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Abstract

In battery management systems, the main figure of merit is the battery’s SOC,
typically obtained from voltage and current measurements. Present estimation
methods use simplified battery models that do not fully capture the electrical
characteristics of the battery, which are useful for system design. This thesis studied
SOC estimation for a lithium-ion battery using a nonlinear, electrical-circuit battery
model that better describes the electrical characteristics of the battery. The extended
Kalman filter, unscented Kalman filter, third-order and fifth-order cubature Kalman
filter, and the statistically linearized filter were tested on their ability to estimate
the SOC through numerical simulation. Their performances were compared based
on their root-mean-square error over one hundred Monte Carlo runs as well as the
time they took to complete those runs. The results show that the extended Kalman
filter is a good choice for estimating the SOC of a lithium-ion battery.

Keywords: nonlinear filtering; battery health management; state of charge estimation

ii



Chapter 1
Introduction

Batteries, particularly rechargeable ones, are used extensively in daily life. They

provide the energy for such electrical systems as communication, automotive, and

renewable power systems. In order to design for and operate these systems, an

accurate battery model and a means of simulating the model efficiently are needed.

For example, modern battery charge and health management schemes use high-

fidelity battery models to track the state of charge (SOC) and state of health (SOH);

this information is then used to predict and optimize the runtime of the battery.

However, widely-used chemical batteries have nonlinear capacitive effects, which

require the use of a nonlinear filter for accurate prediction of their states in the

presence of noise. This thesis explores one possible solution to this problem by

choosing an appropriate battery model and testing the accuracy and speed of

various nonlinear filters in determining the SOC through simulation. Note that

only filters using point-based numerical approximation methods were studied, as

opposed to those using density-based methods. See [1] for more information about

the differences between various numerical approximation methods in relationship

to Bayesian filtering.
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1.1 Electrical Characteristics of Rechargeable Batter-

ies

A high-fidelity battery model has to accurately reproduce the various characteristics

of a battery. Most models keep track of the total capacity and SOC in order to

predict remaining runtime. More accurate models include nonlinear effects, such

as the rate-capacity effect and the recovery effect, along with self-discharge and

the effects of ambient temperature. The dynamic electrical attributes, such as the

current-voltage (I-V) characteristics and transient responses, can also be modeled.

The remainder of this section defines these characteristics.

The capacity of a battery is the amount of electric charge it can store, mea-

sured in the SI unit Ampere-hours (Ah). Commonly, for rechargeable battery

specifications, the subunit milliampere-hour (mAh) is used instead. Related is the

available capacity, which is the amount of charge that the battery can currently

deliver. Due to the electrochemical nature of batteries, a battery’s available capacity

decreases as the rate of discharge increases, which is known as the rate-capacity

effect. Therefore, the capacity for a battery is typically stated for a given discharge

rate. Related to this is the recovery effect, so called because when a battery is

allowed to rest during an idle period, the battery “recovers” available capacity

previously lost during discharge because of the rate-capacity effect. Thus, a battery

that is discharged at a high rate until its available capacity reaches zero, when

allowed to rest, regains a portion of its lost capacity.

Both the rate-capacity effect and the recovery effect can be explained by the

electrochemical nature of the battery. During discharge, the concentration of

the active material around the electrode is depleted, and the active materials
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in the depletion region move towards the electrode to reduce the concentration

gradient [2]. Because the speed at which the concentration gradient is equalized is

limited, the faster the rate of discharge, the less the active material is replenished,

resulting in a decrease in the available capacity. Likewise, when the battery is

allowed to rest, the active material gradient has additional time to equalize, and

the available capacity is increased.

Closely related to the capacity is the SOC. This thesis defines it as the ratio

between the remaining capacity and the maximum capacity, with both capacities

measured using the total amount of active material within the battery. Thus, this

definition denotes the proportion of remaining chemical energy rather than the

available chemical energy and is unaffected by the rate-capacity and recovery

effects. Note that a fully charged battery has an SOC of unity and a fully discharged

battery has an SOC of zero, regardless of the available capacity. Additionally, there

exists a nonlinear relationship between the SOC of the battery and its open-circuit

voltage VOC, which is useful for simulation of the I-V characteristics and transient

responses. The VOC is the limit of the measured battery voltage after recovery,

assuming no self-discharge.

Other, more minor effects that are commonly modeled are self-discharge, the

effect of ambient temperature, and aging. Self-discharge refers to the decrease of

an idle battery’s SOC over time due to internal chemical reactions. It is dependent

on the type of battery, SOC, ambient temperatures, and other factors. The ambient

temperature has effects on the internal resistance of the battery and the self-

discharge rate. Commonly, the battery is designed to operate within a narrow

range of temperatures. Below the operating temperature range, the internal

resistance increases, decreasing the capacity. Above the operating range, the

internal resistance decreases, not only increasing the capacity but also the self-
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discharge rate; thus, the deliverable capacity is lowered due to the increased

self-discharge. Aging refers to the decrease in battery performance measures, such

as capacity, self-discharge, and internal resistance, over time due to unwanted

chemical reactions. In practice, aging is indicated by the SOH, defined as the

ratio between the current maximum capacity and that of a new battery. The SOH

threshold at which the battery performance is considered too degraded varies by

application.

This thesis is mainly concerned with estimating the SOC from noisy measure-

ments. The SOH is easier to estimate as it changes slowly over charge cycles, rather

than within each charge cycle. Additionally, no simplified expressions exist for the

SOH, so it is usually determined empirically. Thus, only the estimation of the SOC

was studied by this paper.

1.2 Battery Models

This thesis studied the estimation of the SOC of a battery given knowledge of the

resistive load on the battery as well as noisy measurements of the voltage across

its terminals. A known resistive load profile, rather than the current, was used

because in a real-life usage, it is difficult to exactly control the current drawn by

a load. In order to estimate the SOC for a general load profile, incorporation of

the rate-capacity and recovery effects as well as the transient I-V characteristics

is desirable. Furthermore it is useful to have a model easily tunable for different

battery types. To find a battery model that meets these goals, the major types of

battery models are reviewed and their characteristics are compared. Jongerden

and Haverkort determined four main categories for battery models, namely elec-

trochemical, analytical, stochastic, and electrical-circuit [3]. Additionally, battery
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models that use computational intelligence exist, e.g. [4–8]. The remainder of this

section reviews these five types and determines the most suitable battery model for

this study.

1.2.1 Electrochemical

Electrochemical models describe the chemical processes that take place in the bat-

tery in great detail. These are generally the most accurate, but they require in-depth

knowledge of the chemical processes to create and impose large computational

costs [9]. One of the most widely known electrochemical models was developed by

Doyle, Fuller, and Newman for lithium and lithium-ion batteries using noninvasive

voltage-current cycling experiments [10–12]. It consists of six coupled, nonlinear

differential equations that capture lithium diffusion dynamics and charge transfer

kinetics. The model is able to predict I-V response and provides a design guide for

thermodynamics, kinetics, and transport across electrodes. A implementation of

their model in Fortran, called Dualfoil, is available for free online.1 The program

needs more than 60 parameters along with the load profile in order to compute

the battery properties. Setting the parameters requires detailed knowledge of the

battery, but as a result, the program is highly accurate. It is so accurate that other

battery models are often compared to it rather than to experimental results.

1.2.2 Computational Intelligence

Computational intelligence is a branch of computer science interested in problems

that require the intelligence of humans and animals to solve. One of the earli-

est definitions by Bezdek states that computational intelligent systems use pattern
1J. Newman, Fortran programs for the simulation of electrochemical systems, http://www.cchem.

berkeley.edu/jsngrp/fortran.html, 1998.
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recognition on low-level, numerical data and do not use knowledge as with artificial

intelligence [14, 15]. Methods such as neural networks, fuzzy systems, and evolu-

tionary computation are commonly classified as computational intelligence. Battery

models using such methods as neural networks [5, 6], support vector machines [7],

and hybrid neural-fuzzy models [8] have been studied. These models learn the

nonlinear relationships between battery properties, such as SOC, current, voltage,

and temperature, through a computationally costly training process. However, once

trained, they incur a much lower cost and can achieve comparable accuracy to

electrochemical models.

1.2.3 Analytical

Analytical models are simplified electrochemical models that trade off accuracy for

simplicity. One of the simplest such models is Peukert’s law for lead-acid batteries,

which states that for a one-ampere discharge rate [16]

Cp = Ikt, (1.1)

where Cp is the capacity at a one-ampere discharge rate in Ah, I is the discharge

current in A, t is the time to discharge the battery in hours, and k ≥ 1 is the

dimensionless Peukert constant, typically between 1.1 and 1.3 for a lead-acid battery.

The constant k only equals unity for an ideal accumulator, so for real batteries, k

is always greater than unity. Thus, for a given increase in the discharge current,

the discharge time decreases by a proportionally greater amount. Therefore, the

effective, or available, capacity C × t is reduced. Peukert’s law can be extended to

some other battery chemistries, such as lithium-ion [16]. Note that Peukert’s law

models only the rate-capacity effect and not the recovery effect. More complicated
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models, such as the kinetic battery model and the diffusion model, are able to

describe both effects.

The kinetic battery model (KiBaM), initially created for large lead-acid batteries,

describes the battery as a kinetic process, using two charge wells for the bound and

available charges connected by a valve whose flow rate is proportional to the height

difference between the wells [17]. The change of charge in the wells is given by


dy1
dt

= −I + k (h2 − h1)

dy2
dt

= −k (h2 − h1) ,
(1.2)

where y1, y2 are the charges, h1, h2 are the heights of the wells, the parameter k

controls the rate of charge flow between the wells, and I is the applied load. The

flow rate of the valve should be lower than the typical discharge rate of the battery.

During discharge from the available-charge well, the bound charges flow through

the valve to equalize the heights of the two wells. It can be seen that for slower

discharge rates, more charge flows through the valve and the effective capacity

increases. Likewise, during idle periods, the battery recovers available charge.

Related to the KiBaM is the diffusion model, which describes the movement of

the ions in the electrolyte of a lithium-ion battery [18]. Like in the kinetic battery

model, the difference in the concentration of adjacent ions along the length of the

battery determines the diffusion rate of the ions. The available charges are those

ions directly touching the electrode of the battery. It can be seen that the KiBaM is

a first-order approximation of the diffusion model [9], since the individual ions in

the diffusion model are replaced by two charge wells in the KiBaM.
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1.2.4 Stochastic

Stochastic models describe the discharging and the recovery effect as stochastic

processes. The first models were developed by Chiasserini and Rao and based

on discrete-time Markov chains [19]. They studied two models of a battery in a

communication device that transmitted packets. The simpler model described the

battery as a discrete-time Markov chain withN+1 states, numbered from 0 toN and

corresponding to the number of charge units available in the battery. Transmitting

one packet requires one charge unit of energy. Thus, in continuous transmission,

N packets can be sent. At every time step, a charge unit is either consumed

with probability a1 = q or recovered with probability a0 = 1 − q. The battery is

considered empty when the 0 state is reached or when a theoretical maximum of T

charge units have been consumed. The second model is an extension of the first,

allowing for more than one charge unit to be consumed in a time step, modeling

more bursty usage. Additionally, the battery has a non-zero probability of staying

in the same charge state, indicating no consumption or recovery during a time

step. Chiasserini and Rao extended their model further in following papers by

adding state and phase dependence [2, 20, 21]. The state number is the number

of charge units, and the phase number is the number of consumed charge units.

