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Abstract

Due to great effort from mathematicians, physicists and computer scientists, network

science has attained rapid development during the past decades. However, because of the

complexity, most researches in this area are conducted only based upon experiments and

simulations, it is critical to do research based on theoretical results so as to gain more

insight on how the structure of a network affects the security. This dissertation introduces

some stochastic and statistical models on certain networks and uses a k-out-of-n tolerant

structure to characterize both logically and physically the behavior of nodes. Based upon

these models, we draw several illuminating results in the following two aspects, which are

consistent with what computer scientists have observed in either practical situations or

experimental studies.

Suppose that the node in a P2P network loses the designed function or service when

some of its neighbors are disconnected. By studying the isolation probability and the

durable time of a single user, we prove that the network with the user’s lifetime having

more NWUE-ness is more resilient in the sense of having a smaller probability to be iso-

lated by neighbors and longer time to be online without being interrupted. Meanwhile,

some preservation properties are also studied for the durable time of a network. Addition-

ally, in order to apply the model in practice, both graphical and nonparametric statistical

methods are developed and are employed to a real data set.

On the other hand, a stochastic model is introduced to investigate the security of

x



network systems based on their vulnerability graph abstractions. A node loses its designed

function when certain number of its neighbors are compromised in the sense of being taken

over by the malicious codes or the hacker. The attack compromises some nodes, and the

victimized nodes become accomplices. We derived an equation to solve the probability

for a node to be compromised in a network. Since this equation has no explicit solution,

we also established new lower and upper bounds for the probability.

The two models proposed herewith generalize existing models in the literature, the

corresponding theoretical results effectively improve those known results and hence carry

an insight on designing a more secure system and enhancing the security of an existing

system.

Key words: Durable time; Exponential distribution;

Harmonic mean; Increasing convex order;

Isolation probability; Jackknifing;

k-out-of-n; NWUE;

Pareto distribution; Power law distribution;

Stochastic orders; Random graph;

TTT plot; U-statistic
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xi



1

Introduction and Preliminaries

1.1 Introduction

Computer and network security has become a rather popular and important topic in

the past two decades. A simple Google search based on the keyword “computer and

network security” showed 27.8 million items on September 25, 2014. In general, network

security mainly aims to protect the entire infrastructure of a network system as well

as its corresponding services from unauthorized access. There are several fundamental

components in network security:

(i) Security-specific infrastructures, such as hardware- and software-based fire-walls and

physical security approaches;

(ii) Security polices, which include security protocols, users authentications, authoriza-

tions, access controls, information integrity and confidentiality;

(iii) Detection of malicious programs, including anti-viruses, worms, or Trojan horses,

and spyware or malware;

(iv) Intrusion detection and prevention, which encompasses network traffic surveillance

and analyzing and profiling user behavior.
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Since the topic of network security links a great number of research areas and disci-

plines, we will investigate the role the infrastructures of a network plays in the system’s

security based upon some stochastic models. For an overall introduction on network se-

curity, including key tools and technologies used to secure network access, please refer to

Malik (2003) and Laet and Schauwers (2005).

1.1.1 Peer to peer network

As a decentralized structure, a Peer-to-Peer (P2P) computer network utilizes diverse

connectivity among users participating a network and the cumulative bandwidth of them

rather than conventional centralized resources where a relatively low number of servers

play the key role in providing a service or application.

P2P networks, which are usually used for connecting nodes through largely ad hoc

connections, are useful for many purposes. Sharing content files containing audio, video,

data or anything in digital format and real time data. P2P networks can be classified by

what they can be used for: (i) file sharing, (ii) telephony, (iii) media streaming (audio,

video), and (iv) discussion forums etc.

A pure P2P network does not have any clients or servers but only equal peer nodes

that function as both “clients” and “servers” simultaneously to the other nodes in the

network (see Figure 1.1.1). This structure of network differs from the client-server model

where communication is mostly between the node and a central server (see Figure 1.1.1).

As a typical example, an FTP server transfers file in a manner totally different from

that a P2P network does. Actually, the client and server programs in an FTP server are

quite distinct, the clients initiate the download/uploads, and the servers offer the service

according to these requests.

Besides the pure P2P network, there are quite a lot of Hybrid P2P networks. For

example, as a distributed discussion system, the Usenet news server system also adopts

2



Figure 1.1: A server based network

Figure 1.2: A P2P based network
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a client-server form. To disseminate Usenet news articles over the entire Usenet network,

news servers communicated with each other. However, the news server system acts in

a client-server style when individual users access a local news server to deal with news.

As another example, in an SMTP email system, the core email relaying network of mail

transfer agents from a P2P model while the periphery of Mail user agents and their

direct connections is client-server. On the other hand, some other networks, for example,

Napster, OpenNAP and IRC, use a client-server structure for some tasks (e.g. searching)

and a P2P structure for others.

Currently, P2P structure rapidly evolves and is widely used in distributed networks

not only computer to computer but also human to human. Without any server, a node in

P2P network mainly relies upon connections from its neighbors to operate correctly and

losing some connections implies the failure of this node, it is very important to study its

resilience and reliability. Leonard et al (2007) built the lifetime model for a P2P network,

it is assumed that the node is isolated when it is physically disconnected from all its

neighbors, that is, all connections are broken. In Chapter 2, we study the resilience of

the pure P2P network through a new lifetime model, which is a generalization of that

proposed by Leonard et al (2007) in the sense that a node loses the function and service

if and only if some of its neighbor nodes are disconnected, this enable the new model

to include both physical and logical isolation and hence to be more useful in practical

situations. We derive the probability for a node to be isolated and the expected dural

time, and show that the more heavier the tail of probability of the lifetime is, the more

resilient the P2P network is.

1.1.2 Vulnerable network

With the rapid development of computer, this world gets more involved into networks.

As a result, any minor failure in a network that you participate may collapse the whole
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network and hence result in hazardous loss in business. In fact, the past two decades

witnessed numerous such kind of cases. This fundamentally attributes to vulnerability of

networks and it is rather urgent to study the network security so as to effectively defense

the network from being invaded.

Network security usually consists of those provisions made in an underlying computer

network topology, policies adopted by the network administrator to protect the network,

the network-accessible resources from unauthorized access, and consistent and continuous

monitoring to measure its effectiveness.

Figure 1.3: A depiction of a vulnerable network with security components

Network security originates from authenticating all user a username and a password.

After the authentication, a fire wall is employed to enforce access policies which control

legal services to be accessed by all network users. The fire wall may prevent the network

5



from being accessed without being authorized, however, this component fails to check

potentially harmful contents such as computer worms and virus being disseminated over

the network. In order to screen these malicious codes, an intrusion prevention system

(IPS) (see Mirkovic et al, 2004) is designed to detect and prevent such malware from

invading the network. Additionally, IPS also monitors for suspicious network traffic for

contents, volume and anomalies so as to protect the network from being attacked by

denial of service. On the other hand, to keep privacy, communication between two host

nodes in the network is encrypted as well. Meanwhile, all individual events occurred in the

network are tracked and audited for a later high level analysis. Besides, as surveillance and

early-warning tools, Honeypots (see Grimes, R. A., 2005) essentially decoying network-

accessible resources is also deployed in a network. Techniques employed by attackers

attempting to compromise any decoy resources are studied during and after an attack to

keep an eye on those new exploitation techniques. Such analysis could be used to further

tighten security of the actual network being protected by the honey pot.

For a comprehensive summary of standard concepts and methods in network security,

please refer to Curtin (1997) and Simmonds et al (2004), which presents all notions and

techniques in the form of an extensible ontology of network security attacks.

In Chapter 3, the network is abstracted as a vulnerable graph, which is composed

of nodes (users) and edges (connections). In order to model the infrastructure of the

network, a node of the graph is always assumed to have a random degree representing its

neighbors. Since our aim is to investigate how the random degree has an impact on the

network security, an attack outside the network is supposed to attempt to compromise

nodes all the time and any compromised nodes become his accomplices in the sense

of having the capability of compromising their neighbors. On the other hand, due to

these security components deployed over the network, the attacker only penetrates the

protection system with a certain probability, and the compromised nodes may be detected

6



after being compromised and hence become secure after being disinfected. Likewise, to

make our model more multifunctional, it is also assumed that a node is compromised only

when at lease some prefixed number of neighbors are infected. This model is an substantial

extension of that studied by Li et al (2011). In effect, we proved that the probability for a

node to be compromised is increasing as the random degree grows in the increasing convex

order. Among others, new lower and upper bounds are also built for the probability to

be compromised, evaluations reveals that they are better than those developed in Li et

al (2011). The main result shows that power law graph is more vulnerable than both the

random graph and the regular graph.

Figure 1.4: A depiction of a vulnerable network with security components

7



1.2 Preliminaries

For ease of references, let us recall some fundamental yet important concepts on aging

property and stochastic ordering, which will be employed to characterize network systems

in the following chapters.

Throughout this dissertation, the term increasing is used instead of monotone non-

decreasing and the term decreasing is used instead of monotone non-increasing. We also

assume that all random variables under consideration have 0 as the common left end

point of their supports, and all random variables are implicitly assumed to be absolutely

continuous.

1.2.1 Important notations

1.2.2 Several aging properties

For a nonnegative random variable X with distribution function F and the reliability

function F̄ = 1− F , let

Xt = X − t|X > t

be the residual lifetime of X at time t ≥ 0, the mean residual lifetime

µF (t) = E[X − t|X > t] =

∫ ∞

t

F̄ (x) dx

F̄ (t)
.

Definition 1.2.1 A random lifetime X is said to be of

(i) increasing failure rate (IFR) if the cumulative failure rate − ln F̄ (t) is convex with

respect to t ≥ 0;

(ii) increasing failure rate in average (IFRA) if the cumulative failure rate − ln F̄ (t) is

8



star-shaped with respect to t ≥ 0, that is, −1
t
log F̄ (t) is increasing in t ≥ 0;

(iii) decreasing mean residual life (DMRL) if µF (s) ≥ µF (t) for all t ≥ s ≥ 0;

(iv) new better than used in expectation (NBUE) if µF (t) ≤ µF (0) for all t ≥ 0.

Reversing the monotone property and the inequality above, we get their dual versions:

DFR (decreasing failure rate), DFRA (decreasing failure rate in average), IMRL (increas-

ing mean residual life) and NWUE (new better than used in expectation). The following

chain of implications is well-known,

IFR (DFR) =⇒ IFRA (DFRA) =⇒ DMRL (IMRL) =⇒ NBUE (NWUE).

For more details on these nonparametric aging properties, please refer Barlow and

Proschan (1981), Lai and Xie (2006).

1.2.3 Some stochastic orders

For two nonnegative random variable X and Y with distribution functions F and G, and

reliability function F̄ = 1 − F and Ḡ = 1 − G, denote F−1 and G−1 the corresponding

right continuous inverses of F and G respectively.

Definition 1.2.2 X is said to be smaller than Y in the

(i) hazard rate order (denoted by X ≤hr Y ) if F̄ (t)/Ḡ(t) is decreasing in t ≥ 0;

(ii) stochastic order (denoted as X ≤st Y ) if Pr(X > t) ≤ Pr(Y > t) for all t;

(iii) increasing convex order (denoted as X ≤icx Y ) if

∫ ∞

t

Pr(X > x) dx ≤
∫ ∞

t

Pr(Y > x) dx, for all t;

9



(iv) harmonic mean residual life order (denoted by X ≤hmrl Y ) if, for all t ≥ 0,

[
1

t

∫ t

0

1

µF (u)
du

]−1

≤
[
1

t

∫ t

0

1

µG(u)
du

]−1

,

for which the expectations exist.

(v) convex order (denoted by X ≤cx Y ) if E[ϕ(X)] ≤ E[ϕ(Y )] for any convex ϕ.

It holds evidently that

X ≤hr Y =⇒ X ≤st Y =⇒ X ≤icx Y =⇒ X ≤cx Y.

