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Abstract

The presence of charge transfer (CT) interactions is clear in a variety of systems. In
CT, some electron density is shifted from one molecule to another (non-bonded) molecule.
The importance of this CT interaction is unclear. Previous attempts to look at the conse-
quences of CT required the use of ab initio molecular dynamics (AIMD), a computationally
intensive method. Herein, a method for including CT in force field (FF) simulations is
described. It is efficient, produces charges in agreement with AIMD, and prevents long-
ranged CT.

This CT MD method has been applied to monatomic ions in water. When solvated,
ions do not have an integer charge. Anions give up some electron density to their ligands,
and cations receive some electron density from their ligands. In bulk, the first solvation
shell does not compensate for all CT, i.e. the charge is not smeared out over the first
solvation shell. Rather, some charge is also found in the second solvation shell and
further into the bulk. The charge of the first solvation shell depends on the balance
between ion-water and water-water CT. When an interface is present, the charge outside
of the second solvation shell will reside at the interface. This occurs even when the ion is
over 15 Å away from the surface. The effect of long-ranged CT is mediated by changes in
the hydrogen bonding patterns in water induced by the ions (not direct CT from the ions
to distant waters).

The model has also been applied to water’s ‘‘self-ions’’ hydronium and hydroxide.
Trajectories from the multi-state empirical valence bond model (MS-EVB3) are analyzed.
The differences between monatomic and molecular ions are explored. The direction of CT
and the effect of hydrogen bonding with the ion are considered.

The damping of CT as ligands are added is discussed and a method to improve the
MD model, in order to account for damping, is proposed.

Keywords: charge transfer, quantum mechanics, molecular dynamics, water, liquid-
vapor interface, ion, zinc, hydronium, hydroxide,
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Chapter 1

Introduction

1.1 What is CT?

Electron delocalization is a common phenomenon in quantum mechanics. Charge

transfer (CT) occurs when electrons become delocalized over non-bonded pairs. There

is an energy contribution ECT equal to the stabilization of the cluster due to CT or elec-

tron delocalization.[1] In ion-water dimers, quantum mechanical (QM) charge partitioning

schemes assign a non-integer charge to the ion and assign a net charge to the water

molecule.[2] QM calculations show the occurrence of CT even in the electronic ground

state and separate from basis set superposition error (BSSE).[3, 4, 5]

CT is related to polarizability. Polarizability is the ‘‘redistribution of electron density

of a molecule in the presence of an electric field.’’[3] The electric field may be due to other

molecules in a system. The change in electron distribution lowers the overall energy of

the system, giving rise to a ‘‘polarization energy.’’ The polarization of a molecule depends

on the arrangement of all other molecules in the system. As such, it is a non-additive,

many-body term, as opposed to a pairwise additive term. Polarizability is usually de-

fined as the intra-molecular rearrangement of electron density, whereas CT refers to the

inter-molecular rearrangement of electron density.[3] The distinction between the two is

somewhat arbitrary. For instance, for large molecules, polarizability may be defined as

rearrangement within a fragment of the molecule and CT as rearrangement between frag-
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ments. (These terms then depend on the definition of the fragments.)[6] Both polarization

and CT tend to stabilize a system.[7]

CT is often explained and modeled in terms of an interplay between ionization

energy of the donor and electron affinity of the acceptor. The overlap integral between the

orbitals exchanging charge is also relevant.[8]

1.2 Evidence for CT

1.2.1 Quantum Mechanics Calculations

Electronic structure calculations have shown CT in ion-water systems,[9, 10, 11,

12, 13, 14] hydrogen bonded systems,[5, 15] solid salts,[16] proteins in water,[7, 17] ions

in biological ion channels,[18, 19, 20] and ionic liquids.[21]

Thompson and Hynes [15] and van der Vaart and Merz [5] review the controversy

over whether hydrogen bonds (HB’s) are purely electrostatic or involve CT. CT has been

shown to be a typical feature of hydrogen bonds,[22] with 0.005 to 0.050 e transferred.[23]

In natural energy decomposition (NEDA, part of natural bond order (NBO) analysis), this

corresponds to 3-30 kcal/mol.[5, 24] The energy due to this local covalency explains the

trends in total binding energy for different types of HB’s.[23] Galvez, Gomez, and Pacios

[25] show that electrostatic effects dominate HB’s at R ≥ Req + 1Å. At shorter distances,

polarization and CT dominate the interaction.[25]

Thompson and Hynes [15] look at CT in HB complexes in light of the Mulliken

view of proton transfer. In this view, there is strong coupling between the X-H·Y and

A−·HY+ states, and transfer of the proton and electron of hydrogen are concerted, not

sequential. This picture implicitly involves transfer of electron density from the lone pair

of Y to the anti-bonding orbital of X-H. Such a picture is shown explicitly in an NBO

analysis in which the occupancy of a halide lone pair decreases as the X-H anti-bonding

orbital occupancy increases. In HB, this resonance decreases the X-H bond strength and

lowers its stretch frequency. The non-linear relationship between X-H stretch frequency
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and binding energy/enthalpy can be captured with a single valence state (no CT), but

the frequency shifts are too small. They predict that CT should show an isotope effect in

the classical vibrational turning points, since X-D has a different stretch frequency than

X-H.[15]

Dal Peraro et al. looked at the charge of ions in water using AIMD.[26] They find that

anions’ orbitals are spread out and overlap with their first solvation shell (1ss), resulting

in a loss of ≈25% of electron density. In contrast, the cations’ volumes are overlapped by

orbitals of waters in the 1ss, and they lose ≈12% of their charge. Additionally, CT between

water and the ionic termini of a zwitterionic diglycine (GG) molecule is much greater than

CT due to HB’s between water and the peptide backbone.

Marenich et al. [27] show that the magnitude of CT between molecules is equal

to or greater than the change in atomic partial charges upon polarization for ions and

neutral molecules.

CT energy has been included in a variety of energy decomposition (ED) methods.[3]

Because there are no quantum operators for the energy components (only the total en-

ergy), ambiguity exists in how to divide up the energy contributions. Thus, what exactly

CT energy refers to and how much energy per electron transferred vary between the meth-

ods. As an example, in water dimers, ECT is only 20% of the total interaction energy in

the Morokuma scheme and perturbation-based analyses but the dominant term (up to

60%) in natural energy decomposition analysis (NEDA, part of the natural bond order

(NBO) analysis) and semiempirical divide and conquer decomposition (SDCD).[5, 15] The

magnitude of CT energy varies with the system type, and it can be less than, greater than,

or equal to the polarization energy.[3]

Morokuma [28] includes a CT term in his energy decomposition scheme. CT is

defined as the movement of electrons from occupied orbitals of one molecule to the unoc-

cupied orbitals of another molecule. ECT is defined as the difference in interaction energy
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between a complex in which electrons are allowed to delocalize and a complex in which

this is prohibited.[28]

In Intermolecular Perturbation Theory (IMPT) [29] defines induction energy as a

‘‘term involving one-electron excitations ... from on of the occupied orbitals to a virtual or-

bital on the same molecule.’’ When molecules are close together, the induction in modified

by the CT term. In this case, the excitation is from the occupied orbital of one molecule to

the virtual orbitals of the other molecule. The functional form of ECT = −Ber−ρ(Ω) where B is

a parameter, r is the distance, and ρ(Ω) is an orientational term.[29] Since the amount of

CT is also exponentially dependent on distance, the relation between energy and amount

of CT should be linear. In Stone’s scheme the proportionality is approximately 42 kcal/mol

per electron transferred.

Most other energy partitioning schemes [3, 30, 31, 32] are based on one of the

above concepts. Debate rages over which ED method is best.[3] Most have some draw-

backs, typically related to the handling of basis sets or their convergence. Many of the

methods can only use single-determinant (Hartree-Fock) wavefunctions and so neglect

correlation.[1, 3, 5, 29]

1.2.2 Experiment

Few experiments give direct access to atomic partial charge or charge transfer

values.[33] Bader’s atoms in molecules (AIM) method can be applied to experimental elec-

tron density from X-ray crystallography.[34] X-ray absorption spectroscopy (XAS) and

photoelectron spectroscopy (PES) probe mixing between the ligand electrons and metal

orbitals (i.e. covalency or CT).[35] CT was shown to alter the spectrum of Mg2+ in water,

compared to Ca2+.[36]

The difference in dipole moment of a dimer versus the geometric sum of the dipoles

of the isolated monomers could, in theory, be used to estimate CT if the change in

· 4 ·



dipole of the monomers in the complex can be accounted for; however, this is usually

not possible.[33]

A method exists to estimate CT from nuclear quadrupole coupling constants (aka

hyperfine structure).[33] In molecular beam (MB) scattering experiments, the quantum

integral cross section Q is measured as a function of beam velocity v.[8] The pattern

of ∆Q(v) due to ‘‘glory’’ quantum interference depends on the depth and location of the

potential energy minimum. The average cross section Q̄(v) is related to the strength of

the long-ranged interaction. The information obtained from MB experiments is similar

to that of nuclear quadrupole coupling. The MB experiments are combined with high-

level ab initio calculations of electron density distribution. The CD method considers the

difference between the charge distribution in a dimer versus the monomers. Systems that

have been studied with this method are mainly water or ammonia bound to noble gases

or diatomic gases; such systems were chosen because electrostatic effects are minimal,

allowing for more clear analysis of CT. Because van der Waals (vdW) terms are similar in

these systems, deviation from vdW plus induction is attributed to CT. For example, an

improved Lennard-Jones (ILJ) [37] model fits the Ne-water interaction well but fails for

the Xe-water interaction for which the potential energy minimum is lower than predicted

by ILJ.[8]

A model for ECT is proposed in Ref. [8] in which ECT = (B/I)e−A
√
I where I is the

ionization potential of the electron donor, and A and B are parameters. The estimated

energy stabilization due to CT is ≈58 kcal/mol per electron transferred.[8] Such a large

energy contribution reproduces the interaction potentials of water with noble gases and

molecular hydrogen calculated from experiment [38, 39, 40, 41] though slightly larger

than from SAPT(DFT) (version CT-SM09).[8, 42] This energy contribution is larger than

the Coulombic energy expected for point charges of the same magnitude separated by the

same distance. The stabilization is instead due to the decrease in kinetic energy of the
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electrons when they delocalize over the larger system, in the same manner as seen in

covalent bonds.[8]

Using the CD method, Pirani et al. find CT from ammonia and water to the hydrogen

molecule of 0.0024 and 0.0029 e, respectively.[41] These values are of the same order of

magnitude as AIM values.

Vibrational spectra can be interpreted in terms of CT.[15, 43, 44, 45] In vibrational

spectroscopy, hydrogen bonding in a complex of the form X-H·Y results in lengthening

(weakening) of the X-H bond, which in turn results in a red-shift in the X-H vibrational

frequency (compared to the monomer).[22] Typically, this is interpreted as due to CT from

Y to X. The electron density is transferred into the X-H σ* anti-bonding orbital. There are

also rare cases of blue-shifted HB’s. In these cases, electron density is shifted to a distant

part of the HB donor, resulting in a shortening of the X-H bond.[22]

Thompson and Hynes show that without including CT in a model of vibrational

frequencies, the frequency shift upon hydrogen bonding is too small.[15] Robertson et

al.[43] show that CT is the source of differences in the spectra of NO−·H2O and O−2 ·H2O.

They estimate that at least half of the red-shift in O−2 ·H2O is due to CT.[43] The lack of CT

explains the weakness of the red-shift in NO−3 ·6H2O complexes.[44]

Infrared (IR) intensities reflect the electronic structure.[46] Because CT alters the

dipoles in a system, it is expected to alter IR intensities.[47] The correlation between

atomic charge and IR intensity is expected to be high when contributions from charge

flux and dipole flux to the dipole moment derivatives are small.[46] Calculations using

the QTAIM/CCFDF framework show that those fluxes are large contributors to the IR

intensity and so the correlation between IR intensity and QTAIM charges is low.[46]

In Raman spectra, the red shift in X-H stretch frequency due to CT is also ob-

served. However, the Raman intensity is dependent on polarizability of halide solutes, not

CT.[48] CT from halides to water does alter the H-O-H bend angle of water and causes an

increase in Raman intensity for the water bending mode.[45] Further studies of halides in
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water show that the preresonance Raman cross section of water is increased by CT from

halides.[49]

1.3 Why is CT important?

Though the amount of electron density shifted between the pairs is generally small

(< 0.1e), CT has been posed as a possible explanation for: specific ion effects,[50] ion

channel selectivity,[18] the electrostatic potential of biomolecules,[6] and electrophoretic

mobility of hydrophobic particles in water,[51, 52] among others.

The study of CT in large systems has been limited by the high computational

cost of ab initio molecular dynamics (AIMD).[9, 26, 53, 54] Recently, classical point-

charge models which include CT have been developed for molecular mechanics (MM)

calculations.[2, 55] These models describe properties of water and ions that are in agree-

ment with experiment and ab initio methods. In particular, the charge of waters and ions

in bulk and the charge of the solvation shells around ions are the same as in AIMD.[2, 26]

Additionally, the use of potential functions allows for easy separation of the energy con-

tributions of CT and its effect on the Coulombic energy.

The importance of CT in a particular system is often quantified by comparing the

CT energy and the polarization energy. Generally, chemical intuition can give a reasonable

impression of how polarizable a system is. By comparing the CT energy, we can find out

if CT is more or less important than polarization. For example, benzene is polarizable. In

complex with cations, the CT energy is much less than the polarization energy. However,

in complex with transition metal ions, the CT energy is greater.[3] In another example, the

water-zinc CT energy is significant when few waters are present but decreases, relative to

the polarization energy, as more waters are added.[3]
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1.3.1 Previous Studies of CT

Some studies are bringing to light the consequences of CT. Most of the following

studies are quantum mechanics studies, which prohibit large system size or long sim-

ulation times. Speed is gained by using semi-empirical methods but can also result in

loss of accuracy. In depth discussion of the advantages and disadvantages of the vari-

ous methods are carried out elsewhere [56] and are beyond the scope of this discussion.

Nevertheless, whatever the quantitative accuracy, the qualitative results from different

methods are expected to be important.

Mo and Gao [57] use BLW-ED to show that ECT is linearly correlated with qCT in

Lewis acid-base complexes with 234 kcal/mol per electron transferred. Electron density

is transferred from the base to the acid. Polarization and CT make approximately equal

contributions to the induced dipoles. Thus, experiments on nuclear hyperfine structure

overestimate CT, due to their neglect of polarization.[57]

In a later study, Mo and Gao [58] find -0.022e and +0.025e transferred from acetate

and methylammonium ions to water, respectively. From this, they claim that polarization

is the main many-body effect for acetate and methylammonium ions. The polarization of

the waters by the ion is the main contributor. This contrasts with larger amounts of CT

found by van der Vaart and Merz [5] for the same ions. They find -0.0475e and +0.0511e

from acetate and methylammonium ions to water, respectively, at the MP2/aug-cc-pVTZ

level with the same charge partitioning method.

In studies of proteins in water, Nadig et al.[59] find 2e are transferred from CspA

protein to its hydration shell. For dimers of amino acid mimics and water (including

acetate and methylammonium ions), the CT energy is double that of the polarization

energy.[59] Polarization and CT are more significant for charged residues of CspA than for

neutral residues.[7] Polarization is more important for the protein and affects the neutral

residues more than CT. However, CT has more effect on the water surrounding CspA than

polarization.[7]
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Komeĳi et al.[60] find CT from the neural ubiquitin protein to water. They show

that this CT increases the protein’s dipole moment. Additionally, CT between the solvent

and protein stabilizes the protein.[60] Anisimov, Bugaenko, and Cavasotto,[61] while dis-

cussing the drawbacks of semi-empirical methods, support the qualitative conclusions

of Komeĳi et al. They especially emphasize the role CT plays in reducing the Coulombic

attraction in salt bridges and the ability of neutral amino acids to become charged.[61]

Anisimov and Bliznyuk [6] find large CT from the GroEL-GroES chaperonin tetramer

to water. They also consider the charge distribution of individual amino acids. The neu-

tral amino acids have an average charge of zero, since they are equally likely to accept

or donate charge (over all the various orientations within the tetramer). In contrast, the

charged amino acids have a non-integer average charge. The cationic Arg and Lys have

charges around +0.91e, and the anionic Asp and Glu have charges around -0.84e.[6]

Church et al.[62] find that polarization and CT are equally important to electrostat-

ics in the interaction of Cl− with neutral amino acids in the ClC transport protein binding

site. Without polarization and CT, those interactions would be repulsive. Only for Cl−

interactions with cationic amino acids was electrostatics the dominant force. Cl− loses

about 25% of its charge from lone pair orbitals to X-H anti-bonding orbitals.[62]

In a de novo designed di-zinc metalloprotein (DFsc), CT is shown to be essential for

the asymmetric coordination of the zinc ions.[63]

CT in concentrated NaCl solution was studied by Sellner, Valiev, and Kathmann.[53]

They find that ion charges are not equal to ±1e, nor are they equal and opposite. The

chloride charge varies with NaCl concentration, and the water molecules become neg-

atively charged overall. Most of the negative charge is concentrated in the ions’ first

solvation shells. The sodium charge is less sensitive to concentration or its local solvation

structure.[53]

Most recently, Yao, Kanai, and Berkowitz [64] used our model to study the diffusion

of ions in water. They find that diffusion in the CT model agrees with ab initio molecular
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dynamics (AIMD). The CT model allows the water dynamics to depend on ion type, whereas

this behavior is not captured in fixed-charge or polarizable FF. In AIMD, anions increase

the diffusivity of water, and cations decrease it. A net negative charge within the water

decreases the hydrogen bond strength/lifetime, whereas the opposite is true for a net

positive charge.[64]

1.4 Previous Methods for CT Force Fields

When developing potential models for molecular simulations, assigning a neutral

charge to a molecule, or assigning an integer charge to an ion is a choice, made for

convenience or based on intuition. It is more physically realistic to assign charges based

on the electron density, resulting in molecular or ionic charges which depend upon their

environment. The local rearrangement of charge affects both short- and long-ranged

interactions. Such rearrangements may be within a molecule (polarization) or between

molecules (charge transfer).

The inclusion of multi-body effects in molecular dynamics (MD) force fields is usu-

ally accomplished by adding polarizability.[65, 66] A multitude of dipole-polarizable force

fields have been developed both for neutral molecules and ions.[67, 68, 69, 70, 71, 72]

Some potentials also include polarizable quadrupoles.[73, 74] However, CT raises the

question: Are we even getting the monopoles correct?

A few models have been developed which include charge transfer effects, often

by including a charge transfer contribution to the energy but not actually changing the

particles’ charges.[73, 75, 76, 77, 78, 79] Charge-transfer models are largely derived from

ab initio calculations. They have been primarily applied to dimers and small clusters but

are fairly complex.[15, 73, 76, 80, 81] In a simpler technique used for ionic liquids, charge

transfer has been added by assigning non-integer, but geometry independent, charges to

the ions.[82] Such a method also can account for effective (average) polarization.[83]
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Some methods include CT by getting atomic charges from QM calculations during

the simulation. In the Adaptive Polarized Protein-Specific Charge (APPC) method,[63]

the dynamics are paused every so often, and the charges are reset based on their QM

values for that conformation. This allowed use of the standard Amber FF without refitting

of parameters.[63] In the X-pol method,[84] the system is split into fragments, and QM

charges are calculated for each fragment at each time step. Inter-fragment electrostatics

are handled in a manner similar to QM/MM. However, this does not allow charge to move

between fragments.

The Sum of Interacting Fragment Ab Initio (SIBFA) FF [85] produces CT energies

which are in good agreement with ab initio values. The energy is influenced by the ion-

ization potential of the electron donor and the electron affinity and ‘‘self-potential’’ of the

electron acceptor. Each of these values are modified by the local electrostatic environment.

Reactive force fields may account for CT effects. As a reaction occurs, the partial

charges of the reactants changes. This behavior is captured in the Variable Charge Central

Force (VCCF) model [86] and the ReaxFF method.[87] Multi-State Empirical Valence Bond

(MS-EVB) models [88] implicitly include CT due to the superposition of states.

1.4.1 Our Model

A new method for treating charge transfer has been developed recently for liquid

water [55] and ions in water.[2] The Discrete Charge Transfer (DCT) method transfers

a fixed amount of charge from one particle to another, if the two particles are within a

prescribed distance. Though CT is most accurately modeled as an exponential, a switching

function is used so that the amount of charge transferred goes smoothly to zero, thereby

preventing long-ranged CT. The DCT model avoids the problems which have plagued other

attempts at creating charge-transfer models,[81, 89, 90, 91] such as systems becoming

conductive, and charge transfer at large distances and in the wrong direction. The DCT

model is also an efficient method to treat charge transfer when simulating large systems.

