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Abstract
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an angle. Various aspect ratios and angles of inclination are investigated in device
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Chapter 1

Introduction

Thermoelectric effects were first discovered by Thomas Johann Seebeck around 1820.

The effect that Seebeck discovered bears his name and occurs when a temperature

difference along a block of material causes a potential difference across the block.

In 1834 the physicist Jean-Charles-Athanase Peltier found that running an electric

current through a junction of two different materials either cooled or heated the

junction depending on the direction of current into the junction [1]. This phenomenon

is similarly called the Peltier effect after its discoverer. About 20 years after Peltier’s

contributions, William Thomson (Lord Kelvin) derived a thermodynamic relation

between the Seebeck coefficient (S) and Peltier coefficient (Π), i.e. Π = S ∗T , where

T is the lattice absolute temperature [2].
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Figure 1.1: Schematic of a thermoelectric couple consisting of an n- and p-type
semiconductor operating in power generation mode. A source of heat at the top
drives charge carries to the cooler side, producing a current.

Figure 1.2: Schematic of a thermoelectric couple consisting of an n- and p-type
semiconductor operating in cooling mode. A source of current carries heat to the
bottom heat sink, cooling the top plate.
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Thermoelectric modules are traditionally made using pairs of n-type (electron

conducting) and p-type (hole conducting) semiconductors. One couple (called a

unicouple) is shown schematically in Fig. 1.1 and Fig. 1.2. Figures 1.1 and 1.2

demonstrate that the thermoelectric can be used for both power generation and

solid-state cooling. In a device, many such pairs are connected electrically in series

and thermally in parallel, as shown in Fig.1.3 [3].

Figure 1.3: Schematic of a longitudinal thermoelectric device in power generation
mode.

Thermoelectric research continued into the 20th century and was met with ”ex-

citement and disappointment” [2]. It was thought that thermoelectrics were the

3



next step in power generation, but those hopes dwindled as thermoelectric efficiency

never reached the efficiency of traditional generators. This solid state power gener-

ation has had some success since the 1940s and 1950s, however, funding has all but

disappeared, relatively speaking. The famous Voyager spacecrafts have used longi-

tudinal thermoelectrics since 1977 to power their systems, and the power is expected

to last until 2025. The loss of this power source will not only be attributed to the

breakdown of the thermoelectric materials which is minimal, but mainly due to the

radioactive decay of the plutonium heat source [4]. Other uses include everyday ap-

plications such as seat heater/coolers, small refrigerators, and camping equipment

for charging phones or GPS location devices.

The transverse thermoelectric effect has the advantage of using only one type

of doped semiconductor instead of the two as the longitudinal effect uses. Also,

the heat flow and electric current flow in perpendicular direction and, hence, are

decoupled. Figures 1.4 and 1.5 illustrate the general geometry of both the transverse

thermoelectric effects, Seebeck power generation and Peltier cooling.

Transverse thermoelectric theory has sparked a resurgence in thermoelectric re-

search in recent years. The transverse effect has the potential to reduce the amount

of material, relative to longitudinal thermoelectrics, needed for equivalent output

power. Since the current cost of sending a pound of anything into space is $10,000,

less material for equal output will have a huge effect on the cost of spacecrafts. An

important application is the conversion of waste heat to electricity to be put back into

the grid. With the modernization of developing countries and ever increasing energy

needs of developed countries, the exigency for energy recycling and new methods of

4



creation is paramount.

Figure 1.4: Diagram of the transverse Seebeck effect simulation where a temperature
difference is in z-direction, and the potential difference is calculated in the x-direction.

Figure 1.5: Diagram of the transverse Peltier effect simulation where a current is
injected in the z-direction, and heat flows in z-direction to cool off the top plate.
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Chapter 2

Background

2.1 Transport Equations

2.1.1 Low Field Boltzmann Transport Equation Solution

For thermoelectrics we are interested in the electrical conductivity, thermal con-

ductivity, and Seebeck coefficient. These parameters are dependent on the band

structure of the solid, carrier scattering mechanisms, and carrier concentration through

the Fermi energy. These physical properties are calculated by first calculating the

distribution of electrons as a function of energy using the Boltzmann Transport

Equation (BTE). The BTE contains both the gradient of the electrochemical po-

tential (electric field) and the gradient of temperature. Both the electric field and

temperature gradient are responsible for the motion of the charge carriers.

This derivation follows closely with Lundstrom’s text [5]. Starting with the Boltz-
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mann equation

∂f

∂t
+ v · ∇rf + F · ∇pf =

∂f

∂t

∣∣∣
coll

+s(r,p, t) (2.1)

f0 =
1

1 + e[EC(r,p)−EF ]/kBT
(2.2)

The relaxation time approximation is used with no source of carriers being injected

into the system. So, s(r,p, t) = 0 and ∂f
∂t

∣∣∣
coll

= −fA
τf

, and fA is the function that is

being solved for. Since f0 is symmetric in momentum, the average velocity is zero.

Allowing a distribution such that a little current is flowing by thinking of the Fermi

distribution as a sum of two parts symmetric fS and anti-symmetric fA, gives

f = fS + fA (2.3)

fS =
1

1 + eΘ
where Θ = [EC0(r, t) + E(p)− Fn(r, t)]/kBT (r, t) (2.4)

−fA
τf

= v · ∇r(fS + fA) + F · ∇p(fS + fA). (2.5)

With the assumptions

fS � fA, |∇rfS| � |∇rfA|, hspace1mm|∇pfS| � |∇pfA|

the equation simplifies to

−fA
τf

= v · ∇rfS + F · ∇pfS. (2.6)

7



fS ≡ fS(Θ), so the product rule dictates that

∇rfS =
∂fS
∂Θ
∇rΘ (2.7)

and

∇pfS =
∂fS
∂Θ
∇pΘ. (2.8)

Using Eq. 2.6 and working out the derivatives ∇rΘ and ∇pΘ

−fA
τf

= v · ∂fS
∂Θ
∇rΘ + F · ∂fS

∂Θ
∇pΘ (2.9)

∇pΘ =
∂E(p)

∂p

(
1

kBT

)
=

v

kBT
(2.10)

∇rΘ =
[∇rEC0(r)−∇rFn(r)]

kBT (r)
+ [EC0(r) + E(p)− Fn(r)]∇r

(
1

kBT (r)

)
(2.11)

−fA
τf

=
∂fS
∂Θ

(v · ∇rΘ−∇rEC0 · ∇pΘ) where −∇rEC0(r) = F (2.12)

−fA
τf

=
∂fS
∂Θ

(
v · ∇rΘ− v ·

∇rEC0

kBT

)
(2.13)

−fA
τf

=
∂fS
∂Θ

v ·
(

[−∇rFn(r)]

kBT (r)
+ [EC0(r) + E(p)− Fn(r)]∇r

(
1

kBT (r)

))
(2.14)

8



Finally,

fA =
τf
kBT

(
−∂fS
∂Θ

)
v · F (2.15)

where

F = −∇rFn(r) + T [EC0(r) + E(p)− Fn(r)]∇r

(
1

T

)
(2.16)

F in Eq. 2.16 is ”interpreted as a generalized force” and does apply when mag-

netic fields are present since F 6= −∇rEC0(r) in a magnetic field [5]. The components

are now gathered and can start being put together to build the coupled current equa-

tions which describe how thermoelectric materials transport electrical and heat flows.

9



2.1.2 Coupled Current Equations

The equations for electric and heat current densities are, respectively [5],

J =
−q
Ω

∑
p

vfA(p) (2.17)

JQ =
1

Ω

∑
p

E(p)vfA(p) (2.18)

Equation 2.17 says that the electric current is the charge times the average velocity

of the moving charges. Equation 2.18 says that the heat flow is the energy times

the average velocity of the heat carriers. Lundstrom mentions an important point

concerning the velocity in Eq. 2.18. He states that the kinetic energy E(p) should

be the energy associated with the random motions of temperature and not the drift

energy associated with the average motion of particles in an applied field [5].