Kochar and Wiens (1987) proposed a partial order to compare the NBUE-ness of two

life distributions. Since NBUE and NWUE are dual with each other, for convenience, we

call it the NWUE order.

Definition 1.2.3 X is said to be more NWUE than Y (denoted by X ≥nwue Y ) if

µF

(
F−1(v)

)
µG

(
G−1(v)

) ≥ µF

µG

, for all v ∈ (0, 1). (1.1)

As a function of v ∈ (0, 1), ∫ F−1(v)

0

F̄ (t) dt

is the well-known total time on test (TTT) transform of the distribution F of a random

lifetime X. The scaled TTT transform

φ−1
F (v) =

1

µF

∫ F−1(v)

0

F̄ (t) dt

plays an important role in characterizing aging property of random lifetime. One may see

Kochar et al. (2002), Li and Shaked (2007) for more on TTT transform.
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Recently, Kochar et al. (2002) proposed a new partial order: X is said to be larger

than Y in the total time on test transform order (denoted by X ≤ttt Y ) if

∫ F−1(v)

0

F̄ (x) dx ≥
∫ G−1(v)

0

Ḡ(x) dx, for all v ∈ (0, 1).

These two stochastic orders mentioned above have a close relation in the sense that when

E[X] = E[Y ], X ≥nwue Y is equivalent to X ≥ttt Y .

Readers may refer to Müller and Stoyan (2002), Shaked and Shanthikumar (2007),

and Li and Li (2013) for more details on these stochastic orders.

1.2.4 The k-out-of-n structure

Let X1, X2, · · · , Xn denote n independent component lifetimes with Xi,n being the i-th

order statistic, here i = 1, · · · , n. A k-out-of-n system of these components functions if

and only if at least k components function. When k = n, the system has a series structure

with lifetime

Xn,n = min{X1, · · · , Xn};

whereas for k = 1, it reduces to a parallel structure with lifetime

X1,n = max{X1, · · · , Xn}.

Thus, a k-out-of-n system is more general than either a series or a parallel structure. The

lifetime of this system is simply given by the order statistic Xn−k+1:n.

As a fault-tolerant structure, the k-out-of-n system is widely used in many practi-

cal situations, including, for example, electronic engineering, manufacturing and defense

industry etc. One may refer to Kuo and Zuo (2006) and Lai and Xie (2006) for compre-

hensive discussions on k-out-of-n structure. In this thesis, we will employ this structure
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to describe a network which is tolerant to some compromised neighbors due to anti-virus

software.

1.3 Archimedean copula

Mutual independence among multiple random variables is common in reliability and risk

management. The interdependence among components’ lifetimes, random risks, and po-

tential loss/returns etc. cannot be ignored in practical situations. In classical statistical

theory, Pearson’s correlation coefficient is usually utilized to measure the dependence

among random variables. In Chapter 2 we will instead employ copula, a functional mea-

sure, to characterize the association among network users’ lifetimes.

For a random vector X = (X1, . . . , Xn) with joint distribution function F , survival

function F̄ and univariate marginal distribution functions F1, . . . , Fn, its copula is defined

as

CX(u1, · · · , un) = F
(
F−1
1 (u1), · · · , F−1

n (un)
)
, 0 < u1, · · · , un < 1.

In parallel, the survival copula is

ĈX(u1, · · · , un) = F̄
(
F̄−1
1 (u1), · · · , F̄−1

n (un)
)
, 0 < u1, · · · , un < 1.

Since the copula does not contain any information of marginal distributions, it provides

us with a rather convenient way to impose a dependence structure onto predetermined

marginal distributions in practice. Actually a large number of excellent applications

of copulas can be found in various areas, and so far copula has become more or less

a standard tool in risk management, finance, econometrics and actuarial science etc.

Recently, Copulas are being used for reliability analysis of complex systems of machine

components with competing failure modes in reliability engineering, see for example Pham
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and Hong (2003), and copula functions have been successfully applied to the database

formulation for the reliability analysis of highway bridges, and to various multivariate

simulation studies in civil, mechanical and offshore engineering, see for example Thompson

and Kilgore(2011). In literature on statistics, there are a large number of copulas depicting

various dependence structures, Hutchinson and Lai (1990) and Nelsen (2006) provide a

wide range families of bivariate copulas along with their properties. In the past twenty

years, Archimedean copulas became particularly popular because of its mathematical

tractability and the capability of capturing wide ranges of dependence. Notably, since

the statistical inference on Archimedean copulas has got well developed in this decade,

excellent applications are coming to the fore in various areas.

Definition 1.3.1 (McNeil and Nes̆lehová (2009)) For a non-increasing and contin-

uous function ϕ : [0,+∞) 7→ [0, 1] such that ϕ(0) = 1 and ϕ(+∞) = 0, let ψ = ϕ−1 be

the pseudo-inverse,

Cϕ(u1, · · · , un) = ϕ
(
ψ(u1) + · · ·+ ψ(un)

)
, for (u1, · · · , un) ∈ [0, 1]n, (1.2)

is called an Archimedean copula with the generator ϕ if (−1)kϕ(k)(x) ≥ 0 for k = 0, . . . , n−

2 and (−1)n−2ϕ(n−2)(x) is non-increasing and convex.

The generator ϕ is said to be strict if ϕ(+∞) = 0. As is well-known, the Archimedean

family contains a plenty of useful copulas, including some well-known ones. For example,

the independence (product) copula C1(u) =
∏n

i=1 ui with the generator ϕ(t) = e−t, the

Clayton copula

C2(u) =

( n∏
i=1

u−θ
i − n+ 1

)−1/θ
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with the generator ϕ(t) = (θt+ 1)−1/θ for θ ≥ 0, and the Ali-Mikhail-Haq (AMH) copula

C3(u) =

(1− θ)
n∏

i=1

ui

n∏
i=1

(1− θ + θui)− θ
n∏

i=1

ui

.

with the generator ϕ(t) = 1−θ
et−θ

for θ ∈ [0, 1). For more on copula and its applications, we

refer readers to Joe (1997) and Nelsen (2006).

1.4 Summary

Resilience analysis of P2P network

By studying the isolation probability and the durable time of a single user, we conduct

resilience and reliability analysis of the P2P network, which is widely used in commu-

nication systems in recent several years due to the decentralized property. It is proved

that the network with the user’s lifetime having more NWUE-ness is more resilient. Both

graphical and nonparametric statistical methods are developed to test the NWUE order

between two real data sets.

Security analysis of networks

A stochastic model is introduced to investigate security of network systems based on

their vulnerability graph abstractions. Instead of doing traditional security analysis, we

employ the increasing convex ordering to study the underlying vulnerability graph, the

main theoretical results carry an insight on designing a more secure system and enhancing

the security of an existing system.
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2

Resilience Analysis of P2P Network

Systems

2.1 Introduction

Peer-to-Peer (P2P) internet network allows a group of computer users equipped with the

same networking program to connect with each other for the purpose of directly accessing

files from one another’s hard drives. A P2P network functions by connecting individual

computers together to share files instead of going through a central server. P2P networks

can be classified by what they can be used for, for instance, content delivery, file sharing,

telephony, media streaming (audio, video) and discussion forums etc. In the current study

of P2P networks, Kaashoek and Karger (2003) and Stoica et al. (2001) investigate the

single-node isolation, Aspnes et al. (2002), Ganesh and Massoulie (2003), Gummadi et al.

(2003), and Massoulié (2003) etc discuss the disconnection of the entire graph. Bhagwan

et al. (2003) is among the first to pay attention to the more realistic P2P failure models, in

which the intrinsic behavior of internet users is taken into account and the departments

of users depend on more complex factors including their attention span and browsing

habits, and so on, other than the traditional simple binary metric. In order to investigate

the properties of such systems, Leonard et al. (2005) recently introduces the node-failure
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model based on users’ lifetimes and studies the stochastic resilience of P2P networks, in

which an user stays online for random periods of time till all his neighbors go off line or

he leaves the network on his own initiative. In this model, the random lifetime that an

arriving user will stay on line reflects both the behavior of the user itself and the duration

of its service to the entire P2P network community.

This chapter proposes a more general P2P network model, in which an user is isolated

only when a number of its neighbors leave the network and hence the P2P model in

Leonard et al. (2005) is included as a special case. We further investigate both the

stochastic resilience and reliability properties of this new model. It is proved that the

network with the user’s lifetime having more NWUE-ness is more resilient. The rest

of this paper is organized as below: Section 2 introduces the new P2P network model.

Section 3 studies the stochastic resilience by using the isolation probability of a single

user, and Section 4 discusses some reliability properties of the available time of a single

user in the network. Finally, both graphical and nonparametric methods are developed

in section 5 to detect the NWUE order between two data sets. All main conclusions are

consistent with those obtained through experiments in the literature.

2.2 Model description

In this section, we describe our P2P network model in details and present its rationality.

For an internet user, let X, a nonnegative random variable, be the lifetime that stays

online in the network for his own purpose or providing services to other peers. Saroiu et al.

(2002), Bustemante and Qiao (2003) pointed out that the distribution of an user’s lifetime

in practical P2P network very well accords with Pareto distribution, which possesses of

the well-known new worse than used in expectation (NWUE) property (they called it the

heavy-tail property). It is worthwhile mentioning that Harchol-Balter and Downey (1997)
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found that the distribution of the lifetime of an UNIX process is also Pareto, it was named

there as used better than new in expectation (UBNE) instead of NWUE. Here, we assume

a general type of the distribution of the user’s lifetime other than Pareto law so that the

new model not only is suitable for human-based P2P networks but also can be applied to

non-human network systems.

For a new internet user with random lifetime X having the distribution function F ,

assume

Figure 2.1: A typical depiction of a node with 3-out-of-6 structure

(i) the P2P network system has operated so long that there is no transient effect, that

is, the expected lifetime of the new user is negligible in contrast to the age of the

whole P2P system;

(ii) when entering the system, the new user randomly (in the sense that each existing

user has the same probability to be selected) picks k neighbors from the existing

nodes in the system as soon as it enters into the system;

(iii) the selection of neighbors is independent of both the lifetime X and the neighbors’

present ages;
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(iv) the time that a new user will spend in the system is independent of those of his

neighbors.

Since the P2P network has operated for a sufficiently long period when the new user

joins the system, it is reasonable to suppose that all those selected neighbors have X̃, the

equilibrium renewal excess lifetime of X, as their common residual lifetime, that is,

FX̃(t) =
1

µF

∫ t

0

F̄ (x) dx,

where µF = E[X] and t ≥ 0.

For 1 ≤ r ≤ k, denote X̃r the residual lifetime of the r-th neighbor. According to

David and Nagaraja (2003), the order statistic X̃r,k, which gives the residual lifetime of

the r-th failed neighbor, has the reliability function

F̄X̃r,k
(t) =

r−1∑
i=0

(
k

i

)
[FX̃(t)]

i [F̄X̃(t)
]k−i

= r

(
k

r

)∫ 1

FX̃(t)

ur−1(1− u)k−r du

and the probability density function

fX̃r,k
(t) =

r

µ

(
k

r

)
F̄ (t) [FX̃(t)]

r−1 [F̄X̃(t)
]k−r

.

In the study of passive model in Leonard et al. (2005), a node is considered as isolated

after its last surviving neighbor fails. However, in many realistic environments, neighbors

of a node usually fail to service due to lower performance and in fact it reaches the isolation

state only if there are1 ≤ r ≤ k neighbors in failure. An instantiation of such a case is

that this node is sharing an animation file with its neighbors. Under the condition that

a fraction of its neighbors (not necessary all its neighbors) fail to service, the display of

the animation file is so incoherent that this node can be considered as disconnected. As

a result, we adopt the more general P2P model that a node is considered to be isolated

18



or disconnected only when more than r − 1 neighbors fail to service. This is in fact the

famous r-out-of-k structure and thus the passive model in Leonard et al. (2005) is the

special case with r = k.

