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ABSTRACT 

Malware or malicious code is design to gather sensitive information without knowledge or 

permission of the users or damage files in the computer system. As the use of computer systems 

and Internet is increasing, the threat of malware is also growing. Moreover, the increase in data 

is raising difficulties to identify if the executables are malicious or benign. Hence, we have 

devised a method that collects features from portable executable file format using static malware 

analysis technique. We have also optimized the important or useful features by either 

normalizing or giving weightage to the feature. Furthermore, we have compared accuracy of 

various unsupervised learning algorithms for clustering huge dataset of samples. So once the 

clusters are created we can use antivirus (AV) to identify one or two file and if they are detected 

by AV then all the files in cluster are malicious even if the files contain novel or unknown 

malware; otherwise all are benign. 

	
 
Keywords: 

Static malware analysis, Portable Executable, unsupervised learning algorithm, malicious or 

benign samples, feature selection, clustering, software characterization
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CHAPTER 1: PROJECT OVERVIEW 

1.1 Introduction 

As the use of computer systems and Internet is increasing, the need for network security is also 

growing. The lack of sophisticated protection on network has attracted skilled and motivated 

cyber criminals to introduce wide range of security attacks. This security attacks are the 

‘malicious’ codes or software that are designed for performing illegal or unethical task, which 

are commonly known as malware. 

 

Malware or malicious codes are designed to gather sensitive information without knowledge or 

permission of the users, gain unauthorized access to the system resources, or damage files in the 

computer system. Malware does not damage the computer system or any network equipment 

physically but it can harm the data or available resources by using all the available RAM, CPU 

usage, network bandwidth or storage spaces. Malware should not be confused with the defective 

software that is intended for legitimate work but has some errors. A majority of malware attacks 

computer system or network through the Internet. 

 

Earlier the anti-malware vendors and researchers used to detect malware on its signature but the 

enormous increase in the malware has made their detection very difficult. Thus, it has now 

become important to develop new technique(s) using malware analysis. 

 

1.2 Statement of problem 

Identifying malware from executables has become a huge problem. As the data are increasing, 

number of executables is also growing at a high pace. Thus, by clustering the executables and 
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then by just analyzing one executable, will help in generalizing if the executables in cluster are 

benign or malicious. This method will increase the detection rate of malware. 

 

1.3  Project Objective 

The enormous increase in the malware has made it difficult for the researcher and anti-malware 

vendors to detect the malicious executables. Moreover, there is an increase in the data and it is 

difficult to distinguish between malicious and benign executables without running them. Our 

objective was to understand the PE file format and extract the important and useful features that 

will help in clustering them in benign and malicious groups. 

 

The goal of our research was to explore a number of standard data mining techniques or 

algorithms in order to cluster the executables using static anomaly detection with highest 

accuracy. 

 

1.4  Project Scope 

The proposed method will help to identify the malicious executables from the collected 

executables with highest accuracy. When there are large numbers of executables and identifying 

malware is complex, then proposed method can be used to create clusters of benign and 

malicious executables.  

 

Analyzing the executables without running them saves lot of time and work. The static analysis 

approach is less dirty and painful compared to dynamic analysis. The data mining techniques 
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makes the method more effective, efficient and quick. Various clustering algorithms are 

compared and one with the highest accuracy is used. 

 

1.5  Limitation 

This research aimed to enhance the malware detection by using data mining classification 

techniques. The proposed method has following limitations: 

The method is limited to the analysis of executables that can run on the various version of 

Microsoft Windows Operating System; Win-32 and Win-64 bit Portable Executable (PE) 

files. All datasets (benign and malware) used were in Win-32 or Win-64 PE format. 

The research was limited to static malware detection technique. 

The research was based on unsupervised learning algorithm to identify malware. 

 

1.6 Thesis Structure 

The thesis is organized as mentioned below. 

Background:   

In chapter 2, a broad background is given regarding the project. It introduces malware and its 

types in brief and followed by that is Malware analysis and its techniques. This explains the 

types of malware that we were using in our dataset and an important technique of our thesis 

project called the static malware analysis techniques. In section 2.4 the Portable Executable file 

format is introduced from which we will be collecting the features, which will be important for 

clustering. 
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Related Work:  

In chapter 3, we have presented the related work for our thesis project. This section helps in 

understanding what and how much is done related to techniques involved in this project. In 

section 3.1, we have discussed few papers on malware detection and in section 3.2 we are 

discussing work done using data mining techniques. Lastly in section 3.3 we discuss our project 

and the work, which is already done in this field. We then summarized how our work is different 

from other work and how it will be useful. 

 

Proposed Methodology:  

Chapter 4 proposes the method of our thesis work. It then explains each step of our method like 

data collection, data preprocessing, feature extraction, and feature selection. At last in section 

4.5, all the clustering algorithm such as Hierarchical, K-mean and Self Organizing Map (SOM), 

which we implemented in our research work is explained. 

 

Experiment and outcome of project:  

Experimental tools and environment and the experiment results with regards to unsupervised 

leaning algorithm are discussed in chapter 5. All 9 important experiments, their results and 

detailed analysis are covered in this chapter. Then in section 5.3, discussion on the experiment 

and results is done. 

 

 



	 	5

Conclusion and Future study:   

Chapter 6 gives the conclusion on thesis project. Furthermore, the future studies are also 

discussed in this chapter. At last, thesis study is summarized in section 6.3 of the chapter. 
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CHAPTER 2: BACKGROUND 
 
2.1 Malware and its types 

Malware are the malicious codes that are written to perform unethical tasks for example 

accessing system without authorization from administrator, collecting sensitive information, 

damaging data or system resources. Malware can be categorized into, among others, Virus, 

Worm, Spyware, Trojan, Backdoor, Rootkit. The most common types of malware are Virus, 

Worm and Trojan. 

 

Types of malware [1]: 

Virus:  

It is a form of malware that copy itself and spread to other computers. It spread to other 

computer by attaching themselves to the various programs or executing code when user executes 

the infected program. Virus replicates itself and leaves its infections as it travels from one system 

to another. Generally, virus is not released unless user executes the infected program but once it 

is released it starts replicating itself. 

 

Worm: 

Worms are standalone programs that exploit operating system vulnerabilities to spread over 

computer networks. Worms do not travel by linking itself to an existing program like Virus does. 

Worms can also contain payloads, a piece of code designed to perform illegal or unethical task 

that damage host computer or network. 
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Spyware: 

Spyware, as the name suggest is the malware type that spies on the user activity. The spying 

includes gathering information, among others like the websites visited, browser history, system 

or account information, financial data, and banking details. These gathered information is then 

transmitted to malware owners. Spyware does not infect host system but once it enters the 

system; it installs itself and collects information in background so that it remains undetected. 

 

Trojan: 

A Trojan horse or commonly known as Trojan is a type of malware, which is non-self 

replicating. It misrepresent itself as a normal executable and trick user to download and install 

the malware. A Trojan can give remote access of infected system to hackers or attackers, which 

allow them to steal data, install more malware or modify files. 

 

Backdoor: 

Backdoor malware allows the unauthorized access of the computer to the hackers while 

remaining undetected. The threat of this kind of malware was initiated when multi-user and 

network operating system were started using widely. Backdoors can be created by rewriting 

compiler and not changing the code before or after the compilation. The complier can be written 

in such a way that a piece of code, compiles the code normally but also triggers backdoor. 

 

Rootkit: 

Rootkit malware type is same as Trojan or backdoor in a way that it tries to gain access of the 

computer system without permission or knowledge of the user and tries to remain undetected. 
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The rootkit is different from Trojan as it is installed by the hacker after gaining the access or 

automatically. Unlike other malware rootkit gains full access of the system, it can modify or 

install any software. It is a standalone program that tries to hide processes, registry data, network 

connections or files. It is nearly impossible or difficult to detect and remove a rootkit malware 

from the infected computer. 

 

2.2 Introduction to Malware Analysis 

The intention of creating malicious codes has been changing from more widespread to more 

sophisticated by targeting sensitive information such as passwords, credit card information and 

bank details that has made malware analysis very crucial. 

 

Since the malware causes significant loss of critical data and sometimes damage the network, the 

malware detection has become one of the most critical issues in the field of computer security. 

Thus, in order to detect malware efficiently, malware analysis plays an important role. 

 

 
2.3 Malware Analysis Techniques 

Malware analysis can be broadly classified into static and dynamic technique [2]. 

 
Dynamic Malware Analysis Technique: 

Dynamic malware analysis technique is also commonly known as behavioral analysis as it 

examines the behavior of malware by executing the binary code in the controlled environment. 

Behavioral analysis is quicker but tricky way of malware analysis as while doing analysis if 
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malware is not provided the suitable environment then there are more chances that analyst will 

miss the characteristics of malware. 

 
Behavior or dynamic analysis can be further divided into two categories as basic and advanced.  

Basic malware analysis provides suitable environment to malware, monitor their execution and 

gather all the information related to their runtime behavior. These information can be related to 

API or system calls, files added, removed and/or modified, new services installed, changes in 

processes or registry files or any modifications in system settings. 

 

Advanced behavior analysis requires knowledge of windows internals and specific 

programming. Analysts can load binary code into debugger tools such as ollydbg or windbg and 

run malware code line by line and monitor its activity. 

 

Static Malware Analysis Technique: 

Static malware analysis technique is performed by analyzing code statically without running the 

sample using tools such as PE Viewer, CFF explorer and more. Thus it is also known as code 

analysis. This technique is safer than dynamic malware analysis technique as malware are not 

executed. If malware is packed then analysis cannot be performed on it without unpacking the 

malware.  

 

Code analysis technique can also be further classified into basic and advanced categories. Basic 

code analysis technique is not very efficient but it is easy and very quick. The goal of static 

analysis is to classify the sample into malicious and benign executables without understanding 

the capabilities of samples. It does not require checking the actual instructions of sample. Basic 
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code analysis includes identifying if antivirus detects any sample, sample is packed or unpacked, 

its version information, any suspicious imports by executables or if any PE field format is 

malformed.   

