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Abstract 

Located on the short arm of chromosome 4, there exists a gene, IT15, responsible for the 

trinucleotide CAG expansion involved in the autosomal dominant neurodegenerative disorder 

known as Huntington’s disease (HD). The brain region associated with the most atrophy, the 

striatum, leads to expression of severe motor dysfunction, the hallmark feature of HD. To a 

lesser degree, the cortex and hippocampus show earlier deterioration indicative of the cognitive 

deficits that occur prior to motor symptom onset. The brain regions associated with HD-induced 

neuronal death additionally selectively express the protein Rhes - the combination of Rhes and 

mutant huntingtin being cytotoxic. Using a 3-nitropropionic acid animal model of HD, we 

hypothesized that animals with preserved prenylation of Rhes would display cognitive and motor 

symptomology similar to genetic models of HD while animals administered statins or 

bisphosphonates would show inhibited Rhes prenylation and delayed cognitive symptoms. 

Experimental animals, however, did not perform differently than control animals on shallow 

water variants of the t-maze and MWM.  
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Introduction 

Overview of Huntington’s Disease 

Neurodegeneration, the progressive loss of neuronal structure and function leading to 

cellular death, is a common characteristic of many debilitating diseases including Huntington’s 

disease (HD). This disorder produces deleterious effects in the motor, behavioral, and cognitive 

aspects of the affected individual’s life. Three hundred thousand Americans are currently 

affected by this disease, and an additional 200,000 are at-risk (Huntington’s Disease, 2012). This 

brain disorder was named after Dr. George Huntington following the dissemination of his 

thorough description of the hereditary ailment in 1872. In his article, “On Chorea,” he eloquently 

depicts the gradual nature of the disease as “…often occupying years in its development, until 

the hapless sufferer is but a quivering wreck of his former self.” Before much was known of the 

disease, Dr. Huntington described three components: it is hereditary, the symptomology does not 

manifest until adulthood, and it commonly begets suicide and insanity (Huntington, 1872).  

Huntington’s disease is an autosomal dominant brain disorder associated with an 

abnormally long trinucleotide CAG repeat (>36 repeats). Affiliates of the Venezuela 

Collaborative Huntington’s Disease Project, Gusella et al., (1983) mapped the mutation and 

localized it to chromosome 4. The Huntington’s Disease Collaborative Research Group (1993) 

later isolated the gene, IT15, containing the trinucleotide repeat responsible for the protein 

product, huntingtin, and its mutated form caused by codon expansion. Kieburtz et al. (1994) 

further identified a relationship between the number of CAG repeats and the age of HD onset. 

Due to the autosomal dominant nature of HD, those with an afflicted parent have a 50% chance 

of inheriting the mutation; therefore, these findings were essential for the early detection of the 

devastating disorder using genetic testing.  
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Huntington’s disease manifests as a symptom triad including motor, behavioral, and 

cognitive facets. Full symptomology is typically exhibited when the affected individual reaches 

adulthood, between 30 and 50 years of age. Motor symptoms include rigid or sporadic 

movements of the voluntary muscles of the face and extremities. This often leads to displays of 

unusual facial grimaces, chorea, dystonia, unsteady gait, lack of coordination, and difficulty with 

speech and swallowing. Following symptom onset, death typically occurs within 15 to 20 years. 

In 1888, J. Hoffman was the first to observe a juvenile form of the disease that developed from a 

family afflicted for three subsequent generations (Bates, 2005). In many genetically dominant 

disorders, the age of symptom onset decreases as the generations of inheritance increase, a term 

coined “anticipation.” Tidley, Frith, Crow, and Conneally (1988) found this to occur more 

frequently through the male line. Often subtle behavioral and cognitive changes will precede the 

more obvious motor symptoms and accompany progression of the disease. Early in the 

progression of disease, these may include irritability, apathy, anxiety, and depression; while 

thoughts of suicide, confusion, difficulty thinking, planning or organizing, memory loss, and 

dementia emerge later. Paulsen, Ready, Hamilton, Mega, and Cummings (2001) found that over 

50% of patients with HD showed symptoms of dysphoria, agitation, irritability, apathy, and 

anxiety while fewer than 12% displayed delusions, motor abnormalities, and hallucinations 

concurrently; however, 98% displayed at least one of these within a given month.  

