betac(1,Stn)))*pi/180.

 !write (6,*) beta(k,1)

 endif

 enddo

 ! Initialization Routine

 np=1

 do k=1,Ke+1

 if(eta(k)*zc0>eta(np+1)) then

61

 np=np+1

 endif

 beta(k,2)=beta(np,1)+(eta(k)*zc0-eta(np))/

 & (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1))

 enddo

 betatKe=atan(sin(beta(Ke,2)))

 lambda=0.5-betatKe/pi

 call GAMMA(lambda,Qij)

 call GAMMA(1.5-lambda,SHF)

 zbt=(pi**1.5)/(2*cos(betatKe)*tan(beta(Ke+1,2))*Qij*SHF)

 !write (6,*) zbt

 Vj=zbt+sqrt(zbt**2+1)

 call hygfx(lambda,lambda,lambda+1,(1-b**2),SHF)

 do while(((-2.0*Vj/pi)*((b**2-1)**lambda/(2*lambda))*

 & SHF+1)>0.001)

 b=b+.0001

 call hygfx(lambda,lambda,lambda+1,(1-b**2),SHF)

 enddo

 !write (6,*) b

 bn=b

 ! END OF INITIALIZATION ROUTINE

 ! vorticity for first time step

 zeta_c(1)=1.00

 zeta_c(2)=b

 do m=1,Ke

 eta_cavg=(eta(m+1)+eta(m))/2.

 kim=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*abs((eta_cavg**2-(eta(k+1))**2)/

 & (eta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kim=kim*C

 VorC(m,1)=0.

 kij=1.0

 do j=1,ni

62

 VorS=-2.0*Vj

 betat=atan(sin(beta(m,2)))

 Qij=(eta(m)**2)*((zeta_c(j+1))**2-1)/((zeta_c(j+1))

 & **2-(eta(m)**2))

 call hygfx(lambda,lambda,lambda+1,Qij,SHF)

 Sij(1)=(cos(betat)/(pi*lambda))*(Qij**lambda)*SHF

 Qij=(eta(m)**2)*((zeta_c(j))**2-1)/((zeta_c(j))**2-

 & (eta(m)**2))

 call hygfx(lambda,lambda,lambda+1,Qij,SHF)

 Sij(2)=(cos(betat)/(pi*lambda))*(Qij**lambda)*SHF

 VorC(m,1)=VorC(m,1)+kim*VorS*(Sij(1)-Sij(2))/kij

 enddo

 enddo

 Vsi0=Vj

 Vs(1)=Vj

 dt=1.0 ! Initializations to enter the do-while loop inside i

 dtn=1.1 ! Initializations to enter the do-while loop inside i

 ! For time step 0, need to compute Ywl0, ie, R0

 zb=b*zc0

 np=1

 do k=1,Ke+1

 if(eta(k)*zb>eta(np+1)) then

 np=np+1

 endif

 beta(k,2)=beta(np,1)+(eta(k)*zb-eta(np))/

 & (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1))

 enddo

 betatKe=atan(sin(beta(Ke+1,2)))

 lambda=0.5-betatKe/pi

 do k=1,(Ke+1)

 S(k)=tan(beta(k,2))

 if (k.eq.1) then

 hc(k)=0.0

 else

 hc(k)=hc(k-1)+zb*d_eta*S(k)

 endif

 enddo

 do j=1,Ke

 betat=atan(sin(beta(j,2)))

 ! Computation of kij

63

 eta_cavg=(eta(j+1)+eta(j))/2

 kij=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*abs((eta_cavg**2-(eta(k+1))**2)/

 & (eta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kij=kij*C

 ! *********** END OF COMPUTATION ****************

 R0=R0+2.0/pi*cos(betat)/kij*((hc(j)-

 & S(j)*zb*eta(j))*

 & (Py1(lambda,eta(j+1))-Py1(lambda,eta(j)))+S(j)*zb*

 & (Py2(lambda,eta(j+1))-Py2(lambda,eta(j))))

 enddo

 Dd=(R0+XY(1,2,Stn))

 if (dv.eq.0) then

 t0=Dd/V0

 else

 t0=(-V0+sqrt(V0**2+2*dV*Dd))/dV

 endif

 ! Definition of initial time from velocity and R0.

 do i=1,tm ! Computations for time step i

 write(22,*) ' '

 write(22,*) '***'

 write(22,*) 'i= ',i, ', Station ',Stn

! write(6,*) '**'

! write(6,*) 'i= ',i, ', Station ',Stn

 Fim(i)=0.

 ! Updation of Zc

 zc(i)=.10+dzc*i

 if (zc(i).lt.zccw) then

 ! Updation of definition of b

 do j=1,1

 b=b+delb/10

 enddo

 ! Updation of Vs array

 do j=i,1,-1

 Vs(j+1)=Vs(j)

 enddo

 Vs(1)=Vsi0

64

 ! ********************

 ! dt=1, and dtn=0, set to enter do-while loop

 ci=0

 cn=0

 dt=1.

 dtn=0.

 do while (abs(dt-dtn)/dt>0.1) ! exit if within 10%

 b=bn

 ! vsi0=1, and vsi0p=0, set to enter do-while loop

 vsi0=0.

 vsi0p=1.

 ci=0 ! Inner Loop Counter (vsi0 loop)

 ! Water line at time step i

 R(i)=0.

 ! COMPUTATION OF HC (I,J)

 zb=b*zc(i)

 np=1

 do k=1,Ke+1

 if(eta(k)*zb>eta(np+1)) then

 np=np+1

 endif

 beta(k,2)=beta(np,1)+(eta(k)*zb-eta(np))/

 & (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1))

 enddo

 npp=np

 betaKe11=betatke

 betatKe=atan(sin(beta(Ke+1,2)))

 ! write(6,*) 'betatke',betatKe

 lambda=0.5-betatKe/pi

 do k=1,(Ke+1)

 S(k)=tan(beta(k,2))

 if (k.eq.1) then

 hc(k)=0.0

 else

 hc(k)=hc(k-1)+zb*d_eta*S(k)

 endif

 enddo

 do j=1,Ke

 betat=atan(sin(beta(j,2)))

