
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-13-2014

Efficient FPGA Architectures for Separable Filters and Logarithmic Efficient FPGA Architectures for Separable Filters and Logarithmic

Multipliers and Automation of Fish Feature Extraction Using Multipliers and Automation of Fish Feature Extraction Using

Gabor Filters Gabor Filters

Arjun Kumar Joginipelly
arjunrao143@gmail.com

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Digital Circuits Commons, Electrical and Electronics Commons, and the VLSI and Circuits,

Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Joginipelly, Arjun Kumar, "Efficient FPGA Architectures for Separable Filters and Logarithmic Multipliers
and Automation of Fish Feature Extraction Using Gabor Filters" (2014). University of New Orleans Theses
and Dissertations. 1876.
https://scholarworks.uno.edu/td/1876

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1876&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uno.edu%2Ftd%2F1876&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uno.edu%2Ftd%2F1876&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uno.edu%2Ftd%2F1876&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uno.edu%2Ftd%2F1876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1876?utm_source=scholarworks.uno.edu%2Ftd%2F1876&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Efficient FPGA Architectures for Separable Filters and Logarithmic Multipliers

and

Automation of Fish Feature Extraction using Gabor Filters

A Dissertation

Submitted to the Graduate Faculty of the

University of New Orleans

in the partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Engineering and Applied Sciences

Electrical Engineering

by

Arjun Kumar Joginipelly

M.S. University of New Orleans, 2010

Aug 15 2014

c© Copyright 2014
Arjun Kumar Joginipelly

All rights reserved

ii

Dedication

I dedicate this work to my parents, Joginipelly Raj Gopal Rao and J. Prabha Rani; to my

grandparents Potlapally Bapu Rao and P. Bharatamma; to my uncles, P. Govind Rao and

P. Mohan Rao; to my sister and brother, M. Sri Laxmi and J. Anil Kumar. The blessings,

unconditional love, and constant support you all gave were always with me and encouraged me

in stepping forward in life.

iii

Acknowledgments

First and above all, I praise God for giving me this opportunity and granting me the capability to

proceed successfully in completing my dissertation overseas. This dissertation would not have

been possible without the guidance and support of several individuals who in one way or other

contributed and extended their valuable assistance in the completion of this study.

I would like to express enormous gratitude to Dr. Dimitrios Charalampidis, my advisor, for

his help, suggestions, and guidance throughout the course of my dissertation. I appreciate his

direction, supervision of my work, and his patience which helped me to progress in the right

direction. I would like to thank Dr. George Ioup, Dr. Juliette Ioup, Dr. Huimin Chen and Dr.

Vesselin Jilkov, for their willingness to serve as members of my dissertation committee.

Most importantly, I would like to thank my parents and grandparents, for teaching me that

responsibility in life is to learn, to be happy, and to know and understand myself; only then

I could understand and help others. I am indebted to them for encouraging me in all of my

pursuits and inspiring me to follow my dreams. I always knew that you believed in me and

wanted the best for me.

I acknowledge my friend Mr. Rajesh Chary, for his valuable help and support throughout

my dissertation. His patience, assistance, and constructive criticism helped me in shaping my

personal and academic life for complex situations. I would like to thank Patricia Robbert, for

giving me the opportunity to work as a teaching assistant in Physics Department. This helped me

in improving speaking and presentation abilities, and support myself financially for continuing

my studies at University of New Orleans.

I would like to thank Jeevan Allagar, for his time and patience in helping me to understand

the importance of moving forward in life taking both success and failures along side with me.

Finally, I would like to thank Bing & Michael Simpson, Janu, Nag Bhai, and each and everyone,

for listening, offering me advice and supporting me throughout my dissertation.

iv

List of Acronyms

FPGA – Field Programmable Gate Arrays

NOAA – National Oceanic and Atmospheric Administration.

ASIC – Application Specific Integrated Circuit

RAM – Random Access Memory

HDL – Hardware Description Language

VHDL – Very High Speed Integrated Circuits HDL

DSP – Digital Signal Processor

2D – Two Dimensional

EMB – External Memory Bandwidth

CC – Clock Cycle

OCDB – On-chip Data Buffers

FB – Full Buffering

PB – Partial Buffering

MWPB – Multi-window Partial Buffering

LUT – Look-Up-Table

ICR – Intermediate Convolution Result

FCR – Final Convolution Result

FIFO – First-In-First-Out

BRAM – Block RAM

SDRAM – Synchronous Dynamic RAM

v

DDRAM – Double Data Rate RAM

MUX – Multiplexer

DEMUX – Demultiplexer

CSC – Central Selection Controller

VR – Vertical Results

HR – Horizontal Results

LNS – Logarithmic Number System

OD – Operand Decomposition

MSB – Most Significant Bit

MSE – Mean Square Error

IM – Iterative Mitchell

NCE – Non-Controlled Environments

SEFSC – Southeast Fisheries Science Center

EM – Epinephelus morio or red grouper

OC – Ocyurus chrysurus or yellow tail snapper

ABC – Allowable Biological Catch

GF – Gabor Filters

MA – Moving Average

vi

Table of Contents

List of Figures . ix

List of Tables . xi

Abstract . xii

1 Introduction . 1

1.1 Motivation . 1

1.2 Dissertation Outline . 3

1.3 Dissertation Contributions . 4

2 Efficient FPGA Implementation of Separable Convolution Architectures 5

2.1 Abstract . 5

2.2 Introduction . 5

2.3 Review of Separable Convolution Methods . 8

2.3.1 FB Scheme for Separable Convolution 8

2.3.2 PB Scheme for Separable Convolution 9

2.4 Proposed Separable Convolution Scheme and Implementation 11

2.4.1 Shift Register Modules . 11

2.4.2 Multiplexer and Demultiplexer Modules 12

2.4.3 Multipliers and Adder . 13

2.4.4 Central Selection Controller . 13

2.5 Performance Analysis . 14

2.6 Conclusions . 17

3 An Efficient Method of Error Reduction in Logarithmic Multiplication

for Filtering Applications . 18

3.1 Abstract . 18

3.2 Introduction . 18

3.3 Review of Logarithmic Multipliers . 21

vii

3.3.1 Mitchell Logarithmic Multiplier . 21

3.3.2 Derivation of IM log multiplier . 23

3.4 Proposed logarithmic multiplier . 25

3.5 Results and Discussion . 26

3.6 Extension of Proposed Logarithmic Multiplier 29

3.7 Conclusions . 33

4 Species-Specific Fish Feature Extraction Using Gabor Filters 34

4.1 Abstract . 34

4.2 Background . 34

4.3 Gabor Filters Used For Fish Feature Extraction 36

4.3.1 Epinephelus morio Feature Extraction Using Gabor Filters 38

4.3.2 Ocyurus chrysurus Feature Extraction Using Gabor Filters 39

4.4 Results and Discussion . 41

4.5 Conclusions . 47

5 Conclusions and Future Work . 48

5.1 Conclusions . 48

5.2 Future Work . 49

Bibliography . 49

Appendices . 55

VHDL Source Codes . 55

Matlab Source codes . 60

Vita . 68

viii

List of Figures

Fig. 2.1: Illustration of available common rows for consecutive convolution win-

dows W1, W2 and WK . 6

Fig. 2.2: FB scheme for separable convolution 9

Fig. 2.3: PB scheme for separable convolution 9

Fig. 2.4: Proposed FPGA architecture for a kernel of size 3× 3 10

Fig. 2.5: Order in which the image pixels are read 12

Fig. 2.6: Central selection controller timing diagram 14

Fig. 2.7: FB, PB and proposed schemes power consumption (mW) for a 3× 3 filter 15

Fig. 2.8: Comparison between FB, PB and proposed schemes for various filter

sizes in terms of flip flops shown using barplots 16

Fig. 2.9: Comparison between FB, PB and Proposed schemes for various filter

sizes in terms of LUTs shown using barplots 16

Fig. 3.1: Actual values and Mitchell’s approximated values of log2(N) 22

Fig. 3.2: MSE between the Mitchell, OD, IM and proposed methods using input

signals of size 1 × 256 and Gaussian filter of size 1 × 13, shown with

barplots . 28

Fig. 3.3: MSE between the Mitchell and the proposed method extension for

Mitchell using input signals of size 1 × 256 and Gaussian filter of size

1× 13, shown using barplots . 31

Fig. 3.4: MSE between the OD and the proposed method extension for OD using

input signals of size 1 × 256 and Gaussian filter of size 1 × 13, shown

using barplots . 31

Fig. 3.5: MSE between IM and the proposed method extension for IM using input

signals of size 1× 256 and Gaussian filter of size 1× 13, shown using

barplots . 32

ix

Fig. 4.1: 1D Gabor filter . 37

Fig. 4.2: 2D Gabor filters with σ2
x = σ2

y = 4. 37

Fig. 4.3: EM pre-processing steps. 39

Fig. 4.4: Filtering results of horizontal and vertical Gabor filters on EM. 39

Fig. 4.5: EM tail band detection – maximum value per column mEM
Ir

(x). 39

Fig. 4.6: OC pre-processing steps. 40

Fig. 4.7: Filtering results of horizontal and vertical Gabor filters on OC. 40

Fig. 4.8: OC straight line detection – maximum value per row mOC
Ir

(y). 41

Fig. 4.9: OC straight line detection when the fish is oriented at a different angle

with respect to x axis. 42

Fig. 4.10: Proposed algorithm flowchart. 43

Fig. 4.11: Illustration of some EM and OC results 45

Fig. 4.12: Illustration of few cases of false alarms (non-EM detected as EM, or

non-OC detected as OC) . 46

Fig. 4.13: Illustration of few cases of false alarms (non-fish detected as EM or OC) 46

Fig. 4.14: Illustration of few cases where EM and OC are not detected by the

algorithm. 46

x

List of Tables

Table 2.1: Characteristics of the three schemes for a K ×K filter 14

Table 2.2: Comparison between FB, PB and proposed schemes for various filter

sizes in terms of flip flops and LUTs using xilinx virtex 5 FPGA device . 16

Table 3.1: MSE between the Mitchell, OD, IM and proposed methods using input

signals of size 1× 256 and Gaussian filter of size 1× 13 27

Table 3.2: Resource utilization of non-pipelined logarithmic multiplier using the

Mitchell, OD, IM (1, 2, 3 and 4 stages), and proposed method 28

Table 3.3: MSE between the Mitchell, proposed method extension for Mitchell, OD,

and proposed method extension for OD using input signals of size 1×256

and Gaussian filter of size 1× 13 . 30

Table 3.4: MSE between IM and the proposed method extension for IM using input

signals of size 1× 256 and Gaussian filter of size 1× 13 32

Table 4.1: Information about reef fish images obtained from SEFSC Pascagoula

laboratory . 41

Table 4.2: EM results . 43

Table 4.3: OC results . 44

xi

Abstract

Convolution and multiplication operations in the filtering process can be optimized by minimiz-

ing the resource utilization using Field Programmable Gate Arrays (FPGA) and separable filter

kernels. An FPGA architecture for separable convolution is proposed to achieve reduction of

on-chip resource utilization and external memory bandwidth for a given processing rate of the

convolution unit.

Multiplication in integer number system can be optimized in terms of resources, operation

time and power consumption by converting to logarithmic domain. To achieve this, a method

altering the filter weights is proposed and implemented for error reduction. The results obtained

depict significant error reduction when compared to existing methods, thereby optimizing the

multiplication in terms of the above mentioned metrics.

Underwater video and still images are used by many programs within National Oceanic At-

mospheric and Administration (NOAA) fisheries with the objective of identifying, classifying

and quantifying living marine resources. They use underwater cameras to get video recording

data for manual analysis. This process of manual analysis is labour intensive, time consuming

and error prone. An efficient solution for this problem is proposed which uses Gabor filters

for feature extraction. The proposed method is implemented to identify two species of fish

namely Epinephelus morio and Ocyurus chrysurus. The results show higher rate of detection

with minimal rate of false alarms.

Keywords

Separable Convolution, Image Processing, Field Programmable Gate Array (FPGA), Logarith-

mic Multipliers, Gabor Filters, Automated Fish Classification and Feature Extraction.

xii

Chapter 1

Introduction

1.1 Motivation

Embedded systems play an important role in digital image, video and signal processing with

applications in wide areas such as digital cameras, traffic light controller systems [1], lane

detection [2], medical devices, etc. In order to optimize the system performance to meet the ever

increasing demand for efficient system performance, major metrics in terms of cost, resources,

operation time, power consumption, resolution, and robustness are to be improved. Image

processing systems which constantly demand for real-time processing power require new design

methodologies and hardware accelerator architectures for hardware implementation.

In earlier times, image processing systems were mostly built with Application Specific Integrated

Circuits (ASICs) which are not re-programmable (or re-configurable). A malfunction in one

ASIC often results in a complete replacement of the faulty component. The ASIC’s lack of

flexibility to be reprogrammed is promoting their counterpart, namely the Field Programmable

Gate Array (FPGA) chips.

FPGA’s generally consist of a logic block-based system, which usually includes look-up-tables

(LUT), flip-flops and some amount of random access memory (RAM), all wired together using

a vast array of interconnects. All of the logic in an FPGA can be reconfigured with a different

design as often as the designer likes. FPGAs can be configured by hardware engineers using

a Hardware Design Language (HDL). The two principal languages which allows designers to

design at various levels of abstraction are Verilog HDL (Verilog) and Very High Speed Integrated

Circuits HDL (VHDL).

FPGAs can be developed to implement hardware design techniques such as parallelism and

pipelining, which is not possible in dedicated Digital Signal Processing (DSP) designs. DSPs

are a class of hardware devices that fall somewhere between an ASIC and a PC in terms of the

1

performance and the design complexity. ASICs were traditionally preferred over FPGAs because

of their speed, lower power consumption, and higher functionality. However, the improvement

on FPGA technology in recent years closed this gap. ASIC design methods can also be used for

FPGA design, facilitating gate level implementations, thereby decreasing development time and

time-to-market. However, engineers usually use a hardware language, which allows for a design

methodology similar to software design. Maintenance can be performed when an error is found

in the implemented design, since the FPGA fabric can always be reconfigured. This software

view of hardware design allows for a lower overall support requirements, lower cost, and design

abstraction. The key advantages of FPGAs when compared to DSP implementations include

performance, integration and customization using parallel and pipeline design techniques. Due to

the support of parallelism, FPGAs may be able to achieve huge gains in performance compared

to DSP implementations.

A thorough study on the capabilities of the FPGAs provided the motivation to utilize its features

for implementing image processing algorithms [3] with an aim of minimizing time-to-market

cost, enabling rapid prototyping of complex algorithms and finally simplifying the tedious

process of debugging and verification. Some works of image processing applications using

FPGAs have been reported such as edge detection [2], enhancement [4], and smoothing [5],

convolution form the basic component. For instance, for image size of 256× 256 with number

of frames = 25/sec and kernel size of 3 × 3, real time image convolution requires 589,824

multiplications and 524,288 additions. Furthermore, as the image resolution and refresh rate

increases, computational requirements of the convolution unit significantly increases. Hence,

due to high performance requirements, FPGAs are an ideal choice for implementation of real

time image processing algorithms. Given the importance of digital image processing and the

significance of their implementations on hardware to achieve better performance, this dissertation

addresses efficient architectures of separable convolution and logarithmic multiplication on

FPGA using VHDL language.

"A picture is worth a thousand words." As human beings, we can extract information from a

picture based on what we see and our background knowledge. Based on this analogy, we can

train computers by building models to extract efficient visual features [6] from an image or video

2

sequence. Hence, feature extraction is the fundamental step in any automated image analyzing

system which is widely used in one of the areas of identifying and quantifying living marine

resources.

Species detection is necessary to explore new species and their richness in any ecology. Many

fisheries use manual accumulation and analyze large amounts of data obtained using underwater

cameras for recognition and classification of species. This tedious process is easily prone to

errors as it involves manual analysis. This provided the motivation to the proposed method on

species-specific feature extraction using Gabor filters for extracting two species of fish namely

Epinephelus Morio, and Ocyurus Chrysurus. The proposed method gave the desired results with

a significant identification rate and negligible false alarms.

1.2 Dissertation Outline

The rest of the dissertation is organized as follows: Each chapter is allocated for a specific

methodology explaining the contribution of dissertation work in improving on the existing

methodologies.

Chapter 2 covers the convolution operation in detail and its functioning in filters and explains

the need for optimizing in terms of resource utilization and external memory bandwidth. It then

follows up with a thorough review on various existing FPGA separable convolution methods.

The proposed FPGA architecture with separable filter kernels, its implementation, and the results

are then presented.

Chapter 3 covers the multiplication operation in filters addressing the questions such as how its

optimization can improve the filter performance in terms of metrics such as power consumption,

operation time and resource utilization. One of the ways to achieve this is to convert integer

multiplication to logarithmic multiplication. Various existing methods on logarithmic multipliers

are then reviewed following up with the proposed method. The main objective of this method is

to reduce the multiplication error by altering the filter weights.

Chapter 4 covers the proposed method to improve on manual fish feature extraction process

currently in use by National Oceanic Atmospheric Administration (NOAA) fisheries group. An

3

in depth need for the automation of the feature extraction and species classification process

is explained. One of the solution is to use Gabor filters for feature extraction. The proposed

algorithm using Gabor filter is implemented and the results obtained are then presented which

show prominent success rate.

Chapter 5 gives the overall conclusions drawn from all the proposed methods and discusses on

how they can be improved further in future.

1.3 Dissertation Contributions

In this dissertation, issues related to convolution and multiplication on FPGA hardware are

resolved in an efficient way. With a major concern given to address external memory bandwidth,

on-chip data buffers and power consumption which are common to most imaging applications.

Architectural considerations as well as design methodology constitute the main scope of the

dissertation research work. Efficient FPGA architectures are presented for separable convolution

which provide a good balance between on-chip resource utilization and external memory band-

width. An efficient logarithmic multiplier based on Mitchell [7] is proposed and implemented

on FPGA. Automation of fish feature extraction using Gabor filters is proposed as an efficient

solution to manual fish analysis problem. The list of publications which are accepted or currently

in the process of submission from this dissertation research are as follows:

1. Arjun Kumar Joginipelly, Dimitrios Charalampidis, "Efficient Separable Convolution

Using FPGA’s", currently in the process of submission. [Chapter 2].

2. Arjun Kumar Joginipelly, Dimitrios Charalampidis, "Efficient Mitchell-based Logarithmic

Multiplier", currently in the process of submission. [Chapter 3]

3. Arjun Kumar Joginipelly, Dimitrios Charalampidis, George Ioup, Juliette Ioup, Charles H

Thompson, "Species-Specific Fish Feature Extraction Using Gabor Filters", proceedings

of 66th Gulf and Carribbean Fisheries Institute, Corpus Christi, Texas, USA, Nov 2013.

[Chapter 4]

4

Chapter 2

Efficient FPGA Implementation of Separable Convolution Architectures

2.1 Abstract

Two-dimensional (2D) convolution is an essential component of several image and video

processing applications. In general, the convolution operation is computationally expensive.

Field Programmable Gate Array (FPGA) architectures have been used to mitigate this problem

owing to their parallel processing capabilities. Using separable filter kernels can further improve

the convolution operation both in terms of resource utilization and speed. However, although

several 2D convolution implementations have been presented in the literature, research on

separable convolution using FPGA is limited. In this chapter, a new separable FPGA-based

convolution architecture is proposed. The goal is to reduce both on-chip resource utilization and

external memory bandwidth for a given processing rate of the convolution unit. Comparisons

with existing separable convolution methods demonstrate the achievement of the stated goal.

2.2 Introduction

Two dimensional (2D) convolution is widely used in image processing applications such as edge

detection [2], enhancement [4], and smoothing [5]. Spatial domain convolution using a kernel

of size K ×K requires K2 multiplications and (K2 − 1) additions per pixel. The convolution

output at image location (x, y) can be computed as the sum of products between kernel weights

and corresponding pixel values located within the K ×K image window centered at (x, y).

Real-time hardware-based convolvers require a large amount of resources including adder

circuits, multipliers or multiplier-equivalent circuits, and internal and/or external memory. Major

considerations include the external memory bandwidth (EMB), namely the number of pixels

read from external memory or device per clock cycle (cc), the amount of on-chip data buffers

(OCDB) where input or processed data is stored, and the amount of multiplier-related resources.

Several schemes [8],[9],[10],[11] proposed in the literature address EMB and OCDB utilization.

5

In [8], a full buffering (FB) scheme was used for implementing 2D convolution. Delay line

buffers were used to hold (K − 1) rows of the input image. A partial buffering (PB) scheme

was proposed in [9] to eliminate the line buffers by storing only small image portions in internal

memory. However, achieving this goal resulted in an increased EMB. A multi-window PB

(MWPB) scheme was proposed in [10] to overcome the problems in FB and PB schemes.

Similarly to PB, the MWPB scheme aimed at storing only small portions of the image data

in internal memory. The main objective, however, was to reuse the common data shared by

consecutive windows to the full extent possible. Therefore, the same image data did not have to

be read K times as in the case of PB. This concept is illustrated in Fig. 2.1. Since K windows

of size K ×K (Wk, k = 1, ..., K) are available in (2K − 1) consecutive image rows, K filter

outputs can be produced by processing (2K−1) rows. Thus, each pixel is read only (2K−1)/K

times, or practically, two times.

I1,KI1,1

I2,1

I3,1

I2,K

I3,K

IK,1 IK,K

I(K+1),1 I(K+1),K

I(K+2),1 I(K+2),K

I(2K-1),1 I(2K-1),(2K-1)

W1

W2

WK

(2K-1)

Lines











































































































Figure 2.1: Illustration of available common rows for consecutive convolution windows W1, W2

and WK .

The resources required for 2D convolution can be reduced by employing filters with separable

kernels. A K ×K separable kernel can be decomposed into a horizontal 1×K kernel and a

vertical K × 1 kernel, so that only 2K multiplications and (2K − 2) additions are required per

pixel. Although several hardware-based 2D convolution implementations have been investigated,

there is limited work on separable convolution using FPGA or VLSI architectures. In [5],

steerable filters [12] were implemented using a separable filter component. In [13], an image

6

scaling architecture using separable filters was proposed. In [14], a separable implementation of

Voltera filters was presented. In [15], singular value decomposition was used to approximate 2D

filters as a cascade of separable and non-separable filters employing, respectively, embedded

multipliers and reduced complexity LUT-based multipliers. In [16], FB-based separable con-

volution architectures and overlapping kernel techniques were investigated. Transform-based

techniques were proposed [17] to perform 2D convolution in a separable manner.