Neuropathology  

 The neuropathological trademark feature of HD is the progressive neuronal degeneration 

that occurs within the striatum, the primary input structure of the basal ganglia comprised of the 

caudate nucleus, the putamen, and the nucleus accumbens. Imaging studies demonstrate the 

earliest and most robust changes occur in this area, displaying significant decreases in caudate 
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and putamen gray matter in a dorso-ventral gradient (Kassubek et al., 2004; Fennema-Notestine, 

et al., 2004; Kipps et al., 2005; and Douaud et al., 2006). Kipps et al. (2005) conducted a two 

year longitudinal study on patients with the mutant huntingtin gene who had not yet been 

diagnosed with HD. These patients exhibited early regional gray matter atrophy to the caudate, 

putamen, external segment of the globus pallidus, and the substantia nigra, all of which are 

targets of striatal projections. After diagnosis, however, patients showed overall volume 

reduction in pallidal nuclei, nucleus accumbens, thalamus, hippocampus, and hippocampal gyrus 

in addition to those regions already described by Kipps (Fennema-Notestine, 2004; Douaud, 

2006; Walker, 2007). Mounting evidence supports the idea that reduction is not limited to 

subcortical structures; there is a more widespread degeneration in the Huntington brain that also 

includes the cerebral cortex. Various studies using participants with HD show significant 

reductions in cortical grey and white matter volume as well as increased abnormal white matter 

signal, i.e. hyper intense white matter voxels falling in the range typical of grey matter (Halliday 

et al., 1998; Fennema-Notestine et al., 2004; Douaud et al., 2006; and Walker, 2007). The 

extension of abnormality, both structural and functional, was additionally correlated to 

increasing numbers of CAG polyglutamine codon repeats, striatal atrophy,  loss of GABAergic 

medium spiny neurons (MSNs), and hippocampal volume (Halliday et al., 1998; Fennema-

Notestine et al., 2004; Kassubek et al., 2004; and Kipps et al., 2005). Although generalized 

atrophy within the striatum occurs by a certain point in disease progression, research has shown 

differential susceptibility to neuronal degeneration between interneurons (<10%) and projection 

neurons (>90%) present in this area. The majority of striatal interneurons are relatively 

impervious to the progression of HD; however, the following four subpopulations of striatal 

projection neurons show gradual deterioration: striato-globus pallidus external (GPe), striato-
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substantia nigra pars reticulata (SNr), striato-globus pallidus internal (GPi), and striato-substantia 

nigra pars compacta (SNc) (Albin, 1995). Reiner et al. (1988) supported the notion that the 

striatal neuron projections descend relatively separately to the GP and SN terminals, with early 

and middle stages of HD showing a higher rate of degradation to those projecting to the GPe and 

SNr. As the disease progresses, projections to the GPi begin to display noticeable changes until 

the affected individual reaches the advanced stage where all classes are affected. Despite their 

names, the GPe and GPi are not homologous structures. The GPi and SNr, on the other hand, are 

embryologically and functionally homologous with one another and can be thought of as the 

same structure separated by the fibers of the internal capsule. Likewise, the SNr and SNc are not 

homologous structures. Names of basal ganglia nuclei were assigned on the basis of adjacency 

rather than functionality.  

Alexander, DeLong, and Strick (1986) introduced the basal ganglia-thalamocortical 

circuit model that demonstrated the pathway afferent neurons took as they descended from 

various cortical areas to the striatum, GP, and SN, and funneled through the thalamus to be 

redirected back to restricted areas of the cortex. The separate and diverse targets of the cortex, 

the basal ganglia output nuclei, and the thalamus suggested the existence of distinct parallel 

circuits, of which, Alexander and colleagues (1986) discovered five: two involving motor 

functions (motor and oculomotor circuit) and three involving non-motor functions (dorsolateral 

prefrontal [dlPFC], lateral orbitofrontal, and anterior cingulate circuit). This would indicate basal 

ganglia involvement in a diverse range of behaviors. Medium spiny neurons, the most vulnerable 

cells to HD degeneration, account for 90-95% of the striatal neuronal population, effectively 

explaining why this area of the brain is so drastically affected (Walker, 2007; Gil and Rego, 

2008). Following the basal ganglia-thalamocortical circuit model, cortical projections 
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predominantly target these GABAergic neurons, which in turn connect the striatum to output 

nuclei (Stocco, Lebiere, and Anderson, 2010).  