65

 ! Computation of kij

 eta_cavg=(eta(j+1)+eta(j))/2

 kij=((1-eta_cavg**2)/eta_cavg**2)**

 & (-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*abs((eta_cavg**2-(eta(k+1))**2)/

 & (eta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kij=kij*C

 ! *********** END OF COMPUTATION ****************

 R(i)=R(i)+2.0/pi*cos(betat)/kij*((hc(j)-

 & S(j)*zb*eta(j))*

 & (Py1(lambda,eta(j+1))-Py1(lambda,eta(j)))+S(j)*zb*

 & (Py2(lambda,eta(j+1))-Py2(lambda,eta(j))))

 enddo

 if(i.eq.1) then

 if (dv.eq.0) then

 V=V0

 dt=(R(1)-R0)/V0

 t(i,Stn)=t0+dt

 else

 V=V0+dv*t0+pit*(LCF-Stnspace*(Stn-1))+

 & prate*(LCF-Stnspace*(Stn-1))*t0

 dt=1/dV*(-V+sqrt(V**2+2*dv*(R(1)-R0)))

 t(i,Stn)=t0+dt

 endif

 else

 if (dv.eq.0) then

 V=V0

 if(R(i).gt.R(i-1)) then

 dt=(R(i)-R(i-1))/V0

 else ! Premature flow separation

 dt=t(i-1,Stn)-t(i-2,Stn)

 zccw=zc(i) ! flow separation point

 sepflag=sepflag+1

 endif

 if(dt.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then

 dt=t(i-1,Stn)-t(i-2,Stn)

 zccw=zc(i) ! flow separation point

 sepflag=1

66

 endif

 t(i,Stn)=t(i-1,Stn)+dt

 else

 V=V0+dv*t(i-1,Stn)+pit*(LCF-Stnspace*(Stn-1))

 & +prate*(LCF-Stnspace*(Stn-1))*t(i-1,Stn)

 if(R(i).gt.R(i-1)) then

 dt=1/dV*(-V+sqrt(V**2+2*dv*(R(i)-R(i-1))))

 else ! Premature flow separation

 dt=t(i-1,Stn)-t(i-2,Stn)

 zccw=zc(i) ! flow separation point

 sepflag=sepflag+1

 endif

 if(dt.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then

 zccw=zc(i) ! flow separation point

 sepflag=1

 dt=t(i-1,Stn)-t(i-2,Stn)

 endif

 t(i,Stn)=t(i-1,Stn)+dt

 endif

 endif

 ! Updation of zeta matrix

 zeta0=1.

 zeta(i+1)=(Vj*(t(i,Stn)-t0)+zc0*b)/zc(i)

 zeta(i)=(Vj*(t(i,Stn)-t0)+zc0)/zc(i)

 do j=1,i-1

 zeta(j)=(vs(j)*(t(i,Stn)-t(i-j,Stn))+zc(i-j))/zc(i)

 enddo

 ! Computation of ns

 ns=0

 do j=1,i+1

 if (b>zeta(j)) then

 ns=ns+1

 else

 ns=j

 exit

 endif

 enddo

! write(6,*) 'ns ',ns

 do while ((abs(vsi0-vsi0p)>0.005))

 vsi0p=vsi0

 ! Computation of Vsii

67

 if ((ns.eq.1).and.(ci.eq.0)) then

 Vsii=Vs(1)

 else if ((ns.eq.1).and.(ci.ne.0)) then

 Vsii=Vsi0+(b-zeta0)/(zeta(1)-zeta0)*

 & (Vs(1)-Vsi0)

 else

 Vsii=Vs(ns-1)+(b-zeta(ns-1))/(zeta(ns)

 & -zeta(ns-1))*

 & (Vs(ns)-Vs(ns-1))

 endif

 ! Velocity matrix for computation

 do j=1,ns-1

 Vs_c(j)=Vs(j)

 enddo

 Vs_c(ns)=Vsii

 ! Zeta matrix for computation

 do j=1,ns-1

 zeta_c(j)=zeta(j)

 enddo

 zeta_c(ns)=b

 ! Computation of zbt

 if (zc(i).lt.1.0) then

 zbt=(Vsii**2-V**2)/(2*Vsii)

 else

 zbt=Vsii/2

 endif

 ! Computation of zct

 if (i.eq.1) then

 zct=(zc(1)-zc0)/dt

 else

 zct=(zc(i)-zc(i-1))/dt

 endif

 ! Computation of delbij

 do j=1,1

 delb=((zbt-zct)*dt-j+1)/zc(i)

 enddo

 ! Computation of Vsi0

68

 St=V

 ! Redefine beta_Ke in terms of zc.

 np=1

 do k=1,Ke+1

 if(eta(k)*zc(i)>eta(np+1)) then

 np=np+1

 endif

 beta(k,2)=beta(np,1)+(eta(k)*zc(i)-eta(np))/

 & (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1))

 enddo

 betatKe=atan(sin(beta(Ke+1,2)))

 lambda=0.5-betatKe/pi

 !if (i.eq.14) then

 ! write (6,*) np

 !endif

 do j=ns,2,-1

 ! Computation of kij

 zeta_cavg=(zeta_c(j)+zeta_c(j-1))/2

 kij=((zeta_cavg**2-1)/zeta_cavg**2)**

 & (-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*((zeta_cavg**2-(eta(k+1))**2)/

 & (zeta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kij=kij*C

 ! End of kij computation

 if (stn.eq.4) then

! write (6,*) zeta_c(j)

 endif

 St=St-(1/(2.*pi*lambda))*(Vs_c(j)+Vs_c(j-1))/

 & kij*(Tij(zeta_c(j),lambda)-Tij(zeta_c(j-1),

 & lambda))

 enddo

 ! kij for j=1

 zeta_cavg=(zeta0+zeta_c(1))/2

 kij=((zeta_cavg**2-1)/zeta_cavg**2)**

 & (-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*((zeta_cavg**2-(eta(k+1))**2)/

