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Lion SSC colonization in cat testis.  A low number of colonies was detected in the 

digested seminiferous tubule fragments of one testis (Fig 4.3 A), and colonization was 

confirmed in cross-sections of snap-frozen tissue, although some fluorescence appeared to be 

interstitial (Fig 4.3 B).  Even though sperm was observed in the epididymal tissue, PKH26 

fluorescence in sperm was not detected.   

 

Figure 4.3.  Donor cell colonies labeled with PKH26 red fluorescent membrane dye were 

detected in enzymatically digested tubules (A) and cross-sections (B) of the testes of some recipient 

cats.  Nuclei in cross-sections were stained with DAPI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

The efficacy of xenogenic SSCT is found to be heavily influenced by phylogenetic 

distance and biological dissimilarities between the species [33, 34].  For example, both rat and 

hamster SSCs were able to colonize mouse testes, but hamster germ cells developed 

abnormally while rat SSCs were reported to progress through spermatogenesis and result in 

normal sperm [36, 117].  We sought to determine if the domestic cat may be a viable recipient 

for lion SSCs by first comparing expression patterns of surface markers between the two 

species.   
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Similarities in expression patterns of pluripotent surface markers SSEA-4, TRA-1-60, and 

TRA-1-81 in lion and domestic cat cells were detected.  In both species, SSEA-4 expression was 

restricted to single spermatogonia, while the other markers were found in pairs and chains of 

spermatogonia.  However, pluripotent marker SSEA-1, although expressed in domestic cat 

spermatogonia, was not detected in lion testis.  Other differences included GFRA1 expression 

localized to spermatogonia and negative expression of GPR125 in the lion as compared to non-

specific expression for both surface markers in the domestic cat.  Differentiation marker KIT 

was negative in testis tissue from both species.   

Although donor cell colonization was observed in at least one of the two recipient 

testes, and sperm was present in the epididymis, donor-derived sperm were not identified.  

Previously, we reported colonization of domestic cat SSC colonization after syngenic 

transplantation to sexually immature recipient testes; however, sperm derived from donor cat 

cells were not observed [116].  It is not clear why donor sperm were not detected.  It is possible 

that recipient endogenous germ cells at the time of transplantations competed with donor cells 

for a niche, especially in this study’s eight-month-old early pubescent recipient with full 

spermatogenesis likely occurring, and the lack of donor sperm observed could be due to low, 

undetectable numbers of donor sperm.  Isolating cells from the whole lion testis or larger 

biopsies would provide a greater number of mixed germ cells for transplantation, which may 

result in an increased number of donor colonies to produce detectable numbers of donor 

sperm.  Furthermore, donor sperm production in recipient testes may increase with time, and 

extending the time between transplantation and sperm collection may also result in detectable 

numbers of donor sperm. 

In summary, the lion and domestic cat share similarities in spermatogonial cell surface 

marker expression, and the presence of SSEA-4 in a low number of spermatogonia in both the 

lion and the domestic cat indicates SSEA-4 may be a potential surface marker for SSCs in other 

felids if expression is conserved.  Although we did not detect sperm derived from lion SSCs after 

transplantation to domestic cat testes, it was reported that ocelot SSCs were able to 

differentiate and produce sperm in the domestic cat testicular environment [13].  Therefore, it 
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is necessary to repeat xenogenic lion SSCT and adjust the protocol as needed to confirm that 

the microenvironment of the domestic cat is compatible for lion SSC spermatogenesis.     
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GENERAL CONCLUSIONS 

 

Isolation of spermatogonial stem cells (SSCs) is a technique for recovering genetic 

material which may be used for propagating valuable males of endangered species, especially 

when sperm collection is not possible.  Although SSCs comprise <1% of the germ cells in the 

testis [27, 28], they concomitantly produce undifferentiated daughter cells and spermatogonia 

fated to differentiate into sperm throughout the life of the male.  Transplantation of donor SSCs 

to the testes of an adequate recipient can result in in vivo donor sperm production, and it has 

been suggested that enrichment of SSCs through one or more methods, including differential 

plating and cell sorting using surface markers, may enhance colony formation efficiency. 

Isolation of SSCs.  The results presented in this dissertation revealed the presence of 

SSC subpopulations in the domestic cat and provided phenotypic and molecular characteristics 

for their identification.  The low number of cells expressing pluripotent markers SSEA-1 (15.4 ± 

7.1%), SSEA-4 (5.9 ± 2.9%), TRA-1-60 (18.0 ± 4.8%), and TRA-1-81 (16.3 ± 4.5%) compared to the 

more highly expressed common SSC surface markers GFRA1 (44.7 ± 2.5%) and GPR125 (50.0 ± 

3.4%), and the differentiation marker KIT (59.2 ± 5.3%), suggested that the pluripotent markers 

are more specific to spermatogonia in the domestic cat.  Detection of the pluripotent markers 

in prepubertal testis tissue and localization along the basement membrane of the seminiferous 

tubules in adult testis tissue confirmed that expression of SSEA-1, SSEA-4, TRA-1-60, and TRA-1-

81 was restricted to spermatogonial cells.  Furthermore, the expression of SSEA-4 in only single 

cell spermatogonia compared to pairs and chains of spermatogonia expressing SSEA-1, TRA-1-

60, and TRA-1-81 indicated a change in phenotype with differentiation and that SSEA-4 may be 

more specific to SSCs. 