· 11 ·



Bibliography

[1] A. J. Misquitta, J. Chem. Theor. Comput. 9, 5313 (2013).

[2] M. Soniat and S. W. Rick, J. Chem. Phys. 137, 044511 (2012).

[3] G. A. Cisneros, M. Karttunen, P. Ren, and C. Sagui, Chem. Rev. 114, 779 (2014).

[4] Y. Mo, J. Gao, and S. D. Peyerimhoff, J. Chem. Phys. 112, 5530 (2000).

[5] A. van der Vaart and K. M. Merz, Jr., J. Chem. Phys. 116, 7380 (2002).

[6] V. M. Anisimov and A. A. Bliznyuk, J. Phys. Chem. B 116, 6261 (2012).

[7] A. van der Vaart and K. M. Merz, Jr., J. Am. Chem. Soc. 121, 9182 (1999).

[8] D. Cappelletti, E. Ronca, L. Belpassi, F. Tarantelli, and F. Pirani, Acc. Chem. Res.
45, 1571 (2012).

[9] S. Varma and S. B. Rempe, Biophys. J. 99, 3394 (2010).

[10] Z. Zhao, D. M. Rogers, and T. L. Beck, J. Chem. Phys. 132, 014502 (2010).

[11] A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 126, 144311 (2007).

[12] D. Majundar, J. Kim, and K. S. Kim, J. Chem. Phys. 112, 101 (2000).

[13] S. S. M. C. Godinho, P. Cabral do Couto, and B. J. Costa Cabral, Chem. Phys. Lett.
399, 200 (2004).

[14] M. Tanaka and M. Aida, J. Solution Chem. 33, 887 (2004).

[15] W. H. Thompson and J. T. Hynes, J. Am. Chem. Soc. 122, 6278 (2000).

[16] A. Trzesowska and R. Kruszynski, J. Mol. Struct. (Theochem) 714, 175 (2005).

[17] I. S. Ufimtsev, N. Luehr, and T. J. Martinez, J. Phys. Chem. Lett. 2, 1789 (2011).

[18] D. Bucher et al., Biophys. Chem. 124, 292 (2006).

[19] P. Huetz, C. Boiteux, M. Compoint, C. Ramseyer, and C. Girardet, J. Chem. Phys.
124, 044703 (2006).

[20] S. Kraszewski, C. Boiteux, C. Ramseyer, and C. Girardet, Phys. Chem. Chem. Phys.
11, 8606 (2009).

[21] J. Schmidt et al., J. Phys. Chem. B 114, 6150 (2010).

· 12 ·
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Chapter 2

Quantum Chemical Characterization of Charge Transfer

Charge transfer was recognized as a contributor to molecular binding as early as

the 1930’s by Mulliken.[1] However, his scheme to calculate partial charges of atoms in

molecules (and thus the amount of CT) suffers from severe deficiencies.[2] Subsequently,

a variety of methods have been proposed for calculating partial atomic charges, each with

its own advantages and drawbacks.

We choose to use Bader’s Quantum Theory of Atoms in Molecules (QTAIM or

AIM).[3] In AIM, originally developed for X-ray crystallography studies, the electron den-

sity is measured directly. In the absence of an X-ray structure, the electron density can

be calculated with quantum mechanics. With a reasonable definition of atomic volumes,

the electron density within a region can be summed and assigned to an atom.[2] For more

details, see Section 2.1 below.

This chapter deals with some practical considerations of CT calculations, in order

to establish ‘‘best practices’’ for them.

2.1 Quantum Theory of Atoms in Molecules

In quantum mechanics, a fundamental principle is that everything about a system

is know if its wavefunction Ψ is known. In chemistry, we often wish to break the total
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system into smaller pieces, such as molecules or atoms. If there is such a breakdown, the

wavefunction itself must predict a unique partition and fully describe each subsystem.[3]

With the proper choice of boundary surfaces between subsystems, the total system

can be partitioned in a physically reasonable manner.[3] While the wavefunction is not

an observable, it’s square, the electron density ρ = Ψ2 is. The topology of ρ can be used

to define the subsystems, without resorting to orbitals (another non-observable) or extra

assumptions. The boundaries of each atom are the ‘‘zero-flux surface’’ surrounding its

nucleus. Mathematically, this boundary surface is

{ ~r | ∇ρ · ~n = 0 } . (2.1)

This is the set of all points ~r for which the gradient of the electron density ∇ρ dotted with

the unit vector normal to the surface ~n is zero. This occurs when there is a minimum in

the electron density, between two (or more) nuclei. Such a surface defines the volume Ωk

for each nucleus.[2]

The charge qk within each volume is found by subtracting the sum of the electron

density within the volume from the nuclear charge Zk. Mathematically,

qk = Zk −

∫
Ωk

ρ(~r)d~r . (2.2)

Practically, this means that the charge of a molecule qm is the sum of the charges of all

its constituent atoms,

qm =

M∑
k

qk . (2.3)

CT is then the difference between the molecular charge from AIM and the molecular formal

charge,

qCT = | qformal − qm | . (2.4)
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2.1.1 Comparison to Other Charge Partitioning Methods

Table 2.1: NaCl CT
using different charge
partitioning methods
with STO’s.

Method qct (e)

AIM 0.033
MDC-m 0.006
MDC-d 0.074
MDC-q 0.010
Mulliken 0.046
Hirshfeld 0.158
Voroni 0.090

In Table 2.1, different charge partitioning are compared.

These CT amounts are for NaCl optimized with M06-2X/ATZP

in ADF. Note that ADF uses Slater-type orbitals (STO’s).

In Table 2.2, the charge partitioning methods are compared

with GTO’s. The values are for NaCl at the HF/aug-cc-pvTZ

level.

In a study of ionic liquids, Bader charges are 15% larger

than ChelpG charges.[4] Szefczyk, Sokalski, and Leszczynski

[5] compare partial charges from AIM, ChelpG, and NPA to experimental estimates from

nuclear quadrupole coupling. For Lewis acid-base adducts, they find that ChelpG has

the lowest percent error (around 15%). AIM has around 50% error (both with cc-pVQZ).

However, Zhao, Rogers, and Beck [6] find that ChelpG gives unreasonably large amounts

of CT in anion-water clusters. Adding a point dipole to the chloride anion brings the

ChelpG calculation closer to the AIM values. Because ChelpG is an ESP-based method,

charges for buried atoms, such as the ion in the center of cluster, are not very reliable.[2]

Table 2.2: NaCl CT using differ-
ent charge partitioning methods
with GTO’s.

Method qct (e)

AIM 0.082
MK 0.1497
MK +D 0.1498
MK +AD 0.0944
MK +D + AD 0.0944
ChelpG 0.1591
ChelpG + D 0.1498
ChelpG + AD 0.117
ChelpG + D + AD 0.117

2.2 Dependence on Basis Set

Stone[7] warns against confusing CT

with basis set superposition error (BSSE).

The use of small basis sets is expected to

result in artificially large CT. However, with

an infinite basis set, BSSE approaches zero,

whereas CT approaches a (non-zero) constant.[8]
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Table 2.3: CT of NaCl convergence
with STO basis sets.

basis distance qct
Å e

SZ 2.206 0.135
TZP 2.358 0.110
TZ2P 2.358 0.101
ATZP 2.359 0.105
ATZ2P 2.359 0.105
QZ4P 2.359 0.099
ET-QZ3P 2.358 0.104

With STO’s, the amount of CT converges at the

TZP level when evaluated with M06-2X.

Figure 2.1 compares several different families

of GTO’s. All the CT values are for NaCl at a

distance of 2.93Å at the HF level in NWChem.

Pople’s 6-31G basis set family includes: 6-

31+G*, 6-311++G(2d,2p), 6-31G(3df,3pd), and 6-

311++G(3df,3pd). The ‘‘+’’ adds diffuse functions; The asterisk or ‘‘(a,b)’’ are for extra ‘‘zeta’’

basis sets, where a is for heavy atoms, and b is for hydrogens.
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Figure 2.1: CT of NaCl convergence
with GTO basis sets.

The Dunning basis set family includes:

cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, cc-

pCVDZ, cc-pCVTZ, cc-pCVQZ, cc-pCV5Z, aug-

cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, aug-cc-

pCVDZ, aug-cc-pCVTZ, and aug-cc-pCVQZ.

The ‘‘V’’ is for extra zeta’s on the valence elec-

trons only; The ‘‘CV’’ has extra zeta’s on the core

and valence electrons; ‘‘aug’’ adds diffuse func-

tions.

The amounts of CT are fairly consistent in the range of 50-70 basis functions. The

single-zeta basis sets often show more CT than double- and triple-zeta basis sets. The aug-

cc-pvDZ and aug-cc-pvTZ sets, which have 29 and 59 basis functions, respectively, are

well-converged. A problem arises when more than 70 basis functions are present; in this

case, larger amounts of CT are seen again. However, these results are less trustworthy

than those with fewer basis functions because the sum of the total electron density is

greater than the total number of electrons should be.

Note that the STO’s converge well, and summing over their total electron density

does not result in extra electrons. Indeed, the STO’S are expected to be more consistent
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Figure 2.2: Comparison of CT with HF, MP2, and DFT.

in their CT predictions due to their more realistic decay in orbital probability far from the

nucleus and better description of the electron density peak near the nucleus. However,

efficient implementation of STO’s is only available in a single software package to date.[9]

2.3 Dependence on Level of Theory

Table 2.4: CT of NaCl with different
density functionals.

DF distance qct
Å e

KMLYP 2.342 0.100
M06 2.374 0.103
M06-2X 2.359 0.105
M06-HF 2.376 0.107
TPSSH 2.377 0.114
PBE0 2.367 0.116
CAM-B3LYP 2.363 0.117
B3LYP 2.375 0.123
X3LYP 2.373 0.126
BLYP 2.391 0.142
B3LYP-GD3BJ 2.390 0.148

In Table 2.4, CT from various density func-

tionals is arranged in order from least to most

CT. All calculations are done with the ATZP STO

in ADF. There is a 0.05e spread in the amounts

of CT. No pattern emerges with respect to the

‘‘level’’ of DFT, e.g. GGA vs. hybrid GGA vs.

meta-GGA.

As shown in Figure 2.2, CT typically in-

creases in the order of HF < MP2 < DFT. This
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is consistent with the known under-polarization

of HF, due to lack of electron correlation, and the known over-polarization of DFT, due

to self-interaction error.[2] CT from MP2 is 20 ± 8% greater than from HF; CT from DFT

is 35 ± 16% greater than from HF. Because MP2 calculations are more computationally

expensive, it is important to be able to estimate these values from lower levels of theory.

Studies which have compared partial charges from CCSD, CCSD(T), and MP2 generally

find no difference between the methods.[10, 11] Similarly, quantum mechanical calcula-

tion of polarizability is shown to be most accurate at the MP2/aug-cc-pVTZ level, with no

further gain in accuracy when using CCSD.[11]

PBE0 is used for all systems involving Al3+ and Sr2+. TPSS is used for all Zn2+

and Mg2+ systems. M06-2X is used for the remaining systems. The smallest difference

between HF and DFT is found with the M06-2X functional; however, it is not clear if this

difference is due to the functional or the use of STO basis sets. This is consistent with

Table 2.4, in which the M06 family is shown to have lower amounts of CT than other

functionals.

2.4 Other Methodological Considerations
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Figure 2.3: CT has an exponential
decay with increasing distance.

The amount of CT depends exponentially on

distance, which is depicted in Figure 2.3. This

trend is seen for both ion-ion and ion-water

pairs. In many cases, the decay is very slow,

and so charge is transferred even when the

monomers are 5 or more Å away. However, CT

at this distance is not relevant to condensed

phases. So, in the MD model, CT is cut off at

shorter distances than this.
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(a) (b)

Figure 2.4: Ion-NMA structures. (a) shows in-plane displacement of the ion. (b)
shows out-of-plane displacement of the ion.

In interactions between molecules, the angle can affect the interaction in addition

to the distance. How much does the angle affect CT? To determine this, we used a

cation coordinated to N-methylacetamide (NMA). Figure 2.4 shows the in- and out-of-

plane displacements of the ion. Only the angle varies; the distance is kept constant.
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Sodium-NMA
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Figure 2.5: CT depends strongly on
distance but not on angle.

Figure 2.5 compares the CT between sodium

and NMA for different distances and angles. The

angle is from the carbonyl carbon to the car-

bonyl oxygen to the ion. The charge of sodium is

almost the same despite variation in the angles

from -180◦ to +180◦. In contrast, the charge

varies greatly with small changes in distance

from the carbonyl oxygen to the ion. CT does reach a maximum when the ion is co-

ordinated in the region of the oxygen lone pairs. However, this difference is still minor
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compared to the distance dependence. Thus, a model that depends only on distances and

neglects angles is reasonable from this data.

2.5 CT Data

The following tables show the amounts of CT at the clusters’ minimum-energy

geometry. Additional CT data can be found in Appendix A.

2.5.1 Monovalent Cations

Table 2.5: Distances in MX alkali-halide
dimers in Å.

F Cl Br I OH2

Li 1.558 2.020 2.175 2.410 1.815
Na 1.920 2.35 2.506 2.740 2.17
K 2.186 2.71 2.850 3.100 2.67
Rb 2.379 2.886 3.057 3.373 2.840
Cs 2.434 3.009 3.194 3.563 2.953

The methods for each cluster

are in Table B.1. Additionally, all ref-

erences relevant to the methods can be

found in Appendix B. The alkali-halide

dimer distances are listed in Table 2.5,

and CT is listed in Table 2.6.

Table 2.6: Amounts of CT MX alkali-halide
dimers in e.

F Cl Br I OH2

Li 0.055 0.072 0.073 0.079 0.034
Na 0.057 0.082 0.091 0.100 0.028
K 0.072 0.104 0.130 0.109 0.021
Rb 0.049 0.070 0.081 0.163 0.009
Cs 0.048 0.066 0.074 0.108 0.011

For most of the alkali-halide

dimers, qCT increases going down the

halide series. This trend is broken

with K+, for which CT from Br− is max-

imum and CT from I− then decreases.

Going down the alkali metal ion group,

CT increases to K+, where it reaches a maximum, then decreases further down the group.

The exception to this is with the RbI dimer, in which CT from I− is greater to Rb+ than to

K+. The CT from water decreases going down the alkali metal ion group, with a minimum

for Rb+.
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2.5.2 Divalent Cations

Single counter-ion.

Table 2.7: Distances in [MX]+ alkaline earth-halide
dimers in Å.

F Cl Br I OH2

Be 1.3260 1.7260 1.8706 2.0712 1.4912
Mg 1.7265 2.1243 2.2727 2.4670 1.9329
Ca 1.8647 2.3128 2.4666 2.6857 2.2200
Sr 1.9920 2.4633 2.6135 2.8997 2.3917
Ba 2.1007 2.5907 2.7508 3.0372 2.5829

The methods for each

cluster with alkaline earth met-

als are in Table B.2. The dis-

tances for alkaline earth-halide

dimers are listed in Table 2.7,

and CT is listed in Table 2.8.

Table 2.8: Amounts of CT in [MX]+ alkaline earth-
halide dimers in e.

F Cl Br I OH2

Be 0.1347 0.1936 0.2238 0.2819 0.0957
Mg 0.1090 0.1981 0.2430 0.3187 0.0745
Ca 0.1681 0.2171 0.2367 0.2878 0.0710
Sr 0.1774 0.2518 0.2463 0.3485 0.0536
Ba 0.2962 0.1370 0.3992 0.3287 0.0851

Again, the amounts of

CT tend to increase as one

moves down the halide group.

However, CT in [SrCl]+ is

greater than in [SrBr]+. Addi-

tionally, CT is at a minimum

for [BaCl]+ in the barium series.

Moving down the alkaline earth metal ion group, CT trends are inconsistent for the dif-

ferent halide series. For F−, CT has a minimum with Mg2+. For Cl−, CT increases moving

down the group, but drops off steeply with Ba2+. CT from Br− increases down the series

except when paired with Ca2+. CT from I− also increases going down the series, except

when paired with Mg2+.
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Two counter-ions, i.e. a neutral system.

Table 2.9: Distances in MX2 alkaline
earth-halide trimers in Å.

F Cl Br I

Be 1.3910 1.8040 1.9550 2.1630
Mg 1.7695 2.1865 2.3354 2.5435
Ca 2.0175 2.4619 2.6125 2.8333
Sr 2.1556 2.6227 2.7762 3.0380
Ba 2.2842 2.7801 2.9375 3.2110

In order to study a neutral system,

the divalent cation is paired with two halide

anions, placed symmetrically on either side

of the cation. The distances for alkaline

earth-halide trimers are listed in Table 2.9,

and CT is listed in Table 2.10.

Table 2.10: Amounts of CT in MX2 al-
kaline earth-halide trimers in e.

F Cl Br I

Be 0.0940 0.1215 0.1313 0.1479
Mg 0.0782 0.1174 0.1328 0.1583
Ca 0.0934 0.1252 0.1374 0.1661
Sr 0.1011 0.1577 0.1458 0.2013
Ba 0.1583 0.0827 0.1473 0.2097

Comparing Table 2.10 and Ta-

ble 2.8, it is clear that CT per halide ligand

is reduced when two halides are present.

The trends moving down the halide group

are maintained here. CT increases as

the halide gets larger, with the exceptions

mentioned above continued here for SrCl2,

SrBr2, and BaCl2. As for the halides, F− has the same trend as before, with a minimum in

CT for Mg2+. CT from Cl− does not have a consistent trend. It decreases moving from Be2+

to Mg2+, then increases from Mg2+ to Ca2+ to Sr2+, then decreases drastically from Sr2+ to

Ba2+. CT from Br− and I− increase monotonically moving down the alkaline earth series.

Zinc

Table 2.11 and 2.12 show distances and CT, respectively, for zinc-halide clusters.

Table 2.11: Distances in Zn-X zinc-
halide clusters in Å.

nX F Cl Br I

1 1.7049 2.068 2.1796 2.3897
2 1.7223 2.111 2.2145 2.4328

Calculations with Cl− are done in

ADF. The optimizations are performed with

M06-2X. For one Cl−, the QZ4P basis set

is used; because of computational limita-
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tions, the smaller ATZP basis is used for two Cl−. The CT amounts are from HF-level

calculations. Other calculations are done in Gaussian09. The optimizations are done

with PBE0, and the CT amounts are from HF. The AIM calculations are done with AIMAll.

Zn and I use the ECP’s MDF10 and MWB46, respectively, and aug-cc-pvTZ is used for F

and Br.

Table 2.12: Amounts of CT in Zn-X
zinc-halide clusters in e.

nX F Cl Br I

1 0.2921 0.519 0.6739 0.9556
2 0.2070 0.327 0.3957 0.5429

CT increases as the halides become

larger. Note the large amount of CT for

[ZnI]+: the iodide becomes nearly neutral

and reduces the zinc charge by half. Such

strong CT is reduced when another iodide is added, but charges on iodide ions are half of

what is expected based on the ion’s formal charge.

2.5.3 Trivalent Cations

Table 2.13: Distances in Al-X aluminum-halide clus-
ters in Å.

nX F Cl Br I OH2

1 1.5813 1.9919 2.1499 2.3561 1.7372
2 1.5955 2.0032 2.1533 2.3628
3 1.6376 2.0756 2.2354 2.4600

The trivalent cation Al

is also investigated. All clus-

ters are optimized with PBE0 in

Gaussian09. The CT amounts

are from MP2 calculations, analyzed with AIMAll. The basis sets are: aug-cc-pvTZ for F,

Cl, Br, and O; the ECP MWB46 for I; and cc-pvTZ for Al and H.

Table 2.14: Amounts of CT in Al-X aluminum-halide
clusters in e.

nX F Cl Br I OH2

1 0.2891 0.5848 0.7420 1.0434 0.1811
2 0.1670 0.2645 0.3148 0.4119
3 0.1156 0.1675 0.1950 0.2592

Table 2.13 and 2.14

show distances and CT, respec-

tively, for zinc-halide clusters.

Again, CT increases moving

down the halide series. Fur-

thermore, the amount of CT per halide ligand decreases as more halides are added.
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2.5.4 Halide Anions

Dimers are optimized with the M06-2X density functional. The STO basis set

is QZ4P, and CT amounts are calculated at the Hartree-Fock level of theory with the

Amsterdam Density Functional (ADF) software. [12, 13, 14, 15, 16, 17] For comparison,

the optimization is repeated with M06-2X with GTO’s. The AIM calculations are based on

MP2 single-point energies. The basis sets are: aug-cc-pvDZ for O, F, Cl, and Br; cc-pvDZ

for H; and ECP MWB46 for I. The ion-hydrogen distances are larger for the GTO basis

sets.

