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FOREWORD 
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simulating, and analyzing five categories of faults in a test model with and without presence of 

STATCOM controller.  
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ABSTRACT 

The analysis of power systems under fault condition represents one of the most important 

and complex tasks in power engineering. The study and detection of these faults are necessary to 

ensure that the reliability and stability of the power system do not suffer a decrement as a result 

of a critical event such as fault. The purpose of this thesis is to develop and to present an 

educational tool for students to model FACTS devices using Simulink. Furthermore, the 

development of this thesis provides the means for students to model different types of faults. The 

development is based on presenting a power system – the Test System - by its simplest form 

including generation, transmission, transformers, loads and STATCOM device as an example of 

the general FACTS devices. The thesis includes modeling of the Test System using Simulink and 

MATLAB program to produce the results for further analysis. The findings and development 

included in the thesis is intended to serve as an educational tool for students interested in the 

study of faults and their impact on FACTS devices. Students may use the thesis as the building 

block for developing models of larger and more complex power systems using Simulink and 

MATLAB programs for further study of impacts of FACTS devices in power systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fault Analysis, Power Systems, Types of Fault, STATCOM, MATLAB, Modeling, 

Simulink 



 

 

1 

Chapter 1 

INTRODUCTION 

There is a rapid development in the field of electrical power systems in the recent years 

where modeling and simulation of generation, transmission and distribution subsystems play 

important roles in planning and operation of power systems. Rapid growth of electricity 

consumption while maintaining high level of system reliability has caused expansion of power 

system grids during the past few years. The increase in both load growth and system reliability 

has generated a power system that includes a larger number of lines, hence, requiring increased 

fault and contingency simulation of the system. 

Transmission lines are essential parts of a power system for power energy delivery from 

generating plants to end customers where faults most likely occur. Faults on the transmission 

system can lead to severe economic losses. Traditional updating of a transmission system by 

constructing new transmission lines becomes extremely difficult because of economic and 

environmental pressures [7].  

High efficiency in terms of better utilization of existing transmission lines, without 

compromising the quality and reliability of electrical power supply has thus to be found via 

alternative means. In this respect, due to the recent advances in high power semiconductor 

technology, Flexible AC Transmission System (FACTS) technology has been proposed to solve 

this problem [1, 2]. However, because of the added complexity due to the interaction of FACTS 

devices with the transmission system, the transients superimposed on the power frequency 

voltage and current waveforms (particularly under faults) can be significantly different from 

those systems not employing FACTS devices. This difference will result in rapid changes in 

system parameters such as line impedance and power angle. Consequently it is vitally important 

to study the impact of the FACTS devices when added to the system model for simulating 

various faults on transmission lines in the system. 

To model FACTS devices for transmission system fault analysis, we need to explore 

modeling of various FACTS devices and transmission line fault categories. In what follows we 

briefly provide background material on FACTS devices and transmission line fault categories.  
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1.1. Introduction to FACTS Devices 

The Thyristor Controlled Series Capacitor (TCSC), the Universal Power Flow Controller 

(UPFC), the Static Synchronous Series Compensator (SSSC), and the Static Synchronous 

Compensator (STATCOM) are some of the power controllers developed under the umbrella 

name of “Flexible AC Transmission Systems” (FACTS). These devices play a key role in 

modern electrical networks because they have the capability of improving the operation and 

control of power networks by increasing power transfer and improving transient stability among 

other characteristics. Collateral to their many strong points, the FACTS controllers have 

undesired impact on the protection system that should be taken into account in modeling, 

simulation, and design of future power systems. 

The FACTS controllers, once installed in the power grid, help to improve the power 

transfer capability of long transmission lines and the system performance in general. 

Additionally FACTS controllers are beneficially used for fast voltage regulation, increased 

power transfer over long AC lines, damping of active power oscillations, and load flow control 

in meshed systems. 

Hingorani and Gyugyi [3] provide a useful and thorough representation of FACTS 

devices in four categories that are used by researchers in study and design of power systems. The 

four categories represented in [3] and used in this thesis are: 

1. Series Controller. Series controllers are connected to a power line in series and have an 

impact on the power flow and voltage profile. Examples of these controllers are the SSSC and 

TCSC. 

2. Shunt Controllers. These controllers are shunt connected to transmission lines and are 

designed to inject current into the system at the point of connection. An example of these 

controllers is the Static Synchronous Compensator (STATCOM). 

3. Series-shunt controllers. These controllers are a combination of serial and shunt 

controllers. This combination is capable of injecting current and voltage. An example of 

controllers is the Unified Power Flow Controller (UPFC). 

4. Series-series controllers. These controllers can be a combination of separate series 

controllers in a multiline transmission system, or it can be a single controller in a single line. An 

example of such devices is the Interline Power Flow Controller (IPFC). The STATCOM, TCSC, 
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and SSCC are three of the FACTS controllers highlighted by their capacity to provide a wide 

range of solutions for both normal and abnormal conditions. 

The TCSC is made of a series capacitor (CTCSC) shunted by a thyristor module in series 

with an inductor (LTCSC). An external fixed capacitor (CFIXED) provides additional series 

compensating. Normally the TCSC operates as a variable capacitor, firing the thyristor between 

180° to 150°.  

The SSSC injects a voltage in series with the transmission line in quadrature with the line 

current. The SSSC increases or decreases the voltage across the line, and thereby, controlling the 

transmitted power. 

The STATCOM is a voltage-source converter (VSC) based controller which maintains 

the bus voltage by injecting an ac current through a transformer.  

The STATCOM can rapidly supply dynamic VARs required during system faults for 

voltage support. During a fault in power system short circuit currents flow, the magnitude of 

these currents can be of the order of tens of thousands of amperes. So consequently, the fault 

types have to be determined and analyzed. 

With this brief background material on FACTS devices, we proceed to providing the 

necessary material on types of faults that are important building blocks in our study of faulted 

power systems that include FACTS devices [10].  

1.2 Types of Faults  

Granger and Stevenson [8] outlined balanced three-phase faults, single line-to-ground 

faults, line-to-line faults, double line-to-ground faults as four common types of fault occurrence 

on transmission lines. Figure 1.1 provides a graphical view of the four types of faults.  
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Figure 1.1: Four Common Types of Fault [8] 

 

1.2.1 Balanced Three-Phase Fault 

Balanced three-phase fault is defined as the simultaneous short circuit across all three 

phases of a transmission line. A three phase fault is a condition where either (a) all three phases 

of the system are short circuited to each other or (b) all three phases of the system are grounded. 