 & (zeta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

69

 kij=kij*C

 ! kij for j=1 computation complete

 Vsi0=St*2.0*pi*lambda*kij/

 & Tij(zeta_c(j),lambda)-Vs_c(1)

 if (Stn.eq.4) then

 !write(6,*) 'zeta_c(j)',zeta_c(j)

 endif

 ci=ci+1

! write (6,*) ci

 enddo

 ! End of vsi0 Loop

 bn=b

 do j=1,1

 bn=bn+delb/10

 enddo

 zb=zc(i)*bn

 np=1

 do k=1,Ke+1

 if(eta(k)*zb>eta(np+1)) then

 np=np+1

 endif

 beta(k,2)=beta(np,1)+(eta(k)*zb-eta(np))/

 & (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1))

 enddo

 betatKe=atan(sin(beta(Ke+1,2)))

 lambda=0.5-betatKe/pi

 Rn=0.

 do k=1,(Ke+1)

 S(k)=tan(beta(k,2))

 if (k.eq.1) then

 hc(k)=0.0

 else

 hc(k)=hc(k-1)+zb*d_eta*S(k)

 endif

 enddo

 do j=1,Ke

 betat=atan(sin(beta(j,2)))

 ! Computation of kij

 eta_cavg=(eta(j+1)+eta(j))/2

 kij=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi)

70

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*abs((eta_cavg**2-(eta(k+1))**2)/

 & (eta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kij=kij*C

 Rn=Rn+2.0/pi*cos(betat)/kij*((hc(j)-

 & S(j)*zb*eta(j))*

 & (Py1(lambda,eta(j+1))-Py1(lambda,eta(j)))+S(j)*zb*

 & (Py2(lambda,eta(j+1))-Py2(lambda,eta(j))))

 enddo

 if(i.eq.1) then

 if (dv.eq.0) then

 V=V0

 if (Rn.gt.R(i-1))then

 dtn=(Rn-R0)/V0

 else

 dtn=dt

 endif

 else

 V=V0+dv*t0

 if (Rn.gt.R(i-1))then

 dtn=1/dV*(-V+sqrt(V**2+2*dv*(Rn-R0)))

 else

 dtn=dt

 endif

 endif

 else

 if (dv.eq.0) then

 V=V0

 if (Rn.gt.R(i-1))then

 dtn=(Rn-R(i-1))/V0

 else

 dtn=dt

 endif

 if(dtn.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then

 dtn=dt

 zccw=zc(i) ! flow separation point

 sepflag=1

 endif

 else

 V=V0+dv*t(i-1,Stn)

 if (Rn.gt.R(i-1))then

 dtn=1/dV*(-V+sqrt(V**2+2*dv*(Rn-R(i-1))))

71

 else

 dtn=dt

 endif

 if(dtn.le.((1.0001*zc(i)-zc(i-1))/Vs(1)))then

 dtn=dt

 zccw=zc(i) ! flow separation point

 sepflag=1

 endif

 endif

 endif

 cn=cn+1

 enddo ! End of dt-dtn verification loop

 betaKep=betaKe11

 nppp=npp

! write (6,*) 'delb/10',delb/10

! write (6,*) 'bn',bn

 else ! CW flow

 sepflag=sepflag+1

 zc(i)=zccw

 ! Updation of definition of b

 do j=1,1

 b=b+delb/10

 enddo

 ! Updation of zb

 zb=b*zc(i)

 ! Updation of Vs array

 do j=i,1,-1

 Vs(j+1)=Vs(j)

 enddo

 Vs(1)=Vsi0

 ! ********************

 vsi0=0. ! Reset for inner loop

 vsi0p=1. ! Reset for inner loop

 ! Time step obtained from previous computations in CW flow

 dt=t(i-1,Stn)-t(i-2,Stn)

 t(i,Stn)=t(i-1,Stn)+dt

 write (96,*) ' cw dt',dt

 ! Updation of zeta matrix

 zeta0=1.

 zeta(i+1)=(Vj*(t(i,Stn)-t0)+zc0*b)/zc(i)

 zeta(i)=(Vj*(t(i,Stn)-t0)+zc0)/zc(i)

72

 do j=1,i-1

 zeta(j)=(vs(j)*(t(i,Stn)-t(i-j,Stn))+zc(i-j))/zc(i)

 enddo

 ! Computation of ns

 ns=0

 do j=1,i+1

 if (b>zeta(j)) then

 ns=ns+1

 else

 ns=j

 exit

 endif

 enddo

 do while ((abs(vsi0-vsi0p)>0.005))

 vsi0p=vsi0

 ! Computation of Vsii

 if ((ns.eq.1).and.(ci.eq.0)) then

 Vsii=Vs(1)

 else if ((ns.eq.1).and.(ci.ne.0)) then

 Vsii=Vsi0+(b-zeta0)/(zeta(1)-zeta0)*

 & (Vs(1)-Vsi0)

 else

 Vsii=Vs(ns-1)+(b-zeta(ns-1))/(zeta(ns)

 & -zeta(ns-1))*

 & (Vs(ns)-Vs(ns-1))

 endif

 ! Velocity matrix for computation

 do j=1,ns-1

 Vs_c(j)=Vs(j)

 enddo

 Vs_c(ns)=Vsii

 ! Zeta matrix for computation

 do j=1,ns-1

 zeta_c(j)=zeta(j)

 enddo

 zeta_c(ns)=b

 ! Computation of zbt

 if(zc(i).lt.1.0) then

 zbt=(Vsii**2-V**2)/(2*Vsii)

73

 else

 zbt=Vsii/2

 endif

 ! Computation of zct

 if (i.eq.1) then

 zct=(zc(1)-zc0)/dt

 else

 zct=(zc(i)-zc(i-1))/dt

 endif

 ! Computation of delbij

 do j=1,1

 delb=((zbt-zct)*dt-j+1)/zc(i)

 enddo

 ! Computation of Vsi0

 St=V

 ! Redefine beta_Ke in terms of zc.

 np=1

 do k=1,Ke+1

 if(eta(k)*zc(i)>eta(np+1)) then

 np=np+1

 endif

 beta(k,2)=beta(np,1)+(eta(k)*zc(i)-eta(np))/

 & (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1))

 enddo

 betatKe=atan(sin(beta(Ke+1,2)))

 lambda=0.5-betatKe/pi

 do j=ns,2,-1

 ! Computation of kij

 zeta_cavg=(zeta_c(j)+zeta_c(j-1))/2

 kij=((zeta_cavg**2-1)/zeta_cavg**2)**

 & (-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*((zeta_cavg**2-(eta(k+1))**2)/