Singling out the electric current equation and plugging in our low field solution

to the Boltzmann transport equation, we have

J =
−q
Ω

∑
p

vfA(p) (2.19)

J =
−q
Ω

∑
p

v
τf
kBT

(
−∂fS
∂Θ

)
v · F (2.20)

J =
−q

ΩkBT

∑
p

v(v · F)τf

(
−∂fS
∂Θ

)
(2.21)

Displaying equations in indicial notation will be more revealing. This way the com-

ponents are seen and evaluated more easily. Using indicial notation the current

10



equation becomes

Ji =
−q

ΩkBT

∑
p

vivjFjτf
(
−∂fS
∂Θ

)
(2.22)

Ji =
−q

ΩkBT

∑
p

vivj

[
∂j(−Fn) + T [EC0(r) + E(p)− Fn]∂j

(
1

T

)]
τf

(
−∂fS
∂Θ

)
(2.23)

Ji = σij∂i(Fn/q) +Bij∂i(1/T ) (2.24)

where

σij =
q2

ΩkBT

∑
p

vivjτf (p)

(
−∂fS
∂Θ

)
(2.25)

Bij =
−q

ΩkBT

∑
p

vivjτf (p)T [EC0(r) + E(p)− Fn]

(
−∂fS
∂Θ

)
(2.26)

Now, looking at the heat current equation, we have

JQ =
1

Ω

∑
p

E(p)vfA(p) (2.27)

JQ =
1

Ω

∑
p

[EC0(r) + E(p)− Fn(r)] v
τf
kBT

(
−∂fS
∂Θ

)
v · F (2.28)

JQ =
1

ΩkBT

∑
p

v (v · F) [EC0(r) + E(p)− Fn(r)]τf (p)

(
−∂fS
∂Θ

)
(2.29)

11



Substituting in Eq. 2.16 and writing the heat current in indicial notation

JQi = wij∂j(Fn/q) +Kij∂j

(
1

T

)
, (2.30)

where

wij =
−q

ΩkBT

∑
p

vivjτf (p)[EC0(r) + E(p)− Fn(r)]

(
−∂fS
∂Θ

)
(2.31)

Kij =
−q

ΩkB

∑
p

vivjτf (p)[EC0(r) + E(p)− Fn(r)]2
(
−∂fS
∂Θ

)
(2.32)

The sums over momentum define the material parameters σij, Bij, wij, and Kij.

Equations 2.24 and 2.30 give the components of vector coupled current equations.

The coupled current equations describe how current and heat flow within a material.

2.2 Using the Coupled Current Equations

2.2.1 The General Equations

Equations 2.24 and 2.30 describe the electrical current and heat current in terms

of the material coefficients σij, wij, Bij, and Kij, and the generalized forces ∂j(Fn/q)

and ∂j(1/T ). The four material coefficients can be calculated from the material prop-

erties: Fermi energy, band structure, scattering coefficient, etc. These calculations

are beyond the scope of this thesis, and examples for some semiconductors can be

found in Lundstrom [5].

The two coupled current equations 2.24 and 2.30 can be recast in a form more

12



useful for comparisons with experiments. Here the forces are changed from the

gradient of the electrochemical potential per unit charge to the gradient of the electric

potential or minus the electric field

∂j(Fn/q) = ∇(Fn/q) ≈ ∇V = −E. (2.33)

Similarly, ∂j(1/T ) is written in terms of the temperature gradient

∂j(1/T ) = ∇(1/T ) = − 1

T 2
∇T. (2.34)

With these substitutions, the coupled current equations become

J = [σ]E− [σ][S]∇T (2.35)

JQ = [Π]J− [κ]∇T. (2.36)

where [σ] is the electrical conductivity tensor, [S] is the Seebeck tensor, [Π] is the

Peltier coefficiant tensor, and [κ] is the thermal conductivity tensor. Note that

quantities in square brackets are tensors, and bold face symbols indicate vectors.

The connections between these four coefficients (σ, S, Π, and κ) and those used in

Eqs. 2.24 and 2.30 (σij, Sij, Πij, and Kij) are given in Lunstrom [5].

Left multiplying Eq. 2.35 by [σ]−1 = [ρ], they take on the more useful laboratory
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form

E = [ρ]J− [S]∇T (2.37)

JQ = [Π]J− [κ]∇T. (2.38)

Writing the equations by filling in all the matrices and vectors gives


Ex

Ey

Ez

 =


ρxx ρxy ρxz

ρyx ρyy ρyz

ρzx ρzy ρzz



Jx

Jy

Jz

−

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



∂xT

∂yT

∂zT

 (2.39)


JQx

JQy

JQz

 =


Πxx Πxy Πxz

Πyx Πyy Πyz

Πzx Πzy Πzz



Jx

Jy

Jz

−

κxx κxy κxz

κyx κyy κyz

κzx κzy κzz



∂xT

∂yT

∂zT.

 (2.40)

For isotropic materials all the parameter tensors become diagonal and simplify to

Πij = Π0 δij

ρij = ρ0 δij

κij = κ0 δij

Sij = S0 δij.
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with the Kronecker delta δij notation. For the most general anisotropic materials

the off diagonal elements are not zero, and all the elements in Eq. 2.39 and Eq. 2.40

must be accounted for. Further explanation of the tensorial elements as related to

the transverse thermoelectric effects of the devices modeled follows.
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2.2.2 Transverse Thermoelectric Geometry

Isotropic thermoelectric materials produce the well-studied longitudinal Seebeck

and Peltier effects. Anisotropic materials have a crystal structure that directs phe-

nomena in different directions and produces transverse thermoelectric effects (TTE).

It has been shown that anisotropy can be synthetically produced in multilayered,

repeated stacks of two materials as shown in Fig. 2.1. After the materials are cut

and pressed into a multilayered stack, the stack is rotated and cut at an angle α.

The anisotropy comes from the differing parallel and perpendicular components of

the materials’ properties [6] as well as rotation. Materials A and B alternate in the

stack and are usually a metal and semiconductor paired such that the materials’

parameters provide sufficient magnitudes in the off diagonal elements to see TTE.

Figure 2.1: Geometry of a synthetically created anisotropic thermoelectric device
with parallel and perpendicular components of material parameters shown.
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The perpendicular and parallel components of the parameters are added in series

and parallel, respectively, to get [6] [7]

S‖ =
SAσA + pSBσB
σA + pσB

(2.41)

S⊥ =
SAκB + pSBκA
pκA + κB

(2.42)

κ⊥ =
κAκB(p+ 1)

pκA + κB
(2.43)

κ‖ =
κA + pκB
(p+ 1)

(2.44)

σ⊥ =
σAσB(p+ 1)

pσA + σB
(2.45)

σ‖ =
σA + pσB
(p+ 1)

, (2.46)

where p is the ratio of layer thicknesses tB/tA. Rotating around the y-axis as shown

in Fig. 2.1, the tensors have the general form [7]

[T ] =


T‖cos

2(α) + T⊥sin(α)2 0
(
T‖ − T⊥

)
1
2
sin(2α)

0 T‖ 0(
T‖ − T⊥

)
1
2
sin(2α) 0 T‖sin

2(α) + T⊥cos
2(α)

 (2.47)

Both the parallel and perpendicular components are set upon determination of the

materials being used in the stack. On inspection of the off diagonal components, it

is seen that the maximum anisotropy occurs when the tilt angle α is 45◦. The Tyy

component is unaffected by the rotation. The Txx and Tzz components are sums of

T⊥ and T‖. Upon rotation each term in the sum of the Txx and Tzz components are

scaled by either Sin2(α) or Cos2(α). In words Txx and Tzz switch places during the
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rotation from 0◦ to 90◦.

Going back to equations 2.39 and 2.40 and performing the correct rotations on

each parameter’s matrix, we have the set of simultaneous equations

Ex = Jxρxx + Jzρxz − Sxx
∂T

∂x
− Sxz

∂T

∂z
(2.48)

Ey = Jyρyy (2.49)

Ez = Jxρzx + Jzρzz − Szx
∂T

∂x
− Szz

∂T

∂z
(2.50)

JQx = JxSxxT + JzSxzT − κxx
∂T

∂x
− κxz

∂T

∂z
(2.51)

JQy = JySyyT (2.52)

JQz = JxSzxT + JzSzzT − κzx
∂T

∂x
− κzz

∂T

∂z
. (2.53)

In the equations above, it is assumed there is no temperature gradient in the

y direction, ∂T/∂y = 0, and that the xy, yx, yz, and zy components of all three

transport tensors are zero as seen in Eq. 2.47. Equations 2.48 - 2.53 reveal some

interesting effects in transverse thermoelectric devices.