Figure 1.2 provides a pictorial view of balanced three-phase faults. 

 

Figure 1.2: (a) Balanced three phase fault, (b) Balanced three phase to ground fault [8] 

 

Balanced three phase fault is also called as symmetric fault because the power system 

remains in balance after the fault occurs. It is the most infrequent but the most severe fault type, 

and other faults, if not cleared promptly, can easily develop into a three-phase fault [8].  

1.2.2 Unbalanced Faults  

Single line-to-ground faults are faults in which an overhead transmission line touches the 

ground because of wind, ice loading, or a falling tree limb. A majority of transmission line faults 

are single line-to-ground faults. The single line to ground fault can occur in any of the three 
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phases. However, it is sufficient to analyze only one of the phases [8]. Figure 1.3 depicts line-to-

ground fault on phase “c”. 

 

Figure 1.3: Line-to-ground fault on phase “c” [8] 

 

Line-to-line faults are usually the result of galloping lines because of high winds or 

because of a line breaking and falling on a line below. Line-to- line faults may occur in a power 

system, with or without the earth, and with or without fault impedance [8]. Figure 1.4 shows 

line-to-line fault on phases “b-c”. 

 

Figure 1.4: Line-to-line fault on phases “b-c” [8] 

 

Double line-to-ground fault occurs when two phases got shorted to the ground. This type 

of fault is common due to the storm damage. Double line-to-ground fault is presented on Figure 

1.5. 

 

Figure 1.5: Double line-to-ground fault on phases “b-c” [8] 

 

So far we have provided problem statement, FACTS devices and four common categories 

that are used by researchers in their studies, and four common types of faults experienced on 
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transmission lines. We next provide a summary of the studies that have been conducted and 

reported by investigators using FACTS devices. 

1.3 Review of Relevant Studies 

Varieties of fault studies and some research have been done on the performance of 

distance relays for transmission systems including different FACTS devices and are reported in 

literature. The analytical results based on steady-state model of STATCOM, and the impact of 

STATCOM on distance relays at different load levels are presented in [18]. In [19], the voltage-

source model of FACTS devices is used to study the impact of FACTS on tripping boundaries of 

distance relays. 

The work in [20] shows that thyristor controlled series capacitor (TCSC) has a big 

influence on the mho characteristic and reactance while the studies in [21], [15] and [4] 

demonstrate that the presence of FACTS devices on a transmission line will affect the trip 

boundary of distance relays, and both the parameters of the FACTS device and its location have 

impacts on the trip boundary.  

Wavelet transform based multi resolution analysis approach can be successfully applied 

for effective detection and classification of faults in transmission lines. With STATCOM 

controller, fault detection, classification and location can be accomplished within a half cycle 

using detail coefficients of currents [13, 16]. Wavelet transform  is  an  effective  tool  in  

analyzing  transient  voltage and   current   signals   associated   with   faults   both   in frequency  

and  time  domain. 

The new wavelet-fuzzy combined approach for digital relaying is highly used nowadays 

as well. The algorithm for fault classification employs wavelet multi resolution analysis (MRA) 

to overcome the difficulties associated with conventional voltage and current based 

measurements due to effect of factors such as fault inception angle, fault impedance and fault 

distance. The combined approach employs wavelet transform together with fuzzy logic. The     

wavelet     transform     captures     the     dynamic characteristics   of   the   non-stationary   

transient   fault signals using wavelet MRA coefficients.  The  fuzzy logic  is  employed  to  

incorporate  expert  evaluation through  fuzzy  inference  system  (FIS)  so  as  to  extract 

important  features  from  wavelet  MRA  coefficients  for obtaining coherent conclusions 

regarding fault location [16].   
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All the studies show that when the FACTS device is in a fault loop, its voltage and 

current injection will affect both the steady and transient components in voltage and current and 

hence the apparent impedance seen by a conventional distance relay is different from that on a 

system without FACTS. 

When the types of faults described in Section 1.2 occur, the magnitude of bus voltage 

cannot exist at its operational range, either voltage drops or increases. To prevent this effect, 

STATCOM FACTS controller is the best solution to maintain bus voltage magnitude in a 

suitable range [1]. There is always a need to develop innovative methods for transmission line 

protection. 

1.4 Objectives of the Thesis  

The first objective of this thesis is to study in dynamics the common fault types that occur 

in the power system. Secondly is to perform the analysis of influence that FACTS devices and in 

particular STATCOM has on a power system under five categories of faults described in Section 

1.2. These objectives are accomplished by creating a model of a power system in Simulink – 

MATLAB based program. Simulink is the environment in MATLAB that has design tools to 

model and simulate a power system. Simulink has been used to build the STATCOM [2,5,6,9] 

and to study different types of influences that it has on a power system described in Section 1.3. 

We focus on studying the influence of STATCOM on a test power system during fault 

event. Moreover, we simulate, analyze, and compare the results of five different types of faults 

on the test system without and with STATCOM model.   

The remainder of the thesis is organized to include the necessary parts in order to 

determine the effect of the STATCOM on a power system.  So firstly the model of a power 

system is developed in Chapter 2. Secondly STATCOM controller was introduced into the 

system and analyzed in Chapter 3. In Chapter 4 five different types of faults were added in the 

power system with STATCOM. Chapter 5 includes the analysis of STATCOM influence on the 

power system and concluding remarks and future work are included in Chapter 6.  
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Chapter 2 

MODEL OF THE POWER SYSTEM 

To satisfy the objectives of the thesis described in Chapter 1 we need to develop a 

suitable power system in Simulink. The simplest 4-bus system with generator, step-up 

transformer, transmission line, step-down transformer and a load can be considered. Such system 

is presented on Figure 2.1 a).  

 

Figure 2.1 a): One-line diagram of the 4-bus power system 

 

However, as stated in Chapter 1, this work is concentrated on studying the influence of 

the STATCOM devices on the power system depending on its point of insertion. That is why the 

original system can be simplified into test power system presented in Figure 2.1 b). Generator, 

represented the rest of the system, is connected to the part of the test system where STATCOM 

will be installed to achieve objectives of the thesis. The test power system consists of AC voltage 

source, transmission line, two loads and a transformer, which parameters can be found in Table 

2.1.  

 

Figure 2.1 b): One-line diagram of the test power system with description in Table 2.1 
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The test power system can be presented as a scheme consisting of a part where 

STATCOM will be installed and the rest of the system. Depending on the point of STATCOM 

insertion, test system can be modified for the future studies. Scheme of a power system used in 

this work is presented in Figure 2.1 c). 