These networks described above can be delineated into two broad pathways which aid in 

sequencing motor systems: the direct pathway and the indirect pathway which oppose one 

another (Albin, Young, and Penney, 1989; DeLong, 1990). Only in the presence of dopamine do 

the basal ganglia-thalamocortical loops exert their functional effects on behavior. A clinical 

demonstration of this fact is the akinesia that results from progressive loss of dopaminergic 

neurons in Parkinson’s disease. The direct pathway, driven by dopaminergic stimulation of D1 

receptors, comprises inhibitory afferents to SNr and GPi output nuclei and results in subsequent 

disinhibition of the thalamocortical loop. The disinhibition of thalamic activity results in 

excitation of the cortex and resulting behavior. GABAergic striatal efferent neurons form the 

initial point in the indirect pathway. These neurons are inhibited by dopaminergic stimulation of 

D2 receptors, resulting in a net effect of disinhibition of the GPe and subthalamic nuclei. As a 

result, thalamic output to the cortex is inhibited. This signal is believed to inhibit all cortical 

activity except that within the target area (Albin, Young, and Penney, 1989; Stocco, Lebiere, and 

Anderson, 2010). The mutant huntingtin gene, however, produces detrimental effects within the 

indirect pathway circuitry. Without inhibition to control the surrounding cortical areas, the 

pathways become unbalanced, resulting in unintended and inappropriate motor and cognitive 

behavior (Albin, Young, and Penney, 1989). 

Cognitive Deficits in Humans 

The basal ganglia-thalamo-cortical loop is comprised of several parallel pathways that 

interconnect and communicate. Output from the striatal-thalamo portion of this system 

terminates in both motor and non-motor cortical regions, eliciting a variety of behavior. 
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Neuronal degeneration within this circuit can therefore drastically affect the Huntington disease-

diagnosed individual, impacting not only motor but cognitive function as well. It is currently 

inconclusive whether cognitive deficits originate from the degeneration of striato-cortical or 

cortico-striatal projections; however, both concepts have been implicated.  

Middleton and Strick (2000) suggest that basal ganglia output affects cognition, as 

pallidal and nigral projections to distinct cortical regions, in particular to the dlPFC, contribute 

greatly to the heterogeneity of HD symptomology in the cognitive and affective domains. As 

previously mentioned, the striatum degenerates in a dorso-ventral gradient, indicating that 

projections from the dorsal striatum are amongst the first to degenerate. As neurons projecting 

from the dorsal striatum to the dlPFC die, spatial working memory becomes impaired, a 

phenomena relating to the “Where” functioning attributed to the dorsal cortex (Lawrence et al., 

1996; Brandt et al., 2005). Spatial span length in addition to pattern and spatial recognition 

memory are also affected by the degeneration of the striato-frontal pathway (Lawrence et al., 

1998). A large portion of the basal ganglia output nuclei communicates specifically with the 

dlPFC, the cortical region associated with learning and planning new sequences; however, nine 

other cortical areas have been implicated as targets of non-motor signal transmission within the 

basal ganglia-thalamo-cortical circuit (Middleton and Strick, 2000). Imaging studies have shown 

striatal metabolism to be positively related to verbal learning memory and the Performance 

Intelligence Quotient,  measures that are diminished in patients with HD (Berent et al., 1988). 

Furthermore, subcortical thalamic nuclei relaying information between the striatum and 

prefrontal cortex exhibit substantial volume loss that co-varies with cognitive performance, 

contributing to deficits in psychomotor speed and executive functioning (Kassubek, Juengling, 

Ecker, and Landwehrmeyer, 2005).  
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Cognitive impairment is often exhibited before clinical diagnosis and increases in 

severity while nearing motor symptom onset (delineated by number of CAG repeats) (Lawrence 

et al., 1998; Duff et al., 2010; O’Rourke et al., 2011; and Stout et al., 2011). Duff et al. (2010) 

utilized the Mild Cognitive Impairment assessment to evaluate individuals with HD on the 

following cognitive measures: attention, verbal fluency, psychomotor speed, executive 

functioning, memory, and visuospatial functioning. Approximately 40% of the participants in the 

prodromal stage of HD scored below 1.5 standard deviations on at least one of these cognitive 

domains, rates of which doubled for those closer to symptom onset. Significant deterioration of 

the cortical ribbon, particularly pyramidal cells in layers III, V, and VI of the dlPFC, transpires 

early and presents differently throughout the progression of HD (Sieradzan and Mann, 2001; 

Rosas et al., 2002). Consistent with previous studies, this regional degeneration was associated 

with impaired learning and planning new sequences.  