Most existing works, including the ones mentioned above, mainly employ FB separable convo-

lution schemes. Other works do not focus on separable convolution but only use it as one of

the system components. Although FB schemes offer advantages with respect to non-separable

techniques [16], they still require a large amount of resources due to line buffering. This chapter

proposes an architecture that reduces both EMB and on-chip resource utilization for a given

processing rate of the convolution unit. Section 2.4 presents the technical details of the proposed

scheme.

Although it is not the objective of this work, employing LUT-based multiplier-equivalent circuits

may further reduce resource utilization. Examples include log2 and inverse log2 modules [18],

shift and accumulation block modules [19], optimized codes such as distributed arithmetic,

output product coding, canonic signed digit coding, and binary sub-expression coding [20],[21],

and common sub-expression elimination methods to replace constant multiplications with a

network of adders and shifters [22]. Moreover, although the proposed work deals with linear

convolution, cyclic convolution techniques have also been investigated in [23],[24].

This chapter is organized as follows: Section 2.3 discusses two separable convolution architec-

tures. The first has been previously introduced in the literature [5],[14],[15],[25] and is based

on the FB scheme. The second was implemented by the authors by modifying the PB scheme

originally designed for non-separable convolution [9]. Section 2.4 introduces the proposed

FPGA architecture. Section 2.5 presents performance analysis, and comparisons among the

three architectures. Concluding remarks are presented in section 2.6.

7

2.3 Review of Separable Convolution Methods

This section discusses separable convolution architectures based on the FB and PB schemes. The

FB separable convolution scheme has been previously introduced in the literature [5],[15],[14],[25].

The PB separable convolution architecture is designed in this work as a straightforward mod-

ification of the non-separable PB-based scheme. In what follows, parameter P describes the

image pixel depth, which for grayscale images is equal to 8 bits. Moreover, the expression "shift

register array of size R" implies a total of P shift registers, each consisting of R flip flops.

2.3.1 FB Scheme for Separable Convolution

In [5],[25], an FB scheme was used to implement separable convolution. A similar architecture

was presented in [14],[15]. The FB separable convolution scheme is depicted in Fig. 2.2. In

summary, input pixels are read from external memory, one at a time, in a row-wise manner.

Pixels are pushed into internal line buffers until (K − 1) image rows, each consisting of N

pixels, are read. Each time a new pixel from the K-th row is read and stored in FIFO, a total of

K pixels, forming a vertical K × 1 window, are available and stored in K internal buffers. The

products between the K pixels and the corresponding K vertical filter weights are obtained and

summed together to produce the vertical intermediate convolution result (ICR). As pixels from

the K-th row continue to be read, consecutive ICRs are stored in a shift register array of size K.

The K ICRs are multiplied with the corresponding K horizontal filter weights and the results

are summed together to obtain the final convolution result (FCR). The above process is repeated

for all image pixels. Equivalently, the horizontal operation may be performed first followed by

the vertical operation.

In a pipelined version of the FB scheme, one pixel is read and one FCR is produced per clock

cycle, while a total of 2K multipliers should be available. Alternatively, in a non-pipelined

version, the horizontal and vertical filters may share the same K multipliers. In this case,

multiplexing is needed in order to select the appropriate inputs to the multipliers, namely vertical

versus horizontal filter weights, and input data versus ICRs. In this case, one input pixel is

read and one FCR is produced per two clock cycles. The advantage of the FB scheme is that

8

+

M1

MK

M2

W1

W2

WK

W'1

W'2

W'K

+

M'1

M'K

M'2
(K-1) Delay Lines

M
em

o
ry

 (
N

 l
o

c
a

ti
o

n
s)

M
em

o
ry

 (
N

 l
o

c
a

ti
o

n
s)









2

K

1

2 1N

Delay Line

2 1P

FIFO

 

 
 





2 1N

Delay Line 






ICRK

ICR2

ICR1





Figure 2.2: FB scheme for separable convolution

each pixel is read only once from external memory. Therefore, EMB equals only 1 or 0.5

pixels/cc using, respectively, the pipelined and non-pipelined versions of the scheme. The major

disadvantage of this scheme is that shift register arrays of total size [(K − 1)N +K + 1)] are

used for buffering, which accounts for a substantial percentage of FPGA resources. The problem

becomes significant for large input image and kernel sizes.

+

M1

W1

W2

+
M

em
o
ry

 (
N

 l
o
c
a
ti

o
n

s)

M2

W'K

M'K

W'1

M'1W'2

M'2

MK

WK









ICRK

ICR1

ICR2





2 1P

FIFO2

2 1P

FIFOK

M
em

o
ry

 (
N

 l
o
c
a
ti

o
n

s)

2 1P

FIFO1





 

 

 

Figure 2.3: PB scheme for separable convolution

2.3.2 PB Scheme for Separable Convolution

The original PB scheme was developed for non-separable kernels [9] and is not presented here.

Instead, a separable version of the PB scheme has been designed in this work, for the purpose

of comparing with the FB separable convolution and the proposed schemes. In the separable

9

version of the PB scheme, presented in Fig. 2.3, K pixels located in a window of size K × 1 are

read from external memory simultaneously and pushed in first-in-first-out (FIFO) blocks. The

FIFO data are multiplied with the corresponding K vertical filter weights to produce the ICR.

Similarly to the FB scheme, once K consecutive ICRs become available, they are multiplied

with the corresponding K horizontal filter weights. The products are summed together to obtain

the FCR. The process is repeated for all image pixels. Similarly to the FB scheme, a pipelined

and a non-pipelined version may be considered.

The advantage of the PB separable convolution architecture is that only 2K data points has to

be stored in internal buffers and shift register arrays. Therefore, the internal storage-related

resources are reduced dramatically with respect to the FB scheme. However, each pixel is read

K times from external memory resulting in a high EMB. The EMB equals K or K/2 pixels/cc

using, respectively, the pipelined and non-pipelined versions of the scheme.

M
U

X
1

+

D
E

M
U

X

S

S

M
em

o
ry

 (
N

 l
o

c
a

ti
o

n
s)

MUX3 S

M
em

o
ry

 (
N

 l
o

c
a

ti
o

n
s)

SMUX2

S
R

M
2 Delay Unit

W
2

W
3

W
4

W
5

W
6

W
1

Central

Selection

Controller

S

IC
R

5

IC
R

4

IC
R

3

IC
R

2

IC
R

1

IC
R

9

IC
R

8

IC
R

7

IC
R

6

SRM1

R4 R2 R1R3

SM

SM

Figure 2.4: Proposed FPGA architecture for a kernel of size 3× 3

10

2.4 Proposed Separable Convolution Scheme and Implementation

The objective of the proposed separable convolution technique is to reduce EMB, by reusing

common data shared by consecutive processing windows, and OCDB, by eliminating line

buffers. In this section, each module in the proposed separable convolution scheme is described

in detail with reference to the FPGA implementation. The input image pixels are read from block

RAM (BRAM), although other external memory elements such as synchronous dynamic RAM

(SDRAM) or double date rate RAM (DDRAM) may also be used. Moreover, the implementation

described next is what was referred earlier as the non-pipelined version, in which the same set

of multipliers is shared by both vertical and horizontal 1D filters. The FPGA architecture of the

proposed scheme with detailed schematic considering a kernel of size 3× 3 is shown in Fig. 2.4.

2.4.1 Shift Register Modules

As described in the introduction and Fig. 2.1, EMB is reduced if information from (2K − 1)

rows is processed at a time. For this reason, pixels located in a (2K − 1) × 1 window, W i,j
A ,

are read one at a time before moving on to the next window. The superscript i, j indicates,

respectively, the row and column position of the top pixel in W i,j
A . In particular, the next window

is W i,j+1
A , if j = 1, .., N − 1 or W (i+K,1)

A if j = N , in which case the current window W i,N
A is

located at the rightmost image column. The order in which pixels are read from the input image

is presented in Fig. 2.5. In the proposed architecture, it is not necessary to store all 2K − 1 rows

of W i,j
A as in the case of the MWPB scheme. Only K pixels located within a K × 1 subwindow,

namely Wk, are needed at a time to produce a vertical convolution result. An additional pixel

is read to be made available for processing the next subwindow Wk+1. Module SRM1, which

consists of a shift register array of size (K + 1), is used to hold and shift the input image pixels.

Each (2K − 1)× 1 window provides K ICRs corresponding to K image subwindows Wk, k =

1, ..., K (see Fig. 2.1) within the same window W i,j
A . Once K consecutive W i,j

A windows are

processed, a total of K2 ICRs are produced. These results are stored in a second shift register

array of size K2 denoted as SRM2. For every new K × 1 image window, K new ICRs are

shifted in SRM2, one at a time, while the K oldest ICRs are shifted out of SRM2.

11

As opposed to the scan method presented here, [26] requires that a (2K − 1) × (2K − 1)

image block is stored at a time, and mainly concentrates on how a single window is processed.

However, it does not describe how processing should transition from one window to the next.

Due to this uncertainty, [26] is not compared to the proposed work.

2.4.2 Multiplexer and Demultiplexer Modules

The proposed architecture utilizes three multiplexers (MUX1, MUX2, MUX3) and one demul-

tiplexer (DEMUX) modules. In particular, MUX1 selects pixels from either SRM1 or SRM2,

depending on the selection signal S generated from the central selection controller (CSC). If

S = HIGH then MUX1 selects pixels from SRM1. In this case, the multiplier and adder

modules generate ICRs which are stored temporarily to SRM2 through DEMUX. When SRM2

is completely filled, S is set to LOW by the CSC, and MUX2 assigns K out of K2 ICRs to

MUX1. In this case, the multiplier and adder modules generate the FCRs. DEMUX sends the

FCRs in another BRAM or other memory. It should be mentioned that ICRs are fed back to

SRM2 from DEMUX with a 3-clock cycle delay. The multiplier and adder stages require 2

clock cycles to generate their output and another clock cycle is used to sync the data with SRM2.

The delay produced is constant and does not depend on the input image or filter size.

I1,1   I1,N



I(K+1),1



I(2K-1),1



I(3K-1),1



  

  I(K+1),N

  

  I(2K-1),N

  

  I(3K-1),N

  

Figure 2.5: Order in which the image pixels are read

12

Depending on the selection signal S generated by the CSC, the role of MUX3 is to assign

the appropriate set of weights to the multipliers corresponding to vertical or horizontal filter.

In the more general separable filter case, such as in the case of a Gabor filter defined as

g(x, y) = Aexp{−(x2 + y2)/2σ2}cos(wox), the vertical and horizontal filter weights differ. Of

course, if the filter weights for the horizontal and vertical direction are identical, MUX3 can be

completely eliminated.

2.4.3 Multipliers and Adder

In this design, embedded multipliers are employed using the Xilinx multiplier IP core [27].

Alternatively, LUT-based multiplication reduction methods, such as the ones discussed in the

introduction section, could be employed. A total of K multipliers are required in the proposed

implementation. If the kernel is not squared but rectangular of size (Ky ×Kx) with Ky > Kx,

then Ky multipliers are required.

Assuming that the weights are quantized to P bits, the result of each multiplication will consist

of 2P -bits. The final result obtained from the adder is scaled to ensure that the intensity value

of the output pixel does not exceed P bits. This can be achieved by retaining only the P most

significant bits generated by the adder.

2.4.4 Central Selection Controller

Signal S, which is generated by the CSC, is sent to MUX1, MUX2, MUX3 and DEMUX, while

signal SM is sent to memory. A counter, C, is used to set the value of signals S and SM at

each clock cycle. More specifically, S = HIGH for C = 0, ..., (K − 1), and S = LOW for

C = K, ..., (2K − 1). Similarly, SM = HIGH for C = 0, ..., (2K − 2), and SM = LOW for

C = (2K). Each window, W i,j
A , consists of (2K − 1) pixels, yet (2K) clock cycles are needed

to produce K convolution results. Thus, an image pixel is not read once every K clock cycles,

when SM = LOW .

The timing diagrams of signals S and SM for a separable filter of size 3 × 3 are shown in

Fig. 2.6. As described in Fig. 2.6, vertical results (VR) are produced during S = HIGH .

During the period when S = LOW , horizontal results (HR) are produced. At the same time,

13

S

Clock
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

VR VR VR HR HR HR VR VR VR HR HR HR VR VR VR HR HR HR VR

SM

Figure 2.6: Central selection controller timing diagram

the architecture has the opportunity to read pixels from the next window W i,j+1
A or W i+K,j

A and

populate SRM1 with new data.

2.5 Performance Analysis

The proposed technique is implemented on Xilinx Genesys Virtex 5 LX50T [28] FPGA board in

VHDL language using the ISE 13.4 software. To the best of the authors’ knowledge, only the FB

scheme [5],[14],[15],[25] has been presented in the literature for separable convolution. In order

to make additional comparisons, the authors designed a PB scheme for separable kernels, as a

direct extension of the PB scheme for non-separable kernels found in [9]. The proposed scheme

is compared with the FB scheme and the separable version of the PB scheme in terms of resource

utilization (number of flip flops and LUT-flip flop pairs), EMB (pixels/cc) and processing rate

(output pixels/cc). The non-pipelined versions of all schemes, namely FB, PB, and proposed,

were implemented in this work. As a reminder, the term “non-pipelined” is used in the sense

that the multipliers are reused for vertical and horizontal convolution. For all implementations,

BRAM is used to store the input and output images. All images used were of size 128× 128.

External Memory Embedded Processing Rate
Method Bandwidth (pixels/cc) Multipliers (output pixels/cc)

FB 0.5 K 0.5
PB dK/2e K 0.5

Proposed (2K − 1)/(2K) K 0.5

Table 2.1: Characteristics of the three schemes for a K ×K filter

14

The characteristics of FB, PB and proposed schemes are summarized in Table 2.1. The EMB

required for the FB scheme is 1 pixel per 2 clock cycles or 0.5 pixels/cc. The upper bound

of the EMB for the proposed scheme is 1 pixel/cc. Although the EMB upper bound for the

proposed scheme is almost twice as large as the EMB for the FB scheme, it is still considered

quite small, and it is independent of the filter kernel size. On the other hand, the PB scheme has

a significantly higher EMB, which increases proportionally to the kernel size.

The dynamic power analysis of FB, PB, and proposed schemes is summarized in Fig. 2.7 for

a kernel of size 3× 3 and clock frequencies varying from 100MHZ to 500MHZ. It is evident

from Fig. 2.7 that the proposed architecture consumes less power compared to the other two

architectures, especially as the clock frequency increases. The larger power consumption for FB

and PB is partially attributed, respectively, to the operation of a large number of line buffers,

and to the multiple pixel readings/cc.

Comparisons between the three schemes in terms of flip flop count are summarized in Table 2.2

for various filter sizes. It can be observed that for smaller size filters, the flip flop utilization for

the proposed scheme is only moderately larger than that of the PB scheme, and still remains

significantly smaller to that of the FB scheme, even as the filter size increases. As a result, the

proposed technique provides an appropriate trade off between EMB and resource utilization.

31

55

90
101

126

35

66

102

123

151

28

54

72

88

109

0

20

40

60

80

100

120

140

160

100 MHZ 200 MHZ 300 MHZ 400 MHZ 500 MHZ

P
o

w
e

r
in

 m
W

Clock Frequency

FB PB Proposed

Figure 2.7: FB, PB and proposed schemes power consumption (mW) for a 3× 3 filter

15

Filter Size FB PB Proposed
FF LUT FF LUT FF LUT

3× 3 2236 194 214 115 234 133
5× 5 4348 300 310 146 433 231
7× 7 6460 407 406 176 632 328
9× 9 8572 513 502 204 831 426
11× 11 10684 619 598 234 1030 524

Table 2.2: Comparison between FB, PB and proposed schemes for various filter sizes in terms
of flip flops and LUTs using xilinx virtex 5 FPGA device

2,236

4,348

6,460

8,572

10,684

214 310 406 502 598234 433 632 831 1,030

0

2000

4000

6000

8000

10000

12000

3x3 5x5 7x7 9x9 11x11

N
u

m
b

e
r

o
f

Fl
ip

 F
lo

p
s

Filter Size

FB PB Proposed

Figure 2.8: Comparison between FB, PB and proposed schemes for various filter sizes in terms
of flip flops shown using barplots

194

300

407

513

619

115
146

176 204 234

133

231

328

426

524

0

100

200

300

400

500

600

700

3x3 5x5 7x7 9x9 11x11

N
u

m
b

e
r

o
f

Lu
ts

Filter Size

FB PB Proposed

Figure 2.9: Comparison between FB, PB and Proposed schemes for various filter sizes in terms
of LUTs shown using barplots

16

2.6 Conclusions

A new scheme for separable convolution on FPGA was proposed. Compared to the existing

schemes, the proposed technique provides a more appropriate balance between on-chip resource

utilization and EMB.

For instance, although PB requires moderately fewer resources compared to the proposed

scheme, this advantage is overshadowed by its high EMB requirements. External memory

elements such as SDRAM or DDRAM may not be capable of transfer rates comparable to

that of the system clock. For example, the DDRAM2 available on Virtex 5 LX devices has a

maximum transfer rate of 600 Mb/s [29], or 75 Mpixels/s for grayscale images, while the Virtex

5 LX50T [28] system clock runs at 500MHz. According to Table 2.1, PB requires that EMB is

K/2 pixels/cc for a processing rate of 0.5 output pixels/cc. To achieve the required EMB using

DDRAM2, the system clock should be slowed down, resulting in a processing rate which is

K/2 times slower than that of the proposed scheme.

The EMB requirements for FB allow the processing rate to be twice than that of the proposed

method. However, the resource requirements for FB significantly limit its usability with large

images or large filter kernels. For example, using Virtex 5 LX50T with FB and a 11× 11 filter,

only images with up to 345 columns can be processed. The proposed scheme is independent of

image size, therefore considerably larger filters can be implemented on Virtex 5 LX50T.

Although it is not the objective of this work, it is worth mentioning that employing LUT-based

multiplier-equivalent circuits [18],[19],[20],[21],[22] may further reduce resource utilization.

17

Chapter 3

An Efficient Method of Error Reduction in Logarithmic Multiplication

for Filtering Applications

3.1 Abstract

Many real-time digital signal and image processing applications demand high performance. This

can be achieved at the expense of area, power dissipation and accuracy. Multiplication is one

of the most critical and time consuming step in filtering applications. An alternative way is to

convert multiplication to addition by converting the integer number system to the logarithmic

number system. However, multiplication in logarithmic domain in not accurate. In image and

signal processing applications, where filtering is most widely used, small errors introduced with

multipliers do not affect the results significantly and can be used in practice. The proposed

method alters the filter weights so that the error produced by multiplication in the logarithmic

domain is reduced without increasing any additional circuitry or resources except the basic

Mitchell-based logarithmic multiplier.

3.2 Introduction

Filtering is a computationally complex process which is most widely used in image and signal

processing applications. Arithmetic operations such as multiplication and division are complex

in terms of area, delay, speed and power. Converting the integer number system to the logarithmic

number system (LNS) will convert arithmetic operations such as multiplication to addition,

division to subtraction, power to multiplication, and roots to division. However, the results

obtained in LNS are not accurate. In image and signal processing applications such as image

enhancement [4], smoothing [12],[5] and edge detection [2], accurate result of the multiplication

is not essential and an approximate result of the multiplication is practically acceptable in most

cases. Hence, LNS is a simple alternative to computing multiplication.

Mitchell [7] first proposed a simplified method for computing multiplication in LNS domain by

18

using a straight line approximation technique. Mitchell’s method calculates the approximate

logarithmic value of a number by encoding a binary number into a format from where the

characteristic is determined exactly and the mantissa is calculated approximately. The logarithm

and anti-logarithm functions in Mitchell’s method use less hardware and no LUT is required.

However, multiplication results obtained using Mitchell’s method have a maximum possible

relative error of around 11% and the average error is around 3.8%.

Numerous attempts have been made to improve Mitchell’s approximation by proposing several

error correction circuits. These methods include Mitchell-based methods [30],[31],[32],[33],

LUT-based methods [34],[35],[36], and region-based approaches [37],[38],[39],[40],[41],[42].

In [7], Mitchell has shown that the relative error increases with the number of bits with the value

of 1 in the mantissa. Using this idea, the operand decomposition (OD) method proposed in

[30] reduces the number of 1 bits by decomposing the operands, which in turn decreases the

chances of carryover from the mantissa part to the integer part during the logarithmic summation

step. In [31], an implementation of 2D convolution based on the Mitchell logarithmic multiplier

is presented with an aim of minimizing the power consumption. A partitioning and gating

technique is proposed to reduce the switching activity based on the detection of insignificant

data bits. In [32],[33], a single stage of the iterative algorithm follows the idea of Mitchell but

uses a different error correction circuit which aids in increasing the accuracy and efficiency of

iterative method. The final pipelined hardware of the itertaive method results in reduction of

logic utilization and power consumption.

An LUT-based approach to design error correction circuits for the logarithmic multiplier is

proposed in [34]. This approach is faster and has a simple error correction circuit. But, this

method requires large number of logic gates to implement the LUT. A hardware efficient

architecture based on [34] is proposed in [35]. It uses an LUT followed by a multiplier-

less linear interpolation stage. In [36], the author proposed logarithmic approximation by

combining the Mitchell method with two correction stages. The first stage is a piece-wise

linear interpolation with power-of-two slopes and truncated mantissas’, and the next stage is

an LUT-based correction that corrects the piece-wise interpolation error. Hence, LUT-based

19

methods are fast but inefficient in terms of hardware resource utilization which increases abruptly

for inputs with large bit width.

Several region-based approaches are proposed in the literature for improving the accuracy of the

results obtained using the Mitchell logarithmic multiplier. In [37] and [38], the mantissa range

of [0,1) was partitioned into four parts, and a separate approximation equation was obtained by

using trial and error method for each sub interval. The coefficients of each interval are chosen in

such a way that numerator is integer and denominator is powers of two, where as the coefficients

used in [37] are not powers of two. It has to be noted at this point that the sum operations are

performed at full precision. Hence, the error while computing logarithmic process is reduced

but with an increased hardware and longer computation time. In [37] and [38], both methods

use all the bits of the mantissa and the coefficients are not all powers of two, which is addressed

in the next methods by [39] and [40].