 

Figure 2.1 c): Scheme of the test system 

 

The generator in the test system is modeled by a voltage source and for analysis of the 

results, the generator is an ideal voltage source in Simulink. Although in real power systems 

generators’ characteristics are not ideal, the choice of power source was to simplify the analysis 

using Simulink results. The AC voltage source used to model the generator of Figure 2.1 b) is 

represented by Figure 2.2.  

AC voltage source model in Simulink was presented by three-phase ideal sinusoidal 

voltage source with amplitude of 
3

2735000 ⋅ volts and with three phases lagging each other by 

120 degrees.  
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Figure 2.2: AC voltage source Simulink block 

 

The two loads in Figure 2.1 b) are represented as inductive instead of resistive loads. It is 

important to have inductive and not just resistive loads in order to achieve the similarity with a 

real world power system. Two loads were added into two different places of the power system: 

one on the generation side and one after step-down transformer on the load side. Simulink 

models of the load are shown by Figure 2.3.  
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Figure 2.3: Load representation in Simulink block 

 

Transformer is also added into the system to achieve the similarity with the real world 

power system. It is a step-down transformer from generation side of the model to the load side. 

Three-phase transformer block of the Simulink power system model is presented in Figure 2.4. 

Three-phase transformer model in Simulink was built by specifying parameters for 

winding 1 and winding 2, and also magnetization characteristics which are the following: 

 

Winding 1 parameters:  [V1 Ph-Ph(Vrms), R1(pu), L1(pu)]= [735e3, 0.15/30/2, 0.15*0.7] 

 

Winding 2 parameters:  [V2 Ph-Ph(Vrms), R2(pu), L2(pu)]= [ 16e3, 0.15/30/2, 0.15*0.3] 

 

Magnetization resistance: [Rm (pu); magnetization inductance Lm (pu)]= [500, 500] 
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Figure 2.4: Three-phase transformer Simulink block 

 

In order to simulate transmission line, distributed model of the line with specific R, L and 

C values that are shown in Table 2.1 were chosen. Transmission line is the model block that has 

to be explained in more details since its values change depending on the length of the line. Thus, 

we will present the necessary theory for distributed parameter model of transmission lines in this 

section. A distributed parameter is a parameter which is spread throughout a structure and is not 

confined to a lumped element such as a coil of wire.  

The generic line consists of two conductors with a potential difference V(x) between 

them, and a current I(x) that flows down one conductor, and returns via the other. A current 

flowing in a wire gives rise to a magnetic field, H. By the definition L, the inductance of a circuit 

element, L≡ΦI, is Φ, the flux linking the circuit element, multiplied by I, the current flowing 

through it. But the longer a section of wire is, the more Φ would be needed for the same I. 

Thus, L as the distributed inductance for the transmission line has to be defined. It has units of 

Henrys per unit length and can be found as length of transmission line multiplied by a distributed 

inductance of L. The two conductors would also have a distributed capacitance C which has units 

of Farads per unit length and can be found as the length of transmission line multiplied by 

distributed capacitance C. Thus, we see that the transmission line has both a distributed 

inductance L and a distributed capacitance C which are tied up with each other. There is really no 
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way in which we can separate one from the other having only the capacitance, or only the 

inductance; there will always be some of each associated with each section of line no matter how 

small or how big we make it [12].  

These elements of transmission line such as capacitance and reactance may be used in the 

per phase equivalent circuit of a three-phase line operating under balanced conditions. The 

Distributed Parameter Line block, used in Simulink, implements an N-phase distributed 

parameter line model with lumped losses. The model is based on the Bergeron's traveling wave 

method [5]. In this model, the lossless distributed LC line is characterized by two values (for a 

single-phase line): the surge impedance 
c

l
ZC =   and the wave propagation speed 

cl
v

⋅

=
1

, 

where l and c are the per-unit length inductance and capacitance [12]. For the test model used in 

the simulations, distributed parameters of the transmission line such as resistance presented by 

resistance per unit length (Ohms/km) specified by positive and zero-sequence resistances [r1 r0]-  

[0.01273 0.3864]. Inductance presented by inductance per unit length (H/km) with positive and 

zero-sequence inductances [l1 l0]-  [0.9337e-3  4.1264e-3]. Capacitance presented by 

capacitance per unit length (F/km) specified by positive and zero-sequence capacitances [c1 c0]- 

[12.74e-9 7.751e-9]. Positive, negative and zero-sequence components are used to resolve 

unbalanced three-phase systems into balanced system of phasors. The symmetrical components 

differ in the phase sequence, that is, the order in which the phase quantities go through a 

maximum. The phase components are the addition of the symmetrical components and can be 

written as follows: 

021

021

021

cccc

bbbb

aaaa

++=

++=

++=

                                                           (2.1) 

In order to solve the system (2.1) it has to be written in terms of one phase, for example 

phase “a”, components and the operatorα , which has a magnitude of unity and, when operated 

on any complex number, rotates it anti-clockwise by an angle of 120 degrees. The operatorα , 

the square of it and (1+j0) phasor form a balanced symmetrical system [12]. 

If Za, Zb, and Zc are the impedance of the load between phases “a”, “b”, and “c”, then 

sequence impedances are given in (2.2): 
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                                            (2.2) 

Transmission lines are assumed to have positive and negative sequence to be equal [12], 

so only positive sequence was mentioned in the test system. Taking into account the numbers 

from the test model for inductance specified by positive and zero-sequence inductances [l1 l0]-  

[0.9337e-3  4.1264e-3] and capacitance specified by positive and zero-sequence capacitances 

[c1 c0]- [12.74e-9 7.751e-9], we can get the following equations specified in (2.3): 

9751.7)(
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1
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α
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                                         (2.3) 

Solving the above system of equations (2.3) in Matlab program the following solutions 

were found: 

)0432.00748.0()0071(

)0432.00748.0()0071(

)0864.03822.0()0071(

0028.00048.0

0028.00048.0

0055.00028.0

jec

jec

jec

jl

jl

jl

c

b

a

c

b

a

−−⋅−=

−−⋅−=

+⋅−=

−=

−=

−=

                                         (2.4) 

Transmission lines may be represented by a single reactance in the single line diagram as 

l and c are the per-unit length inductance and capacitance. For a lossless line (r = 0), the 

quantity e + Zci, where e is the line voltage at one end and i is the line current entering the same 

end, must arrive unchanged at the other end after a transport delay τ. 