Having fewer charge units decreases the probability of recovery, while having more

consumed charge units increases the probability of recover. Using these models,

one can model different loads by setting the transition probabilities. However, the

order of the transitions is uncontrollable, so it is impossible to model fixed load

patterns and compute their impact on battery life.

Chiasserini and Rao mainly investigated the gain G in transmitted packets using

a pulsed discharge relative to using a constant discharge, defined as G = m/N ,
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where m is the mean number of transmitted packets. The gain increases when

the load decreases, due to an increase in the recovery probability. Additionally,

the gain increases for lower discharge demand rates and higher current densities.

These load profiles result in discharge currents close to the specified limits of the

battery, causing the available capacity to decrease overly quickly. Therefore, the

recovery effect is especially strong for these cases during pulsed discharge, greatly

increasing the gain. Chiasserini and Rao compared the computation of the gain

parameter for different current densities and demand rates using the stochastic

model to that of the electrochemical model of Doyle et al. They found an average

deviation of 1% and a maximum deviation of 4%. This shows that the stochastic

model accurately describes battery behavior during pulsed discharge. However,

this model is only able to compute relative lifetimes.

In 2005, Rao et al. [22] proposed a stochastic battery model for a nickel-metal

hydride (NiMH) battery based on the Kinetic Battery Model (KiBaM) of Manwell

and McGowan. The differential equations governing the original KiBaM were

modified to include an extra factor h2 governing the flow of charge between the

wells. This changes Equation (1.2) into


dy1
dt

= −I + ksh2 (h2 − h1)

dy2
dt

= −ksh2 (h2 − h1) ,
(1.3)

This change causes the recovery effect to weaken as the remaining charge decreases.

The stochastic model was also modified to allow the possibility of no recovery

during idle periods. The stochastic KiBaM describes the battery using a discrete-

time, transient Markov process. The states are labeled with the parameters (i, j, t),

with i and j representing the discrete charge levels of the available and bound

9



charge wells and t representing the length of the current idle period. Like the

stochastic model of Chiasserini and Rao, it is impossible to fully model a real-life

discharge pattern using the stochastic KiBaM. Rao et al. compared the results of

their model with experimental results using an AAA NiMH battery. Two sets of

experiments were conducted, the first with varying frequency of the load and a

50% duty cycle and the second with varying off-time and a constant on-time. Their

model accurately predicted the lifetime and delivered charge from the battery, with

a maximum error of 2.65%.

1.2.5 Electrical-Circuit

Electrical-circuit models for batteries developed from the discovery of capacitative

effects at the electrode-electrolyte interface. Helmholtz first proposed the existence

of a double layer of charge at the interface in 1879. In 1899, Warburg proposed

a series resistance and capacitance circuit model with an infinitely low current

density. The Warburg capacitance CW named after him varies inversely with the

square root of the frequency [23]. In 1947, Randles proposed a model consisting of

a double-layer polarization capacitance Cp in parallel with the series combination

of a resistor R and a capacitance C [24]. In 1994, Kovacs improved Randles

circuit with the addition of Warburg impedance ZW replacing the capacitance C

and the solution resistance Rs in series with the original Randles circuit [25]. In

addition, he renamed Cp to the double layer capacitance Cdl and R to the charge-

transfer resistance Rct. These proposals came from a desire to represent impedance

spectra created using electrochemical impedance spectroscopy (EIS). The various

elements in the models represent the different processes within a battery, which

have different time constants. While these attempts model the impedance and, thus,

10



account for the nonlinear rate-capacity and recovery effects, they do not consider

the capacity and self-discharge of the battery.

In 1993, Hageman created simplified electrical-circuit models using PSpice

for nickel-cadmium (NiCd), lead-acid, and alkaline batteries [26]. The circuits

shared the common elements of i) a capacitor that represents the battery capacity,

ii) a discharge rate normalizer that determines the additional capacity loss at

high discharge rates, iii) a circuit that discharges the battery, iv) a lookup table of

battery voltage versus SOC, and v) a resistor that represents the battery’s internal

resistance [26, 27]. In addition, battery models for NiCd batteries simulated the

thermal effects under high discharge rates. The main lookup table is formed by

discharging a battery at a low rate at a constant current (20 to 200 hours). At high

discharge rates, the discharge rate normalizer reduces the battery voltage below

the value from looking up the SOC in the table. This normalizer is implemented

using additional lookup tables. These circuit models were much simpler than

electrochemical models, but they were also less accurate with an approximate error

of 10%. Furthermore, creation of the lookup tables requires considerable data.

These circuit-based models were used to estimate the remaining discharge time

and are referred to as runtime-based models.

In 2006, Chen and Rincón-Mora proposed a combination of a runtime-based

model and an impedance-based model consisting of a series resistor and two parallel

resistor-capacitor networks [28]. A schematic for their model is shown in Figure 2.1.

The elements of the impedance part of the model had parameters that depended on

the SOC. Additionally, the runtime model included a resistance that modeled the

self-discharge rate. Their proposed model has the advantage of accurate prediction

of the SOC using the runtime-based portion while also modeling nonlinear transient

effects, such as the rate-capacity and recover effects, with the impedance-based

11



portion. Furthermore, the battery data can be collected using EIS measurements,

which requires neither detailed knowledge of the battery chemistry nor lengthy,

low-rate discharge experiments.

1.2.6 Evaluation

Of the model types, only some are fit for use with filtering algorithms. The

computational-intelligence and stochastic models do not adequately describe the

dynamics of the battery system for use in the filters covered by this study. On the

other hand, electrochemical, analytical, and electrical-circuit models do describe

the system dynamics in a compatible manner. Furthermore, they model the nonlin-

ear rate-capacity and recovery effects. Of these, only the electrical-circuit model has

the advantage of modeling the internal impedance of the battery, which is useful in

the design of battery systems. The relevant characteristics of the model types are

summarized in Table 1.1. It can be seen that electrical-circuit models are the most

suitable for this study. Among them, the proposal by Chen and Rincón-Mora is most

appropriate for the purposes of this thesis, because it is the only one discussed by

this paper that describes both the capacity and the transient effects. Therefore, their

proposed model is used for simulating the battery and comparing the performance

Table 1.1: Summary of relevant characteristics of various battery model types.

Model Type Dynamics
Nonlinear

Effects
Transient

Effects
I-V

Characteristics
Design

Difficulty

Electrochemical Y Y Y N High
Computational

Intelligence N Y Y N High

Analytical Y Y N N Low
Stochastic N Y N N Low
Electrical-Circuit Y Y Y Y Medium
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of different filters.

1.3 Nonlinear Filtering Methods

Filtering refers to the methodology for estimating the state of a time-varying system

that is indirectly observed through noisy measurements. Specifically, the state at the

current time is estimated using the measurements from the current and previous

times. The state of a system is a group of dynamic variables that evolve through

time, and its evolution through time is governed by a dynamic system, perturbed by

process noise. The measurements are functions of the state and the measurement

noise.

Systems are classified as either linear or nonlinear. The state dynamics and

measurements of a linear system are linear functions of the state, inputs, and noises.

Particularly, the superposition principles of additivity and homogeneity are satisfied

by a linear system. Nonlinear systems do not satisfy the principle of superposition

because the functions defining the systems are not all linear, i.e. some are nonlinear.

A battery can be modeled as a nonlinear, time-varying system, with state variables

that describe such states as the SOC and the SOH. The measurements are typically

the voltage and the current. Note that the SOH was not considered by this thesis

for reasons described in Section 1.1, so this thesis assumes the battery system is

time-invariant. Additionally, only the voltage was measured since a known resistive

load was used as an input to the system in place of the current measurement. This

replacement was done because a piecewise constant discharge profile is convenient

for simulation purposes and it is more realistic to have a constant discharge load

than a constant discharge current. A state-space representation of the battery

system proposed by Chen and Rincón-Mora in [28] is described in more detail in
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the following chapter.

For linear systems, the optimal filtering solution with respect to the minimum

mean squared error (MMSE) is given by the least squares solution, meaning the

least squares solution equals the posterior mean. For the Gaussian case, the best

estimate is given by a linear MMSE (LMMSE) estimator, of which the Wiener filter

for wide-sense stationary signals [29] is an example. In 1960, Kalman generalized

Wiener filtering to non-stationary, discrete-time signals [30], with continuous-time

versions derived later on. Like the Wiener filter, the Kalman filter is a sequential,

LMMSE estimator. For the special case of Gaussian noise, the Kalman filter is the

MMSE estimator. Its solution procedure is as follows. Consider a linear system in

discrete time with n states and m measurements defined by

xk = Fkxk−1 +Bkuk + Lwk (1.4)

zk = Hkxk +Mvk, (1.5)

where x ∈ Rn, u ∈ RNu , and z ∈ Rm are vectors of the state variables, known inputs,

and measurements, respectively; w ∼ N (0, Qk), Qk ∈ RNw×Nw , and v ∼ N (0, Rk),

Rk ∈ RNv×Nv are normally distributed noise variables; F ∈ Rn×n, B ∈ Rn×Nu,

H ∈ Rm×n, L ∈ Rn×Nw , and M ∈ Rm×Nv are matrices; and a subscript k on a

variable indicates the value of that variable at time tk, where tk = t0 + kδ and δ is

the time step. First, the Kalman filter propagates the estimates of the state variables

x̂ and the estimation covariances P ∈ Rn×n according to

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (1.6)

Pk|k−1 = FkPk−1|k−1F
>
k + LQkL

>, (1.7)
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where (̂ ) indicates the estimated value. Then, the estimates are updated using the

measurements according to

z̃k = zk −Hkx̂k|k−1 (1.8)

Sk = HkPk|k−1H
>
k +MRkM

> (1.9)

Kk = Pk|k−1H
>
k S
−1
k (1.10)

x̂k|k = x̂k|k−1 +Kkz̃k (1.11)

Pk|k = (I −KkHk)Pk|k−1. (1.12)

Note that it was assumed the noises were Gaussian. Under this assumption, the

Kalman filter produces the optimal solution in the maximum likelihood (ML) and

the maximum a posterior (MAP) senses, in addition to in the MMSE sense. However,

the Gaussian assumption is unnecessary for the Kalman filter to produce the LMMSE

estimate for a general linear system.