CT follows basically the same pattern for STO’s and GTO’s, where F− transfers the

most charge, and Cl−, Br−, and I− have nearly the same amount of CT in the ion-water

dimers. Iodide is usually expected to have the maximum amount of CT due to its small

electron affinity but the ion-water distance is also larger for this ion.[18] The energy of

the CT state is lower for fluoride due to its higher homolytic bond dissociation energy (the

determinant of relative acidity). [18]

The same basis sets and MP2 are used in the calculations with 6 waters. The

clusters are optimized with PBE0. Ion-hydrogen distances increase in the clusters, with a

standard deviation of 0.2 Å. Interestingly, the trend for CT reverses in the 6-water clusters,

with I− transferring the most charge per water molecule. This may be due to a smaller

difference between ri−H in the dimer and the cluster with I−. These results contradict those

of Ramesh, Re, and Hynes,[19] who find that F− has the greatest amount of CT in the 6-

water clusters. Note that the experimental change in O-H stretch frequency decreases

down the halide series.
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Table 2.15: Halide-Water CT.

1 water STO 1 water GTO 6 waters GTO
ri−H ri−O qCT ri−H ri−O qCT < ri−H > qCT

Ion Å Å e Å Å e Å e

F 1.313 2.398 0.076 1.325 2.408 0.108 1.810 0.023
Cl 2.157 3.114 0.051 2.165 3.118 0.065 2.419 0.031
Br 2.394 3.323 0.048 2.416 3.324 0.061 2.621 0.032
I 2.714 3.583 0.047 2.792 3.601 0.070 2.961 0.037
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Chapter 3

The Model

3.1 The Potential

The model for ions described here expands on the basic model of ions, which

includes only charge, dispersion, and repulsion interaction. Multi-body effects are incor-

porated via polarizability and charge transfer for both ions and water. Polarizability for

the ions is treated using the Drude oscillator model.[1, 2] The total energy for the system

is described by equation 3.2, below, which includes a Lennard-Jones (LJ) potential for

dispersion and repulsion energies, the Coulombic energy between charge sites, the charge

transfer (CT) energy, and the polarization energy,

Utotal =ULJ + UCoulomb + UCT + Uself,Drude + Uself,FQ (3.1)

=

N+M−1∑
i=1

∑
j<i

4ϸ ( σriγjδ
)12

−

(
σ

riγjδ

)6 +
∑
α�

qiαqj�
riαj�

Sij(riαj�)


+

N+M−1∑
i=1

∑
j<i

(
−µCTij |q

CT
ij | +

1
2
ηCTij (qCTij )2

)
(3.2)

+

M∑
m=1

1
2
kDx

2
mD +

N∑
l=1

(∑
α

χ̃0
αqlα +

1
2

∑
α

∑
�

qlαql�Jα�(rlαl�) − E
gp
l

)
,
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where N is the total number of water molecules, and M is the number of ions. The indices

i and j denote separate particles, either ions or water. The indices γ and δ denote the LJ

interaction sites, which are located at ion centers and on the oxygen atom of the water

molecules. The indices α and � denote charge sites, either atom sites on water, ion centers,

or Drude charge sites. In the Drude model, both the monopole and dipole intermolecular

interactions are handled in the normal Coulomb summation. Sums over m are over ions

only, and sums over l are over waters only. Distances between charge sites are given by

riαj�.

The electrostatic interactions are damped using the function Sij, which acts only at

short range and does not disturb the long-range interactions. We use the full gas-phase

polarizability for all ions with Thole-type damping, suggested by the work of Masia, Probst,

and Rey.[3, 4] The damping is applied to all electrostatic interactions of ions (mono- and

dipole) via equation 3.3,

Sij = 1 −
(
1 +

rij
2aij

)
e−rij/aij , (3.3)

where aij is a user-defined constant, which controls the strength of damping. As in pre-

vious work, [5, 6] we set Sij = 1 for water-water interactions. Previous work using the

TIP4P-FQ model with a Drude model for chloride also damped all electrostatic interac-

tions. We find, like Stuart and Berne, that using an unscreened Coulombic interaction

between the ions and water leads to poor prediction of many properties, including the

water structure around the ion.[1]

In the charge transfer part of the equation for the total energy (Equation 3.2, above),

the negative of the Mulliken electronegativity, µCTij , represents the tendency of an atom to

attract electrons in intermolecular CT. The hardness, ηCTij , represents the atoms’ resistance

to losing electrons in intermolecular CT.[5] The charge-transfer energy, which contains

these two parameters, partially compensates for the loss of electrostatic energy upon

charge transfer. The amount of charge transferred, qCT , which depends on the pair type
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and the distance, is given by the switching function,

qCT =



QCT
ij if rij < RCT1 ,

1
2Q

CT
ij [1 + cos(π rij−RCT1

RCT2 −R
CT
1

)] if RCT1 ≤ rij ≤ R
CT
2 ,

0 if rij > RCT2 ,

(3.4)

where QCT
ij is the maximum amount of CT for each pair and depends on the pair type. The

distances RCT1 and RCT2 define where the switching function starts and ends, respectively,

for each pair type. In our potential, CT is treated in a purely distance-dependent fashion.

Charges of solvated ions are not required to be integers and water molecules can become

charged, either through charge transfer with ions or other water molecules.[6] Assigning a

maximum amount of charge transfer, QCT , prevents qCT from becoming extremely large at

short distances. The combination of R1, R2, and QCT are chosen so that qMDCT = qQMCT at the

equilibrium separation of the dimers. As the distance increases, the switching function

ensures a smooth approach to zero and prevents long-range CT. It also prevents the CT

model from becoming conductive. The switching function is the same as that used for

TIP4P-FQ+DCT and was chosen to be consistent with that model.

In the Drude model, the dipole-dipole and dipole-charge interactions are handled

in the Coulomb sums. The Drude model has an additional energy contribution based on

the polarizability of the ion, denoted at Uself,Drude in Equation 1, above. The displacement

of the Drude oscillator from equilibrium is xmD. The Drude spring constant kD was set to

1000 kcal/mol/Å2, and the Drude charge qD is determined by the equation

qD = −
√
αkD, (3.5)

where α is the polarizability. This is the same method used by Yu et al.[2] Drude oscil-

lators avoid the instabilities in point-inducible dipoles, and long-range effects are easily

incorporated into Ewald sums.
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The remaining terms are related to the polarizability of the water, which is handled

by the fluctuating charge (FQ) method.[5, 6] The parameters χ0
α and Jα� correspond to µCTij

and ηCTij , respectively, but here refer to intramolecular charge transfer. The intramolecular

charge interactions are described by the Coulomb overlap integral

Jα�(rlαl�) =

∫
drlαdrl�|φnα (rlα)|2

1
|rlα − rl� − r |

|φn�(rl�)|
2 (3.6)

of Slater functions

φα(r) = Anαr
nα−1e−ζαr , (3.7)

where Anα is a normalization constant, nα is the principal quantum number of charge site

α, and ζα is considered an adjustable parameter.

The last line of Equation 2 (part of Uself,FQ) constrains the total charge of the system

to remain constant. The term λl is an undetermined multiplier for the charge constraint,

and Ql
t is the total charge on a water molecule, as determined by the total amount of

charge transfer to and from the ions and other water molecules.

3.2 Parameterization

The adjustable parameters in this model are:

i. LJ parameters for each ion (well-depth, ϸ, and LJ equilibrium distance, σ),

ii. CT energy parameters between each pair (chemical potential, µCT , and hardness, ηCT ),

iii. CT cut-off distances for each pair(RCT1 and RCT2 ),

iv. amount of charge transfer for each pair (QCT ),

v. Drude charge for each ion (qD), and

vi. the damping constant for pairs (aij).
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Figure 3.1: Comparison of the Ion
Charge from the QM Calculations to the
MD Switching Function. The curves pic-
tured are for NaCl; the other dimers are
qualitatively similar. The red diamonds
show the absolute value of QTAIM ion
charges, which were calculated at inter-
vals of 0.1Å. The blue line represents ab-
solute values of charges of the ions from
our switching function.

Each ion has a single Drude charge

parameter and a single set of Lennard-

Jones parameters. The Lennard-Jones in-

teractions between unlike atoms use pa-

rameters from the Lorentz-Berthelot com-

bining rules. Charge is transferred from

the ion center, so the Drude charge is not

affected by CT. The charge transfer param-

eter, QCT , and the cut-off parameters are

chosen to best fit the switching function to

our electronic structure calculations.

For ion-water interactions, the

damping constant, aij, is chosen as the

minimum amount needed to prevent over-

polarization. The remaining parameters (ϸ,

σ, µCT , ηCT ) are adjusted to fit the dimer and aqueous properties. The parameters used in

the simulations are listed in Tables 3.1 and 3.2.

Ion-water parameters are fit with respect to:

i. dimer energy minimum,

ii. distance at the energy minimum of dimer,

iii. amount of charge transfer at the dimer minimum,

iv. location of the first maximum and first minimum of the radial distribution function,

and

v. the average dipole in the liquid phase (for chloride).
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The height of g(r) at the maximum and minimum and single-ion hydration free energies

were also considered in order to differentiate between parameter sets that had very similar

aqueous structure otherwise.

Once parameters were established for the ion-water interactions, additional pa-

rameters for the ion-ion interactions were determined using only the properties of the ion

dimers. For ion-ion interactions, the damping constant, aij, is chosen so that the dipole

moment of the ion pair is in agreement with experiment.

3.2.1 Automated Parameter Optimization

The parameterization of a model with so many parameters is complex. It is possible

to automate the search of parameter space for the optimal parameter set. For this, we use

the downhill simplex optimization method (SOP) of Nelder and Mead.[7][8] (Note that this

method is totally unrelated to the simplex method of linear programming.) The advantage

of SOP is that it does not use derivatives and so is faster than many other optimization

methods.

A simplex is a geometrical object which has N + 1 vertices in N-dimensional space.

Here, N is the number of parameters which need to be optimized. We take N + 1 initial

guesses at the N parameters; we use each of these guesses in the calculation of dimer and

aqueous properties. We have target properties for the dimer from ab initio calculations

and experiment. We define a difference function, m,

m =
∑
i

w2
i (pcalc,i − ptarget,i)2 , (3.8)

where w is the weight for each property pi.

We then attempt to minimized the difference function, which occurs when the

calculated and target properties are the same. Basically, the vertices except the one with

the largest difference define a polygon. A vector is calculated from the vertex with the

largest merit to the center of the polygon. In a ‘‘conservation’’ step, the vector is doubled
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Table 3.1: Lennard-Jones and Drude Parameters. The Lennard-Jones well-depth, ϸ,
and distance, σ, for interactions of ions with water are listed. The Drude charge and
polarizabilities of ions are shown. Also included are the Lennard-Jones parameters for
the TIP4P-FQ+DCT water model.[6] LJ parameters for ion-ion interactions are determined
by Lorentz-Berthelot rules.

ϸ σ qD α

kcal/mol Å e Å3

Na+ 0.0407 2.320 -0.687597 0.157
K+ 0.0497 3.030 -1.580968 0.830
Cl− 0.1490 3.720 -4.062989 5.482
I− 0.1854 4.695 -5.562578 10.275
H2O 0.2633 3.171

so that the new vertex is a reflection of the largest-difference vertex. There could also be

an ‘‘expansion’’ step, in which the vector is tripled, or a ‘‘contraction’’ step in which the

vector is halved. The new vertex is used to calculate dimer and aqueous properties. Then

the steps are repeated until the difference function converges to a minimum.[9]

While SOP is an elegant solution for quick optimization, it is in essence a trial

and error method. Especially when exploring a rough merit function surface, there is

no guarantee that the absolute minimum will be found. Indeed, the merit function sur-

face is extremely rough; changes in the fifth decimal place of parameters can result in

changes in merit in the first decimal place. However, SOP remains a useful method to find

good regions of parameter space quickly, and the merit function helps to quantify small

differences in aqueous properties.

3.3 Currently Available Parameter Sets

Tables 3.1 and 3.2 show the parameters for all members in our CT model to date.

3.3.1 Quantum Calculations and Dimer Properties

The equilibrium dimer distance and charge transfer at equilibrium are shown in

Table 3.3, where these values are compared to experiment and to other ab initio calcula-
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Table 3.2: Charge Transfer Parameters. The maximum amount of CT, the CT cut-offs, and
the energy parameters are listed for each pair. The damping for each pair is also shown.

Pair QCT rCT1 rCT2 µCT ηCT a
e Å Å kcal/mol/e kcal/mol/e2 Å

Na+ - H2O 0.033 1.7 3.3 275.33 1602.6 0.10
K+ - H2O 0.024 2.0 3.7 304.57 6306.7 0.10
Cl− - H2O 0.057 1.9 3.1 95.51 995.8 0.60
I− - H2O 0.075 2.0 3.6 26.80 -896.2 0.66
NaCl 0.090 1.8 5.0 535.35 232.4 1.175
KCl 0.085 2.0 5.5 468.63 663.9 1.164

tions. The binding energies and distance at equilibrium agree with experiment, though

MP2 results in distances slightly longer than those from experiment. Figure 3.2 compares

QM calculations to our CT (MD) model (Equation 3.4). From the QM calculations, the

amount of charge transferred is found to be distance-dependent, as shown in Figure 3.2.

This compares well with previous studies.[10, 11]

The NaCl dimer has a dipole moment equal to 9.0 Debye,[12] and the dimer bond

distance is 2.36 Å.[13] Assigning the ions charge of plus or minus one would give the pair

a dipole moment equal to 11.3 Debye. Our model transfers 0.083 e of charge from Cl− to

Na+, which reduces the dipole moment to 10.4 Debye. Choosing aij equal to 1.175 Å gives

induced dipoles of 1.42 Debye for Cl− and 0.04 Debye for Na+, reducing the total dipole to

9.0 Debye. A similar effect is found for KCl, where the charge transfer and polarizability

both reduce the dipole of the pair.

Trimers

Figure 3.3.1 shows the direction of CT between water, anions, and cations. Charge

is transferred from an anion to water or a cation. A cation will accept charge from a water,

and the hydrogen bond acceptor donates electron density to the hydrogen bond donor.

Table 3.4 shows the charge of an ion and two waters arranged as in Figure 3.3.1.

The water that is further from the cation, and only hydrogen bonded to the first water, has
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Table 3.3: Dimer Properties. The results of the present MD model are compared with
quantum mechanical calculations. Experimental results for Emin and rmin are given in
the second row in the middle columns. Note that QCT in Table 3.2 is greater than qCT

here because the equilibrium distances are within the range of the switching function in
Equation 3.4 (i.e. req > RCT1).

Pair Emin rmin qCT
kcal/mol Å e Reference

Na+ - H2O MD -23.72 2.25 0.024
QM 2.17 0.028
Exp. -24.0 2.26 [14]

K+ - H2O MD -17.82 2.60 0.024
QM 2.67 0.021
Exp. -17.9 2.60 [14]

Cl− - H2O MD -20.30 2.95 0.056
QM 3.08 0.069
QM -13.6 3.09 [15]

I− - H2O MD -13.52 3.40 0.061
QM 3.583 0.047
QM -10.5 [16]

NaCl MD -128.98 2.37 0.083
QM 2.35 0.082
QM -131.9 2.36 [17]

KCl MD -117.39 2.70 0.083
QM 2.71 0.104
QM -115.8 2.67 [17]
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(a) (b)

Figure 3.2: Direction of Charge Transfer. a) The cation receives charge from the first
shell water, which in turn receives charge from the second shell water. b) The anion
transfers charge to the first shell water, which donates charge to the second shell
water.

Table 3.4: Trimers of Ions with Two Waters. The charges of ions and waters in ion-water-
water trimers, arranged as depicted in Figure 3.3.1, are listed. Units are in e.

Charge of: Ion Closest Water Second Water
Na+ +0.9717 +0.0001 +0.0276
K+ +0.9881 -0.0081 +0.0201
Cl− -0.9451 -0.0344 -0.0205

the same charge that would be expected if only the waters were present. This indicates

that the ion does not affect CT between water molecules that it is not directly coordinated

to.

3.3.2 Equilibrium Aqueous Structure

The structural properties of charge transfer ions in water are listed in Table 3.5 and

are illustrated in Figure 3.3.2. The cations are parameterized to have radial distribution

functions (RDF) consistent with Tongraar, Liedl, and Rode.[18] The current best theoretical

estimates for coordination numbers of alkali metals are from Varma and Rempe.[19] The
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Figure 3.3: Radial Distribution Functions.
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alkali metals, Na+ and K+, are strongly coordinated by four water molecules. As the

atomic number increases, loosely coordinated waters are added– one for Na+ and two for

K+. Thus the total hydration numbers are 5 for Na+ and 6 for K+.[19] Our coordination

number is determined by integration of the ion-water oxygen radial distribution function

to the first minimum. Compared to Varma and Rempe, our coordination number of 5.5

for Na+ is acceptable, but our coordination number of 6.7 for K+ is high. Our results

are also similar to the results for the polarizable Drude model of Yu et al.,[2] but the

coordination number for K+ is smaller than the QM/MM results of Tongraar, Liedl, and

Rode.[18] The chloride ion is parameterized to have a coordination number near 6, as is

indicated experimentally.[20] Our result of 6.4 is higher than that of Zhao, Rogers, and

Beck, who report an average coordination number of 5.9 for chloride, using the polarizable

AMOEBA model.[21]

The charge distributions of the ions from our MD simulations are shown in Fig-

ure 3.4. Our charge distributions are supported by electronic structure calculations of

ions with their first solvation shell. Zhao, Rogers, and Beck find that chloride transfers

0.03-0.05 electrons to each water in its solvation shell, resulting in a total charge of about

−0.8 e for chloride.[21] Using Car-Parrinello MD, dal Peraro el al. find that Cl− transfers

0.26 e to water, making the chloride charge −0.74 e.[22] Our average chloride charge is
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−0.775 e. Varma and Rempe find a charge near 0.9 e for both sodium and potassium,

when coordinated to six waters.[23] Our average values of 0.900 and 0.919 e (for Na+ and

K+, respectively) are close to their values, as well as those of dal Peraro et al. (0.88 e for

Na+ and 0.87 e for K+). The cations show a sharp peak in their probability distributions.

The broader peak in the chloride charge distribution is due to greater CT and thereby

greater sensitivity to fluctuations as compared to the cations. The distribution of the ion

dipoles is shown in Figure 3.5. The dipole moments of waters around the ions are also

reduced comported to bulk waters’ dipoles, consistent with ab initio MD of the chloride

ion.[21, 24]

The average ionic dipole of the iodide model is the same as that calculated by ab

initio methods.[24, 25] Because a charge transfer (CT) model is used, the iodide charge

varies, due to solvent fluctuations around the ion. The waters around the ion also have

different charges from what is found in bulk. The average charge and dipole of a water

in the first solvation shell are listed in Table 3.5. An attempt to create an iodide model

with reduced polarizability (50% of the gas-phase polarizability based on Ref. [26]) was

unsuccessful. The reduced polarizability model could not produce a dipole and a RDF

consistent with AIMD simultaneously.

· 42 ·



Table 3.5: Equilibrium Properties of Single Ions in Water. The radial distribution function
is described by rmax , gmax , rmin, and gmin. The average coordination number is ncoord. The
average charge and dipole of the ion are < qion > and < µion >, respectively. The average
charge and dipole of the waters of the first solvation shell are also listed as < qshell > and
< µshell >, respectively.

Ion rmax gmax rmin gmin ncoord < qion > < µion > < qshell > < µshell > Ref.
Å Å e D e D

Na+ 2.34 6.81 3.23 0.15 5.5 0.900 0.028 -0.009 2.57
2.33 5.5 3.0 0.5 5.6 [18]
2.38 7.42 3.24 0.20 5.6 1 0 [2]

K+ 2.68 4.71 3.52 0.34 6.7 0.919 0.122 -0.010 2.51
2.81 3.4 3.7 0.6 8.3 [18]
2.74 4.80 3.56 0.45 6.9 1 0 [2]

Cl− 3.03 2.69 3.72 0.74 6.4 -0.775 0.888 -0.019 2.54
3.2 3.1 4.0 0.9 5.9 -0.8 0.6 2.5 [21]
3.16 3.15 3.78 0.72 6.5 -1 0 [2]

I− 3.52 2.30 4.07 1.02 6.5 -0.792 1.23 -0.022 2.47
3.58 2.55 4.20 0.72 6.0 1.3 [25]
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Chapter 4

Single Ions in Bulk Water

4.1 Introduction

A common method to validate ion models is to test their aqueous single-ion proper-

ties. This allows us to confirm that each ion model is working properly before combining

the ion model with other solutes. Though experiment can only access aqueous properties

of whole salts, much work has gone into separating out the effects of individual con-

stituents of the salts.[1] For instance, the hydration free energies and diffusion constants

of single ions are currently agreed upon. These values are calculated for the ion models

listed in Chapter 3. Additionally, the differences between CT and non-CT models for ions

are explored.