v

d
=τ                                                                      (2.5) 

where d is the line length and v is the propagation speed [12]. Using the notion of propagation 

speed and surge impedance, the following can be established in (2.6): 
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c

l
ZC =                                                               (2.6) 

cld ⋅=τ  

The model equations for a lossless line are: 

)()()()( ττ −⋅+−=⋅− tiZtetiZte Scsrcr                                          (2.7) 

                                        )()()()( ττ −⋅+−=⋅− tiZtetiZte rcrScS  

knowing that,  

)(
)(

)( tI
Z

te
ti sh

S
S −=                                                       (2.8) 

)(
)(

)( tI
Z

te
ti rh

r
r −=  

In a lossless line, Ish and Irh, which are two current sources of a two-port model, are computed in 

(2.9): 

)()(
2

)( ττ −−−⋅= tIte
Z

tI rhr

c

sh                                             (2.9) 

)()(
2

)( ττ −−−⋅= tIte
Z

tI shS

c

rh  

When losses are taken into account, new equations for Ish and Irh (2.10) are obtained by 

lumping R/4 at both ends of the line and R/2 in the middle of the line: 

R = total resistance = r × d 

The current sources Ish and Irh are then computed as follows [12]: 

))()(
1

()
2

1
())()(

1
()

2

1
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For multiphase line models, modal transformation is used to convert line quantities from 

phase values (line currents and voltages) into modal values independent of each other. As the test 

model is three-phase unbalanced system, it would have to be solved by taking the values of 

phase components separately and converting them into modal quantities. This can be 

accomplished by using transformations like Karrenbauer, Clarke or alike which are commonly 

used in EMPT-like programs. These transformations result in the same modal impedances and 

admittances as would result from applying symmetrical components transformation in the 60 Hz 

phase domain [5]. These transformations are automatically performed inside the Distributed 

Parameter Line block of Simulink which model is presented on Figure 2.5. 

 

Figure 2.5: Distributed transmission line Simulink block 

 

Numerical values for each of the components of the power system are described next. 

The system consists of 600 km transmission line powered by 735 kV generator. A 735kV/16kV 

Delta/Y transformer connected to the power system to step down the voltage. Two loads 330 and 
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250 MW each are installed on the power system as well. The details of the power system are 

presented in the Table 2.1. 

Table 2.1: Parameters of the power system 

Generator  735kV 3 phase AC voltage source 

Load 1 330MW/250 Active, 330MVar Reactive 

Load 2 250MW/250 Active, 250MVar Reactive 

Transmission line Length=600km, R= 0.01273 Ohm/km, 

L= 0.9337e-3 H/km, C= 12.74e-9 F/km 

 

Putting all the components together into one model, we receive graphical representation 

of the power system built in Simulink which is shown in Figure 2.6. 

After simulations had been performed the voltage and current can be observed at the 

various locations of the system. This is done by including the graph blocks for plotting voltage 

and current waveforms (Figure 2.7). 
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Figure 2.6: Power system model in Simulink 
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Figure 2.7 a): System voltage waveform measured after transformer, 

where: pink axis – phase “a”, yellow axis – phase “b”, blue axis – phase “c” 

 

Figure 2.7 a) reveals voltage waveform of the system at the bus after the step-down 

transformer of the one-line diagram of Figure 2.1. Figure 2.1 is converted to Figure 2.6 using 

Simulink modeling components and the measuring devices installed at terminals of a step-down 

transformer of Figure 2.6. As seen in Figure 2.7 a) the three measured voltages appearing as 

different three colors represent balanced three phases of the voltage at the bus with the same 
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magnitude and 120 degrees phase angle. Figure 2.7 b) is a replica of 2.7 a) except for the current 

phases at the bus. 

 

Figure 2.7 b): System current waveform measured after transformer, 

where: pink axis – phase “a”, yellow axis – phase “b”, blue axis – phase “c” 

 

In Chapter 3 we introduce model of STATCOM in the Simulink model of Chapter 2 for 

running “what if scenarios” while applying different faults. The developed integrated Simulink 

model could be used for studying behavior of STATCOM when the transmission system is 
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exposed to faults in Chapter 4. The purpose of the developments of Chapter 3 and Chapter 4 is to 

provide the educational tool for studying behavior of power systems that are pushed to their 

stability limit and to study the improvements made by adding FACTS control devices in general 

and STATCOM in particular. As stated in [14], STATCOM allows an increase in transfer of 

power while improving stability limits by adjusting the power system parameters such as 

voltage, current, frequency and phase angle. 
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Chapter 3 

MODEL OF THE TEST POWER SYSTEM INCLUDING STATCOM 

3.1 STATCOM Overview   

A static synchronous compensator (STATCOM), also known as a "static synchronous 

condenser" ("STATCON"), is a regulating device used on alternating current electricity 

transmission networks [1]. STATCOM is a self commutated switching power converter supplied 

from an electric energy source and operated to produce a set of adjustable multiphase voltage, 

which may be coupled to an AC power system for the purpose of exchanging independently 

controllable real and reactive power. The controlled reactive compensation in electric power 

system is usually achieved with the variant STATCOM configurations. The STATCOM has 

been defined with following three operating structural components. First component is Static: 

based on solid state switching devices with no rotating components; second component is 

Synchronous: analogous to an ideal synchronous machine with three sinusoidal phase voltages at 

fundamental frequency and the third component is Compensator: provided with reactive 

compensation. It is based on a power electronics voltage-source converter and can act as either a 

source or sink of reactive ac power to an electricity network. If connected to a source of power it 

can also provide active ac power. It is a member of the FACTS family of devices [3], [17]. 

 

Figure 3.1: Static compensator (STATCOM) system: voltage source converter (VSC) 

connected to the AC power system via a shunt-connected transformer [3] 

 

Usefully a STATCOM is installed to support electricity networks that have a poor power 

factor and often poor voltage regulation and the most common use of it is for voltage stability. A 

static synchronous compensator is a voltage source converter based device where the voltage 

source is created from a DC capacitor and therefore a static synchronous compensator has very 
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little active power capability. However, STATCOM active power capability can be increased if a 

suitable energy storage device is connected across the dc capacitor. The reactive power at the 

terminals of the static synchronous compensator depends on the amplitude of the voltage source. 