 & (zeta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kij=kij*C

 ! End of kij computation

 St=St-(1/(2.*pi*lambda))*(Vs_c(j)+Vs_c(j-1))/

 & kij*(Tij(zeta_c(j),lambda)-Tij(zeta_c(j-1),

 & lambda))

74

 enddo

 ! kij for j=1

 zeta_cavg=(zeta0+zeta_c(1))/2

 kij=((zeta_cavg**2-1)/zeta_cavg**2)**

 & (-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*((zeta_cavg**2-(eta(k+1))**2)/

 & (zeta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kij=kij*C

 ! kij for j=1 computation complete

 Vsi0=St*2.0*pi*lambda*kij/

 & Tij(zeta_c(j),lambda)-Vs_c(1)

 ci=ci+1

 enddo

 endif ! End of chine wetted / unwetted flow

 write (23,*) t(i,stn)

! write (6,*) i,vsi0,t(i,Stn)

 write (22,*) 'Time =',t(i,Stn)

! write (6,*) 'Time =',t(i,Stn)

 ! *********** COMPUTATION OF CP ************************

 ! Velocity matrix for computation of Cp for present timestep

 ni=i

 do j=ni,1,-1

 Vs_c(j+1)=Vs_c(j)

 enddo

 Vs_c(1)=Vsi0

 ! Zeta matrix for computation of CP

 do j=ni,1,-1

 zeta_c(j+1)=zeta_c(j)

 enddo

 zeta_c(1)=zeta0

 ! ********************************

 !m= Element no. of target element

 np=1

 do k=1,Ke+1

 if(eta(k)*zc(i)>eta(np+1)) then

 np=np+1

75

 endif

 beta(k,2)=beta(np,1)+(eta(k)*zc(i)-eta(np))/

 & (eta(np+1)-eta(np))*(beta(np+1,1)-beta(np,1))

 enddo

 betatKe=atan(sin(beta(Ke+1,2)))

 lambda=0.5-betatKe/pi

 ! Defining VorC(*,2) as the value of the element in the

 ! previous timestep

 do m=1,Ke

 Vorc(m,2)=VorC(m,1)

 VorC(m,1)=0.

 betat=atan(sin(beta(m,2)))

 eta_cavg=(eta(m+1)+eta(m))/2

 kim=((1-eta_cavg**2)/eta_cavg**2)**(-betatKe/pi)

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*abs((eta_cavg**2-(eta(k+1))**2)/

 & (eta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kim=kim*C

 do j=1,ni

 VorS=-(Vs_c(j)+Vs_c(j+1))

 if (m.eq.1) then

 !write (6,*) 'VorS i',j,VorS

 endif

 betat=atan(sin(beta(m,2)))

 !lambda=0.5-betat/pi

 Qij=(eta_cavg**2)*((zeta_c(j+1))**2-1)/

 & ((zeta_c(j+1))**2-(eta_cavg**2))

 call hygfx(lambda,lambda,lambda+1,Qij,SHF)

 Sij(1)=(cos(betat)/(pi*lambda))*(Qij**lambda)

 & *SHF

 Qij=(eta_cavg**2)*((zeta_c(j))**2-1)/

 & ((zeta_c(j))**2-(eta_cavg**2))

 call hygfx(lambda,lambda,lambda+1,Qij,SHF)

 Sij(2)=(cos(betat)/(pi*lambda))*(Qij**lambda)

 & *SHF

 ! Computation of kij

 zeta_cavg=(zeta_c(j+1)+zeta_c(j))/2

 kij=((zeta_cavg**2-1)/zeta_cavg**2)**

 & (-betatKe/pi)

76

 C=1.0

 do k=1,Ke

 betat=atan(sin(beta(k,2)))

 C=C*((zeta_cavg**2-(eta(k+1))**2)/

 & (zeta_cavg**2-(eta(k))**2))**(betat/pi)

 enddo

 kij=kij*C

 VorC(m,1)=VorC(m,1)+kim*VorS*(Sij(1)-Sij(2))/kij

 enddo

 vorc(m,3)=(vorc(m,1)-vorc(m,2))/dt

 enddo

 !write (6,*) 'i =',i

 !write (6,*) '================'

! write (6,*) ' m ',' Cp(m) '

! write (6,*) '==='

 write (22,*) ' m ',' Cp(m) '

 write (22,*) '=='

 do m=1,Ke

 ! Integration of VorC from eta(m) to 1.0

 p=Ke-m

 if(m.le.(Ke-2)) then

 if((p/2)*2.eq.p) then ! Even number of segments

 Intg1=0.

 Intg2=0.

 do k=m+2,Ke-2,2

 Intg1=Intg1+2.0*vorc(k,1)+4.0*vorc(k+1,1)

 Intg2=Intg2+2.0*vorc(k,3)+4.0*

 & vorc(k+1,3)

 enddo

 Intg1=(Intg1+vorc(m,1)+vorc(Ke,1)+4.0*

 & vorc(m+1,1))*d_eta/3.0

 Intg2=(Intg2+vorc(m,3)+vorc(Ke,3)+4.0*

 & vorc(m+1,3))*d_eta/3.0

 else ! Odd number of segments

 Intg1=0.

 Intg2=0.

 do k=m+3,Ke-2,2

 Intg1=Intg1+2.0*vorc(k,1)+4.0*vorc(k+1,1)

 Intg2=Intg2+2.0*vorc(k,3)+4.0*

 & vorc(k+1,3)

 enddo

 Intg1=(Intg1+vorc(m+1,1)+vorc(Ke,1)+4.0*

 & vorc(m+2,1))

 & *d_eta/3.0+(vorc(m+1,1)+vorc(m,1))/2.*d_eta

 Intg2=(Intg2+vorc(m+1,3)+vorc(Ke,3)+4.0*

77

 & vorc(m+2,3))*d_eta/3.0+(vorc(m,3)+vorc(m+1,3))

 & /2.*d_eta

 endif

 elseif (m.eq.(Ke-1)) then

 Intg1=(vorc(m+1,1)+vorc(m,1))/2.*d_eta

 Intg2=(vorc(m+1,3)+vorc(m,3))/2.*d_eta

 else

 Intg1=0.

 Intg2=0.

 endif

 eta_cavg=(eta(m)+eta(m+1))/2.