For nonlinear systems, optimal filtering solutions are generally intractable, so

various numerical approximation methods have been developed. Chen describes

seven categories of such methods, namely Gaussian/Laplace approximation, it-

erative quadrature, multigrid method and point-mass approximation, moment

approximation, Gaussian sum approximation, deterministic sampling approxima-

tion, and Monte Carlo sampling approximation [1]. Note that only filters using

point-based numerical approximation methods were studied, as opposed to those

using density-based methods. This was done because typical battery management

systems do not have the computational power to employ costly density-based

methods, and point-based methods use the simple LMMSE update of the Kalman

filter. Point-based and density-based methods are also known as local and global
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approaches, respectively. Additionally, only filters using methods from the two

most popular categories of Gaussian approximation and deterministic sampling

approximation [31] were used to further limit the scope of this study.

Gaussian approximation operates by assuming the posterior distribution is

Gaussian. Then, the Taylor-series-based extended Kalman filter (EKF) [32] or the

Gaussian-describing-function-based statistically linearized filter (SLF) [33] can be

used. Li and Jilkov state that the EKF approximates the nonlinear dynamic and

measurement functions, while the SLF simplifies the nonlinear stochastic system

to a linear system so that linear filtering results are applicable [31]. Deterministic

sampling methods are special numerical methods that estimate the mean and

covariance. This category includes the unscented Kalman filter (UKF) [34] and

the cubature Kalman filter (CKF) [35]. The main advantage of the deterministic

sampling methods is they are derivative-free. The remainder of this section details

the general implementation of these filters for a discrete-time system of the form

xk = fd(xk−1,uk) + L(xk−1,uk)wk (1.13)

zk = h(xk,uk) +M(xk,uk)vk, (1.14)

where f ∈ Rn and h ∈ Rm are nonlinear vector functions, L ∈ Rn×Nw and M ∈

Rm×Nv are nonlinear matrix functions, and the input u is assumed to be piecewise

constant, meaning u(t) = u(tk) = uk for tk−1 < t ≤ tk. An implicit, first-order

Taylor-Heun numerical integration method was used to discretize the continuous-

time dynamics f of the chosen battery model. In particular, an iterated integration

procedure was used, as was done by Särkkä [36]. For the iterations, a superscript

of (i) indicates the ith step of a M -step iterative integration scheme. Note that

x̂
(0)
k−1 = x̂k−1 and x̂

(M)
k−1 = x̂k. The specifics of the discretization along with the
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notation used are discussed in Section 2.2.

1.3.1 Extended Kalman Filter

One of the most popular nonlinear filters is the extended Kalman filter (EKF), which

approximates the nonlinear state and measurement functions using Taylor series

expansion. This study uses the first-order expansion for the EKF. The prediction

step follows the discretization approach proposed by Mazzoni [37] to numerically

approximate the continuous-time dynamics in Equation (2.35) and the continuous-

time estimate covariance differential equation

Ṗ = F (x,u)P + PF>(x,u) + L(x,u)QL>(x,u), (1.15)

with the Jacobian F = ∂f/∂x. The discretization fd of f is given in Section 2.2, and

the discretion of the estimate covariance matrix is as follows. Note that an M -step

iterative integration method was used for the discretization of f . Thus, a similar

iterative procedure was used for the discretion of the estimate covariance matrix.

For a time step of δ = (tk − tk−1)/M , where M is a positive integer, the prediction

step consists of M iterations of the following equations:

x̂
(i)
k−1|k−1 = fd(x̂

(i−1)
k−1 ,uk, δ, i) (1.16)

P
(i)
k−1|k−1 = P

(i−1)
k−1|k−1 +Gτ

{
F (x̂τ ,uk)P

(i−1)
k−1|k−1 + P

(i−1)
k−1|k−1F

>(x̂τ ,uk)

+ L(x̂τ ,uk)QτL
>(x̂τ ,uk)

}
G>τ δ,

(1.17)

where tτ = tk−1 + δ(i+ 1/2),

Gτ =

(
I − F (x̂τ ,uk)

δ

2

)−1
, (1.18)
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and

x̂τ =
1

2

(
x̂
(i−1)
k−1 + x̂

(i)
k−1 − F (x̂

(i)
k−1,uk)f(x̂

(i)
k−1)

δ2

4

)
. (1.19)

The iteration given by Equations (1.16) and (1.17) is repeated M -times to complete

the prediction step. It can be seen that the differential equation for the covariance

matrix was approximated using a modified Gauss-Legendre formula with an implicit

increment rule, following Mazzoni. The numerical approximations for the state

and covariance are both A-stable, which is necessary for the chosen battery model,

and consistent to the first-order. The update equations for the EKF come from the

LMMSE filter and are

Kk = Pk|k−1H
>
k

(
HkPk|k−1H

>
k +M(x̂k)RkM

>(x̂k)
)−1

(1.20)

x̂k|k = x̂k|k−1 +Kk

(
zk − h(x̂k|k−1)

)
(1.21)

Pk|k = (I −KkHk)Pk|k−1, (1.22)

with the Jacobian H = ∂h/∂x.

1.3.2 Unscented Kalman Filter

The unscented Kalman filter (UKF) is an efficient, generally derivative-free filtering

algorithm that relies on the unscented transformation (UT). The UT is useful for

forming the Gaussian approximation to the joint distribution of random variables

x and y for x ∼ N (m,P ) and y = g(x), where x ∈ Rn, y ∈ Rm, and g : Rn 7→ Rm

is a nonlinear function. Then, the first and second moments corresponding to

the mean and covariance can be easily found. Specifically, suppose the Gaussian
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approximation of the joint probability density of x and y has the form

x
y

 = N


m
µU

 ,
 P CU

C>U SU


 . (1.23)

Then, the UT picks 2n+ 1 sample points {xi}, commonly known as sigma points,

along with the same number of weights {wi}, as follows [38]. First, the sigma

points are chosen from the columns of the matrix
√

(n+ λ)P , giving

x(0) = mx (1.24)

x(i) = mx +
[√

(n+ λ)P
]
i
, i = 1, . . . , n (1.25)

x(i) = mx −
[√

(n+ λ)P
]
i−n

, i = n+ 1, . . . , 2n (1.26)

with the weights

W
(m)
0 =

λ

n+ λ
(1.27)

W
(c)
0 =

λ

n+ λ
+ (1− α2 + β) (1.28)

W
(m)
i = W

(c)
i =

1

2(n+ λ)
, i = 1, . . . , 2n. (1.29)

The parameter λ is defined as

λ = α2(n+ κ)− n, (1.30)

and the constants α, β, and κ are parameters of the method. For the UKF, α is a

small positive number, e.g. 10−3, β = 2 is ideal for a Gaussian distribution, and κ is
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typically 0. Each sigma point is transformed by

y(i) = g(x(i)), i = 0, . . . , 2n. (1.31)

Then, the moments are approximated by

µU =
2n∑
i=0

W
(m)
i y(i) (1.32)

SU =
2n∑
i=0

W
(c)
i (y(i) − µU)(y(i) − µU)> (1.33)

CU =
2n∑
i=0

W
(c)
i (x(i) −m)(y(i) − µU)>. (1.34)

The square root of the positive definite matrix P is defined as a matrix A such

that P = AA>. Note that A is not unique. For performance reasons, the Cholesky

factorization is typically used.

Let the described UT algorithm be denoted by

[µU , SU , CU ] = UT(g,m, P ). (1.35)

Then, for the discretized system in Equations (1.13) and (1.14), for an M -step

numerical integration scheme, the prediction step for the UKF can be written as

[x̂
(i)
k−1|k−1, P̃

(i)
k−1|k−1] = UT(fd, x̂

(i−1)
k−1|k−1, P

(i−1)
k−1|k−1) (1.36)

P
(i)
k−1|k−1 = P̃

(i)
k−1|k−1 + L(x̂

(i)
k−1|k−1)QkL

>(x̂
(i)
k−1|k−1), (1.37)

(1.38)

where the equations are performed for i = 1, . . . ,M . Then, the update step is given
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by

[µk, S̃k, Ck] = UT(h, x̂k|k−1, Pk|k−1) (1.39)

Sk = S̃k +M(x̂k|k−1)RkM
>(x̂k|k−1) (1.40)

Kk = CkS
−1
k (1.41)

x̂k|k = x̂k|k−1 +Kk(zk − µk) (1.42)

Pk|k = Pk|k−1 −KkSkK
>
k . (1.43)

Note that the mean and covariances were estimated using the UT, and the update

is equivalent to the LMSSE update used in the Kalman filter.

For numerical stability reasons, this study employed a change to the above UKF

procedure as suggested by Julier et al. [39]. In Equation (1.36), the covariance is

estimated by

P̃k|k−1 =
2n∑
i=0

W
(c)
i (x̂

(i)
k|k−1 − x̂

(0)
k|k−1)(x̂

(i)
k|k−1 − x̂

(0)
k|k−1)

>, (1.44)

where the covariance is evaluated about the projected mean rather than the

weighted mean. This change ensures the positive definiteness of the covariance

matrix, as required by the definition of covariance. Another change, discovered by

the author, that results in better numerical stability and lower MSE is the estimation

of the cross-covariance in Equation (1.39) by

Ck =
2n∑
i=0

W
(c)
i (χ̂

(i)
k|k−1 − χ̂

(0)
k|k−1)(ẑ

(i)
k − µk)

>, (1.45)

where χ̂(i)
k|k−1 are the sigma points whose weighted average is x̂k|k−1. Note that

similar to Equation (1.44), the cross-covariance is evaluated about the projected
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mean x̂
(0)
k|k−1 and the weighted mean µk. The increase in stability and accuracy

with the change in Equation (1.45) was discovered through experimentation. The

reason for the improvement is unknown, but the change was used to produce the

simulation results.

1.3.3 Cubature Kalman Filter

The cubature Kalman filter (CKF) is similar to the UKF except that it uses the

spherical-radial cubature rule rather than the UT to approximate the Gaussian inte-

grals. Indeed, the prediction and update steps of the CKF follow Equations (1.36)

to (1.43) except that the UT algorithms in Equations (1.36) and (1.39) are replaced

by the corresponding cubature algorithm. This thesis explores the third-order

and fifth-order CKFs, whose implementations are discussed in the following two

sections.