For example, if the terminal voltage of the voltage source converter (VSC) is higher than the ac 

voltage at the point of connection, the STATCOM generates reactive current and when the 

amplitude of the voltage source is lower than the ac voltage, it absorbs reactive power. The 

response time of a STATCOM is shorter than that of a static var compensator (SVC), mainly due 

to the fast switching times provided by the Insulated Gate Bypolar Transistor (IGBTs)  of the 

voltage source converter. The STATCOM also provides better reactive power support at low ac 

voltages than an SVC, since the reactive power from a STATCOM decreases linearly with the ac 

voltage (as the current can be maintained at the rated value even down to low ac voltage) [10]. 

3.2 STATCOM Operating Principle  

A STATCOM consists of a coupling transformer, an inverter and a DC capacitor as 

shown in Figure 3.2. 

 

Figure 3.2: Structure and equivalent circuit of STATCOM [3] 

 

STATCOM is usually used to control transmission voltage by reactive power shunt 

compensation. Based on the operating principle of the STATCOM [3] the equivalent circuit has 

been derived, which is displayed by Figure 3.3.  
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Figure 3.3: Static compensator (STATCOM) equivalent circuit [3] 

 

In the derivation, it is assumed that the harmonics generated by the STATCOM are 

neglected and the system as well as the STATCOM is three phases balanced. The STATCOM is 

equivalently represented by a controllable fundamental frequency positive sequence shunt 

voltage source. In principle of the STATCOM output voltage can be regulated in such a way that 

the reactive power of the STATCOM can be changed [11].  

3.3 Modeling of STATCOM in Simulink 

In order to study improvement of transfer capability and voltage control of the power 

system 6-pulse STATCOM was installed on the low side of the transformer of Figure 2.1 c). The 

control model of STATCOM that is used in the test system is shown in Figure 3.4.  
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Figure 3.4: STATCOM controller system 
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The STATCOM consists of six IGBT inverters and three phase-shifting transformers. 

Each inverter uses a thyristor in parallel with a series RC circuit block to generate almost square-

wave voltage. The parameters of the STATCOM control system are presented in Table 3.1. 

 

Table 3.1: Thyristor in parallel with a series RC circuit Simulink block parameters 

Resistance Ron 0.001 Ohm 

Inductance Lon 1.13e-3 H 

Snubber resistance Rs 500 Ohm 

Snubber capacitance Cs 250e-9 F 

 

The parameters represent the Simulink internal resistance Ron and internal inductance 

Lon of the thyristor model as well as snubber parameters – resistance Rs and capacitance Cs. The 

parameters are true when thyristor is in the on-state, and hence, “on” for representing internal 

resistance and inductance.  

This model is represented on Figure 3.5. 
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Figure 3.5: A thyristor in parallel with a series RC circuit subsystem 
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The inverters of Figure 3.4 with specifications of Figure 3.5 are fed to the secondary 

windings (L=18.7e-3 H) of phase-shifting transformers whose primary windings are connected to 

produce an almost sinusoidal voltage output.  

The voltage source inverter in this research is represented with the help of a synchronized 

6-pulse generator which can be viewed in the Figure 3.6.  
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Figure 3.6: Voltage source inverter model 

 

The subsystems of Figure 3.4, 3.5, and 3.6 complete the STATCOM model which is used 

to inject or decrease reactive power to regulate the voltage to the test system. The STATCOM 

model is added to the low side of the transformer that is connected to the rest of the system at its 

high side voltage bus. The “rest of the system” is represented by a generator, a load, a 

transformer, and a transmission line with specific numerical values for simulation purposes. The 

one-line diagram of “the rest of the system” connected to the load and the STATCOM model is 

shown by Figure 3.7.  

 

Figure 3.7: One-line diagram of the power system with STATCOM controller 

 

The model of the power system with the STATCOM controller in Simulink is shown in 

Figure 3.8.  
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Figure 3.8: Model of the power system with STATCOM controller in Simulink 
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Figure 3.9 shows voltage and current waveforms after performing simulations that 

include model of the STATCOM. The waveforms will later be compared with the waveforms of 

Chapter 2 which excludes STATCOM model.  

 

Figure 3.9 a): System voltage waveforms measured after transformer 
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Figure 3.9 b): System current waveforms measured after transformer 

where: pink axis – phase “a”, yellow axis – phase “b”, blue axis – phase “c” 

 

We can see from the current graph of Figure 3.9 b) that the STATCOM injected about 

20% current into the system which is necessary for increasing transfer capability and improving 

voltage control. In voltage stability and control problems voltage decreases due to insufficient 

power delivered to the loads. In order to prevent system from collapsing, it is necessary to inject 

the additional reactive power into the system. This is especially crucial for the transmission lines, 

since they are generally long and transfer of reactive power over these lines is very difficult due 
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to significant amount of reactive power requirement. STATCOM, by injecting reactive power 

into the system, helps to prevent or lessen the problems of transfer capability of the system. 

STATCOM can be also a solution for voltage control problems. Voltage control can be attained 

by sufficient generation and transmission of energy. The main reason for voltage instability is the 

lack of sufficient reactive power in the system, which can be regulated by STATCOM by 

injecting current into the system which can be observably seen on Figure 3.9 b). 

The performance of the power system is affected by many factors and particularly faults 

on transmission lines. The Simulink model and simulations of the test system including 

STATCOM and fault models provide the means to students for studying effectiveness of using 

FACTS devices in general and STATCOM controller as an example.  Chapter 4 includes steps 

for modeling and simulation of five different types of fault and STATCOM controller for 

analysis of the Test System of Chapter 3. 
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Chapter 4 

TEST SYSTEM 

To validate the ability of STATCOM to stabilize voltage in power system using Simulink 

as an educational tool, the most common types of faults described in the Chapter 1 are simulated 

in Chapter 4 using different scenarios and models. Specifically, we model and simulate five 

types of faults: 

- balanced three-phase fault; 

- three-phase fault to the ground; 

- line-to-ground fault; 

- line-to-line fault; 

- double line-to-ground. 

Development of the educational methodology consists of two steps:  a specific type of 

fault is modeled and integrated in the model of the test system without STATCOM model while 

recording the results of simulation; and inclusion of the model of STATCOM controller in the 

test system while simulating different types of faults. The developed educational tool may then 

be used for simulating “what if scenarios” by applying different fault types at different locations 

in the test system with further modeling and inclusion of other FACTS devices than STATCOM. 

The simulations were performed for 2 seconds consisting of 120 cycles to better observe 

three time periods that are present in the simulations: time before the fault, time during the fault 

and time after the fault. Time period after the fault can be divided into two sub-periods: time 

immediately after the fault and the time during which the system goes into steady state. Results 

from both experiments are summarized in Table 4.1. 