The frontal lobe has been implicated with preclinical cognitive deficits in numerous 

studies of HD. Deficits in psychomotor speed, verbal memory, executive function, cognitive 

flexibility, working memory, visual search, sustained attention, and visuoperceptual ability are 

reported prior to overt symptoms presented in patients with HD (Rosenberg, Sorensen, and 

Christensen, 1995; Hahn-Barma et al., 1998; Brandt et al., 2008; O’Rourke et al., 2011; and 

Stout et al., 2011). Degeneration to the fronto-striatal pathway could explain why these effects 

are seen before the more obvious motor impairments occur; however, conclusions should be 

carefully weighed as others have found little evidence for the existence of prodromal frontal lobe 

deficits in the asymptomatic stage of HD (Blackmore, Simpson, and Crawford, 1995; Rosas et 

al., 2002). 
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As HD progresses into the mild and moderate stages, global cognitive impairments 

continue to be displayed in executive function, visuospatial skill, episodic memory, verbal 

fluency, psychomotor speed and reasoning, spatial planning, selective attention, and recall and 

recognition memory (Paulsen, 1995; Backman, 1997; Montoya, 2006; and Rosas et al., 2008).  

There is mounting evidence of significant frontal lobe involvement, which supports the notion 

that there may exist a fronto-striatal dementia (Backman et al., 1997). Hodges, Salmon, and 

Butters (1990) show that advanced stage exacerbates dementia as impairments in information 

encoding, storage, and retrieval become severe. These deficits have great repercussions on both 

short- and long-term memory. 

Mouse Model 

Similar to humans living with HD, longer CAG expansions in animal models are related 

to the onset and progression of the disease on several fronts: reductions in grey and white matter, 

cortical thickness, and regional atrophy (Lafore et al., 2001; Sawiak, Wood, Carpenter, and 

Morton, 2012). Within a rat model of HD, Fusco et al. (1999) found huntingtin protein and 

mRNA to be abundant not only in the vast majority of striatal neurons, but in corticostriatal 

neurons as well. Accumulation of mutant huntingtin in the cortical neurons further predicted 

onset and severity of symptoms as striatal neuronal responses were altered following cortical 

stimulation (Laforet et al., 2001).  These results suggest that corticostriatal neurons with the 

mutant protein may hold a destructive role towards their downstream striatal neurons. Miller, 

Walker, Barton, and Rebec (2011) studied symptomatic HD animal models and found altered 

corticostriatal disruptions, especially during tasks which stimulated synaptic plasticity. While 

there was no clear trend in corticostriatal dysfunction and HD progression, it can be reasonably 

hypothesized that such disturbances occurred during the asymptomatic phase and continued 
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throughout HD advancement. Comparable to findings in preclinical HD human studies, animal 

models consistently show cognitive impairments that occur before motor symptom onset and 

progress throughout the course of the disease (Lione et al., 1999; Murphy et al., 2000; Mazarakis 

et al., 2005; Van Raamsdonk et al., 2005; Cummings et al., 2006; Cummings et al., 2009; and 

Giralt et al., 2011). Early cognitive deficits often lead to a more global impairment in cognition. 

Procedural learning, working memory, executive function, impaired recognition memory, 

sensorimotor gating, and strategy shifting, all of which are impaired in patients with HD, were 

each found deficient in a mouse model of HD prior to motor symptom onset and progressed to 

more global cognition deficits (Van Raamsdonk et al., 2005; and Cummings et al., 2006).  

Additionally, performance on tasks sensitive to frontostriatal and hippocampal function, such as 

the Morris water maze (MWM), visual cliff avoidance, two-choice swim tank, and the T-maze, 

was gradually impaired during HD progression (Lione et al., 1999). Changes in synaptic 

plasticity in the hippocampal and perirhinal cortex, areas involved in spatial and recognition 

memory, were further displayed (Murphy et al., 2000; Cummings et al., 2006; and Ransome, 

Renoir, and Hannan, 2012). Overall, altered communication throughout the cortical pyramidal 

neurons involving both inhibitory and excitatory inputs plays a role in the development and 

progression of the disease (Cummings et al., 2009). 