 Cp(m,i,Stn)=0.25*((VorC(Ke,1))**2-(VorC(m,1))**2)-zct*

 & (Intg1+eta_cavg*VorC(m,1)-VorC(Ke,1))-zc(i)*Intg2

! write (6,*) m,Cp(m,i,Stn)

 write (23,*) Cp(m,i,Stn)

 write (22,*) m,Cp(m,i,Stn)

 enddo

 if (sepflag.ne.1) then

 write (21,*) i,t(i,Stn),vsi0,zc(i),zb,Cp(1,i,Stn)

 else

 write (21,*) i,t(i,Stn),vsi0,zc(i),zb,Cp(1,i,Stn),

 & 'flow separation'

 endif

 enddo ! End of i loop

 write (23,*) zccw

 write (6,*) 'Station ',Stn,' 100% Complete'

 enddo ! End of out Stn loop

 ! Find the minimum time, ie, time that can be analysed

 t_an=t(tm,1)

 do Stn=2,Stnn

 if (t_an>t(tm,Stn)) then

 t_an=t(tm,Stn)

 endif

 enddo

 write (6,*) ''

 write(6,*) 'Analysis data written to cp_rawdata.dat'

 time=0.100

 do Stn=1,Stnn

! write (6,*) 'Stn ',Stn

! write (22,*) 'Stn ',Stn

 ! Cp distribution output

 ! Computation of np

 np=0

 do j=1,tm

 if (time>t(j,Stn)) then

78

 np=np+1

 else

 np=j

 exit

 endif

 enddo

 do k=1,Ke

 Cp_time(k,Stn)=Cp(k,np,Stn)+

 & (Cp(k,np+1,Stn)-Cp(k,np,Stn))/(t(np+1,Stn)-

 & t(np,Stn))*(time-t(np,Stn))

! write (6,*) 'Cp at time',Cp_time(k,Stn)

! write (22,*) 'Cp at time',Cp_time(k,Stn)

 enddo

 enddo

 do j=i,1,-1

 Vs(j+1)=Vs(j)

 enddo

 Vs(1)=Vsi0

 endfile(23)

 close(21)

 close(22)

 close(23)

 close(11)

 close(96)

 end program

 SUBROUTINE HYGFX(A,B,C,X,HF)

C

C ==

C Purpose: Compute hypergeometric function F(a,b,c,x)

C Input : a --- Parameter

C b --- Parameter

C c --- Parameter, c <> 0,-1,-2,...

C x --- Argument (x < 1)

C Output: HF --- F(a,b,c,x)

C Routines called:

C (1) GAMMA for computing gamma function

C (2) PSI for computing psi function

C ==

C

79

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 LOGICAL L0,L1,L2,L3,L4,L5

 PI=3.141592653589793D0

 EL=.5772156649015329D0

 L0=C.EQ.INT(C).AND.C.LT.0.0

 L1=1.0D0-X.LT.1.0D-15.AND.C-A-B.LE.0.0

 L2=A.EQ.INT(A).AND.A.LT.0.0

 L3=B.EQ.INT(B).AND.B.LT.0.0

 L4=C-A.EQ.INT(C-A).AND.C-A.LE.0.0

 L5=C-B.EQ.INT(C-B).AND.C-B.LE.0.0

 IF (L0.OR.L1) THEN

 WRITE(*,*)'The hypergeometric series is divergent'

 RETURN

 ENDIF

 EPS=1.0D-15

 IF (X.GT.0.95) EPS=1.0D-8

 IF (X.EQ.0.0.OR.A.EQ.0.0.OR.B.EQ.0.0) THEN

 HF=1.0D0

 RETURN

 ELSE IF (1.0D0-X.EQ.EPS.AND.C-A-B.GT.0.0) THEN

 CALL GAMMA(C,GC)

 CALL GAMMA(C-A-B,GCAB)

 CALL GAMMA(C-A,GCA)

 CALL GAMMA(C-B,GCB)

 HF=GC*GCAB/(GCA*GCB)

 RETURN

 ELSE IF (1.0D0+X.LE.EPS.AND.DABS(C-A+B-1.0).LE.EPS) THEN

 G0=DSQRT(PI)*2.0D0**(-A)

 CALL GAMMA(C,G1)

 CALL GAMMA(1.0D0+A/2.0-B,G2)

 CALL GAMMA(0.5D0+0.5*A,G3)

 HF=G0*G1/(G2*G3)

 RETURN

 ELSE IF (L2.OR.L3) THEN

 IF (L2) NM=INT(ABS(A))

 IF (L3) NM=INT(ABS(B))

 HF=1.0D0

 R=1.0D0

 DO 10 K=1,NM

 R=R*(A+K-1.0D0)*(B+K-1.0D0)/(K*(C+K-1.0D0))*X

10 HF=HF+R

 RETURN

 ELSE IF (L4.OR.L5) THEN

 IF (L4) NM=INT(ABS(C-A))

 IF (L5) NM=INT(ABS(C-B))

 HF=1.0D0

80

 R=1.0D0

 DO 15 K=1,NM

 R=R*(C-A+K-1.0D0)*(C-B+K-1.0D0)/(K*(C+K-1.0D0))*X

15 HF=HF+R

 HF=(1.0D0-X)**(C-A-B)*HF

 RETURN

 ENDIF

 AA=A

 BB=B

 X1=X

 IF (X.LT.0.0D0) THEN

 X=X/(X-1.0D0)

 IF (C.GT.A.AND.B.LT.A.AND.B.GT.0.0) THEN

 A=BB

 B=AA

 ENDIF

 B=C-B

 ENDIF

 IF (X.GE.0.75D0) THEN

 GM=0.0D0

 IF (DABS(C-A-B-INT(C-A-B)).LT.1.0D-15) THEN

 M=INT(C-A-B)

 CALL GAMMA(A,GA)

 CALL GAMMA(B,GB)

 CALL GAMMA(C,GC)

 CALL GAMMA(A+M,GAM)

 CALL GAMMA(B+M,GBM)

 CALL PSI(A,PA)

 CALL PSI(B,PB)

 IF (M.NE.0) GM=1.0D0

 DO 30 J=1,ABS(M)-1

30 GM=GM*J

 RM=1.0D0

 DO 35 J=1,ABS(M)