4.1 Balanced three-phase fault 

One-line diagram of the balanced three-phase fault is presented on the Figure 4.1. 
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Figure 4.1: One-line diagram of the balanced three-phase fault 

 

Figure 4.2 represents the model of the power system without STATCOM under balanced 

three-phase fault in Simulink. Whereas Figure 4.3 represents the model of the power system with 

STATCOM under balanced three-phase fault in Simulink. 

The parameters of the three-phase breaker are shown in Appendix A. 
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Fig 4.2: Model without STATCOM under balanced three-phase fault 
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Fig 4.3: Model with STATCOM under balanced three-phase fault 

 

The voltage graph of the power system without STATCOM under three-phase fault is 

shown on Figure 4.4. 
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Fig 4.4: Voltage plot of the power system without STATCOM under three-phase fault 

 

The voltage graph of the power system with STATCOM under three-phase fault is shown 

on Figure 4.5. 
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Figure 4.5: Voltage plot of the power system with STATCOM under three-phase fault 

 

Comparing the Figures 4.4 and 4.5, we can conclude that peak voltages of the system 

with STATCOM are smaller than the system without one. The more detailed analysis of the 

results will be presented in Chapter 5. 
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4.2 Three-phase-to-ground fault 

One-line diagram of the three-phase to ground fault is presented on the Figure 4.6. 

 

Figure 4.6: One-line diagram of the three-phase to ground fault 

 

Figure 4.7 represents the model of the power system without STATCOM under three-

phase to ground fault in Simulink. Whereas Figure 4.8 represents the model of the power system 

with STATCOM under three-phase to ground fault in Simulink. 

The parameters of the three-phase breaker are shown in Appendix A. 
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Figure 4.7: Model without STATCOM under three-phase to ground fault 
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Figure 4.8: Model with STATCOM under three-phase to ground fault 

 

The voltage graph of the power system without STATCOM under three-phase to ground 

fault is shown on Figure 4.9. 
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Figure 4.9: Voltage plot of the power system without STATCOM under three-phase to 

ground fault 

 

The voltage graph of the power system with STATCOM under three-phase to ground 

fault is shown on Figure 4.10. 
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Figure 4.10: Voltage plot of the power system with STATCOM under three-phase to 

ground fault 
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Analyzing Figure 4.9 and 4.10 and the numerical values from the Table 5.1 in Chapter 5, 

we can make the conclusion that installation of the STATCOM in the system with three-phase to 

ground fault was the most effective. More detailed results are presented in Chapter 5.  

4.3 Line-to-ground fault 

One-line diagram of the line-to-ground fault is presented on the figure 4.11. 

 

Figure 4.11: One-line diagram of the power system with line-to-ground fault 

 

The model of the power system without STATCOM under line-to-ground fault in 

Simulink is presented in the Figure 4.12. Whereas Figure 4.13 represents the model of the power 

system with STATCOM under line-to-ground fault in Simulink. 

The parameters of the line-to-ground breaker are shown in Appendix B. 
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Figure 4.12: Model of the power system without STATCOM under line-to-ground fault 
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Figure 4.13: Model with STATCOM under line-to-ground fault 

 

The voltage graph of the power system without STATCOM under line-to-ground fault is 

shown on Figure 4.14. 
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Figure 4.14: Voltage plot of the power system without STATCOM under line-to-ground 

fault 

 

The voltage graph of the power system with STATCOM under line-to-ground fault is 

shown on Figure 4.15. 
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Figure 4.15: Voltage plot of the power system with STATCOM under line-to-ground 

fault 

 

Numerical values of the voltage peaks from the Table 5.1, which concludes the results 

from Figures 4.14 and 4.15, indicate that installation of the STATCOM into the system with line-

to-ground fault was effective as the voltage peaks are smaller when STATCOM is in the system. 
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4.4 Line-to-line fault 

One-line diagram of the line-to-line fault is represented on the figure 4.16. 

 

Figure 4.16: One-line diagram of the bus system with phase-to-phase fault (A-to-B) 

 

Line-to-line fault can occur between any two phases. However, it is sufficient to analyze 

only one case between two phases. In this work A-to-B fault was analyzed. Figure 4.17 

represents the model of the power system without STATCOM under line-to-line fault in 

Simulink. Whereas Figure 4.18 represents the model of the power system with STATCOM under 

line-to-line fault in Simulink. 

The parameters of the line-to-line breaker are shown in Appendix C. 
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Figure 4.17: Model without STATCOM under line-to-line fault 
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Figure 4.18: Model with STATCOM under line-to-line fault 

 

The voltage graph of the power system without STATCOM under line-to-line fault is 

shown on Figure 4.19. 
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Figure 4.19: Voltage plot of the power system without STATCOM under line-to-line 

fault 

 

The voltage graph of the power system with STATCOM under line-to-line fault is shown 

on Figure 4.20. 
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Figure 4.20: Voltage plot of the power system with STATCOM under line-to-line fault 

 

Placing STATCOM into the system with line-to-line fault was the second most effective 

after three-phase to ground fault as the results in Table 5.1 indicate. The voltage peaks were 

much smaller in the system with STATCOM than in the one without it.  
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4.5 Double line-to-ground fault 

One-line diagram of the model with double line-to-ground fault is presented on figure 

4.21. 

 

Figure 4.21: One-line diagram of the power system with double line-to-ground fault 

 

Figure 4.22 represents the model of the power system without STATCOM under double 

line-to-ground fault in Simulink. Whereas Figure 4.23 represents the model of the power system 

with STATCOM under double line-to-ground fault in Simulink. 