4.2 Methods

Calculations of thermodynamic properties were done using a system of a single

ion with 256 water molecules in the TPN ensemble with periodic boundary conditions,

using our own code. All simulations used the TIP4P-FQ+DCT water model.[2] This model

is polarizable using the fluctuating charge scheme, as discussed in the original work

by Rick, Stuart, and Berne.[3] The temperature is kept at 298 K using a Nosé-Hoover

thermostat, and the pressure is kept at 1 atm using an Anderson barostat.[4] The charge

equilibration for the fluctuating charges is handled via an extended Lagrangian approach
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[3] using charge normal modes.[2, 5] The Drude variables are given a mass equal to

0.4 amu, which is subtracted from the mass of the ion center. The positions of the ion are

propagated as described by Lamoureux and Roux.[6] The simulations use a 1 fs time step

and Ewald summation for the long-range electrostatics.[4] The bonds were constrained

using the SHAKE algorithm.[4] The charge degrees of freedom (Drude and charges on

atom sites of water) were kept at 1 K. The diffusion constants were determined using

the Stokes-Einstein equation. Diffusion simulations of single ions were performed in the

EVN ensemble using systems of 256, 512, and 1024 waters, to check for system-size

dependence.

Free energies are calculated relative to the hydration free energy values calculated

by Warren and Patel for a non-polarizable ion in TIP4P-FQ.[7] (We used Set A of their ion

parameter sets.) Warren and Patel applied several corrections to their absolute hydration

free energies which allowed for calculation of real hydration free energies.[7] Therefore, our

results are also real hydration free energies. Free energy perturbation theory is performed

in which the ions from Warren and Patel are morphed into our ions, and the water is

morphed from TIP4P-FQ [3] to TIP4P-FQ+DCT. The transition is done in twenty steps,

with 50 ps of simulation time for each step. Double-wide sampling is used. Free energy

calculations for neutral ion pairs are also performed, using thermodynamic integration

in 16 steps, with 500 ps of simulation time for each. Both the single-ion and ion-pair

simulations include 512 water molecules.

4.3 Results

4.3.1 Charge of Solvating Water Molecules

Water in the first solvation shell has a partial negative charge for both cations and

anions (see Table 3.5 and Figure 4.3.1). This result is explained by the arrangement of

waters in the second solvation shell (Figure 3.3.1). A first solvation shell water donates

negative charge to the cation, which would give it a partial positive charge in a gas-
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phase dimer. In aqueous phase, the waters of the first solvation shell also accept charge

from waters in the second solvation shell. Because the first shell water can donate two

hydrogen bonds but accept only one hydrogen bond while bound to the cation, the charge

accepted from the second shell is greater than the charge donated, resulting in an overall

negative partial charge. The negative charge of the first solvation shell is compensated by

a slight positive charge spread over the second solvation shell, indicating that members

of the second shell must accept slightly more hydrogen bonds than they donate. (The

charge transfer between water molecules is solely determined from the hydrogen bond

arrangement.)

In the case of chloride, the anion is donating charge to the waters in the first

solvation shell, and the waters in the first solvation shell are donating charge to waters

in the second solvation shell. The amount of charge transfer between the waters is not

sufficient to compensate for the charge transferred from the ion, so the first solvation shell

retains a negative charge. Dal Peraro et al. find that waters in the first solvation shell

around Cl− or K+ have a negative charge of a magnitude close to our results and that the

second solvation shell of K+ has a small positive charge.[8]

The picture of the charge distribution among water, described above, is supported

by quantum calculations on trimers (Table 3.4 and Figure 3.3.1). In the QTAIM calcu-

lations on geometry optimized trimers the water closest to the ion has a charge close to

zero or negative in all cases. So, the first solvation shell water has a charge imbalance

similar to that predicted by the MD CT model. The amount of charge transferred between

the water molecules is 0.02 e for potassium and chloride. The value 0.02 e is consistent

with QM calculations on water dimers at the same distance.[9] For sodium, the distance

between the waters is smaller in the optimized structure, and so the charge transfer is

greater.
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Figure 4.1: The Charge of Water Near the Ion. The distribution of charge in the
solvation shells near each ion are shown. The charge gained from the ion is shown
in green. The charge gained from other waters is shown in blue. The red line shows
the total charge of the water molecules, based on their distance from the ion. The
distances less than those at the onset of the ion-oxygen RDF are not shown.
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Figure 4.2: Some charge from the ion resides in the bulk water.

Single Ions Alter Water Charges in Bulk.

As shown in Figure 4.3.1, the waters of the first solvation shell have a negative

charge, as was seen for both cations and anions in previous work.[8, 10, 11] Anions

donate charge to their first solvation shell, making it negative. Those waters then donate

charge to waters of the second shell, reducing the magnitude of their charge of the first

shell from what is seen in small gas-phase anion-water clusters.[10] Cations receive charge

from their first shell waters. However, second solvation shell waters donate more charge to

the first shell than what is lost. And so the first shell of cations is also negative. Table 4.1

shows the total charge of the first and second solvation shells for Na+, K+, Cl−, and I− in

bulk water.

Even out to the second solvation shell, the total charge (±1e) has not been re-

covered, leaving < qleft-over >≈ ±0.1e in the bulk water. Because the charge of water is

based on its hydrogen bonding pattern, charged bulk water indicates that ions’ effect on
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Table 4.1: Charges of the ion (< qion >), its first solvation shell (< q1ss >), its second
solvation shell (< q2ss >), and the remaining charge in bulk water (< qleft-over >). Charges
are in units of e.

Ion < qion > < q1ss > < q2ss > < qleft-over >

Na+ +0.900 -0.017 +0.017 +0.100
K+ +0.919 -0.040 +0.022 +0.098
Cl− -0.775 -0.124 +0.001 -0.102
I− -0.791 -0.108 -0.031 -0.070

water structure is long-ranged in nature. Such long-ranged behavior is consistent with

the results of Irudayam and Henchman.[12] Because (negative) charge is transferred from

the hydrogen bond acceptor to the hydrogen bond donor, the −0.1e of left-over charge in

the anion simulations indicates an excess of hydrogen bond acceptors over donors. For

cations, +0.1e is left, and so there are excess hydrogen bond donors.

4.3.2 Asymmetry in the Solvation Shell of Anions

The solvation shell can be defined as all atoms that are within the first minimum

of the ion-oxygen pair correlation function. For ions such as sodium, all oxygens in

the first solvation shell are about the same distance from the ion. In contrast, several

groups have reported that the first solvation shell around the chloride ion is asymmetric,

both in clusters and in bulk solution.[13, 14, 15, 16] Asymmetry has been proposed

to be a driving force for attraction of anions to the liquid-vapor interface.[15] Since non-

polarizable models do not reflect experimental concentrations of anions at the liquid-vapor

interface [17] and asymmetry decreases when polarizability decreases,[13] asymmetry has

been attributed to the polarizability. The average of the positions of the oxygen atoms in

the first solvation shell can be used to define the center of the first solvation shell. The

difference between the average of the oxygens’ positions and the position of the ion can be

used to determine the degree of anisotropy of the first solvation shell.
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Figure 4.3: Asymmetry in the First Sol-
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ric than chloride. The larger plot show
chloride with charge transfer and without
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We find a slight anisotropy in the chloride

solvation, whereas the cations have more

symmetric hydration shells (Figure 4.3.2).

We find that charge transfer has a small

effect on the asymmetry. Simulations of

our chloride ion without charge transfer re-

sult in a more asymmetric solvation shell

than when charge transfer is included. For

chloride without charge transfer, the po-

larizability is reduced to 4.92 Å3, so that

the chloride ion dipole has the same aver-

age as the CT model. (The Drude charge

was reduced to -3.850 e.) The slight

negative charge in the solvation shell of

the charge-transfer ion repels the negative

Drude charge, thereby reducing the dipole moment of the ion. Thus, CT provides an

additional damping force on the anion dipole, which results in more isotropic solvation.

Furthermore, the negative charge transferred to the waters causes the first solvation shell

molecules to repel each other and solvate the ion more symmetrically. As expected from its

greater polarizability and less favorable hydration, iodide has a more asymmetric solvation

shell than chloride.

4.3.3 Free Energies

Direct comparison of solvation free energies determined by experiment and MD

simulations remains ambiguous, due to the extra-thermodynamic assumptions necessary

to set experimental single-ion free energies.[7] Our hydration free energies for single ions

and ion pairs compare well with those of Tissandier et al. [18] (see Table 4.2). Because our
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ion hydration free energies are relative to those of Warren and Patel,[7] our free energies

are also real hydration free energies.

Table 4.2: Hydration Free Energy (∆Ghydr ).
The single-ion hydration free energies and
the ion-pair hydration free energies are com-
pared to experimental values are from Tis-
sandier et al.[18] Units are kcal/mol.

Calculated Experimental
Single Ions
Na+ -100.8 ± 0.6 -101 ± 2
K+ -84.6 ± 0.7 -84 ± 2
Cl− -73.1 ± 0.3 -73 ± 2
I− -58.0 ± 0.2 -57 ± 2
Ion Pairs
NaCl -175.2 ± 0.4 -174 ± 4
KCl -158.6 ± 0.4 -157 ± 4

Our model correctly predicts

the hydration free energy differ-

ence between K+ and Na+ as −17.2

kcal/mol.[18] The calculations for the

ion pairs are slightly more negative

than the sum of the single-ion values,

perhaps because the simulations are

not at the infinite dilution limit and

ion-ion interactions contribute. The

ion pair energy, found from the differ-

ence of the potential energy of ionic solution and the pure liquid, is −181 ± 6 kcal/mol

for NaCl and −164 ± 7 kcal/mol for KCl. These values compare well to the experimental

values: −187 ± 2 kcal/mol for NaCl and −167 ± 2kcal/mol for KCl.[18]

4.3.4 Diffusion Constants

Table 4.3: Diffusion Constants. The dif-
fusion constants of single ions in 512
waters are compared to experimental
values from the Handbook of Chemistry
and Physics.[19] Units are 10−5 cm2/s.

Calculated Experimental
Na+ 1.0 ± 0.2 1.33
K+ 1.5 ± 0.1 1.98
Cl− 1.9 ± 0.1 2.03
I− 1.33 ± 0.1 2.05

Our calculated diffusion constants

are compared to experimental values in Ta-

ble 4.3. The diffusion constants are in

good agreement with experiment and show

the correct trend among the ions (Cl− >

K+ > Na+) but are all lower than the ex-

perimental values. The water model used

for these studies also has a diffusion con-

stant less than experiment (1.9 rather than 2.3 x10−5 cm2/s),[2], which may influence
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the results for the ion diffusion constants. The diffusion constant does not change if

charge transfer is turned off and the polarizability reduced to give the same dipole, as

described in Section 4.3.2 (i.e. QCT = 0 and qd = −3.850). For transport properties in

response to an electric field or a charge gradient, charge transfer may have a larger effect.

Some researchers have found a system-size dependence in the calculation of diffusion

constants.[20] However, we do not find any difference between the simulations at different

system sizes. Yu et al. do not observe system-size dependence of diffusion constants

either.[21]

4.4 Conclusions

Herein, we describe a method for including charge transfer for polarizable ions

in MD simulations and developed parameters for the chloride, potassium, and sodium

ions. The amount of charge transfer is parameterized to be consistent with the result of

electronic structure calculation for ion-water and ion-ion pairs. In the liquid, CT to the

first solvation shell results in charges for the ions that average to be about 0.9 e for the

cations and −0.77e for Cl−, in agreement with ab initio results for solvated ions.[8, 13, 22]

The charges of the ions show a distribution of values (Figure 3.4), representing the degree

of fluctuations of the first solvation shell. Ion-ion parameters for the Lennard-Jones and

charge transfer energies are chosen to reproduce the energy and structure of the dimer

pairs. The resulting models properly reproduce the hydration free energies and enthalpies.

Therefore, they accurately describe the interaction energies for both the dimers and in the

aqueous phase (see Tables 3.3 and 4.2). The aqueous structures are consistent with

previous MD simulations[21] and give coordination numbers consistent with experiment

(Table 3.5). The ions also show accurate transport properties, as evidenced by the diffusion

constants (Table 4.3). The chloride ion is parameterized to reproduce the distribution of

its dipole moment in the liquid. Its value of 0.7 Debye compares well with quantum

calculations of aqueous Cl− that find the dipole moment is less than 1 Debye.[13, 23]
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Charge transfer also affects the asymmetry of ion solvation. Comparing Cl− simu-

lations with and without CT, shows that charge transfer slightly reduces the anisotropy

of the first solvation shell (Figure 4.3.2). Both the reduced dipole moment of the ion and

the negative charge on the solvating waters make the solvation shell more symmetric.

For all three ions, the charge of water molecules in the first solvation shell is

negative (Figure 4.3.1), despite the fact that charge transfer to the cations makes the

water positive in a cation-water dimer. The geometry of the solvating waters is such that

molecules next to K+ or Na+ donate more hydrogen bonds with other molecules than they

accept. The arrangement of the water molecules results in a transfer of negative charge

to the first solvation shell, outweighing the amount of charge transferred to the ion. The

first solvation shell water molecules next to Cl− acquire positive charge since they accept

more hydrogen bonds with other waters than they donate, but this positive charge is

not large enough to outweigh the negative charge from the chloride ion and so the first

solvation shell waters are negative. The second solvation shell has a compensating positive

charge. Our models predict that the solvating waters are negative and the charge of water

molecules near the ions is not zero.
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Chapter 5

Ions at the Liquid-Vapor Interface of Water

5.1 Introduction

Electron delocalization is a common phenomenon in quantum mechanics. Charge

transfer (CT) occurs when electrons become delocalized over non-bonded pairs. In ion-

water dimers, quantum mechanical (QM) charge partitioning schemes assign a non-

integer charge to the ion and assign a net charge to the water molecule.[1] QM calculations

show the occurrence of CT even in the electronic ground state and separate from basis

set superposition error.[2, 3] Experiments such as Raman spectroscopy[4, 5] and X-ray

absorption spectroscopy[6] also show evidence for CT. Though the amount of electron den-

sity shifted between the pairs is generally small (< 0.1e), CT has been posed as a possible

explanation for: specific ion effects,[7] ion channel selectivity,[8] the electrostatic potential

of biomolecules,[9] and electrophoretic mobility of hydrophobic particles in water.[10, 11]

The study of CT in large systems has been limited by the high computational

cost of ab initio molecular dynamics (AIMD).[12, 13, 14, 15] Recently, classical point-

charge models which include CT have been developed for molecular mechanics (MM)

calculations.[1, 16] These models describe properties of water and ions that are in agree-

ment with experiment and ab intitio methods. In particular, the charge of waters and ions

in bulk and the charge of the solvation shells around ions are the same as in AIMD.[1, 12]
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Additionally, the use of potential functions allows for easy separation of the energy con-

tributions of CT and its effect on the Coulombic energy.

Charge transfer is expected to be important at interfaces because interfaces break

the symmetry found in bulk liquid. Previous studies using CT models [10, 17, 18] or

adding CT perturbatively [10, 11] have established that a hydrogen bond imbalance creates

a charged layer at the interface. From the Gibbs dividing surface (GDS) to 5 Å into the

liquid, there is a region of excess of hydrogen bond acceptors creating a negative charge at

the water/vapor interface. Above (towards the vapor phase) and below (towards the center

of the liquid) the negative layer are regions of excess hydrogen bond donors; therefore,

these areas have a positive charge. The integrated surface charge reaches a minimum of

-20 µe/Å2 at 3 Å below the GDS.[11, 17] A negative charge of the same magnitude is found

at the water-oil interface, in reasonable agreement with ζ -potential measurements.[10]

Studies of aqueous ions find significant CT between an ion and neighboring water

molecules.[1, 12, 13, 14, 19] Additionally, ions can have long-range effects on the hydrogen

bond structure of bulk water.[20, 21, 22] The effects of (i) a charged layer at the pure

liquid/vapor interface, (ii) water molecules with charges from CT with ions, and (iii) long-

ranged perturbation of hydrogen bond structure from ionic solutes suggest that CT can

lead to some interesting effects for ions at interfaces.

Though traditionally viewed as being absent from water’s surface, some evidence

suggests that ions are in fact present at water-hydrophobe interfaces and water’s liquid-

vapor interface. [23, 24, 25, 26, 27] When present at the interface, ions have an integral

role in atmospheric chemistry via on-water reactions,[28] the function of biological mem-

branes and proteins,[29, 30] and solute partitioning between aqueous and organic/ionic

liquid phases[31] to name a few. Consequently, extensive efforts have been made to un-

derstand which properties, including polarizability and size, might stabilize ions at the

interface.[24, 26, 27, 32, 33, 34, 35, 36, 37] What role charge transfer has in ion adsorp-

tion is, as of yet, unexplored.
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The aim of this study is to determine how CT affects ions at and near the water-

vapor interface. Does reduction of the magnitude of ionic charge result in more adsorption

to the interface? How does the charge layering of pure water affect ionic attraction or

repulsion to the interface? How is the charge distribution at the interface affected by the

presence of an ion? And visa versa, how is the charge distribution around the ion affected

by the surface? This study is novel in that it considers a charge distribution consistent

with QM but in a system size accessible only by MM. Additionally, this study examines

the differences in free energy profile when using an instantaneous interface rather than

an average surface.

5.2 Methods

5.2.1 The Charge Transfer Model

A force field has been developed which incorporates charge transfer (CT) into clas-

sical molecular mechanics simulations.[1, 16] In this CT force field, the total charge of the

system is conserved, but the charge of each molecule and ion can change. The amounts of

CT between different species are based on quantum mechanical atoms-in-molecules (AIM)

calculations. The model calculates charges for each species at each time step, based on

the local coordination structure. There is an energy contribution which is a function of

the amount of charge transfer, and the Coulombic energy is calculated using the instan-

taneous charges. The model also includes polarizability with the fluctuating charge (FQ)

method in the water model TIP4P-FQ+DCT and Drude polarizability for the monatomic

ions. For a more complete description of the model, see References [1] and [16].

5.2.2 Simulation of the Liquid-Vapor Interface

The potential of mean force (PMF) for an ion as a function of position perpendicular

to the liquid/vapor interface (the z-direction) was calculated using umbrella sampling and

the weighted histogram analysis method (WHAM).[38] The ions investigated are polariz-
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able, charge-transfer versions of Na+, K+, Cl−,[1] and I− in TIP4P-FQ+DCT water.[16] The

Gibbs dividing surface (GDS) is found by fitting to an error function, and is defined as the

point where the water density is half that of the bulk density.[39, 40] Due to the presence

of capillary waves on the water surface, ion positions near the GDS may represent a range

of distances from the vapor. If the ion is in the trough of a wave, it is right at the surface;

whereas if the ion is beneath the peak of a wave, it may be relatively far from the surface,

despite having the same position in z.

Another method to define the surface of water is to use an instantaneous surface

(INS), which describes the microscopic structure of the interface. The INS is defined using

the method of Willard and Chandler,[41] in which the oxygen positions are convoluted

with a Gaussian to represent the local water density. Then, the density at each point in a

3D grid is calculated. The grid points at which the water density is half that of the bulk

are used to define the surface. Using data from the same simulations and the weights

from WHAM, the data are reweighted to construct a PMF relative to the INS. Similarly to

WHAM, the unbiased probability, < P(z) >, can be calculated from the biased simulations

by

< P(z) >=

Nwindows∑
k=1

< P(z)e+�Ubias,k > Zbias,k, (5.1)

where Ubias,k is the biasing potential, and Zbias,k is the partition function (weight) for the

biased potential, determined from WHAM. Here, the coordinate z is with respect to the

INS though the umbrella potential is still centered with respect to the center of the slab.

A choice must be made about whether to include the ion in the surface definition,

i.e. whether the ion contributes to the density used to determine the position of the

interface. Stern et al.[37] show that location of the free energy minimum in the PMF

with respect to the INS changes if contributions from the ion density are included in the

INS definition. We find the same thing is true for both cations and anions, as seen in

Figure 5.2.2. Excluding the ion from the interface definition artificially makes the ion
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Figure 5.1: Comparison of potentials of mean force (PMF) with respect to the instan-
taneous surface (INS) for different INS definitions. Excluding the ion from the interface
definition causes the ion to approach closer to the surface.

‘‘float’’ above the water. Therefore, we include the ion in the determination of the INS. For

all PMF’s, the relative free energy is set to zero at the center of the slab.