In [39], the author takes into consideration only the mantissas’ four most significant bits (MSB)

and divides the power-of-two intervals into two regions and further reduce the complexity by

only using the mantissas’ four MSBs. In [40] and [41], the author extends this approach by

dividing the interval into two, three, and six regions and further reduces the complexity by only

using the mantissas’ three MSBs. The advantage of using this method is that the error correction

does not need to be done on all mantissa bits. In [42], the exact logarithmic curve is divided into

two symmetric regions obtaining a reduced error of 0.045. It has to be noted at this point that

the coefficients derived in methods [39], [40] and [42] are restricted to the powers of two. Based

on [40] and [41], a logarithmic multiplier architecture for complex numbers is proposed in [43].

Besides the region-based approach, linear programming techniques are used to obtain optimized

coefficients for designing logarithmic converters [44] and anti-logarithmic converters [45].

This chapter is organised as follows: Section 3.3 discusses in more detail the Mitchell logarith-

mic multiplier and the iterative Mitchell (IM) multiplier. Section 3.4 discusses the proposed

logarithmic multiplier. Section 3.5 presents results with comparisons between the proposed

and existing logarithmic multipliers. Section 3.6 presents briefly the extension of the proposed

logarithmic multiplier. Some concluding remarks are presented in section 3.7.

20

3.3 Review of Logarithmic Multipliers

Logarithmic multiplication introduces an operand conversion from the integer number system

into the LNS. The multiplication of two operands N1 and N2 is performed in three phases:

calculating the operand logarithms, the addition of the operand logarithms, and the calculation

of the anti-logarithm. The main advantage of this method is the substitution of the multiplication

with addition after the conversion of operands to logarithms.

3.3.1 Mitchell Logarithmic Multiplier

Mitchell presented a simple method to approximate the logarithm and anti-logarithm calculations

using piece-wise straight line approximations of the log and anti-log curves. The approximated

curve obtained from the Mitchell log approximation and the actual curve for log2 of an integer

N is shown in Fig. 3.1. Mitchell’s method accurately calculates the result when the number N

is a perfect power-of-two numbers such as 2, 8, 16, 32, 64, 128, 256 and so on. The maximum

error occurs at the mid-point between the two consecutive power-of-two numbers such as 192.

The error in Mitchell’s log is due to the fractional part of the log. Hence, whenever the fractional

part is zero (i.e. the operand is exact power of 2), the Mitchell log curve intersects the actual log

curve. In this section, derivation for multiplication of operands N1 and N2 using the Mitchell

method is explained in more detail.

The binary representation of the number N can be written as given below:

N =
k∑

i=j

2iZi (3.1)

Since Zk is the MSB, we may assume Zk = 1 for any valid k ≥ j. Factoring out the value of 2k

from N , we get

N = 2k

(
1 +

k−1∑
i=j

2(i−k)Zi

)
= 2k (1 + x) (3.2)

where, k is a characteristic or the position of MSB with the value of ’1’,

Zi is the bit value at ith position,

x is the fraction or mantissa.

21

50 100 150 200 250
0

1

2

3

4

5

6

7

8

Input N

lo
g2

(N
)

Actual log2(N)
Mitchells Approximiation

Figure 3.1: Actual values and Mitchell’s approximated values of log2(N)

The logarithm with the base 2 of N is derived as given below:

log2 (N) = log2

(
2k

(
1 +

k−1∑
i=j

2(i−k)Zi

))
= log2

(
2k (1 + x)

)
= k + log2(1 + x) (3.3)

Mitchell used straight line linear approximation for log2(1 + x), which only uses the first linear

term in the Taylor series: log2(1+x) ≈ x. This eliminates the need for an LUT. The approximate

logarithm of the binary number using Mitchell is shown below:

log2 (N)MA = log2

(
2k

(
1 +

k−1∑
i=j

2i−kZi

))
= log2

(
2k (1 + x)

)
= k + x (3.4)

The true logarithm of this binary number is shown below:

log2 (N)true = k + log2(1 + x) (3.5)

Let N1 and N2 be the input operands. The actual logarithm of the product and approximate

logarithm of the product are shown in the following two equations.

log2 (N1 ×N2)true = k1 + k2 + log2(1 + x1) + log2(1 + x2) (3.6)

22

log2 (N1 ×N2)MA ≈ k1 + k2 + x1 + x2 (3.7)

The characteristic numbers k1 and k2 represent the MSBs of the operands’ N1 and N2 with the

value of ’1’. x1 and x2 represent fractions of the operands’ N1 and N2 respectively. For 16 bit

numbers, the range of k1 and k2 characteristic numbers is from 0 to 15. The fractions are in

the range of [0, 1). The above equation 3.7 is rewritten as two separate expressions to account

for the two possible cases of carry. One is the case of "no carry" from the mantissa x to the

characteristic k, and the other is the case where the "carry" occurs.

log2 (N1 ×N2)MA ≈


k1 + k2 + x1 + x2, x1 + x2 < 1

1 + k1 + k2 + (x1 + x2 − 1), x1 + x2 ≥ 1

(3.8)

Taking antilogarithm to the above equation 3.8 gives the final product PMA.

PMA ≈


2k1+k2 (1 + x1 + x2) , x1 + x2 < 1

2k1+k2+1 (x1 + x2) , x1 + x2 ≥ 1

(3.9)

The error due to Mitchell’s approximation is in the range [0, 0.08639] and attains the maximum

value when the fractional part of the log is equal to 0.44 (i.e. when the number is in the middle

of power of 2). The maximum possible relative error for Mitchell’s log multiplication is around

11% and the average error is around 3.8%. The error in Mitchell’s method is always positive

which can be reduced by successive multiplications, but the error correction can start only after

the calculation of term (x1 +x2). IM log multiplier which is based on successive multiplications

is explained in more detail in the next section.

3.3.2 Derivation of IM log multiplier

The logarithm approximation presented in equation 3.8 can be simplified by using the IM

algorithm [32],[33], which is explained in more detail in this section. According to equation 3.2,

the true product of operands N1 and N2 can be expressed as

Ptrue = 2k1+k2 (1 + x1 + x2) + 2k1+k2 (x1 × x2) (3.10)

23

In order to simplify the approximation error, the following expression derived from equation 3.2

is given below:

N − 2k = 2k × x (3.11)

Using equation 3.11 in equation 3.10, the following expression is derived which is given below:

Ptrue = 2(k1+k2) +
(
N1 − 2k1

)
× 2k2 +

(
N2 − 2k2

)
× 2k1 +

(
N1 − 2k1

)
×
(
N2 − 2k2

)
(3.12)

Let us assume

P (0)
approx = 2(k1+k2) +

(
N1 − 2k1

)
× 2k2 +

(
N2 − 2k2

)
× 2k1 (3.13)

Substituting equation 3.13 in equation 3.12, we get

Ptrue = P (0)
approx +

(
N1 − 2k1

)
×
(
N2 − 2k2

)
(3.14)

If we discard the term
(
N1 − 2k1

)
×
(
N2 − 2k2

)
from equation 3.14, we have approximate

product of the operands N1 and N2. The error term
(
N1 − 2k1

)
×
(
N2 − 2k2

)
can be calculated

in the similar manner as P (0)
approx until P (0)

approx is equal to Ptrue. Hence, the comparison of the

addend (x1 + x2) is completely eliminated, and the error correction can start immediately after

removing leading ones from the operands N1 and N2. The expression for multiplication using i

correction terms is given below:

Ptrue = P (0)
approx + C1 + C2 ++ Ci = Papprox +

i∑
j=1

Cj (3.15)

The number of iterations required for obtaining results with zero error is equal to the number of

bits with the value of ’1’ in the operand. Moreover, the operand which has smaller numbers of

bits with the value of ’1’ is taken into consideration for calculating the number of iterations.

24

3.4 Proposed logarithmic multiplier

For filtering applications, the filter weights are already known and fixed. Taking this into

account, the proposed method modifies the given weights so that the product error is reduced.

The derivation for calculating optimized weights for the proposed method is described below:

Let N1 be the image pixel and N2 be the filter weight. Similar to the representation in equation

3.2, N1 can be expressed as given below:

N1 = 2n + (N12
−n − 1)2−n (3.16)

Applying log2 on both sides of equation 3.16 we get,

log2(N1) = n+ (N12
−n − 1) (3.17)

Here it is assumed that log2 ((N12
−n − 1)2−n) ≈ N12

−n − 1. Similarly applying log2 on the

filter weight N2 we get,

log2(N2) = WI +WF (3.18)

where, WI is the integer part of the weight N2, and

WF is the fractional part of the weight N2.

The product of N1 and N2 in LNS domain can be derived as

log2(N1 ×N2) =
[
n+ (N12

−n − 1)
]

+ [WI +WF] (3.19)

By rearranging the above equation and taking into consideration the cases of "no carry" and

"carry", the following equations are derived respectively.

log2(N1×N2) ≈


[n+WI] + [(N12

−n − 1) +WF] , (N12
−n − 1) +WF < 1

[n+WI + 1] + [(N12
−n − 2) +WF] , (N12

−n − 1) +WF > 1

(3.20)

25

Applying antilog on both sides of the equation 3.20, we get

(N1 ×N2) ≈


2WIN1 + 2(n+WI)WF , (N12

−n − 1) +WF < 1

2WI+1N1 + 2(n+WI+1)(WF − 1), (N12
−n − 1) +WF > 1

(3.21)

Applying mean square error (MSE) to equation 3.21 w.r.t product of original operands N1 and

N2 and equating it to zero, the following expression is derived:

∑
N1

[
N12

WI +WF2(n1+WI) −N1N2

]2
+
∑
N2

[
N22

(WI+1) + (WF − 1)2(n2+WI+1) −N1N2

]2
= 0

(3.22)

Now differentiating the above equation 3.22 w.r.t fractional part of the filter weight WF , we get

WF =

∑
N1

N12
n1
(
N2 − 2WI

)
+
∑
N2

N22
(n2+1)

(
N2 − 2WI+1

)
+
∑
N2

2(2n2+WI+2)∑
N1

2(2n1+WI) +
∑
N2

2(2n2+WI+2)
(3.23)

3.5 Results and Discussion

The fractional part of the original filter weight is modified and replaced by the value obtained

using the equation 3.23. This value ensures the reduction of error in multiplying N1 and N2.

The proposed method, Mitchell method, OD method, and IM method with 2 and 3 stages are

implemented in Matlab, and the average relative error is calculated to evaluate accuracy of the

proposed algorithm.

The average relative error is calculated as follows:

AverageErrorPercentage =
N∑
i=1

EPi

N
(3.24)

where, ErrorPercentage =

[
TV − LV

TV

]
× 100;

TV is the true value obtained using binary multiplication,

LV is the value obtained using the above proposed logarithmic multipliers,

N is the total number of multiplications performed.

26

For instance, if the input operands N1 and N2 are represented using 8 bit numbers, then all the

combination of numbers ranging from 1 to 256 are multiplied, and the average error percentage

is calculated. The average error percentage reported for the Mitchell algorithm in [7] is 3.87%,

OD in [30] is between 2.07% and 2.15%, and the IM algorithm with 2 stages is between 0.83%

and 0.99%. The average error percentage for the proposed logarithmic multiplier is around

0.1%.

MSE’s of all the above methods are calculated and tabulated in Table 3.1. Fig. 3.2 depicts

the MSE’s of all the above methods using barplots. It is evident from Table 3.1 and Fig. 3.2

that, logarithmic multiplication of operands N1 and N2 using the proposed method produces

less error when compared to the Mitchell, OD, and IM algorithm with 2 stages. The IM

algorithm with 3 stages produces the least error of all the methods but at a cost of much

increased resource utilization. The objective of the proposed logarithmic multiplier is to reduce

the product error without any increase in the circuit of the basic Mitchell multiplier. In section

3.6, the proposed method for logarithmic multiplication is extended where the error can be

further reduced with little increase in the circuit of the basic Mitchell multiplier. It is worth

Input
Signal Mitchell OD

IM
2 stages

IM
3 stages Proposed

Input1 11.84 4 1.27 0.1 1.97
Input2 30 9.38 10.54 0.36 7.36
Input3 22.28 6.62 1.98 0.13 3.07
Input4 7.79 2.14 0.68 0.04 1.1
Input5 3.44 1.47 0.51 0.05 0.61
Input6 17.32 4.59 1.96 0.12 2.23
Input7 32.22 10.22 7.82 0.3 5.2
Input8 25.87 8.24 13.85 0.41 9.42
Input9 26.16 7.63 2.54 0.16 3.28
Input10 10.52 3.32 4.99 0.22 4.67
Input11 14.07 4.52 9.48 0.35 9.18
Input12 15.33 4.88 6.97 0.27 6.8
Input13 15.52 4.77 7.43 0.31 7.04

Table 3.1: MSE between the Mitchell, OD, IM and proposed methods using input signals of size
1× 256 and Gaussian filter of size 1× 13

mentioning at this point that the proposed method doesn’t require any extra circuitry for hardware

implementation, since the original filter weights are replaced by the modified weights. Hence,

27

Input1 Input2 Input3 Input4 Input5 Input6 Input7 Input8 Input9 Input10 Input11 Input12 Input13
0

5

10

15

20

25

30

35

Input Signal

M
ea

n
S

qu
ar

e
E

rr
or

Proposed
Iterative 3 stages
Iterative 2 stages
Operand Decomposition
Mitchell

Figure 3.2: MSE between the Mitchell, OD, IM and proposed methods using input signals of
size 1× 256 and Gaussian filter of size 1× 13, shown with barplots

the proposed method can be implemented on FPGA without any increase in the circuitry of the

basic Mitchell multiplier, but it still provides accurate results. The authors in [32] implemented

16 bit logarithmic multipliers on the Xilinx xc3s1500-5fg676 FPGA [46] using the Mitchell

method, OD method and the IM method with 1, 2 and 3 stages. The resource utilization for the

non-pipelined implementation of 16 bit logarithmic multiplier as reported in [32] is compared

with the proposed method. Table 3.2 presents the comparison of the above mentioned methods

in terms of LUTs, slices, flip flops, and input/output blocks (IOBs).

Logarithmic
Multiplier LUTs Slices Slice FFs IOBs

Mitchell 622 321 66 99
OD 1187 604 101 99
IM 1 stage 533 276 64 99
IM 2 stages 1099 564 80 99
IM 3 stages 1596 814 77 99
IM 4 stages 1937 993 78 99
Proposed 622 321 66 99

Table 3.2: Resource utilization of non-pipelined logarithmic multiplier using the Mitchell, OD,
IM (1, 2, 3 and 4 stages), and proposed method

28

3.6 Extension of Proposed Logarithmic Multiplier

In this section, the proposed method is extended, based on the Mitchell algorithm where the error

is further reduced, with little increase in circuitry of the basic Mitchell logarithmic multiplier.

Instead of storing the filter integer values, storing the true log2 value of filter weights reduces

the error of the product result. Based on this observation, all the above mentioned algorithms

are implemented by storing true log2 value of the second operand, i.e. N2.

A comparison of existing methods (Mitchell, OD and IM) with the proposed method extension is

performed, and the MSE’s are calculated for each method. Table 3.3, Fig. 3.3, Fig. 3.4 provides

a comparison between the Mitchell, proposed method extension for Mitchell, OD, and proposed

method extension for OD in terms of MSE for input signals of size 1× 256 and Gaussian filter

of size 1 × 13. From Fig. 3.3, it is evident that the proposed method extension for Mitchell

reduces the product error significantly without any additional utilization of resources. This is

achieved by storing true log2 value of the filter (i.e. N2), instead of storing the original number.

Similarly, from Fig. 3.4, the proposed method extension for OD is not feasible and does not

provide an accurate product when compared to the original OD method. Moreover, the proposed

method extension for OD requires a storage of true log2 values of all the decomposed operands

which increases the memory and resource utilization. Hence, the extension of the proposed

method is not applicable for the OD method.

In the IM method, the first stage is similar to the Mitchell algorithm and the second stage

involves the error correction circuit. From our analysis and implementation, the product error

can be reduced significantly when both the first and second stages of the IM method are

implemented using the proposed method extension for Mitchell. Table 3.4 and Fig. 3.5 provides

the comparison between IM and the proposed method extension for IM in terms of MSE using

input signals of size 1 × 256 and Gaussian filter of size 1 × 13. In Table 3.4 and Fig. 3.5,

the column headed "IM 2 stages" represents direct implementation of the IM method with 2

stages. The column headed "IM 2 stages-Modified" represents implementation of the IM method

with 2 stages where true log2 value of the operands is taken into consideration. The column

headed "IM-Mitchell" represents implementation of the IM 2 stages using the original Mitchell

29

Input
Signal Mitchell

Mitchell
Proposed
Extension

OD
OD
Proposed
Extension

Input1 11.84 1.95 4.00 1.91
Input2 30.00 8.96 9.38 19.07
Input3 22.28 2.82 6.62 3.74
Input4 7.79 1.07 2.14 1.26
Input5 3.44 0.56 1.47 0.80
Input6 17.32 2.35 4.59 3.78
Input7 32.22 6.42 10.22 14.15
Input8 25.87 12.59 8.24 25.38
Input9 26.16 3.27 7.63 4.63
Input10 10.52 5.71 3.32 9.15
Input11 14.07 11.51 4.52 17.05
Input12 15.33 8.55 4.88 12.89
Input13 15.52 8.94 4.77 14.23

Table 3.3: MSE between the Mitchell, proposed method extension for Mitchell, OD, and
proposed method extension for OD using input signals of size 1× 256 and Gaussian filter of
size 1× 13

method. The column headed "IM-Mitchell-Proposed-Extension" represents implementation of

the proposed method extension for Mitchell. From Fig. 3.5, the proposed method extension

for IM is more accurate when compared to the above mentioned methods. It has to be noted at

this point that the proposed method extension for IM requires storing of true log2 values of all

decomposed operands which account for an increase in the resource utilization. As a direction

towards the future scope of work, the increase in memory and resource utilization for storing the

true log2 values of the actual operand and the decomposed operand for the IM method can be

optimized by using an 8 bit state diagram.

30

Input1 Input2 Input3 Input4 Input5 Input6 Input7 Input8 Input9 Input10 Input11 Input12 Input13
0

5

10

15

20

25

30

35

Input Signal

M
ea

n
S

qu
ar

e
E

rr
or

Mitchell Proposed Extension
Mitchell

Figure 3.3: MSE between the Mitchell and the proposed method extension for Mitchell using
input signals of size 1× 256 and Gaussian filter of size 1× 13, shown using barplots

Input1 Input2 Input3 Input4 Input5 Input6 Input7 Input8 Input9 Input10 Input11 Input12 Input13
0

5

10

15

20

25

30

Input Signal

M
ea

n
S

qu
ar

e
E

rr
or

OD Proposed Extension
OD

Figure 3.4: MSE between the OD and the proposed method extension for OD using input signals
of size 1× 256 and Gaussian filter of size 1× 13, shown using barplots

31

Input
Signal

IM 2
Stages

IM 2
Stages-
Modified

IM-
Mitchell

IM-Mitchell-
Proposed-
Extension

Input1 1.27 0.91 0.23 0.11
Input2 10.54 7.65 0.51 0.36
Input3 1.98 1.43 0.34 0.14
Input4 0.68 0.51 0.23 0.07
Input5 0.51 0.4 0.13 0.02
Input6 1.96 1.53 0.39 0.12
Input7 7.82 5.47 0.55 0.27
Input8 13.85 9.92 0.57 0.4
Input9 2.54 1.73 0.41 0.15
Input10 4.99 3.67 0.29 0.24
Input11 9.48 7.2 0.34 0.42
Input12 6.97 5.28 0.35 0.38
Input13 7.43 5.6 0.34 0.33

Table 3.4: MSE between IM and the proposed method extension for IM using input signals of
size 1× 256 and Gaussian filter of size 1× 13

Input1 Input2 Input3 Input4 Input5 Input6 Input7 Input8 Input9 Input10 Input11 Input12 Input13
0

2

4

6

8

10

12

14

Input Signal

M
ea

n
S

qu
ar

e
E

rr
or

IM−Mitchell−Proposed−Entension
IM−Mitchell
IM 2 Stages−Modified
IM 2 stages

Figure 3.5: MSE between IM and the proposed method extension for IM using input signals of
size 1× 256 and Gaussian filter of size 1× 13, shown using barplots

32

3.7 Conclusions

The proposed method for logarithmic multiplication which alters the filters weights provided

significant reduction in product error without any increase in the resource utilization or circuit

besides the basic Mitchell multiplier. The average error percentage for the Mitchell algorithm in

[7] is 3.87%, OD in [30] is between 2.07% and 2.15%, and the IM algorithm with 2 stages is

between 0.83% and 0.99%. The average error percentage for the proposed logarithmic multiplier

is around 0.1%. Hence, the proposed method for logarithmic multiplication is best suited

for filtering applications where the filter weights are known and fixed. The proposed method

extension for Mitchell further reduces the error without any increase in the resource utilization.

In the case of the proposed method extension for IM (i.e. "IM-Mitchell-Proposed-Extension"),

error is further reduced at a cost of few extra resources which are essential to store the true log2

values of the decomposed operands. As a future work, optimization can be done in storing the

true log2 values of the original operand and the decomposed operand for the IM method using

an 8 bit state diagram.

33

Chapter 4

Species-Specific Fish Feature Extraction Using Gabor Filters

4.1 Abstract

Fish recognition and classification are challenging when performed on video data obtained in

non-controlled environments (NCE’s) such as in natural waters. Many NOAA Fisheries surveys

use underwater cameras to gather video data for this purpose, which facilitate the analysis

of fish populations. Since the amount of data is large, manual data analysis is insufficient.