Due to the lower percentage of cells positive for SSEA-1 or SSEA-4, populations of SSEA-

1+ and SSEA-4+ cells were molecularly characterized for expression levels of pluripotent 

transcription factors NANOG, POU5F1, and SOX2, which are all expressed in cat embryonic cells 

[55].  Only NANOG was detected in SSEA-1+ cells, but all three pluripotent factors were 

expressed in SSEA-4+ cells.  To further investigate the SSEA-4+ cell population, mixed germ cells 

were double stained and sorted for SSEA-4 and GFRA1, a receptor for a Sertoli cell-secreted 
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regulatory factor, which was detected in cat spermatogonia and differentiating germ cells.  

Three subpopulations were identified: 1) SSEA-4-, GFRA1+ (29.3 ± 17%), 2) SSEA-4+, GFRA1- (0.7 

± 0.5%), and 3) SSEA-4+, GFRA1+ (3.7 ± 2.8%).  Interestingly, molecular analysis revealed that 

the SSEA-4+, GFRA1+ subpopulation expressed all three pluripotent transcription factors while 

expression was not seen in the SSEA-4-, GFRA1+ and SSEA-4+, GFRA1- subpopulations.  These 

results suggest that SSEA-4+ SSCs also express GFRA1, and that the loss of either may signal 

differentiation. 

Similar to my findings in the domestic cat, studies in human and non-human primates, 

including Rhesus macaque (Macaca mulatta) and the common marmoset (Callithrix jacchus), 

also reported expression of SSEA-4 in SSCs, and the percentage of SSEA-4+ cells (~6%) in the cat 

fell within the same range of SSEA-4+ cells in human (~13%) [20] and monkey SSCs (~2%) [74].  

The definitive biological significance of SSEA-4+ SSCs in the cat remains unknown, but in 

humans, SSEA-4 proved an optimal marker for isolating SSCs [20, 32].  Furthermore, in both 

human and Rhesus monkey, portions of SSEA-4+ cells were found to co-express with cells 

positive for other surface markers such as ITGA6 [20, 32, 74], supporting other studies that 

found subpopulations of SSCs may exist that include a cohort of actively dividing stem cells and 

another of “reserve” stem cells that mostly remain latent [18, 118, 119].  The possibility of 

different roles of SSC subpopulations may explain the expression patterns of the pluripotent 

surface markers in single versus paired spermatogonia and the differing levels in expression of 

pluripotent transcription factors seen in the domestic cat.   

Transplantation of SSCs (SSCT).  Although successful SSCT was performed previously in 

domestic cats with the donor mixed germ cells from the cat and ocelot [13], I sought to 

evaluate: 1) if SSC-enriched SSEA-1+ or SSEA-4+ populations improve donor cell colonization 

and 2) if endogenous germ cell depletion using chemicals or irradiation in domestic cat 

recipients can be avoided by employing sexually immature males.  Testicular weights of 

recipients at 10-12 weeks post-SSCT, ranging from 0.8 g to 1.25 g, were considered normal for 

seven- to nine-month-old male cats [14] and indicated spermatogenic activity.  Although 

spermatozoa were present in the epididymides of 10 recipients (83%), PKH26 fluorescence in 

sperm was not observed.  However, donor cell colonies localized to small areas along the basal 
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membrane of the seminiferous tubules were detected in five recipients (5/12; 42%): two 

receiving SSEA-4+ germ cells (2/4; 50%), one receiving SSEA-1+ germ cells (1/4; 25%), and two 

receiving mixed (unsorted) germ cells (2/4; 50%).  Therefore, the SSEA-1+ and SSEA-4+ 

populations were capable of colonizing the seminiferous tubules of prepubertal cats after 

transplantation, confirming the presence of SSCs within those populations, but no advantage 

was found in colonization ability of the populations enriched for SSCs compared to each other 

or to mixed germ cell (unsorted) populations. 

Although depleting endogenous germ cells in the prepubertal recipients was not 

necessary for successful colonization of donor cells, SSCT using prepubertal recipients with 

endogenous germ cell depletion is necessary for comparison to determine the efficiency of 

colonization in the untreated recipients.  Previous studies indicated that the microenvironment 

of immature testes enhanced SSC colonization, allowing for the formation of more colonies 

than in the adult testes [17, 30].  The data suggested that glial cell line-derived neurotrophic 

factor (GDNF), which is important to SSC self-renewal, is secreted at higher levels by the 

immature testis, and the level of GDNF varies within the testis by the stage of seminiferous 

epithelium.  Since the recipients in this study were just beginning spermatogenesis, the 

colonization of donor cells may have been restricted to only the segments of seminiferous 

tubule in which GDNF levels were high and a niche was available, accounting for the low 

number of donor colonies observed.  It is possible that donor sperm were produced, but may 

have been too low in number to be detected; therefore, a more reliable method for detection 

of donor sperm in low numbers or over an extended period of time may be necessary. 