2.3 Open Circuit Eddy Currents

Thermoelectric eddy currents are described in references [8], [9], [10], and [11].

Upon inspection of the current densities, it was seen that they are not zero even

though the Seebeck simulations had no input current boundary condition. In other

words eddy currents are generated in open circuit conditions. Thermoelectric eddy

currents manifest in two types of materials: anisotropic materials and inhomoge-

neous materials. A surface perpendicular electric field E⊥ is generated due to the
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discontinuity of the Seebeck coefficient in each of the alternating layers [10].

Maxwell’s equations always provide the starting point in investigations of electri-

cal effects. With B = 0 Faraday’s Law tells us that

∇× E = −∂B

∂t
= 0 (2.54)

∇× E = ∇× ([ρ]J− [S]∇T ) = 0 (2.55)

∇× ([ρ]J) = ∇× ([S]∇T ) (2.56)

Due to the anisotropy of the Seebeck tensor the right hand side of Eq. 2.56 will not

be zero as stated in Anatychuk [12]. Necessarily, then, the left hand side cannot be

zero, and thermoelectric eddy currents must be generated.

2.4 Finite Element Method

COMSOL Multiphysics uses the finite element method (FEM) to compute nu-

merical solutions. The FEM has the extremely advantageous property that it can

be used for complicated geometries unlike the finite difference method (FDM). FEM

also handles discontinuities like abrupt material parameter changes well since the

domain is split into smaller, local subdomains. These aspects of FEM makes it the

numerical method of choice for many applications such as heat flow or structural

stress simulations. The 6 steps in applying the FEM as outlined in Lewis et al. [13]

are

1. Discretize the continuum

2. Select interpolation or shape functions
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3. Form element equations

4. Assemble the element equations to obtain a system of simultaneous equations

5. Solve the system of equations

6. Calculate the secondary quantities

With the exception of step 3, COMSOL Multiphysics software handles these

tasks. So, the equations that govern the thermoelectric effect, e.g. the coupled

current equations, needed to be implemented in the correct way in order to have the

FEM converge on a correct solution. Implementation of these equations is outlined

in the Physics Builder Guide [14] and is shown here. It is a straight forward task to

generalize to the equations to suit anisotropy. However, to simplify the notation the

coefficients here are scalars. The defining equations for a thermoelectric system are

E = ρJ + S∇T (2.57)

JQ = ΠJ− κ∇T (2.58)

E = −∇V (2.59)

Q = J · E, (2.60)

where the definitions of symbols are
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J ≡ current density (A/m2) Π ≡ Peltier coefficient

JQ ≡ heatflux density (W/m2) κ ≡ thermal conductivity (W/m ·K)

S ≡ Seebeck coefficient (µV/K) T ≡ absolute temperature (K)

ρ ≡ electrical resistance (Ω ·m) Q ≡ Joule heating (J)

E ≡ electric field (V/m) V ≡ electric potential(V )

σ ≡ electrical conductivity (1/Ωm) ∇ ≡ differential operator

Table 2.1: Symbol Definitions

Energy and charge conservation give the time dependent equations:

ρC
∂T

∂t
+∇ · JQ = Q (2.61)

∇ · J = −∂ρc
∂t

(2.62)

where ρ is the density, C is the heat capacity, and ρc is the charge density. The

stationary case is implemented in COMSOL, and in this case they simplify to

∇ · JQ = Q (2.63)

∇ · J = 0. (2.64)

Implementation of the FEM requires that equations be put into weak form. Weak

forms of equations hold true over a locally defined domain instead of over an infinite

domain. Over this local domain weak solutions are found with respect to a set of

interpolation functions, also called basis functions. These basis functions are not
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orthogonal since intersecting elements contain the some of the same nodes. This is

one of the differences between the FEM and FDM. In FDM the governing functions

are approximated while the basis functions are orthogonal. In FEM the governing

functions are global while the basis functions are approximated. The basis functions

are represented with vT and vV . T and V are the dependent variables for the Tem-

perature and the Electric Potential, respectively, for which the FEM solution defines.

The volume integrals are over the local domain over which the equations are assumed

to hold true in the weak formulation. The surface area integrals are the boundary

surfaces that define the limits of the local domains.

Weak Form of Heat Equation

y
(∇ · JQ)vT dτ =

y
Q vT dτ (2.65)

−
y

JQ · ∇vT dτ +
{

(n · JQ)vT dA =
y

QvT dτ (2.66)

−
y

JQ · ∇vT dτ +
{

JQ0 vT dA =
y

QvT dτ (2.67)

Weak Form of Current Equation

y
(∇ · J)vV dτ = 0 (2.68)

−
y

J · ∇vV dτ +
{

(n · J)vV dA = 0 (2.69)

−
y

J · ∇vV dτ +
{

J0 vV dA = 0 (2.70)

Implementation of the coupled current equations in these integral forms allow

COMSOL to compute solutions inside the customized transverse thermoelectric physics
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modules built. The steps followed for the simulations are described in the next chap-

ter.
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Chapter 3

Simulations

3.1 COMSOL Transverse Thermoelectric Package

3.1.1 COMSOL Physics Builder

The COMSOL Multiphysics software does not have a thermoelectric module avail-

able in the basic software package nor is there one to purchase. There is, however,

documentation on how to create a custom physics interface which defines the steps

needed to create custom modules for any physical system. The Physics Interface

Builder User’s Guide [14] also provides the information necessary to customize ex-

isting physics modules to suit any situation that may not be accounted for in a

market ready module available. There are two example implementations provided

in the documentation, the ”Thermoelectric Effect” and the ”Schrodinger Equation”

examples. The ”Thermoelectric Effect” example demonstrates how to build a lon-

gitudinal thermoelectric module (LTM) for traditional longitudinal thermoelectric

24



effect device simulations. In order to convert this package to account for the trans-

verse thermoelectric effect some modifications needed to be implemented.

3.1.2 Modifying the Thermoelectric Module

The decision was made to build two models to compare results and determine

what, if any, discrepancies occurred between the two models. One model is com-

pletely mathematical and follows the theory of simulated anisotropic devices origi-

nally introduced by Babin, et al. in 1974 [15]. This model is hereto referred to as the

anisotropic slab model (ASM). The other model is an isotropic layer model (ILM)

consisting of layers using isotropic material parameters, and simulations consisted of

building the CAD models similar to those outlined in Babin et al [15]. Both interface

models were built for a steady state simulation.

After building the longitudinal thermoelectric module, certain modifications needed

to be implemented in order to obtain accurate results for the ILM transverse ther-

moelectric effect. The first modification was simply to make the Seebeck coefficient

available as a variable parameter to any type of material such that it was defined to

be used in computations. This required creating a custom material property group.

Each material added to the model, then, had to be created in conjunction with this

material property group in order for COMSOL to perform the needed calculations.

In order to model the Peltier effect, the electric current boundary condition needed to

be added to the model such that an input of current was possible. Since the electric

current boundary term was set to zero in the Physics Interface Builder User’s Guide

LTM instructions, this modification required an implementation of the weak form of
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the electric current equation. The same steps were followed as outlined for the heat

flux boundary conditions in the Physics Interface Builder User’s Guide. This CAD

model shown in Fig. 3.1 used in conjunction with the ILM is a true representation

of an artificially anisotropic device that can be constructed. This model is studied

in parallel with the ASM detailed next.

Figure 3.1: CAD model of a device made using the isotropic layer model where the
layers are apparent.