 

Advanced code analysis, like advanced behavioral analysis, requires knowledge of windows 

internals, Assemble language and compiler code. In this type of analysis analysts are required to 

load the binary code into disassembler such as IDAPro to perform reverse engineering and 

completely analyze the executables. After performing reverse engineering analysts will 

understand how the code works or how malware infects the system, which in turn will help to 

reduce infection or help to create better security and defense softwares. This is the most effective 

technique. 

 

2.4 Introduction to Portable Executable Format 

The PE file format is derived from the earlier common object file format (COFF) found on 

VAX/VMS. The primary goal behind designing PE file format was to standardize the executable 

format of all the versions for windows operating system on all supported processors. The 

secondary goal was to provide the smart and easy way for the windows operating system to run 

program and also store essential information which is required to execute a piece of code [3]. 

 

The PE format was initially designed to support Win32-based systems or 32-bit operating system 

of Microsoft. Later, few modifications were done in PE format to support Win64-based systems 

or 64-bit operating system of Microsoft, also known as PE32+. The PE format can be used on 

versions of operating systems such as Windows NT, Windows 95, Windows XP, and Windows 
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7, 32-bit or 64-bit. Executable files (.exe), Dynamic Link Library (DLL) (.dll), Object code (.obj) 

are kind of PE file formats. The difference between .exe and .dll files is only of a single bit, 

which indicates if the file should be treated as an exe or as a dll. 

 

PE File Structure: 

PE file consists of number of headers and sections, organized as a linear stream of data as shown 

in Figure 2.1 and for better understanding of each field in headers we have created Table2.1. PE 

file begins with an MS-DOS header, a real mode program stub, and a PE file signature. 

Immediately following are all headers and sections [4]. 

 
Figure 2.1 PE File Format [4] 
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(Table 2.1 Cont.) 

Size Field Description 
IMAGE_DOS_HEAD 

uint16_t  e_magic Magic number 
uint16_t  e_cblp Bytes on last page of file 
uint16_t  e_cp Pages in file 
uint16_t  e_crlc Relocations 
uint16_t  e_cparhdr Size of header in paragraphs 
uint16_t  e_minalloc Minimum extra paragraphs 

needed 
uint16_t  e_maxalloc Maximum extra paragraphs 

needed 
uint16_t  e_ss Initial (relative) SS value 
uint16_t e_sp Initial SP value 
uint16_t e_csum Checksum 
uint16_t e_ip Initial IP value 
uint16_t e_cs Initial (relative) CS value 
uint16_t e_lfarlc File address of relocation table 
uint16_t e_ovno Overlay number 
uint16_t e_res1[4] Reserved words 
uint16_t e_oemid OEM identifier (for e_oeminfo) 
uint16_t e_oeminfo OEM information; e_oemid 

specific 
uint16_t e_res2[10] Reserved words 
uint32_t  e_lfanew  Address of image file header 
      

IMAGE_FILE_HEAD  
uint16_t Machine machine version 
uint16_t NumberOfSections No. of Sections 
uint32_t  TimeDateStamp Date time stamp 
uint32_t  PointerToSymbolTable Pointer to symbol table 
uint32_t  NumberOfSymbols No. of Symbols 
uint16_t SizeOfOptionalHeader Size of Optional header 
uint16_t Characteristics characteristics 
      

IMAGE_DATA_DIRECT 
uint32_t VirtualAddress Virtual address of data directory 
uint32_t Size Size of data directory 
      

IMAGE_OPTIONAL_HEAD 
uint16_t Magic   
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unsigned char MajorLinkerVersion Version of Major Linker 
unsigned char MinorLinkerVersion Version of Minor Linker 
uint32_t SizeOfCode Size of Code 
uint32_t SizeOfInitializedData Size of Initialized Data 
uint32_t SizeOfUninitializedData Size of Uninitialized Data 
uint32_t AddressOfEntryPoint Address of Entry Point 
uint32_t BaseOfCode Base of Code 
uint32_t BaseOfData Base of Data 
uint64_t    ImageBase Image Base 
uint32_t SectionAlignment Section Alignment 
uint32_t FileAlignment File Alignment 
uint16_t MajorOperatingSystemVersion Major Operating System Version 
uint16_t MinorOperatingSystemVersion Minor Operating System Version 
uint16_t MajorImageVersion Major Image Version 
uint16_t MinorImageVersion Minor Image Version 
uint16_t MajorSubsystemVersion Major Subsystem Version 
uint16_t MinorSubsystemVersion Minor Subsystem Version 
uint32_t Reserved1 Reserved1 
uint32_t SizeOfImage Size of Image 
uint32_t SizeOfHeaders Size of Headers 
uint32_t CheckSum Check Sum 
uint16_t Subsystem Subsystem 
uint16_t DllCharacteristics Dll Characteristics 
uint64_t SizeOfStackReserve Size of Stack Reserve 
uint64_t SizeOfStackCommit Size of Stack Commit 
uint64_t SizeOfHeapReserve Size of Heap Reserve 
uint64_t SizeOfHeapCommit Size of Heap Commit 
uint32_t LoaderFlags Loader Flags 
uint32_t NumberOfRvaAndSizes Number of Rva and Sizes 
IMAGE_DATA_DIRECT DataDirectory[16] Array of Data Directory 
      

IMAGE_NT_HEAD 
uint64_t Signature Signature 
IMAGE_FILE_HEAD FileHeader File Header 
IMAGE_OPTIONAL_HEAD OptionalHeader Optional Header 
      

IMAGE_SECTION_HEAD 
unsigned char   ; Name[8]  Array for name of section 
uint32_t PhysicalAddress Physical Address 
uint32_t VirtualSize Virtual Size 
uint32_t VirtualAddress Virtual Address 
uint32_t SizeOfRawData Size of Raw Data 
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uint32_t PointerToRawData Pointer to Raw Data 
uint32_t PointerToRelocations Pointer to Relocations 
uint32_t PointerToLinenumbers Pointer to Line numbers 
uint16_t NumberOfRelocations Number of Relocations 
uint16_t NumberOfLinenumbers Number of Line numbers 
uint32_t Characteristics Characteristics 
      

Table 2.1 PE Header Fields [5] 

All sections can be easily understood by looking at Table 2.2. In general PE file will have at least 

two sections, one for code and the other for data. 

 

Section 
Name 

Section Description 

.text Code Section 
Contains the executable code 

CODE Code Section of file linked by Borland Delphi or Borland Pascal 
Contains the executable code 

.data Data Section 
Stores global data accessed throughout the program 

DATA Data Section of file linked by Borland Delphi or Borland Pascal 
Stores global data accessed throughout the program 

.rdata Section for Constant Data 
Holds read-only data that is globally accessible within the program 

.idata Import Table 
Sometimes present and stores the import function information; if this section 
is not present, the import function information is stored in the .rdata section 

.edata Export Table 
Sometimes present and stores the export function information; if this section 
is not present, the export function information is stored in the .rdata section 

.pdata Exception section 
Present only in 64-bit executable and stores exception-handling information  

.tls TLS Table 
Contains information of thread local variables 

.reloc Relocation Information 
Contains information for relocation of library files 

.rsrc Resource Information 
Stores resources needed by the executable 

Table 2.2 PE Section [6] 
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CHAPTER 3: RELATED WORK 

Significant amount of research has been done in past to detect malware using windows PE file 

format. Moreover, many anti-malware vendors have adopted different methods to identify the 

malicious executables. Researcher and malware analysts have applied different approaches in 

determining the process to detect malware by using static and/or dynamic malware analysis 

technique. Additionally various data mining technique have also been used. The following 

sections discuss the related work. 

 

3.1 Malware Detection 

Much of the research done in malware detection falls into realm of static and/or dynamic 

malware analysis. Liao [7] has developed a method that extract features from the PE headers and 

finds top 5 distinguishing features of malware to identify them. He has also developed an Icon 

extractor to extract icons from PE file and find top 3 icons and eight misleading icons from 

malware. The dataset consist of 5598 malware and 1237 benign samples. Treadwell [8] 

presented an obfuscated malware detection technique that scans for suspicious patterns in PE 

format on packed malware by comparing to signature available by antivirus products. Moreover, 

Christodorescu [9] scans for malicious pattern in the code.  

 

Comar [10] has developed a novel framework, which detects known and novel malware with 

high precision. Features were collected from the layer 3 and layer 4 network flow characteristics. 

The framework then transforms the features using tree, decreasing the imperfections in the data 

that results in useful features. Alzab [11] has developed an automated system to extract features 
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from API call and have used n-gram to detect benign or malicious executable. The dataset used 

for the experiment contains 242 malware and 72 benign files. 

 

3.2 Data Mining 

Iwamoto [12] has proposed a method of classifying samples into malware and benign by using 

API call sequences. Aljamea [13] has proposed a static analysis approach using text based search 

techniques, control flow graph, hashing, and decision tree algorithm to cluster samples. 

Similarly, Mutant X-S [14] groups the malware according to similarity in their code instruction 

whereas, OPEM [15] uses features such as counting the existence of operational codes extracted 

using static analysis technique and the execution information using dynamic technique.   

 

In 2008, McBoost [16] framework was proposed that is primarily a malware collection tool and 

its utility as an online real-time malware detection tool is limited due to high processing 

overheads and relatively low detection rates [17]. However, the scope of their work is limited to 

the detection of packed executables only. In 2009, Shafiq [17] PE-Miner, a framework, which 

collects structural features, performs feature reduction and does clustering using data mining was 

proposed. PE-Miner extracts around 189 features, which were then reduced by RFR, PCA or 

HWT. Dataset used by PE-Miner have 1447 benign, 10,339 malware from VX heaven and 5,526 

malware from Malfease. 

 

3.3 Discussion and Summary 

Several methods have been proposed by extracting different features from the PE file format 

such as DLL’s, API function calls, frequency of instruction code, API call sequences, text based 
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search technique, and hashing. Some methods collect wide range of feature and uses feature 

reduction technique to reduce the dimensionality of the features. Moreover, many supervised and 

unsupervised data mining techniques such as decision tree, IBk, J48, NB, SMO, RIPPER, 

hierarchical, K-mean and many more has been used to cluster or classify the samples.  