35 RM=RM*J

 F0=1.0D0

 R0=1.0D0

 R1=1.0D0

 SP0=0.D0

 SP=0.0D0

 IF (M.GE.0) THEN

 C0=GM*GC/(GAM*GBM)

 C1=-GC*(X-1.0D0)**M/(GA*GB*RM)

 DO 40 K=1,M-1

 R0=R0*(A+K-1.0D0)*(B+K-1.0)/(K*(K-M))*(1.0-X)

40 F0=F0+R0

81

 DO 45 K=1,M

45 SP0=SP0+1.0D0/(A+K-1.0)+1.0/(B+K-1.0)-1.0/K

 F1=PA+PB+SP0+2.0D0*EL+DLOG(1.0D0-X)

 DO 55 K=1,250

 SP=SP+(1.0D0-A)/(K*(A+K-1.0))+(1.0-B)/(K*(B+K-1.0))

 SM=0.0D0

 DO 50 J=1,M

50 SM=SM+(1.0D0-A)/((J+K)*(A+J+K-1.0))+1.0/

 & (B+J+K-1.0)

 RP=PA+PB+2.0D0*EL+SP+SM+DLOG(1.0D0-X)

 R1=R1*(A+M+K-1.0D0)*(B+M+K-1.0)/(K*(M+K))*(1.0-X)

 F1=F1+R1*RP

 IF (DABS(F1-HW).LT.DABS(F1)*EPS) GO TO 60

55 HW=F1

60 HF=F0*C0+F1*C1

 ELSE IF (M.LT.0) THEN

 M=-M

 C0=GM*GC/(GA*GB*(1.0D0-X)**M)

 C1=-(-1)**M*GC/(GAM*GBM*RM)

 DO 65 K=1,M-1

 R0=R0*(A-M+K-1.0D0)*(B-M+K-1.0)/(K*(K-M))*(1.0-X)

65 F0=F0+R0

 DO 70 K=1,M

70 SP0=SP0+1.0D0/K

 F1=PA+PB-SP0+2.0D0*EL+DLOG(1.0D0-X)

 DO 80 K=1,250

 SP=SP+(1.0D0-A)/(K*(A+K-1.0))+(1.0-B)/(K*(B+K-1.0))

 SM=0.0D0

 DO 75 J=1,M

75 SM=SM+1.0D0/(J+K)

 RP=PA+PB+2.0D0*EL+SP-SM+DLOG(1.0D0-X)

 R1=R1*(A+K-1.0D0)*(B+K-1.0)/(K*(M+K))*(1.0-X)

 F1=F1+R1*RP

 IF (DABS(F1-HW).LT.DABS(F1)*EPS) GO TO 85

80 HW=F1

85 HF=F0*C0+F1*C1

 ENDIF

 ELSE

 CALL GAMMA(A,GA)

 CALL GAMMA(B,GB)

 CALL GAMMA(C,GC)

 CALL GAMMA(C-A,GCA)

 CALL GAMMA(C-B,GCB)

 CALL GAMMA(C-A-B,GCAB)

 CALL GAMMA(A+B-C,GABC)

 C0=GC*GCAB/(GCA*GCB)

82

 C1=GC*GABC/(GA*GB)*(1.0D0-X)**(C-A-B)

 HF=0.0D0

 R0=C0

 R1=C1

 DO 90 K=1,250

 R0=R0*(A+K-1.0D0)*(B+K-1.0)/(K*(A+B-C+K))*(1.0-X)

 R1=R1*(C-A+K-1.0D0)*(C-B+K-1.0)/(K*(C-A-B+K))

 & *(1.0-X)

 HF=HF+R0+R1

 IF (DABS(HF-HW).LT.DABS(HF)*EPS) GO TO 95

90 HW=HF

95 HF=HF+C0+C1

 ENDIF

 ELSE

 A0=1.0D0

 IF (C.GT.A.AND.C.LT.2.0D0*A.AND.

 & C.GT.B.AND.C.LT.2.0D0*B) THEN

 A0=(1.0D0-X)**(C-A-B)

 A=C-A

 B=C-B

 ENDIF

 HF=1.0D0

 R=1.0D0

 DO 100 K=1,250

 R=R*(A+K-1.0D0)*(B+K-1.0D0)/(K*(C+K-1.0D0))*X

 HF=HF+R

 IF (DABS(HF-HW).LE.DABS(HF)*EPS) GO TO 105

100 HW=HF

105 HF=A0*HF

 ENDIF

 IF (X1.LT.0.0D0) THEN

 X=X1

 C0=1.0D0/(1.0D0-X)**AA

 HF=C0*HF

 ENDIF

 A=AA

 B=BB

! IF (K.GT.120) WRITE(*,115)

!115 FORMAT(1X,'Warning! You should check the accuracy')

 RETURN

 END

 SUBROUTINE GAMMA(X,GA)

C

C ==

83

C Purpose: Compute gamma function â(x)

C Input : x --- Argument of â(x)

C (x is not equal to 0,-1,-2,úúú)

C Output: GA --- â(x)

C ==

C

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 DIMENSION G(26)

 PI=3.141592653589793D0

 IF (X.EQ.INT(X)) THEN

 IF (X.GT.0.0D0) THEN

 GA=1.0D0

 M1=X-1

 DO 10 K=2,M1

10 GA=GA*K

 ELSE

 GA=1.0D+300

 ENDIF

 ELSE

 IF (DABS(X).GT.1.0D0) THEN

 Z=DABS(X)

 M=INT(Z)

 R=1.0D0

 DO 15 K=1,M

15 R=R*(Z-K)

 Z=Z-M

 ELSE

 Z=X

 ENDIF

 DATA G/1.0D0,0.5772156649015329D0,

 & -0.6558780715202538D0, -0.420026350340952D-1,

 & 0.1665386113822915D0,-.421977345555443D-1,

 & -.96219715278770D-2, .72189432466630D-2,

 & -.11651675918591D-2, -.2152416741149D-3,

 & .1280502823882D-3, -.201348547807D-4,

 & -.12504934821D-5, .11330272320D-5,

 & -.2056338417D-6, .61160950D-8,

 & .50020075D-8, -.11812746D-8,

 & .1043427D-9, .77823D-11,

 & -.36968D-11, .51D-12,

 & -.206D-13, -.54D-14, .14D-14, .1D-15/

 GR=G(26)