In order to create the ASM, the thermoelectric equations had to be generalized as

outlined in the background chapter of this thesis. The material parameters that were

defined as scalars in the LTM are now defined as tensors for the ASM. Simple mul-
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tiplication was converted to inner products where the tensorial material parameters

were multiplied with vectors and/or other tensors. When a tensor was multiplied by

a constant, regular multiplication was used such as in the calculation of the Peltier

coefficient Π = [S] · T . In this case [S] is the Seebeck tensor, and T is the absolute

temperature, a scalar. As can be seen in comparison with the ILM, the ASM CAD

model shown in Fig. 3.2 is purely a mathematical model as there are no discontinu-

ities in regards to surface to surface material parameter discontinuities. As explained

later it turns out that this is an important difference in the models.

Figure 3.2: CAD model of a device made using the anisotropic slab model where the
continuity of the geometry implies the purely mathematical nature of the model.
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3.2 Validation Simulations

In order to verify that the ILM and the ASM were built properly and calculated

the correct results, two papers were used as bases for verification. Zahner’s paper [16]

experimentally determined a transverse voltage with a constant heat flux input across

a surface. Kyarad and Lengfellner [6] measured the transverse temperature difference

while varying the input current. Using these two papers allowed for verification of

each TTE model for each of the thermoelectric phenomena.

Figure 3.3: Experimental set up in Zahner et al. [16] with constant heat flux applied
to sample top, the bottom face held at constant temperature, and potential difference
calculated from left to right.
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Using both the ILM and the ASM, Zahner, et al. [16] device dimensions were

built using the CAD software that was included with the basic COMSOL package.

The dimensions were 8mm, 6mm, 2mm for the length, width, and height respectively.

A constant heat flux density of 10(mW/cm2) was input across the top surface while

the angle of inclination of the layers was varied. The geometry of the experiment

can be seen in Fig. 3.3 [16]. As can be seen in the plot of the data obtained in

both models in Fig. 3.4 as well as the data in Zahner et al. [16], there is a close

agreement between experiment and simulation of the Seebeck effect for this device.

It was determined that each of the physics interfaces built were sufficiently accurate

to continue with a computational analysis of the Seebeck effect.

Figure 3.4: Validation of the physics modules with the data in measured in Zahner
et al. [16] for both ILM and ASM.
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The paper by Kyarad and Lengfellner [6] was used as the basis in the validation

process for the Peltier effect. As stated in their paper, the experiment’s boundary

conditions were not kept constant. It is stated that, ”the sample bottom is heated

above the coolant temperature due to insufficient thermal coupling.” [6] Therefore,

without adding this heat flux into the simulation, a difference in computations and

measured data was expected. The experimental set up is pictured in Fig. 3.5 [6].

Figure 3.5: Experimental set up in Kyarad et al. [6] in which a current is injected
into the left face, and Peltier cooling occurs across the top of the device with the
bottom face kept at constant temperature.

In a paper by Ali, et al. [17] different heat fluxes were implemented to simulate the

heat transfer that was mentioned in the paper by Kyarad, et al [6]. Although some
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qualitative aspects were seen in the simulations, the simulations were unsuccessful

in matching the measured data. The same parabolic qualitative aspects of the data

were seen in the COMSOL computations. COMSOL computations were measured

at the midpoint of the sample. A surface average was also computed across the

entire top surface where the cooling occurred. It turns out that the midpoint and

the surface average are quite close, and both computations are plotted along with

the Kyarad data in Fig. 3.6 [6]. As expected the discrepancy between the COMSOL

adiabatic boundary conditions and the measured data is apparent. The ILM did not

converge with the ASM as it did in computing the Seebeck effect. The difference

between the two models was investigated and is explained in section 4.2.

Figure 3.6: Validation of the physics modules with the data in measured in Kyarad
et al. [6] for the ASM using the midpoint computation as well as the surface average.
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3.3 Transverse Seebeck Effect

The transverse Seebeck effect occurs when a temperature difference is applied in

the z-direction a potential difference occurs in the x-direction as in Fig. 3.7. In order

to study the transverse Seebeck effect various boundary conditions and geometries

were built in the ILM and ASM. The geometry varied in aspect ratios for ∆x/∆z < 1

and ∆x/∆z > 1. The angle of inclination ranged from 0 to π/2.

Figure 3.7: Diagram of the transverse Seebeck effect simulation where a temperature
difference is in z-direction, and the potential difference is calculated in the x-direction.

With a temperature difference applied in the z-direction, a transverse potential

difference is generated in the x-direction. Looking at the x component of the electrical
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current equation along with the open circuit condition gives us the electric field.

Ex = ρxxJx + ρxzJz − Sxx
∂T

∂x
− Sxz

∂T

∂z
= −∇xV (3.1)

Integrating along the x-direction will give the potential

VL − V0 = −
ˆ L

0

Exdx = −
ˆ L

0

(
ρxxJx + ρxzJz + Sxx

∂T

∂x
+ Sxz

∂T

∂z

)
dx (3.2)

VL − V0 =

ˆ L

0

Sxx
∂T

∂x
dx+

ˆ L

0

Sxz
∂T

∂z
dx−

ˆ L

0

(ρxxJx + ρxzJz) . (3.3)

It mat be assumed that Jx and Jz are zero since there is an open circuit condition

applied to the device; however, eddy currents occur in the simulations. The effects

are smaller than the Seebeck thermopotential components of the sum but are not

negligible. The last integral in Eq. 3.3 must be taken into account as it subtracts from

the thermopotential. However, a qualitative understanding of the thermopotential’s

dependence on aspect ratio can be achieved by looking at the first two terms in Eq.

3.3.

VL − V0 ≈
ˆ L

0

Sxx
∂T

∂x
dx+

ˆ L

0

Sxz
∂T

∂z
dx. (3.4)

This equation depends on the temperature gradient components in the x and z

directions, ∂T/∂x and ∂T/∂z respectively. These quantities take on a parabolic

nature, but for a qualitative understanding, they can be approximated with

∂T

∂z
≈ Th − Tc

d
and

∂T

∂x
≈ TL − T0

L
, (3.5)
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where Th and Tc are the constant applied boundary conditions in the z-direction. TL

is the temperature at x = L, and T0 is the temperature at x = 0. Substituting these

expressions into the integrals

VL − V0 ≈ Sxx

(
TL − T0

L

) ˆ L

0

dx+ Sxz

(
Th − Tc

d

) ˆ L

0

dx (3.6)

VL − V0 ≈ Sxx (TL − T0) + Sxz (Th − Tc)
(
L

d

)
. (3.7)

The dependence on the aspect ratio (L/d) is explicit in the approximation. A device

that is longer will produce a higher potential difference. It turns out that the poten-

tial adds in series along the transverse direction. A longer device will have a higher

potential, all other conditions unchanged, but there is a loss mechanism at play.

There is no current input through the device in this study, but eddy currents form

as shown in Eq. 2.56. As discussed below the eddy currents form to the detriment

of the thermopotential created in the device.
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3.4 Transverse Peltier Effect

The transverse Peltier effect occurs when a current is applied to a device in one

direction, and cooling occurs on one side of the device in a direction perpendicular

to the flow of current. Fig. 3.8 illustrates this configuration for current in the x-

direction and cooling in the z-direction. In this study the current was varied from

1 Amp to as high as 80 Amps in some simulations in order to find the maximum

amount of cooling that could occur.

Figure 3.8: Diagram of the transverse Peltier effect simulation where a current is
injected in the z-direction, and heat flows in z-direction to cool off the top plate.

In the simulations the conditions for the y-component of heat flow are no current

in the y-direction Jy = 0 as well as no temperature difference ∂T/∂y = 0. Conse-

quently, there is no heat flow in the y-direction JQy = 0 by Eq. 2.52. The equations
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governing the heat flow in a transverse thermoelectric device are then

JQx = JxSxxT + JzSxzT − κxx
∂T

∂x
− κxz

∂T

∂z
(3.8)

JQz = JxSzxT + JzSzzT − κzx
∂T

∂x
− κzz

∂T

∂z
. (3.9)

Jz is not zero as we get an electric field component from 2.50 directing some

current in the z-direction.

Ez = Jxρzx + Jyρzy + Jzρzz − Szx
∂T

∂x
− Szz

∂T

∂z
(3.10)

So, both Jx and Jz contribute to the heat flux. Joule heating is accounted for in the

weak form equations input for the FEM solver in COMSOL. This opposes Peltier

cooling in some cases as described below in the results section.
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Chapter 4

Results

4.1 Transverse Seebeck Effect

4.1.1 Aspect Ratio and Output Voltage

A simple analysis of the coupled current equations reveals how the output voltage

depends on the aspect ratio. This understanding is important in order to maximize

the thermopower for geometric constraints of a device needed in a specified circuit.