We will investigate the stochastic resilience of this P2P model by using the isolation

probability

πr(X) = Pr
(
X > X̃r,k

)
, (2.1)

which denotes the probability that the new node outlives the residual lifetime of its r-th

neighbor before it decides to leave the system. It is obvious that larger isolation probability

means worse resilience of the P2P network. On the other hand, we will employ

Tr(X) = min
{
X, X̃r,k

}
(2.2)

rather than X̃r,k to measure the durable time of a new node in a P2P network. It should

be marked here that Leonard et al. (2005) studies P2P networks by using X̃k,k, the time

that all k neighbors of the new node are simultaneously in failure state before it decides

to leave the system. However, as a competition between the lifetime X and the lifetime

X̃r,k, Tr(X) takes into account both the failure due to neighbors and that due to the new

user itself, it is more reasonable to serve as a metric to measure the stochastic resilience

of P2P networks.

2.3 Resilience analysis

Resilience analysis of random graphs and various types of deterministic networks has

attracted considerable interest of researchers during the past several decades. For more

details, please refer to Bollobás (2001), Burtin (1977), and Leighton et al. (1995). Along

this line of study, one of the most important problems is that under what failure conditions
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the network appears disconnection or demonstrates noticeably lower performance to its

users. Assuming uniformly random node failure, Stoica et al. (2001), Bollobás (2001),

Gummadi et al. (2003) derive the conditions from different points of view under which

the networks stay connected after some nodes fail.

In this section, we study the resilience of P2P network systems by evaluating the

isolation probability for any given user. As described in Section 2, a node with lifetime X

is forced to disconnect from the system only if X is greater than X̃r,k, 1 ≤ r ≤ k. Then,

the isolation probability is

πr(X) = Pr
(
X̃r,k < X

)
=

∫ ∞

0

Pr(X > t)fX̃r,k
(x) dt

=
r

µk

(
k

r

)∫ ∞

0

F̄ 2(t)

(∫ t

0

F̄ (u) du

)r−1(∫ ∞

t

F̄ (u) du

)k−r

dt. (2.3)

As illustrations, isolation probabilities corresponding to the three popular lifetime

distributions are evaluated in the following examples.

Example 2.3.1 (Pareto distribution) Suppose the user has a lifetime X with proba-

bility distribution

G(x) = 1−
(
1 +

t

β

)−α

, t > 0, α > 1, β > 0.

Then, for any 1 ≤ r ≤ k, the isolation probability

πr(X) = r

(
k

r

)(
α−1

β

)k∫ ∞

0

(
1+

t

β

)−2α
[∫ t

0

(
1+

u

β

)−α

du

]r−1 [∫ ∞

t

(
1+

u

β

)−α

du

]k−r

dt

=

(
k

r

)
r(α− 1)

β

∫ ∞

0

(
1 +

t

β

)−2α
[
1−

(
1 +

t

β

)1−α
]r−1(

1 +
t

β

)(1−α)(k−r)

dt
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=

(
k

r

)
r(α− 1)

β

∫ ∞

0

[
1−

(
1 +

t

β

)1−α
]r−1(

1 +
t

β

)(1−α)(k−r)−2α

dt

= r

(
k

r

)∫ 1

0

t k−r+ α
α−1 (1− t)r−1 dt (2.4)

=
k!

(k − r)!

Γ
(
k − r + 1 + α

α−1

)
Γ
(
k + 1 + α

α−1

) , for any 1 ≤ r ≤ k.

Example 2.3.2 (Exponential distribution) Suppose the user has a lifetime Y with

distribution

F (x) = 1− e−λt, t ≥ 0.

According to (2.3), any new node has the isolation probability

πr(Y ) = r

(
k

r

)
λk
∫ ∞

0

e−2λt

λr−1

(
1− e−λt

)r−1 1

λk−r

(
e−λt

)k−r
dt

= r

(
k

r

)
λ

∫ ∞

0

(
e−λt

)k−r+2 (
1− e−λt

)r−1
dt

= r

(
k

r

)∫ 1

0

tk−r+1(1− t)r−1 dt (2.5)

=
k!

(r − 1)!(k − r)!

(r − 1)!(k − r + 1)!

(k + 1)!

=
k − r + 1

k + 1
, for any 1 ≤ r ≤ k.

Example 2.3.3 (Uniform distribution) Suppose the user Z has a lifetime with uni-

form distribution on the interval (0, 2µ), that is, the distribution function

H(x) =
t

2µ
, 0 ≤ t ≤ 2µ, µ > 0.
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Then, the isolation probability is

πr(Z) =

(
k

r

)
r

µk

∫ 2µ

0

(
1− t

2µ

)2 [∫ t

0

(
1− u

2µ

)
du

]r−1

·
[∫ 2µ

t

(
1− u

2µ

)
du

]k−r

dt

=
r

µ

(
k

r

)∫ 2µ

0

(
2µ− t

2µ

)2
[
1−

(
2µ− t

2µ

)2
]r−1(

2µ− x

2µ

)2(k−r)

dt

= r

(
k

r

)∫ 1

0

tk−r+ 1
2 (1− t)r−1 dt (2.6)

=
k!

(k − r)!

Γ
(
k − r + 3

2

)
Γ
(
k + 3

2

) , for any 1 ≤ r ≤ k.

From (2.4), (2.5) and (2.6), we observe the following:

(i) All of the three probabilities of isolation are independent of the expectation of

the user’s lifetime. So, it seems that property of the distribution instead of the

expectation has direct impact on the isolation probability.

(ii) The isolation probability corresponding to Pareto lifetime is the smallest one, the

uniform distribution achieves the largest isolation probability. Thus, we may con-

clude that the P2P network that users has Pareto lifetime is the most resilient one.

Based upon the above two facts, one may wonder whether the isolation probability

preserves some stochastic order on user’s lifetime, that is, πr(X) < πr(Y ) holds for X

smaller than Y in some stochastic sense. As a positive answer, Theorem 2.3.4 below

asserts that a P2P network with users’ lifetime having a stronger NWUE property is

more resilient.
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Theorem 2.3.4 Suppose that X and Y are two nonnegative random variables which

represent user lifetimes of two different P2P systems, respectively. Then, X ≥nwue Y

implies πr(X) ≤ πr(Y ).

Proof: For any 1 ≤ r ≤ k, the isolation probability πr(X) can be rephrased as

πr(X) = Pr(X̃r,k < X)

=

∫ ∞

0

FX̃r,k
(x) dF (x)

= r

(
k

r

)∫ ∞

0

∫ FX̃(x)

0

ur−1(1− u)k−r du dF (x)

= r

(
k

r

)∫ φ−1
F (v)

0

ur−1(1− u)k−r du dF (x)

= r

(
k

r

)∫ 1

0

∫ φ−1
F (v)

0

ur−1(1− u)k−r du dv,

here the scaled TTT transform

φ−1
F (v) =

1

µF

∫ F−1(v)

0

F̄ (t) dt.

Likewise, the isolation probability

πr(Y ) = r

(
k

r

)∫ 1

0

∫ φ−1
G (v)

0

ur−1(1− u)k−r du dv.

Note that X ≥nwue Y if and only if, for all v ∈ (0, 1),

1

µF

∫ F−1(v)

0

F̄ (u) du ≥ 1

µG

∫ G−1(v)

0

Ḡ(u) du,

the desired result follows immediately.

For the three distributions in Examples 2.3.2, 2.3.1 and 2.3.3, it is easy to verify that

µG(t) ≡ µG, µF (t) = (1 + t/β)µF ≥ µF and µH(t) = µH − t/2 ≤ µH for all t ≥ 0.
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As a result, it holds that X ≥nwue Y ≥nwue Z. According to Theorem 2.3.4, we have

πr(X) ≤ πr(Y ) ≤ πr(Z), which can also be verified directly in Examples 2.3.1, 2.3.2 and

2.3.3.

2.4 Reliability analysis

The mean durable time of a user entering into a P2P network system is derived as below.

Proposition 2.4.1 For a P2P network system with user’s lifetime X,

E[Tr(X)] =
r µF

k + 1
, for all r = 1, · · · , k.

Proof: Since Tr(X) is nonnegative, it holds that

E[Tr(X)] =

∫ ∞

0

Pr
(
min

{
X, X̃r,k

}
> x

)
dx

=

∫ ∞

0

F̄ (x)F̄X̃r,k
(x) dx

= r

(
k

r

)∫ ∞

0

F̄ (x)

[∫ 1

FX̃(x)

ur−1(1− u)k−r du

]
dx

= r

(
k

r

)∫ 1

0

ur−1(1− u)k−r

[∫ F−1

X̃
(u)

0

F̄ (x) dx

]
du

= µr

(
k

r

)∫ 1

0

ur−1(1− u)k−r

[∫ F−1

X̃
(u)

0

dFX̃(x)

]
du

= µr

(
k

r

)∫ 1

0

ur(1− u)k−r du

=
r µF

k + 1
, for any 1 ≤ r ≤ k.

The above proposition reveals that the durable time of a new user in P2P network

is distribution free. More precisely, for a P2P network with any type of user’s lifetime
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distribution, the expected time it stays online depends upon the user’s lifetime distribution

only through its expectation.

2.4.1 Preservation of aging properties

The next result asserts that the durable time of the user in P2P system preserves both

IFR and IFRA properties of the user’s lifetime distribution.

Theorem 2.4.2 If X is IFR (IFRA), then Tr(X) is also IFR (IFRA).

Proof: IFR implies DMRL. It is known that the DMRL property of X is equivalent to

the IFR property of X̃. Since IFR property is preserved by the k-out-of-n structure with

i.i.d units, it follows that X̃r,k is IFR. On the other hand, IFR property is also preserved

by series system with independent components. So, we obtain the preservation of IFR.

Since IFRA property is preserved for coherent structure (see Barlow and Proschan

(1981)), the rest proof is the same as before.

As an application of Theorem 2.4.2, we build a lower bound of reliability of the durable

time of the user in P2P network.

Corollary 2.4.3 Let X be a nonnegative random variable which represents the user’s

lifetime of P2P network system. If X is IFRA with mean µ, then, for all 1 ≤ r ≤ k,

F̄Tr(X)(x) ≥
(
1− (k + 1)t

rµ

)
+

, for all t ≥ 0,

where x+ = max{x, 0}.

Proof: Theorem 2.4.2 guarantees that Tr(X) is IFRA and hence NBUE. By Hu et al

(2001), it holds that X is NBUE if and only if X̃ ≤st X, which implies

FTr(X)(x) ≤
1

E[Tr(X)]

∫ t

0

F̄Tr(X)(u) du ≤ (k + 1)t

rµ
,
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for all 1 ≤ r ≤ k and t ≥ 0. This completes the proof.

2.4.2 Stochastic monotonicity

Hu et al. (2001) characterized some stochastic orders in terms of other stochastic orders

between their corresponding equilibrium versions. Especially, it is proved that X ≤hr (≤st

)Y if and only if X̃ ≤hr (≤st)Ỹ . Based on this and the fact that both the order ≤hr and

the order ≤st are closed for k-out-of-n structure with independent units (see Shaked and

Shanthikumar (2007)), it is easy to obtain the proposition below, which asserts that the

durable time of the user in P2P network preserves both the hazard rate order and the

stochastic order of the parent distribution.

Proposition 2.4.4 If X ≤hr (≤st)Y , then Tr(X) ≤hr (≤st)Tr(Y ).

At the beginning of this section, we have concluded that the durable time of the

user in P2P network is distribution free. In other words, we cannot distinguish the

difference between P2P network systems with different types of user lifetime distributions

by contrasting the mean durable times of users. In this subsection, we will present a

convex order result on Tr. Precisely, the durable times of the user of two different P2P

network systems are ordered in the sense of the convex order if their respective parent

distributions are of common mean and ordered in the sense of the harmonic mean residual

life order. Let us first recall a useful lemma due to Shaked and Shanthikumar (2007).