Automatic processing tools are necessary. Most techniques that extract features from fish are

in two categories. In the first, features are specific to fish but not necessarily to a particular

species. Yet, such measurements are often unreliable when extracted from video obtained in

(NCE’s), since they strongly depend on the aspect of fish with respect to the camera. In the

second, features are generic and may include texture and shape descriptors. Such features do

not target specific species of interest. In this chapter, we present an automatic technique using

Gabor filters to extract characteristic features from two important species, namely, Epinephelus

morio (which has a vertical band located at the tale) and Ocyurus chrysurus (which has a long

horizontal line that runs across the body). The proposed algorithm is tested on 200 frames, each

containing several fish and non-fish regions. The detection rate is 70.6% for Epinephelus morio

and 80.3% for Ocyurus chrysurus, while 23.5% of the undetected Epinephelus morio cases do

not have a visible tail band, and 16.7% of the undetected Ocyurus chrysurus cases do not have a

visible straight body line. The false alarm rates are 3.8% and 2.1%, respectively. 1

4.2 Background

Underwater video and still images are used by many programs within National Oceanic and

Atmospheric Administration (NOAA) Fisheries with the objective of identifying and quantifying

1This work was supported by a grant from NOAA Fisheries Advanced Sampling Technology Working Group.
The project was NASA (2011)-STENNIS-02 “Feature Analysis for Classification of Fish in Underwater Video”
with University of New Orleans award number CON000000001307.

34

living marine resources. The NOAA Southeast Fisheries Science Center (SEFSC) – laboratories

at Pascagoula, MS, Panama City, FL, and Beaufort, NC, all conduct annual fishery independent

reef fish surveys using video, trap, and hook gear. The surveys target reef habitat and yield

demographic data and abundance indices used in assessments for many federally managed

species. Video techniques overcome the fish sampling limitations imposed by depth, fish

behaviour, seafloor rugosity, and the selectivity inherent in hook, trap and trawl methods [47].

In a given year, cameras are deployed at a large number of locations that are not amenable to

sampling with nets or other means. Some of the systems use stereo pairs of cameras [48] that

allow fish lengths to be estimated while others are used simply to identify and count the fish

present. Analyses of the images from these surveys are used to produce indices of abundance and

size distributions for the fish species observed. These data, in turn, are used in stock assessment

models that ultimately influence regulations for the harvest of reef fish. Human analysts are

required to view each image sequence to identify and enumerate fish species present at each

location and measure their lengths. The process of manual analysis is both labour intensive and

time consuming and is a significant limitation on how much this type of population sampling

can be utilized. Automated image analysis capabilities are desperately needed in order to take

full advantage of current image data collection technology.

Recent efforts to automate analysis of underwater images [49],[50],[51] of fish has focussed on

detection and tracking of fish in sequences of images. Motion of the fish against a relatively static

background has been exploited for detection and proven methods of object tracking [52] have

been used to track fish from frame to frame. Accurate detection and tracking allows the number

of fish present during a given time to be determined, but the ultimate goal is to count the number

of fish of each species. Thus the next step in the process of automation is classification. A human

analyst uses a multitude of cues to visually identify fish species. However, the primary features

used are morphological properties such as shape of the body, head, fins, and tail and patterns in

coloration. Two species having distinctive patterns in coloration that are frequently observed in

survey images in the Gulf of Mexico are red grouper – Epinephelus morio (Valenciennes, 1828)

and yellowtail snapper – Ocyurus chrysurus (Bloch, 1791).

35

In underwater grayscale images, Epinephelus morio (EM) frequently display a light colored

band near the margin of the caudal fin that contrasts strongly with a black band on the extreme

margin. On the other hand, Ocyurus chrysurus (OC) have, as their common name indicates,

a yellow caudal fin. The same color extends in a tapering band along the side of the body

through the eye to the anterior end of the head. In grayscale images, this band appears dark in

contrast to the body’s background color. The two species were selected in this work for their

great importance in the Gulf of Mexico. More specifically, EM is the most abundant grouper

species in the Gulf of Mexico. It accounts for the bulk of the commercial grouper landings,

and is the second most commonly caught grouper species recreationally. OC are fished along

the US south Atlantic coast and south-eastern Gulf of Mexico. They are managed as a single

stock with allowable catches distributed between the south Atlantic and Gulf of Mexico regions.

Currently, the stock allowable biological catch (ABC) is set at 2.9 million pounds, with 0.725

million pounds (25% of ABC) going to the Gulf of Mexico.

4.3 Gabor Filters Used For Fish Feature Extraction

In this chapter, Gabor filters (GF) are used to extract species-specific features from EM and

OC. Gabor filters are widely used for texture segmentation [53],[54] and feature extraction [55].

In its most general form, the GF is a complex sinusoid (shown in Fig. 4.1-A) modulated by

a Gaussian (shown in Fig. 4.1-B). An example of a GF filter is depicted in Fig. 4.1-C. The

mathematical representation of a horizontally oriented spatial GF is as follows:

h(x, y) = A exp

{
−x2

2σ2
x

− y2

2σ2
y

}
exp {2ΠiFxr} (4.1)

where, A is a constant,

F is the spatial frequency, and

σx and σx are the standard deviations of the GF in the x and y directions respectively.

36

Figure 4.1: 1D Gabor filter

A. Sinusoid. B. Gaussian. C. Gabor filter.

As will be described later in this chapter, the feature extraction techniques employed in this

work require that the filter is scaled according to the fish size. The GF filter was employed in

this work owing to the ease with which its parameters can be tuned. The literature review of

previous works on fish classification is found in [49],[50],[51],[55],[56].

A GF oriented vertically exhibits a strong response for horizontal details as shown in Fig. 4.2-A.

Similarly, a GF oriented horizontally emphasizes vertical details as shown in Fig. 4.2-B. The

size of the filter is adjusted according to the size of the fish being tested by assigning the

filter standard deviation to be proportional to the square root of the fish area. In other words,

σ2
x = σ2

y =
(
α× 2
√
Area

)
, where α is a user defined constant empirically chosen to be 0.035.

Figure 4.2: 2D Gabor filters with σ2
x = σ2

y = 4.

A. GF oriented vertically. B. GF oriented horizontally.

37

4.3.1 Epinephelus morio Feature Extraction Using Gabor Filters

EM has a bright band on its tail, a feature that is specific to its species. An example is depicted in

Fig. 4.3-A. In order to detect this feature, the original fish image is first multiplied by its region

mask, which is shown in Fig. 4.3-B, to isolate the fish from its surroundings, as shown in Fig.

4.3-C. The region mask is automatically obtained by subtracting the original image from the

estimated background image [57], and by setting equal to 1 (white) or 0 (black) all pixels that

exceed or fall below user defined thresholds, respectively. The background image is obtained

as the pixel-wise median of several frames [58]. The resultant image is filtered separately with

a horizontally and a vertically oriented GF to obtain images Ihor(x, y) and Iver(x, y) as shown

in Fig. 4.4-A and Fig. 4.4-B, respectively. The image ratio, Ir(x, y) = Ihor(x,y)
Iver(x,y)

, is used to

emphasize the stripe as shown in Fig. 4.4-C. In order to eliminate the effect of vertical stripe-like

edges in Ihor(x, y) associated with the fish outline, a zone of pixels around the fish outline is set

to zero. This is achieved by employing an erosion operation using a square structural element of

size [3σy × 3σy]. In most cases, the edges are caused by the intensity difference between the

fish region and the background.

In order to quantify the presence of the stripe, the following approach is used. First, a vertical

moving average (MA) filter, fMA(y) of size WEM × 1 is applied on mEM
Ir

(x, y) to emphasize

cases of consecutive vertical high intensity pixels, such as vertical stripes. The value associated

with WEM is selected by calculating the square root of the area of the fish in each frame which

is empirically chosen to be 21. The maximum value per column mEM
Ir

(x) is computed for EM

as follows:

mEM
Ir (x) = maxy {fMA(y) ∗ Ir(x, y)} (4.2)

where, ∗ represents the convolution operation.

The maximum value of mEM
Ir

(x), namely mEM
Ir

(max) = maxx
{
mEM

Ir
(x)
}

, quantifies the

presence of a stripe in the fish region as shown in Fig. 4.5. A median filter of size 3 × 1 is

applied on mEM
Ir

(x) to eliminate narrow spikes which are unlikely to correspond to the tail band.

38

Figure 4.3: EM pre-processing steps.

A. Original image of EM with indicator for vertical stripe at the end of tale. B. Region mask of EM. C.
Pre-processed image of EM.

Figure 4.4: Filtering results of horizontal and vertical Gabor filters on EM.

A. Filtering result of horizontal Gabor filter. B. Filtering result of vertical Gabor filter. C. Ratio image
Ir(x, y).

Figure 4.5: EM tail band detection – maximum value per column mEM
Ir

(x).

4.3.2 Ocyurus chrysurus Feature Extraction Using Gabor Filters

The OC fish has a different feature specific to its species – a straight line across the fish body

as depicted in Fig. 4.6-A. A similar approach explained for EM is followed for OC to extract

the horizontal line along the length of its body. An OC example is shown in Fig. 4.6-A. Fig.

4.6-B depicts the corresponding region mask, and Fig. 4.6-C shows the isolated fish region. The

resultant image is filtered separately with a vertically and a horizontally oriented GF to obtain

images Ihor(x, y) and Iver(x, y) as shown in Fig. 4.7-A and Fig. 4.7-B, respectively. However,

the ratio of the images in the OC case is computed as Ir(x, y) = Iver(x,y)
Ihor(x,y)

which highlights the

horizontal line as shown in Fig. 4.7-C. In order to eliminate the effect of horizontal stripe-like

edges in Iver(x, y) associated with the fish outline, a zone of pixels around the fish outline is set

39

to zero. This is achieved by employing an erosion operation using a square structural element of

size [4.8σy × 4.5σy].

Figure 4.6: OC pre-processing steps.

A. Original image of OC with indicator for horizontal line. B. Region mask of OC. C. Pre-processed
image of OC.

It can be observed in Fig. 4.7-A that the straight line is darker than the rest of the OC body. On

the other hand, detecting the EM tail band is a maximization problem. For consistency with the

EM technique, detecting the OC straight body line is converted to a maximization problem by

subtracting the value of each pixel in the ratio image Ir(x, y) from the maximum intensity of

Ir(x, y).

Figure 4.7: Filtering results of horizontal and vertical Gabor filters on OC.

A. Filtering result of horizontal Gabor filter. B. Filtering result of vertical Gabor filter. C. Ratio image
Ir(x, y).

A horizontal MA filter of size 1×WOC is applied along the rows of Ir(x, y). The OC straight

line runs across the fish body and thus strongly depends on the fish size. For this reason, the

value associated with WOC is selected automatically, and is set to be proportional to the square

root of the fish area. The maximum value for each row is computed as:

mOC
Ir (x) = maxx {fMA(x) ∗ Ir(x, y)} (4.3)

The maximum value of mOC
Ir

(x), namely mOC
Ir

(max) = maxx
{
mOC

Ir
(y)
}

, quantifies the pres-

ence of the straight line in the fish region as shown in Fig. 4.8. When a fish is oriented at an angle

with respect to x-axis as shown in Fig. 4.9-E, the straight line may not be exactly horizontal and

40

Figure 4.8: OC straight line detection – maximum value per row mOC
Ir

(y).

may not be detected by the algorithm. For this reason, the original fish image, OFr(x, y), as

shown in Fig. 4.9-E, is rotated by different angles, and the largest mOC
Irmax is considered. From

Fig. 4.9 it is evident that the plot corresponding to the maximum mOC
Irmax is the one for which

the OC line is horizontal. In this particular example, the image is rotated in steps of 100 from

−400 to 400 and the largest mOC
Irmax is obtained when the image is rotated at 100 as shown in Fig.

4.9-F. The fish orientation is not a significant issue for EM, since the tail band is relatively short

and wide, as opposed to the OC straight line which is relative long and narrow.

The algorithm for detection and classification of OC fish species is shown in Fig. 4.10. The

algorithm described earlier for the classification of EM species is similar to the algorithm

presented in Fig. 4.10, if the iterative process involving the rotation of image and region mask is

removed.

4.4 Results and Discussion

In this section, the performance of the algorithm is discussed in terms of detection and false

alarm rates. The algorithm was tested on sequence of 200 images from an annual reef fish

survey conducted by the SEFSC Pascagoula laboratory. The total number of EM, OC, and

non-EM/non-OC fishes are provided in Table 4.1. The results for EM are summarized in Table

4.2. An EM fish is detected when the mEM
Ir (max) value is found to be between two thresholds.

More specifically, TEM
1 < mEM

Ir
(max) < TEM

2 . The threshold values were empirically chosen

Total number of frames used for experimentation 200
Total number of EM available in total frames 68
Total number of OC available in total frames 66
Total number of non-EM and non-OC fish available in total frames 159
Total number of non-fish objects available in total frames 74

Table 4.1: Information about reef fish images obtained from SEFSC Pascagoula laboratory

41

Figure 4.9: OC straight line detection when the fish is oriented at a different angle with respect
to x axis.

(a) A. −400. B. −300. C. −200. D. −100 . E. 00 (which is also the original view of the OC fish). F. 100 .
G. 200. H. 300. I. 400.

as TEM
1 = 0.95 and TEM

2 = 2. Any region with corresponding mEM
Ir

(max) peak outside the

range specified by the two thresholds is categorized as non-EM. Such a region may correspond

to a non-EM fish or to a non-fish object. The purpose of the lower threshold, TEM
1 , is to separate

regions which contain a significant vertical band from regions that do not include such a band. It

was observed that in some cases non-fish regions included some apparent vertical stripes, which

however result in exceptionally high mEM
Ir

(max) peaks. The higher threshold, TEM
2 , is used to

identify such non-fish regions.

As can be observed from Table 4.2, the total number of EM not detected by the proposed

42

EM
Correctly detected 48 (70.6%)

Not Detected
Technique not successful (missed detection) 4 (5.9%)
Due to non-visible tail band 16 (23.5%)

Non-EM

Other fish detected as EM (false alarm) 5 (2.1%)
Other fish correctly not detected as EM 154 (66.1%)
Non-fish objects detected as EM (false alarm) 4 (1.7%)
Non-fish objects correctly not detected as EM 70 (30.0%)

Table 4.2: EM results

algorithm is 20, which corresponds to 29.4% of the EM cases. However, in the vast majority of

missed cases (16 or 23.5%) the video frame itself has no or little information about the tail band.

Two examples of such missed cases are shown in Fig. 4.11. Fig. 4.11-A depicts a case where

the tail is positioned in a way that the band is only slightly visible, and Fig. 4.11-D shows an

example where the fish is facing the camera. Function mEM
Ir

(x) is depicted as a red curve, and

the value shown indicates the maximum peak, mEM
Ir

(max). Even human analysts, who may be

capable of recognizing the fish as EM, may not be able to distinguish the tail band in these two

examples.

On the other hand, the algorithm is capable of detecting EM even when fishes merge together.

An example is illustrated in Fig. 4.11-C, where it is clearly shown that the mEM
Ir

(max) peak is

found at the tail band. Fig. 4.11-B shows a non-EM fish example, which is correctly detected as

non-EM, since the fish does not have a tail stripe. According to the results presented in Table

4.2, the vast majority of the non-EM cases are correctly detected as non-EM. Only 3.8% of the

non-EM cases are categorized as EM. In particular, 2.1% and 1.7% of the false alarm cases

Obtain ratio

Ir(x,y)

Rotate region mask

and image block

Apply region mask to

image block

Detect maximum

peak

Obtain overall

maximum peak

All

angles

 checked

?

Apply OC erosion

filter

Input

Image block

&

Region Mask

Apply OC MA

filter

Apply vertical

GF

Rotate region mask

and image block

No

Yes

Figure 4.10: Proposed algorithm flowchart.

43

OC
Correctly detected 53 (80.3%)

Not detected
Technique not successful (missed detection) 2 (3.0%)
Due to non-visible horizontal line 11 (16.7%)

Non-OC

Other fish detected as OC (false alarm) 4 (1.7%)
Other fish correctly not detected as OC 155 (66.5%)
Non-fish objects detected as OC (false alarm) 1 (0.4%)
Non-fish objects correctly not detected as OC 73 (31.3%)

Table 4.3: OC results

correspond to other fish and non-fish regions, respectively.

The results for OC are summarized in Table 4.3. Similar to the EM case, an OC fish is

detected when the mOC
Ir

(max) value is found to be between two thresholds. In other words,

TOC
1 < mOC

Ir
(max) < TOC

2 . The threshold values were empirically chosen as TOC
1 = 0.06 and

TOC
2 = 0.2. Any region with corresponding mOC

Ir
(max) peak outside the range specified by the

two thresholds is categorized as non-OC. Regions with associated mOC
Ir

(max) peak below the

lower threshold, TOC
1 , do not include a significant horizontal line. The higher threshold, TOC

2 , is

used for the same reason as in the case of EM.

As can be observed from Table 4.3, the total number of OC not detected by the proposed

algorithm is 13, which corresponds to 19.7% of the OC cases. As in the case of EM, for the

majority of missed cases (11 or 16.7%) the video frame itself has no or little information about

the straight line. Two examples where the straight line is not clearly visible are presented in Fig.

4.11-E and Fig. 4.11-G. Fig. 4.11-F shows a non-OC fish example, which is correctly detected

as non-OC, since the fish does not have a horizontal line. Function mOC
Ir

(y) is depicted as a red

curve, and the value shown indicates the maximum peak, mOC
Ir

(max). The proposed algorithm

detected a total of 5 false alarms (i.e., non-OC regions detected as OC), which is only 2.1% of

the non-OC cases. In particular, 1.7% and 0.4% of the false alarm cases correspond to other fish

and non-fish regions, respectively. Fig. 4.12 illustrates a few examples where non-EM/non-OC

species are detected as EM or OC. Fig. 4.13 presents a few examples where non-fish objects are

detected as EM or OC. Some examples where the proposed algorithm missed detection of EM

and OC are shown in Fig. 4.14.

44

Figure 4.11: Illustration of some EM and OC results

A. EM tail is positioned in a way that the tail band is only slightly visible. B. As expected, the EM fish is
detected as non-EM since the tail band is not visible. C. EM tail band is detected even though the two
fishes merged. D. As anticipated, the EM fish is detected as non-EM since the fish is facing the camera
and the tail band is not visible. E. The OC fish is not detected since the straight line is not clearly visible.
F. As anticipated, the OC fish is detected as non-OC since the fish does not appear to have a straight line.
G. As expected, the OC fish is not detected since the straight line is not visible, mainly due to the low
image resolution.

45

Figure 4.12: Illustration of few cases of false alarms (non-EM detected as EM, or non-OC
detected as OC)

A. Fish detected as EM although there is no visible tail band information. B. Fish detected as EM although
there is no visible tail band. C. Fish detected as OC although there is no clear visibility of straight body
line. D. Fish detected as OC although there is no clear visibility of straight body line.

Figure 4.13: Illustration of few cases of false alarms (non-fish detected as EM or OC)

A. The algorithm detected non-fish as EM. B. The algorithm detected non-fish as EM.

Figure 4.14: Illustration of few cases where EM and OC are not detected by the algorithm.

A. The technique is unsuccessful in detecting EM although the tail band is clearly visible. B. The
technique failed in detecting OC although the straight line is clearly visible.

46

4.5 Conclusions

A technique based on GFs to effectively extract species-specific features from EM and OC fish

species is presented. These features are used for detecting EM and OC fish species. The detection

rate is 70.6% for EM and 80.3% for OC, while 23.5% of the undetected EM cases do not have a

visible tail band, and 16.7% of the undetected OC cases do not have a visible straight body line.

Therefore, missed detection for these cases is expected. The false alarm rates are only 3.8% and

2.1%, respectively. These results are promising and indicate that these features may complement

other feature extraction techniques for the purpose of fish classification. Additionally, target

tracking may be used to associate the same fish region in different frames, so that the whole

fish sequence is classified as a single species, even if detection is successful in only one of the

frames. Even if false alarms occur, automatic detection significantly reduces the amount of data

to be examined by human analysts.

47

Chapter 5

Conclusions and Future Work

5.1 Conclusions

An attempt to optimize the convolution operation is made through the proposed method based

on FPGA in combination with separable kernel filters. The results obtained prove that the

proposed method achieves the objective of optimizing the convolution operation by providing

the necessary balance between on-chip resource utilization and external memory bandwidth.

Thus, the proposed method improves the performance of filtering process while lowering the

cost, operation time, and utilization of resources.

The proposed method for error reduction in logarithmic multiplication is based on Mitchell’s

method. In the proposed method the filters weights are altered which resulted in significant

reduction of product error without any increase in the resource utilization other than the Mitchell

multiplier. The average error percentage for the Mitchell algorithm in [7] is 3.87%, OD in [30]

is between 2.07% and 2.15%, and the IM algorithm with 2 stages is between 0.83% and 0.99%.

The average error percentage for the proposed logarithmic multiplier is around 0.1%. Hence, the

proposed method for logarithmic multiplication is best suited for filtering applications where the

filter weights are known and fixed. The proposed method extension for Mitchell further reduces

the error without any increase in the resource utilization other than the Mitchell multiplier. In

the case of the proposed method extension for IM (i.e. "IM-Mitchell-Proposed-Extension"),

error is further reduced at a cost of few extra resources which are essential to store the true log2

values of the decomposed operands.

A technique based on GFs is proposed to effectively extract species-specific fish features from

EM and OC fish species with a detection rate of 70.6% for EM and 80.3% for OC. The false

alarm rates are as low as 3.8% and 2.1% respectively. The proposed method on species-specific

fish feature extraction using Gabor filters also automates the species detection process, thus

eliminating the need for manual analysis which is laborious as well as error prone. Hence, the

48

proposed method is one of the best alternatives for species-specific fish feature extraction which

greatly reduces the probability of error occurrence in the detection process.

5.2 Future Work

The dissertation research work point to several interesting directions for future work which are

as follows:

1. It can be observed from Table 2.2 and Fig. 2.4 that the resource utilization for storing the

intermediate results increase exponentially depending on the size of the mask. For instance,

if the mask size is K ×K, then K2 registers are required to store the intermediate results.

A solution to reduce the exponential increase of resources for storing the intermediate

results is to store them in an LUT. An LUT has n bits and provides 2n output bits. Hence,

intermediate results can be stored in an LUT which aids in reducing the resource utilization

increase from exponential to linear.