The parameters of the double line-to-ground breaker are presented in Appendix D. 
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Figure 4.22: Model of the power system without STATCOM under double line-to-ground 

fault 
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Figure 4.23: Model of the power system with STATCOM under double line-to-ground 

fault 

 

The voltage graph of the power system without STATCOM under double line-to-ground 

fault is shown on Figure 4.24. 
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Figure 4.24: Voltage plot of the power system without STATCOM under double line-to-

ground fault 

 

The voltage graph of the power system with STATCOM under double line-to-ground 

fault is shown on Figure 4.25. 
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Figure 4.25: Voltage plot of the power system with STATCOM under double line-to-

ground fault 

 

The result presented in Figure 4.25 completes the modeling and simulation of five 

categories of faults applied to the test system with and without model of STATCOM. We 

analyze the results recorded in Chapter 4 in Chapter 5. 
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Chapter 5 

RESULTS AND ANALYSIS 

Using the models of STATCOM, the test system connecting the load bus with 

STATCOM injection, and the rest of the system and the models of five categories of faults in 

Simulink; the students may simulate different types of fault for studying the impact of 

STATCOM on steady state and dynamic performance of the test system.  All documented 

studies of Chapter 4 show that when model of STATCOM is included in the loop, its voltage and 

current injection will affect both the steady and transient response of voltage and current, and 

hence their values will be different from those on a system without STATCOM model. In what 

follows, we present a brief analysis of the responses comparing the impact of STATCOM model 

using Simulink for educational purposes. To compare the effect of inclusion of STATCOM in 

modeling the test system, we will use the index of Equation 5.1 for Peak Voltage improvement. 

 

I1 = [1- (Peak Voltage without STATCOM )/(Peak Voltage with STATCOM)] (5.1) 

 

The purpose of Chapter 5 is to simulate the models developed in Chapter 4 and to 

compare the load bus voltage profile with and without inclusion of STATCOM for interested 

students. To simulate a larger test system, the steps appearing in Chapter 4 and the simulation 

outcomes of Chapter 5 may be used by students as building blocks of modeling and simulating 

larger systems. The educational tool presented in the thesis may be followed by students for 

modeling other FACTS devices than STATCOM. Furthermore, for analysis purpose and for 

determining the usefulness of FACTS devices in a power system, students may use other metrics 

than the index of Equation 5.1. We present other sample indices by Equation 5.2 and Equation 

5.3. 

I2 = [1 – (Oscillation without STATCOM)/(Oscillations with STATCOM)] (5.2) 

 

In Equation 5.2, we count the number of oscillations before reaching steady state voltage 

value with and without inclusion of STATCOM model in the test system.  Use of STATCOM 

may result in a stable voltage profile with lesser number of oscillations – appoint that may be 
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investigated by students using the educational modeling tool development of using Simulink in 

Chapter 4.  

As a third index, we may use the settling time to steady state value of voltage with and 

without inclusion of STATCOM in the test system. Equation 5.3 provides the settling time index. 

 

I3 = [1-(Settling time without STATCOM)/(Settling time with STATCOM)] (5.3) 

 

In Equation 3, the settling time is measured between the start of the fault time and up to 

the time of reaching steady state after the fault is removed and the system has reached its steady 

state operation. While the proposed measures in Equation 5.2 and Equation 5.3 are not intended 

for use in this thesis, they may be used by students for analyzing power systems that include 

FACTS devices and the developments of the thesis in future. 

  

5.1 Balanced three-phase fault 

Let us model balanced three – phase fault with and without model of STATCOM in the 

Simulink test system. Students may use modeling of the components of the system including 

fault model  of Chapter 4 to study the impact of inclusion of STATCOM controller in load bus 

voltage and current performance before, during, and after the specific simulated fault is cleared. 

Figure 5.1 and Figure 5.2 depict the performance of the test system at the load bus measured by 

observing the voltage profile of the bus in the three time periods. 
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Figure 5.1 a): Voltage peaks after the balanced three-phase fault clears in the system 

without STATCOM 
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Figure 5.1 b): Voltage peaks after the balanced three-phase fault clears in the system with 

STATCOM 

 

The three colors in Figure 5.1 and Figure 5.2 represent the three voltage phases on the 

vertical axis versus time on the horizontal axis. The peaks of the voltage after the fault clears are 

almost the same in the system with or without STATCOM. Using the index of Equation 5.1, 

students may compare the impact of STATCOM in three periods of time. It seems that 

STATCOM has minimal or no impact on Peak Voltage during or after the balanced three-phase 
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fault is cleared.   The numerical value of peak voltage is included in the summary Table 5.1. 

Table 5.1 may be expanded to include indices proposed by Equation 5.1, 5.2, and 5.3.  

5.2 Three-phase to ground fault 

For the power system under three-phase to ground fault STATCOM appeared to be the 

most effective. The peak voltage of the system with STATCOM was lower than the one without 

STATCOM. The steady-state value of the voltage was reached faster in the system with 

STATCOM than in the one without it. The comparison of the voltage peaks is presented by 

Figure 5.2. The numerical values are presented in the Table 5.1.    

 

Figure 5.2 a): Voltage peaks after the three-phase to ground fault clears in the system 

without STATCOM 
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Figure 5.2 b): Voltage peaks after the three-phase to ground fault clears in the system 

with STATCOM 

 

5.3 Line-to-ground fault 

For the power system under line-to-ground fault STATCOM appeared to be effective. 

The peak voltage of the system with STATCOM was lower than the one without STATCOM. 

The steady-state value of the voltage was reached faster in the system with STATCOM than in 
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the one without it. The comparison of the voltage peaks is presented on figure 5.3. The numerical 

values are presented in the Table 5.1.    

 

Figure 5.3 a): Voltage peaks after the line-to-ground fault clears in the system without 

STATCOM 
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Figure 5.3 b): Voltage peaks after the line-to-ground fault clears in the system with 

STATCOM 

 

5.4 Line-to-line fault 

For the power system under line-to-line fault STATCOM appeared to be effective. The 

peak voltage of the system with STATCOM was lower than the one without STATCOM. The 

steady-state value of the voltage was reached faster in the system with STATCOM than in the 
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one without it. The comparison of the voltage peaks is presented on figure 5.4. The numerical 

values are presented in the Table 5.1.    

 

Figure 5.4 a): Voltage peaks after the line-to-line fault clears in the system without 

STATCOM 
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Figure 5.4 b): Voltage peaks after the line-to-line fault clears in the system with 

STATCOM 

 

5.5 Double line-to-ground fault 

For the power system under double line-to-ground fault STATCOM appeared to be 

effective. The peak voltage of the system with STATCOM was lower than the one without 

STATCOM. The steady-state value of the voltage was reached faster in the system with 
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STATCOM than in the one without it. The comparison of the voltage peaks is presented on 

figure 5.5. The numerical values are presented in the Table 5.1.    