 

We have proposed a method, which extracts fewer features from the PE header and compares 

various data mining methods to increase the accuracy of the clusters, which in turn improves the 

accuracy of detecting benign or malicious executables. The features that we used were file size, 

number of sections, number of unknown sections, number of dll called, Size of Code, Size of 

initialized data, size of uninitialized data, Size of Image, Check sum, DLL Characteristics, Size 

of Stack Reserve, Size of Stack Commit and no. of directories. We have compared three 

unsupervised data mining techniques hierarchical, K-mean and SOM [18]. 
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CHAPTER 4: PROPOSED METHODOLOGY 

4.1 Proposed Approach 

Malware has become serious problem, since the use of computers and high-speed network is 

increasing in our day-to-day life. Thus there is an urgent need for effective methods to categorize 

the malware automatically. Malware categorization is an important problem in malware analysis 

and recently many clustering techniques have been created. However, such techniques have 

limited effectiveness and few were used commercially. 

 

The main objective of this research is to develop a method that improves the efficiency of 

distinguishing benign and malicious executables by using data mining, feature reduction and 

classification algorithms based on static malware analysis. The method can be understood easily 

from the Figure 4.1. 

 
Figure 4. 1 Proposed Methodology 

 

The method can be divided into specific objectives such as: 
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Collecting datasets of benign and malicious executables to perform experiments 

Writing code to parse PE format and extract important and useful features 

Selecting the most related features and removing or eliminating the outliers 

Finding appropriate data mining classification techniques such as Hierarchical clustering, 

K-mean algorithm, and SOM neural network to create benign and malicious sample 

clusters 

Optimizing the approach by comparing various data mining techniques and increasing 

efficiency of cluster 

 

We have written code, which reads the entire directory passed and checks if the executables is a 

PE file. Once it confirms, it will start extracting useful features and write them to an excel file. 

Later an algorithm is implemented which selects the most related features and deletes the outliers 

from the excel file. Then clustering techniques were used to cluster the samples effectively and 

efficiently. Results of the clustering techniques were compared and optimized. 

 

4.2 Introduction to Data Mining 

Data Mining is a computational process of describing or finding similarity or patterns in the large 

amount of data. It helps in the analysis of data by discovering new trends or correlation in data 

already present in database in novel ways that it becomes useful to the data analysis. Data mining 

is considered to be an application of machine learning which uses both pattern recognition 

technologies as well as statistical and mathematical techniques. 
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Data mining is also an integral part of knowledge discovery in database (KDDs). The steps 

involved in KDD process are mentioned below [19]. 

 Selection – Reducing dataset by maintaining the integrity of original dataset 

 Pre-processing – To remove noise or irrelevant data 

 Transformation – Transform data into required formats 

 Data Mining – To obtain or discover useful patterns in data 

 Interpretation/ Evaluation – To identify useful patterns by applying validation and 

evaluating the results 

 

Below mentioned are primary six tasks involved in data mining process [19]. 

 Clustering – Identify similarity in data and form groups or clusters 

 Classification – Categories new data in predefined classes by discovering predictive 

learning function. 

 Regression – Discovering predictive learning function, which models data with the least 

error. 

 Summarization – Finding a compact representation for a set or subset of data 

 Anomaly detection – Identify the most significant changes or errors in data set 

 Dependency Modeling – Finding relationship between features or their values in a dataset 
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Data mining process uses machine learning algorithms depending on whether the class labels are 

provided for learning, these algorithms can be divided into two categories supervised learning or 

unsupervised learning. 

 

Supervised Learning uses labeled training data, which consists of both input and desired output 

values. Supervised learning algorithm is trained using the training dataset and new data or test 

data is categorized accordingly. Supervised learning algorithms include but are not limited to 

decision tree, support vector machines (SVM), naïve bayes, random forest, regression models, 

and nearest neighbor [20]. 

 

Unsupervised Learning algorithm tries to find hidden structure by using unlabeled data. The 

model generating the output much either is stochastic to avoid producing same output each time. 

Unsupervised algorithms include but are not limited to hierarchical, K-mean, SOM, DBSCAN 

and OPTICS [21]. 

 

4.3 Data Collection 

We have created three datasets of malware and benign binaries to obtain optimized results. Our 

malware datasets were collected from [22] and our benign files were gathered from various 

versions of Microsoft windows operating system files and various windows application of 32 bit 

and 64 bit. Our first dataset contains 22,172 binaries, second contains 14,467 binaries and third 

comprises of 11,960 binaries. The binaries contain both dlls and executables. The overview of 

dataset is mentioned in below Table 4.1. 
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(Table 4.1 Cont.) 

Dataset Benign Malware 

1 Windows 7 Ent SP0 dll 1958 Backdoor 5046
Windows 7 Ent SP0 exe 442 Worm 5713
Windows 7 Ent SP1 dll 1941 Flooder 190
Windows 7 Ent SP1 exe 444     
Windows 8 Ent SP0 dll 2593     
Windows 8 Ent SP0 exe 483     
Windows 8 Ent SP1 dll 2858     
Windows 8 Ent SP1 exe 504     
        
Total No. of Files 11223   10949
  22172 
Maximum File Size 67967488   9507381
Minimum File size 718   1476

  
2 Windows Vista Ent SP0 dll 1566 Trojan 7242

Windows Vista Ent SP0 exe 387 Packed 366
Windows Vista Ent SP1 dll 1579 Flooder 381
Windows Vista Ent SP1 exe 392     
Windows Vista Ent SP2 dll 1594     
Windows Vista Ent SP2 exe 394     
Applications 34     
System and others 532     
        
Total 6478   7989
  14467 
Maximum File Size 30595068   34748928
Minimum File size 718   2097

  
3 Windows XP SP1 dll 1110 Constructor 616

Windows XP SP1 exe 305 Exploit 649
Windows XP SP2 dll 1128 Hacktool 705
Windows XP SP2 exe 311 Rootkit 3180
Windows XP SP3 dll 1242 Hoax 1125
Windows XP SP3 exe 323     
Windows Server 2000 dll 959     
Windows Server 2000 exe 307     
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Total 5685   6275
  11960 
Maximum File Size 11286096   7089664
Minimum File size 817   672

Table 4.1 Data Collection 

4.4 Data Pre-processing 

The goal of our research was to gather useful features and explore various data mining 

techniques, which helps to create clusters with high accuracy. Our focus is to extract useful 

features from PE headers that distinguish between benign and malicious files. 

 

Some binaries collected were not in PE, win 32 bit or win 64 bit format, so we have written code 

in such a way that it checks if the given binary is in the required format or not before trying to 

extract features.  

 

Some of the malware collected were packed as hacker tries to hide the content of malware by 

packing it. Similarly, some of the benign files were packed so that the application can be 

protected from cracking. In order to extract useful features by disassembling, the packed or 

compressed binaries were unpacked. Then each binary is disassembled and all the features from 

the PE headers were extracted. 
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Figure 4.2 PE Headers Extraction 

Figure 4.2 shows the output in command prompt window while running the code for feature 

extraction. Only the unknown section names are printed on the output window. 

 

4.4.1 Feature Extraction 

This section explains and describes the features extracted from PE files. We have written code to 

disassemble the PE file. We have collected 53 features from all the dataset of benign and 

malicious files. All 53 features are mentioned and described in Table 4.2. 

(Table 4.2 Cont.) 

SR 
No. 

Feature Name Header Description 

1 FSize   File Size 
2 DBpp DOS Bytes on last page of file 
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3 DPf DOS Pages in file 
4 DR DOS Relocations 
5 DShp DOS Size of header in paragraphs 
6 Dmaxp DOS Minimum extra paragraphs 

needed 
7 Dminp DOS Maximum extra paragraphs 

needed 
8 Diss DOS Initial (relative) SS value 
9 DSPv DOS Initial SP value 

10 Dcsum DOS Checksum 
11 DIPv DOS Initial IP value 
12 Dicsv DOS Initial (relative) CS value 
13 Dreltab DOS File address of relocation table 
14 DONum DOS Overlay number 
15 NSec File No. of Sections 
16 DateTime File Date Time 
17 FPointerToSymbolTable File Pointer To Symbol Table 
18 FNumberOfSymbols File Number Of Symbols 
19 FSizeOfOptionalHeader File Size Of Optional Header 
20 FCharacteristics File Characteristics 
21 USec File No. of Unknown Sections 
22 IDll File No. of DLL Function call 
23 OMajorLinkerVersion OPT Major Linker Version 
24 OMinorLinkerVersion OPT Minor Linker Version 
25 SCode OPT Size of Code 
26 SIData OPT Size of Initialized Data 
27 SUData OPT Size of Uninitialized Data 
28 OAddressOfEntryPoint OPT Address Of Entry Point 
29 OBaseOfCode OPT Base Of Code 
30 OBaseOfData OPT Base Of Data 
31 OImageBase OPT Image Base 
32 OSectionAlignment OPT Section Alignment 
33 OFileAlignment OPT File Alignment 
34 OMajorOperatingSystemVersion OPT Major Operating System Version 
35 OMinorOperatingSystemVersion OPT Minor Operating System Version 
36 MImageVer OPT Major Image Version 
37 OMinorImageVersion OPT Minor Image Version 
38 OMajorSubsystemVersion OPT Major Subsystem Version 
39 OMinorSubsystemVersion OPT Minor Subsystem Version 
40 OReserved1 OPT Reserved1 
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41 OSizeOfImage OPT Size Of Image 
42 OSizeOfHeaders OPT Size Of Headers 
43 CSum OPT CheckSum 
44 OSubsystem OPT Subsystem 
45 DLLChar OPT Dll Characteristics 
46 OSizeOfStackReserve OPT Size Of Stack Reserve 
47 OSizeOfStackCommit OPT Size Of Stack Commit 
48 OSizeOfHeapReserve OPT Size Of Heap Reserve 
49 OSizeOfHeapCommit OPT Size Of Heap Commit 
50 OLoaderFlags OPT Loader Flags 
51 ONumberOfRvaAndSizes OPT Number Of Rva and Sizes 
52 NDirectories OPT No. of Directories 
53 DModified   Date Modified 

Table 4.2 PE Features Extraction 

Features like USec, IDll and DModified are the features, which were created using the data 

obtained from PE headers. USec feature is for calculating number of unknown section name in 

PE file. A counter representing USec feature is initialized and incremented if a section name 

obtain from PE file is other than common name like .text, .data, .pdata, .rdata, .rsrc, .reloc, .tls, 

.idata, .edata, CODE, DATA or BSS. Similarly, IDLL is for counting number of dlls called in 

Import directory. DModified is the modification date of PE file. This feature is collected from 

the properties of the PE file. 