1.3.3.1 Third-Order CKF

The third-order spherical-radial CKF of Arasaratnam et al. [35, 40] is a special case

of the UKF with α = 1, β = 0, and κ = 0. The third-order cubature rule chooses 2n

cubature points, giving [35]

x(i) = mx +
[√

nP
]
i
, i = 1, . . . , n (1.46)

x(i) = mx −
[√

nP
]
i−n

, i = n+ 1, . . . , 2n, (1.47)
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where the matrix square root is computed using Cholesky factorization, as in the

UT. Then, the moments are approximated by

µU =
1

2n

2n∑
i=1

y(i) (1.48)

SU =
1

2n

2n∑
i=1

(y(i) − µU)(y(i) − µU)> (1.49)

CU =
1

2n

2n∑
i=1

(x(i) −m)(y(i) − µU)>. (1.50)

The prediction and update steps follow Equations (1.36) to (1.43) with the UTs

in Equations (1.36) and (1.39) replaced by the third-order cubature rule given by

Equations (1.46) to (1.50). The resulting third-order CKF is exact for polynomials

of order three. Compared to the UKF, the third-order CKF is numerically more stable

due to its positive weights. While the UKF has some desirable theoretical properties,

its weights can be negative, causing numerical problems in some cases [36].

To increase numerical stability and accuracy, a change similar to that in Equa-

tion (1.45) was used, giving

Ck =
1

2n

2n∑
i=0

(χ̂
(i)
k|k−1 − x̂k|k−1)(ẑ

(i)
k − µk)

>, (1.51)

where χ̂(i)
k|k−1 are the cubature points whose average is x̂k|k−1. This change was

verified through experimentation to produce better results.

1.3.3.2 Fifth-Order CKF

The fifth-order spherical-radial CKF is a higher-order extension of the third-order

CKF that is exact for polynomials of order five. Its cubature rule chooses 2n2 + 1
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cubature points, giving [41, 42]

x(0) = mx (1.52)

x(i) = mx +
[√

n+ 2ei

]
, i = 1, . . . , n (1.53)

x(i) = mx −
[√

n+ 2ei−n

]
, i = n+ 1, . . . , 2n (1.54)

x(i) = mx +
[√

n+ 2s+i−2n

]
, i = 2n+ 1, . . . , 2n+

n(n− 1)

2
(1.55)

x(i) = mx −
[√

n+ 2s+i−2n−n(n−1)/2

]
, i = 2n+

n(n− 1)

2
+ 1, . . . , 2n+ n(n− 1)

(1.56)

x(i) = mx +
[√

n+ 2s−i−2n−n(n−1)

]
, i = 2n+ n(n− 1) + 1, . . . , 2n+

3n(n− 1)

2

(1.57)

x(i) = mx −
[√

n+ 2s−i−2n−3n(n−1)/2

]
, i = 2n+

3n(n− 1)

2
+ 1, . . . , 2n2, (1.58)

where ei are the columns of the Cholesky factorization
√
P and

s±i =

{
1√
2

(ej ± ek) : j < k; j, k = 1, 2, . . . , n

}
(1.59)

are scaled linear combinations of the columns ei. The weights on the points are

W0 =
2

n+ 2
(1.60)

Wi =
4− n

2(n+ 2)2
, i = 1, . . . , 2n (1.61)

Wi =
1

(n+ 2)2
, i = 2n+ 1, . . . , 2n2. (1.62)
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Then, moments are approximated by

µU =
2n2∑
i=0

Wiy
(i) (1.63)

SU =
2n2∑
i=0

Wi(y
(i) − µU)(y(i) − µU)> (1.64)

CU =
2n2∑
i=0

Wi(x
(i) −m)(y(i) − µU)>. (1.65)

As in the third-order CKF, the prediction and update steps follow Equations (1.36)

to (1.43) with the UTs in Equations (1.36) and (1.39) replaced by the fifth-order

cubature rule given by Equations (1.53) to (1.65). Note that unlike the third-order

CKF and like the UKF, the weights of the fifth-order CKF can be negative.

As in the third-order CKF, to increase numerical stability and accuracy, a change

similar to that in Equation (1.45) was used, giving

Ck =
2n2∑
i=0

Wi(x̂
(i)
k|k−1 − x̂k|k−1)(ẑ

(i)
k − µk)

>. (1.66)

where χ̂(i)
k|k−1 are the cubature points whose weighted average is x̂k|k−1. This change

was verified through experimentation to produce better results.

1.3.4 Statistically Linearized Filter

In the statistically linearized filter (SLF), the nonlinear state and measurement

functions are statistically linearized to minimize the MSE. Then, the resulting

linear system can be filtered using the linear Kalman filter. Specifically, given
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x ∼ N (m,P ), the nonlinear function f(x) is linearized as [31, 33, 43]

f(x) ≈ b + A(x−m), (1.67)

where the parameters b and A are chosen to minimize the error

MSE(b, A) = E
[
‖f(x)− b− A(x−m)‖2

]
. (1.68)

Differentiating the MSE expression and setting the derivatives to zero, produces

the optimal values

b = E[f(x)] (1.69)

A = E[f(x)(x−m)>]P−1. (1.70)

These values reproduce the mean exactly but the covariance is an approximation.

The expectations can be calculated analytically or numerically. Due to the dif-

ficulty of finding the analytical forms of the expectations, this study chooses to

approximated them numerically using the third-order spherical-radial cubature

rule described in Section 1.3.3.1, which has the advantages of numerical stability

and low computational complexity compared to the UT and fifth-order cubature

rule, respectively. The cubature approximation results in

bx = E[fd(x)] ≈ 1

2n

2n∑
i=1

fd(x
(i)) (1.71)

Ax = E[f(x)(x−m)>]E[(x−m)(x−m)>]−1 = E[F (x)] ≈ 1

2n

2n∑
i=1

F (x(i)) (1.72)
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for the expectations of the state mean and covariance and

bz = E[h(x)] ≈ 1

2n

2n∑
i=1

h(x(i)) (1.73)

Az = E[h(x)(x−m)>]E[(x−m)(x−m)>]−1 = E[H(x)] ≈ 1

2n

2n∑
i=1

H(x(i))

(1.74)

for the expectations of the measurement state and covariance, where the cubature

points come from the columns of
√
nP . With the given statistically optimal lin-

earization, the resulting linear system can be filtered using a procedure similar to

the linear Kalman filter. The prediction phase, for an M -step numerical integration

scheme, consists of peforming the following equations M times for i = 1, . . . ,M

using the notation from Section 2.2:

x̂
(i)
k−1|k−1 = b

x̂
(i−1)
k−1|k−1

(1.75)

P
(i)
k−1|k−1 = A

x̂
(i−1)
k−1|k−1

P
(i−1)
k−1|k−1A

>
x̂
(i−1)
k−1|k−1

+ L(x̂
(i−1)
k−1|k−1,u)QkL

>(x̂
(i−1)
k−1|k−1,u), (1.76)

where the above equations are iterated over i = 1, . . . ,M . Note that the form is

very similar to the Kalman filter prediction steps given by Equations (1.6) and (1.7),

where E[x−m] = 0 has been used to simplify the calculation for x̂k|k−1. The update

phase consists of

Sk = AzPk|k−1A
>
z +M(x,u)RkM

>(x,u) (1.77)

Kk = Pk|k−1A
>
z S
−1
k (1.78)

x̂k|k = x̂k|k−1 +Kk(zk − bz) (1.79)

Pk|k = (I −KkAz)Pk|k−1. (1.80)
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Again, this is very similar to the Kalman filter update steps given by Equations (1.8)

to (1.12). The SLF is similar to the EKF in the sense that its equations have a similar

form to the Kalman filter equations. In fact, ignoring the numerical approximation

of the expectations, the SLF uses first-order Fourier-Hermite series expansion to

approximate the nonlinear functions whereas the EKF uses Taylor series expansion.

Furthermore, the SLF implementation of this study uses the same mean estimation

method as the third-order CKF. The covariance estimation differs because the SLF

uses information about the first derivatives of the state and measurement functions.
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Chapter 2
Problem Setup

2.1 Battery Model

As discussed in the previous section, this thesis considers the electrical-circuit

battery model proposed by Chen and Rincón-Mora [28] shown in Figure 2.1. The

left portion of the circuit models the capacity, SOC, and runtime, while the right

portion models the transient I-V characteristics. For convenience, the model is

designed so that the SOC of the battery equals the voltage VSOC, in volts. The

parameters Ccap and Rsd are assumed constant for a given battery and determine

icell

icell + +

+

+
− −

−

−

Rsd

VSOC

Ccap VOC Vcell

Rs

Rts

Cts

Vts

Rtl

Ctl

Vtl

Figure 2.1: Electrical-circuit battery model.
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the capacity and self-discharge rate of the battery. The other parameters are all

nonlinear functions of VSOC and determine the transient I-V response as well as

the open-circuit voltage VOC. From a typical TCL PL-383562 polymer lithium-ion

battery, Chen and Rincón-Mora extracted these parameters experimentally and fit

them to curves, obtaining

Rs(VSOC) = 0.1562e−24.37VSOC + 0.07446 (2.1)

Rts(VSOC) = 0.3208e−29.14VSOC + 0.04669 (2.2)

Cts(VSOC) = −752.9e−13.51VSOC + 703.6 (2.3)

Rtl(VSOC) = 6.603e−155.2VSOC + 0.04984 (2.4)

Ctl(VSOC) = −6056e−27.12VSOC + 4475 (2.5)

VOC(VSOC) = −1.031e−35VSOC + 3.685 + 0.2156VSOC − 0.1178V 2
SOC + 0.3201V 3

SOC

(2.6)

The resistance and capacitance parameters shown above are approximately constant

for SOC > 0.2 and change exponentially for SOC < 0.2. The open-circuit voltage

also changes exponentially for SOC < 0.2 but is approximately linear for SOC > 0.2.

Note that the capacitances Cts and Ctl are negative for SOC values close to zero,

which is both unrealistic according to the experimental data collected by Chen and

Rinón-Mora and mathematically problematic. To solve this, a lower bound was

placed on the VSOC input to the capacitance functions. Thus, for inputs below some

threshold value vT , the capacitances are adjusted to their value at that threshold,
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producing

Ĉts(VSOC) =


Cts(VSOC), VSOC ≥ vT

Cts(vT ), VSOC < vT

(2.7)

Ĉtl(VSOC) =


Ctl(VSOC), VSOC ≥ vT

Ctl(vT ), VSOC < vT

(2.8)

The threshold vT was chosen based on the experimental data of Chen and Rinón-

Mora, specifically so that the threshold capacitance values are approximately

equal to the lowest such values measured by them. A threshold of vT = 0.015 V

accomplishes this goal.

This study used the nonlinear parameters given by Chen and Rincón-Mora for

the implementation of a battery using their battery model in Matlab. In addition,

the thresholding defined in Equations (2.7) and (2.8) was used with vT = 0.015 V.