Lemma 2.4.5 Suppose E[X] = E[Y ]. Then, X ≤cx Y if and only if

∫ ∞

x

F̄ (u) du ≤
∫ ∞

x

Ḡ(u) du, for all x.

Now, we get ready to present our main result in this subsection.
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Theorem 2.4.6 Suppose E[X] = E[Y ]. If X ≤hmrl Y , then Tr(X) ≤cx Tr(Y ).

Proof: For all 1 ≤ r ≤ k and t ≥ 0, it holds that

∫ ∞

t

F̄Tr(X)(x) dx =

∫ ∞

t

F̄ (x)F̄X̃r,k
(x) dx

= µr

(
k

r

)∫ ∞

t

[∫ 1

FX̃(x)

ur−1(1− u)k−r du

]
dFX̃(x)

= µr

(
k

r

)∫ 1

FX̃(t)

[∫ 1

v

ur−1(1− u)k−r du

]
dv.

Similarly, we have, for all 1 ≤ r ≤ k and t ≥ 0,

∫ ∞

t

F̄Tr(Y )(x) dx = µr

(
k

r

)∫ 1

FỸ (t)

[∫ 1

v

ur−1(1− u)k−r du

]
dv.

In view of the equivalence betweenX ≤hmrl Y and X̃ ≤st Ỹ , it follows from the assumption

of X ≤hmrl Y that FX̃(x) ≥ FỸ (x) for all x ≥ 0 and hence

∫ ∞

t

F̄Tr(X)(x) dx ≤
∫ ∞

t

F̄Tr(Y )(x) dx, for all t ≥ 0.

On the other hand, E[X] = E[Y ] = µ implies E[Tr(X)] = E[Tr(Y )] =
rµ

k + 1
. Thus, the

desired result Tr(X) ≤cx Tr(Y ) can be validated by Lemma 2.4.5 again.

Let X, Y and Z be Pareto, exponential and uniform random variables with a common

expectation µ. It is easy to verify that X ≥hmrl Y ≥hmrl Z. Thus, from Theorem 2.4.6 it

follows immediately that Tr(X) ≥cx Tr(Y ) ≥cx Tr(Z).

2.5 Interdependence among users lifetimes

In previous subsections we investigate the resilience and reliability of the P2P network

through some discussions on the isolation probability and the durable time. As is seen,
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the order statistics X̃r,k plays the very important role in characterizing both isolation

probability (2.1) and the durable time (2.2). Note that the discussion over there is de-

veloped under the framework of mutual independence among users’ lifetimes. Here we

introduce the statistical dependence by equipping the users’ lifetimes with the well-known

Archimedean copula and then explore the effect due to statistical dependence among users’

lifetimes.

Assume (X1, · · · , Xk) and (Y1, · · · , Yk) have their Archimedean copulas Cϕ1 and Cϕ2 ,

respectively. Let E[Xi] = E[Yi], i = 1, · · · , k. Denote Wi the random variable such that

ϕi(t) = E
[
e−tWi

]
, for t ≥ 0 and i = 1, 2.

We next present the following theorem to throw a light into our P2P network systems.

Theorem 2.5.1 Suppose W1 ≤st W2 and ψ1(F̄X̃(t)) ≤ ψ2(F̄Ỹ (t)) for all t ≥ 0. Then,

Tr(X) ≥st Tr(Y ).

Proof: Note that W1 ≤st W2 and ψ1(F̄X̃(t)) ≤ ψ2(F̄Ỹ (t)) for all t ≥ 0. From Theorem

3.9 of Rezapour and Alamatsaz (2014) it follows immediately that

X̃r,k ≥st Ỹr,k, for r = 1, · · · , k. (2.7)

Additionally, W1 ≤st W2 implies ϕ1(t) ≥ ϕ2(t) for all t ≥ 0 or equivalently,

ψ1 ◦ ψ2(u) ≥ u, for all u ∈ (0, 1).

Also, ψ1

(
F̄X̃(t)

)
≤ ψ2

(
F̄Ỹ (t)

)
for all t ≥ 0 implies that

ψ1 ◦ ψ2(u) ≤ F̄X̃ ◦ F̄−1

Ỹ
(u), for all u ∈ (0, 1).
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As a consequence, we have F̄X̃ ◦F̄−1

Ỹ
(u) ≥ u for all u ∈ (0, 1). Equivalently, F̄X̃(t) ≥ F̄Ỹ (t)

for all t ≥ 0. Take E[X] = E[Y ] into account we have F̄X(t) ≥ F̄Y (t) for all t ≥ 0. That

is, X ≥st Y . Now, in combination with (2.7) we get

Tr(X) = min
{
X, X̃r,k

}
≥st min

{
Y, Ỹr,k

}
= Tr(Y ).

That is the desired result.

In accordance with Theorem 2.5.1, reliability engineers may improve the reliability of

the P2P network system through (i) strengthen the interdependence among users’ life-

times and (ii) choosing much more dispersed lifetime distribution for users. Note that

the generator ϕ determines the degree of corresponding dependence, one may naturally

wonder whether we can improve the resilience of the network by imposing stronger inter-

dependence among its users. The following example serves as a negative answer.

Example 2.5.2 Consider two 3-dimensional random vectors (U1, U2, U3) and (V1, V2, V3)

both with uniform marginals on [0, 1]. Assume that they have Clayton copulas with

generators

ϕ1(t) = (2t+ 1)−1/2 and ϕ2(t) = (t+ 1)−1,

respectively. Note that ψ1 ◦ ϕ2(0) = 0 and ψ1 ◦ ϕ2 = ((1 + t)2 − 1)/2 is convex and hence

super-additive. However, as is shown in Figure 2.2, Pr
(
U2:3 ≤ t

)
− Pr

(
V2:3 ≤ t

)
is first

positive then negative on the interval [0, 1], indicating that there is no stochastic order

between U2:3 and V2:3.

2.6 Identifying the NWUE order

As is seen in previous section, NWUE property of a random lifetime plays an important

role in determining both reliability and resilience of a P2P network. In this section, we
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Figure 2.2: Pr
(
U2:3 ≤ t

)
− Pr

(
V2:3 ≤ t

)
.

build some methods to detect the strict NWUE order based upon two samples

Xn = (X1, . . . , Xn), Ym = (Y1, . . . , Ym)

from independent populations X and Y with continuous distributions, respectively.

2.6.1 Graphical method based on TTT plot

Define

φ−1
F (v) =

1

µF

∫ F−1(v)

0

F̄ (t) dt, v ∈ (0, 1),

the scaled total time on test (TTT) transform (see Barlow and Campo (1975)) of the

distribution F of a random lifetime X. Since F and φ−1
F uniquely determine each other,

TTT transform is convenient to be used to judge the aging properties of X. Bergman

(1979) showed that X is NWUE if and only if φ−1
F (v) ≤ v for all v ∈ (0, 1).

Example 2.6.1 (Pareto distribution) For the distribution in Example 2.3.1, it holds

that ∫ G−1(v)

0

Ḡ(t) dt =
β

α− 1

[
1− (1− v)1−1/v

]
, v ∈ (0, 1).

Thus, the scaled TTT transform
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Figure 2.3: Scaled TTT plots of Pareto distributions with α = 100, 5, 2, 1.25

φ−1
G (v) = 1− (1− v)1−1/v, v ∈ (0, 1).

It is evident that shape parameter α has a direct impact on the degree of NWUE

property whilst the scaled TTT transform is independent of the scale parameter β. As

can be seen in Figure 2.6.1, the smaller the shape parameter α, the more far below the

diagonal the scaled TTT transform, and hence the more NWUE the distribution is.

Let Fn(t) be the empirical distribution function, X1:n ≤ · · · ≤ Xn:n be order statistics

and X̄ = 1
n

∑n
i=1Xi be the sample mean of X1, · · · , Xn. Then, for i = 1, · · · , n,

φ−1
Fn

(
i

n

)
=

1

X̄

∫ F−1
n (i/n)

0

F̄n(t) dt =

i∑
j=1

Xj:n + (n− i)Xi:n

n∑
j=1

Xj:n

,

gives the sample version of the scaled TTT transform, which converges to the population

version φ−1
F (v) as sample size n→ ∞. As a result, the data set has the NWUE property
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if its scaled TTT plot

(
i

n
, φ−1

Fn

(
i

n

))
, i = 1, · · · , n,

lies below the diagonal line.

Example 2.6.2 (Proschan, 1963) Lifetimes (in hours) of the air-conditioning systems

in two different planes are recorded in Table 2.6.2 below. TTT plots based upon these

plane’s type sample
8045 14,14,27,32,34,54,57,59,61,66,67,102,134,152,209,230

7909 10,14,20,23,24,25,26,29,44,44,49,56,59,60,61,62,

70,76,79,84,90,101,118,130,156,186,208,208,310

Table 2.1: Life times of air-conditioning systems of planes

lifetimes are listed in Figure 2.4. Apparently, they both are not below the diagonal line

Figure 2.4: TTT plots of air-conditioning systems in airplane: 8045 (◦), 7909 (•)

and hence lifetimes of these two systems don’t possess the NWUE property.
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As a matter of fact, it is also quite convenient to identify the NWUE order by com-

paring the two TTT plots. It may be derived from (1.1) directly that

X ≥nwue Y if and only if φ−1
F (v) ≤ φ−1

G (v) for all v ∈ (0, 1).

Therefore, it is reasonable to identify the NWUE order through checking whether

(
i

n
, φ−1

Fn

(
i

n

))
, i = 1, · · · , n,

the TTT plot based on X1, · · · , Xn, lies below

(
j

m
, φ−1

Gm

(
j

m

))
, j = 1, · · · ,m,

the TTT plot based on Y1, · · · , Ym, here, for j = 1, · · · ,m,

φ−1
Gm

(
j

m

)
=

1

Ȳ

∫ G−1
m (j/m)

0

Ḡm(t) dt =

j∑
k=1

Yk:m + (m− j)Yj:m

m∑
k=1

Yk:m

,

Y1:m ≤ · · · ≤ Ym:m are order statistics and Ȳ is the sample mean corresponding to

Y1, · · · , Ym.

Example 2.6.3 (Skype and Yahoo) The users’ times (in seconds) of the network chat-

ting systems are recorded in both Skype and Yahoo network chatting systems in Table

2.6.3.

As can be seen in Figure 2.5, the two TTT plots lie far below the diagonal demon-

strating the obvious NWUE property. Further, TTT plot of Skype system is below that

of Yahoo system and hence showing a stronger NWUE property.
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System sample
Yahoo 6,9,13,18,24,28,38,44,48,54,57,69,86,120,150,176,

198,206,234,306,400,447,502,604,708,800,1005,1560

Skype 2,5,8,11,12,15,19,22,26,30,34,36,39,40,41,52,55,57,

56,70,83,108,117,209,306,409,530,602,845,1203,1882

Table 2.2: Times user spend in chatting systems

Figure 2.5: TTT plots of network chatting systems: Yahoo (◦), Skype (•)
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2.6.2 A nonparametric test

In literature, some partial orders were introduced to measure various common aging prop-

erties, such as IFR, IFRA, NBU, DMRL and NBUE. However, they can not be accurately

detected without the parametric forms of survival functions. As a result, engineers resort

to statistical methods in practical applications. In the past decades, nonparametric pro-

cedures were proposed to test the IFR order, IFRA order, NBU order and DMRL order,

respectively. One may refer Aly (1993), Ahamed and Kochar (1990), Kusum et al (1986),

Hollander et al (1982) and Gerlach (1986), and Lai and Xie (2006) for more details. Here,

we propose a nonparametric test for the strict NWUE order.