2. The increase in memory and resource utilization for storing the true log2 values of the

original operand and the decomposed operand in the proposed method extension for IM

can be optimized by using an 8 bit state diagram. The scope of future work includes

average error analysis and FPGA implementation of the proposed method extension for

IM.

3. The proposed Gabor filter for fish feature extraction can be further improved for real time

implementation using FPGA. The proposed FPGA architecture for separable convolution

and logarithmic multiplication can be used as basic building blocks for implementation of

the Gabor filter using FPGA for fish feature extraction.

49

Bibliography

[1] J. Tripp, H. Mortveit, A. Hansson, and M. Gokhale, “Metropolitan road traffic simulation
on fpgas,” in IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM 2005), April 2005, pp. 117–126.

[2] E. Shang, J. Li, X. An, and H. He, “Lane detection using steerable filters and fpga-based
implementation,” in Sixth International Conference on Image and Graphics (ICIG), Aug
2011, pp. 908–913.

[3] A. E. Nelson, “Implementation of image processing algorithms on fpga hardware,” Ph.D.
dissertation, Vanderbilt University, 2000.

[4] S. Sowmya and R. Paily, “Fpga implementation of image enhancement algorithms,” in
International Conference on Communications and Signal Processing (ICCSP), Feb 2011,
pp. 584–588.

[5] A. Joginipelly, A. Varela, D. Charalampidis, R. Schott, and Z. Fitzsimmons, “Efficient
fpga implementation of steerable gaussian smoothers,” in 44th Southeastern Symposium
on System Theory (SSST), March 2012, pp. 78–82.

[6] T. R. Reed and J. M. H. du Buf, “A review of recent texture segmentation and feature
extraction techniques,” CVGIP: Image Underst., vol. 57, no. 3, pp. 359–372, May 1993.

[7] J. N. Mitchell, “Computer multiplication and division using binary logarithms,” IRE
Transactions on Electronic Computers, vol. 11, no. 4, pp. 512–517, Aug 1962.

[8] B. Bosi, G. Bois, and Y. Savaria, “Reconfigurable pipelined 2-d convolvers for fast digital
signal processing,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 7, no. 3, pp. 299–308, Sept 1999.

[9] F. Cardells-Tormo and P.-L. Molinet, “Area-efficient 2-d shift-variant convolvers for fpga-
based digital image processing,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 53, no. 2, pp. 105–109, Feb 2006.

[10] H. Zhang, M. Xia, and G. Hu, “A multiwindow partial buffering scheme for fpga-based
2-d convolvers,” IEEE Transactions on Circuits and Systems II: Express Brief, vol. 54,
no. 2, pp. 200–204, Feb 2007.

[11] S. Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto, and P. Prinetto, “An area-efficient
2-d convolution implementation on fpga for space applications,” in IEEE 6th International
Design and Test Workshop (IDT), Dec 2011, pp. 88–92.

[12] D. Charalampidis, “Efficient directional gaussian smoothers,” IEEE Geoscience and Re-
mote Sensing Letters, vol. 6, no. 3, pp. 383–387, July 2009.

[13] F. Cardells-Tormo and J. Arnabat-Benedicto, “Flexible hardware-friendly digital archi-
tecture for 2-d separable convolution-based scaling,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 53, no. 7, pp. 522–526, July 2006.

[14] M. Al-Mistarihi, “Separable implementation of the second order volterra filter (sovf)
in xilinx virtex-e fpga,” in International Conference on Field Programmable Logic and
Applications, Sept 2008, pp. 531–534.

50

[15] C.-S. Bouganis, S.-B. Park, G. A. Constantinides, and P. Y. K. Cheung, “Synthesis and
optimization of 2d filter designs for heterogeneous fpgas,” ACM Trans. Reconfigurable
Technol. Syst., vol. 1, no. 4, pp. 24:1–24:28, jan 2009.

[16] J. Mori, C. Llanos, and P. Berger, “Kernel analysis for architecture design trade off in
convolution-based image filtering,” in 25th Symposium on Integrated Circuits and Systems
Design (SBCCI), Aug 2012, pp. 1–6.

[17] G. C. Jung, S. M. Park, and J. H. Kim, “Efficient vlsi architectures for convolution and
lifting based 2-d discrete wavelet transform,” in Proceedings of the 10th Asia-Pacific
Conference on Advances in Computer Systems Architecture, 2005, pp. 795–804.

[18] M. Z. Zhang and V. K. Asari, “An efficient multiplier-less architecture for 2-d convolution
with quadrant symmetric kernels,” Integr. VLSI J., vol. 40, no. 4, pp. 490–502, Jul. 2007.

[19] S. Y. Eun and M. Sunwoo, “An efficient 2-d convolver chip for real-time image processing,”
in Proceedings of Asia and South Pacific Design Automation Conference, Feb 1998, pp.
329–330.

[20] P. Meher, “New approach to look-up-table design and memory-based realization of fir
digital filter,” IEEE Transactions on Circuits and Systems I: Regular Paper, vol. 57, no. 3,
pp. 592–603, March 2010.

[21] G. Deepak, R. Mahesh, and A. Sluzek, “Design of an area-efficient multiplierless pro-
cessing element for fast two dimensional image convolution,” in 13th IEEE International
Conference on Electronics, Circuits and Systems, Dec 2006, pp. 467–470.

[22] A. Yurdakul, “Multiplierless implementation of 2-d fir filters,” Integration, the VLSI
Journal, vol. 38, no. 4, pp. 597 – 613, 2005.

[23] P. Meher, “Parallel and pipelined architectures for cyclic convolution by block circulant
formulation using low-complexity short-length algorithms,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 18, no. 10, pp. 1422–1431, Oct 2008.

[24] B. Krill and A. Amira, “Efficient reconfigurable architectures of generic cyclic convolution,”
in 15th IEEE International Symposium on Consumer Electronics (ISCE), June 2011, pp.
560–564.

[25] R. Turney, “Two-dimensional linear filtering,” 2007. [Online]. Available: http:
//www.xilinx.com/support/documentation/application_notes/xapp933.pdf

[26] B. Mohanty and P. Meher, “New scan method and pipeline architecture for vlsi imple-
mentation of separable 2-d fir filters without transposition,” in TENCON IEEE Region 10
Conference, Nov 2008, pp. 1–5.

[27] [Online]. Available: http://www.xilinx.com/support/documentation/ip_documentation/
mult_gen_ds255.pdf

[28] [Online]. Available: http://www.digilentinc.com/Data/Products/GENESYS/Genesys_rm.
pdf

[29] A. Cosoroaba, “Memory interfaces made easy with xilinx fpgas and the memory interface
generator,” 2007. [Online]. Available: http://ece545.com/F12/resources/Virtex5/wp260.pdf

51

http://www.xilinx.com/support/documentation/application_notes/xapp933.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp933.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf
http://www.digilentinc.com/Data/Products/GENESYS/Genesys_rm.pdf
http://www.digilentinc.com/Data/Products/GENESYS/Genesys_rm.pdf
http://ece545.com/F12/resources/Virtex5/wp260.pdf

[30] V. Mahalingam and N. Ranganathan, “Improving accuracy in mitchell’s logarithmic multi-
plication using operand decomposition,” IEEE Transactions on Computers, vol. 55, no. 12,
pp. 1523–1535, Dec 2006.

[31] H. Ngo and V. Asari, “Design of a logarithmic domain 2-d convolver for low power video
processing applications,” in Sixth International Conference on Information Technology:
New Generations, April 2009, pp. 1280–1285.

[32] Z. Babic, A. Avramovic, and P. Bulic, “An iterative logarithmic multiplier,” Microproces-
sors and Microsystems, vol. 35, no. 1, pp. 23 – 33, Feb 2011.

[33] P. Bulic, Z. Babic, and A. Avramovic, “Digital signal processing applications with iterative
logarithmic multipliers,” Journal of Information Technology and Applications, vol. 1, pp.
77 – 148, Dec 2011.

[34] D. Mclaren, “Improved mitchell-based logarithmic multiplier for low-power dsp applica-
tions,” in IEEE International Conference on Systems-on-Chip, Sept 2003, pp. 53–56.

[35] S. Paul, N. Jayakumar, and S. Khatri, “A fast hardware approach for approximate, efficient
logarithm and antilogarithm computations,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 2, pp. 269–277, Feb 2009.

[36] R. Gutierrez and J. Valls, “Low cost hardware implementation of logarithm approximation,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 12, pp.
2326–2330, Dec 2011.

[37] E. L. Hall, D. Lynch, and I. Dwyer, S.J., “Generation of products and quotients using
approximate binary logarithms for digital filtering applications,” IEEE Transactions on
Computers, vol. 19, no. 2, pp. 97–105, Feb 1970.

[38] M. Combet, H. Van Zonneveld, and L. Verbeek, “Computation of the base two logarithm of
binary numbers,” IEEE Transactions on Electronic Computers, vol. 14, no. 6, pp. 863–867,
Dec 1965.

[39] S. SanGregory, C. Brothers, D. Gallagher, and R. Siferd, “A fast, low-power logarithm
approximation with cmos vlsi implementation,” in 42nd Midwest Symposium on Circuits
and Systems, vol. 1, 1999, pp. 388–391.

[40] K. Abed and R. Siferd, “Cmos vlsi implementation of a low-power logarithmic converter,”
IEEE Transactions on Computers, vol. 52, no. 11, pp. 1421–1433, Nov 2003.

[41] R. Siferd and K. Abed, “Vlsi implementation of a low-power antilogarithmic converter,”
IEEE Transactions on Computers, vol. 52, no. 9, pp. 1221–1228, Sept 2003.

[42] T.-B. Juang, S.-H. Chen, and H.-J. Cheng, “A lower error and rom-free logarithmic
converter for digital signal processing applications,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 56, no. 12, pp. 931–935, Dec 2009.

[43] M. Y. Kong, J. M. P. Langlois, and D. Al-Khalili, “Efficient fpga implementation of com-
plex multipliers using the logarithmic number system,” in IEEE International Symposium
on Circuits and Systems, May 2008, pp. 3154–3157.

[44] D. De Caro, N. Petra, and A. Strollo, “Efficient logarithmic converters for digital signal
processing applications,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 58, no. 10, pp. 667–671, Oct 2011.

52

[45] R. Selina, “Vlsi implementation of piecewise approximated antilogarithmic converter,” in
International Conference on Communications and Signal Processing (ICCSP), April 2013,
pp. 763–766.

[46] [Online]. Available: http://www.xilinx.com/support/documentation/boards_and_kits/
ug130.pdf,

[47] M. Cappo, E. Harvey, and M. Shortis, “Counting and measuring fish with baited video
techniques-an overview,” Proceedings of Australian Society for Fish Biology Workshop,
pp. 101–114, 2006.

[48] G. Boynton and K. Voss, “An underwater digital stereo video camera for fish population
assessment,” Physics Department, University of Miami, Coral Gables, Florida, Tech. Rep.,
2006. [Online]. Available: http://data.nodc.noaa.gov/coris/library/NOAA/CRCP/project/
1339/UnderwaterDigitalStereoVideoSystem_FishPopAssess.pdf

[49] C. Spampinato, D. Giordano, R. Di Salvo, Y.-H. J. Chen-Burger, R. B. Fisher, and
G. Nadarajan, “Automatic fish classification for underwater species behavior understand-
ing,” in Proceedings of the First ACM International Workshop on Analysis and Retrieval
of Tracked Events and Motion in Imagery Streams, 2010, pp. 45 – 50.

[50] J. D. Wilder, “System integration and image pre-processing for an automated real-time iden-
tification and monitoring system for coral reef fish,” Master’s thesis, The State University
of New Jersey, Oct 2010.

[51] H. J. Williams K, Rooper C, “Report of the national marine fisheries service workshop on
underwater video analysis,” U.S. Dep. Commerce, NOAA Tech. Memo.NMFS-F/SPO-121,
Tech. Rep., 2012. [Online]. Available: http://www.pifsc.noaa.gov/library/pubs/tech/
NOAA_TM_NMFS_F-SPO_121.pdf

[52] X. Li, K. Wang, W. Wang, and Y. Li, “A multiple object tracking method using kalman
filter,” in IEEE International Conference on Information and Automation (ICIA), June
2010, pp. 1862–1866.

[53] I. Fogel and D. Sagi, “Gabor filters as texture discriminator,” Biological Cybernetics,
vol. 61, no. 2, pp. 103–113, 1989.

[54] V. S. Vyas and P. Rege, “Automated texture analysis with gabor filter,” International
Journal on Graphics, Vision and Image Processing, vol. 6, July 2006.

[55] G. T. Shrivakshan and D. C. Ch, “Detecting the age of the fish through image process-
ing using its morphological features,” International Journal of Computer Science and
Information Technologies, vol. 2, pp. 2562–2567, 2011.

[56] S. Cadieux, F. Michaud, and F. Lalonde, “Intelligent system for automated fish sorting and
counting,” in IEEE International Conference on Intelligent Robots and Systems, vol. 2,
Nov 2000, pp. 1279–1284.

[57] M. Piccardi, “Background subtraction techniques: a review,” in IEEE International Con-
ference on Systems, Man and Cybernetics, vol. 4, Oct 2004, pp. 3099–3104.

[58] B. Han and L. Davis, “Density-based multifeature background subtraction with support
vector machine,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 5, pp. 1017–1023, May 2012.

53

http://www.xilinx.com/support/documentation/boards_and_kits/ug130.pdf,
http://www.xilinx.com/support/documentation/boards_and_kits/ug130.pdf,
http://data.nodc.noaa.gov/coris/library/NOAA/CRCP/project/1339/UnderwaterDigitalStereoVideoSystem_FishPopAssess.pdf
http://data.nodc.noaa.gov/coris/library/NOAA/CRCP/project/1339/UnderwaterDigitalStereoVideoSystem_FishPopAssess.pdf
http://www.pifsc.noaa.gov/library/pubs/tech/NOAA_TM_NMFS_F-SPO_121.pdf
http://www.pifsc.noaa.gov/library/pubs/tech/NOAA_TM_NMFS_F-SPO_121.pdf

List of Codes

1 Input Image Read Controller . 55

2 Shift Register Module 1 . 55

3 Central Selection Controller . 56

4 Multiplexer 1 . 56

5 Multiplier . 57

6 Filter Weight Module . 58

7 Shift Register Module 2 . 58

8 De-Multiplexer Module . 59

9 Adder . 59

10 Leading One Bit Detector . 60

11 Gaussian 1D Filter . 60

12 Mitchell Original Log Multiplier Function . 60

13 Mitchell Modified Log Multiplier Function 60

14 Operand Decomposition Original Log Multiplier Function 61

15 Operand Decomposition Modified Log Multiplier Function 61

16 Iterative Mitchell Log Multiplier with T Stages 61

17 Calculation of Optimized Weights for Proposed Log Multiplier 62

18 Proposed Log Multiplier . 62

19 Iterative Modified Algorithm 1 . 62

20 Iterative Modified Algorithm 2 . 63

21 Extension of Proposed Log Multiplier . 63

22 Gabor Filter Function . 64

23 Emorio Region Measurements Function . 64

24 Snapper Region Measurements Function . 64

25 Emorio Feature Extraction . 64

26 Snapper Feature Extraction . 66

54

Appendices

VHDL Source Codes

Code 1: Input Image Read Controller

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;

5 use i e e e . n u m e r i c _ s t d . a l l ;

6 e n t i t y s p b r a m _ i n p u t i m a g e _ r d _ c o n t r o l l e r i s

7 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

8 r e s e t : i n s t d _ l o g i c ;

9 e n a b l e : i n s t d _ l o g i c ;

10 a d d r a : o u t STD_LOGIC_VECTOR (14 downto 0) ;

11 d i n a : o u t STD_LOGIC_VECTOR (7 downto 0) ;

12 wea : o u t STD_LOGIC ;

13 ena : o u t STD_LOGIC ;

14 c l k _ o u t : o u t STD_LOGIC) ;

15 end s p b r a m _ i n p u t i m a g e _ r d _ c o n t r o l l e r ;

16 a r c h i t e c t u r e B e h a v i o r a l o f s p b r a m _ i n p u t i m a g e _ r d _ c o n t r o l l e r

i s

17 t y p e s t a t e _ r e g _ t y p e i s (i n i t i a l s t a t e , r d s t a t e , h a l t) ;

18 s i g n a l s r e g : s t a t e _ r e g _ t y p e ;

19 s i g n a l a d d r a _ s i g : s t d _ l o g i c _ v e c t o r (14 downto 0) ;

20 s i g n a l a c o u n t : s t d _ l o g i c _ v e c t o r (14 downto 0) ;

21 b e g i n

22 c l k _ o u t <= c l k _ s y s t e m ;

23 p r o c e s s (c lk_sys t em , r e s e t)

24 b e g i n

25 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’0 ’) t h e n

26 i f (r e s e t = ’1 ’) t h e n

27 ena <= ’0 ’ ;

28 e l s i f (e n a b l e = ’ 1 ’) t h e n

29 ena <= ’ 0 ’ ;

30 e l s e

31 c a s e s r e g i s

32 when i n i t i a l s t a t e => ena <= ’1 ’ ;

33 wea <= ’0 ’ ;

34 a d d r a _ s i g <=(o t h e r s = > ’0 ’) ;

35 acoun t <=" 000000000000001 " ;

36 s reg <= r d s t a t e ;

37 when r d s t a t e => ena <= ’1 ’ ;

38 a d d r a _ s i g <= a c o u n t ;

39 acoun t <= a c o u n t +1 ;

40 i f (a c o u n t =28379) t h e n

41 s reg <= h a l t ;

42 e l s e

43 s reg <= r d s t a t e ;

44 end i f ;

45 when h a l t => wea <= ’0 ’ ;

46 ena <= ’0 ’ ;

47 end c a s e ;

48 end i f ;

49 end i f ;

50 end p r o c e s s ;

51 addra <= a d d r a _ s i g ;

52 end B e h a v i o r a l ;

Code 2: Shift Register Module 1

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 e n t i t y regmod1 i s

5 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

6 r e s e t : i n STD_LOGIC ;

7 d o u t a : i n STD_LOGIC_VECTOR (7 downto 0) ;

8 r1 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

9 r2 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

10 r3 : o u t STD_LOGIC_VECTOR (7 downto 0)) ;

11 end regmod1 ;

12 a r c h i t e c t u r e B e h a v i o r a l o f regmod1 i s

13 s i g n a l r 1 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

14 s i g n a l r 2 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

15 s i g n a l r 3 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

16 b e g i n

17 p r o c e s s (c l k _ s y s t e m)

18 b e g i n

19 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’1 ’) t h e n

20 i f (r e s e t = ’0 ’) t h e n

21 r 3 _ s i g <= d o u t a ;

22 r 2 _ s i g <= r 3 _ s i g ;

23 r 1 _ s i g <= r 2 _ s i g ;

24 e l s e

25 r 1 _ s i g <=(o t h e r s = > ’0 ’) ;

26 r 2 _ s i g <=(o t h e r s = > ’0 ’) ;

27 r 3 _ s i g <=(o t h e r s = > ’0 ’) ;

28 end i f ;

29 end i f ;

30 end p r o c e s s ;

31 r1 <= r 1 _ s i g ;

32 r2 <= r 2 _ s i g ;

33 r3 <= r 3 _ s i g ;

34 end B e h a v i o r a l ;

55

Code 3: Central Selection Controller

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;

5 use i e e e . n u m e r i c _ s t d . a l l ;

6 e n t i t y c e n t r a l _ s e l e c t i o n _ c o n t r o l l e r i s

7 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

8 r e s e t : i n STD_LOGIC ;

9 bram_en : o u t STD_LOGIC ;

10 mux1_sel : o u t STD_LOGIC_VECTOR (4 downto 1) ;

11 demux2_sel : o u t STD_LOGIC ;

12 r e g 3 _ s e l : o u t STD_LOGIC) ;

13 end c e n t r a l _ s e l e c t i o n _ c o n t r o l l e r ;

14 a r c h i t e c t u r e B e h a v i o r a l o f c e n t r a l _ s e l e c t i o n _ c o n t r o l l e r i s

15 s i g n a l c o u n t : s t d _ l o g i c _ v e c t o r (2 downto 0) ;

16 s i g n a l b ram_en_s ig : s t d _ l o g i c ;

17 s i g n a l m u x 1 _ s e l _ s i g : s t d _ l o g i c _ v e c t o r (4 downto 1) ;

18 s i g n a l d e m u x 2 _ s e l _ s i g : s t d _ l o g i c ;

19 s i g n a l r e g 3 _ s e l _ s i g : s t d _ l o g i c ;

20 b e g i n

21 p r o c e s s (c l k _ s y s t e m)

22 b e g i n

23 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’1 ’) t h e n

24 i f (r e s e t = ’0 ’) t h e n

25 count <= c o u n t +1 ;

26 i f (c o u n t =6) t h e n

27 count <=" 001 " ;

28 end i f ;

29 i f (c o u n t =5) t h e n

30 bram_en_s ig <= ’1 ’ ;

31 e l s i f (c o u n t =6) t h e n

32 bram_en_s ig <= ’0 ’ ;

33 end i f ;

34 i f (c o u n t =3) t h e n

35 m u x 1 _ s e l _ s i g (1) <= ’0 ’ ;

36 e l s i f (c o u n t =6) t h e n

37 m u x 1 _ s e l _ s i g (1) <= ’1 ’ ;

38 end i f ;

39

40 i f (c o u n t =3) t h e n

41 m u x 1 _ s e l _ s i g (2) <= ’1 ’ ;

42 e l s i f (c o u n t =4) t h e n

43 m u x 1 _ s e l _ s i g (2) <= ’0 ’ ;

44 end i f ;

45 m u x 1 _ s e l _ s i g (3) <= m u x 1 _ s e l _ s i g (2) ;

46 m u x 1 _ s e l _ s i g (4) <= m u x 1 _ s e l _ s i g (3) ;

47 i f (c o u n t =3) t h e n

48 demux2_se l_s ig <= ’0 ’ ;

49 e l s i f (c o u n t =6) t h e n

50 demux2_se l_s ig <= ’1 ’ ;

51 end i f ;

52 i f (c o u n t =3) t h e n

53 r e g 3 _ s e l _ s i g <= ’0 ’ ;