After confirming the validity of the models, the models were compared more thor-

oughly to determine if there was a point at which either broke down. Any differences

in the two models also needed to be known to account for any discrepancies in cal-

culations output by the simulations.
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Voltage Profiles

Examining the potential drops across a device given a certain temperature difference,

we see in Fig. 4.1 that the two models have a predictable difference. The ASM is

a mathematical idealization while the ILM has a discrete nature due to the layers’

interfaces throughout the model. As a consequence the ASM has smoother profiles

than does the ILM.

Figure 4.1: Difference in voltage drop profile across z-axis for the ASM and ILM in
a Seebeck effect simulation.

4.1.2 Angle of Inclination and Aspect Ratio

With the two models in close agreement with experiment, the Seebeck effect was

investigated further. Using adiabatic boundary conditions a temperature difference
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was set in the z-direction and a potential difference calculated in the x-direction. The

bottom surface was kept at 273.15K while the top surface was held at 263.13K. The

aspect ratio ∆x/∆z was varied in the x-direction to determine what, if any, effect

this would have on the output transverse voltage. For each of the varying aspect

ratios, the of angle of inclination was varied to see if there is a relationship between

the two.

Figure 4.2: Seebeck effect model comparison of ILM and ASM for aspect ratios
∆x/∆z = (10, 5, 2, .5).

Fig. 4.2 implies that for the maximum output potential, there is a relationship

between aspect ratio and angle of inclination. Along with a slight divergence at an
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aspect ratio of ∆x/∆z = 10, the maximum output voltage migrates with changing

aspect ratio. For longer devices the maximum voltage is produced closer and closer

to an angle of 45◦. Since the relationship between the electric field produced depends

on the angle of inclination, we can find a function that maximizes both the potential

and the electric field from the coupled current equations. Simply set the derivative

equal to zero and then solve for the angle α.

Looking at the x component of the electric field equations and for the moment

neglecting the eddy currents

Ex = −Sxx
∂T

∂x
− Sxz

∂T

∂z
=
∂V

∂x
(4.1)

∂Ex
∂α

=
∂

∂α

[
Sxx

∂T

∂x
+ Sxz

∂T

∂z

]
= 0. (4.2)

Plugging in our expressions for Sxx and Sxz after rotation, we have

∂Ex
∂α

=
∂

∂α

[(
S‖cos

2(α) + S⊥sin(α)2
) ∂T
∂x
−
(
S‖ − S⊥

) 1

2
sin(2α)

∂T

∂z

]
= 0

(4.3)(
−2S‖cos(α)sin(α) + 2S⊥sin(α)cos(α)

) ∂T
∂x
−
(
S‖ − S⊥

)
cos(2α)

∂T

∂z
= 0.

(4.4)
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Now, simplifying

sin(2α)
(
S⊥ − S‖

) ∂T
∂x

+
(
S⊥ − S‖

)
cos(2α)

∂T

∂z
= 0 (4.5)

sin(2α)
(
S⊥ − S‖

) ∂T
∂x

= −
(
S⊥ − S‖

)
cos(2α)

∂T

∂z
(4.6)

tan(2α) = −
(
∂T

∂z

/
∂T

∂x

)
(4.7)

α =
1

2
arctan

[
−
(
Td − Tz=0

d

)/(
TL − Tx=0

L

)]
(4.8)

α =
1

2
arctan

[
−
(
Td − Tz=0

TL − Tx=0

)(
L

d

)]
. (4.9)

(
S⊥ − S‖

)
is never zero since S⊥ and S‖ will always have different values. While

expression 4.9 is an approximation, the implicit dependence of the angle of inclination

α on the aspect ratio ∆x/∆z = L/d seen in the simulations is affirmed.

4.1.3 Seebeck Tensor and Potential

As pointed out, the off diagonal term of the rotated Seebeck tensor Sxz reaches

its maximum at 45◦. Naturally the question arises as to why this occurs. An exam-

ination of the Seebeck coefficients provides some mathematical insight into what is

happening. The Seebeck tensor components contributing in Eq. 4.1 are the Sxx and

Sxz are, respectively,

Sxx = S‖cos
2(α) + S⊥sin

2(α) (4.10)

Sxz =
1

2

(
S‖ − S⊥

)
sin(2α). (4.11)
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Fig. 4.3 shows the components plotted for angles of inclination 0◦ − 90◦. It is clear

that for angles higher than 45◦ the Sxx component has the higher magnitude. There is

an important aspect as to what is happening to the components during the rotation:

Sxx switches from S‖ to S⊥. So for devices with an aspect ratio less than 1, a higher

angle of inclination will produce higher voltages.

Figure 4.3: Magnitude of Seebeck components, Sxz and Szz for angles of inclination
0◦-90◦.

The Seebeck components are scaled by the temperature gradients in the x and z

directions. A line integral of the electric field through the middle of the block in the
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ASM gives the potential across the block.

V =

ˆ L

0

Sxx
∂T

∂x
dx+

ˆ L

0

Sxz
∂T

∂z
dx−

ˆ L

0

(ρxxJx + ρxzJz) dx. (4.12)

Figure 4.4: Magnitude of voltage components contributing to x component of the
thermoelectric field for angles of inclination 0◦-90◦.

The integrals of the eddy current contributions, the Seebeck thermopotential

contributions, the total potential, and the FEM solution are shown in Fig. 4.4. It

was first assumed that Jx and Jz were zero since there was no current injected into

the device. The line integral of the Seebeck contributions computed overshoots the

FEM solution, so a reconsideration was necessary. As stated eddy currents arise,
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and so, Jx and Jz are not equal to zero and must be considered in the integral. It

turns out that the eddy current contributions were precisely the difference needed to

correct for the aforementioned assumption.

4.1.4 Eddy Currents in the ASM and ILM

Eddy currents must be taken into account for accurate understanding and mod-

eling of the Seebeck effect in transverse thermoelectric devices. These currents take

on different distributions for the ILM and ASM. The reason, as stated in Anatychuk

and Luste [10], is due to the surface to surface interfaces in the ILM. Due to the jump

discontinuities at each interface of the Seebeck coefficients, a surface perpendicular

electric field component E⊥ will contribute to the direction of the currents. Some

similarities in the ILM and ASM are seen in the eddy current directions. The E⊥

redirects some of the eddy currents in the ILM as can be seen in Figs. 4.5, 4.6, 4.7,

and 4.8.
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Figure 4.5: ASM (left) and ILM (right) shown with normalized eddy current densities
for open circuit Seebeck potential at 45 degree angle of inclination, aspect ratio of
1/2, and ten degree temperature difference top to bottom.

Figure 4.6: ASM (left) and ILM (right) shown with normalized eddy current density
for open circuit Seebeck potential at 45 degree angle of inclination, aspect ratio of
1/1, and ten degree temperature difference top to bottom.
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Figure 4.7: ASM normalized eddy current density for open circuit Seebeck potential
at 45 degree angle of inclination, aspect ratio of 2/1, and ten degree temperature
difference top to bottom.

Figure 4.8: ILM normalized eddy current density for open circuit Seebeck potential
at 45 degree angle of inclination, aspect ratio of 2/1, and ten degree temperature
difference top to bottom.
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4.1.5 Mathematical Difference in ILM and ASM

There is clearly a difference between eddy currents distributions in the ILM and

ASM. The difference occurs in the application of Eq. 2.56. An examination of the

eddy current equations with specific geometrical considerations from the transverse

thermoelectric device described in section 2.2.2 provide the mathematical footing

needed to understand thermoelectric eddy currents. Indicial notation comes in handy

in for compact notation.