 

4.5  Feature Selection 

All 53 extracted features were considered as initial set of features. Several experiments were 

carried out using this set of features but the accuracy obtained after applying data mining 

techniques was average. So, to improve the performance and accuracy of clustering with 

minimum measurements and low overheads, we removed the features that were outliers or not 
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giving useful information. Thus we have selected 13 features, which are mentioned and 

described in Table 4.3.  

SR 
No. 

Feature Name Header Description 

1 FSize   File Size 
2 NSec File No. of Sections 
3 USec File No. of Unknown Sections 
4 IDll File No. of DLL Function call 
5 SCode OPT Size of Code 
6 SIData OPT Size of Initialized Data 
7 SUData OPT Size of Uninitialized Data 
8 OSizeOfImage OPT Size Of Image 
9 CSum OPT Check Sum 

10 DLLChar OPT Dll Characteristics 
11 OSizeOfStackReserve OPT Size Of Stack Reserve 
12 OSizeOfStackCommit OPT Size Of Stack Commit 
13 NDirectories OPT No. of Directories 

Table 4.3 PE Features Selection 

 

 

 

 

 

Table 4.4 PE Features  
 

Now for better understanding of the data, various features were normalized and given weightage. 

Normalization helps in comparing the values for different data sets in a way that it eliminates the 

effects of certain gross influences. There were some features in our list of selected features 

whose data may vary according to the size of files. Thus for better comparison we have 

SR 
No. 

Feature Name Header Description 

1 NSec File Normalized No. of Sections 
2 USec File Weighted No. of Unknown Sections 
3 IDll File Normalized No. of DLL Function 

call 
4 SCode OPT Normalized Size of Code 
5 SIData OPT Normalized Size of Initialized Data 
6 SUData OPT Normalized Size of Uninitialized 

Data 
7 NDirectories OPT Normalized No. of Directories 
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normalized the features by dividing the data with its file size. We have also given more 

weightage to a feature by multiplying its data with constant integer value hundred. The below 

mentioned Table 4.4 contains normalized and weighted features. 

 

4.6 Clustering Algorithm 

The clustering algorithm forms group or clusters such that member inside a cluster are similar, 

and distinct from the objects in other clusters. For statistical analysis of data, clustering method 

is used frequently in the field of data mining. The cluster or groups can be formed, by using 

various algorithms that differ in the criteria. The criteria used for forming clusters may include 

groups with small distances among the data, dense areas, intervals or particular statistical 

distributions [23]. 

We have used hierarchical, K-mean and self-organizing map clustering algorithm for our data 

analysis. The notion of each of the clustering algorithm is different and varies significantly in 

their properties. 

 

4.6.1 Hierarchical Learning Algorithm 

Hierarchical clustering is an example of connectivity models, which uses distance connectivity to 

create groups or clusters. The hierarchy is a tree of clusters, which contains a node as child 

clusters while sibling cluster share a common parent node [24]. 
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We have used agglomerative hierarchical cluster analysis that is already implemented in Matlab. 

The hierarchical algorithm distinguishes every pair of data in dataset. Then it links the pair of 

data in close space using the distance criteria that is generated by distinguishing every pair of 

data in dataset. In next step a binary tree is formed using data paired into binary clusters. At last, 

the clusters were created either by finding natural clusters in the binary tree or by using cutting 

off criteria [25]. 

 

The function pdist calculates the Euclidean distance between each data pair to distinguish every 

pair of data in dataset. The linkage function clusters data into binary tree and dendogram 

function helps to view the binary cluster tree graphically for better understanding. The function 

cluster is applied to find cut in tree to form clusters either naturally or by giving arbitrary cutoff 

value in function itself. Figure 4.3 shows the code written in Matlab for hierarchical clustering. 

 

Figure 4.3 Hierarchical Matlab Code 

As mentioned in the above Hierarchical Matlab code, we used distance cutoff to create clusters 

of the dataset. 
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4.6.2 K-mean Learning Algorithm 

K-mean is an example of partition based clustering algorithm. The k-mean algorithm forms 

clusters from the data by allocating an index number to each observation according to their mean 

value. Each cluster is created or given same index number with nearest mean value. Unlike 

hierarchical clustering, k-mean creates cluster on single level and using each observation rather 

than similarities or dissimilarities between data pair. Thus k-mean is more suitable and efficient 

for cluster analysis of large datasets [26]. 

 

K-mean treats each observation in the data as unique. It creates partition in which objects within 

each cluster are similar, and distinct from the objects in other clusters [27]. The centroid of the 

cluster is calculated by the sum of distances from all data and it helps to increase the efficiency 

of the cluster. K-mean iteratively improves by minimizing the sum of distances of each data from 

its clusters centroid. The algorithm iterates until the sum of distances of data from centroid 

cannot be reduced further. Thus the resultant clusters were compact and well separated as 

possible. 

 

The k-mean algorithm is already implemented in Matlab. As explained earlier, k-mean algorithm 

returns index of the clusters. Figure 4.4 represents the code written in Matlab to use k-mean 

algorithm. 
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Figure 4.4 K-mean Matlab Code 

As mentioned in Figure 4.4 we asked the K-mean algorithm to create 10 clusters at maximum. 

We came up with cluster number 10 by trial and error. When number of clusters was increased, 

empty clusters were created and when the number of clusters was decreased, there was 

significant drop in the accuracy. 

 

4.6.3 Self Organizing Mapping Algorithm  

The SOM is an excellent tool in exploratory phase of data mining [18]. SOM is a type of 

artificial neural network (ANN) that produces discrete clusters by training the network using 

unsupervised learning. SOM uses neighborhood function to preserve the topological properties 

of input [28]. SOM groups the data based on similarity between objects. Thus it can be used to 

create clusters of benign and malicious objects. 

The other version of SOM training, which we have used is called batch algorithm. It presents 

whole dataset to the network then algorithm determines winning neuron and updates each weight 

vector by moving it to the average position of all input vector [29]. 



	 	32

 

Matlab has a tool, which can be used to run SOM algorithm. As shown in Figure 4.5 we can first 

create grid and train data using batch algorithm in Figure 4.6.  

 

Figure 4.5 Neural Network Architecture 
 

 

Figure 4.6 Neural Network Training 



	 	33

SOM creates different type of plots for the better understanding of analysis results. Figure 4.7 

gives view of SOM topology. 

 

Figure 4.7 SOM Topology 

Figure 4.8 shows SOM neighbor connections 

 

Figure 4.8 SOM Neighbor Connections 
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Figure 4.9 depicts SOM neighbor weight distances. 

 

Figure 4.9 SOM Neighbor Weight Distances 

Figure 4.10 gives overview of SOM weight planes. 

 

Figure 4.10 SOM Weight Planes 
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Figure 4.11 shows SOM weight positions. 

 

Figure 4.11 SOM Weight Positions 

Figure 4.12 gives gist on SOM sample hits. 

 

Figure 4.12 SOM Sample Hits 
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In SOM weight distance and planes, the weights were closer if it is indicated by light colors and 

the distances were larger if it is indicated by darker band. The color difference distinguishes 

between the data points weight and distance. 

Figure 4.13 represents the code written in Matlab to use SOM algorithm. 

 

Figure 4.13 SOM Matlab Code 

As mentioned in the code, SOM algorithm is first trained and output is saved in Matlab. Then 

using output, clusters were created. The algorithm is asked to create maximum of 100 clusters. 



	 	37

CHAPTER 5: OUTCOME OF PROJECT 
 

5.1 Experimental Tools and Environment 

This section gives an overview on the tools and environment used for the thesis project. 

5.1.1 Microsoft Visual Studio 

Visual Studio (VS) is a comprehensive collection of tools and services that helps to create a wide 

variety of applications [30]. VS is an integrated development environment (IDE) from Microsoft 

that supports different programming languages that allows to write, edit or debug code. We have 

created Visual C++ (VC++) project using Microsoft VS to disintegrate or collect PE headers 

values from executables and dynamic link library files. Microsoft VC++ implements both C and 

C++ compiler and specific tools for integration with VS IDE. We have added several packages 

and in-built libraries to write code.  

 

5.1.2 Matlab 

Matlab is a language with strong abstraction and easy to use visual interface that can be used for 

data analysis, developing algorithm, creating models and applications, for programming and 

more. The built-in tools, mathematical functions and algorithms help to explore multiple 

approaches and get the result faster. Matlab can be used in various fields but not limited to 

computational biology, computational finance, simulation, image and video processing, signal 

processing, data analysis, control systems [31].  
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5.1.3 VMware Workstation 

VMware workstation is a hypervisor, which helps users to create one or more virtual machines 

(VM) on a single system. Each VM can run different operating systems such as Linux, Ubuntu, 

and different version of Windows. VMware workstation supports host network, share hard 

drives, and USB devices with VM [32].  

 

VM plays an integral part in malware analysis. VM enables us to create a virtual environment 

with all the necessary tools and applications required according to our need. We have used 

VMware workstation version 10.0.1 build-1379776 with windows 7 operating system and 5.7 

GB RAM.  

 

VM has a very useful and important feature called snapshot, which saves the state of machine. 