According to Kochar and Wiens (1987), X ≥nwue Y and X ≤nwue Y (written as

X ∼ Y ) if and only if F̄ (t) = Ḡ(θt) for all t ≥ 0, where θ = µG/µF , µG = E[Y ] and

µF = E[X]. That is, two random lives have same degree of NWUE-ness if and only if

their survival functions differ by at most a positive scale factor. In order to test the

following hypothesis

H: X ∼ Y versus K: X ≥nwue Y strictly,

it is necessary to build some testing statistic and derive its (asymptotic) null distribution.

Let

β(Y ) =

∫ ∞

0

Ḡ2(t) dt, β(X) =

∫ ∞

0

F̄ 2(t) dt.

The following lemma helps to build a testing statistic for H versus K.

Proposition 2.6.4 If X ≥nwue Y , then

∆(X, Y ) =
β(X)

µF

− β(Y )

µG

≥ 0, (2.8)
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the strict inequality holds when X is strictly more NBUE than Y , that is, X ≥nwue Y but

not X ∼ Y .

Proof: X ≥nwue Y implies µF (F
−1(s)) ≥ θ−1µG(G

−1(s)) for all 0 ≤ s ≤ 1. Then,

∫ 1

0

∫ ∞

F−1(s)

F̄ (y) dy ds =

∫ 1

0

µF (F
−1(s)) ds

≥ 1

θ

∫ 1

0

µG(G
−1(s)) ds

=
1

θ

∫ 1

0

∫ ∞

G−1(s)

Ḡ(y) dy ds. (2.9)

By Fubini’s theorem,

∫ 1

0

∫ ∞

F−1(s)

F̄ (y) dy ds =

∫ ∞

0

∫ F (y)

0

F̄ (y) ds dy

=

∫ ∞

0

F̄ (y)F (y) dy

= E[X]−
∫ ∞

0

F̄ 2(y) dy;

Likewise, ∫ 1

0

∫ ∞

G−1(s)

Ḡ(y) dy ds = E[Y ]−
∫ ∞

0

Ḡ2(y) dy.

So, (2.9) implies

∫ ∞

0

F̄ 2(y) dy − 1

θ

∫ ∞

0

Ḡ2(y) dy ≥ E[X]− 1

θ
E[Y ] = 0,

irrespective of the two means µF and µG.

According to Proposition 2.6.4, ∆(X, Y ) = 0 when X ∼ Y , and ∆(X, Y ) > 0 when

X ≥nwue Y strictly. So, it serves as a reasonable measure for the deviation from the null

hypothesis H toward the alternative K.
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Let

β(Xn) =

(
n

2

)−1 n∑
i ̸=j

min{Xi, Xj}, β(Ym) =

(
m

2

)−1 m∑
i̸=j

min{Yi, Yj}.

According to the theory of U-statistic (Hoeffding, 1948), if E[X4] <∞, then, as n→ ∞,

√
n
(
β(Xn)− β(X)

)
2σX

L−→ N (0, 1),

where

σ2
X = E[E[min{X1, X2}|X1]− β(X)]2.

By Slutsky’s theorem, it holds that, as n→ ∞,

√
n

[
β(Xn)

X̄
− β(X)

µF

]
2
σX
µF

L−→ N (0, 1). (2.10)

Likewise, as m→ ∞,
√
m

[
β(Ym)

Ȳ
− β(Y )

µG

]
2
σY
µG

L−→ N (0, 1), (2.11)

where

Ȳ =
1

m

m∑
i=1

Yi, σ2
Y = E[E[min{Y1, Y2}|Y1]− β(Y )]2.

Combining (2.10) and (2.11), we reach the asymptotic distribution of

∆(Xn,Ym) =
β(Xm)

X̄
− β(Yn)

Ȳ
.

Proposition 2.6.5 Suppose E[X4],E[Y 4] < ∞, and m
n+m

is bounded away from 0 and 1.
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Then, as min(n,m) → ∞,

√
nm

n+m

∆(Xn,Ym)−∆(X, Y )√
σ2(X, Y )

L−→ N (0, 1), (2.12)

where ∆(X, Y ) is determined by (2.8) and

σ2(X,Y ) =
m

n+m

σ2
X

E2[X]
+

n

n+m

σ2
Y

E2[Y ]
.

The parameter σ2(X,Y ) is unknown and hence needs to be consistently estimated.

Set

Vi(Xn) =
1

n− 1

∑
j ̸=i

min{Xi, Xj}, i = 1, 2, · · · , n.

By Arvesen (1969), as n→ ∞, the jackknifing estimate

S2(Xn) =
1

n− 1

n∑
i=1

(
Vi(Xn)− β(Xn)

)2 P−→ σ2
X .

Likewise, as m→ ∞,

S2(Ym) =
1

m− 1

m∑
j=1

(
Vj(Ym)− β(Ym)

)2 P−→ σ2
Y .

Now, applying Slutsky’s theorem to (2.12), we immediately get the following.

Proposition 2.6.6 Under the assumptions in Proposition 2.6.5, as min{n,m} → ∞,

√
nm

n+m

∆(Xn,Ym)−∆(X, Y )√
S2(Xn,Ym)

L−→ N (0, 1), (2.13)

where

S2(Xn,Ym) =
m

n+m

S2(Xn)

X̄2
+

n

n+m

S2(Ym)

Ȳ 2
.

Since ∆(X, Y ) = 0 under the original H, from (2.13), now, we get the following testing
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rule with the asymptotic level 0 < α < 1: H may be reasonably rejected when

T (Xn,Ym) =

√
nm

n+m

∆(Xn,Ym)√
S2(Xn,Ym)

> z1−α,

where z1−α is the 1− α percentile of the standard normal distribution N (0, 1). Standard

arguments give rise to the consistency of the test.

To end this chapter, we apply the above testing method to data sets in Examples 2.6.2

and 2.6.3. Testing statistics observed as well as corresponding p-values are presented in

the following table.

data set sample size (n,m) T (Xn,Ym) p-value
air-conditioning systems (16,29) 0.022 0.5088
Skype/Yahoo chatting (28,31) 2.2048 0.0237

Table 2.3: Statistics on data sets of air-conditioning and network chatting systems

Apparently,

(i) for the data set on air-conditioning systems, the larger p-value 0.5088 suggests us

to accept the original hypothesis. That is, NWUE order between the lifetimes (in

hours) of the air-conditioning systems in two different planes is insignificant;

(ii) however by contrast, p-value corresponding to the network chatting is only 0.0237,

it is reasonable to reject the original hypothesis. That is, the lifetime of a user in

Skype chatting system is more NWUE than that of Yahoo.

2.6.3 Concluding remarks

(i) No NWUE order is detected in lifetimes of air-condition systems in airplanes. Ac-

tually, an air-condition system is composed of some mechanical components, which

will wear-out (at least during one maintenance cycle) as it is put into operation.
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Thus, the two lifetimes of the air-conditioning systems do not have the NWUE

property at all.

(ii) NWUE order is detected in chatting times (P2P network) of Yahoo and Skype.

As software, both systems will be improved through removing bugs and patching

program after being put into use. As a result, the chatting times of Yahoo and

Skype inherently possess the NWUE property. Our test detects the NWUE order

between the two chatting times.
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3

Security Analysis of

Compromised-Neighbor-Tolerant Networks

3.1 Introduction

In traditional security analysis of a network system, it usually focuses on cryptographic

primitives and protocols, such as how a message is reasonably padded before being en-

crypted by the RSA (Rivest-Shamir-Adleman) function or how a password-based authen-

tication protocol is properly operated so that the network system is immune to the off-line

dictionary attack, etc. Although this approach of analysis works well, it would be more

efficient if the knowledge on, for instance, network topology (the specific physical or log-

ical arrangement of elements in a network) and defensive capability, etc, is acquired and

properly exploited, since they usually have a significant impact on the security.

In the literature, a lot of epidemic models, for example, Kephart and White (1991),

Kephart et al (1993), Aron and Grove (1998), Wierman and Marchette (2004), Li et al

(2007), and Piqueira et al (2008), among others, were adopted in succession to study the

spreading of computer viruses or worms and to address various aspects on the security of

network systems. However, most such models assume that all nodes have equal contact

with other nodes and the rate to compromise (a compromised node loses its designed
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functionality due to either a successful attack outside the network or an infection from

some of its neighbors) is largely determined by the density of the compromised nodes.

Other epidemic models, for example, Barabási and Albert (1999), Pastor and Vespignani

(2001), Moreno et al (2002), Pastor and Vespignani (2002), Wang et al (2003a,b), etc.,

considered non-homogeneous graphs (a graph is homogeneous if any isomorphism between

finite induced subgraphs extends to an automorphism of the graph) without grasping the

fact that computers may get compromised because of their own actions such as down-

loading or executing a malicious code. Recently, by abstracting the network system as

a vulnerability graph of nodes set V and edges set E , Li et al (2011) built a stochastic

model characterizing a network system in which a node is compromised as soon as one of

its neighbors is compromised and a compromised node may get secure again by receiving

some curing operation. They proved that the probability a node gets compromised is

increasing as the random degree (i.e., the random number of edges of a node) increases

in the sense of stochastic ordering and obtained a simple lower/upper bound for this

probability.

In practical occasions, most network systems equipped with certain security software

possess some tolerance when some of its neighbors are compromised, and sometimes a

node with a few neighbors being compromised does not stop working in the proper style

until the number of compromised neighbors becomes large enough and goes beyond the

tolerance level. In view of these, this paper studies a more general stochastic model,

which characterizes the mechanism that a system is compromised and gets secure again

and analyzes some aspects of network security. This model mainly includes the following

several key aspects:

1. A vulnerability graph is used to abstract a network system with vertices repre-

senting possible vulnerabilities and edges capturing connections, through which the

exploitation of one vulnerability could lead to the exploitation of the other;
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2. An alternative renewal process is utilized to model those state changes due to attacks

over the vulnerability graph and the endeavor to cure or vaccine compromised nodes;

3. The k-out-of-n fault tolerant structure (see Kuo and Zuo, 2002) is employed to

characterize the way a node is compromised due to its neighbors or an intruder

from outside the system, this makes the model capable of modeling the network

system which is tolerant of compromised neighbors.

In this chapter, we focus on the degree distribution of the vulnerability graph which

has an important impact on the security of a network system. In fact, it is shown that the

probability for a node to be compromised increases as the degree grows in the increasing

convex ordering, which is weaker than the usual stochastic ordering. Further, new upper

and lower bounds on the probability for a node to be compromised are obtained and proved

to be both more informative in the sense of incorporating more parameters of the system

and being sharper than those in Li et al (2011). Besides, we have also conducted some

stochastic comparisons among three typical degree distributions: regular graph, random

graph, and power-law graph. The results obtained in this paper can help the designer to

determine a better degree distribution leading to a more secure system, and can also help

the engineer to well orchestrate the system configurations to make the system secure by

taking effective actions. Hopefully the results can throw some new light on tuning system

parameters so as to enhance the security. Additionally, the model abstracts vulnerability

graphs through the degree distributions and hence can handle systems with any topology.

3.2 The model

In practical situations, a network system often faces attacks (malicious codes or hackers,

etc.) from outside the system. Initially, all nodes are secure, not compromised. The

attacker tries to paralyze the system through continuously launching attacks to any secure
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nodes in the system. An attack succeeds if it penetrates the attack-prevention mechanism

such as virus or fire-wall filters deployed by the corresponding machines. A successful

attack may be typically detected after a delay in time, and the system becomes secure

again through some attack-recovery mechanism. As time elapses, some nodes may get

compromised and consequently may compromise its neighbors. Those compromised nodes

may either be detected by a software (periodically scanning by the fire wall) and get cured

or become secure due to vaccine and immunity. The node that got secure at some previous

time may be compromised again after being cured. This process repeats for all nodes.