∇× E = −∂B

∂t
(4.13)

(∇× E)i = εijk∂jEk (4.14)

εijk∂jEk = 0 (4.15)

Using Eqs. 2.48-2.53 and substituting them in Eq. 4.15, and breaking the cross

product into components gives:

x component

(∇× E)x = εxjk∂jEk (4.16)

(∇× E)x = ∂yEz − ∂zEy (4.17)

0 =
∂

∂y

(
ρzxJx + ρzzJz − Szx

∂T

∂x
− Szz

∂T

∂z

)
− ∂

∂z
(ρyyJy) (4.18)
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y component

(∇× E)y = εyjk∂jEk (4.19)

(∇× E)y = ∂zEx − ∂xEz (4.20)

0 =
∂

∂z
(ρxxJx + ρxzJz)−

∂

∂z

(
Sxx

∂T

∂x
+ Sxz

∂T

∂z

)
− ∂

∂x

(
ρzxJx + ρzzJz − Szx

∂T

∂x
− Szz

∂T

∂z

) (4.21)

z component

(∇× E)z = εzjk∂jEk (4.22)

(∇× E)z = ∂xEy − ∂yEx (4.23)

0 =
∂

∂x
(ρyyJy)−

∂

∂y

(
ρxxJx + ρxzJz − Sxx

∂T

∂x
− Sxz

∂T

∂z

)
(4.24)

Equations 4.18, 4.21, and 4.24 describe eddy currents in an anisotropic material.

Jy 6= 0, but it is six orders of magnitude less than Jx and Jz as computed in the

models and can be neglected. There is no y dependence for any of the variables, so

the x̂ and ẑ components tell nothing about the system.

Eddy Currents in the ASM

The ASM is a pure mathematical model, and, hence, has certain idealistic assump-

tions that are not present in the ILM. The material parameters are broken into per-
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pendicular and parallel components that are continuous throughout the anisotropic

slab. Consequently, the material parameters are constants and are not spatially

dependent. Examining the ŷ component left from the curl of E

∂

∂z

(
ρxxJx + ρxzJz − Sxx

∂T

∂x
− Sxz

∂T

∂z

)
=

∂

∂x

(
ρzxJx + ρzzJz − Szx

∂T

∂x
− Szz

∂T

∂z

)
(4.25)

Looking at the left hand side

∂

∂z

(
ρxxJx + ρxzJz − Sxx

∂T

∂x
− Sxz

∂T

∂z

)
(4.26)

ρxx
∂Jx
∂z

+ ρxz
∂Jz
∂z
− Sxx

∂2T

∂z∂x
− Sxz

∂2T

∂z2
, (4.27)

and then the right hand side

∂

∂x

(
ρzxJx + ρzzJz − Szx

∂T

∂x
− Szz

∂T

∂z

)
(4.28)

ρzx
∂Jx
∂x

+ ρzz
∂Jz
∂x
− Szx

∂2T

∂x2
− Szz

∂2T

∂x∂z
. (4.29)

Now, ρxz = ρzx and Sxz = Szx. Bringing the pieces back together and simplifying

gives

ρxx
∂Jx
∂z

+ ρxz

(
∂Jz
∂z
− ∂Jx

∂x

)
− ρzz

∂Jz
∂x

= Sxz

(
∂2T

∂z2
− ∂2T

∂x2

)
+ Sxx

∂2T

∂z∂x
− Szz

∂2T

∂x∂z
.

(4.30)
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Eddy Currents in the ILM

The situation gets more complicated in the ILM since the coefficients are spatially

dependent over each layer of alternating materials. The product rule must be used

for each term in the sums. Again looking at the y component. The left hand side

says

∂

∂z

(
ρxxJx + ρxzJz − Sxx

∂T

∂x
− Sxz

∂T

∂z

)
(4.31)

∂ρxx
∂z

Jx + ρxx
∂Jx
∂z

+
∂ρxz
∂z

Jz + ρxz
∂Jz
∂z

− ∂Sxx
∂z

∂T

∂x
− Sxx

∂2T

∂z∂x
− ∂Sxz

∂z

∂T

∂z
− Sxz

∂2T

∂z2
,

(4.32)

and then the right hand side

∂

∂x

(
ρzxJx + ρzzJz − Szx

∂T

∂x
− Szz

∂T

∂z

)
(4.33)

∂ρzx
∂x

Jx + ρzx
∂Jx
∂x

+
∂ρzz
∂x

Jz + ρzz
∂Jz
∂x

− ∂Szx
∂x

∂T

∂x
− Szx

∂2T

∂x2
− ∂Szz

∂x

∂T

∂z
− Szz

∂2T

∂x∂z
.

(4.34)
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Then again putting the pieces back together

ρxx
∂Jx
∂z

+ ρxz

(
∂Jz
∂z
− ∂Jx

∂x

)
− ρzz

∂Jz
∂x

+

(
∂ρxx
∂z
− ∂ρzx

∂x

)
Jx +

(
∂ρxz
∂z
− ∂ρzz

∂x

)
Jz

= Sxz

(
∂2T

∂z2
− ∂2T

∂x2

)
+ Sxx

∂2T

∂z∂x
− Szz

∂2T

∂x∂z
−
(
∂Szx
∂x
− ∂Sxx

∂z

)
∂T

∂x

−
(
∂Szz
∂x
− ∂Sxz

∂z

)
∂T

∂z

(4.35)

The situation becomes more complicated in the ILM as seen by comparing Eq.

4.30 and Eq. 4.35. There are 8 more terms in (∇ × E)y equation in the ILM than

the ASM. The results are seen by the more complicated current density directions

in the ILM in Figs. 4.5, 4.6, 4.7, and 4.8.

Effect of Width

In the description of transverse thermoelectric effects in the previous chapter only

two dimensions were discussed. The reason is that the third dimension is of no

consequence, but this statement definitely needs to be qualified. So simulations were

run with a varying third dimension to demonstrate that there is no variation in the

y-direction.
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Figure 4.9: Effect of width on the ASM for angles of inclination 0◦-90◦.

The Seebeck study provided some interesting results. Eddy currents occur and

must be taken into account when running simulations to compute thermopower.

The dimension of the device determine which angle of inclination should be used for

maximum thermopower output. The thermoelectric effect is a thermodynamically

reversible process, and the computational study of the Peltier effect is presented

next.
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4.2 Transverse Peltier Effect

In this study an electrical current boundary condition was input to model the

Peltier effect. The angle of inclination was kept at 25◦, and the bottom surface was

held at 295K as in the Kyarad experiment. Different current densities were input

for different aspect ratios. Both models have a temperature gradient along the top

of the device where the cooling occurs. The temperature was taken in the middle of

the top surface as this location was shown to be in close agreement with the surface

average. Bismuth telluride and lead were the materials used for the study. The

materials’ parameters used are the same as found in Table 1 in Kyarad [6] with the

exception that a Seebeck coefficient of 200(µV/K) was used instead of 20(µV/K).

Figure 4.10: Temperature distribution across thermoelectric device CAD model of
Peltier effect for ILM and ASM.
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4.2.1 Peltier Aspect Ratio Comparison

While in the Seebeck study the ASM and ILM agreed extremely well over dif-

ferent geometries and conditions, the Peltier simulations diverged for certain device

geometries. In the Peltier studies Fig. 4.11, the ILM diverged significantly at lower

aspect ratios with the layer thickness of 1mm used in the Kyarad experiment [6]. This

includes the aspect ratio used in [6]. At the aspect ratio of 5 the models converge,

and the results for longer aspect ratios are discussed next.

Figure 4.11: Temperature difference created in z-direction for injected currents for
ILM and ASM for aspect ratios ∆x/∆z =(5,2,1).

Further exploration shows that the models diverge again at higher aspect ratios.
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In Fig. 4.12 the ILM shows a small decrease in ∆T for aspect ratio ∆x/∆z = 10.

This implies an engineering limit in geometry for Peltier coolers as for longer devices

Joule heating will start to overtake the Peltier cooling. Keeping the cross sectional

area the same as in done in the studies, this makes sense looking at the equation for

Joule heating

Q ∝ I2R = I2ρ

(
L

A

)
. (4.36)

Figure 4.12: Temperature difference for aspect ratio ∆x/∆z = (10, 5) showing the
divergence of models at high aspect ratio.
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Peltier Model Convergence: Layer Thickness

The ILM converges to the ASM when the layer thickness was reduced as shown in

Fig. 4.13. This is a comforting result in the limit, however it may be a drawback of

the ILM in general as it diverges significantly from measured data.