 DO 20 K=25,1,-1

20 GR=GR*Z+G(K)

 GA=1.0D0/(GR*Z)

 IF (DABS(X).GT.1.0D0) THEN

84

 GA=GA*R

 IF (X.LT.0.0D0) GA=-PI/(X*GA*DSIN(PI*X))

 ENDIF

 ENDIF

 RETURN

 END

 SUBROUTINE PSI(X,PS)

C

C ======================================

C Purpose: Compute Psi function

C Input : x --- Argument of psi(x)

C Output: PS --- psi(x)

C ======================================

C

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 XA=DABS(X)

 PI=3.141592653589793D0

 EL=.5772156649015329D0

 S=0.0D0

 IF (X.EQ.INT(X).AND.X.LE.0.0) THEN

 PS=1.0D+300

 RETURN

 ELSE IF (XA.EQ.INT(XA)) THEN

 N=XA

 DO 10 K=1 ,N-1

10 S=S+1.0D0/K

 PS=-EL+S

 ELSE IF (XA+.5.EQ.INT(XA+.5)) THEN

 N=XA-.5

 DO 20 K=1,N

20 S=S+1.0/(2.0D0*K-1.0D0)

 PS=-EL+2.0D0*S-1.386294361119891D0

 ELSE

 IF (XA.LT.10.0) THEN

 N=10-INT(XA)

 DO 30 K=0,N-1

30 S=S+1.0D0/(XA+K)

 XA=XA+N

 ENDIF

 X2=1.0D0/(XA*XA)

 A1=-.8333333333333D-01

 A2=.83333333333333333D-02

 A3=-.39682539682539683D-02

 A4=.41666666666666667D-02

85

 A5=-.75757575757575758D-02

 A6=.21092796092796093D-01

 A7=-.83333333333333333D-01

 A8=.4432598039215686D0

 PS=DLOG(XA)-.5D0/XA+X2*(((((((A8*X2+A7)*X2+

 & A6)*X2+A5)*X2+A4)*X2+A3)*X2+A2)*X2+A1)

 PS=PS-S

 ENDIF

 IF (X.LT.0.0) PS=PS-PI*DCOS(PI*X)/DSIN(PI*X)-1.0D0/X

 RETURN

 END

 real function Tij(zeeta1,lambda)

 real*8:: lambda,zeeta1,HA

 call hygfx(lambda,lambda,lambda+1.,1-(zeeta1**2),HA)

 Tij=(((zeeta1**2)-1.0)**(lambda))*HA

 return

 end

 real function Py1(lambda1, eta1)

 real*8::lambda1,eta1,HA

 call hygfx(1.0-lambda1,1.0-lambda1,2.0-

 & lambda1,eta1**2,HA)

 Py1=eta1**(2*(1-lambda1))/(2*(1-lambda1))*HA

 return

 end

 real function Py2(lambda1,eta1)

 real*8::lambda1,eta1,HA

 call hygfx(1-lambda1,1.5-lambda1,2.5-lambda1,eta1**2,HA)

 Py2=eta1**(2*(1.5-lambda1))/(2*(1.5-lambda1))*HA

 return

 end

86

Appendix B: Post processing code for data output by code vsheet228.for

! Post processing program

 program pprocess

 real*8::t_max,t_min,t(450,15),time,Cp(100,450,15),

 & Cp_time(100,15),dzc,zci(15),zc0,dx,Fim(15),zccw(15)

 character(len=1024) :: filename,ffname,dat

 character(len=1024) :: format_string

 integer :: ci,np,tm,Stnn,Ke,kim,Stn

 open (11,file="cp_rawdata.dat",action='read',status='old')

 read (11,*) Stnn

 !write (6,*) Stnn

 read (11,*) tm

 !write (6,*) tm

 read (11,*) Ke

 !write (6,*) Ke

 read (11,*) dzc

 !write (6,*) dzc

 read (11,*) zc0

 !write (6,*) zc0

 do Stn=1,Stnn

 do i=1,tm

 read(11,*) t(i,Stn)

 do m=1,Ke

 read(11,*) Cp(m,i,Stn)

 !write (6,*) Cp(m,i,Stn)

 enddo

 enddo

 read(11,*) zccw(Stn)

 enddo

 close(11)

 write (6,*) ' Impakt v1.0 Postprocessor'

 write (6,*) ' ========================='

 write (6,*) ' Author: A. Benjamin Attumaly'

 write (6,*) ''

 write (6,200,advance='yes')

200 format('Welcome to impakt v1.0 Postprocessor. ')

 write (6,*) 'Raw data completely loaded from data file'

 write (6,*) ''

 t_max=t(tm,1)

87

 do Stn=2,Stnn

 if (t_max>t(tm,Stn)) then

 t_max=t(tm,Stn)

 endif

 enddo

 t_min=t(1,1)

 do Stn=2,Stnn

 if (t_min<t(1,Stn)) then

 t_min=t(1,Stn)

 endif

 enddo

 write(6,100) t_min,t_max

100 format ('Time impact data avaialble between ',F6.4,' and ',

 & F6.4,' seconds.')

 write (6,*) ' '

 write (6,101,advance='no')

101 format ('Enter time to analyze: ')

 read (5,*) time

 ci=0

 do while (time>0.)

 ci=ci+1

 do Stn=1,Stnn

 !write (6,*) Stn

 !write (22,*) Stn

! Cp distribution output

! Computation of np

 np=0

 do j=1,tm

 if (time>t(j,Stn)) then

 np=np+1

 else

 np=j

 exit

 endif

 enddo

 !write (6,*) 'np ',np

 if ((zc0+dzc*np).lt.zccw(Stn)) then

 zci(Stn)=zc0+dzc*np

 ! write (6,*) 'zci ',zci(Stn)

 else

88

 zci(Stn)=zccw(Stn)

 ! write (6,*) 'zci ',zci(Stn)

 endif

 dx=zci(Stn)/Ke

 !write (6,*) dx

 Fim(Stn)=0.

 do k=1,Ke

 Cp_time(k,Stn)=Cp(k,np,Stn)+

 & (Cp(k,np+1,Stn)-Cp(k,np,Stn))/(t(np+1,Stn)-

 & t(np,Stn))*(time-t(np,Stn))