Since a node may get compromised by an attack that is launched from one or multiple

neighbors, an important issue is to capture how states of those neighbors have their impact

on the state of a node itself. This helps the architect have a better understanding on the

structure of a system and achieve a better design of the network system.

For ease of reference, all notations are listed in Table 3.1.

Figure 3.1: A depiction of the evolving process of a vulnerable network

1. Vulnerability graph abstraction Denote G a finite undirected graph with node set V
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α the rate for a node with all its neighbors secure to be compromised by the
attacker;

γ the rate for a node to be compromised by one compromised neighbor, usually
γ > α;

β the rate for a compromised node to get secure after being detected;

η the rate for a compromised node to get secure due to vaccine or immunity;

X the time interval for a node to be in secure state during a cycle;

Y the time interval for a node to be in compromised state during a cycle;

W0 the time for the attacker to compromise a node with all neighbors secure;

Wi the time for a secure node to be infected by its compromised neighbor i;

Wr,k the rth smallest one among W1, · · · ,Wk, r = 1, · · · , k;

V1 the time for a compromised node to get secure after being detected;

V2 the time for a compromised node to get secure due to vaccine or immunity;

q the steady state probability for a node to be compromised;

p the steady state probability for a node to be secure, p = 1− q;

D the random degree of a node in the system;

r the minimal number of compromised neighbors for a secure node to get com-
promised;

K number of compromised neighbors of a node with degree D, it has a binomial
distribution with number of trials D and the probability of success q;

≤st being smaller in the sense of stochastic ordering;

≤icx being smaller in the sense of increasing convex ordering;

⌊x⌋ the largest integer which is smaller than or equal to x.

⌈x⌉ the smallest integer which is not smaller than x.

Γ(·) the gamma function;

I(·) the index function, I(A) = 1 if A occurs and I(A) = 0 otherwise;

Pr(·) the probability function;

E[·] the expectation function;

Table 3.1: A list of all notations employed in the model
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and edge set E ̸= ∅, where the size of the graph (i.e., the number of nodes) |V| > 0.

Each node v ∈ V represents a vulnerability and an edge (u, v) ∈ E means that

the exploitation of vulnerability u can lead to the exploitation of vulnerability v,

and vice versa. Any node v ∈ V has a random degree that follows some integer-

valued distribution on {r, . . . , |V| − 1}. All nodes in the system are secure (not

compromised) at the beginning and are either secure or compromised during the

whole process.

2. Compromising mechanism Suppose that an attacker outside the system keeps

launching attacks to all secure nodes. Once a node is compromised, it becomes

an accomplice of the attacker and then threatens its secure neighbors through logic

or physical connections between them. Assume that

(i) W0 has an exponential distribution with rate α (or mean 1/α),

(ii) Wi has an exponential distribution with rate γ, and

(iii) each secure node has a compromising tolerance level, say r (See Table 3.1).

That is, a node with more than r neighbors becomes compromised (and thus

loses the capability of functioning in designed manner) when r of its neighbors

are compromised.

3. Attack-detection-recovery mechanism The compromised nodes have a chance to get

secure again. Assume that

(i) V1 follows an exponential distribution with rate β, and

(ii) V2 follows an exponential distribution with rate η.

4. Statistical independence Assume that

(i) the attacker and his accomplices independently launch their respective attacks

to secure nodes (neighbors),
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(ii) the attack-detection system and the vaccine/immune system work indepen-

dently, and

(iii) getting compromised and getting back to secure state are independent. That is,

random variables D, W0, V1, V2, and Wi are mutually independent. It should

be noted that this by no means implies that a node to get compromised is

independent of other nodes to get compromised. By contrast, the events that

nodes get compromised are highly correlated.

3.3 Main analytical results

This section devotes to studying the probability for a node in a network system to get

compromised. We discuss its monotonicity with respect to the random degree and derive

upper and lower bounds through an implicit equation for this important security index.

3.3.1 Equation of the probability to be compromised

The state evolution of a node in the system forms an alternating renewal process (see

Ross, 1996). Each cycle of the process is composed of the time interval X corresponding

to the secure state and the time interval Y corresponding to the compromised state. In

order to measure the security of the system, we consider q, the probability for a node to

be compromised when the system enters its steady state. Intuitively, the smaller the q is,

the more secure the system is. The following theorem provides an implicit equation for

q, which is useful in the sequel to study the security mechanism of the system.

Theorem 3.3.1 For an arbitrary graph G with random degree D, the steady state prob-

ability for a node to be compromised, q, satisfies

1

q
− 1 =

β + η

α
E

[
1− Γ(K + 1)Γ(α/γ +K − r + 1)

Γ(K − r + 1)Γ(α/γ +K + 1)

]
. (3.1)
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Proof: First, denote Wr,k the r-th order statistic based upon W1, · · · ,Wk, which is the

time for a node v to get compromised due to its compromised neighbors, say, 1, · · · , k.

Then, the time interval for v to be secure in a cycle is [0, X] with X = min{W0,Wr,K}.

Given K = k, W1, · · · ,Wk are independent and have a common exponential distribution

function

F (x) = 1− e−γx, for x ≥ 0.

Given K = k, Wr:k has distribution function

Fr:k(x) =
k!

(r − 1)!(k − r)!

∫ x

0

F r−1(t)(1− F (t))k−r dF (t), x ≥ 0.

By the assumption, W0 has exponential distribution

G(x) = 1− e−αx, for x ≥ 0 and α > 0.

Since W0 is independent of {W1, · · · ,Wk}, the series structure min{W0,Wr:k} has distri-

bution function 1− Ḡ(x)F̄r:k(x), and then by Fubini’s theorem, we have

E
[
min{W0,Wr:k}

]
=

∫ ∞

0

Ḡ(x)F̄r:k(x) dx

=

∫ ∞

0

e−αx

[
k!

(r − 1)!(k − r)!

∫ ∞

x

F r−1(t)(1− F (t))k−r dF (t)

]
dx

=

∫ ∞

0

1− e−αt

α

k!

(r − 1)!(k − r)!
F r−1(t)(1− F (t))k−r dF (t)

=
1

α

k!

(r − 1)!(k − r)!

∫ 1

0

yk−r(1− y)r−1(1− yα/γ) dy (y = e−γt)

=
1

α

[
1− Γ(k + 1)Γ(α/γ + k − r + 1)

Γ(k − r + 1)Γ(α/γ + k + 1)

]
.
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As a result, it follows that

E[min{W0,Wr,K}] = E
[
E[min{W0,Wr,K}|K]

]
=

1

α
E

[
1− Γ(K + 1)Γ(α/γ +K − r + 1)

Γ(K − r + 1)Γ(α/γ +K + 1)

]
. (3.2)

On the other hand, the length of the time for a node to be compromised in a cycle,

Y = min{V1, V2}, follows an exponential distribution with rate β + η. So,

E[Y ] = E
[
min{V1, V2}

]
=

1

β + η
. (3.3)

Now, by Blackwell’s theorem (Ross, 1996), the steady state probability that a node is

secure equals

p =
E
[
min{W0,Wr,K}

]
E
[
min{W0,Wr,K}

]
+ E
[
min{V1, V2}

] , (3.4)

and thus q = 1− p satisfies

1

q
= 1 +

E[min{W0,Wr,K}]
E[min{V1, V2}]

.

Plugging (3.2) and (3.3) into (3.4), we immediately reach the desired equation (3.1).

Intuitively, the security of a system can be improved by deploying some reactive secu-

rity mechanisms such as intrusion detection systems to increase β+η and/or by deploying

some proactive security mechanisms such as virus filters to decrease α and γ. This is jus-

tified by the following Proposition 3.3.2

Proposition 3.3.2 The probability q for a node to be compromised is

(i) decreasing with respect to β + η ≥ 0, and

(ii) increasing with respect to α > 0 and γ > 0.
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Proof: (i) For any fixed α and γ, note that

0 <
Γ(K + 1)Γ(α/γ +K − r + 1)

Γ(K − r + 1)Γ(α/γ +K + 1)
< 1,

and the right hand side of (3.1) increases when β + η increases. Hence q decreases with

respect to β + η ≥ 0.

(ii) By Γ(x+ 1) = xΓ(x) for any x > 0, it holds that

g(α, γ) =
1

α

[
1− Γ(K + 1)Γ(α/γ +K − r + 1)

Γ(K − r + 1)Γ(α/γ +K + 1)

]

=
1

α

1−
r∏

i=1

(K − i+ 1)

r∏
i=1

(α/γ +K − i+ 1)


is decreasing in γ > 0. This guarantees that q increases in γ > 0.

Since

r∏
i=1

(K − r + i)

(
1 +

α

γ

r∑
j=1

1
α
γ
+K − r + j

)

<
r∏

i=1

(K − r + i)

(
1 +

α

γ

r∑
j=1

1

K − r + j

)

=
r∏

i=1

(K − r + i) +
α

γ

r∑
j=1

r∏
i=1,i̸=j

(K − r + i)

<
r∏

i=1

(
α

γ
+K − r + i

)
,

by taking the partial derivative, we have

∂

∂α
g(α, γ)
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=
−1

α2

1−

r∏
i=1

(K − i+ 1)

r∏
i=1

(α/γ +K − i+ 1)

+

r∏
i=1

(K − i+ 1) ·
r∑

j=1

r∏
i=1,i̸=j

(
α

γ
+K − r + i

)

αγ
r∏

i=1

(α/γ +K − i+ 1)2

=
1

α2


r∏

i=1

(K − i+ 1)

r∏
i=1

(
α/γ +K − i+ 1

) − 1

+
1

αγ

r∏
i=1

(K − i+ 1) ·
r∑

j=1

(
α

γ
+K − r + j

)
r∏

i=1

(α/γ +K − i+ 1)

=
1

α2


r∏

i=1

(K − i+ 1)

r∏
i=1

(
α/γ +K − i+ 1

)
(
1 +

α

γ

r∑
j=1

1
α
γ
+K − r + j

)
− 1



=
1

α2


r∏

i=1

(K − r + i)

r∏
i=1

(
α/γ +K − r + i

)
(
1 +

α

γ

r∑
j=1

1
α
γ
+K − r + j

)
− 1


< 0.

That is, the right hand side of (3.1) decreases and hence q increases when α increases.

3.3.2 Impact of topology on vulnerability graph

Before proceeding to investigating how the topology (i.e., the degree distribution) of a

vulnerability graph affects the probability for a node to be compromised, let us first

introduce the following lemma.

Lemma 3.3.3 The function

Hr(k, ω) = 1− Γ(k + 1)Γ(ω + k − r + 1)

Γ(k − r + 1)Γ(ω + k + 1)

(i) decreases in k = r, r + 1, · · · , for any ω > 0, and
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(ii) is convex with respect to k = r, r + 1, · · · , for any ω ≤ 3+r
r−1

.

Proof: (i) For any k ≥ r,

Hr(k, ω)−Hr(k + 1, ω)

=
Γ(k + 2)Γ(ω + k − r + 2)

Γ(k − r + 2)Γ(ω + k + 2)
− Γ(k + 1)Γ(ω + k − r + 1)

Γ(k − r + 1)Γ(ω + k + 1)

=
Γ(k + 1)Γ(ω + k − r + 1)

Γ(k − r + 1)Γ(ω + k + 1)

[
(k + 1)(ω + k − r + 1)

(k − r + 1)(ω + k + 1)
− 1

]
.

Since, for ω > 0,

(k + 1)(ω + k − r + 1)− (k − r + 1)(ω + k + 1) = rω > 0,

it is concluded that Hr(k, ω) is decreasing in k ≥ r.