The other, constant parameters were chosen to produce a capacity of 1 Ah and a

self-discharge rate of 4% per month. To do so, the capacitance Ccap was calculated

to hold the desired capacity when VSOC = 1 V, and then the resistance Rsd was set

to produce the desired self-discharge rate. For a given capacity of C† in Ah, Ccap is

Ccap =
Q

VSOC
=
C†

1 V
= 3600C† [F]. (2.9)

Next, the resistance Rsd is chosen so that the time constant τ = RC results in the

desired drop of ξ = 0.04 over T = 1 month as follows

V (t) = V0e
−T/τ = V0(1− ξ) (2.10)

τ = −T/ ln(1− ξ) = −2592000/ ln 0.96 [s]. (2.11)
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Then, Rsd = τ/Ccap. Thus, the parameters are Ccap = 3600 F and Rsd = 17.6376 kΩ.

In order to simulate the use of the modeled battery, discharging and charging

loads were implemented, as shown in Figures 2.2. For discharging, a resistive load

RL is placed across the battery terminals, creating a discharge rate of icell = Vcell/RL.

For charging, a negative resistance −RL, where RL > 0, is used, creating a charging

current of −icell = Vcell/RL. Thus, any arbitrary charging or discharging current

can be set by choosing the appropriate resistance RL. Furthermore, an open circuit

can be simulated by choosing RL sufficiently large so that icell ≈ 0. Additional

consideration has to be taken to ensure that the constant current and constant

voltage charging conditions in standard charging procedure can be produced using a

negative resistance. Typically, the specific battery modeled by the given parameters

is charged at a rate of C5/5 until a terminal voltage of 4.2 V is reached, where

C5/5 is the discharge rate at which a full battery is completely discharged in five

hours [44]. Then, the battery is charged at a constant voltage of 4.2 V until the

icell

Vcell

+

−

RL

(a)

icell

Vcell Vo

+

+
+

−

−

−

|RL|

R1

R1

(b)

Figure 2.2: Loads to (a) discharge and (b) charge the battery.
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charging current is below C5/20. The constant current condition can be met by

varying RL so that Vcell/RL stays constant, while the constant voltage condition is

met by varying RL so that icellRL stays constant.

This use of the load RL to control the current icell means it is the input to the

system. Moreover, the measurable outputs of the system are Vcell and icell. However,

since knowledge of one of them along with RL allows for the calculation of the

other, the two outputs have a known relationship between them. Therefore, only

one of the outputs is necessary to fully define the input-output relationship of the

system. In this study, the voltage Vcell was chosen as the measured output as is

typical for single-measurement battery system models.

For ease of numerical simulation, it is useful to find the state-space system for

the circuit. The state-space representation is derived using the physical variable

definition, in which the state variables are chosen to represent the voltages across

the capacitors. Choosing x1 = VSOC, x2 = Vts, and x3 = Vtl achieves this goal and

results in the state-space representation

ẋ1 = − x1
RsdCcap

− VOC(x1)− x2 − x3
(Rs(x1) +RL)Ccap

+ fw,1(x, RL,w) (2.12)

ẋ2 = − x2
Rts(x1)Cts(x1)

+
VOC(x1)− x2 − x3

(Rs(x1) +RL)Cts(x1)
+ fw,2(x, RL,w) (2.13)

ẋ3 = − x3
Rtl(x1)Ctl(x1)

+
VOC(x1)− x2 − x3

(Rs(x1) +RL)Ctl(x1)
+ fw,3(x, RL,w) (2.14)

Vcell =
VOC(x1)− x2 − x3

1 +Rs(x1)/RL

+ fv(x, RL,v), (2.15)

where RL is the input to the system, Vcell is the output, fw is the process noise

function, fv is the measurement noise function, and the nonlinear parameters

depending on x1 are given by Equations (2.1) to (2.6) along with the thresholding

defined in Equations (2.7) and (2.8). It is obvious from this formulation that the
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system is nonlinear to both the input and the states. In order to establish the noise

expressions, the types of noise present in the battery have to first be determined.

This thesis assumed that the process and measurement noises in this system are

due to thermal noise in the resistances for the internal impedance of the battery

Rs, Rts, and Rtl, and for the load RL. This was motivated by measurements of the

voltage noise in batteries conducted by Boggs et al. that showed the measured noise

is mainly due to thermal noise since shot noise is suppressed by the correlation

between the battery terminals [45]. This thermal noise was assumed to be Gaussian

white noise with a power spectral density (PSD) of [46]

Sn(ω) ∼= 2kT watts per Hz for |ω| � 2πkT/h, (2.16)

where T is the temperature of the conducting medium in Kelvin, k is the Boltz-

mann’s constant, and h is the Planck’s constant. Figure 2.3 shows that the thermal

noise due to the resistances modeled as voltage sources in series with the resis-

tances, with PSDs of Sv(ω) = 2kTR for a corresponding resistance R. Using this

definition, the noise functions are given by

icell

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

VOC Vcell

Rs

Rts

Cts

Vts

Rtl

Ctl

Vtl

RL

vns

vnts
vntl

vnL

Figure 2.3: Modeling of thermal noise in resistances as voltage sources in series
with the resistances.
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fw,1 =
vns + vnL

(Rs(x1) +RL)Ccap
(2.17)

fw,2 =
vnts

Rts(x1)Cts(x1)
− vns + vnL

(Rs(x1) +RL)Cts(x1)
(2.18)

fw,3 =
vntl

Rtl(x1)Ctl(x1)
− vns + vnL

(Rs(x1) +RL)Ctl(x1)
(2.19)

fv = − vns + vnL

1 +Rs(x1)/RL

. (2.20)

It can be seen that the resistances change over time, which causes the PSD of the

sources vn to also change. For the purposes of modeling, it is useful to define noise

variables that have constant PSDs. Using the square root of the power supplied

by the noise sources as the noise variables accomplishes this goal and produces

the variables w1 = vns/
√
Rs, w2 = vnts/

√
Rts, w3 = vntl

/
√
Rtl, and w4 = vnL

/
√
|RL|

along with v1 = vns/
√
Rs and v2 = vnL

/
√
|RL|, which all have constant PSDs of

2kT . Note the use of the absolute value of RL in the definition of w4 and v2, since

RL can become negative. In the case of RL < 0, their PSDs remain at 2kT while

the sign of vnL
is negated, which is implemented in the system using the signum

function, defined as

sgn(x) :=


−1 if x < 0

0 if x = 0

1 if x > 0.

(2.21)

Then, the state space representation of the system becomes

ẋ1 = − x1
RsdCcap

−
VOC(x1)− x2 − x3 −

√
Rs(x1)w1 − sgn(RL)

√
|RL|w4

(Rs(x1) +RL)Ccap
(2.22)

ẋ2 = −
x2 −

√
Rts(x1)w2

Rts(x1)Cts(x1)
+
VOC(x1)− x2 − x3 −

√
Rs(x1)w1 − sgn(RL)

√
RLw4

(Rs(x1) +RL)Cts(x1)

(2.23)
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ẋ3 = −
x3 −

√
Rtl(x1)w3

Rtl(x1)Ctl(x1)
+
VOC(x1)− x2 − x3 −

√
Rs(x1)w1 − sgn(RL)

√
RLw4

(Rs(x1) +RL)Ctl(x1)

(2.24)

Vcell =
VOC(x1)− x2 − x3 −

√
Rs(x1)v1 − sgn(RL)

√
RLv2

1 +Rs(x1)/RL

. (2.25)

It can be seen that the system can be written in the form

ẋ(t) = f(x(t),u(t),
√
Qw(t)) (2.26)

z(t) = h(x(t),u(t),
√
Rv(t)), (2.27)

where x is the state, u is the input, f is the nonlinear differential equation for the

state, h is the nonlinear measurement function, and w and v are scaled Wiener

processes used to represent the integral of the Gaussian white-noise noise sources.

Specifically, the Wiener processes were scaled by the square roots of Q = 2kTI4 and

R = 2kTI2, where their diagonals are the values of the PSDs of the noise sources

and In is the n-dimensional identity matrix. It is useful to find the derivatives of

f and h with respect to x, w, and v for use with the filters. This thesis defines

the Jacobians F = ∂f/∂x, H = ∂h/∂x, L = (∂f/∂w)/
√
Q, and M = (∂h/∂v)/

√
R.
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Their equations are

F =



−1

RsdCcap
+

(V oc− x2 − x3)R′s
− (Rs +RL)V ′OC

(Rs +RL)2Ccap

(RtsCts)
′x2

RtsCts
+

(Rs +RL)CtsV
′

OC

− (V oc− x2 − x3)
[
(Rs +RL)Cts

]′[
(Rs +RL)Cts

]2
(RtlCtl)

′x3
RtlCtl

+

(Rs +RL)CtlV
′

OC

− (V oc− x2 − x3)
[
(Rs +RL)Ctl

]′[
(Rs +RL)Ctl

]2
. . .

1

(Rs +RL)Ccap

1

(Rs +RL)Ccap

. . .
−1

RtsCts
+

−1

(Rs +RL)Cts

−1

(Rs +RL)Cts

. . .
−1

(Rs +RL)Ctl

−1

RtlCtl
+

−1

(Rs +RL)Ctl


(2.28)

H =

 (1 +Rs/RL)V ′OC
− (VOC − x2 − x3)R′s/RL

(1 +Rs/RL)2
−1

1 +Rs/RL

−1

1 +Rs/RL

 (2.29)

L =



√
Rs

(Rs +RL)Ccap
0 0

sgnRL

√
|RL|

(Rs +RL)Ccap

−
√
Rs

(Rs +RL)Ccap

√
Rts

RtsCts
0

− sgnRL

√
|RL|

(Rs +RL)Ccap

−
√
Rs

(Rs +RL)Ccap
0

√
Rtl

RtlCtl

− sgnRL

√
|RL|

(Rs +RL)Ccap


(2.30)

M =

[
−
√
Rs

1 +Rs/RL

− sgnRL

√
|RL|

1 +Rs/RL

]
, (2.31)

where ( )′ indicates derivation with respect to x1 and the dependence on x1 has

been omitted due to space constraints. Furthermore, it is useful to find the Hessian
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of f with respect to x. Due to symmetry and ∂2fk/∂xi∂xj = 0 for i, j = 2, 3, only

the first column of each tensor component of the Hessian is given. The resultant

Hessian is

∂2f1
∂xi∂x1

=



(Rs +RL)
[
(VOC − x2 − x3)R′′s − (Rs +RL)V ′′OC

]
− 2R′s

[
(VOC − x2 − x3)R′s − (Rs +RL)V ′OC

]
(Rs +RL)3Ccap

−R′s
(Rs +RL)2Ccap

−R′s
(Rs +RL)2Ccap


(2.32)