We can create snapshots of our VM that will save all the data, application installed and settings 

of the operating system at that very moment. Once the snapshot is created we can restore the 

saved state whenever it is necessary. For example, if a malware affects the system we can restore 

the machine to its stored state by restoring a snapshot. The snapshot feature saves lot of time and 

work while doing malware analysis.  

 

5.2 Experimental Results 

Experiment 1: 

Input: Dataset1 
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Algorithm: Hierarchical algorithm 

Output: Figure 5.1 represent the binary tree of hierarchical algorithm on dataset1 in 

dendogram form with top twelve nodes. We have created dendogram with cutoff as the 

dataset is very large and dendogram representing the complete dataset was visually not clear. 

Now, to go one step further we have created clusters and represented in Figure 5.2. Similarly, 

for clearer view we have represented few cluster and data points in the graph. 

 
Figure 5.1 Experiment 1 binary tree 
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Figure 5.2 Experiment 1 Plot 

Clusters were created using cutoff on distance criteria. Table 5.1 represents the 28 clusters 

created with useful details. Column “Value” represents the number of executables with type 

benign or malicious and “Percentage” gives the idea on percent of executables type in cluster.  

(Table 5.1 Cont.) 

Hierarchical on Datset 1 

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage 

1 Benign 0 0.00% 11 Benign 8 50.00% 20 Benign 11127 51.01% 

  Malacious 1 100.00%   Malacious 8 50.00%   Malacious 10686 48.99% 

                        

2 Benign 0 0.00% 12 Benign 0 0.00% 21 Benign 7 77.78% 

  Malacious 59 100.00%   Malacious 1 100.00%   Malacious 2 22.22% 

                        

3 Benign 6 85.71% 13 Benign 3 100.00% 22 Benign 0 0.00% 

  Malacious 1 14.29%   Malacious 0 0.00%   Malacious 56 100.00% 

                        

4 Benign 4 100.00% 14 Benign 0 0.00% 23 Benign 3 100.00% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

5 Benign 3 100.00% 15 Benign 0 0.00% 24 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 91 100.00% 
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6 Benign 0 0.00% 16 Benign 0 0.00% 25 Benign 4 100.00% 

  Malacious 30 100.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

7 Benign 6 100.00% 17 Benign 0 0.00% 26 Benign 7 100.00% 

  Malacious 0 0.00%   Malacious 3 100.00%   Malacious 0 0.00% 

                        

8 Benign 3 50.00% 18 Benign 0 0.00% 27 Benign 4 100.00% 

  Malacious 3 50.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

9 Benign 3 75.00% 19 Benign 0 0.00% 28 Benign 3 100.00% 

  Malacious 1 25.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

10 Benign 32 94.12%                 

  Malacious 2 5.88%                 

Table 5.1 Experiment 1 Clusters 

 

 
Figure 5.3 Experiment 1 Graph 

Analysis: There were around 22,172 executables in dataset. After applying hierarchical 

algorithm, 28 clusters were created using distance cutoff. Hereafter analyzing the cluster data 

we found that around 10,702 executables were clustered wrongly, which results in accuracy 

of 51.73%.  
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Now we further analyze the results or clusters obtained after applying Hierarchical algorithm 

on Dataset1. We have created a graph in Figure 5.3 for better understanding of our results. 

The X-axis represents the cluster with 50% to 100% accuracy rate divided in four groups. 

The Y- axis represents the percentage of the clusters that belongs to the groups mentioned in 

X-axis. Each of the bar has a percentage label which represents the percentage of executables 

from Datset1 that belongs to the group. Moreover, from the figure 5.3 we observe that 

98.54% of executables from Dataset1 have 50-79.99% accuracy and less than 20% of 

clusters belong to this group. Thus, we know that most of the executables from Dataset1 

belong to less than 20% of clusters and has efficiency between 50% to 79.99% and rest of the 

clusters have only 1.46% of executables. Hence, the efficiency obtained in this experiment is 

very low. 

 

Experiment 2: 

Input: Dataset1 

Algorithm: K-means algorithm 

Output: Figure 5.3 represent centroid of the clusters created using kmean algorithm.  Table 

5.2 shows the percentage of Benign and Malicious executables in each cluster. 
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Figure 5.4 Experiment 2 Plot 

Kmean on Datset 1 

Cluster Executable Value Percentage Cluster Executable Value Percentage
1 Benign 0 0.00% 6 Benign 64 73.56%

  Malacious 73 100.00%   Malacious 23 26.44%
                

2 Benign 19 79.17% 7 Benign 7 63.64%
  Malacious 5 20.83%   Malacious 4 36.36%
                

3 Benign 333 3.06% 8 Benign 50 79.37%
  Malacious 10541 96.94%   Malacious 13 20.63%
                

4 Benign 10733 98.89% 9 Benign 0 0.00%
  Malacious 120 1.11%   Malacious 41 100.00%
                

5 Benign 0 0.00% 10 Benign 17 23.29%
  Malacious 73 100.00%   Malacious 56 76.71%

Table 5.2 Experiment 2 Clusters 
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Figure 5.5 Experiment 2 Graph 

Analysis: There were around 22,172 executables in dataset that is used for clustering. After 

applying K-mean algorithm 10 clusters are created. The number of clusters were decided by 

trial and error and given to the algorithm. If we create more than 10 clusters than empty 

clusters were created and if we give less than accuracy is reduced significantly. After 

analyzing the details of each cluster given in Table 5.2, we found that out of 22,172 around 

515 executables were wrongly clustered, which gives accuracy of 97.68%. This accuracy is 

significantly more than obtained in experiment1. 

Similar to Experiment 1 we have created a graph in Figure 5.5 for better understanding and 

analysis of the results or clustered obtained by applying K-mean algorithm on Dataset1. As 

shown in Figure 97.99% executables from Dataset1 belongs to the clusters having accuracy 
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of 90-99.99% but out of the clusters created approximately 20% of clusters have this kind of 

efficiency. 

 

Experiment 3: 

Input: Dataset1 

Algorithm: SOM algorithm 

Output: A grid of 10 X 10 is created according to the input. Figure 5.4 represents the sample 

hits, which means it shows the number of elements in each cluster. Table 5.3 gives the details 

of each cluster.  

 
Figure 5.6 Experiment 3 SOM Hits  
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(Table 5.3 Cont.) 

SOM on Datset 1 

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage 

1 Benign 0 0.00% 30 Benign 536 100.00% 58 Benign 0 0.00% 

  Malacious 19 100.00%   Malacious 0 0.00%   Malacious 9 100.00% 

                        

2 Benign 0 0.00% 31 Benign 22 95.65% 59 Benign 0 0.00% 

  Malacious 16 100.00%   Malacious 1 4.35%   Malacious 11 100.00% 

                        

3 Benign 68 4.83% 32 Benign 1270 100.00% 60 Benign 10 100.00% 

  Malacious 1340 95.17%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

4 Benign 67 19.20% 33 Benign 4718 98.99% 61 Benign 3 21.43% 

  Malacious 282 80.80%   Malacious 48 1.01%   Malacious 11 78.57% 

                        

5 Benign 0 0.00% 34 Benign 0 0.00% 62 Benign 6 100.00% 

  Malacious 350 100.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

6 Benign 0 0.00% 35 Benign 0 0.00% 63 Benign 3 100.00% 

  Malacious 916 100.00%   Malacious 13 100.00%   Malacious 0 0.00% 

                        

7 Benign 16 0.91% 36 Benign 51 94.44% 64 Benign 6 100.00% 

  Malacious 1744 99.09%   Malacious 3 5.56%   Malacious 0 0.00% 

                        

8 Benign 118 2.91% 37 Benign 93 96.88% 65 Benign 11 91.67% 

  Malacious 3942 97.09%   Malacious 3 5.56%   Malacious 1 8.33% 

                        

9 Benign 4 80.00% 38 Benign 103 93.64% 66 Benign 3 100.00% 

  Malacious 1 20.00%   Malacious 7 6.36%   Malacious 0 0.00% 

                        

10 Benign 0 0.00% 39 Benign 188 100.00% 67 Benign 0 0.00% 

  Malacious 21 100.00%   Malacious 0 0.00%   Malacious 19 100.00% 

                        

11 Benign 0 0.00% 40 Benign 371 100.00% 68 Benign 0 0.00% 

  Malacious 30 100.00%   Malacious 0 0.00%   Malacious 18 100.00% 

                        

12 Benign 0 0.00% 41 Benign 732 100.00% 69 Benign 2 100.00% 

  Malacious 3 100.00%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

13 Benign 0 0.00% 42 Benign 0 0.00% 70 Benign 3 100.00% 

  Malacious 19 100.00%   Malacious 5 100.00%   Malacious 0 0.00% 

                        

14 Benign 0 0.00% 43 Benign 0 0.00% 71 Benign 0 0.00% 

  Malacious 69 100.00%   Malacious 8 100.00%   Malacious 1 100.00% 

                        

15 Benign 12 2.27% 44 Benign 0 0.00% 72 Benign 6 66.67% 

  Malacious 516 97.73%   Malacious 1 100.00%   Malacious 3 33.33% 

                        

16 Benign 0 0.00% 45 Benign 88 96.70% 73 Benign 7 77.78% 

  Malacious 2 100.00%   Malacious 3 3.30%   Malacious 2 22.22% 

                        

17 Benign 0 0.00% 46 Benign 0 0.00% 74 Benign 0 0.00% 
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  Malacious 11 100.00%   Malacious 157 100.00%   Malacious 3 100.00% 

                        

18 Benign 0 0.00% 47 Benign 168 91.30% 75 Benign 4 100.00% 

  Malacious 20 100.00%   Malacious 16 8.70%   Malacious 0 0.00% 

                        

19 Benign 0 0.00% 48 Benign 246 100.00% 76 Benign 0 0.00% 

  Malacious 2 100.00%   Malacious 0 0.00%   Malacious 19 100.00% 

                        

20 Benign 1 0.46% 49 Benign 3 100.00% 77 Benign 0 0.00% 

  Malacious 215 99.54%   Malacious 0 0.00%   Malacious 3 100.00% 

                        