Culture of SSCs.  Expansion of domestic cat SSCs in an in vitro culture system would 

allow for a better understanding of the SSC biology to exploit their ability to self-renew or 

differentiate; however, defining culture conditions for cat SSC maintenance proved difficult.  

The effects of serum, a Sertoli cell feeder layer, B-27 supplement, and various combinations of 

growth factors GDNF, bFGF, EGF, and LIF on cat SSC proliferation were evaluated.  I was able to 

maintain cat SSCs in the form of pairs, chains, or clusters in vitro, at least short-term, with stem 

cell medium containing several combinations of supplements, but only mixed germ cell 

populations formed compact, defined colonies.   
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Using mixed germ cells, I first determined that cells could survive up to two weeks 

without passaging either with or without the addition of fetal bovine serum (FBS); however, FBS 

promoted the immediate plating and rapid growth of somatic testicular cells.  Few somatic cells 

plated without FBS present, and chains, grape-like clusters, and defined compact colonies of 

spermatogonia were observed.  The effect of a mitotically inactivated Sertoli cell feeder layer, 

regardless of the presence of FBS, was difficult to evaluate.  The Sertoli cells seemed sensitive 

to multiple passages and degenerated soon after inactivation and passaging.  It was observed, 

however, that SSCs tend to start colonies on or near the plated somatic cells.  

The proliferation effects of the B-27 supplement (without vitamin A) and growth factors 

GDNF, bFGF, EGF, and LIF were assessed in cultures of unsorted germ cells and sorted cells 

enriched in SSCs.  After ~1 week, sorted cells became apoptotic in all culture conditions, 

possibly due to the lack of other supporting testicular cells.  No noticeable effect on the culture 

of unsorted cells was observed under any of the culture conditions.  All media evaluated 

contained GDNF, therefore, the most suitable medium tested for culturing cat SSCs was serum-

free, containing 20% knockout serum replacement (KOSR), and supplemented with GDNF.  

However, further efforts in culturing and functional assays are needed to fully evaluate the 

effects of various factors and conditions, including the availability of somatic testicular cells, on 

sorted cells. 

Xenogenic transplantation of SSCs.  I was able to begin translating my findings in the 

domestic cat to another felid, the lion (Panthera leo).  Surface markers tested in the cat were 

evaluated in tissue sections obtained from the testes of a recently deceased lion, and 

similarities in the expression patterns of the pluripotent markers SSEA-4, TRA-1-60, and TRA-1-

81 were found, with SSEA-4 expression restricted to single spermatogonia and TRA-1-60 and 

TRA-1-81 expression detected in pairs and chains of spermatogonia.  KIT was not detected in 

the testes of either species.   Differences in expression of SSEA-1 and GPR125 between species 

were observed, with SSEA-1 undetected and GPR125 localized only in spermatogonia in the 

lion.  Xenogenic transplantation of lion mixed germ cells resulted in colonization of donor cells, 

although sperm were not detected.   
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Final conclusions.  These significant results not only indicate that SSEA-4 may be an 

optimal surface marker for felid SSC enrichment, but also reveal the presence of different 

domestic cat SSC subpopulations positive for SSEA-1 and SSEA-4 and the molecular 

characteristics of each.  Furthermore, this study also shows that some of these characteristics 

are shared with the distantly related lion, an indication that the cat may be a viable recipient in 

xenogenic transplantation of other felid SSCs.  Domestic cat testes have already been reported 

to be a biologically compatible environment for the colonization and differentiation of ocelot 

spermatogonia [13].  Although the ocelot lineage diverged 8 mya, more recently than the lion’s 

Panthera lineage, approximately half of the other felid species are phylogenetically closer to 

the domestic cat than the ocelot [120-122], implying a likelihood that these species may also be 

compatible for xenogenic SSCT with the domestic cat as a recipient.  

Therefore, xenogenic transplantation of exotic felid SSCs to the domestic cat may be an 

effective method in the propagation of genetically important males using a more manageable 

recipient for later collection of valuable donor sperm.  Enrichment of feline SSCs through cell 

sorting with spermatogonia-specific surface markers and expansion in culture may offer several 

benefits including more efficient colonization, a continuous supply of valuable germ cells, and a 

better understanding of feline germ cell biology in the male.  This is the first report of SSCT 

resulting in colonization using purified SSCs from FACS in the domestic cat.  However, further 

work is needed to elucidate the factors and other conditions required for in vitro proliferation 

and to optimize the transplantation protocol to increase colonization efficiency and promote 

donor cell spermatogenesis.    
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