∂2f2
∂xi∂x1

=



{
RtsCts(RtsCts)

′′

−
[
(RtsCts)

′]2}x2
(RtsCts)2

+

(Rs +RL)Cts
{

(Rs +RL)CtsV
′′

OC − (VOC − x2 − x3)
[
(Rs +RL)Cts

]′′}
+ 2
[
(Rs +RL)Cts

]′{
(Rs +RL)CtsV

′
OC − (V oc− x2 − x3)

[
(Rs +RL)Cts

]′}[
(Rs +RL)Cts

]3
(RtsCts)

′

RtsCts
+

[
(Rs +RL)Cts

]′[
(Rs +RL)Cts

]2
[
(Rs +RL)Cts

]′[
(Rs +RL)Cts

]2


(2.33)

∂2f3
∂xi∂x1

=



{
RtlCtl(RtlCtl)

′′

−
[
(RtlCtl)

′]2}x3
(RtlCtl)2

+

(Rs +RL)Ctl
{

(Rs +RL)CtlV
′′

OC − (VOC − x2 − x3)
[
(Rs +RL)Ctl

]′′}
+ 2
[
(Rs +RL)Ctl

]′{
(Rs +RL)CtlV

′
OC − (V oc− x2 − x3)

[
(Rs +RL)Ctl

]′}[
(Rs +RL)Ctl

]3
[
(Rs +RL)Ctl

]′[
(Rs +RL)Ctl

]2
(RtlCtl)

′

RtlCtl
+

[
(Rs +RL)Ctl

]′[
(Rs +RL)Ctl

]2


(2.34)

Moreover, based on the forms of the Jacobians L and M , the battery system can be

written as

ẋ(t) = f(x(t),u(t)) + L(x(t),u(t))
√
Qw(t) (2.35)
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zk = h(xk,uk) +M(xk,uk)
√
Rv(tk)δ, (2.36)

where Q and R are defined the same as in Equations (2.26) and (2.27), In is

the n × n identity matrix, and δ = tk − tk−1 is the time step for the discrete-

time measurements. Note that the state dynamics are in continuous-time. The

discretization of the continuous-time dynamics for use with the filters is discussed

in the next section. Additionally, for convenience, the quantity
√
Rv(tk)δ will be

referred to as vk. Note that vk ∼ N (0, δR) is a Gaussian random variable whose

covariance is the PSD of the measurement noise sources scaled by the time step.

2.2 Discretization of System Dynamics

In the prediction phases of the filters, the expected value of the continuous-time

differential equation for the state in Equation (2.35) needs to be computed. In

order to find the state x(tk) from the state x(tk−1), assuming the input is constant,

the equation can be solved numerically. Assume that the discretized system has the

form

ẋk = fd(xk−1,uk) + L(xk−1,uk)
√
Qw(tk)δ. (2.37)

For convenience, let wk =
√
Qw(tk)δ, where δ = tk − tk−1 is the time step. Note

that wk ∼ N (0, δQ) is a Gaussian random variable whose covariance is the PSD of

the process noise sources scaled by the time step. Additionally, recall that vk is also

a Gaussian random variable. Then, the discrete-time system is given by

ẋk = fd(xk−1,uk) + L(xk−1,uk)wk (2.38)

zk = h(xk,uk) +M(xk,uk)vk, (2.39)
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where wk ∼ N (0, 2kTδI4) and vk ∼ N (0, 2kTδI2). The scaling of the covariances

by δ is from the conversion of the continuous-time Wiener processes to the discrete-

time Gaussian random variables.

Särkkä and Solin state that a linearized discretization approach, in which the

continuous-time system is first discretized and then approximated as Gaussian,

tends to work better than a discretized linearization approach, in which the system

is first approximated as a Gaussian process and then discretized [36]. This thesis

follows this guideline and performs the prediction using linearized approximations

of a discretization of the continuous-time dynamics. To increase the accuracy of

the discretized integration in the prediction phase, the sampling period is divided

into M steps of equal length and the integration is performed in M steps. The

motivation for this iterated integration comes from the definition of order for an

Itô-Taylor expansion of a stochastic differential equation. An expansion is said to

be strongly convergent with order β if for any positive integer M and time interval

[tk−1, tk], the error of the M -step approximation satisfies [47]

E

[
sup

t∈[tk−1,tk]

|x(t)− x̂(M)(t)

]
≤ λ(δ(M))β, (2.40)

where x(t) is exact solution, x(M)(t) is the M -step approximation, δ = (tk−tk−1)/M

and λ is a constant uniform in M . It can be seen that the error of the approximation

decreases as the number of integration steps M increases.

Furthermore, note that the system is extremely stiff based the definition of the

stiffness ratio as the ratio of the largest eigenvalue of F to its smallest eigenvalue,

where F is the Jacobian of the dynamics f(x,u); when the stiffness ratio is much

greater than unity, the system is stiff [48, 49]. From EIS studies of batteries, the

major chemical processes have widely differing time constants; low frequency mass
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transport effects like diffusion are on the order of 10−6 to 100 Hz, middle frequency

effects caused by charge transfer and the electrochemical double layer are on the

order of 100 to 103 Hz, and the high frequency conductance and skin effects are

on the order of 103 to 104 Hz [50]. Therefore, the approximate stiffness ratio

is 1010 � 1, and the system is stiff. As a result of the stiffness, any numerical

integration method needs to be A-stable, i.e. the method converges for all systems

whose eigenvalues have negative real parts. For example, simulation results show

that the fourth-order Runge-Kutta method diverges even at step sizes < 10−2

seconds.

This thesis uses the linearized discretization approach proposed by Mazzoni,

in which the differential equation is first discretized and then approximated using

Taylor series expansion [37]. This approach has the advantage of A-stability. The

discretization is performed using the trapezoidal approximation (Heun’s method)

of Equation (2.35), where E[wk] = 0 is used so that only the integration of f

needs to be considered. For convenience, denote the value of a quantity at time

tk using the subscript k and assume that δ = tk − tk−1 is the time step. Then, the

approximation produces

xk ≈ xk−1 +
1

2

(
f(xk−1,uk) + f(xk,uk)

)
δ. (2.41)

The vector field f at xk is approximated by first-order Taylor expansion around

xk−1, giving

xk ≈ xk−1 + f(xk−1,uk)δ +
1

2
F (xk−1,uk) (xk − xk−1) δ, (2.42)
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where F (xk−1,uk) is the Jacobian of f at xk−1. Solving for xk yields

xk ≈ xk−1 +

(
I − F (xk−1,uk)

δ

2

)−1
f(xk−1,uk)δ, (2.43)

with the identity matrix I. This Taylor-Heun scheme uses linear Taylor expansion of

f rather than then Euler prediction of the standard Heun scheme. It is convergent

with order O(δ2) and A-stable [37]. Furthermore, this approximation is equivalent

to the Itô-Taylor expansion of order β = 0.5 [47]. This means the accuracy of the

integration can be improved by iterating the integration over multiple steps, using

a procedure similar to that of Särkkä [36], as follows. Choose some positive integer

M and let x(i)
k−1 denote the ith iteration of the M -step integration method from xk−1

to xk, where i = 1, . . . ,M . Note that x(0)
k−1 = xk−1 and x

(M)
k−1 = xk. Additionally, let

δ = (tk − tk−1)/M . Then, the following procedure is iterated from i = 1 to M :

x
(i)
k−1 = x

(i−1)
k−1 +

(
I − F (x

(i−1)
k−1 ,uk)

δ

2

)−1
f(x

(i−1)
k−1 ,uk)δ. (2.44)

This thesis refers to each step of the M -step integration procedure as

x
(i)
k−1 = fd(x

(i−1)
k−1 ,uk, δ, i), (2.45)

where δ == (tk − tk−1)/M is the time step for each iteration and i = 1, . . . ,M is

the current iteration. For convenience, the result of the iterative integration is

referred to as xk = fd(xk−1,uk). This iterated numerical integration was used in

the prediction steps of the filters.
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2.3 Simulation Setup

In order to simulate the stochastic system, the covariances of the noises as well

as their generation and simulation methods have to be determined. This thesis

assumed that a standard temperature of T = 290 Kelvin. Therefore, the PSDs of

the white Gaussian noise processes are σ2 = 2kT = 8.0078 × 10−21 W/Hz. The

covariances of the Gaussian noises in the discrete-time system are scaled versions

of the PSDs. Specifically, the value of the constant PSDs are scaled by the discrete

time step δ. Note that due to the use of a multi-step integration method for the

discretization of the dynamics, the time step is scaled by the number of integration

steps M . Therefore, the covariances in Equations (2.38) and (2.39) are

Q = 2kTδI4/M (2.46)

R = 2kTδI2. (2.47)

Furthermore, to better differentiate the performance of the filters, additional

measurement noise was introduced assuming an oscilloscope was used to perform

the measurement. Specifically, consider the Tektronix TBS1022 oscilloscope with

a DC gain accuracy of ±3% of the full range. Based on numerical simulations, an

approximate range of 4 V peak-to-peak is necessary to fully capture the range of

possible Vcell values, resulting in a measurement inaccuracy of ±0.12 V. This noise

is assumed to be normally distributed with the range laying within three standard

deviations. Thus, an additional measurement noise variable v3 is introduced with a

variance of

σ2
v3

=

(
0.12 V

3

)2

= 0.0016 V2. (2.48)
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Note that this value already takes into account the discrete-time measurement.

Then, the new measurement covariance matrix is

R = diag(2kTδ, 2kTδ, 0.0016), (2.49)

and the corresponding Jacobian M = (∂h/∂v) is

M =

[
−
√
Rs

(Rs +RL)Ccap

− sgnRL

√
|RL|

(Rs +RL)Ccap
1

]
. (2.50)

In order to numerically simulate the effect of white noise on a system, the simulation

time step must be sufficiently smaller than the time constant of the fastest battery

process. This is approximated as the product of the constant terms of the functions

for Rts and Cts, halved to satisfy Nyquist conditions. Then, the simulation time step

is taken to be 1/100 of the calculated maximum time step, as suggested by Matlab

documentation [51]. Thus, the simulations used a time step of

δsim =
Rts,const.Cts,const.

200
=

0.04669× 703.6

200
= 0.164255 s. (2.51)

Simulation showed that the resulting time step is sufficiently small to capture the

effects of the white noise, i.e. further reducing the step size had negligible effect.

With the chosen step size, the noise was simulated as band-limited white Gaussian

noise with a correlation time equal to the step size. At each time step, the noise

values for the process noise sources were generated using random number gener-

ators producing normally-distributed numbers with means of zero and variances

equal to the diagonals of the covariance matrix divided by the correlation time. The

scaling of the variance by the correlation time ensures the response of the system

to the approximate white noise has the same covariance as it would have to actual
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white noise. Note that the oscilloscope measurement noise is bandlimited not by

the system but by the measurement device, in this case an oscilloscope. Thus, the

calculated variance already takes into account the measurement bandwidth of the

oscilloscope and scaling is unnecessary.