5.2.3 Simulation Details

There are 1024 TIP4P-FQ+DCT water molecules and a single ion in a simulation

box of size 30 x 30 x 150 Å3 (longer in z direction), resulting in a slab of liquid roughly

35 Å thick. The interface is along an xy plane, and in all figures, the interface (GDS

or INS) is located at z = 0Å. The ion position is restrained at 1-Å intervals using a

harmonic spring with a force constant of 4 kcal/mol/Å2. A TVN ensemble is used with

a Nose-Hoover thermostat to keep the temperature T = 298.2 K. Full Ewald summation

with 3-dimensional periodic boundary conditions (3D PBC) are used. A surface correction

from Ballenegger, Arnold, and Cerda (Eqn. 29 of Ref. [42]) is used for charged systems

which include an interface. This correction reproduces a system with 2D periodicity when

using 3D PBC. The effects of including this correction are small and do not qualitatively

change the PMF results. A switching function was used[43] which continuously switches

off the Lennard-Jones and real space Ewald interactions over a range from 12 to 12.5 Å.

The coarse-graining length used for water and the ions for the INS calculation is 2.4 Å.

The grid spacing between points is 1 Å. Production runs are at least 2 ns long, after 1 ps
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equilibration time. The Verlet method with 1-fs timestep is used. Errors are determined

by averaging over 500 ps blocks.

5.3 Results

5.3.1 Ionic Charges and Dipoles Change at the Interface
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Figure 5.2: Ionic charges and dipoles change near the interface. The interface is
located at 0 Å, with more negative position closer to the center of the liquid phase. The
dipole of the Cl− model without CT is not significantly different from the model with
CT in bulk nor at the interface (not shown).

The charge and dipole of each ion are plotted in Fig. 5.2. The cations’ charges and

dipoles are equal to their bulk values throughout the slab, with only a small increase in

the charge at the interface. Because an ion’s charge depends on its coordination number,

constant charge indicates that the cations maintain their full coordination shell even at

the interface. The nearly constant dipole of the cations indicates that the waters are

arranged in the same way at the interface as in bulk.

In contrast, the anions’ charges and dipoles depend on their distance from the

interface. At the center of the slab, the anions’ charges and dipoles are equal to their

values in bulk. However, as the anions approach the interface, their charge approaches

the formal charge of −1e. (Note that Fig. 5.2 plots the absolute value of the ion charge
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|qi |.) The increased magnitude of charge indicates that the anions have fewer neighbors to

which charge is donated. The anions’ dipoles also increase near the interface, indicating

a more asymmetric solvation structure near the interface.

The dipoles of the waters around the ion also change as the ion approaches the

surface. In bulk, dipoles for water in the first solvation shell are reduced, compared

to the dipoles of bulk water.[1] At the surface, the dipoles of water molecules decrease

in magnitude to 2.3 D from 2.6 D in bulk.[17] For waters bound to an ion, the dipoles

decrease by ≈ 0.1 D at the surface. This results in dipoles which are larger for first-shell

waters than for other surface waters, whereas the opposite is true in bulk water.

5.3.2 Free Energy Profiles for the Average Interface
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Figure 5.3: Potentials of mean force with respect to the Gibbs dividing surface. The
interface is located at 0 Å, with more negative position closer to the center of the liquid
phase. Cations are repelled from the interface, but anions are attracted to regions near
the surface. PMF’s are arbitrarily set to zero at the center of the slab for all species.

All the cations have similar potentials of mean force (PMF), shown in Figure 5.3.

When cations are 6 Å below the Gibbs dividing surface (GDS), their free energy starts to
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increase relative to bulk. So for cations, hydration in bulk is more favorable. The increase

in free energy is less steep for potassium, as is expected because of its larger size and

greater polarizability. For sodium, calculations are done with and without CT between

the ion and water. The slight differences in steepness between sodium with and without

CT are within error bars. There is a small difference in the bulk hydration free energy,

∆∆Ghydr = 2.7 ± 0.4 kcal/mol, between the two sodium models, with the CT model having

less favorable hydration. The standard errors for the PMF’s are listed in Table 5.1.

Table 5.1: Standard errors (N = number
of blocks) in PMF’s.

Ion GDS INS N
kcal/mol kcal/mol

Na+ 0.6 0.5 6
no CT 0.6 0.5 5

K+ 0.2 0.2 4
Cl− 0.7 0.6 7

no CT 0.2 0.1 6
I− 0.2 0.2 5

The anions have minima in free energy

just below the GDS, indicating that they

may be attached to the interface. The small

minimum for Cl− with CT near the GDS is

not significantly different from zero. This is

in agreement with previous studies which

have found that Cl− is neither enhanced at

nor depleted from the interface.[44, 45] The minimum for the non-CT Cl− model is signifi-

cant. However, the difference between the two models cannot be ascribed solely to CT. The

model without CT was designed with reduced polarizability in order maintain the same

aqueous phase dipole without changing the Lennard-Jones parameters. Because of this,

the non-CT Cl− has a less favorable hydration free energy (∆∆Ghydr = 4.3 ± 0.5 kcal/mol),

which is also a driving force for surface adsorption.

Iodide shows strong surface adsorption, with free energy minimum of -2.7 kcal/mol,

relative to bulk. Strong adsorption (-1.5 kcal/mol) is seen in some polarizable models,[46]

while other polarizable models have less strong affinity for the surface (-0.8 kcal/mol).[47]

Having too large a dipole in aqueous phase has been shown to cause too strong adsorption

to the air-water interface.[48] Yet the model iodide’s dipole at the surface (1.7 D) is the

same as in AIMD simulations.[49] AIMD (using dispersion-corrected density functional

theory) indicates an adsorption free energy of 0 to -1 kcal/mol.[49] Experiments also sug-
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gest less strong adsorption of iodide at the surface than is predicted by most polarizable

models.

5.3.3 Free Energy Profiles for the Instantaneous Interface
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Figure 5.4: Potentials of mean force with respect to the instantaneous surface. The
interface is located at 0 Å, with more negative position closer to the center of the liquid
phase. The same trends are seen as in Figure 5.3 but with more sharply defined
minima. PMF’s are arbitrarily set to zero at the center of the slab for all species.

Qualitatively, the PMF’s are similar for the instantaneous surface (INS) and the

average surface (GDS), which can be seen in Figure 5.4. The cations are affected by the

surface when they are 6 Å away. The non-CT Na+ has slightly less affinity for the interface

than CT Na+, and K+ is less strongly repelled than either sodium model. For the cations,

the INS PMF is more steep near the interface, but there is still a longer ranged repulsion

from the interface as well.

Use of the INS results in more localized free energy minima of the anions. I−

adsorbs most strongly and closest to the surface, and non-CT Cl− adsorbs more strongly

than CT Cl−. The PMF’s indicate that the anions are located in a narrow 2 Å-wide region,
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rather than spread over a 5-6 Å range near the surface, as suggested by the conventional

PMF. Also, the free energy minima decrease by 0.3 kcal/mol. Iodide adsorbs less than

1 Å from the INS. In a previous study of iodide at the instantaneous water liquid-vapor

interface,[37] the adsorption is favorable by < 1 kcal/mol, around 1.8 Å below the INS.

The enhanced free energy minimum and the shift of the minimum towards the INS are

consistent with Stern et al. Similar effects are also seen in simulations with finite salt

concentration.[50]
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Figure 5.5: Two-dimensional distributions, showing the charge of water molecules
based on their distance from the ion and from the surface for (a) sodium and (b)
chloride ions. The purple line at 17 Å indicates the Gibbs dividing surface.
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5.3.4 Surface Water Charge is Altered by Ions.

The presence of an interface can affect the charge distribution through charge

transfer effects. In Figure 5.5, the water charge is plotted as a function of both its distance

from the ion and from the interface. The negatively charged first solvation shell and

positively charged second solvation shell for both anion and cation can be seen, as well

as the charged surface layer. In the case of pure water, there is a negative layer centered

1.5 Å below the surface, shown in Figure 5.6(a).
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Figure 5.6: Water charge density at the liquid-vapor interface. The y-axis is multiplied
by 106. (a) The light blue line shows the charge of water molecules at the surface of
neat water. With ions positioned at the center of the water slab, 17 Å away from the
surface, the surface becomes more charged. Anions cause the surface to have more
negative charge. Cations change the surface charge to positive. (b) With a neutral
solution in which both ions have their full first and second solvation shell, the charge
of waters at the surface is similar to that for pure water (blue line). The red line is for
NaCl with Na+ closer to the interface (z(Na+) = -7 Å, z(Cl−) = -17 Å). The green line is
for the opposite configuration.

The negative layer is countered by a positive ‘‘sub-surface’’ layer, such that the slab

is neutral 8 Å below the surface. The presence of an ion at the center of the slab alters

the surface charge of the water. When a single anion is present, the negative charge at

the surface is enhanced. In contrast, when a single cation is present, the surface charge
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becomes positive, as seen in Figure 5.6(a). Integrating the charge to 3.5 Å below the GDS

results in ±0.05e contributed to the surface layer from cat-/anions, shown in Figure 5.7.
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terface shows that < qleft-over > from Ta-
ble 4.1 becomes localized at the inter-
face. Single ions are located at z = -17 Å.
The integrated water charge for neat wa-
ter and for a neutral solution (i.e. NaCl)
is zero.

Doubling that value to account for

the two symmetric surfaces, the ±0.1e left-

over from outside the ions’ second solva-

tion shell (< qleft-over >) is fully accounted

for. Thus it appears that the excess charge

outside the second solvation shell may be-

come localized at the interface. Because

the charge is based on water’s hydrogen

bonding patterns, the ion must be alter-

ing hydrogen bonding at the surface, even

at long range.

When both Na+ and Cl− are present,

excess charge from the cation and the an-

ion largely cancel out, and the surface

charge gets returns to a value close to that of the neat water case, as shown in Fig. 5.6(b).

The results with both ions were generated with the two ions 10 Å from each other, with

one ion at -17 Å and the other at -7 Å. The surface charge is not affected by which ion is

closest to the surface. Though the ions’ charges are not of equal magnitude, after charge

transfer, the difference is largely compensated for in the first solvation shell such that they

have equal and opposite < qleft-over > which can delocalize to the interface. A contact-ion

pair (CIP) is also tested, with the ions centered around the center of the slab. This con-

figuration results in the same surface water charge results as the other simulations with

Na+ and Cl−.

The charge of waters around the ion is only slightly affected by the surface. When

the ion is at the surface (zi = 0 Å), the ion disrupts the surface charge distribution up
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to 8 Å away along the surface (see Fig. 5.5). This is consistent with the ion driving the

orientation of waters in two solvation shells. The effects of chloride on water charge at

the interface are smaller than those of sodium, consistent with Cl− orienting its second

solvation shell less strongly than Na+.[51]

5.3.5 Charge Transfer Alters the Coulombic Interactions.

15 10 5 0
Ion Position (z)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
o
u
lo

m
b
 E

n
e
rg

y
D

u
e
 t

o
 C

T
 (
U
δ)

Na+

Cl+

Figure 5.8: The Coulombic energy due
to charge transfer, Uδ as a function of ion
distance from the surface. The energy is
normalized so that Uδ(z =-17 Å) = 0. The
black line is the theoretical prediction for
a point charge of q = 0.85e being repelled
from a charged surface of charge density
55.6µe/ Å (the average of the charges for
the two ions).

The charged surface alters the

Coulombic interaction between the ion and

the interface. The interactions that re-

sult from charge transfer can be quanti-

fied by Uδ, the Coulombic interaction of

the ion with the net charge of a water

molecule. Each water’s charge, due to CT,

is taken to be centered on the oxygen posi-

tion. This energy as a function of ion posi-

tion is shown in Figure 5.8 for sodium and

chloride, where the energy at the center of

the liquid phase (z = −17 Å) has been sub-

tracted. The Coulombic energy for a point

charge interacting with a charged surface

is also plotted for comparison (also normalized to zero at the center). Note that only a sin-

gle surface from the nearest image in included in these calculations, and so exact values

are system-size dependent.

At the center of the slab, the energy Uδ is positive (unfavorable) for both ions, though

there is no force from Uδ due to symmetry. For Na+, positive Uδ at the center reflects

the large amount of positive charge in < qleft-over > compared to the smaller negative

charge of the first solvation shell (see Tab. 4.1). But because the positive waters are
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further away from the ion, the interactions nearly cancel, so that Uδ <1 kcal/mol. As

Na+ approaches the interface, Uδ increases, as is expected due to the like charges of the

ion and the surface waters. For Cl−, Uδ = 9.6 kcal/mol at the center. In this case, the

unfavorable energy is due to repulsion between the anion and its negative first solvation

shell. Again, Uδ increases as the ion gets closer to the interface. In bulk-like regions,

solvation shell are symmetric, and so changes in Uδ are due to long-ranged interactions

with the interface. Though Uδ is positive, it is compensated by the charge transfer energy,

UCT , for the nearest neighbor interactions. The CT energy compensates for the repulsive

Coulombic interactions,[1] so that charge transfer is still energetically favorable.

At the interface, Uδ does not behave as expected for a point charge interacting with

a charged surface. This deviation is due to the local effects of the solvation shells, which

are not symmetric at the interface. As the sodium ion gets close to the surface, its second

solvation shell is lost in the positive z direction. Without CT from the second to the first

solvation shell, the first shell in the positive z direction becomes positively charged (see

Fig. 5.5). The positively charged first shell waters on the vapor side increase the force

pushing the cation into the bulk. For chloride, the loss of a negatively charged first shell

water in the positive z direction results in Uδ being more favorable at the interface. Loss

of that water also adds to the force pushing the ion towards the vapor.

5.4 Discussion

The role of charge transfer (CT) on the properties of ions near the liquid-vapor

interface of water is examined. The potentials of mean force (PMF’s) for Na+, K+, Cl−, and

I− in TIP4P-FQ+DCT are calculated using a potential model which is both polarizable and

has CT. We also study polarizable versions of Na+ and Cl−, which do not have CT, in order

to better illuminate the role of CT. Our results address two questions: first, how charge

is transferred among the particles of the system including its influence on interfacial
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properties, and second, how charge transfer, among other interactions, influences the

surface propensity of ions.

Charge transfer suggests a new mechanism for electrophoretic mobility. The present

results show a new aspect of charge transfer at the interface. In bulk water, the charge

transfer from the ion is spread out, and the full ion charge is not recovered even when the

second solvation shell is included. Therefore, some excess charge (≈ 0.1e of the same sign

as the ion, see Table 4.1) resides in the third solvation shell or further away from the ion.

In the presence of the liquid-vapor interface, the excess charge localizes at the interface,

even when the ion is at the center of the slab (17 Å away). This enhances the charge at

the surface, with a sign that matches the sign of the ion’s charge. When a counter-ion is

present, such that the solution is neutral overall, the excess charge at the interface largely

cancels, and the charge at the interface returns to a value close to that of pure water.

The surface charge due to the ion may have relevance to electrophoretic mobility.

It is known experimentally that the surface of the water/vapor or water/oil interface is

negatively charged. Such hydrophobic bubbles move in response to an applied electric

field.[52, 53, 54, 55, 56, 57] The charge that arises from CT at the neat water surface

has been suggested a mechanism for this electrokinetic effect.[10, 11, 17] The CT model

gives the correct sign of the surface charge but has a magnitude about a factor of ten

too small to agree with the experimental ζ potential.[10, 11, 17] Other explanations for

electrophoretic mobility include an excess of hydroxide ions at the surface[56, 57, 58] or

surface active impurities.[59, 60] However, none of these hypotheses account for all the

experimental data.[10, 11, 58, 61, 62, 63, 64, 65, 66, 67]

The long-ranged effects of ions on hydrogen bonding suggest a mechanism for

surface charge in which ions are distant from the surface. The hydrogen bonding of

the surface water molecules is changed by ions even when they are over 15 Å away.

Long-ranged influences on hydrogen bonding of water molecules from the presence of

ions has been seen in other simulations.[20] In our charge transfer model, the hydrogen
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bond changes lead to surface charges that are 3 to 4 times larger than for pure water

(Figure 5.6(a)), bringing the surface charge closer to the experimentally derived value,

when a single ion is present. With this long-ranged mechanism, hydroxide ions or other

impurities may lead to a more negative surface charge without being located near the

surface.

Charge transfer does not affect ion surface propensity. Many properties have been in-

vestigated as the driving force for ion adsorption to the liquid-vapor surface. Among these

are: ionic dipoles,[48] water dipoles,[68] ionic polarizability,[47, 49] water polarizability,[68]

ion size,[33, 49, 69] asymmetry of the ionic hydration shell,[70] and overall hydration free

energy (∆Ghyd) of the ion.[33] Because charge transfer (CT) has some interesting effects on

the charge of water molecules,[1, 17] it was suspected that CT may alter ion adsorption

to the water liquid-vapor interface.

CT has been predicted to reduce ion repulsion from the interface due to a reduction

in image charge repulsion.[71] Ions with CT have smaller charge magnitudes than ions

in standard force fields, which retain their formal charge of ±1. Otten et al.[36] find

that reducing the magnitude of ionic charge enhances minima in potential energy near

the surface. However, they did not attempt to compute the change in free energy when

changing the charge. Reducing ionic charge while keeping all other factors constant makes

hydration less favorable, and therefore increases surface propensity.

The idea of greater adsorption for CT ions is contradicted by our data comparing

ions with and without CT (Figures 5.3 and 5.4). The sodium models with and without CT

have the very similar free energy of solvation, and so the differences between them should

be due only to CT. However, the differences in their PMF’s are insignificant. Additionally,

potassium is able to approach closer to the interface than sodium, despite having a charge

closer to +1e. For Cl−, the model with −1e charge has surface adsorption greater than

the CT model. The greater adsorption of the non-CT Cl− is ascribed to its less favorable
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solvation free energy. Lastly, iodide has a much greater adsorption to the surface than

chloride, despite having nearly the same charge.

An additional consideration with CT models is that the waters at the surface are

also charged, with the same sign as the ion. The like charges increase the Coulombic

repulsion between the ion and the surface. However, the charge at the surface is small,

and so its effect is weak. At the surface, the forces are due to the charge and asymmetry

of the ionic solvation shells. The Coulombic forces due to CT are small but act to reinforce

the forces due to the water dipoles.

Furthermore, the PMF’s for the polarizable, charge transfer models here are very

similar to PMF’s from other polarizable models. Experiment has shown a strong corre-

lation between ion size and ionic solvation free energy in bulk to surface adsorption.[33]

(The same experiment showed only a weak correlation between ionic polarizability and

surface adsorption.) Indeed, it is the larger, less strongly hydrated (and more polarizable)

ions which are less repelled from the interface. Moreover, the halide ions Cl−, Br−, and

I− transfer similar amounts of charge to water in the gas phase (see Tab. 2.15) and have

similar aqueous phase coordination numbers. Figure 5.2(a) indicates that the halides

have the similar charges in bulk and at the surface. That these ions have similar charges

indicates that CT is not a source of the different adsorption behavior of these ions. Thus,

the results indicate that CT of the ion has a minor role in overall free energy of sur-

face adsorption. On the other hand, many studies point to the pivotal role of the water

model in surface adsorption.[68, 72, 73] Only TIP4P-FQ+DCT is used in this study, and

so charge transfer in the water model may still have an influence on ion absorption to the

liquid/vapor interface.

5.5 Conclusions

Molecular dynamics simulations using a polarizable, charge-transfer (CT) force field

are carried out to determine the role of CT on ion adsorption to the liquid-vapor interface
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of water. Results show that the CT has little effect on the overall free energy of ion

adsorption but has interesting implications for the surface charge of water. By comparing

to ions without CT, it is seen that the reduced charge of the ions due to CT does not

increase their surface propensity. Use of an instantaneous interface does not change the

qualitative results from using an average interface. Nevertheless, the free energy minima

for anions near the surface are more localized and within 2 Å of the instantaneous surface.

The free energy profiles of cations are also affected, having a steeper increase closer to the

instantaneous interface.

A fraction of the charge of the ion ends up on the bulk water molecules beyond

the second solvation shell (Table 4.1) due to changes in the hydrogen bond structure of

water induced by the ion. When an interface is present, this charge (negative for the

anions and positive for cations) mostly resides on the interface (Figures 5.6 and 5.7). This

surface charge repels the ion by a small amount. The surface charge is present even when

the ion is far from the surface, showing that ions can have long-ranged effects on the

structure of water. This surface charge due to the ion indicates a possible mechanism for

the electrophoretic mobility of hydrophobic particles in water. It shows that the surface

charge, and thus zeta potential, may be changed by hydroxide ions or other impurities

without these species being located at the surface.
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Chapter 6

Hydronium and Hydroxide at the Liquid-Vapor Interface

of Water

6.1 Introduction

Understanding the chemistry of interfaces is vital for complex processes, such as

heterogenous catalysis,[1] wetting behavior,[2] electrochemical processes,[3] and colloidal

aggregation.[4] However, even seemingly simple interfaces, such as the liquid-vapor in-

terface of water, are not fully characterized. Ion distribution[5] and the electrophoretic

mobility of air bubbles[6] are two such unexplained phenomena which are dependent on

the surface properties of water. Due to the difficulty of modeling hydronium and hydrox-

ide, the aqueous and surface behavior of these species is even more mysterious.