54 e l s i f (c o u n t =6) t h e n

55 r e g 3 _ s e l _ s i g <= ’1 ’ ;

56 end i f ;

57 e l s e

58 count <=(o t h e r s = > ’0 ’) ;

59 bram_en_s ig <= ’0 ’ ;

60 m u x 1 _ s e l _ s i g (1) <= ’1 ’ ;

61 m u x 1 _ s e l _ s i g (2) <= ’0 ’ ;

62 m u x 1 _ s e l _ s i g (3) <= ’0 ’ ;

63 m u x 1 _ s e l _ s i g (4) <= ’0 ’ ;

64 demux2_se l_s ig <= ’1 ’ ;

65 r e g 3 _ s e l _ s i g <= ’1 ’ ;

66 end i f ;

67 end i f ;

68 end p r o c e s s ;

69 bram_en <= bram_en_s ig ;

70 mux1_sel <= m u x 1 _ s e l _ s i g ;

71 demux2_sel <= d e m u x 2 _ s e l _ s i g ;

72 r e g 3 _ s e l <= r e g 3 _ s e l _ s i g ;

73 end B e h a v i o r a l ;

Code 4: Multiplexer 1

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;

5 use i e e e . n u m e r i c _ s t d . a l l ;

6 e n t i t y m u l t i p l i e x e r 1 i s

7 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

8 r e s e t : i n STD_LOGIC ;

9 r1 : i n STD_LOGIC_VECTOR (7 downto 0) ;

10 r2 : i n STD_LOGIC_VECTOR (7 downto 0) ;

11 r3 : i n STD_LOGIC_VECTOR (7 downto 0) ;

12 vr1 : i n STD_LOGIC_VECTOR (7 downto 0) ;

13 vr2 : i n STD_LOGIC_VECTOR (7 downto 0) ;

14 vr3 : i n STD_LOGIC_VECTOR (7 downto 0) ;

15 vr4 : i n STD_LOGIC_VECTOR (7 downto 0) ;

16 vr5 : i n STD_LOGIC_VECTOR (7 downto 0) ;

17 vr6 : i n STD_LOGIC_VECTOR (7 downto 0) ;

18 vr7 : i n STD_LOGIC_VECTOR (7 downto 0) ;

19 vr8 : i n STD_LOGIC_VECTOR (7 downto 0) ;

20 vr9 : i n STD_LOGIC_VECTOR (7 downto 0) ;

21 mux1_sel : i n STD_LOGIC_VECTOR (4 downto 1) ;

22 o1 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

23 o2 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

24 o3 : o u t STD_LOGIC_VECTOR (7 downto 0)) ;

25 end m u l t i p l i e x e r 1 ;

26

56

27 a r c h i t e c t u r e B e h a v i o r a l o f m u l t i p l i e x e r 1 i s

28 b e g i n

29 p r o c e s s (c l k _ s y s t e m)

30 b e g i n

31 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’1 ’) t h e n

32 i f (r e s e t = ’0 ’) t h e n

33 c a s e mux1_sel i s

34 when " 0001 " => o1<= r1 ; −−1−−

35 o2<= r2 ;

36 o3<= r3 ;

37 when " 0010 " => o1<= vr1 ;−−2−−

38 o2<= vr4 ;

39 o3<= vr7 ;

40 when " 0100 " => o1<= vr2 ;−−4−−

41 o2<= vr5 ;

42 o3<= vr8 ;

43 when " 1000 " => o1<= vr3 ;−−8−−

44 o2<= vr6 ;

45 o3<= vr9 ;

46 when o t h e r s => o1 <=(o t h e r s = > ’0 ’) ;

47 o2 <=(o t h e r s = > ’0 ’) ;

48 end c a s e ;

49 e l s e

50 o1 <=(o t h e r s = > ’0 ’) ;

51 o2 <=(o t h e r s = > ’0 ’) ;

52 o3 <=(o t h e r s = > ’0 ’) ;

53 end i f ;

54 end i f ;

55 end p r o c e s s ;

56 end B e h a v i o r a l ;

Code 5: Multiplier

1 l i b r a r y i e e e ;

2 use i e e e . s t d _ l o g i c _ 1 1 6 4 . ALL;

3 use i e e e . n u m e r i c _ s t d . ALL;

4 l i b r a r y UNISIM ;

5 use UNISIM . Vcomponents . ALL;

6

7 e n t i t y m u l t i p l i e r _ a d d e r i s

8 p o r t (ce : i n s t d _ l o g i c ;

9 c l k _ s y s t e m : i n s t d _ l o g i c ;

10 m1a : i n s t d _ l o g i c _ v e c t o r (7 downto 0)

;

11 m1b : i n s t d _ l o g i c _ v e c t o r (7 downto 0)

;

12 m2a : i n s t d _ l o g i c _ v e c t o r (7 downto 0)

;

13 m2b : i n s t d _ l o g i c _ v e c t o r (7 downto 0)

;

14 m3a : i n s t d _ l o g i c _ v e c t o r (7 downto 0)

;

15 m3b : i n s t d _ l o g i c _ v e c t o r (7 downto 0)

;

16 r e s e t : i n s t d _ l o g i c ;

17 r e s u l t : o u t s t d _ l o g i c _ v e c t o r (7 downto 0)

) ;

18 end m u l t i p l i e r _ a d d e r ;

19

20 a r c h i t e c t u r e BEHAVIORAL of m u l t i p l i e r _ a d d e r i s

21 a t t r i b u t e BOX_TYPE : s t r i n g ;

22 s i g n a l XLXN_18 : s t d _ l o g i c _ v e c t o r (15 downto 0) ;

23 s i g n a l XLXN_19 : s t d _ l o g i c _ v e c t o r (15 downto 0) ;

24 s i g n a l XLXN_20 : s t d _ l o g i c _ v e c t o r (15 downto 0) ;

25 s i g n a l XLXN_21 : s t d _ l o g i c ;

26 component m u l t i p l i e r 1

27 p o r t (a : i n s t d _ l o g i c _ v e c t o r (7 downto 0) ;

28 b : i n s t d _ l o g i c _ v e c t o r (7 downto 0) ;

29 c l k : i n s t d _ l o g i c ;

30 ce : i n s t d _ l o g i c ;

31 p : o u t s t d _ l o g i c _ v e c t o r (15 downto 0)) ;

32 end component ;

33

34 component f i n a l a d d e r

35 p o r t (c l k _ s y s t e m : i n s t d _ l o g i c ;

36 r e s e t : i n s t d _ l o g i c ;

37 p1 : i n s t d _ l o g i c _ v e c t o r (15

downto 0) ;

38 p2 : i n s t d _ l o g i c _ v e c t o r (15

downto 0) ;

39 p3 : i n s t d _ l o g i c _ v e c t o r (15

downto 0) ;

40 r e s u l t : o u t s t d _ l o g i c _ v e c t o r (7 downto

0)) ;

41 end component ;

42

43 component INV

44 p o r t (I : i n s t d _ l o g i c ;

45 O : o u t s t d _ l o g i c) ;

46 end component ;

47 a t t r i b u t e BOX_TYPE of INV : component i s "BLACK_BOX" ;

48

49 b e g i n

50 XLXI_1 : m u l t i p l i e r 1

51 p o r t map (a (7 downto 0) =>m1a (7 downto 0) ,

52 b (7 downto 0) =>m1b (7 downto 0) ,

53 ce=>ce ,

54 c l k => c lk_sys t em ,

55 p (15 downto 0) =>XLXN_18(15 downto 0)) ;

56

57 XLXI_2 : m u l t i p l i e r 1

58 p o r t map (a (7 downto 0) =>m2a (7 downto 0) ,

59 b (7 downto 0) =>m2b (7 downto 0) ,

60 ce=>ce ,

61 c l k => c lk_sys t em ,

62 p (15 downto 0) =>XLXN_19(15 downto 0)) ;

63

64 XLXI_3 : m u l t i p l i e r 1

65 p o r t map (a (7 downto 0) =>m3a (7 downto 0) ,

66 b (7 downto 0) =>m3b (7 downto 0) ,

67 ce=>ce ,

57

68 c l k => c lk_sys t em ,

69 p (15 downto 0) =>XLXN_20(15 downto 0)) ;

70

71 XLXI_4 : f i n a l a d d e r

72 p o r t map (c l k _ s y s t e m =>XLXN_21 ,

73 p1 (15 downto 0) =>XLXN_18(15 downto 0) ,

74 p2 (15 downto 0) =>XLXN_19(15 downto 0) ,

75 p3 (15 downto 0) =>XLXN_20(15 downto 0) ,

76 r e s e t => r e s e t ,

77 r e s u l t (7 downto 0) => r e s u l t (7 downto 0)) ;

78

79 XLXI_5 : INV

80 p o r t map (I => c lk_sys t em ,

81 O=>XLXN_21) ;

82

83 end BEHAVIORAL;

Code 6: Filter Weight Module

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;

5 use i e e e . n u m e r i c _ s t d . a l l ;

6 e n t i t y weigh tmodule i s

7 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

8 r e s e t : i n STD_LOGIC ;

9 w1 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

10 w2 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

11 w3 : o u t STD_LOGIC_VECTOR (7 downto 0)) ;

12 end weigh tmodule ;

13 a r c h i t e c t u r e B e h a v i o r a l o f weigh tmodule i s

14 b e g i n

15 p r o c e s s (c l k _ s y s t e m)

16 b e g i n

17 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’1 ’) t h e n

18 i f (r e s e t = ’0 ’) t h e n

19 w1<=" 00000001 " ;−−1−−

20 w2<=" 00000001 " ;−−1−−

21 w3<=" 00000001 " ;−−1−−

22 e l s e

23 w1<=(o t h e r s = > ’0 ’) ;

24 w2<=(o t h e r s = > ’0 ’) ;

25 w3<=(o t h e r s = > ’0 ’) ;

26 end i f ;

27 end i f ;

28 end p r o c e s s ;

29 end B e h a v i o r a l ;

Code 7: Shift Register Module 2

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;

5 use i e e e . n u m e r i c _ s t d . a l l ;

6 e n t i t y regmod3 i s

7 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

8 r e s e t : i n STD_LOGIC ;

9 r e g 3 _ s e l : i n STD_LOGIC ;

10 v e r t _ r e s u l t : i n STD_LOGIC_VECTOR (7 downto 0)

;

11 vr1 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

12 vr2 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

13 vr3 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

14 vr4 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

15 vr5 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

16 vr6 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

17 vr7 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

18 vr8 : o u t STD_LOGIC_VECTOR (7 downto 0) ;

19 vr9 : o u t STD_LOGIC_VECTOR (7 downto 0)) ;

20 end regmod3 ;

21 a r c h i t e c t u r e B e h a v i o r a l o f regmod3 i s

22 s i g n a l v r 1 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

23 s i g n a l v r 2 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

24 s i g n a l v r 3 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

25 s i g n a l v r 4 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

26 s i g n a l v r 5 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

27 s i g n a l v r 6 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

28 s i g n a l v r 7 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

29 s i g n a l v r 8 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

30 s i g n a l v r 9 _ s i g : s t d _ l o g i c _ v e c t o r (7 downto 0) ;

31 b e g i n

32 p r o c e s s (c l k _ s y s t e m)

33 b e g i n

34 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’1 ’) t h e n

35 i f (r e s e t = ’0 ’) t h e n

36 i f (r e g 3 _ s e l = ’1 ’) t h e n

37 v r 9 _ s i g <= v e r t _ r e s u l t ;

38 v r 8 _ s i g <= v r 9 _ s i g ;

39 v r 7 _ s i g <= v r 8 _ s i g ;

40 v r 6 _ s i g <= v r 7 _ s i g ;

41 v r 5 _ s i g <= v r 6 _ s i g ;

42 v r 4 _ s i g <= v r 5 _ s i g ;

43 v r 3 _ s i g <= v r 4 _ s i g ;

44 v r 2 _ s i g <= v r 3 _ s i g ;

45 v r 1 _ s i g <= v r 2 _ s i g ;

46 end i f ;

47 e l s e

48 v r 1 _ s i g <=(o t h e r s = > ’0 ’) ;

49 v r 2 _ s i g <=(o t h e r s = > ’0 ’) ;

50 v r 3 _ s i g <=(o t h e r s = > ’0 ’) ;

51 v r 4 _ s i g <=(o t h e r s = > ’0 ’) ;

58

52 v r 5 _ s i g <=(o t h e r s = > ’0 ’) ;

53 v r 6 _ s i g <=(o t h e r s = > ’0 ’) ;

54 v r 7 _ s i g <=(o t h e r s = > ’0 ’) ;

55 v r 8 _ s i g <=(o t h e r s = > ’0 ’) ;

56 v r 9 _ s i g <=(o t h e r s = > ’0 ’) ;

57 end i f ;

58 end i f ;

59 end p r o c e s s ;

60 vr1 <= v r 1 _ s i g ;

61 vr2 <= v r 2 _ s i g ;

62 vr3 <= v r 3 _ s i g ;

63 vr4 <= v r 4 _ s i g ;

64 vr5 <= v r 5 _ s i g ;

65 vr6 <= v r 6 _ s i g ;

66 vr7 <= v r 7 _ s i g ;

67 vr8 <= v r 8 _ s i g ;

68 vr9 <= v r 9 _ s i g ;

69 end B e h a v i o r a l ;

Code 8: De-Multiplexer Module

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;

5 use i e e e . n u m e r i c _ s t d . a l l ;

6 e n t i t y d e m u l t i p l e x e r 2 i s

7 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

8 r e s e t : i n STD_LOGIC ;

9 demux2_sel : i n STD_LOGIC ;

10 r e s u l t : i n STD_LOGIC_VECTOR (7 downto 0) ;

11 v e r t _ r e s u l t : o u t STD_LOGIC_VECTOR (7 downto

0) ;

12 h o r t _ r e s u l t : o u t STD_LOGIC_VECTOR (7 downto

0)) ;

13 end d e m u l t i p l e x e r 2 ;

14 a r c h i t e c t u r e B e h a v i o r a l o f d e m u l t i p l e x e r 2 i s

15 b e g i n

16 p r o c e s s (c l k _ s y s t e m)

17 b e g i n

18 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’1 ’) t h e n

19 i f (r e s e t = ’0 ’) t h e n

20 i f (demux2_sel = ’1 ’) t h e n

21 v e r t _ r e s u l t <= r e s u l t ;

22 h o r t _ r e s u l t <=(o t h e r s = > ’0 ’) ;

23 e l s e

24 h o r t _ r e s u l t <= r e s u l t ;

25 v e r t _ r e s u l t <=(o t h e r s = > ’0 ’) ;

26 end i f ;

27 e l s e

28 v e r t _ r e s u l t <=(o t h e r s = > ’0 ’) ;

29 h o r t _ r e s u l t <=(o t h e r s = > ’0 ’) ;

30 end i f ;

31 end i f ;

32 end p r o c e s s ;

33 end B e h a v i o r a l ;

Code 9: Adder

1 l i b r a r y IEEE ;

2 use IEEE . STD_LOGIC_1164 . ALL;

3 use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

4 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;

5 use i e e e . n u m e r i c _ s t d . a l l ;

6 e n t i t y f i n a l a d d e r i s

7 P o r t (c l k _ s y s t e m : i n STD_LOGIC ;

8 r e s e t : i n STD_LOGIC ;

9 p1 : i n STD_LOGIC_VECTOR (15 downto 0) ;

10 p2 : i n STD_LOGIC_VECTOR (15 downto 0) ;

11 p3 : i n STD_LOGIC_VECTOR (15 downto 0) ;

12 r e s u l t : o u t STD_LOGIC_VECTOR (7 downto 0)) ;

13 end f i n a l a d d e r ;

14 a r c h i t e c t u r e B e h a v i o r a l o f f i n a l a d d e r i s

15 s i g n a l p 1 _ s i g : s t d _ l o g i c _ v e c t o r (17 downto 0) ;

16 s i g n a l p 2 _ s i g : s t d _ l o g i c _ v e c t o r (17 downto 0) ;

17 s i g n a l p 3 _ s i g : s t d _ l o g i c _ v e c t o r (17 downto 0) ;

18 s i g n a l r e s u l t _ s i g : s t d _ l o g i c _ v e c t o r (17 downto 0) ;

19 b e g i n

20 p r o c e s s (c l k _ s y s t e m)

21 b e g i n

22 i f (c lk_sys t em ’ e v e n t and c l k _ s y s t e m = ’1 ’) t h e n

23 i f (r e s e t = ’0 ’) t h e n

24 p1_s ig <=" 00 " & p1 ;

25 p2_s ig <=" 00 " & p2 ;

26 p3_s ig <=" 00 " & p3 ;

27 r e s u l t _ s i g <= p 1 _ s i g + p 2 _ s i g + p 3 _ s i g ;

28 e l s e

29 p 1 _ s i g <= (o t h e r s = > ’0 ’) ;

30 p 2 _ s i g <= (o t h e r s = > ’0 ’) ;

31 p 3 _ s i g <= (o t h e r s = > ’0 ’) ;

32 r e s u l t _ s i g <= (o t h e r s = > ’0 ’) ;

33 end i f ;

34 end i f ;

35 end p r o c e s s ;

36 r e s u l t (7 downto 0) <= r e s u l t _ s i g (7 downto 0) ;

37 end B e h a v i o r a l ;

59

Matlab Source codes

Code 10: Leading One Bit Detector

1 f u n c t i o n [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , N1 , N2)

2 N1bin= d e c 2 b i n (N1 , 8) ;

3 N2bin= d e c 2 b i n (N2 , 8) ;

4 N 1 b i n _ s t r = num2s t r (N1bin) ;

5 N 2 b i n _ s t r = num2s t r (N2bin) ;

6 i f (N1~=0)

7 k 1 _ a l l = f i n d (N 1 b i n _ s t r == ’ 1 ’) ;

8 k1_min=min (k 1 _ a l l) ;

9 k1 =(n−k1_min) ;

10 e l s e

11 k1 =0;

12 end

13 i f (N2~=0)

14 k 2 _ a l l = f i n d (N 2 b i n _ s t r == ’ 1 ’) ;

15 k2_min=min (k 2 _ a l l) ;

16 k2 =(n−k2_min) ;

17 e l s e

18 k2 =0;

19 end

20 end

Code 11: Gaussian 1D Filter

1 f u n c t i o n [c1d , N, Nh , gh1d , q u a n t i z e _ g h 1 d , h s h i f t , h s c a l e] =

q u a n t i z e d 1 d g a u s s i a n f i l t e r (s igma)

2 c1d =1/ s q r t (2∗ p i∗s igma . ^ 2) ;

3 N=2∗ round (3∗ s igma) +1;

4 Nh= round (3∗ s igma) ;

5 gh1d= z e r o s (1 ,N) ;

6 f o r x=−Nh : Nh

7 gh1d (x+Nh+1)=c1d∗exp (−(x . ^ 2) / (2∗ s igma . ^ 2)) ;

8 end

9 h s h i f t = f l o o r (l og2 (1 / (max (gh1d)))) ;

10 h s c a l e =gh1d∗2^(h s h i f t) ;

11 q u a n t i z e _ g h 1 d = round (h s c a l e ∗2^8) ;

12 end

Code 12: Mitchell Original Log Multiplier Function

1 f u n c t i o n [r e s u l t _ m a , k1 , k2 , k12 , x1 , x2 , x12] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n _ o r i g i n a l (n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , N1 , N2) ;

4 x1= u i n t 1 6 (b i t s h i f t (N1 , n−k1 , n)) ;

5 x2= u i n t 1 6 (b i t s h i f t (N2 , n−k2 , n)) ;

6 k12=k1+k2 ;

7 x12= u i n t 1 6 (x1+x2) ;

8 i f (x12 >=2^8)

9 k12=k12 +1;

10 r e s u l t _ m a = b i t s h i f t (x12 , i n t 1 6 (k12)−n , ’ u i n t 1 6 ’) ;

11 e l s e

12 temp= u i n t 1 6 (b i t s h i f t (1 , k12 , ’ u i n t 1 6 ’)) ;

13 x 1 2 _ s h i f t = b i t s h i f t (x12 , i n t 1 6 (k12)−n , ’ u i n t 1 6 ’) ;

14 r e s u l t _ m a = b i t o r (temp , x 1 2 _ s h i f t , ’ u i n t 1 6 ’) ;

15 end

16 e l s e

17 r e s u l t _ m a =0;

18 end

Code 13: Mitchell Modified Log Multiplier Function

1 f u n c t i o n [r e s u l t _ m a , k1 , k2 , k12 , x1 , x2 , x12] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n (n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , N1 , N2) ;

4 x1= u i n t 1 6 (b i t s h i f t (N1 , n−k1 , n)) ;

5 x2= u i n t 1 6 (b i t s h i f t (N2 , n−k2 , n)) ;

6 N 2 _ a c t u a l _ l o g = log2 (N2) ;

7 x2= round ((N 2 _ a c t u a l _ l o g−k2) ∗2^8) ;

8 k12=k1+k2 ;

9 x12= u i n t 1 6 (x1+x2) ;

10 i f (x12 >=2^8)

11 k12=k12 +1;

12 r e s u l t _ m a = b i t s h i f t (x12 , i n t 1 6 (k12)−n , ’ u i n t 1 6 ’) ;

13 e l s e

14 temp= u i n t 1 6 (b i t s h i f t (1 , k12 , ’ u i n t 1 6 ’)) ;

15 x 1 2 _ s h i f t = b i t s h i f t (x12 , i n t 1 6 (k12)−n , ’ u i n t 1 6 ’) ;

16 r e s u l t _ m a = b i t o r (temp , x 1 2 _ s h i f t , ’ u i n t 1 6 ’) ;

17 end

18 e l s e

19 r e s u l t _ m a =0;

20 end

60

Code 14: Operand Decomposition Original Log Multiplier Function

1 f u n c t i o n [r e s u l t _ o d , r e s u l t _ m a _ a b , r e s u l t _ m a _ c d] =

o d _ m i t c h e l l _ o r i g i n a l _ m u l t i p l i e r _ f u n c t i o n (n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3 N1bin= d e c 2 b i n (N1 , n) ;

4 N2bin= d e c 2 b i n (N2 , n) ;

5 N1_cmp= bi t cmp (N1 , ’ u i n t 8 ’) ;

6 N2_cmp= bi t cmp (N2 , ’ u i n t 8 ’) ;

7 a= b i t o r (N1 , N2 , ’ u i n t 8 ’) ;