The simulation of the battery was done in a 64-bit installation of MATLAB 2012b

on a computer running 64-bit Windows 7. For reproducibility, the random number

generators were seeded with predictable numbers. This was done in MATLAB by

first seeding the main random number generator with a seed of 0. Then, for each

Monte Carlo trial, five positive integers were generated, for the five noise sources,

with the integers uniformly distributed between 1 and 232 − 1. These integers were

used to seed the random number generators in a Simulink model. The use of the

Simulink model allows for the random number generators to be easily seeds with

different integers without affecting the predictable sequence in MATLAB.

Then, the battery was simulated using a Simulink model with the fourth-order

Runge-Kutta method and an initial condition of x0 = [1, 0, 0]>. A total of 100 Monte

Carlo runs of the battery were performed with seed values for the noise sources

generated using the method mentioned in the previously. Figure 2.4 shows the

input load on the battery system, where the values off the graph are idle periods,

simulated using a very large input of RL = 1010 Ω so that the battery current is

approximately zero. It can be seen that the input is piecewise constant. This input

was chosen to to test the performance of the filters by gradually increasing the

strength of the nonlinear rate-capacity and recovery effects. Note that care was

taken to ensure the SOC remained within the range of zero to one, so discharge

and charge times could not always be equal. Initially, the battery was idle for

10 minutes to allow the estimated covariances of the filters to converge. Then,

the battery was discharged and charged at RL = 20 Ω for 290 and 270 minutes,
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Figure 2.4: Input load RL on the battery.

respectively. The resulting low current from this load is approximately the testing

current C5/5 used to determine battery capacity, as discussed in Section 2.1. In

order to increase the strength of the nonlinear effects, the absolute value of the

current was increased by decreasing the input to RL = 10 Ω and discharging and

charging for 150 minutes, each. Then, the input was further reduced to RL = 5 Ω

and discharged and charged for 80 minutes and 70 minutes, respectively. Next, the

battery was discharged and charged at RL = 4 Ω for 60 minutes, each. Following

were discharge and charge periods at RL = 2 Ω for 35, 25, 25, 20, 25, 25, 20, and

15 minutes. The high current resulted in very strong rate-capacity effects. Finally,

the battery was rested for 70 minutes, discharged at RL = 2 Ω for 25 minutes,
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rested for 75 minutes, and charged at RL = 10 Ω for 135 minutes. The two resting

periods should show the strongest recovery effect. The total input time was 1635

minutes.

The SOC and the noisy measurement of Vcell resulting from the given input for

one Monte Carlo trial are shown in Figures 2.5 and 2.6, respectively. Note that the

noisy measurement has a similar form to the SOC, with increases and decreases in

the measured Vcell corresponding to increases and decreases in the SOC, respectively.

This is explained by recalling that the open-circuit voltage VOC is a function of the

SOC and that the measurement Vcell is the sum of VOC, the nonlinear and transient

effects, and measurement noise. The nonlinear and transient effects along with
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Figure 2.5: True SOC for one run due to input load.
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Figure 2.6: Noisy measurement Vcell for one run.

the measurement noise are generally small enough that the variation of VOC as a

function of the SOC can be seen.

The Monte Carlo trials used varying sampling periods, calculated as some

multiple K of the simulation step size. For example, for a desired sampling period

of 300 seconds, the actual sampling period is

Ts = Kδsim = 1826× 0.164255 s = 299.93 s, (2.52)

where the factor K is chosen to minimize the difference between the desired

and actual periods. For convenience, the sampling period will refer to the actual
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sampling period calculated in this manner. The sampling periods used in this study

were 30, 150, and 300 seconds.

2.4 Filtering Setup

This thesis studied five filters, namely the EKF, UKF, third-order CKF (CKF3),

fifth-order CKF (CKF5), and SLF. The EKF used Equations (1.16) to (1.22). The

UKF used Equations (1.36) to (1.43) along with the changes in Equations (1.44)

and (1.45). The CKF3 used Equations (1.46) to (1.50) along with the change in

Equation (1.51). The CKF5 used Equations (1.53) to (1.65) along with the change

in Equation (1.66). Finally, the SLF used Equations (1.71) and (1.80).

The only filter with tunable parameters was the UKF. Parameter values of

α = 0.05, β = 2, and κ = 0 were used, where the values were chosen to be the

typical values for a Gaussian distribution. It was noticed that α could not be too

small for this problem; otherwise, the covariance matrix quickly loses positive

definiteness. The choice of α was a compromise between the typical choice of

a small value and the stability gained from a larger value. Additionally, as α

approaches 1, the UKF becomes very similar to the third-order CKF used by this

thesis, so the chosen value is on the small side to better differentiate the two filters.

The filtering was performed assuming an initial state of x0 = [1, 0, 0]> and an initial

covariance matrix of P0 = 10−6I3, where the initial state was chosen to match the

actual state and the initial covariance was experimentally tuned for stability and

fast convergence.

The filters used in this study were implemented in Fortran for speed reasons.

The programs used LAPACK 3.5.0 and were compiled using gfortran 4.8 for a 32-bit

Cygwin environment on a computer running 64-bit Windows 7 with optimization
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flags of -O3. Due to the large size of the data, the input and output were performed

using files. The time measurements were of the CPU time used by the filters,

disregarding the time taken to read and write the data. The use of CPU time

results in less variability between runs. Additionally, to increase the accuracy of

the discretized integration in the prediction steps, the sampling period was divided

by a positive integer M and the integration was performed in M steps. Thus, the

prediction and update portions of the filters could be calculated at different rates.
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Chapter 3
Filtering Results

3.1 Performance Measures

This study was concerned with the accuracy and speed of the nonlinear filters for

estimation of the SOC. The accuracy of the estimation was measured using the

mean RMSE (MRMSE). Recall that the state variable x1 represents the SOC. The

other two state variables don’t directly represent physical properties of the battery

and are less useful in battery management, so they are ignored in determining the

RMSE. However, the filters probably resulted in comparable error in their estimates

as in the SOC estimates. For the SOC, the RMSE is defined as

RMSE(kTs) =

√√√√ 1

Ntrials

Ntrials∑
j=1

(
x̂
(j)
1 (kTs)− x(j)1 (kTs)

)2
, (3.1)

where Ts is the sample period, the superscript (j) indicates the jth Monte Carlo

trial, and the squared error is averaged over the Monte Carlo trials. Additionally,

recall that Ntrials = 100 Monte Carlo trials were used in this study. Note that the

defined RMSE is a function of discrete time steps. Then, the MRMSE is the mean of
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the RMSE over the time steps, giving

MRMSE =
1

N

N∑
k=1

RMSE(kTs), (3.2)

where N is the total number of time steps at which the filtering was performed.

Note that the MRMSE is a nonnegative number, and it is desirable for a filter to

produce an estimate with a small MRMSE, indicating a more accurate estimate. An

additional measure of accuracy is the number of trials in which the filter estimate

diverged. A divergence was considered to be an absolute error in the estimated

SOC greater than 0.1 V or any failure in the filtering process, such as due to a

non-invertible matrix or a non-positive definite covariance matrix. In addition,

after a filter failed in a trial, the filtering process was halted for that trial, and the

remainder of the SOC values were assumed to be the worst case of zero, i.e. a

fully discharged battery. Furthermore, the speed of a filter was measured using the

CPU time it took to complete the Monte Carlo trials. This time is the sum of the

times used by the filter program on each of the CPU cores. The use of the CPU time

results in less variability between runs compared to the clock time. In addition, the

time taken to read and write the data was not counted, since that time should be

the same for all the filters and this study was concerned about the computational

complexity of the filters.

The remainder of this chapter shows the filtering results for sampling periods Ts

of 30, 150, and 300 seconds. Additionally, integration steps of M = 1, 2, 4, . . . , 256

were used for each sampling period. For each sampling period, the number of diver-

gences and filtering times are displayed as a function of the number of integration

steps. Then, the MRMSEs are plotted for those integration steps that have zero

divergences. Finally, the RMSEs are plotted as a function of time for the least and
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most numbers of integration steps that produce zero divergences. Note that the

absolute errors of the filters in each run were not plotted, but they were studied.

For each filter, the absolute errors in the runs were generally close to their RMSE

when the runs were all divergence-free. Thus, it was determined that plotting the

absolute errors was unnecessary.

3.2 Sampling Period of 30 Seconds

From Table 3.1, it can be seen that the filters had no divergences for M = 4, . . . , 64.

For small M , all filters diverged, as expected. However, the UKF and the CKF3 also

diverged for large M , which can be explained by numerical problems arising from

the large number of integration steps. The times shown in Table 3.2 show that the

EKF was by far the fastest, about three to four times the speed of the next fastest,

the SLF. Additionally, the EKF was about five times the speed of the UKF and the

CKF3 and more than twelve times the speed of the CKF5. The slowness of the CKF5

was a result of using about three times as many cubature points as the CKF3.

Table 3.1: Number of divergences in 100 Monte Carlo runs for Ts = 30 seconds as
a function of number of integration steps M

Filter/M 1 2 4 8 16 32 64 128 256

EKF 88 56 0 0 0 0 0 0 0
UKF 91 8 0 0 0 0 0 3 26
CKF3 96 6 0 0 0 0 0 0 1
CKF5 100 95 0 0 0 0 0 0 0
SLF 100 100 0 0 0 0 0 0 0

Figure 3.1 shows the MRMSE as a function of the number of integration steps

over the divergence-free range. It can be see that the EKF result showed a decrease

over this range as expected. However, the other results had minimum error at
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Table 3.2: Filtering time in seconds for 100 Monte Carlo runs for Ts = 30 seconds
as a function of number of integration steps M

Filter/M 1 2 4 8 16 32 64 128 256

EKF 4.253 5.017 4.951 9.708 19.32 38.8 77.11 154 307.9
UKF 4.834 11.85 23.65 47.24 93.46 186.5 373.1 732.9 1274
CKF3 4.221 10.61 21.1 41.33 82.57 165 328.2 657.9 1317
CKF5 9.533 28.82 59.49 117.8 234.9 468.8 937.9 1873 3748
SLF 4.521 6.52 16.35 32.11 63.43 126.7 252.1 503.5 1006

M = 16, with an increase in error for larger M . This could be due to numerical

errors that also caused divergences for large M in the case of the UKF and the

CKF3. The global minimum error was produced by both the CKF5 and the SLF

at M = 16. Interestingly, the EKF resulted in the largest error for that number of

integration steps out of all the filters.