The question of ion distribution with respect to the water-air interface was thought

to be settled for many years. In the traditional view, based on the Debye-Hückel model, all

ions are repelled from the interface. The increase in surface tension with the addition of

salts, compared to pure water, was interpreted as supporting the Debye-Hückel viewpoint.

However, simulations[7] and surface-sensitive experiments[8] showed that ions are able

to reside at the air-water interface. This new evidence was synthesized with the surface

tension data by showing that the region of enhanced ion concentration is counter-balanced

by a region of ion depletion, i.e. the ion concentration changes non-monotonically.[9]
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Large size, negative charge, and less favorable solvation free energy are the main drivers

for expelling ions from the bulk. The Introduction of Ref. [5] provides an excellent review

for monatomic ions and further references.

It is unclear whether the lessons learned from monatomic ions apply to hydro-

nium and hydroxide. Acids, i.e. hydronium, decrease water’s surface tension, indicating

that hydronium should be present at the surface. The presence of bases, like that of

salts, increases surface tension, indicating that hydroxide is excluded from the interface.

Spectroscopic studies support this view.[6] However, air bubbles in water have the same

electrophoretic mobility as negatively charged particles. Such negative surface charge

indicates that hydroxide ions are present at the air-water interface, not hydronium.[6]

Charge transfer (CT) creates a negative charge at the air-water interface[10, 11] due

to the hydrogen bond imbalance there. This negative layer is immobile because waters

only have a net charge when located at the interface; their transition into bulk restores (on

average) their hydrogen bond balance, and so they return to neutral. This negative charge

was proposed as the source of air bubble electrophoretic mobility, [6] but the magnitude

of the charge was too low. Recently, Soniat and Rick [12] showed that the negative charge

at water’s surface is enhanced by negative ions, even when the ions are distant from the

interface. This novel result shows that ions can alter the surface of water even if they are

excluded from the interface.

Polyatomic ions sometimes have unexpected solvation structures and can be am-

phiphilic in nature,[13] which is true of hydronium.[14] Hydronium and hydroxide are

different from monatomic ions and from other polyatomic ions. From a quantum me-

chanical perspective, the excess or missing proton is equivalent to all other protons in the

system. Typical non-reactive force fields in molecular mechanics must choose one of the

oxygens and its nearby hydrogen(s) to be special and so cannot capture the diffuse nature

of the charge excess/defect.[15] Multi-state empirical valence bond (MS-EVB) methods

[16, 17, 18] allow bonds to break and form over the course of the simulation and describe
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each time step as a linear combination of states. Thus, this method is closer to the true

nature of aqueous systems of hydronium and hydroxide.

Herein, we explore how hydronium and hydroxide affect the liquid-vapor interface

of water. How is CT different for molecular ions (compared to monatomic ions)? Is the

surface charging different with H3O+/OH- than for monatomic ions? than for pure water?

Additionally, we aim for a better understanding of the hydrogen bonding imbalance.

6.2 Methods

The trajectories from non-charge transfer simulations can be analyzed for their

hydrogen bonding imbalance, which can in turn be used to predict molecular charges

due to charge transfer (CT). Because the CT model is based on geometry, knowing the

amounts of CT and the configuration is enough to predict the charges. This method has

been applied previously to the water-oil interface.[6]

At an interface or in the solvation shell of an ion, there are an unequal number of

hydrogen bond donors and acceptors, resulting in charged water molecules.

The hydrogen bond imbalance refers to the difference between the number of hy-

drogen bonds a water molecule accepts and the number of hydrogen bonds the same water

donates. In bulk water, the number of hydrogen bonds accepted and donated is equal,

on average. Thus, bulk water molecules are neutral. For each each extra hydrogen bond

accepted, the water molecule gains +0.02e of charge; conversely, for each extra hydrogen

bond donated, the water molecule gains −0.02e.

Here, we analyze trajectories of hydronium and hydroxide generated with the multi-

state empirical valence bond model. We compare how the liquid-vapor interface of water

changes when the ion is at the interface (zi = 15Å) to when the ion is away from the

interface (zi = 5Å).
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6.2.1 The Multi-State Empirical Valence Bond Model

The multi-state empirical valence bond model (MS-EVB) describes the system as a

linear combination of states.[16] This approach is necessary for describing the solvation

of hydronium and hydroxide because the excess or missing proton is equivalent to all the

hydrogens in a real system. Thus a typical non-reactive approach to molecular dynamics

(MD) is inappropriate since one hydrogen must be distinguished from the others. Most

notably, the non-reactive approach fails to capture the Grotthuss shuttling of protons

and the mixing of Zundel and Eigen proton solvation states. In theory, all possible states

would be needed to fully describe the system. However in practice, only the four (five)

most frequently visited states account for > 90% of the hydronium (hydroxide) trajectory.

6.2.2 Determination of Amounts of Charge Transfer

Quantum calculations are performed on ion-water clusters using Gaussian software.[19]

Clusters are optimized using the PBE0[20] functional with the aug-cc-pvTz on the oxy-

gen and cc-pvTz on the hydrogen atoms. Charge transfer (CT) amounts are taken from

Hartree-Fock (HF) single-point calculations on the optimized clusters. HF has been shown

to give the most conservative estimates of CT (unpublished data).

While gas-phase structures of hydronium-water clusters are similar to their confor-

mations in bulk,hydroxide-water clusters are distinct from their bulk counterparts.Additionally,

previous CT calculations were done on ion-water dimers, which is ambiguous in this case

due to the indistinguishability of the hydrogens of the ion versus the hydrogens of the wa-

ter. Therefore, in addition to the optimized structures, CT is determined from snapshots

from the trajectory. Using the snapshots, the hydroxide with its first solvation shell is

isolated for a HF CT calculation. This is repeated for each of the five top-weighted states.

Snapshots with the ion in both the bulk and at the surface are used to compare CT in

the two environments. Snapshots from the hydronium trajectories are also analyzed to

compare CT in the optimized clusters, at the surface and in the bulk.
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All partial charges are assigned using the atoms in molecules (AIM) method[21] via

the AIMAll (Version 14.06.21) software.[22]

For the MD simulations, the amount of CT and the distance cut-off for CT are tested

to see how strongly these values affect the results. This two things affect mainly the first

solvation shell and do not alter the results for the interface.

6.2.3 Simulation Details

Systems with 999 waters and 1 ion, either a proton or hydroxide, are simulated in

a box of 31.07 x 31.07 x 100 Å. The thickness of the water slab is ≈31 Å, with z = 0Å as

the center. The center of excess charge (CEC) is held at 1 Å intervals from z = 5 Å to 15 Å

with a harmonic biasing potential of 5 kcal/mol. The CEC is defined as

~rCEC =
∑
i

c2
i ~ri,COC (6.1)

where c2
i are the weights of each diabatic state i, and ~ri,COC is the center of charge (COC)

coordinate for each state (typically the hydronium/hydroxide oxygen atom). A version of

LAMPPS which is modified to handle the MS-EVB model is used to run the simulations.

For the excess proton, 9817 configurations are considered with the 4 top-weighted

states each. These simulations are done in the NVT ensemble with T = 300 K. Particle-

particle-particle mesh (PPPM) with 10−5 precision is used for long-ranged electrostatics. A

1.0 fs time step is used along with the Nosé-Hoover thermostat with a relaxation time of

0.05 ps.

For hydroxide, 6482 configurations are used with the top 5 states for each.
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6.3 Results

6.3.1 Quantum Analysis of Gas-Phase Clusters

Hydronium

As stated previously, there is some ambiguity in declaring which hydrogen should

be considered the excess proton. An isolated water molecule has hydrogens with partial

charges of +e. An isolated H3O+ molecule (the Eigen state) has a total charge of +1e,

with each hydrogen having the same partial charge (+0.7824e). Thus, the excess positive

charge is distributed evenly over the identical hydrogens. In the H5O+
2 molecule (the Zundel

state), the central hydrogen has a charge greater than the other hydrogens, indicating that

it has the most proton-like character. Here we have a choice: to consider the Zundel state

as a single molecule, in which case there is no CT, or to assign the proton to one water

and consider CT from the Eigen state to the water. If we use the later method, there is

+0.0735e transferred from the cation to the water. cf [23].

As more waters are added, the Eigen state becomes more prevalent, and the ad-

ditional waters have less Zundel-like properties. When three waters surround a central

H3O+ (one water coordinated to each hydrogen), +0.0377e are transferred to each water.

This value is what is used in the trajectory analysis.

A rarely visited state in the aqueous simulation is one in which a fourth water

is coordinated to the hydronium oxygen. However, as this state is important for the

dynamics of proton shuttling,[] it cannot be ignored.

Hydroxide

In the isolated hydroxide, the partial charge on the hydrogen is reduced from the

pure water case to +0.4793e. Again, when only one water is present, the hydrogen

between the two oxygens cannot be definitively assigned to either oxygen.
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As more waters are added, all waters are coordinated to the oxygen in the optimized

structures, up to five waters. In the OH−(H2O)5 structure, −0.0363e are transferred to

each water. A sixth water added to the hydrogen side optimizes to a structure with three

waters coordinated to the hydroxide oxygen and the extra two waters in the ion’s second

solvation shell. Performing the CT analysis on the unoptimized structure, −0.007e are

transferred to the water coordinated to the hydroxide hydrogen.

However, structures with waters coordinated to the hydrogen are more common in

the liquid. Therefore, snapshots from the trajectory are analyzed to better understand CT

in more relevant structures.

6.3.2 Quantum Analysis of Snapshots

Hydronium

For a hydronium ion at zi = 5Å and zi = 15Å, i.e. in a bulk-like and a surface

environment, eight configurations are selected. Each of the four top-weighted states are

analyzed for their CT in relation to the number of hydronium oxygen and hydronium

hydrogen partners.

The most common and the most highly weighted states are the same for the hy-

dronium ion. That state has a water molecule coordinated to each hydronium hydrogen

and no water on the hydronium oxygen. In the rare case of a water coordinated to the

hydronium oxygen, the water transfers an average of 0.017 e to the ion when in bulk but

only 0.007 e when at the surface. For waters coordinated to the hydrogens of hydronium,

the same amount of CT occurs in bulk and at the surface. When there are two waters,

0.087 e are transferred to hydronium from each water; this value is reduced to 0.059 e

when three waters are present. This is more CT than is seen in the gas-phase clusters with

the same coordination state. This data indicates that the waters are closer to hydronium

in aqueous solution than in the gas phase.
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No matter its coordination state, hydronium maintains a charge around +0.82e in

these snapshots.

Hydroxide

For a hydroxide ion at zi = 5Å and zi = 15Å, i.e. in a bulk-like and a surface

environment, ten configurations are selected. Each of the five top-weighted states are an-

alyzed for their CT in relation to the number of hydroxide oxygen and hydroxide hydrogen

partners.

In the bulk, the most common state has three waters next to the hydroxide oxygen.

A water next to the hydroxide hydrogen as well occurs about two thirds of the time.

However, the most highly weighted states tend to have four waters next to the hydroxide

oxygen and a water next to the hydroxide hydrogen as well. The CT from hydroxide to

the water next to its hydrogen is about −0.025e, which is what is used in the trajectory

analysis. CT from the hydroxide to the waters next to its oxygen is still difficult to assign

due to some damping of the CT per water as more waters are added. The amount of

−0.060e is used as a compromise between the amount of CT with three and four hydroxide

oxygen neighbors. In the clusters and in the bulk, the amount of CT when four or five

waters are coordinated to the oxygen is about the same. However, CT to three waters in

the bulk is much greater than to three waters in the clusters. This may be due to the

specific configurations, as the amount of CT is highly dependent on the distances between

the ion and the water molecule.

At the surface, binding of waters to the hydroxide hydrogen is greatly reduced. The

most common and the most highly weighted states still have three and four waters coor-

dinated to the hydroxide oxygen, respectively. The CT per water is reduced when three

waters coordinate the hydroxide oxygen at the surface, compared to the same configura-

tion in bulk. This may indicate that Oh · ··Hw distances are increased at the surface. Other

configurations have the same amounts of CT in the bulk and at the surface.
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Oddly, the hydroxide charge is less negative (more CT overall) when fewer waters

are present. When more waters are present, the hydroxide charge is closer to its formal

charge of −1e. This may be due to steric hindrance between water molecules in the

ion’s first solvation shell. As more waters are added, they become crowded and so are

further away from the ion. When only a few waters are present, the hydroxide can bind

more strongly to each of them and thus transfer more charge overall. confirm that the

gas-phase and aq.-phase distances are different.

For hydroxide, in addition to hydronium, the amount of CT is greater in the con-

densed phase than in the gas phase. This is in contrast to typical ions, where CT is

damped in the condensed phase. The increase in CT may be due to a decrease in Oh · ··Ow

distance for the ions in the aqueous phase compared to the gas phase. For hydronium, the

average Oh · ··Ow distance in the liquid is 2.51 Å. The most common configuration has an

optimized distance of 2.60 Å in the gas phase. For hydroxide, the average Oh ···Ow distance

in the liquid is 2.68 Å. This distance is the same as the as the most highly weighted con-

figuration in its optimized structure. Interestingly, water-water oxygen-oxygen distances

are also shorter in the liquid by 0.1 Å compared to gas phase.[24, 25]

6.3.3 Molecular Dynamics Simulation Results

Hydronium
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Figure 6.1: Hydronium Charge
Based on Its Distance from the In-
terface.

The charge of the hydronium ion increases by

0.002 e as it approaches the interface, which

is shown in Figure 6.1. Such a slight change

in charge is consistent with the snapshots dis-

cussed in Section 6.3.2, in which the same co-

ordination states are seen at the surface and in

the bulk.
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Figure 6.2: Radial Distribution Func-
tion of Hydronium. Dashed lines are
for the ion at the surface, whereas solid
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the slab.
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The oxygen-oxygen radial distribution function (RDF) for hydronium to water is

shown in Figure 6.2. Fig. 6.2 compares the solvation structure in a more bulk-like
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Figure 6.4: Hydrogen Bond Imbal-
ance for Hydronium Based on Dis-
tance from the Instantaneous Inter-
face. The negative interface is fur-
ther away from the ion, and the pos-
itive interface is closer to the ion.
Dashed lines are for the ion at the
surface, whereas solid lines are for
the ion near the center of the slab.
The imbalance is reported as accep-
tors minus donors.

environment (≈ 10Å) from the surface to the

hydronium solvation structure at the surface.

The distance of waters in the first solvation shell

is the same in bulk and at the surface. How-

ever, the coordination number for hydronium

at the surface has a slight plateau due to the

vacuum layer resulting in fewer waters in the

second solvation shell. The charge of the wa-

ters based on their distance from the hydro-

nium ion is shown in Figure 6.3. The first solva-

tion shell is positive, integrating to a maximum

of +0.0186e for the ion away from the surface.

The second solvation shell is negative; integra-
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Figure 6.5: Water Charge Based on Its Distance from the Instantaneous Interface
When Hydronium is Present. Dashed lines are for the ion at the surface, whereas solid
lines are for the ion near the center of the slab. (a) Water Charge with respect to the
z-direction (e/Å) (b) Total Charge integrating from the vapor into the liquid phase (e)

tion shows that the second solvation shell con-

tains −0.0185e. This leaves the charge missing from the hydronium (+0.1183e) outside

of the second solvation shell.

Figure 6.4 shows the hydrogen bond imbalance for hydronium. When the ion is

away from either surface, the hydrogen bond imbalance is the same, resulting in the same

charge at each surface. The greater number of acceptors versus donors when the distance

from the interface is < 1Å results in a positive charge on the waters in that region. When

the ion is at the (positive) surface, the hydrogen bond imbalance is altered by the ion,

whereas the distant surface is unaffected. In this case, the hydrogen bond imbalance is

reduced. However, because the hydronium transfers positive charge to its first solvation

shell, the surface charge is not as reduced as one would expect from the hydrogen bond

imbalance.

The charge outside of the first and second solvation shells becomes localized at

the interface. Figure 6.5 shows the water charge at the instantaneous surface. The

‘‘negative surface’’ refers to the surface further away from the ion; the ‘‘positive surface’’
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is closest to the ion. In Figure 6.5(a), the water charge per Angstrom is shown. A layer

of positive charge nearest the vapor is followed by a negative layer just inside the liquid

layer. Integration of the charge gives a clearer picture of the total amount of charge at the

interface and is shown in Figure 6.5(b). When hydronium is near the center of the slab

(solid lines), the charge is the same at both surfaces. Note that when the ion is far from

the surface, the surface charge is solely due to hydrogen bonding imbalances in the water,

i.e. there is no long-range charge transfer from the ion to the surface. When hydronium

is at the surface, the positive charge of that surface decreases slightly, and the positive

charge of the opposite surface increases to compensate. When at the surface, the ion is

directly affecting the surface charge of water since the first solvation shell waters to which

it transfers charge are also at the surface.

Hydroxide
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Figure 6.6: Hydroxide Charge
Based on Its Distance from the In-
terface.

The charge of the hydroxide decreases by

≈0.01e as it approaches the surface. The calcu-

lated charge approaching the formal charge of

−1e indicates a change in solvation structure,

with fewer waters available to accept electron

density from the ion. This is reflected in the

snapshots by a decrease in states with

The radial distribution function (RDF) of

OH− (Fig. 6.7) shows little difference between

the ion at the surface and the ion in a bulk-like

environment.
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Figure 6.7: Radial Distribution Func-
tion of Hydroxide. Dashed lines are for
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Figure 6.9: Hydrogen Bond Imbal-
ance for Hydroxide Based on Dis-
tance from the Instantaneous Inter-
face. The negative interface is fur-
ther away from the ion, and the pos-
itive interface is closer to the ion.
Dashed lines are for the ion at the
surface, whereas solid lines are for
the ion near the center of the slab.
The imbalance is reported as accep-
tors minus donors.

The hydrogen bond imbalance for hydroxide

is shown in Figure 6.9. Both surfaces are the

same when hydroxide is near the center. How-

ever, the hydroxide at the (positive) surface al-

ters both the near and distant surfaces. The

excess of hydrogen bond acceptors increases

when hydroxide is at the surface, resulting in a

less negative water charge at the surface, even

though the ion’s first solvation shell is negative.

For hydroxide, the positive water layer at

the surface is reduced nearly to zero, and the

negative charge dominates the surface. Oddly,

the positive charge increases slightly when the

anion is at the surface. This can be understood

as having less negative charge in the water be-

cause the hydroxide charge is more negative when near the surface.
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Figure 6.10: Water Charge Based on Its Distance from the Instantaneous Interface
When Hydroxide is Present. Dashed lines are for the ion at the surface, whereas solid
lines are for the ion near the center of the slab. (a) Water Charge with respect to the
z-direction (e/Å) (b) Total Charge integrating from the vapor into the liquid phase (e)

6.4 Discussion

Debate over the surface propensity of hydronium and hydroxide is on-going.[15, 18]

For the purposes of the charge transfer (CT) analysis, we are not concerned with the

energetics of a particular model, so long as the solvation structures are correct.

Hydronium and hydroxide are interesting polyatomic ions due to their hydrogen

bonding ability. Hydrogen bonding places an additional constraint of the solvation of

the ions, in addition to the packing constraint which dominates monatomic ion solvation.

Waters may also be hydrogen bond acceptors or donors with respect to the ion, in contrast

to monatomic ions in which all waters have similar orientations around the ion. The ability

of first-shell waters to be donors or acceptors results in directionally-dependent CT.

The amounts of CT are different in the snapshots, compared to gas-phase and

bulk. This difference due to the difference in Oh-Hh bond lengths. As the Oh-Hh bond is

stretched, common in the aqueous phase, the hydrogen gains more proton character (for

our purposes, a charge closer to +1e). When considering that hydrogen as part of an Eigen
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state, it more charge is transferred from the hydronium to the waters. This is confirmed

by quantum calculations. Work is underway to incorporated bond-length dependence of

CT into the MD model. Such a bond-length dependent CT scheme may also show how CT

is different at the surface, due to differing populations of Zundel and Eigen states at the

surface compared to bulk.