(ii) Let the increment ∆r(k, ω) = Hr(k + 1, ω)−Hr(k, ω). Then,

∆r(k + 1, ω)−∆r(k, ω)

= Hr(k + 2, ω)− 2Hr(k + 1, ω) +Hr(k, ω)

=

[
1− Γ(k + 3)Γ(ω + k − r + 3)

Γ(k − r + 3)Γ(ω + k + 3)

]
− 2

[
1− Γ(k + 2)Γ(ω + k − r + 2)

Γ(k − r + 2)Γ(ω + k + 2)

]
+

[
1− Γ(k + 1)Γ(ω + k − r + 1)

Γ(k − r + 1)Γ(ω + k + 1)

]
=

[
2(k + 1)(ω + k − r + 1)

(k − r + 1)(ω + k + 1)
− (k + 2)(k + 1)(ω + k − r + 2)(ω + k − r + 1)

(k − r + 2)(k − r + 1)(ω + k + 2)(ω + k + 1)
− 1

]
· Γ(k + 1)Γ(ω + k − r + 1)

Γ(k − r + 1)Γ(ω + k + 1)

=
rω(3 + 2k − r + ω − rω)

(k − r + 2)(k − r + 1)(ω + k + 2)(ω + k + 1)
.

Note that, for r ≤ k, when 0 < ω ≤ 1,

3 + 2k − r + ω − rω ≥ 3 + r + ω − rω ≥ 3 + ω > 0,
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and when 1 < ω ≤ 3+r
r−1

,

3 + 2k − r + ω − rω ≥ 3 + k − ω(r − 1) ≥ 0,

it follows that, for any ω ≥ 0, ∆r(k, ω) is increasing in k ≥ r and hence Hr(k, ω) is convex

with respect to k ≥ r.

Recall for r = 1, Li et al (2011) proved that the probability for a node to be com-

promised increases as D grows in the sense of the stochastic order. Theorem 3.3.4 below

presents a more general result than Li et al (2011) regarding the effect of the degree

distribution on the security of network systems.

Theorem 3.3.4 For any arbitrary graph G with random degree D, the probability for a

node to be compromised, q, increases as D increases in the sense of the increasing convex

order.

Proof: Denote ω = α/γ and let K =
∑D

i=1 I(Ai), here Ai is the event that neighbor i

of a node is compromised (with probability q), i = 1, 2, · · · . Since (i) K is stochastically

increasing as D stochastically increases, and (ii) 1
q
− 1 in (3.1) is decreasing with respect

to q, it suffices to show that E[Hr(K,ω)] is decreasing as K increases in the increasing

convex order.

By Lemma 3.3.3, Hr(k, ω) is both decreasing and convex in k = r, r + 1, · · · . Note

that the expectation of any increasing and convex function preserves the increasing con-

vex order. It follows immediately that E[Hr(K,ω)] is decreasing as K increases in the

increasing convex order. This completes the proof.

Remark 3.3.5 Theorem 3.3.4 simply claims that the steady state probability for a node

to be compromised becomes larger if the degree of a network topology becomes larger.

This could provide the engineer with an insight to improve the security of an existing
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system: amend the system’s topology and choose a topology with smaller random degree

in the sense of the increasing convex order.

As an example of Theorem 3.3.4, let us now look at three topologies, which are very

common in practice. Here, the degree of a node is the number of its neighbors, an integer-

valued random variable. Readers may refer to Bollobás (2001) and Caldarelli (2007) for

more details.

• Regular graph: The degree Dκ of a node follows a degenerate distribution

Pr(Dκ = κ) ≡ 1, for some integer κ < |V|;

• Random graph: The degree Dτ of a node follows a binomial distribution

Pr(Dτ = d) =

(
|V| − 1

d

)
τ d(1− τ)|V|−d−1,

for d = 0, 1, · · · , |V| − 1, here τ is the edge probability and all edges in the graph

are mutually independent;

• Truncated power law graph: The degree Dℓ,ν of a node follows the distribution

Pr(Dℓ,ν = d) =
(d+ 1)−(ν+1)

|V|−1∑
k=ℓ

(k + 1)−(ν+1)

,

for d = ℓ, ℓ+ 1, · · · , |V| − 1, here the power-law exponent ν ≥ 1, and ℓ (≥ 0) is the

minimum possible degree. This is actually a transformation (one unit to the left) of

the truncated version of the ordinary power law distribution with

Pr(D = d) =
νℓν

dν+1
, for d = ℓ, ℓ+ 1, · · · .
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Proposition 3.3.6 below can be easily proved and hence is stated without proof.

Proposition 3.3.6 (i) Dℓ,ν decreases in the increasing convex ordering with respect to

ν;

(ii) Dκ and Dτ increase in the increasing convex ordering with respect to κ and τ ,

respectively.

To make a stochastic comparison among the above three topologies, we need the

following lemma.

Lemma 3.3.7 (Denuit et al., 2005, pp. 154) Suppose two integer-valued random vari-

ables N and M such that E[N ] = E[M ]. Denote

hN(d) =
Pr(N = d)

Pr(N = d− 1)
, for d = 1, 2, · · · .

Then, N ≤icx M if there exists a constant c such that hM(d) ≤ hN(d) for d ≤ c and

hM(d) ≥ hN(d) for d > c.

Proposition 3.3.8 Suppose E[Dκ] = E[Dτ ] = E[Dℓ,ν ]. Then,

(i) Dκ ≤icx Dτ for any 0 < τ < 1 and Dκ ≤icx Dℓ,ν for any ℓ ≥ 1 and ν ≥ 1;

(ii) Dτ ≤icx D0,ν for ν ≥ 1 and 0 < τ ≤ 0.484.

Proof: (i) It follows directly from the equation (3.A.48) of Shaked and Shanthikumar

(2007).

(ii) For d = 1, · · · , |V| − 1,

hDτ (d) = − τ

1− τ
+

|V|τ
d(1− τ)

, hD0,ν (d) =

(
1 +

1

d

)−(ν+1)

.
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It is easy to verify that

∆(x) = hDτ (x)− hD0,ν (x) = − τ

1− τ
+

|V|τ
x(1− τ)

−
(
1 +

1

x

)−(ν+1)

is continuous and strictly decreasing in x ∈ [1, |V| − 1].

Since 0 < τ < 1 and ν ≥ 1, it holds that

τ (1−ν)

1− τ
≥ τ (1−ν) and τ > τ ν2−(ν+1),

which is equivalent to τ (1−ν) > 2−(ν+1). Note that |V| − 1 ≥ τ−ν , we have

(|V| − 1)τ

1− τ
≥ τ (1−ν)

1− τ
≥ τ (1−ν) > 2−(ν+1).

This implies, for 0 < τ < 1 and ν ≥ 1,

∆(1) = (|V| − 1)
τ

1− τ
− 2−(ν+1) > 0.

On the other hand, one can verify that τ(1 + τ) < (1− τ)1/2 for 0 < τ ≤ 0.484. Since

τ(1 + τ ν) ≤ τ(1 + τ) and (1− τ)1/2 ≤ (1− τ)1/(ν+1), for ν ≥ 1,

it holds that, for 0 < τ ≤ 0.484, τ(1 + τ ν) < (1− τ)1/(ν+1), or equivalently

τ (ν+1)

1− τ
< (1 + τ ν)−(ν+1) .

Thus, for 0 < τ ≤ 0.484,

∆(|V| − 1) =
τ

(|V| − 1)(1− τ)
−
(
1 +

1

(|V| − 1)

)−(ν+1)
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≤ τ (1+ν)

(1− τ)
− (1 + τ ν)−(ν+1) < 0.

Now, due to the strict decreasing property of ∆(x), there exists some constant c ∈ (1, |V|−

1) such that hD0,ν (d) ≤ hDτ (d) for d ≤ c and hD0,ν (d) ≥ hDτ (d) for d > c. Taking

E[Dτ ] = E[Dℓ,ν ] into account, it follows from Lemma 3.3.7 that Dτ ≤icx D0,ν .

Remark 3.3.9 (i) Proposition 3.3.8(i) actually holds for a random graph without the

restriction of independence among all edges.

(ii) Note that the stochastic order implies the increasing convex order. By Theorem

3.3.4 and Proposition 3.3.6, we have the following insights: For a network system, the

smaller the degree of a node (the edge probability, the exponent) of a regular graph

(random graph, power law graph) is, the more secure the system is. It should be pointed

out here that the larger the exponent of a power law graph, the lighter the tail of the

node distribution.

(iii) For a network with a moderate number of neighbors, according to Theorem 3.3.4

and Proposition 3.3.8, the regular graph is more secure than the random graph (even

without the restriction of independence among all edges), and if the network is large, the

random graph is more secure than the power-law graph. Thus, to attain more security, it

is sensible to decentralize a network, i.e., to avoid having too many edges on one node.

3.4 Probability bounds

Since the probability q for a node to be compromised is determined by the implicit equa-

tion (3.1), which is not computable because of the expectation of gamma functions, we in

this section provide lower and upper bounds for this probability.
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Proposition 3.4.1 For an arbitrary graph G with a random degree D,

α

α + (β + η)
[
1− (E[D] + 1)−⌊α

γ
⌋−1
] < q <

α(α+ (E[D] + 1)γ)

α(α + (E[D] + 1)γ) + (α+ γ)(β + η)
. (3.5)

Proof: According to Theorem 3.3.4, for a given threshold r and D, it holds that q ≥

(r + 1)/E[D] and hence E[K] = qE[D] ≥ r + 1. D ≥ K guarantees

E

[
K − r

K + 1

]
> E

[
K − r

D + 1

]
≥ E

[
1

D + 1

]
. (3.6)

Note that

k + s− r + 1

k + s+ 1
≤ k − r + 1

k + 1
, for any s ≥ 0,

we have, for any k = 1, 2, · · · , |V| and the threshold r,

Γ(k + 1)Γ
(
α/γ + k − r + 1

)
Γ(k − r + 1)Γ

(
α/γ + k + 1

)
≥

Γ(k + 1)Γ
(
⌊α/γ⌋+ k − r + 1

)
Γ(k − r + 1)Γ

(
⌈α/γ⌉+ k + 1

) (
⌊x⌋ ≤ x ≤ ⌈x⌉

)
=

(
k − r + ⌊α/γ⌋+ 1

)
· · · (k − r + 1)(

k + ⌊α/γ⌋+ 1
)
· · · (k + 1)

≥
(
1− r

k + 1

)⌊α/γ⌋+1

.

Then, by (3.1), we have

1

q
− 1 <

β + η

α
E

[
1−

(
1− r

K + 1

)⌊α/γ⌋+1
]

≤ β + η

α

[
1−

(
1− E

[
r

K + 1

])⌊α/γ⌋+1
]

(Jensen’s inequality)

<
β + η

α

[
1−

(
E

[
1

D + 1

])⌊α/γ⌋+1
]

(the inequality (3.6))
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≤ β + η

α

(
1− 1

(E[D] + 1)⌊α/γ⌋+1

)
. (Jensen’s inequality)

Thus, it follows that

q >
α

α + (β + η)

[
1− 1

(E[D] + 1)⌊α/γ⌋+1

] .

On the other hand, the expectation of (3.1),

E

[
1− Γ(K + 1)Γ(α/γ +K − r + 1)

Γ(K − r + 1)Γ(α/γ +K + 1)

]
= E

[
1− K · · · (K − r + 1)

(K + α/γ + 1) · · · (K + α/γ − r + 1)

]
> E

[
1−

(
K

K + α/γ + 1

)r]
> E

[
α/γ + 1

K + α/γ + 1

]
>

α/γ + 1

E[K] + α/γ + 1
(Jensen’s inequality)

≥ α/γ + 1

E[D] + α/γ + 1
. (K ≤ D)

Then, from

1

q
− 1 >

β + η

α

α
γ
+ 1

E[D] + α/γ + 1
,

it follows immediately that

q <
α[α + γ(E[D] + 1)]

α[α + (E[D] + 1)γ] + (α + γ)(β + η)
,

as is just the desired.