Figure 4.13: Convergence of ILM to ASM in the limit that layer thickness goes to
zero tA → 0 and tB → 0.
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4.2.2 ASM and ILM Differences

Temperature Distribution

As noted for the potential in the Seebeck studies, there is a similar difference in

distribution of temperature in the Peltier studies. Again the ILM has a digital effect

from the inhomogeneity of the alternating material properties of each layer. In the

ILM the temperature is constant across most of each layer, and temperature drops

only occur at the interfaces of the two materials. This is a comforting result since

the Peltier is known to occur at material interfaces. The strict mathematical model

employed in the ASM has the smooth profile shown in Fig. 4.14. As noted in the

previous section, the temperature difference ∆T is greater in the ASM. This is an

important difference of the ILM. More comparisons to measured data are needed to

determine if this is a drawback if the ILM or if the ILM is a more realistic model.
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Figure 4.14: Difference in temperature distribution across x-direction for the ASM
and ILM in a Peltier effect simulation.

Current Density Differences

A current density plot Fig. 4.15 show an important difference in the two compu-

tational models. There is a component in the ILM that does not show up in the

ASM. An input current in the x-direction mandates that a z directed electric field

component is generated as indicated in Eq. 4.37.

Ez = Jxρzx + Jzρzz − Szx
(
∂T

∂x

)
− Szz

(
∂T

∂z

)
(4.37)

Indeed the z component of the current density is seen in Fig. 4.15 is seen in both

models. However, there is an important difference in the ILM and ASM that must
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be accounted for in the engineering of thermoelectric devices.

Figure 4.15: Current density plots for ILM and ASM showing the extra component
in the ILM.

Zooming in for a closer look at Fig. 4.16 and Fig. 4.17 reveals a component

perpendicular to the contact surfaces in the ILM not seen in the ASM. This J⊥ at

a surface interface is directed by an E⊥ as described in the paper by Anatychuk

and Luste [10]. E⊥ occurs throughout the model in all the Peltier effect simulations

using the ILM. E⊥ only occurs in ”zonally inhomogeneous structures” [10] with the

materials posessing different Seebeck coefficients. Moreover Anatychuk and Luste

state that the E⊥ fields lie along isotherms within the material. Utilizing the plotting

capabilities in COMSOL, it looks as though they are correct as there are isothermal

surfaces that intersect the contact surfaces perpendicularly. Ez is positive as seen

in both the ASM and ILM, however the z component of E⊥ is in the negative z

direction. Therefore, E⊥ is subtracting from the overall heat transfer in the Peltier
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cooling.

Figure 4.16: Zoomed in current density plot for the Peltier ILM simulation showing
extra surface perpendicular component.

Figure 4.17: Zoomed in current density plot of Peltier ASM simulation showing no
surface perpendicular component.
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4.3 Device Engineering

4.3.1 ILM

Pictured below in Fig. 4.18 is a device with dimensions of 5cm x 5mm x 5mm.

The top and bottom plates are beryllium oxide, and the left and right plates are

copper. The materials in the middle alternate between lead and p-type bismuth

telluride.

Figure 4.18: Single transverse thermoelectric device geometry built in the ILM.

Fig. 4.19 shows the potential distribution over a transverse thermoelectric device

with heat flux applied of 137, 000(W/m2) to top, and 0V held at right side. The

choice of 137, 000(W/m2) for the input heat flux simulates a magnification of 100

times that of sunlight which has a heat flux of 1370(W/m2). The bottom surface is

held at a constant temperature of 295K which assumes perfect heat flux to create
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the heat sink.

Figure 4.19: ILM surface plot of the potential distribution over a transverse ther-
moelectric device with heat flux applied of 137, 000(W/m2) to top, and 0V held at
right side.

4.3.2 ASM

The ILM geometries are more realistic than the ASM, so the ILM CAD device

geometries are more complicated. Consequently, creating devices for the ILM takes

much longer than creating devices in the ASM. It is possible to create geometries

in other CAD programs and import them into COMSOL which could simplify the

process of creating complicated geometries in the ILM. Although the ASM is an

idealization, building a model a large set up for a device takes much less time. The

ASM Fig. 4.20 plots the potential across the mathematical model of the ILM device

in Fig. 4.19.
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Figure 4.20: ASM model of a single transverse thermoelectric with heat flux applied
of 137, 000(W/m2) to the top section, and 0V held at bottom right side copper plate.

Fig. 4.21 pictures an array of single devices electrically linked in series with copper

plates. Each leg is made of the same two types of materials, so unlike longitudinal

thermoelectric devices, only one type of thermoelectric semiconductor is needed to

build a device. The important aspect that needs to be considered is the orientation

of each thermoelectric leg. Each leg must be oriented 180◦ relative to the next. This

is must be the case if the voltages are to add in series rather than simply cancel each

other out. This being the case, the potentials add in series. The potential is higher in

the ASM Fig. 4.20 than in the ILM Fig. 4.19, and these differences need to be more

thoroughly examined. Regardless of the differences, the ASM can be used to get an

upper bound on device output. The ASM physics module needs to be generalized

somewhat in order to achieve an effective simulation. The more robust ASM will be

able to input alternating angles of orientation such that this effect can be effectively
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modeled in more complicated devices.

Figure 4.21: Transverse thermoelectric device linked in series with heat flux applied
of 137, 000(W/m2) to the top of each section, and 0V held at bottom right side
copper plate.

This section provides the evidence that transverse thermoelectric devices can

be modeled and engineered in a computational environment in COMSOL. Further

device geometries and environmental conditions can be input in order to compare

outputs before spending the time and money creating physical devices and taking

measurements.

The transverse Seebeck and Peltier effects have been shown to be effective. Open

circuit eddy currents and surface interface electric fields have proven to be interesting

effects that must be taken into account to understand transverse thermoelectrics.

More studies are needed to determine the necessary materials and conditions needed

to engineer optimal devices.
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Chapter 5

Conclusion

COMSOL Multiphysics uses the finite element method (FEM) to compute numerical

solutions and was the main software used in the analysis of the transverse thermo-

electric effect done for this thesis. As COMSOL does not have a thermoelectric

module, two COMSOL physics modules were built for modeling and research. The

purely mathematical model named the anisotropic slab model (ASM) provides the

ideal case with which to compare the isotropic layer model (ILM). The ILM provides

the more realistic model as the geometries and boundary conditions match what

an actual device will encounter. The differences in ILM FEM solutions are noted

throughout the thesis and provide computational evidence as to predicted effects

such as anisotropic eddy currents and surface to surface interface effects. Validation

with measured data along with the computational evidence for the aforementioned

effects prove the reliability of the custom physics modules.

The transverse Seebeck potential was shown to add in series for longer devices.
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Noted also was that although no current was injected into the device, eddy currents

are generated and have a significant effect on the output potential that cannot be

neglected. The angular dependence on output was shown to originate from the

competition of the longitudinal Seebeck element Sxx and the off diagonal element

Sxz of the Seebeck tensor. The third dimension has no effect on the output and,

hence, does not need to be considered for loss mechanisms. Transverse Seebeck

effect is shown to be a reliable mechanism for thermoelectric device engineering.

The transverse Peltier effect was shown to have a cooling effect of approximately

20K. In the ILM portions of the current were directed perpendicularly to the layers’

interfaces through out the device. This perpendicular component was absent in

the ASM since it is an idealization without layer to layer interfaces. As seen in the

simulations, when the layer thickness is reduced the ILM converges to the ASM. This

is a deficiency in the ILM since certain device geometries might have comparable layer

thickness relative to the dimensions of the device. Temperature drops in the ILM

were shown to occur at the interface of the layers while the ASM was shown to have

a continuous drop. The transverse Peltier effect exhibits possibilities for applications

such as computer chip cooling.

Transverse thermoelectric devices have promising future in energy conversion and

heat transfer. At a cost of approximately $10,000 per pound to carry a load into

space, reduction in material to power spacecrafts opens up a valuable margin which

can be utilized for more computational power or simply less cost. In any process

which produces heat loss, transverse thermoelectric devices could be could be used

to convert the loss into electrical power supplied back into the grid. Solar power
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conversion is yet another application that should drive research and development

transverse thermoelectric devices.