The charge of the first solvation shell is different for hydronium than for the previous

cases with cations. With Na+ and K+, the water-water CT from the second solvation shell

(2ss) to the first solvation shell (1ss) overwhelms the CT from the 1ss to the ion, resulting

in a negative 1ss. The positive charge in the 1ss of hydronium is due to the large amount

of ion-water CT compared to the smaller amount of water-water CT. Hydroxide, on the

other hand, is similar to Cl− and I− in that is has a negative 1ss and charge is transferred

from the 1ss to the 2ss.

Similar to the monatomic ions, integration of the water charges from the ion center

through the 2ss does not account for the total ±1e charge of the system. Such delocal-

ization of charge indicates that ions have long-ranged effects on water. Since there is no

long-ranged CT (CT from the ion only affects waters in the 1ss), the charge outside the

2ss must be mediated by changes in hydrogen bonding patterns. Changes in hydrogen

bonding patterns can be seen at the interface, when compared to pure water.[11] The

charge at the surface, induced by the hydrogen bonding patterns, accounts for the charge

outside the 2ss of hydronium or hydroxide when the ions are away from the interface. So,

just as with monatomic ions, the charge missing from the first two solvation shells resides

at the water surface, when a surface is present.

Do we need explicit CT in MS-EVB?
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Chapter 7

Divalent Cations

7.1 Introduction

Traditional (fixed charge) models of zinc are inadequate for studies of zinc parti-

tioning between water and protein binding sites.[1] In fact, zinc will not stay in its binding

site at all unless artificial bonds are introduced.[1] For thermodynamic studies, models of

bound zinc have been introduced. These models have a reduced zinc charge (i.e. < +2e)

and are ‘‘covalently bound’’ (via strong harmonic restraints) to the binding site.[2] While

these models improve the overall description of the protein, they obviously cannot capture

the movement of zinc into and out of the binding site.

The polarization of the binding site by zinc contributes strongly to the energetics.[1]

Quantum mechanical (QM) studies show charge transfer (CT) onto zinc in these binding

sites as well.[3] We have previously developed a model for ion-water interactions which

includes polarizability and CT.[4] This model accurately captures hydration free energies

and dynamically adjusts ion and water charges based on the local environment.[4, 5]

A model which incorporates polarizability and CT may provide a more accurate and

useful model of zinc for protein-water systems. As a first step towards this type of model,

we herein parameterize zinc-water and magnesium-water interactions.
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7.2 Methods

When developing molecular mechanics force fields, a variety of parameters need to

be set to particular values. While the values of parameters are not necessarily unique,

careful choice of parameters will allow for more accurate simulations. Our general ap-

proach to parameterization involves

i. quantum chemical calculation of charge transfer amounts,

ii. determination of polarizability (usually available in the literature),

iii. calculation of the ion-water dimer potential energy surface,

iv. simulation of a single ion in bulk water.

The CT and polarizability parameters are set based on the quantum mechanical data.

The remaining (five) parameters are adjusted freely to get the best agreement with dimer

and aqueous properties known from experiment and high-level quantum calculations.

This adjustment can be done manually or using an automated optimization procedure.

Finally, the quality of the parameters is confirmed by calculating the single-ion solvation

free energy.

7.2.1 Quantum Chemistry Calculations

The geometry of ion-water dimers is optimized using the meta-generalized gradient

approximate density functional TPSS [6] in Gaussian 09.[7] The basis set used for magne-

sium and water is aug-cc-pvTz. For zinc, the effective core potential (ECP) MDF10 is used;

the ECP is compared to cc-pvDz for the dimer. The charge distribution is calculated us-

ing TPSS, Hartree-Fock (HF), and Moller-Plesset perturbation (MP2) theory. The electron

density distribution is analyzed using AIMAll software [8] for quantum theory of atoms in

molecules (AIM) charge partitioning. The charges from AIM are compared to the charges

· 96 ·



from electrostatic potential (ESP) charges in which the ESP is constrained to reproduce

the total system dipole.

In addition to ion-water dimer, clusters of the ions with multiple waters are also

studied. Both ions are coordinated by six waters when in bulk liquid; therefore, clusters

of six waters were optimized and the charges obtained. Assuming that the presence of a

second solvation shell does not alter charge transfer between the first shell waters and the

ion, the charge in bulk should be the same as in the clusters with six waters. To confirm

that the second solvation shell does not alter CT within the first shell, we also studied

6+4, 6+8, and 6+12 clusters, where the first number is the number of waters in the first

shell, and the second number is the number of waters in the second shell.

To simplify the tables, the following letter codes are used to represent the different

combinations of basis sets used in the quantum calculations.

Zinc basis set codes:

A Zn cc-pvDz, O aug-cc-pvTz, H cc-pvDz

B Zn aug-cc-pvDz, O aug-cc-pvTz, H cc-pvTz

C Zn MDF10; O aug-cc-pvdz; H cc-pvdz

D Zn MDF10, O 6-31G*, H 6-31G*

Magnesium basis set codes:

J Mg aug-cc-pvTz, O aug-cc-pvTz, H cc-pvTz

K 6-31G*

L Mg cc-pvdz, H cc-pvdz, O aug-cc-pvdz

7.2.2 Molecular Dynamics Simulations

A force field has been developed which incorporates charge transfer (CT) into clas-

sical molecular mechanics simulations.[4, 9] In this CT force field, the total charge of the
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system is conserved, but the charge of each molecule and ion can change. The amounts of

CT between different species are based on quantum mechanical atoms-in-molecules (AIM)

calculations. The model calculates charges for each species at each time step, based on

the local coordination structure. There is an energy contribution which is a function of

the amount of charge transfer, and the Coulombic energy is calculated using the instan-

taneous charges. The model also includes polarizability with the fluctuating charge (FQ)

method in the water model TIP4P-FQ+DCT and Drude polarizability for the monatomic

ions. For a more complete description of the model, see References [9] and [4].

The simplex optimization method, described in Section 3.2.1, is used to adjust the

Lennard-Jones (ε and σ), CT (χ and J ), and damping (a) parameters.

The simulation details are the same as in Section 4.2.

7.3 Results

7.3.1 Properties of Dimers and Clusters

Zinc-water distances in the clusters are slightly shorter than the magnesium-water

distances. The water geometry is also more distorted from its isolated form when com-

plexed with zinc. Adding dispersion corrections to the energy increases the optimal zinc-

water distance by 0.013 Å. Neither adding diffuse functions nor using an effective core

potential (ECP) to the zinc cation alters the CT. MP2 shows CT of 0.21 − 0.23e for zinc.

The CT to magnesium is about a third of that at 0.0744e. The difference in amount of CT

between Zn+2 and Mg+2 has been proposed as one source of their different behaviors. As

the ion-water distance increases, charge transfer (CT) drops off exponentially, as is seen

in previous studies (see Section 2.4).

In clusters with six or more waters, the Zn2+-Ow and Mg2+-Ow distances are nearly

the same and slightly greater than their respective ion-water distances in bulk. The

amount of CT per water is less when a greater number of waters coordinate the ion, which

is consistent with other results (unpublished data). Comparing HF CT from the dimer to
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Table 7.1: CT Data for Zinc-Water Dimers from Quantum Calculations.

optimization basis r (M–O) charge basis ESP+d q(M) AIM q(M) AIM CT
method sets A method sets e e e

TPSS A 1.870 HF A 1.8798 1.8293 0.1707
MP2 1.8449 1.7882 0.2118
TPSS 1.7886 1.7357 0.2643
HF B 1.8795 1.8293 0.1707

MP2 1.8413 1.7852 0.2148

TPSS-GD3BJ C 1.883 HF C 1.8587 1.8151 0.1849
MP2 1.8198 1.7699 0.2301
TPSS 1.7505 1.7068 0.2932

Table 7.2: CT Data for Magnesium-Water Dimers from Quantum Calculations.

optimization basis r (M–O) charge basis ESP+d q(M) AIM q(M) AIM CT
method sets A method sets e e e

TPSS J 1.933 HF J 1.9401 1.9333 0.0667
MP2 1.9308 1.9256 0.0744
TPSS 1.9079 1.9079 0.0921

the six water cluster for zinc, 0.1707e is transferred in the dimer, and only 33% of that

(0.0576e per water) is transferred in the 6-water cluster. For magnesium, CT per water in

the 6-water cluster (0.0280e per water) is 42% of the dimer CT. However, the total amount

of CT is still greater for zinc in the cluster than for magnesium in the cluster, i.e. the

charge of magnesium is larger when the first solvation shell is present.

Previous studies show that the ions’ second solvation shell does not affect CT be-

tween the ionand its first solvation shell.[4] To see whether that conclusion holds for

divalent ions, waters are added to the second solvation shell of the six-water cluster.

Again, little influence of the second solvation shell on the ion charge is seen. Using a large

basis set, the charge of the central ion does not change no matter how many waters are in

the second solvation shell. The second shell waters are typically accepting two hydrogen

and donating none. In this configuration, we expect these waters to have a charge around
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Table 7.3: CT in Zinc-Water Clusters

ni + no optimization basis r (M–O) charge basis AIM q(M) < q(2ss) >
method sets Å method sets e e

6+0 TPSS C 2.105 TPSS C 1.4868
HF 1.6546

PBE 2.120 HF 1.6586

6+4 PBEPBE D HF D 1.6087 0.0486
HF C 1.6100 0.0409

6+8 PBEPBE D HF D 1.3641 0.0631
HF C 1.6047 0.0339

6+12 PBEPBE D PBEPBE D 1.3758 0.0448
HF 1.6158 0.0270
HF C 1.6115

Table 7.4: CT in Magnesium-Water Clusters.

ni + no optimization basis r (M–O) charge basis AIM q(M) < q(2ss) >
method sets Å method sets e e

6+0 PBE J 2.111 HF J 1.8374
HF 2.098 HF 1.8354

TPSS 2.1 TPSS 1.7888
HF 1.8321

6+4 PBEPBE K PBEPBE K 1.7813 0.0798
HF 1.8365 0.0471
HF L 1.8416 0.0393

6+8 PBEPBE K PBEPBE K 1.7746 0.0607
HF 1.8335 0.0368
HF L 1.8383 0.0325

6+12 PBEPBE K PBEPBE K 1.7792 0.0440
HF 1.8364 0.0265
HF L 1.8398
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Table 7.5: Parameters for Divalent Cations. The parameters are the Lennard Jones
radius (σLJ ) and well depth (ϸLJ ), the Drude particle charge (qD), the Thole-type damping
parameter (adamp), the maximum amount of charge transfer (QCT ), the cut-off distances
for the charge transfer switching function (rCT1 and rCT1), the electronegativity (µCT ) and
hardness (ηCT ) for the CT energy.

Ion σLJ ϸLJ qD adamp QCT rCT1 rCT1 µCT ηCT
Å kcal/mol e Å e Å Å kcal/mol/e kcal/mol/e2

Mg 1.915 0.0437 -0.475246 0.42 0.050 1.0 3.7 707.3 663.9
Zn 2.26 0.0481 -1.124637 0.35 0.101 1.0 3.9 690.2 663.9

0.040e, which is indeed what we see with the large basis set. This allows us to apply our

previous model, which does not have three-body CT, without modifications.

7.3.2 Single-Ion Properties in Bulk Liquid Water

Table 7.6: Dimer Properties of Divalent Cations.
The results of the present MD model are compared
with quantum mechanical calculations. Experi-
mental results for Emin and rmin are given in the
second row in the middle columns.

Pair Emin rmin qCT
kcal/mol Å e

Mg+ - H2O -78.8 1.90 this work
-78.8a 1.942a targets

Zn+ - H2O -98.99 1.86 this work
-99b,c 1.86b,c targets

References for target properties: a QCISD/6-311G*
[10], b CCSD(T)/CBS [11], c CCSD(T)/B2 with rel-
ativistic corrections [12]

The parameters which best

reproduce the target properties

are shown in Table 7.5. The

parameters were arrived at by

a combination of automated and

manual optimization. The final

weights for the difference function

(Eqn. 3.8) are shown in Table 7.7.

The table shows all the properties

that were originally considered in the difference function. After testing several weighting

schemes, it was seen that any weight given to properties in which a range of values are

acceptable is too restrictive on the parameter optimization. This restriction is probably

due to the functional form of the difference function in which the quadratic is only mini-

mized for a single value. A more complex form of the difference function in which a range

of values is allowed may improved the automated optimization.
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Table 7.7: Weights for the Various Properties in the Merit Function.

gmax rmax gmin rmin rmax2 nc Emin dmin
Å Å Å kcal/mol Å

Weight 0 10 0 0 0 90 20 20

Table 7.8: Properties of Aqueous Divalent Cations. The location of the first maximum
(rmax ) of the radial distribution function, the coordination number (nc), the average charge
( < qi >) and dipole (< µi >) of the ion are shown.

Ion rmax nc < qi > < µi >
Å e D

Mg 2.1 6.0 +1.81 0.011 this work
Mg 2.044a 6.0a targets
Zn 2.2 6.0 +1.61 0.055 this work
Zn 2.078b 6.0c targets

References for target properties: a XRD [13], b EXAFS [14], c EXAFS [15, 16]

The dimer properties produced by the parameters in Table 7.5 are shown in Ta-

ble 7.6. The energies are consistent with the highest level quantum calculations.

The aqueous properties produced by the parameters in Table 7.5 are shown in

Table 7.8. The target properties were derived from X-Ray Diffraction (XRD) and Extended

X-Ray Absorption Fine Structure (EXAFS) when possible. If these were not available, ab

initio molecular dynamics (AIMD) was used instead.

7.3.3 Free Energy Calculations

There exists some disagreement on the single ion hydration free energies, ∆Ghydr ,

of multivalent ions. Tissandier et al.’s [17] values are considered the best estimates

for monovalent ions. A more recent study from Coe [18] confirms the values from Tis-

sandier et al. Thus, we calculate ∆Ghydr of Mg2+ and Zn2+ from Tissandier et al.’s ∆Ghydr

of Cl− and the experimental whole salt ∆Ghydr of MgCl2 and ZnCl2. Yu et al. [19] re-

port ∆Ghydr (MgCl2) = -607.0 kcal/mol and ∆Ghydr (ZnCl2) = -637.2 kcal/mol. Tissandier

et al. calculate ∆Ghydr (Cl−) = -72.7 ± 2 kcal/mol. Thus we calculate ∆Ghydr (Mg2+) = -
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461.6 kcal/mol and ∆Ghydr (Zn2+) = -491.8 kcal/mol. These values are about 30 kcal/mol

more negative than those reported by Marcus [20] or Schmid [21]. This is consistent with

Tissandier et al. reporting more negative cation hydration free energies than Marcus or

Schmid in general.

For the parameter sets in Table 7.5, the hydration free energies are ∆Ghydr (Mg2+) = -

460.5 kcal/mol and ∆Ghydr (Zn2+) = -490 kcal/mol.

7.4 Discussion

Work is on-going to get better-converged aqueous thermodynamic properties. Also

of interest are the kinetic properties. The experimental diffusion constants are 0.71x10−5cm2/s

for Mg2+ and 0.71x10−5cm2/s for Zn2+.[19] The experimental residence times of waters in

the first solvation shell are 2x10−6−10−5 for Mg2+ from nuclear magnetic resonance (NMR)

[22] and 10−10 − 5x10−9 for Zn2+ from quasi-elastic neutron scattering (QENS).[23]
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Chapter 8

Damping of Charge Transfer in Ion-Ion Interactions

In attempting to apply the charge transfer (CT) model to concentrated ion solutions,

it was found that the large amounts of CT were resulting in ion aggregation rather than

dissolved electrolyte. Therefore, further studies of how CT depends on the environment

were called for.

8.1 The Dielectric Constant of the Surroundings

Alter Charge Transfer.

Table 8.1: NaCl dimer in gas phase and aqueous
phase.

Optimization AIM d(Na–Cl) qct
Method Method Å e

HF gas HF gas 2.391 0.079
HF gas HF aq 2.391 0.050

M06-2X gas M06-2X gas 2.359 0.105
M06-2X aq M06-2X aq 2.357 0.102
M06-2X aq HF aq 2.357 0.051

The environment can be in-

cluded in an average manner

in quantum calculations through

the use of a polarizable con-

tinuum model (PCM). The NaCl

dimer is used as a model system.

The dimer is optimized either in

the gas phase (ε = 1) or aqueous phase (ε = 78). The Slater-type orbital (STO) basis

set ATZ2P and built-in atoms-in-molecules (AIM) analysis in the ADF software is used.[1]
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As Table 8.1 shows, CT is reduced in an environment with a high dielectric. However,

optimization in a high dielectric does not change the geometry.
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Figure 8.1: The Dielectric Constant
of the Surroundings Alters Ion-Ion
Charge Transfer.

The amount of CT decreases rapidly as the

dielectric constant increases from 1 to 4, as

shown in Figure 8.1. For this study, the NaCl

dimer is used with the distance fixed at 2.93Å,

the as same as in NaCl crystals. The CT

amounts are obtained from HF/aug-cc-pvQZ

calculations performed in NWChem,[2] varying

the dielectric with PCM. The dielectric constant

of NaCl is 5.90, [3] indicating that CT in the

crystal is about 50% of CT in the gas-phase

dimer.

8.2 The Number of Ligands Alters Charge Transfer.
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Chloride-Potassium

Figure 8.2: Charge Transfer per lig-
and decreases with the number of
ligands. The legend lists the cen-
tral ion first and the ligands second.
NaCl asymmetric refers to a central
Cl− with all Na+ on one side.

Figure 8.2 shows the decrease in CT per lig-

and as the number of ligands increases. The

data for cation-water CT are from Ref. [4]. The

chloride-water CT data are for optimized clus-

ters from Ref. [5]. The sharp decline in chloride-

water CT is partially due to the larger ion-water

distances in optimized clusters with a greater

number water molecules.

To determine the decrease in CT due only

to the increasing number of ligands, ion pairs

of Na+ and K+ with Cl− are studied. The ion-ion distance is held at the distance in
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salt crystals, listed in Table 8.2. Single-point calculations using HF are carried out in

NWChem,[2] using the aug-cc-pvTZ basis for Na and Cl and the 6-311G(2df,2pd) basis

for K. This method shows that the decrease in CT per ligand can be due the number of

ligands only. In optimized clusters, this decrease in CT is enhanced by the increasing

distances between central ion and ligands.

CT decreases less with the addition of ligands if the ligands are all placed to one

side of the central ion. This is shown by the ‘‘NaCl asymmetric’’ line in Figure 8.2.

8.3 Charge Transfer in Solids.

Table 8.2: Charge transfer in salt crystals.

Salt Distance Central Ion q qct/nlig
Å e e

NaCl 2.825 Na 0.909 0.015
Cl -0.908 0.015

KCl 3.15 K 0.889 0.018
Cl -0.892 0.018

NaI 3.23 Na 0.883 0.019
I -0.893 0.018

KI 3.52 K 0.844 0.026
I -0.856 0.024

A further study looked at adding

ions outside the first solvation

shell in order to better mimic the

crystalline salt environment. A

schematic is shown in Figure 8.3.

A central ion is surrounded by six

counter-ions; then each face of

the crystal is completed by adding

more ions and counter-ions. Thus, there are 13 of the central ion type and 14 counter-

ions in the system forming a face-centered cubic cell. The ion-ion distance is determined

by their lattice constants; the distances are listed in Table 8.2. No periodic boundary

conditions (PBC) are applied, and the dielectric is ε = 1. A calculation was attempted with

ε = 6, which is more relevant to the solid salt environment but proved to be too com-

putationally demanding. The methods for NaCl and KCl are the same as in Section 8.2,

except that the basis sets were reduced to aug-cc-pvDZ and 6-311++G(2d,2p) due to com-

putational expense. For iodide, the effective core potential (ECP) MWB46 is used, and the

calculations are done in Gaussian09.[6]
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Similarly to the higher dielectric environment above (Fig. 8.1), CT in the ‘‘mini-

crystal’’ is reduced to about half of CT seen in the gas-phase dimer. The CT per ligand in

NaCl is less than what is seen by Tang, Sanville, and Henkelman.[7] They find qct/nlig =

0.0287e using the density functional PW91 with PBC. Their larger CT is probably due to

the use of density functional theory, which is shown in Chapter 2 to give too much CT.

Figure 8.3: NaCl Crystal.

One way to deal with CT damping is to reduce

the QCT parameter so that the maximum CT

is relevant to the aqueous environment, rather

than gas phase. This is similar to the way that

reduced polarizability in the aqueous environ-

ment is handled.[8] Does this create artifacts at

that interface? The ion-water CT also becomes

damped in the QM calculations. However, due

to the smaller amount of CT in ion-water in-

teractions, the ion-water simulations are still

reasonable.

8.4 A Possible Method for Geometry-Dependent Charge Transfer

Damping.