 !Impact force per unit length

 Fim(Stn)=Cp_time(k,Stn)*dx*2+Fim(Stn)

 enddo

 enddo

 if (ci < 10) then

 format_string = "(A8,I1)"

 else if (ci<100) then

 format_string = "(A8,I2)"

 else

 format_string = "(A5,I3)"

 endif

 write (filename,format_string) "timedata", ci

 dat='.dat'

 ffname=(trim(filename)//dat)

 open (12,file=trim(ffname))

 write (12,109) time

109 format('Pressure distribution at time ',F6.4)

 do Stn=1,Stnn

 write (12,103,advance='no') Stn

103 format(' ',I2,' ')

 enddo

 write (12,*) ''

 do Stn=1,10

 write (12,104,advance='no')

104 format('============')

 enddo

 write (12,*) ''

 do Stn=1,Stnn

 write (12,120,advance='no') zci(Stn)

120 format(' ',F9.4,' ')

 enddo

 write (12,*) ''

 do m=1,Ke

89

 if (m<10) then

 write (12,106,advance='no') m

106 format (I1,' ')

 else if (m<100) then

 write (12,107,advance='no') m

107 format (I2,' ')

 else

 write (12,108,advance='no') m

108 format (I3,' ')

 endif

 do Stn=1,Stnn

 write (12,105,advance='no') Cp_time(m,Stn)

105 format(F9.4,' ')

 enddo

 write (12,*) ''

 enddo

 write (6,*) ''

 write (12,*) ''

 do Stn=1,Stnn

 write (6,112) Stn,Fim(Stn)

 write (12,112,advance='no') Stn,Fim(Stn)

112 format('Impact force on station ',I2,' : ',F9.4,' / unit length')

 write (12,*) ''

 enddo

 close(12)

 write (6,*) ''

 write (6,*) 'Cp distribution written to ',trim(ffname)

 write (6,*) ''

 write (6,*) 'Enter a new time point to analyze or ',

 & 'input "0" to quit analysis'

 write (6,*) ''

 write (6,101,advance='no')

102 format ('Enter time to analyze: ')

 read (5,*) time

 enddo

 write (6,*) 'Exiting...'

 endprogram

90

Appendix C1: Input format (inpf.txt) for offset based section definition

5 Number of stations

0.30 Station spacing (Non-dimensionlized on B/2)

 B = Beam of vessel, H = Depth of vessel hullform

6.66 LCF w.r.t 1st station (Non-dimensionlized on B/2)

1 Input 1 for offset based input

20 Number of points in definition of Stn 1

0 0

0.05 0.03

0.1 0.08

0.13 0.16

0.12 0.27

0.06 0.36

0.08 0.46

0.13 0.54 Offsets of Stn 1 (Non-dimensionalized on B/2 and H)

0.17 0.575

0.2 0.6

0.25 0.635

0.3 0.66

0.4 0.71

0.5 0.77

0.6 0.82

0.7 0.875

0.72 0.89

0.77 0.93

0.8 0.955

0.86 1

18 Number of points in definition of Stn 2

0 0

0.05 0.03

0.1 0.07

0.13 0.115

0.15 0.2

0.13 0.32

0.17 0.435

0.2 0.47 Offsets of Stn 2 (Non-dimensionalized on B/2 and H)

0.25 0.51

0.3 0.55

0.4 0.61

0.5 0.67

0.6 0.72

0.7 0.78

0.8 0.85

0.9 0.94

0.93 0.98

0.94 1

15 Number of points in definition of Stn 3

91

0 0

0.05 0.03

0.1 0.06

0.15 0.11

0.2 0.26

0.25 0.395

0.3 0.44

0.4 0.52 Offsets of Stn 3 (Non-dimensionalized on B/2 and H)

0.5 0.58

0.6 0.63

0.7 0.695

0.8 0.77

0.9 0.86

0.95 0.95

0.97 1

15 Number of points in definition of Stn 4

0 0

0.05 0.03

0.1 0.05

0.15 0.09

0.2 0.15

0.25 0.25

0.3 0.33

0.4 0.42 Offsets of Stn 4 (Non-dimensionalized on B/2 and H)

0.5 0.49

0.6 0.54

0.7 0.61

0.8 0.68

0.9 0.79

0.95 0.87

0.99 1

15 Number of points in definition of Stn 5

0 0

0.05 0.015

0.1 0.035

0.15 0.07

0.2 0.115

0.25 0.175

0.3 0.235

0.4 0.335 Offsets of Stn 5 (Non-dimensionalized on B/2 and H)

0.5 0.405

0.6 0.47

0.7 0.535

0.8 0.61

0.9 0.71

0.95 0.78

1 1

92

Appendix C2: Input format (inpf.txt) for angle based section definition

3 Number of stations

0.30 Station spacing (Non-dimensionlized on B/2)

 B = Beam of vessel

6.66 LCF w.r.t 1st station (Non-dimensionlized on B/2)

2 Input 2 for angle based input

20.0 30.0 Definition of Stn 1 (Angle at keel, Angle at hard chine) (deg)

20.0 20.0 Definition of Stn 2

20.0 10.0 Definition of Stn 3

93

VITA

Ashok Benjamin Attumaly was born in Kochi, India, to Basil Benjamin and Merlin Rosely. He

graduated from Kochi Refineries School (Ambalamukal, India) in May 2006 and received his

Bachelor of Technology in Mechanical Engineering from the Indian Institute of Technology

Delhi in August 2010. He will be receiving his graduate degree in Naval Architecture and

Marine Engineering from the University of New Orleans in December 2013.

Benjamin is at present employed as a Naval Architect at North American Shipbuilding in Larose,

LA, where he interned during the previous academic year (Fall 2012-Spring 2013). He has

interned previously at Elliott Bay Design Group in Seattle, WA (Summer 2012) and Garden

Reach Shipbuilders and Engineers Ltd in Kolkata, India (Summer 2008). He has also worked as

an Area Manager for Industrial Sales in New Delhi (Petrochemicals) and Mumbai (Bunker fuels)

with Bharat Petroleum Corporation Limited (2010-2011).

	A Wedge Impact Theory Used to Predict Bow Slamming Forces
	Recommended Citation

	Microsoft Word - 362288-text.native.1384496091.docx