67



Appendix A

Landauer Approach

A.1 Charge Current

There are two ways that an electrical current is generated in a thermoelectric

device. To generate a current there must be a difference in Fermi distributions such

that an equilibrium will be reached in a steady state. One method is to apply voltage,

and another is to apply a temperature gradient across the device. This derivation

follows the one energy model given in Lundstrom’s course [18].

If the two contacts are held at the same temperature, so that ∆T = 0, current

will flow if we apply a small voltage such that ∆EF 6= 0. Fig. A.1 [18] illustrates

this concept.
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Figure A.1: A change in Fermi distribution due to an applied potential

(f1 − f2) ≈
(
−∂f0

∂E

)
q∆V (A.1)

When temperature is the driving generalized force behind the current and no

applied voltage, we have ∆T 6= 0 and ∆EF = 0. Fig. A.2 [18] shows this change.

Figure A.2: A change in Fermi distribution due to a change in temperature.
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Expanding f2 in a Taylor series we have:

(f1 − f2) ≈ f1 − (f1 +
∂f1

∂T
∆T ) (A.2a)

≈ −∂f1

∂T
∆T (A.2b)

Differentiating f1 with respect to T we have

∂f1

∂T
= −(E − EF )

T

(
∂f0

∂E

)
(A.3)

So, for a temperature gradient

(f1 − f2) ≈ −
(
−∂f0

∂E

)
(E − EF )

T
∆T (A.4)

Now, if there is a temperature gradient as well as a difference in Fermi levels as

shown in Fig. A.3 [18], then the contributions add to get

(f1 − f2) ≈
(
−∂f0

∂E

)
q∆V −

(
−∂f0

∂E

)
(E − EF )

T
∆T (A.5)
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Figure A.3: A change in Fermi distribution due to a change in temperature and an
applied voltage.

The equation for current is

I(E0) =
2q

h
T (E0)M(E0)(f1 − f2) (A.6)

Plugging in Eq. A.5 into Eq. A.6,

I(E0) =
2q

h
T (E0)M(E0)

{(
−∂f0

∂E

)
q∆V −

(
−∂f0

∂E

)
(E − EF )

T
∆T

}
(A.7)

I(E0) = G(E0)∆V − [SG(E0)] ∆T (A.8)

where,

G(E0) =
2q2

h
T (E0)M(E0)

(
−∂f0

∂E

)
(A.9)

SG(E0) =
2q

h
T (E0)M(E0)

(
−∂f0

∂E

)
(E0 − EF )

T
(A.10)

S(E0) = −
(
kB
q

)
(E0 − EF )

kBT
(A.11)
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A.2 Heat Current

Electrons certainly carry charge, but they also carry heat. Thermodynamically

the system must come to thermal equilibrium, so electrons are driven by an entropic

force to distribute the energy in the system. A similar approach that was used in the

previous section to derive the electrical current equation provides a way to calculate

heat flux.

IQ1(E0) =
2(E0 − EF1)

h
T (E0)M(E0)(f1 − f2) (A.12)

IQ2(E0) =
2(E0 − EF2)

h
T (E0)M(E0)(f1 − f2) (A.13)

Near equilibrium the heat flux is almost at a steady state and f1 ≈ f2 ≈ f0, so

IQ1 ≈ IQ2 → IQ(E0) =
2(E0 − EF )

h
T (E0)M(E0)(f1 − f2) (A.14)

Starting with the form we have for (f1 − f2) and using Eq. A.10

(f1 − f2) ≈ C1(E0)q∆V + C2(E0)∆T (A.15)

IQ(E0) =
2

h
T (E0)M(E0)

(
(E0 − EF )q∆V − (E0 − EF )2

T
∆T

)
(A.16)

IQ(E0) = T [SG(E0)] ∆V −K0(E0)∆T (A.17)
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where

K(E0) =
2

h

(E0 − EF )2

T
T (E0)M(E0)

∂f0

∂E
. (A.18)

We now have equations for both heat and electric current. This set of equations

is called the coupled current equations, and they describe how heat and current flow

in materials.

IQ(E0) = T [SG(E0)] ∆V −K0(E0)∆T (A.19)

I(E0) = G(E0)∆V − [SG(E0)]∇T (A.20)
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Appendix B

Computation Tables

B.1 Zahner et al. Validation Tables

ILM 3/17/2014

For qin = 10(mW/cm2), slice thickness=0.1mm, ∆T values added to Tbottom 275.13K,

the bottom temperature. Reference: [16]

α 15 20 25 30 35 40 45 50 60

U(µV) .143 .178 .192 .192 .187 .178 .166 .142 .111

∆T (mK) 4.45 3.95 3.49 3.01 2.62 2.26 1.97 1.72 1.37

Table B.1: Computations of ILM for the Zahner confirmation simulations to deter-
mine the validity of the custom physics modules.
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ASM 2/21/2014

For qin = 10(mW/cm2), slice thickness=0.1mm, ∆T values added to Tbottom 275.13K,

the bottom temperature. Reference: [16]

α 0 10 15 25 35 45 55 65 75

U(µV) 1.73e-4 .105 .147 .192 .192 .166 .130 .092 7.31e-2

∆T (mK) 5.25 4.88 4.48 3.5 2.61 1.95 1.49 1.20 1.11

Table B.2: Computations of ASM for the Zahner confirmation simulations to deter-
mine the validity of the custom physics modules.
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B.2 Kyarad et al. Validation Tables

ASM 2/25/2014

For x=0.02m, z=0.01m, y=0.002m, α=25◦, p=1, Tbottom=295K. Reference: [6].

Iin(A) Tmin(K) Tmidpoint(K) TsurfAvg(K)

1 292.33 293.44 293.45

5 282.58 287.9 287.94

10 272.34 282.47 282.56

15 264.03 278.52 278.68

20 257.42 275.93 276.16

25 252.32 274.57 274.88

30 248.55 274.33 274.73

35 245.98 275.1 275.59

40 244.46 276.81 277.34

45 243.88 279.38 280.04

50 244.14 282.74 283.47

55 245.15 286.83 287.63

60 246.84 291.59 292.46

Table B.3: Computations of ASM for the Kyarad confirmation simulations to deter-
mine the validity of the custom physics modules.
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ILM 3/17/2014

For x=0.02m, z=0.01m, y=0.002m, α=25◦, p=1, Tbottom=295K. No surface temper-

ature computations. Reference: [6].

Iin(A) Jin(A/m2)(105) Tmidpoint(K)

2 1 292.71

4 2 290.55

10 5 284.84

20 10 277.74

30 15 273.39

40 20 271.49

50 25 271.8

60 30 274.1

70 35 278.18

80 40 283.87

Table B.4: Computations of ILM for the Kyarad confirmation simulations to deter-
mine the validity of the custom physics modules.
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Appendix C

List of Symbols

Symbol Definition Units

p momentum (kg ·m/s)

p layer thickness ratio (tB tA) none

F force N

EF Fermi energy eV

EC conduction band energy eV

E(p) kinetic energy eV

Fn quasi-Fermi energy eV

τf relaxation time s

kB Boltzmann constant (m2 · kg)/(s2 ·K)

T absolute temperature K

v velocity m/s
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F generalized force

σ electrical conductivity S/m

G electrical conductivity S/m

ρ electrical resistance Ohm ·m

J current density A/m2

JQ heat flux density W/m2

q heat flux density W/m2

S Seebeck coefficient V/K

Q joule heating J

E electric field V/m

V electric potential V

K thermal conductivity W/(m ·K)

κ thermal conductivity W/(m ·K)

Π Peltier coefficient V

∇ differential operator none

S‖ parallel Seebeck coefficient V/K

S⊥ series Seebeck coefficient V/K

σ‖
parallel electrical

conductivity
S/m

σ⊥
series electrical

conductivity
S/m
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κ‖
parallel thermal

conductivity
W/(m ·K)

κ⊥ series thermal conductivity W/(m ·K)

Table C.1: Symbols used throughout the paper.
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