8 b= b i t a n d (N1 , N2 , ’ u i n t 8 ’) ;

9 c= b i t a n d (N1_cmp , N2 , ’ u i n t 8 ’) ;

10 d= b i t a n d (N1 , N2_cmp , ’ u i n t 8 ’) ;

11 i f (a ~=0 && b ~=0)

12 [r e s u l t _ m a _ a b , ka , kb , kab , xa , xb , xab] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n _ o r i g i n a l (n , a , b) ;

13 e l s e

14 r e s u l t _ m a _ a b =0;

15 end

16 i f (c ~=0 && d ~=0)

17 [r e s u l t _ m a _ c d , kc , kd , kcd , xc , xd , xcd] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n _ o r i g i n a l (n , c , d) ;

18 e l s e

19 r e s u l t _ m a _ c d =0;

20 end

21 r e s u l t _ o d = r e s u l t _ m a _ a b + r e s u l t _ m a _ c d ;

22 e l s e

23 r e s u l t _ o d =0;

24 end

Code 15: Operand Decomposition Modified Log Multiplier Function

1 f u n c t i o n [r e s u l t _ o d , r e s u l t _ m a _ a b , r e s u l t _ m a _ c d] =

o d _ m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n (n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3 N1bin= d e c 2 b i n (N1 , n) ;

4 N2bin= d e c 2 b i n (N2 , n) ;

5 N1_cmp= bi t cmp (N1 , ’ u i n t 8 ’) ;

6 N2_cmp= bi t cmp (N2 , ’ u i n t 8 ’) ;

7 a= b i t o r (N1 , N2 , ’ u i n t 8 ’) ;

8 b= b i t a n d (N1 , N2 , ’ u i n t 8 ’) ;

9 c= b i t a n d (N1_cmp , N2 , ’ u i n t 8 ’) ;

10 d= b i t a n d (N1 , N2_cmp , ’ u i n t 8 ’) ;

11 i f (a ~=0 && b ~=0)

12 [r e s u l t _ m a _ a b , ka , kb , kab , xa , xb , xab] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n (n , a , b) ;

13 e l s e

14 r e s u l t _ m a _ a b =0;

15 end

16 i f (c ~=0 && d ~=0)

17 [r e s u l t _ m a _ c d , kc , kd , kcd , xc , xd , xcd] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n (n , c , d) ;

18 e l s e

19 r e s u l t _ m a _ c d =0;

20 end

21 r e s u l t _ o d = r e s u l t _ m a _ a b + r e s u l t _ m a _ c d ;

22 e l s e

23 r e s u l t _ o d =0;

24 end

Code 16: Iterative Mitchell Log Multiplier with T Stages

1 f u n c t i o n [r e s u l t _ a p p r o x] =

i t e r a t i v e _ m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n (n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3

4 N1bin= d e c 2 b i n (N1 , n) ;

5 N2bin= d e c 2 b i n (N2 , n) ;

6 r e s u l t _ a c t u a l = u i n t 1 6 (N1∗N2) ;

7 r e s u l t _ a p p r o x = u i n t 1 6 (0) ;

8

9 x1=N1 ;

10 x2=N2 ;

11 s t a g e =1;

12 t =5 % t =number o f s t a g e s ;

13

14 w h i l e (s t a g e <= t)

15 i f (x1~=0 && x2 ~= 0)

16 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , x1 , x2

) ;

17 x1= u i n t 1 6 (x1−2^k1) ;

18 x 1 s h i f t = b i t s h i f t (x1 , k2 , ’ u i n t 1 6 ’) ;

19 x2= u i n t 1 6 (x2−2^k2) ;

20 x 2 s h i f t = b i t s h i f t (x2 , k1 , ’ u i n t 1 6 ’) ;

21 k12= u i n t 1 6 (k1+k2) ;

22 r = u i n t 1 6 (2^ k12) ;

23 c1= r + x 1 s h i f t + x 2 s h i f t ;

24 s t a g e = s t a g e +1;

25 e l s e

26 c1 =0;

27 s t a g e = s t a g e +1;

28 end

29 r e s u l t _ a p p r o x = r e s u l t _ a p p r o x +c1 ;

30 end

31 e l s e

32 r e s u l t _ a p p r o x =0;

33

34 end

61

Code 17: Calculation of Optimized Weights for Proposed Log Multiplier

1 f u n c t i o n [N2_modified , N2_modif ied_round , cf , c f _ i n t] =

d e r i v e c f _ i n d e p e n d e n t o n i n p u t s i g n a l (n , N2)

2 i f (N2~=0)

3 N_temp = 1 : 2 5 5 ;

4 x1= z e r o s (s i z e (N_temp)) ;

5 x12= z e r o s (s i z e (N_temp)) ;

6 n o c a r r y = z e r o s (s i z e (N_temp)) ;

7 c a r r y = z e r o s (s i z e (N_temp)) ;

8 te rm1 = dou b l e (z e r o s) ;

9 te rm2 = dou b l e (z e r o s) ;

10 te rm3 = d ou b l e (z e r o s) ;

11 te rm4 = d ou b l e (z e r o s) ;

12 f o r i =1 : s i z e (N_temp , 2)

13 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , N_temp (i)

,N2) ;

14 x1 (i) = u i n t 1 6 (b i t s h i f t (N_temp (i) , n−k1 , n)) ;

15 x2= u i n t 1 6 (b i t s h i f t (N2 , n−k2 , n)) ;

16 x12 (i) = u i n t 1 6 (x1 (i) +x2) ;

17 i f (x12 (i) >=2^8)

18 c a r r y (i) =N_temp (i) ;

19 e l s e

20 n o c a r r y (i) =N_temp (i) ;

21 end

22 end

23 f o r i =1 : s i z e (N_temp , 2)

24 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , N_temp (i) ,N2

) ;

25 i f (N_temp (i) == n o c a r r y (i))

26 te rm1 = term1 +N_temp (i)∗2^ dou b l e (k1) ∗(N2−2^

do ub l e (k2)) ;

27 te rm4 = term4 +2^ dou b l e (2∗k1+k2) ;

28 end

29 i f (N_temp (i) == c a r r y (i))

30 te rm2 = term2 +N_temp (i)∗2^ dou b l e (k1 +1)∗(N2−2^

do ub l e (k2 +1)) ;

31 te rm3 = term3 +2^ dou b l e (2∗k1+k2 +2) ;

32 end

33 end

34 c f =(te rm1 + term2 + term3) / (te rm4 + term3) ;

35 c f _ i n t = round (c f ∗2^8) ;

36 N2_modif ied = (2 ^ (d ou b l e (k2) + c f)) ;

37 N2_modi f ied_round = round (2 ^ (dou b l e (k2) + c f)) ;

38 e l s e

39 N2_modif ied =0;

40 N2_modi f ied_round =0;

41 c f =0;

42 c f _ i n t =0 ;

43 end

44 end

Code 18: Proposed Log Multiplier

1 f u n c t i o n [r e s u l t _ d c , cf , c f _ i n t , k1 , k2 , k12 , x1 , x2 , x12] =

p r o p o s e d _ m u l t i p l i e r _ f u n c t i o n _ c f _ i n d e p e n d e n t o n i n p u t s i g n a l

(n , N1 , N2 , c f _ i n t)

2 i f (N1~=0 && N2~=0)

3 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , N1 , N2) ;

4 x1= u i n t 1 6 (b i t s h i f t (N1 , n−k1 , n)) ;

5 x2= c f _ i n t ;

6 k12=k1+k2 ;

7 x12= u i n t 1 6 (x1+x2) ;

8 i f (x12 >=2^8)

9 k12=k12 +1;

10 r e s u l t _ d c = b i t s h i f t (x12 , i n t 1 6 (k12)−n , ’ u i n t 1 6 ’) ;

11 e l s e

12 temp= u i n t 1 6 (b i t s h i f t (1 , k12 , ’ u i n t 1 6 ’)) ;

13 x 1 2 _ s h i f t = b i t s h i f t (x12 , i n t 1 6 (k12)−n , ’ u i n t 1 6 ’) ;

14 r e s u l t _ d c = b i t o r (temp , x 1 2 _ s h i f t , ’ u i n t 1 6 ’) ;

15 end

16 e l s e

17 r e s u l t _ d c =0;

18 end

19 end

Code 19: Iterative Modified Algorithm 1

1 f u n c t i o n [r e s u l t _ a p p r o x _ m e t h o d 2] =

i t e r a t i v e _ f i r s t _ i t e r a t i v e _ e x a c t _ s e c o n d _ m u l t i p l i e r _ f u n c t i o n

(n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3 N1bin= d e c 2 b i n (N1 , n) ;

4 N2bin= d e c 2 b i n (N2 , n) ;

5 r e s u l t _ a c t u a l = u i n t 1 6 (N1∗N2) ;

6 r e s u l t _ a p p r o x _ s t a g e 1 = u i n t 1 6 (0) ;

7 r e s u l t _ a p p r o x _ m e t h o d 2 = u i n t 1 6 (0) ;

8 x1=N1 ;

9 x2=N2 ;

10 s t a g e =1;

11 w h i l e (s t a g e <=1)

12 % f u n c t i o n w i l l c a l c u l a t e t h e p o s i t i o n o f 1 i n t h e

MSB of b i n a r y number

13 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , x1 , x2) ;

14 x1= u i n t 1 6 (x1−2^k1) ;

15 x 1 s h i f t = b i t s h i f t (x1 , k2 , ’ u i n t 1 6 ’) ;

62

16 x2= u i n t 1 6 (x2−2^k2) ;

17 x 2 s h i f t = b i t s h i f t (x2 , k1 , ’ u i n t 1 6 ’) ;

18 k12= u i n t 1 6 (k1+k2) ;

19 r1 = u i n t 1 6 (2^ k12) ;

20 c1= r1 + x 1 s h i f t + x 2 s h i f t ;

21 r e s u l t _ a p p r o x _ s t a g e 1 = r e s u l t _ a p p r o x _ s t a g e 1 +c1 ;

22 s t a g e = s t a g e +1;

23 i f (x1~=0 && x2 ~=0)

24 [k11 , k22] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , x1 ,

x2) ;

25 x11= u i n t 1 6 (x1−2^k11) ;

26 x 1 1 s h i f t = b i t s h i f t (x11 , k22 , ’ u i n t 1 6 ’) ;

27 x22= log2 (d ou b l e (x2))−k22 ;

28 x22temp= round (x22∗2^k22) ;

29 x 2 2 s h i f t = u i n t 1 6 (b i t s h i f t (u i n t 1 6 (x22temp) , k11 , ’

u i n t 1 6 ’)) ;

30 k1122= u i n t 1 6 (k11+k22) ;

31 r2 = u i n t 1 6 (2^ k1122) ;

32 c2= r2 + x 1 1 s h i f t + x 2 2 s h i f t ;

33 e l s e

34 c2 =0;

35 end

36 r e s u l t _ a p p r o x _ m e t h o d 2 = r e s u l t _ a p p r o x _ s t a g e 1 +c2 ;

37 end

38 e l s e

39 r e s u l t _ a p p r o x _ m e t h o d 2 =0;

40 end

Code 20: Iterative Modified Algorithm 2

1 f u n c t i o n [r e s u l t _ a p p r o x _ m e t h o d 1] =

i t e r a t i v e _ f i r s t _ m i t c h e l l _ o r i g i n a l _ s e c o n d _ m u l t i p l i e r _ f u n c t i o n

(n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3 N1bin= d e c 2 b i n (N1 , n) ;

4 N2bin= d e c 2 b i n (N2 , n) ;

5 r e s u l t _ a c t u a l = u i n t 1 6 (N1∗N2) ;

6 r e s u l t _ a p p r o x _ s t a g e 1 = u i n t 1 6 (0) ;

7 x1=N1 ;

8 x2=N2 ;

9 s t a g e =1;

10 w h i l e (s t a g e <=1)

11 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , x1 , x2) ;

12 x1= u i n t 1 6 (x1−2^k1) ;

13 x 1 s h i f t = b i t s h i f t (x1 , k2 , ’ u i n t 1 6 ’) ;

14 x2= u i n t 1 6 (x2−2^k2) ;

15 x 2 s h i f t = b i t s h i f t (x2 , k1 , ’ u i n t 1 6 ’) ;

16 k12= u i n t 1 6 (k1+k2) ;

17 r1 = u i n t 1 6 (2^ k12) ;

18 c1= r1 + x 1 s h i f t + x 2 s h i f t ;

19 r e s u l t _ a p p r o x _ s t a g e 1 = r e s u l t _ a p p r o x _ s t a g e 1 +c1 ;

20 s t a g e = s t a g e +1;

21 [r e s u l t _ a p p r o x _ s t a g e 2] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n _ o r i g i n a l (n , d ou b l e (x1) ,

do ub l e (x2)) ;

22 r e s u l t _ a p p r o x _ m e t h o d 1 = r e s u l t _ a p p r o x _ s t a g e 1 +

r e s u l t _ a p p r o x _ s t a g e 2 ;

23 end

24 e l s e

25 r e s u l t _ a p p r o x _ m e t h o d 1 =0;

26 end

Code 21: Extension of Proposed Log Multiplier

1 f u n c t i o n [r e s u l t _ a p p r o x _ m e t h o d 1] =

i t e r a t i v e _ f i r s t _ m i t c h e l l _ m o d i f i e d _ s e c o n d _ m u l t i p l i e r _ f u n c t i o n

(n , N1 , N2)

2 i f (N1~=0 && N2~=0)

3 N1bin= d e c 2 b i n (N1 , n) ;

4 N2bin= d e c 2 b i n (N2 , n) ;

5 r e s u l t _ a c t u a l = u i n t 1 6 (N1∗N2) ;

6 r e s u l t _ a p p r o x _ s t a g e 1 = u i n t 1 6 (0) ;

7 x1=N1 ;

8 x2=N2 ;

9 s t a g e =1;

10 w h i l e (s t a g e <=1)

11 [k1 , k2] = M S B 1 b i t d e t e c t i o n _ f u n c t i o n (n , x1 , x2) ;

12 x1= u i n t 1 6 (x1−2^k1) ;

13 x 1 s h i f t = b i t s h i f t (x1 , k2 , ’ u i n t 1 6 ’) ;

14 x2= u i n t 1 6 (x2−2^k2) ;

15 x 2 s h i f t = b i t s h i f t (x2 , k1 , ’ u i n t 1 6 ’) ;

16 k12= u i n t 1 6 (k1+k2) ;

17 r1 = u i n t 1 6 (2^ k12) ;

18 c1= r1 + x 1 s h i f t + x 2 s h i f t ;

19 r e s u l t _ a p p r o x _ s t a g e 1 = r e s u l t _ a p p r o x _ s t a g e 1 +c1 ;

20 s t a g e = s t a g e +1;

21 [r e s u l t _ a p p r o x _ s t a g e 2] =

m i t c h e l l _ m u l t i p l i e r _ f u n c t i o n (n , do ub l e (x1) , do ub l e (x2)

) ;

22 r e s u l t _ a p p r o x _ m e t h o d 1 = r e s u l t _ a p p r o x _ s t a g e 1 +

r e s u l t _ a p p r o x _ s t a g e 2 ;

23 end

24 e l s e

25 r e s u l t _ a p p r o x _ m e t h o d 1 =0;

26

27 end

63

Code 22: Gabor Filter Function

1 f u n c t i o n [E , im_out2 , gb] = d c g a b o r f i n a l (mf , fo , sigma ,

t h e t a ,M)

2 t h e t a = p i ∗(t h e t a / 1 8 0) ;

3 Nt =2∗(3∗ s igma) +1;

4 Nh= c e i l (3∗ s igma) ;

5 gb= z e r o s (Nt) ;

6 f o r x=−Nh : Nh

7 f o r y=−Nh : Nh

8 xr =x∗cos (t h e t a) +y∗ s i n (t h e t a) ;

9 gb (x+Nh+1 , y+Nh+1)=exp(−(x . ^2+ y . ^ 2) / (2∗ s igma ^2)) .∗

cos (2∗ p i∗ fo∗xr) ;

10 end

11 end

12 im_out2 = f i l t e r 2 (gb , mf) ;

13 E= f i l t e r 2 (ones (M,M) / (M∗M) , abs (im_out2)) ;

14 end

Code 23: Emorio Region Measurements Function

1 f u n c t i o n [numreg , r g _ d a t a 1 , S] = c u r r e n t _ m e a s u r e m e n t s (im_out1

)

2 CC = bwconncomp (im_out1) ;

3 L= l a b e l m a t r i x (CC) ;

4 S = r e g i o n p r o p s (L , ’ b a s i c ’) ;

5 numreg = l e n g t h (S) ;

6 r g _ d a t a 1 = z e r o s (numreg , 7) ;

7 f o r a = 1 : 1 : numreg

8 c e n t e r = S (a) . C e n t r o i d ;

9 BBox = S (a) . BoundingBox ;

10 l e n g t h 1 = BBox (1 , 3) ;

11 b r e a d t h 1 = BBox (1 , 4) ;

12 l 2 = BBox (1 , 1) + l e n g t h 1 ;

13 b2 = BBox (1 , 2) + b r e a d t h 1 ;

14 r g _ d a t a 1 (a , :) = [c e n t e r (1 , 2) c e n t e r (1 , 1) BBox (1 , 1) l 2

BBox (1 , 2) b2 a] ;

15 end

Code 24: Snapper Region Measurements Function

1 f u n c t i o n [numreg , r g _ d a t a 1 , S0 , S] =

s n a p p e r _ c u r r e n t _ m e a s u r e m e n t s (im_out1)

2 CC = bwconncomp (im_out1) ;

3 L= l a b e l m a t r i x (CC) ;

4 S0 = r e g i o n p r o p s (L , ’ b a s i c ’) ;

5 i d x = f i n d ([S0 . Area] >400) ;

6 L1=ismember (L , i d x) ;

7 S= r e g i o n p r o p s (L1 , ’ b a s i c ’) ;

8 numreg = l e n g t h (S) ;

9 r g _ d a t a 1 = z e r o s (numreg , 7) ;

10 f o r a = 1 : 1 : numreg

11 c e n t e r = S (a) . C e n t r o i d ;

12 BBox = S (a) . BoundingBox ;

13 l e n g t h 1 = BBox (1 , 3) ;

14 b r e a d t h 1 = BBox (1 , 4) ;

15 l 2 = BBox (1 , 1) + l e n g t h 1 ;

16 b2 = BBox (1 , 2) + b r e a d t h 1 ;

17 r g _ d a t a 1 (a , :) = [c e n t e r (1 , 2) c e n t e r (1 , 1) BBox (1 , 1) l 2

BBox (1 , 2) b2 a] ;

18 end

Code 25: Emorio Feature Extraction

1 c l e a r a l l ;

2 c l o s e a l l ;

3 c l c ;

4 warn ing o f f ;

5

6 N=100;

7 i o = 1611

8 i m _ p a s t = dou b l e (imread ([’ d a t a ’ , num2s t r (i o) , ’−L ’ ’ . bmp ’]))

/ 2 5 5 ;

9 i m _ p a s t = i m _ p a s t (1 : 2 : end , 1 : 2 : end) ;

10 i m s i z e = s i z e (i m _ p a s t) ;

11 i m _ b u f f e r 1 = z e r o s (i m s i z e (1)∗ i m s i z e (2) , 1 0) ;

12 i m _ b u f f e r 2 = z e r o s (i m s i z e (1)∗ i m s i z e (2) , 1 0) ;

13 im_background = i m p o r t d a t a (’ im_background . mat ’) ;

14 i m_s t d = i m p o r t d a t a (’ i m_s td . mat ’) ;

15 f o r i = i o +1: i o +2

16 f i l e n a m e = [’ d a t a ’ , num2s t r (i) , ’−L ’ ’ . bmp ’]

17 im= d ou b l e (imread (f i l e n a m e)) / 2 5 5 ;

18 im=im (1 : 2 : end , 1 : 2 : end) ;

19 f i g u r e (1) , s u b p l o t (2 , 1 , 1) , imshow (im) , t i t l e (’ o r i g i n a l

image f rame ’) ;

20 i m _ d i f f =im . / i m _ p a s t ;

21 a d j u s t =median (i m _ d i f f (:)) ;

22 i m _ a d j u s t e d =im . / a d j u s t ;

64

23 i m _ t h r e s = abs ((i m _ a d j u s t e d−im_background) . / im_s td) ;

24 im_out = i m _ t h r e s ∗0+1;

25 im_out (i m _ t h r e s <12) =1;

26 im_out (i m _ t h r e s <6) =1;

27 im_out (i m _ t h r e s <3) =0;

28 im_out = m e d f i l t 2 (im_out , [5 5]) ;

29 im_out = i m c l o s e (im_out , ones (1 5 , 1 5)) ;

30 im_out =imopen (im_out , ones (1 5 , 1 5)) ;

31 f i g u r e (1) , s u b p l o t (2 , 1 , 2) , imshow (im_out) , t i t l e (’ im o u t ’

) ;

32 im1=im ;

33 im_out1 = im_out ;

34 [numreg , r g _ d a t a 1 , S]= c u r r e n t _ m e a s u r e m e n t s (im_out1) ;

35 a1= z e r o s (numreg) ;

36 a2= z e r o s (numreg) ;

37 f o r a = 1 : 1 : numreg

38 a1 (a , 1) = r g _ d a t a 1 (a , 3) ;

39 a1 (a , 2) = r g _ d a t a 1 (a , 5) ;

40 a1 (a , 3) = r g _ d a t a 1 (a , 4) ;

41 i f (a1 (a , 3) > i m s i z e (2))

42 a1 (a , 3) = i m s i z e (2) ;

43 end

44 a1 (a , 4) = r g _ d a t a 1 (a , 6) ;

45 i f (a1 (a , 4) > i m s i z e (1))

46 a1 (a , 4) = i m s i z e (1) ;

47 end

48 a2 (a , 1) =a1 (a , 1) −20;

49 i f (a2 (a , 1) <0)

50 a2 (a , 1) =a1 (a , 1) ;

51 end

52 a2 (a , 2) =a1 (a , 2) −20;

53 i f (a2 (a , 2) <0)