Now, we focus on the special case with r = 1.
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In view of q ≡ 1− p, setting r = 1 in (3.1) reduces to the following equation in Li et

al (2011),

p

q
= E

[
β + η

α + γK

]
=

β + η(
E
[

1
α+γK

])−1 . (3.7)

Since the denominator (
E

[
1

α+ γK

])−1

is the harmonic mean of α + γK, the rate for a node to be compromised, the equation

in (3.7) tells that the odds for a node to be safe are just the ratio of the rate for a

compromised node to become secure to the harmonic mean of the rate for a secure node

to be compromised.

The following proposition presents an upper bound for q.

Proposition 3.4.2 For a graph G with any arbitrary degree distribution D and r = 1, it

holds that

q ≤
√
s2(α, β, η, γ) + 4αγE[D]− s(α, β, η, γ)

2γE[D]
, (3.8)

where

s(α, β, η, γ) = α + β + η − γE[D].

Proof: Since the harmonic mean is less than or equal to the usual mean, it follows that

(
E

[
1

α+ γK

])−1

≤ E[α + γK] = α + γE[K] = α+ qγE[D].

Then, by (3.7), we have

1− q

q
≥ β + η

α + qγE[D]
.

Equivalently,

γE[D]q2 + (α+ β + η − γE[D])q − α ≤ 0.
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By some algebra, we obtain

q ≤
√

(α + β + η − γE[D])2 + 4αγE[D]− (α+ β + η − γE[D])

2γE[D]
.

This completes the proof.

To illustrate the bounds in Proposition 3.4.1, we now consider some particular values

of α, γ, E[D] and β+η. Three dimensional plots of segments of new bounds are displayed

in Figure 3.2.

Remark 3.4.3 Li et al (2011) derived the following bounds on the probability for a node

to be compromised,

α

α+ β + η
≤ q ≤ α+ γE[D]

α + β + η + γE[D]
. (3.9)

To compare (3.9) with (3.5) and (3.8), one can verify that

α

α+ (β + η)
[
1− (E[D] + 1)−⌊α

γ
⌋−1
] ≥ α

α + β + η
,

√
s(α, β, η, γ)2 + 4αγE[D]− s(α, β, η, γ)

2γE[D]
≤ α + γE[D]

α + β + η + γE[D]
.

Thus the lower bound in (3.5) and the upper bound in (3.8) perform better than the

corresponding ones in (3.9), respectively.

To compare the upper bounds in (3.5) and (3.8), we consider the difference between

the upper bound in (3.8) and that in (3.5), i.e., (3.8)-(3.5). Two graphs of the difference

for certain parameter values are provided in Figure 3.3. As can be seen, in most area,

the difference is positive, i.e., the upper bound in (3.5) is smaller than the one in (3.8);

however, there are areas where the difference is negative. See Figure 3.3(b) for instance.

This implies that out of these two upper bounds no one is superior to another.
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Figure 3.2: Upper bound (top) and lower bound (bottom) by (3.5)
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(a) β + η = 1,E[D] = 4

(b) γ = 16,E[D] = 4

Figure 3.3: The difference between the upper bound in (3.8) and that in (3.5)
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3.5 Concluding remarks and future work

By taking the tolerance of compromised neighbors into consideration, we studied the

probability for a node to be compromised. This probability is proved to be increasing

as the random degree grows in the sense of the increasing convex order. Based on this

study, one can conduct comparisons among network systems with certain topology such

as, for example, regular graph, random graph and power law graph. Furthermore, the

established lower and upper bounds can be used to estimate and improve the security

indices. Of course, more studies on the proposed model remain to be done. They include

the following several aspects.

(i) After a compromised node is detected, it will get secure again when a software

patch is applied. However, if the recovery is broken, then, the software may proceed

without re-starting the repair task from the beginning again. That is, the recovery

procedure is accumulative and hence the time V1 for a compromised node to become

secure again should not be memoryless. As a result, the assumption that V1 follows

an exponential distribution is inappropriate. Some other distributions with positive

aging property may serve as a better alternative.

(ii) The abstraction of a network as a graph with certain random degree and concen-

trating on local quantities like the node’s degree is a significant step to describe

a system both empirically and analytically in realistic situations. However, this

approach relies heavily on the degree distribution, which is a very local property

of graphs. From a graph-theoretic standpoint, it is relatively easy to exhibit very

different graphs having the same degree distribution (Aiello et al., 2001). Recently,

the page rank function (Brin and Page, 1998) is employed to model a network. It is

of interest to consider the model based on the page rank and parallel to the random
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degree model so that some further insights may be obtained. In addition, when it

comes to global vulnerabilities related to failure spreading and cascades, more global

approaches like the spectral analysis of a graph are required. For example, Castel-

lano and Pastor-Satorras (2010) and D’Agostino et al (2011) recently showed how

even in random graph there could be a zero epidemic threshold for disease spreading

and how the assortativity changes the severity of damage spreading, respectively.

Although computationally heavy, global methods complement and compete the local

approach when more complete data on the network is available.

(iii) It is assumed that the degree of a vertex is fixed once the network is configured.

However, in real world networks, it may change as time elapses, because the num-

ber of compromised neighbors varies due to the history (compromised, ever being

compromised or never being compromised) of the vertex itself. So, it is interesting

to study in future work how the theoretical results are affected by the changing de-

gree. This would bring further information on how effective various reactions to the

attack might be. In addition, the dependence among edges is an important aspect

if the focus is the statistics on the number of compromised nodes or the probability

for an infection to die out, stable regimes for the infection, or similar quantities.

(iv) Theorems in Section 3.3 do not take the following two issues into account: (i) the

degree distribution actually does not fully describe a network, and the correlation

between neighboring nodes may lead to quite different random networks; and (ii)

each realization of a random graph is not a homogeneous object and can contain

fluctuations growing monotonically with the size of the network. Thus, infections

will not spread in a uniform way. These issues deserve to be studied in the future.
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A

R codes

A.1 Codes to produce TTT plot in Figure 2.4

##Define a function to get scaled TTT plot!##

Ustat<-function(data){

value=NULL

n=length(data)

for (i in 1:n-1){

for (j in i+1:n){

if (isTRUE(data[i]<data[j])) {

value=value+data[i]}

else {value=value+data[j]}

}

}

value=2*value/(n*(n-1))

return(value)

}
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##Air-conditioning data (Proschan,1963)!##

x=c(14,14,27,32,34,54,57,59,61,66,67,102,134,152,209,230)

y=c(10,14,20,23,24,25,26,29,44,44,49,56,59,60,61,62,70,

76,79,84,90,101,118,130,156,186,208,208,310)

x=sort(x); y=sort(y); tttx=triplet(x); ttty=triplet(y)

plot(tttx)

plot(ttty, xlab="probablity", ylab="scaled total time on test")

points(tttx, col="blue")

points(ttty, col="red", pch=19)

A.2 Codes to produce TTT plot in Figure 2.5

##Define a function to get scaled TTT plot!##

Ustat<-function(data){

value=NULL

n=length(data)

for (i in 1:n-1){

for (j in i+1:n){

if (isTRUE(data[i]<data[j])) {

value=value+data[i]}

else {value=value+data[j]}

}
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}

value=2*value/(n*(n-1))

return(value)

}

##Skype and yahoo data!

x=c(6,9,13,18,24,28,38,44,48,54,57,69,86,120,150,176,198,

206,234,306,400,447,502,604,708,800,1005,1560)

y=c(2,5,8,11,12,15,19,22,26,30,34,36,39,40,41,52,55,57,

56,70,83,108,117,209,306,409,530,602,845,1203,1882)

x=sort(x); y=sort(y); tttx=triplet(x); ttty=triplet(y)

plot(tttx)

plot(ttty, xlab="probablity", ylab="scaled total time on test")

points(tttx, col="blue")

points(ttty, col="red",pch=19)
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B

Mathematica codes

B.1 Codes to plot upper/lower bounds in Figure 3.2

lower[a , b , c , d ]:= a

a+b

(
1− 1

(1+d)
1+Floor[ac ]

)
upper[a , b , c , d ]:= a(a+c(d+1))

a(a+c(d+1))+(a+c)∗b

f1 = Plot3D[lower[a, 2, c, 4], {a, 1, 5}, {c, 1, 5},AxesLabel → {α, γ},PlotRange → {0, 1}]

f2 = Plot3D[upper[a, 2, c, 4], {a, 1, 5}, {c, 1, 5},AxesLabel → {α, γ},PlotRange → {0, 1}]

Show[f1, f2]

f3 = Plot3D[lower[a, b, 1, 4], {a, 1, 5}, {b, 2, 8},AxesLabel → {α, β + η},PlotRange →

{0, 1}]

f4 = Plot3D[upper[a, b, 1, 4], {a, 1, 5}, {b, 2, 8},AxesLabel → {α, β + η},PlotRange →

{0, 1}]

Show[f3, f4]

f5 = Plot3D[lower[1, b, c, 4], {b, 2, 8}, {c, 1, 5},AxesLabel → {β + η, γ},PlotRange →

{0, 1}]

f6 = Plot3D[upper[1, b, c, 4], {b, 2, 8}, {c, 1, 5},AxesLabel → {β + η, γ},PlotRange →

{0, 1}]

Show[f5, f6]
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B.2 Codes to plot lower bounds in Figure 3.2

lower1[a , b , c , d ]:= a
a+b+c

lower2[a , b , c , d ]:= a(a+c)(a+2c)
(a+b)(a+c)(a+2c)+b∗d

f1 = Plot3D[lower1[a, 2, c, 4], {a, 1, 5}, {c, 1, 5},AxesLabel → {α, γ},PlotRange → {0, 1}]

f2 = Plot3D[lower2[a, 2, c, 4], {a, 1, 5}, {c, 1, 5},AxesLabel → {α, γ},PlotRange → {0, 1}]

Show[f1, f2]

f3 = Plot3D[lower1[a, b, 1, 4], {a, 1, 5}, {b, 2, 8},AxesLabel → {α, β + η},PlotRange →

{0, 0.8}]

f4 = Plot3D[lower2[a, b, 1, 4], {a, 1, 5}, {b, 2, 8},AxesLabel → {α, β + η},PlotRange →

{0, 0.8}]

Show[f3, f4]

f5 = Plot3D[lower1[1, b, c, 4], {b, 2, 8}, {c, 1, 5},AxesLabel → {β + η, γ},PlotRange →

{0, 0.8}]

f6 = Plot3D[lower2[1, b, c, 4], {b, 2, 8}, {c, 1, 5},AxesLabel → {β + η, γ},PlotRange →

{0, 0.8}]

Show[f5, f6]

B.3 Codes to plot upper bounds in Figure 3.3

upper1[a , b , c , d ]:= a+c∗d
a+b+c∗d

upper2[a , b , c , d ]:=

√
(a+b−c∗d)2+4a∗c∗d−(a+b−c∗d)

2c∗d

f1 = Plot3D[upper1[a, 2, c, 4], {a, 1, 5}, {c, 1, 5},AxesLabel → {α, γ},PlotRange →

{0.2, 1}]

70



f2 = Plot3D[upper2[a, 2, c, 4], {a, 1, 5}, {c, 1, 5},AxesLabel → {α, γ},PlotRange →

{0.2, 1}]

Show[f1, f2]

f3 = Plot3D[upper1[a, b, 1, 4], {a, 1, 5}, {b, 2, 8},AxesLabel → {α, β + η},PlotRange →

{0, 1}]

f4 = Plot3D[upper2[a, b, 1, 4], {a, 1, 5}, {b, 2, 8},AxesLabel → {α, β + η},PlotRange →

{0, 1}]

Show[f3, f4]

f5 = Plot3D[upper1[1, b, c, 4], {b, 2, 8}, {c, 1, 5},AxesLabel → {β + η, γ},PlotRange →

{0, 1}]

f6 = Plot3D[upper2[1, b, c, 4], {b, 2, 8}, {c, 1, 5},AxesLabel → {β + η, γ},PlotRange →

{0, 1}]

Show[f5, f6]
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