3-nitropropionic acid model.  3-nitropropionic acid (3NP) is a naturally occurring 

mitochondrial toxin present in both plants (Indigofera endecapylla) and fungi (Aspergillus 

flavus). Its toxic effects are exerted by the suicide inhibitor of succinate dehydrogenase which 

leads to an irreversible blockade of the Krebs cycle (Alston, Mela, and Bright, 1977). Ingestion 

of the toxin has been the cause of widespread loss of cattle in the United States, and it is directly 

related to the moldy sugarcane food poisoning epidemic in China. Among survivors, 
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gastrointestinal disturbance, encephalopathy, coma, dystonia, and chorieform movements were 

documented in addition to the development of putamen cell death (Liu, Luo, and Hu, 1992; 

Ludolph et al., 1991). Since the discoveries of 3NP, it has become a prevalent model in the 

research surrounding HD.  

Ludolph et al. (1991) conducted an extensive review on the history of 3NP and animal 

studies that exemplified reports of lesioning in the basal ganglia, primarily the striatum, 

thalamus, hippocampus, spinal tracts, and peripheral nerves. Further evidence was supported by 

Hamilton and Gould (1987) when they found rats treated with 3NP to develop symmetrical 

bilateral lesions in the striatum, hippocampus, dentate gyrus, and thalamus. The caudate-putamen 

(CPu) was affected in all animals, while damage to other structures never occurred alone. Dosing 

regimens vary widely in the literature; however, it is relatively consistent that subacute 3NP 

treatment results in broad bilateral neuronal loss to the striatum and hippocampus whereas 

chronic 3NP treatment results in a more selective dorsolateral striatal lesion (Beal et al., 1993; 

Guyot et al., 1997). The cortex is relatively preserved except in animals displaying the most 

severe injury. In these cases, the integrity of cortical tissue laterally surrounding the CPu and 

rhinal sulcus becomes compromised (Hamilton and Gould, 1987). Furthermore, Chyi and Chang 

(1999) findings of signal intensity increases in the rat striatum and hippocampus but not the 

cortex is consistent with the literature on lesioning data. Blum et al. (2003), on the other hand, 

found lowered succinate dehydrogenase action in both the striatum and outer layers of the cortex, 

indicating 3NP involvement in both.  

Apart from the typical movement dysfunction apparent in 3NP literature, exposure 

produces cognitive dysfunction. Baboons receiving chronic 3NP showed both spontaneous 

abnormal movements and significant impairment on the object retrieval detour task. This is a 
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task sensitive to frontostriatal circuitry, yet lesions were found exclusively in the bilateral 

striatum with sparing to the cortex and prefrontal cortex (Palif et al., 1996). Mehrotra and 

Sandhir (2014) found deficits in both motor coordination and performance of a T-maze in rats 

sub-chronically treated with 3NP. And finally, rats both acutely and chronically treated with 3NP 

showed impaired memory on the MWM in addition to abnormal walking patterns (Duckworth et 

al., 1999; Teunissen et al., 2001). These results are consistent with the 3NP lesioning literature as 

tasks targeting the striatum (T-maze) and hippocampus (MWM) are those that are affected 

alongside motor abnormalities.  

Role of Rhes 

The Ras homolog enriched in the striatum (Rhes) is a gene that encodes a small guanine 

nucleotide (GTP)-binding protein within the brain (Falk et al., 1999). The mRNA and protein 

product (Rhes) are predominantly expressed in the striatum, with lesser expressions localized to 

several other brain regions. Amongst them include the nucleus accumbens or ventral striatum, 

and to a lesser degree, cortical layers II/ III and V, hippocampal pyramidal and granular layers, 

the dentate gyrus, the piriform cortex, anterior thalamic nuclei, the olfactory tubercle, the inferior 

colliculus, and the cerebellar granular layer (Spano et al., 2004; Vargiu et al, 2004; and Harrison, 

LaHoste, and Ruskin, 2008). As identified by Harrison, LaHoste, and Ruskin (2008), Rhes 

mRNA expresses itself in different brain structures in a developmental pattern. The first strong 

detection occurs early in development in the anterior thalamic nuclei, hippocampus, and 

cerebellum, followed in superficial cortical layers then in the striatum mid-to-late development. 