21 Benign 27 7.61% 50 Benign 0 0.00% 78 Benign 4 100.00% 

  Malacious 328 92.39%   Malacious 18 100.00%   Malacious 0 0.00% 

                        

22 Benign 3 1.01% 51 Benign 0 0.00% 79 Benign 6 100.00% 

  Malacious 295 98.99%   Malacious 28 100.00%   Malacious 0 0.00% 

                        

23 Benign 8 100.00% 52 Benign 0 0.00% 80 Benign 8 50.00% 

  Malacious 0 0.00%   Malacious 5 100.00%   Malacious 8 50.00% 

                        

24 Benign 2060 99.32% 53 Benign 47 97.92% 81 Benign 3 100.00% 

  Malacious 14 0.68%   Malacious 1 2.08%   Malacious 0 0.00% 

                        

25 Benign 3 60.00% 54 Benign 66 98.51% 82 Benign 3 100.00% 

  Malacious 2 40.00%   Malacious 1 1.49%   Malacious 0 0.00% 

                        

26 Benign 0 0.00% 55 Benign 0 0.00% 83 Benign 7 100.00% 

  Malacious 16 100.00%   Malacious 154 100.00%   Malacious 0 0.00% 

                        

27 Benign 0 0.00% 56 Benign 0 0.00% 84 Benign 3 100.00% 

  Malacious 3 100.00%   Malacious 56 100.00%   Malacious 0 0.00% 

                        

28 Benign 21 13.73% 57 Benign 12 92.31% 85 Benign 3 100.00% 

  Malacious 132 86.27%   Malacious 1 7.69%   Malacious 0 0.00% 

                        

29 Benign 0 0.00%                 

  Malacious 3 100.00%                 

Table 5.3 Experiment 3 Clusters 
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Figure 5.7 Experiment 3 Graph 

Analysis: There were around 22,172 executables that were clustered using SOM algorithm. 

We have asked SOM algorithm to create maximum 100 clusters from the given dataset. SOM 

creates 85 clusters with elements or data and 15 of them were empty. After analysis of 

clusters mentioned in Table 5.3 we found that around 451 out of 22,172 were wrongly 

clustered, which gives accuracy of 97.97%. This accuracy is best so far, obtained for 

dataset1. 

We have analyzed the results or clusters obtained from Dataset1 after applying SOM 

algorithm and created a graph in Figure 5.7. This graph helps to understand the analysis 

easily. As we can see that maximum clusters have 90-99.99% or 100% accuracy and around 

97% of executables from Dataset belongs to this groups. Thus, this algorithm has the highest 

accuracy for Dataset1. 



	 	49

 

Experiment 4: 

Input: Dataset2 

Algorithm: Hierarchical algorithm 

Output: Experiment 4 is same as experiment 1 just the input dataset is different. Same as 

experiment1 Figure 5.8 represent dendogram and Figure 5.9 represent cluster plot. 

 
Figure 5.8 Experiment 4 binary tree 



	 	50

 
Figure 5.9 Experiment 4 Plot 

(Table 5.4 Cont.) 

Hierarchical on Datset 2 

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage 

1 Benign 3 100.00% 10 Benign 34 100.00% 19 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 2 100.00% 

                        

2 Benign 0 0.00% 11 Benign 0 0.00% 20 Benign 4 100.00% 

  Malacious 1 100.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

3 Benign 3 100.00% 12 Benign 3 100.00% 21 Benign 4 100.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

4 Benign 3 100.00% 13 Benign 0 0.00% 22 Benign 7 87.50% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 1 12.50% 

                        

5 Benign 0 0.00% 14 Benign 6 100.00% 23 Benign 11 100.00% 

  Malacious 1 100.00%   Malacious 0 0.00%   Malacious 1 0.00% 

                        

6 Benign 6 100.00% 15 Benign 1 100.00% 24 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 8 100.00% 

                        

7 Benign 3 100.00% 16 Benign 3 100.00% 25 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 2 100.00% 

                        

8 Benign 0 0.00% 17 Benign 6377 44.45% 26 Benign 3 100.00% 
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  Malacious 1 100.00%   Malacious 7969 55.55%   Malacious 0 0.00% 

                        

9 Benign 0 0.00% 18 Benign 7 100.00%         

  Malacious 1 100.00%   Malacious 0 0.00%         

Table 5.4 Experiment 4 Clusters 

 

 

Figure 5.10 Experiment 4 Graph 

Analysis: There were around 14,467 executables in dataset, which is used for clustering. 

Then applying hierarchical algorithm that uses distance cutoff for creating cluster, around 26 

clusters were created. After analyzing the cluster details in Table 5.4, we found that out of 

14,467 around 6379 were wrongly clustered. This gives accuracy of 55.91% to the 

experiment, which is low. 



	 	52

The graph in Figure 5.10 represents the analysis results in an efficient way. The graph shows 

that there were maximum clusters with 100% accuracy but that contains only 0.78% of 

executables from Dataset2. About 99.16% of executables belongs to the lowest accuracy 

rates with few clusters only. Thus, Experiment 4 does not serve our purpose. 

 

Experiment 5: 

Input: Dataset2 

Algorithm: K-mean algorithm 

Output: This experiment is same as Experiment 2 just input dataset is different.  Figure 5.11 

represent centroid of clusters and Table 5.5 represent cluster data. 

 
Figure 5.11 Experiment 5 Plot 
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Kmean on Datset 2 

Cluster Executable Value Percentage Cluster Executable Value Percentage
1 Benign 41 91.11% 6 Benign 11 47.83%

  Malacious 4 8.89%   Malacious 12 52.17%
                

2 Benign 16 1.05% 7 Benign 7 77.78%
  Malacious 1505 98.95%   Malacious 2 22.22%
                

3 Benign 207 11.47% 8 Benign 14 4.56%
  Malacious 1598 88.53%   Malacious 293 95.44%
                

4 Benign 35 94.59% 9 Benign 4 100%
  Malacious 2 5.41%   Malacious 0 0.00%
                

5 Benign 6143 57.33% 10 Benign 0 0.00%
  Malacious 4573 42.67%   Malacious 0 0.00%

Table 5.5 Experiment 5 Clusters 

 

 

Figure 5.12 Experiment 5 Graph 
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Analysis: There were around 14,467 executables in this dataset. We apply K-mean algorithm 

and try to create 10 clusters out of which 9 have data and one empty cluster is created. After 

analyzing the cluster data mentioned in Table 5.5, we found that around 4829 executables 

were clustered wrongly. This gives accuracy of 66.62%, which is more than hierarchical 

clustering but not best. 

For better understanding of analysis results we have created a graph shown in Figure 5.12, 

which gives gist of the clusters with their accuracy and number of executables belonging to 

each group. Around 45% of clusters have accuracy of 90-99.99% and only 13.20 % of 

executables from Dataset2 belongs to this group. Maximum of executables belongs to the 

lowest accuracy group and hence the K-mean algorithm has low accuracy. 

 

Experiment 6: 

Input: Dataset2 

Algorithm: SOM algorithm 

Output: This experiment is same as experiment 3 but the input dataset is different. Figure 

5.13 gives the sample hits of the clusters and Table 5.6 gives cluster details. 
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Figure 5.13 Experiment 6 SOM Hits 

(Table 5.6 Cont.) 

SOM on Datset 2 

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage 

1 Benign 15 93.75% 33 Benign 40 54.05% 65 Benign 0 0.00% 

  Malacious 1 6.25%   Malacious 34 45.95%   Malacious 53 100.00% 

                        

2 Benign 3 100.00% 34 Benign 26 24.07% 66 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 82 75.93%   Malacious 79 100.00% 

                        

3 Benign 4 100.00% 35 Benign 0 0.00% 67 Benign 3 100.00% 

  Malacious 0 0.00%   Malacious 397 100.00%   Malacious 0 0.00% 

                        

4 Benign 0 0.00% 36 Benign 12 2.28% 68 Benign 0 0.00% 

  Malacious 9 100.00%   Malacious 514 97.72%   Malacious 12 100.00% 

                        

5 Benign 7 77.78% 37 Benign 0 0.00% 69 Benign 0 0.00% 

  Malacious 2 22.22%   Malacious 272 100.00%   Malacious 110 100.00% 

                        

6 Benign 305 100.00% 38 Benign 1 9.09% 70 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 10 90.91%   Malacious 138 100.00% 

                        

7 Benign 1129 99.91% 39 Benign 3 13.64% 71 Benign 0 0.00% 

  Malacious 1 0.09%   Malacious 19 86.36%   Malacious 97 100.00% 

                        

8 Benign 3319 99.58% 40 Benign 27 57.45% 72 Benign 0 0.00% 

  Malacious 14 0.42%   Malacious 20 42.55%   Malacious 76 100.00% 
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9 Benign 137 8.08% 41 Benign 0 0.00% 73 Benign 0 0.00% 

  Malacious 1558 91.92%   Malacious 72 100.00%   Malacious 51 100.00% 

                        

10 Benign 16 88.89% 42 Benign 0 0.00% 74 Benign 0 0.00% 

  Malacious 2 11.11%   Malacious 10 100.00%   Malacious 113 100.00% 

                        

11 Benign 23 100.00% 43 Benign 0 0.00% 75 Benign 1 1.30% 

  Malacious 0 0.00%   Malacious 44 100.00%   Malacious 76 98.70% 

                        

12 Benign 7 100.00% 44 Benign 0 0.00% 76 Benign 6 100.00% 

  Malacious 0 0.00%   Malacious 47 100.00%   Malacious 0 0.00% 

                        

13 Benign 0 0.00% 45 Benign 2 1.35% 77 Benign 3 4.17% 

  Malacious 2 100.00%   Malacious 146 98.65%   Malacious 69 95.83% 

                        

14 Benign 3 100.00% 46 Benign 1 0.44% 78 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 227 99.56%   Malacious 153 100.00% 

                        

15 Benign 181 100.00% 47 Benign 1 0.55% 79 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 181 99.45%   Malacious 158 100.00% 

                        