In certain situations, e.g. at an interface, it may be important to capture the full

CT. Here, a method is proposed for explicit, i.e. geometry-dependent, CT damping. To

make the model geometry-dependent, first the coordination number Ni is estimated by

Ni =
∑
j

Swij(rij) (8.1)
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where Swij(rij) is the switching function from Eqn 3.4.

Swij(rij) =



1 if rij < RCT1 ,

1
2 [1 + cos(π rij−RCT1

RCT2 −R
CT
1

)] if RCT1 ≤ rij ≤ R
CT
2 ,

0 if rij > RCT2 ,

(8.2)

Because the cut-offs RCT1 and RCT2 are designed to allow CT only to the first solvation shell,

they exclude molecules outside the first shell. Summing over the neighbors j gives and

estimate of Ni. This estimate is made for each molecule first.

Then, the amount of damping d is calculated based on the coordination number of

the ‘‘central’’ atom i and the coordination number of each of its neighbors.

d(Ni , Nj) = (1 − b lnNi)(1 − b lnNj) (8.3)

where b = 0.38 from an empirical fit to amount of damping per ligand. This value of b is

fairly consistent for the variety of ligands tested.

Finally, the amount of CT qCT is calculated by multiplying the maximum amount

of CT QCT
ij (for the gas-phase dimer) by the damping coefficient d.

qCT = QCT
ij d(Ni , Nj) (8.4)

This method still conserves charge and will allow for CT to change based on the local

environment.

Applying the damping method to the ‘‘mini-crystal’’ described in Section 8.3 im-

proves the CT model’s agreement with QM-derived charges. The quantum calculations

give q(Cl)= −0.91e. The purely additive model using the dimer amount of CT, described

in Chapter 3, predicts q(Cl)= −0.46e. Furthermore, the additive model has a root mean

square deviation (rmsd) of 0.29 when the charges of all atoms in the mini-crystal are con-

· 110 ·



sidered. In contrast, the damped model predicts q(Cl)= −0.93e, and has an rmsd of 0.1

for the total cluster.

Currently, most MD models are appropriate for one phase: gaseous, or liquid/aqueous,

or solid. This geometry-dependent method of altering the polarizability and CT could result

in a single model that works for all phases of matter.

8.5 Damping in the KcsA Potassium Ion Channel.

The issue of charge transfer (CT) and damping may be important for the KcsA

potassium ion channel. CT and polarizability were proposed to play a role in K+ selectivity

over Na+ in KcsA.[9] However, studies of CT in the selectivity filter (SF) of KcsA suffer from

a variety of methodological problems.

Bucher et al.[9] find that carbonyl dipoles are 0.2 D greater than formamide in

vacuum when K+ is present, and 1.2 D greater when Na+ is present. They conclude that

CT does not play a role in K/Na selectivity, even though the CT energy ECT = 17kcal/mol

They use QM/MM, which often creates artifacts at the QM-MM boundary. Their boundary

cuts through the SF, thus introducing artifacts into the most important region. Has AIM

convergence with plane wave basis sets been characterized?

Kraszewski et al. [10] show that more charge is transferred to K+ than Na+, though

q(K) fluctuates more than q(Na). Also, the sites where q(Na) is at a minimum (in S1 and

S3) are the opposite of where q(K) is minimum (in S2 and S4). The minima all occur at the

center of the binding sites, and so the differences in CT must be due to some longer-range

polarization, i.e. the backbone is the same in all cases, so the side chain must affect CT

even though the ions do not directly bind to the side chain. The carbonyl dipoles have

the opposite trend, staying at 3.5D with K+ and fluctuating from 2.9 to 4.1D with Na+.

They perform HF/6-31G(d) calculations on snapshots from an MD trajectory and extract

Merz-Kollman-Singh (MKS) charges, a type of electrostatic potential (ESP) charge. These
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Table 8.3: CT is Damped in the KcsA Selectivity Filter. The values are charge transferred
(qct ) in e.

NMA GG 4GG
Number of
Carbonyls 1 2 8

expected actual expected actual

K 0.0935 0.1870 0.1058 0.7478 0.0549
Na 0.0089 0.0177 0.0412 0.0709 0.0371

are low levels of theory and have know problems for calculation of CT. They also truncate

the SF for the ab initio calculations.

Huetz and coworkers [11] [12] find that q(K) varies depending on its position

within the SF. The charges reported are Merz-Kollman (MK) ESP charges determined

from HF/6-31G(d) calculations. For a discussion of the problems associated with these

methods in respect to CT calculations, see Chapter 2.

A molecular dynamics (MD) study which incorporates polarizability and CT would

allow for simulations of KcsA at longer timescales, and so better-converged results, than

can be achieved with QM or QM/MM methods.

Figure 8.4: S2 site of KcsA SF.

QM studies of Na+ and K+ with model com-

pounds help to better understand polarizability

and CT within the selectivity filter. The model

compounds are N-methylacetamide (NMA) and

diglycine (GG). These compounds are often used

a mimics of the protein backbone. Four GG

(4GG) arranged symmetrically around the cen-

tral cation give the closest mimic to the S2 site

in the SF, shown in Figure 8.4.
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In Table 8.3, the charge transfer amounts are shown for differing number of carbonyl

(amide) ligands. The ‘‘expected’’ value is equal to the CT per carbonyl times the number

of carbonyl groups. The actual value is from quantum mechanics. Having two carbonyl

groups damps the CT to K+. Oddly, CT to Na+ increases when coordinated to GG. The

reason for this increase in CT is unclear.

In 4GG, we see the importance of including damping of CT in the MD model. The

ions are 2.776 Å from each carbonyl group. The CT onto K+ is expected to be 0.7478 e

in the additive model, which would results in q(K)=0.2522 e, a seemingly unreasonable

charge. Indeed, the quantum calculations show that only 0.0549 e is transferred onto

K+. With only 0.0371 e transferred onto Na+, the charges of the two cations are very

similar in the center of the SF. Note that these CT amount are for the ion at the center

of 4GG, which corresponds to the minimum energy position for K+. The minimum energy

position for Na+ near the center of one plane of carbonyls. The CT in that position is as

yet undetermined.
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Chapter 9

Discussion

From quantum mechanical (QM) calculations, the best method for calculating

amount of CT from quantum mechanics was determined to be the MP2/aug-cc-pvDz

wavefunction with charges partitioned by AIM. The ion-water CT is affected by the num-

ber of waters in the first solvation shell (1ss) but not by the presence of waters in the

second solvation shell (2ss). Such damping can lead to a different picture of CT depending

on whether dimers or clusters are used.

Our group has developed an efficient charge transfer (CT) method for molecular

dynamics (MD) simulations. It avoids non-physical behavior which is a problem in some

other CT force fields.[1] I have extended this force field to include ion-water and ion-ion

CT.[2] An automated parameter optimization can be useful, especially if some decent

starting parameter sets are known; however, the determination of a merit function can be

tricky. While debate continues over the need to include CT in models, we are now in a

position to determine CT’s importance.

So, what have we learned from this CT model? First, though the average charge of

a water molecule in bulk is zero, its charge fluctuates based on its local hydrogen bonding

(HB) environment.[1] This seems typical of neutral molecules (see Section 1.3.1). At an

interface, the HB symmetry is broken, and so waters become charged.[3] Ionic species, on

the other hand, have non-integer charges when solvated (see also Section 1.3.1).[2]
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Ions have long-ranged effects on the structure of water. In bulk, the some charge

from the ion is outside the second solvation shell. This is consistent with the picture

of long-ranged perturbation of HB in water due to ions.[4] The excess charge outside the

solvation shell alters the diffusivity of that water, leading to better agreement with ab initio

MD.[5] When an interface is present, the ion can alter the HB of water at the surface even

when the ion is not located at the surface.[6]

The charge of the first solvation shell of water is determined by the balance between

CT to/from the ion and CT to/from the second solvation shell. For the monatomic, mono-

valent ions, the 1ss is negative. For the cations, more electron density is gained from the

2ss than is given up to the ion. For the anions, electron density is gained from the ion

and less electron density is given to the 2ss. For the divalent cations, the 1ss is positive;

more electron density is given to the ion than is gained from the 2ss. For H3O+ and OH−,

the charge of the 1ss is of the same sign as the ion. This is because the ion-water CT

is greater than the water-water CT. The charge of H3O+ and OH− and their 1ss is also

affected by the HB ability of the molecular ions.

In studies of electrolytes which include CT, the anion charge is around -0.8e

whereas the cation charge is close to +0.9e.[7] This means that the water has a charge of

-0.1e in these systems. It has been shown that this affects the water’s diffusivity.[5] What

other consequences this charge on water may have are unknown. Such charge imbalance

between cation and anion is also seen in KX·6(H2O) clusters.[8] This charge asymmetry

indicates there may be a problem with charge scaling schemes in which the same amount

of scaling is used for cations and anions, such as in Ref. [9].

Recently, doubts have been raised about the adequacy of modeling UCT as a second

order Taylor expansion in the amount of CT (see Eqn. 3.2). The second order Taylor

expansion produces a quadratic function, yet the true energy of an atom as a function

of fractional charge should be linear when interpolating between integer charges.[10] The

approximation then produces energies that are lower for fractional charges than the true
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energy, leading to excess CT. In our model, the linear contribution (µCTqCT) is typically

similar to or less than the quadratic contribution (1
2JCTq2

CT). How sensitive the MD model

is to this effect is unclear.

As is often the case with research, as many questions are raised as answered. Work

in understanding the role of CT molecular interactions would be improved by continuing

research in the following areas:

i. parameterization of Zn2+ interactions with amino acids for use in studies of zinc

metalloproteins

ii. the study of ions in an electric field

iii. testing of the damping method proposed in Section 8.4

iv. comparison of AIM and NBO charge partitioning in Zn2+- and Mg2+-water clusters

and comparison of ECT from NBO to our MD UCT

v. calculation of Raman and IR spectra of halide-water clusters in which CT is allowed

or prohibited to determine how CT affects these spectra

vi. the study of polarizable (FQ) and FQ+CT KcsA potassium ion channels to determine

the importance of these interactions in K+/Na+ selectivity

vii. investigation of the effect of negatively charged waters in electrolyte solution

viii. study of the surface charge of metals (electrodes) and their CT to electrolyte solutions

· 117 ·



Bibliography

[1] A. J. Lee and S. W. Rick, J. Chem. Phys. 134, 184507 (2011).

[2] M. Soniat and S. W. Rick, J. Chem. Phys. 137, 044511 (2012).

[3] C. D. Wick, A. J. Lee, and S. W. Rick, J. Chem. Phys. 137, 154701 (2012).

[4] S. J. Irudayam and R. H. Henchman, J. Chem. Phys. 137, 034508 (2012).

[5] Y. Yao, Y. Kanai, and M. L. Berkowitz, J. Phys. Chem. Lett. 5, 2711 (2014).

[6] M. Soniat and S. W. Rick, J. Chem. Phys. 140, (2014).

[7] B. Sellner, M. Valiev, and S. M. Kathmann, J. Phys. Chem. B 117, 10869 (2013).

[8] A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 126, 144311 (2007).

[9] I. Leontyev and A. Stuchebrukhov, Phys. Chem. Chem. Phys. 13, 2613 (2011).

[10] A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008).

· 118 ·



Appendix A

Additional CT Data

See Appendix B for abbreviations of basis sets and methods references.

Table A.1: CT Involving Alkanes.

Electron Electron Geometry Distance AIM qCT

Donor Acceptor Method Basis Å Method Basis e

CH4 H2O M06-2X QZ4P 3.418 same same 0.006
H2O CH3CH3 M06-2X QZ4P same same 0.006
Cl- CH4 HF ATZP same same 0.014
Cl- CH3CH3 M06-2X ATZP 3.625 same same 0.028
CH4 Na+ M06-2X QZ4P 2.561 HF ATZP 0.024
CH3CH3 Na+ M06-2X QZ4P 2.551 HF QZ4P 0.031
CH4 K+ B3LYP G-b 3.106 HF same 0.095
CH4 Ca2+ M06-2X ATZP 2.509 HF ATZ2P 0.081
CH4 Zn2+ M06-2X ATZP 2.016 HF ATZP 0.296

The optimized geometry and amount of CT involving the alkanes methane and

ethane are shown in Table A.1. The distance in Table A.1 refers to the distance from the

ion or the water oxygen to the closest carbon. The anion Cl− binds almost equidistant from

both carbons in ethane. CT from alkanes to Na+ and Ca2+ is comparable to that between

those ions and water. However, CT from alkanes to K+ and Zn2+ is greatly increased

compared to water.
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Table A.2: CT Involving Amines.

Electron Electron Geometry Distance AIM qCT

Donor Acceptor Method Basis Å Method Basis e

NH3 Na+ M06-2X QZ4P 2.321 same same 0.052
HF ATZP 0.042

NH2CH3 Na+ M06-2X ATZP HF ATZP 0.045
NH3 K+ B3LYP G-b 2.783 HF same 0.111
NH3 H2O M06-2X QZ4P 2.917 same same 0.038

HF ATZP 0.031
NH2CH3 H2O M06-2X TZP 2.874 HF QZ4P 0.028
Cl- NH3 M06-2X TZP HF ATZP 0.033
Cl- NH4+ M06-2X TZP 2.72 same same 0.076
NH3 Ca2+ M06-2X ATZP 2.372 HF ATZP 0.096
NH3 Zn2+ M06-2X ATZP 1.955 HF ATZP 0.336

The optimized geometry and amount of CT involving the amines ammonia, ammo-

nium, and methylamine are shown in Table A.2. The distance is from the ion or the water

oxygen to the nitrogen atom. For the cations, CT is greater than from water. The CT

between water and ammonia is also greater than water-water CT. CT from Cl− to NH3 is

reduced compared to water. CT from Cl− to NH+
4 is comparable to that from Cl− to Li+.

The nature of CT in the Cl−·NH+
4 complex is ambiguous from only the AIM analysis. This

complex could also be considered as HCl·NH3, in which case CT would be from NH3 to

HCl.
Table A.3: CT Involving Alcohols.

Electron Electron Geometry Distance AIM qCT

Donor Acceptor Method Basis Å Method Basis e

H2O CH3OH M06-2X TZP 2.873 HF TZP 0.011
CH3OH H2O M06-2X TZP 2.816 HF QZ4P 0.015

The optimized geometry and amount of CT between water and methanol are shown

in Table A.3. The distance is between the water oxygen and methanol oxygen. The CT

between methanol and water is less than water-water CT.

The optimized geometry and CT for ions with argon are shown in Table A.4. The

distances are large and the CT amounts are small.
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Table A.4: CT Involving Alcohols.

Electron Electron Geometry Distance AIM qCT

Donor Acceptor Method Basis Å Method Basis e

Cl- Ar M06-2X ATZP 3.658 HF same 0.014
Ar Na+ M06-2X ATZP 3.847 HF same 0.002

Table A.5: CT Involving Carbonyls.

Electron Electron Geometry Distance AIM qCT

Donor Acceptor Method Basis Å Method Basis e

H2CO Na+ B3LYP acT 2.173 HF acT 0.0220
(CH3)2CO Na+ B3LYP G-b 2.129 HF G-b 0.0295

HF acT 0.0266
H2CO K+ B3LYP G-b 2.570 HF G-b 0.0974
(CH3)2CO K+ B3LYP G-b 2.504 HF G-b 0.1005

The optimized geometry for cations with the carbonyls formaldehyde and acetone

are shown in Table A.5. Similarly to the alkanes, CT between the carbonyls and Na+ is

comparable to that between Na+ and water, yet the CT between carbonyls and K+ is greater

than between K+ and water.
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Appendix B

Methods for CT Data

In the following tables, methods used for geometry optimization of dimers and

clusters are shown as well as the methods used to obtain charge transfer (CT) amounts.

The references are all placed after the tables. Note that the Amsterdam Density Functional

(ADF) software uses Slater-type orbitals (STO’s) and has a built-in analysis for atoms in

molecules (AIM) charges. With NWChem and Gaussian (G09), the AIM analysis is carried

out by another software package. This is either the Henkelman software, which uses

Gaussian cube files, or AIMAll, which uses wavefunction files.

To make the tables more legible, the following abbreviations are used for the basis

sets:

acX aug-cc-pVXZ

cX cc-pVXZ

G-a 6-311+G*

G-b 6-311++G(2d,2p)

If the atoms are not explicitly listed, then the same basis is used on all atoms.
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Table B.1: Methods Corresponding to Tables 2.5 and 2.6.

M X geometry optimization AIM software
method basis method basis

Li F M06-2X QZ4P HF same ADF
Cl M06-2X QZ4P HF same ADF
Br M06-2X QZ4P HF same ADF
I M06-2X QZ4P HF same ADF
OH2 M06-2X QZ4P HF same ADF

Na F M06-2X QZ4P HF same ADF
Cl MP2 acT MP2 same NWChem, Henkelman
Br M06-2X QZ4P HF same ADF
I B3LYP Na acT; I MWB46 HF same G09, AIMAll
OH2 MP2 acT MP2 same NWChem, Henkelman

K F M06-2X K G-a; F acT MP2 same G09, AIMAll
Cl MP2 K G-b; Cl acT MP2 same NWChem, Henkelman
Br M06-2X K G-a; Br acT MP2 same G09, AIMAll
I B3LYP K G-a; I MWB46 HF same G09, AIMAll
OH2 MP2 K G-b; O, H acT MP2 same NWChem, Henkelman

Rb F PBE0 Rb MWB28; F acT PBE0 same G09, AIMAll
Cl PBE0 Rb MWB28; Cl acT PBE0 same G09, AIMAll
Br PBE0 Rb MWB28; Br acT PBE0 same G09, AIMAll
I PBEPBE Rb MWB28; I MWB46 PBEPBE same G09, AIMAll
OH2 PBE0 Rb MWB28; O acT, H cT HF same G09, AIMAll

Cs F PBE0 Cs MWB46; F acT PBE0 same G09, AIMAll
Cl PBE0 Cs MWB46; Cl acT PBE0 same G09, AIMAll
Br PBE0 Cs MWB46; Br acT PBE0 same G09, AIMAll
I PBE0 Cs MWB46; I MWB46 PBE0 same G09, AIMAll
OH2 M06-2X QZ4P HF same ADF
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Table B.2: Methods Corresponding to Tables 2.7, 2.8, 2.9, and 2.10. The AIMAll program
is used for all AIM calculations.

M X geometry optimization aim software
method basis method basis

Be F PBEPBE Be cT; F acT HF same G09
Cl PBEPBE Be cT; Cl acT HF same G09
Br PBEPBE Be cT; Br acT HF same G09
I PBEPBE Be cT; I MWB46 HF same G09
OH2 PBEPBE Be, H cT; O acT HF same G09

Mg F PBEPBE Mg cT; F acT HF same G09
Cl PBEPBE Mg cT; Cl acT HF same G09
Br PBEPBE Mg cT; Br acT HF same G09
I PBEPBE Mg cT; I MWB46 MP2 same G09
OH2 TPSS Mg, O acT; H cT MP2 same G09

Ca F PBEPBE Ca cT; F acT HF same G09
Cl PBEPBE Ca cT; Cl acT HF same G09
Br PBEPBE Ca cT; Br acT HF same G09
I PBEPBE Ca cT; I MWB46 HF same G09
OH2 M06-2X QZ4P HF ATZP ADF

Sr F PBE0 Sr MWB28; F acT MP2 same G09
Cl PBE0 Sr MWB28; Cl acT MP2 same G09
Br PBE0 Sr MWB28; Br acT MP2 same G09
I PBE0 Sr MWB28; I MWB46 MP2 same G09
OH2 PBE0 Sr MWB28; O acT; H cT MP2 same G09

Ba F PBE0 Ba MWB46; F acT MP2 same G09
Cl PBE0 Ba MWB46; Cl acT MP2 same G09
Br PBE0 Ba MWB46; Br acT MP2 same G09
I PBE0 Ba MWB46; I MWB46 MP2 same G09
1-4 OH2 MP2 Ba MWB46; O acT; H cT MP2 same G09
5+ OH2 TPSS-GD3BJ Ba MWB46; O acT; H cT MP2 same G09

· 124 ·



References:

Software:

ADF [1]

NWChem [2]

Gaussian09 [3]

AIMAll [4]

Henkelman AIM program [5]

Density Functionals:

PBEPBE [6, 7]

PBE0 [8]

M06-2X [9]

TPSS [10]

B3LYP [11, 12, 13, 14]

Post-HF Methods:

MP2 [15]

Basis Sets and Effective Core Potentials (ECP’s):

(aug)-cc-pvXz [16]

6-311++G(2d,2p) [17]

MWB (Wood-Boring) ECP [18]

Other:

Grimme’s dispersion correction (GD3) [19]

Use of Becke and Johnson’s (BJ) damping for GD3 [20]
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