The most notable expression by adulthood, however, is within the CPu and the shell of the 

nucleus accumbens (Harrison and LaHoste, 2006).  
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The pattern in which Rhes mRNA manifests closely resembles the pattern of neuronal 

degeneration and symptomology found in patients with HD. This would suggest a potential 

Rhes-mutant huntingtin (mHtt) interaction supporting the HD neuropathology. Subramaniam, 

Sixt, Barrow, and Snyder (2009) used this theory to answer the following questions: 1) Does 

Rhes bind to the Htt protein, 2) Does Rhes influence mHtt cytotoxicity, 3) How may Rhes 

facilitate mHtt cytotoxicity, and 4) Does Rhes influence mHtt aggregation? The authors found 

overexpressed Rhes bound vigorously with the mHtt protein reducing cell survival by 50%; 

however, cell survival was not decreased when Rhes was expressed alone, when mHtt was 

expressed alone, or when wild-type huntingtin (wtHtt) was expressed with Rhes. Interestingly, 

mHtt, not wtHtt, forms aggregates that are reduced in the presence of Rhes overexpression, 

increasing the cytoplasmic levels of mHtt and eliciting neurotoxicity. In other words, when Rhes 

binds to the mHtt protein, SUMOylation (the attachment of a small ubiquitin-like modifier, 

SUMO, to a protein) occurs leading to a cytotoxic disaggregated soluble product (Steffan et al., 

2004). In support, Rhes knock-out (KO) mouse models significantly delayed cortical and striatal 

neurodegeneration, symptom onset, and dysfunction (Baiamonte et al., 2013; Mealer, 

Subramanian, and Snyder, 2013). Furthermore, Spano et al. (2004) observed no cognitive 

impairment amongst Rhes KO mice, an observation that alludes to the Rhes protein’s 

involvement in learning and memory processes outside of its involvement in the striatum. In 

relation to the 3NP model, Mealer, Subramaniam, and Snyder (2013) replicated the findings that 

Rhes knockout mice performed better on motor tasks and displayed less dorsolateral striatal 

neurodegeneration using an acute dosage regimen of 3NP.  

Relation to the mevalonate pathway.  Common to all complex eukaryotes and several 

bacteria, the mevalonate pathway, or 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-
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CoA reductase) pathway, is an important cellular metabolic pathway involved in converting 

mevalonate into cholesterol, steroid hormones, lipoproteins, and hydrophobic molecules that 

post-translationally modify cellular signaling (Buhaescu and Izzedine, 2007). These molecules 

additionally aid in cell membrane maintenance, protein anchoring, and protein prenylation.  

Figure 1 depicts two enzymatic targets for drugs that inhibit Rhes prenylation via the 

mevalonate pathway. The most upstream target, HMG-CoA reductase, converts HMG-CoA to 

mevalonate. Statins are well-known HMG-CoA reductase inhibitors and act to suppress the 

entire mevalonate pathway (Buhaescu and Izzedine, 2007; Sadowitz, Maier, and Gahtan, 2010). 

In particular, they prevent synthesis of isoprenoid intermediates necessary for lipid attachment 

posttranslational modification of proteins, i.e. Ras-like proteins (Liao and Laufs, 2005). A target 

downstream mevalonate, farnesyl diphosphate synthase (farnesyl PP synthase), converts geranyl 

diphosphate (geranyl PP) to farnesyl diphosphate (farnesyl PP). Bisphosphonates are widely 

accepted inhibitors of farnesyl PP synthase and therefore can block the downstream prenylation 

of Rhes (Dunford et al., 2001). Vincenzi et al. (2003) took these a step further and hypothesized 

that statins might potentiate bisphosphonate activity on the mevalonate pathway. Based on these 

findings, we decided to use a lipophilic statin, simvastatin (Sim), and a potent nitrogenous 

bisphosphonate, zoledronic acid (ZolA), alone and combined to investigate the upstream, 

downstream, and combined effects drug treatment targeting enzymes to inhibit Rhes prenylation 

would have on mouse behavior.  