For comparison purposes, the RMSEs at M = 4 and 64 are shown in Figures 3.2

and 3.3. The sharp changes in the RMSEs occured when the battery switched

between charging and discharging. The period of high error corresponds to the

high-rate charge and discharge period that resulted in the strongest nonlinear

effects. Due to the higher nonlinearity, the filters were less accurate at estimating

the SOC. For M = 4, the EKF had lower error initially during the high-rate charge

and discharge period from about k = 1900 to 2300, but its error reached those of

the other filters near the end of that period. The other filters had very comparable

errors. For M = 64, the EKF had higher median error, but its lower worst case error

resulted in the slightly lower MRMSE. The other filters were again very close in

error, with the UKF having slightly higher error on average.
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Figure 3.1: MRMSE of SOC estimation for Ts = 30 seconds as a function of number
of integration steps M .
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Figure 3.2: RMSE of SOC estimation for Ts = 30 seconds and M = 4.
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Figure 3.3: RMSE of SOC estimation for Ts = 30 seconds and M = 64.
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3.3 Sampling Period of 150 Seconds

From Table 3.3, it can be seen that the filters had no divergences for M =

16, . . . , 256. For small M , all filters diverged, as expected. For large M , there

were no divergences, unlike with Ts = 30 seconds. The times in Table 3.4 show

that the EKF was again the fastest with a similar ratio between the speeds as with

Ts = 30 seconds.

Table 3.3: Number of divergences in 100 Monte Carlo runs for Ts = 150 seconds as
a function of number of integration steps M

Filter/M 1 2 4 8 16 32 64 128 256

EKF 100 100 98 77 0 0 0 0 0
UKF 100 100 100 100 0 0 0 0 0
CKF3 100 100 100 100 0 0 0 0 0
CKF5 100 100 100 100 0 0 0 0 0
SLF 100 100 100 100 0 0 0 0 0

Table 3.4: Filtering time in seconds for 100 Monte Carlo runs for Ts = 150 seconds
as a function of number of integration steps M

Filter/M 1 2 4 8 16 32 64 128 256

EKF 0.544 2.359 6.297 7.787 3.868 7.753 15.49 30.97 61.67
UKF 0.6749 1.185 2.414 6.983 18.81 37.53 74.89 149.8 299.2
CKF 0.499 1.173 2.147 6.098 16.49 33.09 66.08 131.9 264.1
CKF5 2.949 5.709 10.93 22.49 47.34 94.14 188.2 377.6 753.7
SLF 0.873 1.655 3.217 6.352 12.7 25.39 50.63 101 201.9

Figure 3.4 shows the MRMSE as a function of the number of integration steps

over the divergence-free range. It can be seen that the errors decreased as the

number of integration steps increased, and the rate of decrease was roughly the

same for all five filters. The EKF resulted in the least error by far, with its MRMSE

at M = 16 approximately equal to the MRMSEs of the other filters at M = 256. For

58



small M , the UKF had the second smallest error, and the two CKFs and the SLF

approximately tied for the most error. For large M , the CKF5 and the SLF had the

second smallest error, being trailed by the CKF3 and then the UKF.
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Figure 3.4: MRMSE of SOC estimation for Ts = 150 seconds as a function of number
of integration steps M .

For comparison purposes, the RMSEs at M = 16 and 256 are shown in Fig-

ures 3.5 and 3.6. As before, the sharp changes in the RMSEs occured when the

battery switched between charging and discharging, and the period of high er-

ror corresponds to the high-rate charge and discharge period that resulted in the

strongest nonlinear effects. For both sampling periods shown, the EKF had much

lower error over the high-rate period and during the idle periods at the end of
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the simulation. For M = 16, the UKF had higher error than the CKFs and the SLF,

which were approximately equal in error, until about k = 350 and then had lower

error for larger k. For M = 256, the UKF had higher error than the CKFs and the

SLF after about k = 380 and about the same error before. The CKFs and the SLF

were again approximately equal in error, with the CKF3 showing a small deviation

from k = 290 to 350.
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Figure 3.5: RMSE of SOC estimation for Ts = 150 seconds and M = 16.
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3.4 Sampling Period of 300 Seconds

From Table 3.5, it can be seen that the filters had no divergences for M =

64, . . . , 256. This is a smaller divergence-free range than before due to the long

sampling period. The CKF5 and the SLF were the best in terms of divergences,

followed by the EKF and the CKF3. The UKF had more numerical problems than the

other filters, with some divergences still occurring for M = 32. The times shown in

Table 3.6 show that the EKF is again the fastest with a similar ratio between the

speeds as with the other two sampling periods.

Table 3.5: Number of divergences in 100 Monte Carlo runs for Ts = 300 seconds as
a function of number of integration steps M

Filter/M 1 2 4 8 16 32 64 128 256

EKF 100 100 100 100 71 0 0 0 0
UKF 100 100 100 100 99 5 0 0 0
CKF3 100 100 100 100 99 0 0 0 0
CKF5 100 100 100 100 0 0 0 0 0
SLF 100 100 100 100 0 0 0 0 0

Table 3.6: Filtering time in seconds for 100 Monte Carlo runs for Ts = 300 seconds
as a function of number of integration steps M

Filter/M 1 2 4 8 16 32 64 128 256

EKF 0.39 0.763 2.998 7.169 8.21 3.969 7.582 15.22 30.4
UKF 0.39 0.578 1.151 2.276 6.925 18.55 37.52 75.1 150.1
CKF 0.328 0.45 0.872 1.807 6.175 16.52 33.16 66.35 132.1
CKF5 1.532 2.908 5.31 11.12 23.65 47.23 94.11 188.1 376.5
SLF 0.498 0.958 1.564 3.114 6.309 12.71 25.3 50.47 101.1

Figure 3.7 shows the MRMSE as a function of the number of integration steps

over the divergence-free range. It can be seen that the errors decreased as the

number of integration steps increased, and the rate of decrease is roughly the same
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for four of the filters, while the decrease shown by the EKF is less steep. The EKF

resulted in the least error by far, with its MRMSEs lower than those of the other

filters for all combinations of M in the divergence-free range. For small M , the

UKF had the second smallest error, followed by the CKF5 and the SLF, and then the

CKF3. For large M , the CKF5 and the SLF had the second smallest error, trailed by

the CKF3 and, then the UKF.
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Figure 3.7: MRMSE of SOC estimation for Ts = 300 seconds as a function of number
of integration steps M .

For comparison purposes, the RMSEs at M = 64 and 256 are shown in Fig-

ures 3.8 and 3.9. As before, the sharp changes in the RMSEs occured when the

battery switched between charging and discharging, and the period of high er-
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ror corresponds to the high-rate charge and discharge period that resulted in the

strongest nonlinear effects. As with Ts = 150 seconds, for both sampling periods

shown, the EKF had much lower error over the high-rate period and during the idle

periods at the end of the simulation. For M = 64, the UKF had approximately the

same error as the CKFs and the SLF, which were approximately equal in error, until

about k = 200 and then had lower error afterwards. For M = 256, the UKF had

higher error than the CKFs and the SLF after about k = 180, with approximately the

same error before. Additionally, the CKF5 and the SLF were very close in error. The

CKF3 was roughly equal to them in error with short periods of lower and higher

error.
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Figure 3.8: RMSE of SOC estimation for Ts = 300 seconds and M = 64.
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Chapter 4
Discussion

4.1 Summary

For the problem of estimating a battery’s SOC using a high-accuracy model that

describes the nonlinear and transient effects of the battery, an electrical-circuit

battery model was chosen, and the accuracy and speed of the SOC estimation

were compared through simulation for the EKF, UKF, CKF3, CKF5, and SLF. The

tested filters were all able to accurately estimate the SOC at the tested sampling

periods of 30, 150, and 300 seconds. Additionally, it was shown that the accuracy

of the prediction phases of the filters could generally be increased by using iterated

numerical integration rather than a single-step method.

Overall, the EKF was the fastest filter and was the most accurate for long

sampling periods. Its speed comes mainly from its evaluation of only one state point,

while the other filters apply the nonlinear function to multiple points. For the shorter

sampling period of 30 seconds, the CKF5 and the SLF were the best performing but

not by much, which could be a result of the short-term transient effects increasing

the strength of the nonlinear effects for comparable length sampling periods. Thus,
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while the higher-order filters can handle the additional nonlinear effect, the first-

order EKF could not as well and performs worse. It would be interesting to see

whether this outperformance of the EKF is seen at even shorter sampling periods.

The reason for the overall performance of the EKF is unknown since it is the least

complex filter. The general recommendation would be to use the EKF for estimation

using the chosen electrical-circuit model, because its accuracy is either the best or

very close to the best while being several times faster than the next fastest filter.

Among the rest of the filters, the UKF had the most numerical problems, and its

error improved less for increased numbers of integration steps than the CKFs and

the SLF. However, there was a small range of integration steps for which the UKF

exhibited lower error than them. This range was for small numbers of integration

steps that were still large enough for divergence-free operation of the UKF. The

CKF3 and the CKF5 were very close in performance for small numbers of integration

steps, but the CKF5 had slightly less error for large numbers of integration steps,

as is expected due to its higher order. The SLF had approximately the same error

as the CKF5 for all tested sampling periods and integration steps. Thus, the SLF,

using the same third-order cubature rule as the CKF3 to calculate its expectations,

is preferable to both CKFs, because it had similar error to the higher-order CKF5

while being faster than either CKF.

4.2 Future Work

Future work should focus on the update phases of the filters, since that is mainly

where the various filters differ. This can be done, for example, by using the

EKF prediction for all the filters and different update steps. This would better

isolate inaccuracies arising from the numerical integration so that the accuracy
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of the estimation of the nonlinearities of the different filters can be compared.

Additionally, filtering at shorter sampling periods should be examined, since again,

the inaccuracies from the numerical integration would be decreased because fewer

integration steps would be necessary for divergence-free operation. The lower error

of the CKF5 and the SLF at a sampling period of 30 seconds could indicate that

the nonlinearities are stronger for short sampling periods rather than for longer

ones. This could possibly be due to the short-term transient effects described by

the battery model.

Furthermore, the chosen battery model is likely able to model battery chemistries

other than lithium-ion. This is because the nonlinear part of the model uses in-

formation about the impedance of the battery. For a general chemical battery, the

impedance can be determined using EIS or pulsed-discharge experiments. It would

be interesting to test whether other battery types can be modeled using the same

model and whether the performance advantage of the EKF over the other tested

filters holds for over those battery types.

Moreover, the theoretical reasons why the filters performed the way they did

should be studied. Particularly, the reasons why the changes to the UKF and CKF

proposed by the author improved their performance should be studied. Knowledge

of this could result in the creation of new, more accurate filters.
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