16 Benign 507 100.00% 48 Benign 0 0.00% 80 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 11 100.00%   Malacious 125 100.00% 

                        

17 Benign 19 100.00% 49 Benign 0 0.00% 81 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 88 100.00% 

                        

18 Benign 116 49.36% 50 Benign 0 0.00% 82 Benign 0 0.00% 

  Malacious 119 50.64%   Malacious 59 100.00%   Malacious 126 100.00% 

                        

19 Benign 3 100.00% 51 Benign 0 0.00% 83 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 72 100.00%   Malacious 59 100.00% 

                        

20 Benign 3 100.00% 52 Benign 0 0.00% 84 Benign 1 3.85% 

  Malacious 0 0.00%   Malacious 42 100.00%   Malacious 25 96.15% 

                        

21 Benign 4 80.00% 53 Benign 0 0.00% 85 Benign 1 100.00% 

  Malacious 1 20.00%   Malacious 180 100.00%   Malacious 0 0.00% 

                        

22 Benign 3 100.00% 54 Benign 0 0.00% 86 Benign 6 75.00% 

  Malacious 0 0.00%   Malacious 145 100.00%   Malacious 2 25.00% 

                        

23 Benign 0 0.00% 55 Benign 1 1.79% 87 Benign 0 0.00% 

  Malacious 3 100.00%   Malacious 55 98.21%   Malacious 132 100.00% 

                        

24 Benign 151 85.80% 56 Benign 0 0.00% 88 Benign 0 0.00% 

  Malacious 25 14.20%   Malacious 93 100.00%   Malacious 102 100.00% 

                        

25 Benign 146 99.32% 57 Benign 1 1.10% 89 Benign 0 0.00% 

  Malacious 1 0.68%   Malacious 90 98.90%   Malacious 117 100.00% 

                        

26 Benign 1 50.00% 58 Benign 3 75.00% 90 Benign 0 0.00% 

  Malacious 1 50.00%   Malacious 1 25.00%   Malacious 94 100.00% 
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27 Benign 1 0.22% 59 Benign 0 0.00% 91 Benign 0 0.00% 

  Malacious 458 99.78%   Malacious 35 100.00%   Malacious 86 100.00% 

                        

28 Benign 44 31.21% 60 Benign 0 100.00% 92 Benign 0 0.00% 

  Malacious 97 68.79%   Malacious 101 0.00%   Malacious 74 100.00% 

                        

29 Benign 4 100.00% 61 Benign 0 0.00% 93 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 99 100.00%   Malacious 18 100.00% 

                        

30 Benign 44 47.31% 62 Benign 0 0.00% 94 Benign 3 75.00% 

  Malacious 49 52.69%   Malacious 90 100.00%   Malacious 1 25.00% 

                        

31 Benign 68 66.02% 63 Benign 0 0.00% 95 Benign 4 80.00% 

  Malacious 35 33.98%   Malacious 126 100.00%   Malacious 1 20.00% 

                        

32 Benign 66 58.41% 64 Benign 0 0.00% 96 Benign 3 100.00% 

  Malacious 47 41.59%   Malacious 154 100.00%   Malacious 0 0.00% 

Table 5.6 Experiment 6 Clusters 

 

 

Figure 5.14 Experiment 6 Graph 
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Analysis: There were around 14,467 executables that is clustered using SOM algorithm. We 

asked algorithm to create maximum of 100 clusters but 96 clusters were created with data 

and 4 empty clusters were created as mentioned in Table 5.6. In this algorithm around 584 

executables were wrongly classified. This results in accuracy of 95.96%, which is best 

among three algorithms on dataset2. 

Figure 5.14 shows a graph with analysis result for our better understanding. Similar to 

experiment 3, this experiment also has around 92% of files from Dataset2 that belongs to 

either 90-99.99% or 100% group, which in turn has maximum number of clusters. Hence, 

like experiment 3, experiment 6 has highest accuracy for Dataset2.  

 

Experiment 7: 

Input: Dataset3 

Algorithm: Hierarchical algorithm 

Output: This experiment is same as experiment 1 and 4 just the input dataset is different. 

Figure 5.15 is dendogram of binary tree and Figure 5.16 represents the clusters. 
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Figure 5.15 Experiment 7 Binary Tree 

 
Figure 5.16 Experiment 7 Plot 
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Hierarchical on Datset 3 

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage 

1 Benign 3 100.00% 13 Benign 0 0.00% 25 Benign 11 78.57% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 3 21.43% 

                        

2 Benign 0 0.00% 14 Benign 0 0.00% 26 Benign 4 100.00% 

  Malacious 1 100.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

3 Benign 4 80.00% 15 Benign 0 0.00% 27 Benign 4 100.00% 

  Malacious 1 20.00%   Malacious 2 100.00%   Malacious 0 0.00% 

                        

4 Benign 0 0.00% 16 Benign 2 100.00% 28 Benign 4 100.00% 

  Malacious 1 100.00%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

5 Benign 1 100.00% 17 Benign 0 0.00% 29 Benign 12 100.00% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

6 Benign 0 0.00% 18 Benign 4 100.00% 30 Benign 0 0.00% 

  Malacious 4 100.00%   Malacious 0 0.00%   Malacious 1 100.00% 

                        

7 Benign 11 100.00% 19 Benign 1 100.00% 31 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 2 100.00% 

                        

8 Benign 4 100.00% 20 Benign 1 100.00% 32 Benign 4 100.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

9 Benign 47 97.92% 21 Benign 0 0.00% 33 Benign 0 0.00% 

  Malacious 1 2.08%   Malacious 4 100.00%   Malacious 4 100.00% 

                        

10 Benign 4 100.00% 22 Benign 4 100.00% 34 Benign 7 100.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

11 Benign 0 0.00% 23 Benign 5555 47.10% 35 Benign 0 0.00% 

  Malacious 1 100.00%   Malacious 6239 52.90%   Malacious 1 100.00% 

                        

12 Benign 0 0.00% 24 Benign 0 0.00%         

  Malacious 2 100.00%   Malacious 3 100.00%         

Table 5.7 Experiment 7 Clusters 
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Figure 5.17 Experiment 7 Graph 

Analysis: There were around 11,960 executables in this dataset, which were clustered using 

Hierarchical algorithm with distance cutoff. After applying algorithm around 35 clusters 

were created as mentioned in Table 5.7. From this table we can infer that out of 11,960 

around 5,560 executables were wrongly clustered. Thus accuracy of only 53.51% is received 

for this dataset. 

Analysis of clusters created by applying Hierarchical algorithm on Dataset3 is shown in 

Figure 5.17, in the form of a graph. This graph shows groups of clusters with the accuracy as 

mentioned on X-axis and has a label with the percentage of files belonging to each group. As 

we can see from the graph more clusters were created with 100% accuracy but it covers only 

0.83% of the executables from the Dataset3. Most of the files from the Dataset3 have lowest 
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accuracy and only few numbers of clusters were created. Thus from this result we can infer 

that Hierarchical algorithm will not help us to create clusters with highest accuracy. 

 

Experiment 8: 

Input: Dataset3 

Algorithm: K-mean algorithm 

Output: Experiment 8 is same as experiment 2 & 5 just the input dataset is different. Figure 

5.18 represent centroid of clusters and Table 5.8 gives the number of malware and benign in 

each cluster. 

 
Figure 5.18 Experiment 8 Plot 
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Kmean on Datset 3 

Cluster Executable Value Percentage Cluster Executable Value Percentage
1 Benign 31 86.11% 6 Benign 522 7.83%

  Malacious 5 13.89%   Malacious 6143 92.17%
                

2 Benign 5045 98.08% 7 Benign 5 71.43%
  Malacious 99 1.92%   Malacious 2 28.57%
                

3 Benign 5 62.50% 8 Benign 4 36.36%
  Malacious 3 37.50%   Malacious 7 63.64%
                

4 Benign 15 65.22% 9 Benign 43 93.48%
  Malacious 8 34.78%   Malacious 3 6.52%
                

5 Benign 15 75.00% 10 Benign 0 0.00%
  Malacious 5 25.00%   Malacious 0 0.00%

Table 5.8 Experiment 8 Clusters 

 

 

Figure 5.19 Experiment 8 Graph 
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Analysis: There were 11,960 executables that were clustered using K-mean algorithm. The 

algorithm is asked to create 10 clusters but 9 clusters were created with data and 1 empty 

cluster is created. We can infer from Table 5.8 that around 651 executables were clustered 

incorrectly. As a result we get accuracy of 94.56%, which is significantly more than 

Hierarchical algorithm applied on same dataset. 

From Figure 5.19 we observed that less than 40% of clusters have accuracy of 90-99.99% 

and this group contains about 99.12% of executables from Dataset3. The highest bar in the 

graph is for lowest accuracy, which means most of the clusters have lowest accuracy but that 

covers only 0.58% of executables from Dataset3. This experiment has good accuracy 

compared to Experiment 7. 

 

Experiment 9: 

Input: Dataset3 

Algorithm: SOM algorithm 

Output: Experiment 9 is same as experiment 3 and 6 just the input dataset is different. 

Figure 5.20 gives the sample hits that represent number of elements or data in each cluster.  



	 	65

 
Figure 5.20 Experiment 9 SOM Hits 

(Table 5.9 Cont.) 