 

Figure 5.5 a): Voltage peaks after the double line-to-ground fault clears in the system 

without STATCOM 
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Figure 5.5 b): Voltage peaks after the double line-to-ground fault clears in the system 

with STATCOM 

 

All the numerical values have been combined into the table for better comparison and 

ease of understanding of the STATCOM advantages.  
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Table 5.1: Comparison of the voltage peaks for the system without and with STATCOM 

Type of Fault Peak voltage without STATCOM Peak voltage with STATCOM 

Balanced three-phase 2.41e4 2.43e4 

Three-phase to ground 2.72e4 2.52e4 

Line-to-ground 2.68e4 2.58e4 

Line-to-line 2.4e4 2.22e4 

Double line-to-ground 2.21e4 2.11e4 

 

The modeling development using Simulink, modeling of different types of faults, 

modeling of STATCOM, and development of the simple test system serve as educational 

building blocks for modeling and simulation of larger systems by students. Use of proposed 

indices of Equation 5.1-5.3 and summary tables similar to Table 5.1 are intended to help students 

in learning the impact of FACTS devices in the system while the system experiences different 

types of faults.  We will make further concluding remarks in Chapter 6. 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

STATCOM is one of the most widely used FACTS devices for efficient power system 

operation. It is based on a voltage source converter and can inject or sink an almost sinusoidal 

current with variable magnitude to an electricity network. If connected to a source of power it 

can also provide active AC power. Usually a STATCOM is installed to support electricity 

networks that have a poor power factor and often poor voltage regulation. There are however, 

other uses, the most common use is for voltage stability. 

It is widely used at the mid-point of a transmission line or heavy load area to maintain the 

connecting point voltage by supplying or decreasing reactive power into the power system. 

Because of the presence of STATCOM devices in a fault loop, the voltage and current signals 

will be affected in both steady and transient state. 

This thesis includes an educational methodology for modeling, simulating, and then 

analyzing behavior of STATCOM when exposed to different types of faults.  A power system is 

first represented by and equivalent system connected to a load by two transformers and one 

transmission line. The system is further reduced to a model where “the rest of the system” is 

connected to a load bus by a transmission line where a STATCOM is connected to the high end 

of the step-down transformer with a load.  The proposed test system is therefore equipped with 

the STATCOM model with appropriate sensing devices measuring three phase voltage and 

current at the high and the low end of the step-down transformer.  

The thesis includes classification and detail of fault types and a methodology for 

modeling faults using Simulink. Using MATLAB, simulation studies of the Test-System that 

includes models for faults and STATCOM were performed and measured by the voltage and 

current sensors in three time periods; before, during, and post fault periods. To ensure capturing 

the transient and steady state behaviors of the system including STATCOM and different fault 

types, the voltage and current profiles at different locations in the system where observed and 

recorded for 2 seconds – more than necessary time for the dynamics to settle at their steady state 

values.  The observed data is used in MATLAB to analyze the Test-System that includes 

STATCOM and fault types.  
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After providing a methodology for modeling faults and STATCOM using Simulink, we 

propose three indices in Chapter 5 that may provide educational insight to students for studying 

usefulness of STATCOM in faulted power systems. Equations 5.1-5.3 and similar indices to 

appear in future works at PERL (Power & Energy Research Laboratory) and other FACTS 

devices than STATCOM will be pursued further. Studying Voltage Peak may be performed 

using Equation 5.1 while frequency oscillation and settling time may be studied by use of 

Equation 5.2 and 5.3. 

This work describes the model of STATCOM in Simulink. MATLAB Simulink model 

was used to simulate and analyze types of faults. In a very preliminary analysis and educational 

purposes, the simulation results show the impact of STATCOM on the system. In particular 

STATCOM device decreases voltage peaks and dips during and after a fault condition that 

improves reaching stable state of the system with smaller overshoots. 

This thesis may be extended to include larger number of buses by including a smaller in 

size equivalent of the rest of the system, inclusion of faults at different locations than at the bus 

where the STATCOM is connected to, inclusion of models of other FACTS devices than 

STATCOM, and inclusion of generator and load dynamics in the larger test system. This thesis 

provides the educational building blocks for students to study behavior of FACTS devices and 

not as a tool for analysis of faulted power systems that include FACTS devices. The thesi 

therefore may be used as building blocks for modeling and simulation of larger and more 

realistic systems with the aid of Simulink and MATLAB. The proposed future works and 

extensions will be performed by the student researchers in the University of New Orleans Power 

and Energy research Laboratory.  
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APPENDIX A 

 

Three-phase breaker block that is used in the model with balanced three-phase fault as 

well as in the model with three-phase to ground fault has next parameters: 

 

Figure A: Parameters of the three-phase breaker block in Simulink used for three-phase fault 

 

 

 

 

 

 



 

 

75 

APPENDIX B 

 

Three-phase breaker block that is used in the model with line-to-ground fault (switching 

only one phase – phase A – to ground) has next parameters: 

 

 

Figure B: Parameters of the three-phase breaker block in Simulink used for line-to-ground fault 
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APPENDIX C 

 

The ideal breaker block that is used in the model with line-to-line fault has next 

parameters: 

 

Figure C: Parameters of the ideal breaker block in Simulink used for line-to-line fault 
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APPENDIX D 

 

Three-phase breaker block that is used in the model with double line-to-ground fault 

(switching only two phases – phase A and B – to ground) has next parameters: 

 

Figure D: Parameters of the three-phase breaker block in Simulink used for double line-to-

ground fault 
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APPENDIX E 

Transmission line in power system model in Simulink is represented by distributed 

parameters line. It implements an N-phases distributed parameter line model. The R, L, and C 

line parameters are specified by [NxN] matrices. 

- Resistance presented by: resistance per unit length (Ohms/km) with [NxN matrix] -  

[0.01273 0.3864]. 

- Inductance presented by: inductance per unit length (H/km) with [NxN matrix ] -  

[0.9337e-3  4.1264e-3]. 

- Capacitance presented by: capacitance per unit length (F/km) with [NxN matrix] - 

[12.74e-9 7.751e-9]. 

Three-phase transformer model in Simulink was built by specifying parameters for 

winding 1 and winding 2, and also magnetization characteristics which are the following: 

- Winding 1 parameters [V1 Ph-Ph(Vrms), R1(pu), L1(pu)]: [735e3, 0.15/30/2, 0.15*0.7]. 

- Winding 2 parameters [V2 Ph-Ph(Vrms), R2(pu), L2(pu)]: [ 16e3, 0.15/30/2, 0.15*0.3]. 

- Magnetization resistance Rm (pu): 500; magnetization inductance Lm (pu): 500. 

AC voltage source model in Simulink was presented by three-phase ideal sinusoidal 

voltage source with amplitude of 
3

2735000 ⋅ with 120 degrees apart.  
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