54 a2 (a , 2) =a1 (a , 2) ;

55 end

56 a2 (a , 3) =a1 (a , 3) +20;

57 i f (a2 (a , 3) > i m s i z e (2))

58 a2 (a , 3) =a1 (a , 3) ;

59 end

60 a2 (a , 4) =a1 (a , 4) +20;

61 i f (a2 (a , 4) > i m s i z e (1))

62 a2 (a , 4) =a1 (a , 4) ;

63 end

64 of =im1 (a2 (a , 2) : a2 (a , 4) , a2 (a , 1) : a2 (a , 3)) ;

65 t f = im_out1 (a2 (a , 2) : a2 (a , 4) , a2 (a , 1) : a2 (a , 3)) ;

66 t f_sum =sum (t f , 1) ; f i g u r e (9) , p l o t (t f_sum) ;

67 H=38; h =22;

68 t f _ d i l a t e = t f ;

69 f o r k = 1 : 1 : s i z e (t f_sum , 2)

70 i f ((t f_sum (1 , k) >=h) && (t f_sum (1 , k) <=H))

71 w= t f_sum (1 , k) ;

72 t f _ d i l a t e (: , k) = i m d i l a t e (t f (: , k) , ones (H−w+1 ,1)

) ;

73 e l s e

74 t f _ d i l a t e (: , k) = t f (: , k) ;

75 end

76 end

77 f i g u r e (1 0) , imshow (t f _ d i l a t e) ; t i t l e (’ t f _ d i l a t e ’) ;

78 mf= of .∗ t f _ d i l a t e ;

79 f i g u r e (4) , s u b p l o t (3 , 1 , 1) , imshow (o f) , t i t l e (’ O r i g i n a l

F i s h ’) ;

80 s u b p l o t (3 , 1 , 2) , imshow (t f) , t i t l e (’ T h r e s h o l d F i s h ’) ;

81 s u b p l o t (3 , 1 , 3) , imshow (mf) , t i t l e (’ Modi f i ed F i s h ’) ;

82 s i g m a _ r e f =4 ;

83 f o _ r e f = 0 . 1 ;

84 l o =132;

85 b e t a =1;

86 l = round (s q r t (S (a , 1) . Area)) ;

87 sigma= s i g m a _ r e f ∗ ((l / l o) ^ b e t a)

88 fo = f o _ r e f ∗ ((l o / l) ^ b e t a) ;

89 t h e t a =0;

90 M=10;

91 [E , im_out2 , gb]= d c g a b o r f i n a l (mf , fo , sigma , t h e t a ,M) ;

92 f i g u r e (5) , s u b p l o t (2 , 2 , 1) , imshow (mf) ; t i t l e (’ m o d i f i e d

f i s h ’) ;

93 s u b p l o t (2 , 2 , 2) , imshow (im_out2 / max (max (im_out2))) ; t i t l e

(’ f i s h o u t p u t when gabor h o r i z o n t a l i s a p p l i e d ’) ;

94 s u b p l o t (2 , 2 , 3) , imshow (E . / max (max (E))) ; t i t l e (’ en e rg y of

f i s h o u t p u t when gabor h o r i z o n t a l i s a p p l i e d ’) ;

95 s u b p l o t (2 , 2 , 4) , s u r f (gb) ; t i t l e (’ gabor f i l t e r i n

h o r i z o n t a l d i r e c t i o n ’) ;

96 sigma2= s i g m a _ r e f ∗ ((l / l o) ^ b e t a) ;

97 fo2 = f o _ r e f ∗ ((l o / l) ^ b e t a) ;

98 t h e t a 2 =90;

99 M=10;

100 [E2 , im_out3 , gb2]= d c g a b o r f i n a l (mf , fo2 , sigma2 , t h e t a 2 ,M

) ;

101 f i g u r e (6) , s u b p l o t (2 , 2 , 1) , imshow (mf) ; t i t l e (’ m o d i f i e d

f i s h ’) ;

102 s u b p l o t (2 , 2 , 2) , imshow (im_out3 / max (max (im_out3))) ; t i t l e

(’ f i s h o u t p u t when gabor v e r t i c a l i s a p p l i e d ’) ;

103 s u b p l o t (2 , 2 , 3) , imshow (E2 . / max (max (E2))) ; t i t l e (’ en e rg y

of f i s h o u t p u t when gabor v e r t i c a l i s a p p l i e d ’) ;

104 s u b p l o t (2 , 2 , 4) , s u r f (gb2) ; t i t l e (’ gabor f i l t e r i n

v e r t i c a l d i r e c t i o n ’) ;

105 im_out2 = i m d i l a t e (abs (im_out2) , ones (1 1 , 1 1)) ;

106 f i n a l = ((im_out3) . / abs (im_out2) .∗ s i g n (imerode (mf , ones

(3∗ sigma ,3∗ s igma)))) ;

107 ind1 = f i n d (i s n a n (f i n a l)) ;

108 f i n a l (i nd1) =0;

109 f i n a l m e a n = f i l t e r 2 (ones (2 1 , 1) / 2 1 , f i n a l) ;% h e r e we a r e

r u n n i n g a mean f i l t e r o f s i z e e q u a l t o w h i t e s t r i p

s i z e =21

110 f i g u r e (8) , s u b p l o t (3 , 1 , 1) , imshow (mf) ; t i t l e (’ Modi f i ed

F i s h ’)

111 f i g u r e (8) , s u b p l o t (3 , 1 , 2) , imshow (f i n a l m e a n) ; t i t l e (’ mean

f i l t e r o f s i z e =21 a p p l i e d on f i n a l f i s h image ’)

112 f i n a l m a x =max (f i n a l m e a n , [] , 1) ;

113 f i n a l m a x m e d i a n = m e d f i l t 2 (f i na lmax , [1 5]) ;

114 f i n a l m a x (f ina lmaxmedian < f i n a l m a x + 0 . 2) = f i n a l m a x m e d i a n (

f ina lmaxmedian < f i n a l m a x + 0 . 2) ;

115 f i s h m a x p e a k v a l u e =(max (f i n a l m a x))

116 f i g u r e (8) , s u b p l o t (3 , 1 , 3) , p l o t (f i n a l m a x) ; t i t l e (’ p l o t o f

l e n g t h o f t h e f i s h vs maximum v a l u e o f mean ’) , x l a b e l

(’ l e n g t h o f t h e f i s h ’) , y l a b e l (’maximum i n t e n s i t y ’) ;

117 s o f = s i z e (o f) ;

118 f i g u r e (9) , imshow (o f) ;

119 ho ld on

120 f i g u r e (9) , p l o t (s o f (1) −0.5∗ s o f (1) ∗(f i n a l m a x) / 1 . 5 , ’ r ’) ;

121 [m w]=max (f i n a l m a x) ;

65

122 t = t e x t (w,−10+ s o f (1) −0.5∗ s o f (1) ∗(f i n a l m a x (w)) / 1 . 5 ,

num2s t r (f i n a l m a x (w))) ; s e t (t , ’ Co lo r ’ , [1 1 0])

123 pause ;

124 end

125 %pause ;

126 end

127 [num , t x t , raw]= x l s r e a d (’ f i s h f e a t u r e e x t r a c t i o n d a t a b a s e .

x l s x ’) ;

128 f r =num (: , 1) ;

129 non_em=num (: , 2) ;

130 em=num (: , 3) ;

131 f i g u r e (1 2) , s c a t t e r (f r , non_em , ’S ’ , ’ r e d ’) ; t i t l e (’ g raph of

f rame vs non E . Morio f i s h ’) ;

132 f i g u r e (1 3) , s c a t t e r (f r , em , ’O’ , ’ b l u e ’) ; t i t l e (’ g raph of f rame

vs E . Morio f i s h ’) ;

133 ho ld on , f i g u r e (1 4) , s c a t t e r (f r , em , ’O’ , ’ b l u e ’) ; t i t l e (’ g raph

of f rame vs E . Morio & Non E . Morio ’) ;

Code 26: Snapper Feature Extraction

1 c l e a r a l l ;

2 c l o s e a l l ;

3 c l c ;

4 warn ing o f f ;

5 N=100;

6 i o = 11600

7 % % Reading t h e f i r s t f rame

8 i m _ p a s t = dou b l e (imread ([num2s t r (i o) ’ . t i f ’])) / 2 5 5 ;

9 % Downsampling t h e f i r s t f rame

10 i m _ p a s t = i m _ p a s t (1 : 2 : end , 1 : 2 : end) ;

11 % The s i z e o f f rames , i . e . i m s i z e (1) x i m s i z e (2)

12 i m s i z e = s i z e (i m _ p a s t) ;

13 i m _ b u f f e r 1 = z e r o s (i m s i z e (1)∗ i m s i z e (2) , 1 0) ;

14 i m _ b u f f e r 2 = z e r o s (i m s i z e (1)∗ i m s i z e (2) , 1 0) ;

15 im_background = i m p o r t d a t a (’ 1600 _im_background . mat ’) ;

16 f i g u r e (2) , imshow (im_background) , t i t l e (’ background image ’) ;

17 i m_s t d = i m p o r t d a t a (’ 1600 _ im_s td . mat ’) ;

18 f i g u r e (3) , imshow (i m_s t d) , t i t l e (’ s t a n d a r d d e v i a t i o n o f t h e

image ’) ;

19 aa =44;

20 bb =44;

21 n f = abs (bb−aa) ;

22 frame_max= c e l l (2 , n f +1) ;

23 c o u n t =1;

24 f o r i i = i o +aa : i o +bb

25 f i l e n a m e =[num2s t r (i i) ’ . t i f ’]

26 im= d ou b l e (imread (f i l e n a m e)) / 2 5 5 ;

27 im=im (1 : 2 : end , 1 : 2 : end) ;

28 f i g u r e (1) , s u b p l o t (2 , 1 , 1) , imshow (im) , t i t l e (’ o r i g i n a l

image f rame ’) ;

29 i m _ d i f f =im . / i m _ p a s t ;

30 a d j u s t =median (i m _ d i f f (:)) ;

31 i m _ a d j u s t e d =im . / a d j u s t ;

32 i m _ t h r e s = abs ((i m _ a d j u s t e d−im_background) . / im_s td) ;

33 im_out = i m _ t h r e s ∗0+1;

34 im_out (i m _ t h r e s <12) =1;

35 im_out (i m _ t h r e s <6) =1;

36 im_out (i m _ t h r e s <3) =0;

37 im_out = m e d f i l t 2 (im_out , [1 1 1 1]) ;

38 f i g u r e (1) , s u b p l o t (2 , 1 , 2) , imshow (im_out) , t i t l e (’ im o u t ’

) ;

39 im1=im ;

40 im_out1 = im_out ;

41 [numreg , r g _ d a t a 1 , S0 , S]= s n a p p e r _ c u r r e n t _ m e a s u r e m e n t s (

im_out1) ;

42 a1= z e r o s (numreg) ;

43 ob jec tmax (1 , 1 : numreg) = dou b l e (z e r o s (1 , numreg)) ;

44 r o t a t i o n m a x (1 , 1 : numreg) = dou b l e (z e r o s (1 , numreg)) ;

45 f o r a = 1 : 1 : numreg

46 s p r i n t f (’ o b j e c t a=%d ’ , a)

47

48 a1 (a , 1) = r g _ d a t a 1 (a , 3) ;

49 a1 (a , 2) = r g _ d a t a 1 (a , 5) ;

50 a1 (a , 3) = r g _ d a t a 1 (a , 4) ;

51 i f (a1 (a , 3) > i m s i z e (2))

52 a1 (a , 3) = i m s i z e (2) ;

53 end

54 a1 (a , 4) = r g _ d a t a 1 (a , 6) ;

55 i f (a1 (a , 4) > i m s i z e (1))

56 a1 (a , 4) = i m s i z e (1) ;

57 end

58 deg =30;

59 s t e p i n t e r v a l =5 ;

60 s t e p =(deg+deg) / s t e p i n t e r v a l +1 ;

61 r e s u l t = c e l l (s t e p , 4) ;

62 f o r r o t a t i o n _ d e g r e e=−deg : s t e p i n t e r v a l : deg

63 of =im1 (a1 (a , 2) : a1 (a , 4) , a1 (a , 1) : a1 (a , 3)) ;

64 o f = i m r o t a t e (of , r o t a t i o n _ d e g r e e) ;

65 t f = im_out1 (a1 (a , 2) : a1 (a , 4) , a1 (a , 1) : a1 (a , 3)) ;

66 t f = i m r o t a t e (t f , r o t a t i o n _ d e g r e e) ;

67 mf= of .∗ t f ;

68 f i g u r e (4) , s u b p l o t (3 , 1 , 1) , imshow (of) , t i t l e (’

O r i g i n a l F i s h ’) ;

69 s u b p l o t (3 , 1 , 2) , imshow (t f) , t i t l e (’ T h r e s h o l d

F i s h ’) ;

70 s u b p l o t (3 , 1 , 3) , imshow (mf) , t i t l e (’ Modi f i ed F i s h

’) ;

71 s i g m a _ r e f =2 ;

72 f o _ r e f = 0 . 1 ;

73 l o =58;

74 b e t a =1;

75 l = round (s q r t (S (a , 1) . Area)) ;

76 sigma= s i g m a _ r e f ∗ ((l / l o) ^ b e t a) ;

77 fo = f o _ r e f ∗ ((l o / l) ^ b e t a) ;

78 t h e t a =0;

79 M=10;

80 [E , im_out2 , gb]= d c g a b o r f i n a l (mf , fo , sigma , t h e t a ,

M) ;

81 f i g u r e (5) , s u b p l o t (2 , 2 , 1) , imshow (mf) ; t i t l e (’

m o d i f i e d f i s h ’) ;

82 s u b p l o t (2 , 2 , 2) , imshow (im_out2 / max (max (im_out2)

)) ; t i t l e (’ f i s h o u t p u t when gabor h o r i z o n t a l i s

66

a p p l i e d ’) ;

83 s u b p l o t (2 , 2 , 3) , imshow (E . / max (max (E))) ; t i t l e (’

e ne rg y of f i s h o u t p u t when gabor h o r i z o n t a l a p p l i e d ’)

;

84 s u b p l o t (2 , 2 , 4) , s u r f (gb) ; t i t l e (’ gabor i n

h o r i z o n t a l d i r e c t i o n ’) ;

85 sigma2= s i g m a _ r e f ∗ ((l / l o) ^ b e t a) ;

86 fo2 = f o _ r e f ∗ ((l o / l) ^ b e t a) ;

87 t h e t a 2 =90;

88 M=10;

89 [E2 , im_out3 , gb2]= d c g a b o r f i n a l (mf , fo2 , sigma2 ,

t h e t a 2 ,M) ;

90 f i g u r e (6) , s u b p l o t (2 , 2 , 1) , imshow (mf) ; t i t l e (’

m o d i f i e d f i s h ’) ;

91 s u b p l o t (2 , 2 , 2) , imshow (im_out3 / max (max (im_out3)

)) ; t i t l e (’ f i s h o u t p u t when gabor v e r t i c a l i s a p p l i e d ’

) ;

92 s u b p l o t (2 , 2 , 3) , imshow (E2 . / max (max (E2))) ; t i t l e

(’ e ne rg y of f i s h o u t p u t when gabor v e r t i c a l a p p l i e d ’)

;

93 s u b p l o t (2 , 2 , 4) , s u r f (gb2) ; t i t l e (’ gabor i n

v e r t i c a l d i r e c t i o n ’) ;

94 f i n a l = ((im_out2) . / abs (im_out3) .∗ s i g n (imerode (

mf , ones (4 . 8∗ sigma , 4 . 5∗ s igma)))) ;

95 ind1 = f i n d (i s n a n (f i n a l)) ;

96 f i n a l (i nd1) =0;

97 f i g u r e (7) , s u b p l o t (3 , 1 , 1) , imshow (f i n a l) ; t i t l e (’

f i n a l f i s h image wi th h o r i z o n t a l l i n e d e t e c t e d i n

b l a c k ’) ;

98 f i n a l _ i m s i z e = s i z e (f i n a l) ; % f i n a l _ i m s i z e g i v e s

t h e s i z e o f f i n a l where f i n a l i s t h e f i s h image wi th

l i n e d e t e c t e d i n b l a c k

99 f i n a l _ m o d =max (max (f i n a l))−f i n a l ;

100 f i g u r e (7) , s u b p l o t (3 , 1 , 2) , imshow (f i n a l _ m o d) ;

t i t l e (’ f i n a l f i s h image wi th h o r i z o n t a l l i n e d e t e c t e d

i n w h i t e ’) ;

101 mm=mean (f i n a l _ m o d (f ina l_mod <max (max (f i n a l _ m o d)

))) ;

102 f i n a l _ m o d (f i n a l _ m o d ==max (max (f i n a l _ m o d))) =0 ;

103 f i n a l _ m o d = f ina l_mod−mm;

104 f i n a l _ m o d (f ina l_mod <0) =0;

105 f i g u r e (7) , s u b p l o t (3 , 1 , 3) , imshow (f i n a l _ m o d) ;

t i t l e (’ f i n a l f i s h image wi th h o r i z o n t a l l i n e d e t e c t e d

i n w h i t e and o u t s i d e f i s h a r e a k e e p i n g i t b l a c k i . e

n o t c h a n g i n g a n y t h i n g o u t s i d e f i s h a r e a ’) ;

106 r e s u l t { (r o t a t i o n _ d e g r e e / s t e p i n t e r v a l) +(deg /

s t e p i n t e r v a l) +1 ,1}= r o t a t i o n _ d e g r e e ;

107 r e s u l t { (r o t a t i o n _ d e g r e e / s t e p i n t e r v a l) +(deg /

s t e p i n t e r v a l) +1 ,2}= f i n a l _ m o d ;

108 r e s u l t { (r o t a t i o n _ d e g r e e / s t e p i n t e r v a l) +(deg /

s t e p i n t e r v a l) +1 ,3}= f i l t e r 2 (ones (1 , l) / (l) , r e s u l t { (

r o t a t i o n _ d e g r e e / s t e p i n t e r v a l) +(deg / s t e p i n t e r v a l)

+1 ,2}) ;

109 r e s u l t { (r o t a t i o n _ d e g r e e / s t e p i n t e r v a l) +(deg /

s t e p i n t e r v a l) +1 ,4}=max (r e s u l t { (r o t a t i o n _ d e g r e e /

s t e p i n t e r v a l) +(deg / s t e p i n t e r v a l) + 1 , 3 } , [] , 2) ;

110 pause ;

111 end

112 [maxvalue r o t a t i o n]=max (c c _ r e s u l t) ;

113 r o t a t i o n 1 = (r o t a t i o n −1)∗ s t e p i n t e r v a l ;

114 ob jec tmax (1 , a) =maxvalue

115 r o t a t i o n m a x (1 , a) = r o t a t i o n 1

116 pause ;

117 end

118 frame_max {1 , c o u n t }= ob jec tmax ;

119 frame_max {2 , c o u n t }= r o t a t i o n m a x ;

120 i f c o u n t ==1

121 h i s t v a r i a b l e =frame_max {1 , c o u n t } ;

122 end

123 h i s t v a r i a b l e =[h i s t v a r i a b l e frame_max {1 , c o u n t }] ;

124 c o u n t = c o u n t +1 ;

125 end

126

127 f i g u r e (1 0) , h i s t (h i s t v a r i a b l e , n f ∗10) ;

128 [num , t x t , raw]= x l s r e a d (’ f i s h f e a t u r e e x t r a c t i o n d a t a b a s e .

x l s x ’) ;

129 f r =num (: , 1) ;

130 non_em=num (: , 2) ;

131 em=num (: , 3) ;

132 f i g u r e (1 2) , s c a t t e r (f r , non_em , ’S ’ , ’ r e d ’) ; t i t l e (’ g raph of

f rame vs non emor ia f i s h ’) ;

133 f i g u r e (1 3) , s c a t t e r (f r , em , ’O’ , ’ b l u e ’) ; t i t l e (’ g raph of f rame

vs emor ia f i s h ’) ;

134 ho ld on , f i g u r e (1 4) , s c a t t e r (f r , em , ’O’ , ’ b l u e ’) ; t i t l e (’ g raph

of f rame vs emor ia f i s h ’) ;

67

Vita

Arjun Kumar Joginipelly was born in 1985, India.

He received his Bachelor of Engineering in Elec-

tronics and Communications from Jawaharlal Nehru

Technology University, A.P, India in May, 2007. He

received his Masters in Electrical Engineering from

University of New Orleans (UNO) in Dec, 2010.

He then continued on with his PhD in Electrical En-

gineering, graduating in Aug, 2014. While at UNO,

he worked as graduate research assistant under Dr.

Dimitrios Charalampidis. His areas of interest include Image processing using FPGAs, Separa-

ble and Bilateral filters, Feature Extraction and Classification, and Logarithmic Multipliers. He

spends his free time by playing racquetball, volleyball and video games.

68

	Efficient FPGA Architectures for Separable Filters and Logarithmic Multipliers and Automation of Fish Feature Extraction Using Gabor Filters
	Recommended Citation

	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation
	Dissertation Outline
	Dissertation Contributions

	Efficient FPGA Implementation of Separable Convolution Architectures
	Abstract
	Introduction
	Review of Separable Convolution Methods
	FB Scheme for Separable Convolution
	PB Scheme for Separable Convolution

	Proposed Separable Convolution Scheme and Implementation
	Shift Register Modules
	Multiplexer and Demultiplexer Modules
	Multipliers and Adder
	Central Selection Controller

	Performance Analysis
	Conclusions

	An Efficient Method of Error Reduction in Logarithmic Multiplication for Filtering Applications
	Abstract
	Introduction
	Review of Logarithmic Multipliers
	Mitchell Logarithmic Multiplier
	Derivation of IM log multiplier

	Proposed logarithmic multiplier
	Results and Discussion
	Extension of Proposed Logarithmic Multiplier
	Conclusions

	Species-Specific Fish Feature Extraction Using Gabor Filters
	Abstract
	Background
	Gabor Filters Used For Fish Feature Extraction
	Epinephelus morio Feature Extraction Using Gabor Filters
	Ocyurus chrysurus Feature Extraction Using Gabor Filters

	Results and Discussion
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	VHDL Source Codes
	Matlab Source codes

	Vita