SOM on Datset 3 

Cluster Executable Value Percentage Cluster Executable Value Percentage Cluster Executable Value Percentage 

1 Benign 0 0.00% 27 Benign 73 100.00% 53 Benign 0 0.00% 

  Malacious 2 100.00%   Malacious 0 0.00%   Malacious 20 100.00% 

                        

2 Benign 5 100.00% 28 Benign 19 86.36% 54 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 3 13.64%   Malacious 39 100.00% 

                        

3 Benign 1276 100.00% 29 Benign 7 87.50% 55 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 1 12.50%   Malacious 18 100.00% 

                        

4 Benign 1108 100.00% 30 Benign 0 0.00% 56 Benign 16 100.00% 

  Malacious 0 0.00%   Malacious 2 100.00%   Malacious 0 0.00% 

                        

5 Benign 66 44.00% 31 Benign 8 100.00% 57 Benign 1 0.14% 

  Malacious 84 56.00%   Malacious 0 0.00%   Malacious 730 99.86% 

                        

6 Benign 8 72.73% 32 Benign 4 80.00% 58 Benign 3 2.91% 

  Malacious 3 27.27%   Malacious 1 20.00%   Malacious 100 97.09% 

                        

7 Benign 0 0.00% 33 Benign 0 0.00% 59 Benign 0 0.00% 

  Malacious 4 100.00%   Malacious 212 100.00%   Malacious 3 100.00% 

                        

8 Benign 0 0.00% 34 Benign 48 100.00% 60 Benign 4 100.00% 

  Malacious 1 100.00%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

9 Benign 8 100.00% 35 Benign 10 83.33% 61 Benign 4 21.43% 

  Malacious 0 0.00%   Malacious 2 16.67%   Malacious 0 78.57% 
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10 Benign 3 100.00% 36 Benign 5 100.00% 62 Benign 4 100.00% 

  Malacious 0 0.00%   Malacious 0 0.00%   Malacious 0 0.00% 

                        

11 Benign 851 100.00% 37 Benign 0 0.00% 63 Benign 4 66.67% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 2 33.33% 

                        

12 Benign 542 100.00% 38 Benign 0 0.00% 64 Benign 1 100.00% 

  Malacious 0 0.00%   Malacious 1 100.00%   Malacious 0 0.00% 

                        

13 Benign 349 99.71% 39 Benign 42 2.06% 65 Benign 4 100.00% 

  Malacious 1 0.29%   Malacious 1997 97.94%   Malacious 0 0.00% 

                        

14 Benign 4 100.00% 40 Benign 80 18.02% 66 Benign 5 100.00% 

  Malacious 0 0.00%   Malacious 364 81.98%   Malacious 0 0.00% 

                        

15 Benign 4 100.00% 41 Benign 6 35.29% 67 Benign 1 100.00% 

  Malacious 0 0.00%   Malacious 11 64.71%   Malacious 0 0.00% 

                        

16 Benign 8 100.00% 42 Benign 44 36.97% 68 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 75 63.03%   Malacious 4 100.00% 

                        

17 Benign 7 0.00% 43 Benign 41 48.81% 69 Benign 0 0.00% 

  Malacious 2 100.00%   Malacious 43 51.19%   Malacious 4 100.00% 

                        

18 Benign 1 100.00% 44 Benign 16 32.65% 70 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 33 67.35%   Malacious 4 100.00% 

                        

19 Benign 242 99.59% 45 Benign 0 0.00% 71 Benign 7 100.00% 

  Malacious 1 0.41%   Malacious 3 100.00%   Malacious 0 0.00% 

                        

20 Benign 191 98.96% 46 Benign 11 91.67% 72 Benign 0 0.00% 

  Malacious 2 1.04%   Malacious 1 8.33%   Malacious 2 100.00% 

                        

21 Benign 107 100.00% 47 Benign 4 80.00% 73 Benign 0 0.00% 

  Malacious 0 0.00%   Malacious 1 20.00%   Malacious 4 100.00% 

                        

22 Benign 4 50.00% 48 Benign 3 0.40% 74 Benign 5 100.00% 

  Malacious 4 50.00%   Malacious 754 99.60%   Malacious 0 0.00% 

                        

23 Benign 4 100.00% 49 Benign 172 12.16% 75 Benign 3 100.00% 

  Malacious 0 0.00%   Malacious 1242 87.84%   Malacious 0 0.00% 

                        

24 Benign 4 66.67% 50 Benign 81 23.41% 76 Benign 8 100.00% 

  Malacious 2 33.33%   Malacious 265 76.59%   Malacious 0 0.00% 

                        

25 Benign 1 100.00% 51 Benign 0 0.00% 77 Benign 4 100.00% 

  Malacious 0 0.00%   Malacious 63 100.00%   Malacious 0 0.00% 

                        

26 Benign 139 100.00% 52 Benign 5 2.96%         

  Malacious 0 0.00%   Malacious 164 97.04%         

Table 5.9 Experiment 9 Clusters 
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Figure 5.21 Experiment 9 Graph 

Analysis: There were 11,960 executables in dataset that were clustered using SOM algorithm. 

The algorithm is asked to create maximum of 100 clusters out of which 77 clusters with data and 

33 empty clusters were created. After analyzing the data mentioned in Table 5.9, we found that 

586 executables were clustered incorrectly which leads to accuracy of 95.10%. Thus, SOM has 

highest accuracy among three algorithms. 

 

Moreover, to understand the analysis mentioned in Table 5.9 in an efficient way, we have created 

graph in Figure 5.21. Around 77% of executables from Dataset3 has 90 to 100% accuracy and 
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more than 60% of clusters have 100% of accuracy. Thus SOM algorithm has highest accuracy on 

Dataset3. 

 

5.3 Discussion 

The following Table 5.10, Figure 5.22 and Figure 5.23 show the summary of experiments 

results. 

  Dataset1 Dataset2 Dataset3 

Number of Files in dataset (NFD) 22172 14467 11960
Hierarchical Falsely Clustered (HFC) 10702 6379 5560
Kmean Falsely Clustered (KFC) 515 4829 651
SOM Falsely Clustered (SFC) 451 584 586

Table 5.10 Results Summary 

 

Dataset Algorithm 
50-79.99 80-89.99 90-99.99 100 

Cluster % Files % Cluster % Files % Cluster % Files % Cluster % Files % 

Dataset1 

Hierarchical 17.86 98.54 3.57 0.03 3.57 0.15 75.00 1.28

K-mean 50.00 1.16 0.00 0.00 20.00 97.99 30.00 0.84
SOM 5.88 0.24 3.53 2.29 22.35 72.90 68.24 24.58

Dataset2 
Hierarchical 3.85 99.16 3.85 0.06 0.00 0.00 92.31 0.78
K-mean 33.33 74.29 11.11 12.48 44.44 13.20 11.11 0.03
SOM 13.54 6.50 5.21 1.56 17.71 56.68 63.54 35.25

Dataset3 
Hierarchical 5.71 98.73 2.86 0.04 2.86 0.40 88.57 0.83
K-mean 55.56 0.58 11.11 0.30 33.33 99.12 0.00 0.00
SOM 15.58 6.76 9.09 15.97 11.69 38.44 63.64 38.83

Table 5.11 Results Analysis 

Table 5.10 is represented in graphical form in Figure 5.22 for better understanding and 

comparison. First set of three bars compares the number of executables in each datasets, second 

set of bars compares number of executables that were incorrectly clustered using Hierarchical 
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algorithm, third set of bars compares number of executables falsely clustered using K-mean 

algorithm on three datasets and fourth set of bars compares falsely clustered executables using 

SOM algorithm on all three datasets. 

 
Figure 5.22 

 
Figure 5.23 

The comparison of results obtained from Hierarchical, K-mean and SOM algorithm on each 

dataset is represented in Figure 5.23. The X-axis represents the results obtained from all nine 
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experiments. Each experiment has four bars, each representing percentage of cluster having 

accuracy in the ranges mentioned in graph. Each range is labeled with the percentage of files 

belonging to that range from the dataset. For example, the first bar from experiment 1 with color 

green represents the percentage of cluster belonging to 50-79.99% accuracy and the label 

98.54% says the percentage of executables that belongs to this clusters from the complete 

dataset. The highlighted text covers most of the executables from the dataset, which belongs in 

90 to 100 range. Thus from the graph we know that SOM algorithm has best accuracy. 
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CHAPTER 6: CONCLUSION AND FUTURE STUDY 

6.1 Conclusion 

Several experiments have been conducted on various datasets out of which some are mentioned 

in experiment results section. Different features have been collected and various clustering 

algorithm were used to cluster the executables. We finally found some interesting features 

among others like number of unknown sections, number of dll function calls, number of 

directories, size of executables, and an algorithm with highest accuracy, efficiency and lowest 

falsely clustered rate. 

 

After all the analysis and experiments among unsupervised learning algorithm like hierarchical, 

K-mean and SOM, we found 13 interesting features from PE headers and SOM clustering 

algorithm as best as it gives highest accuracy, efficiency and low falsely clustered rate while 

clustering any dataset. Thus after clustering we need to check one or two executables and say 

that the cluster either contains all the benign or all malicious executables. 

 

6.2 Future Study 

Future studies will address the four aspects in which the accuracy of clustering can be increased. 

The first aspect is to collect more static features, second aspect is to conduct dynamic analysis 

and collect some more useful feature, thirdly to implement some more unsupervised machine 

learning algorithm and lastly try further clustering malicious clusters into their types. 

More static features can be collected from code section and other sections of PE file format, 
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which will be useful in clustering.  Opcodes as predictor of malware [33] can be implemented 

that will collect frequency of opcode. The frequency of string or any other string or Text related 

features could be used as mentioned in Text based search [34]. 

As per [35], static analysis alone will not help in successful clustering or detection of malware. 

Thus adding some important and useful features from dynamic analysis can increase accuracy 

and efficiency of clustering. AMAL [36] like using API call sequence if combined with this 

project can also increase efficiency. 

Different unsupervised machine learning algorithm can be implemented that helps in increasing 

accuracy of clustering. Clustering with Gaussian Mixture Models [37] and Hidden markov 

models [38] can be easily used as they are already implemented in Matlab. Results from this 

algorithm can be compared with already implement algorithms. 

Further, clustering executables first in benign and malicious and then further create clusters of 

malicious executables according to their types like Trojan, spyware, backdoor, rootkit, virus, 

worm and more. Targeting the features that makes them different from one another can help to 

cluster malware according to their types. 

 

6.3 Summary 

This chapter concludes the thesis with discussion, analysis of experiments, and future extension 

of the project. Although some addition and improvements will help in increasing accuracy but 

this project has successfully gathered useful static features, which helps in clustering 

executables, efficiently and accurately using unsupervised learning algorithms. 
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