 

Figure 1.  Inhibition of Rhes Prenylation via the Mevalonate Pathway

Note: HMG-CoA reductase: 3-hydroxyl
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Figure 1.  Inhibition of Rhes Prenylation via the Mevalonate Pathway

hydroxyl-3-methylglutaryl-Co-enzyme A; BPP: bisphosphonates; 

and PP: diphosphates. 

Figure 1.  Inhibition of Rhes Prenylation via the Mevalonate Pathway 

enzyme A; BPP: bisphosphonates; 
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Hypotheses 

The purpose of this study was to test hypotheses regarding the role of Rhes in mediating 

cognitive dysfunction in a 3NP model of HD.  The basis of the hypotheses are provided by two 

facts: Rhes is a necessary co-factor in the neuronal and behavioral toxicity induced by mutant 

huntingtin protein or by 3NP; and for its effects to occur Rhes must be prenylated, allowing for 

its anchorage in the inner surface of the cell membrane.  From these two observations we argue 

that administration of drugs that inhibit prenylation, and thereby decrease the bioactivity of Rhes, 

will exert a protective effect on the cognitive dysfunction induced by 3NP.  We tested the 

following specific hypotheses: 

 

Hypothesis 1 – Administration of 3NP to mice will impair learning in tasks that require 

normal functioning of the striatum or hippocampus. 

 

Hypothesis 2 – Pharmacological inhibition of HMG-CoA reductase by administration of 

a statin (simvastatin) will be protective against the toxic effects of 3NP on cognition. 

 

Hypothesis 3 – Pharmacological inhibition of farnesyl diphosphate synthase by 

administration of a nitrogenous bisphosphonate (zoledronic acid) will be protective 

against the toxic effects of 3NP on cognition. 

 

Hypothesis 4 – Combined administration of a statin and a bisphosphonate will be most 

protective against the toxic effects of 3NP on cognition. 
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Method 

 The methods used were designed to measure cognitive dysfunction as the result of striatal 

damage. Motor dysfunction is the hallmark symptom of diseases involving striatal degeneration, 

amongst them, Huntington’s disease; therefore, it was no surprise that the development of 

cognitive abnormalities in human HD has been overshadowed by the more obvious motor 

symptoms. However, the striatum receives extensive input from the entire cerebral cortex and 

ultimately directs output to the prefrontal lobe, an area known to be critical for cognition. 

Cognitive symptoms are known to develop prior to the appearance of motor symptoms, and we 

hoped to elucidate these findings using 3-nitroproprionic acid (3NP) to selectively disintegrate 

striatal neurons in mice and emulate a model of HD. We were additionally interested to see if 

drug treatment targeting Rhes prenylation would affect cognitive performance in 3NP treated 

mice.  

Animals 

Eighty-two male albino Hsd:ICR (CD-1) mice weighing ~30g on arrival were purchased 

from Harlan Laboratories (Indianapolis, IN). Mice were housed in groups of five under 

controlled conditions of temperature and humidity, on a normal 12:12 hour light:dark cycle 

(lights on 0700). Access to food and water was ad libitum. Body weight was recorded daily. 

Animals were housed and handled in strict accordance with the regulations of the U.S. Public 

Health Service; all conditions and procedures were approved by the University of New Orleans 

Institutional Animal Care and Use Committee.  

Procedure 

Drug administration.  All drugs were dissolved to the chosen concentrations in sterile 

phosphate buffered saline (0.1 M PBS) and administered intraperitoneally (i.p.), 10 ml/kg body 
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weight. 3-Nitroproprionic acid (3NP), a striatal-selective neurotoxin, was dissolved to a 

concentration of 7.7 mg/ml, then neutralized to pH 7.4 with 10 N sodium hydroxide (NaOH; 

1:100) (Mealer et al., 2013) yielding a final concentration of 77 mg/10 ml. Since dosage of 3NP 

varies with day, volume of injectate was adjusted so as to administer the correct dosage for a 

given animal. Futhermore, we were constrained by the fact that treatment drugs needed to be 

given for several days (based on the estimated half-life of Rhes) in order to exert their 

therapeutic effects and to allow ZolA access to the brain made possible by the disruption of the 

blood-brain barrier (BBB) caused by 3NP (Duran-Vilaregut et al., 2009). Based on previous 

studies and these constraints, we adopted the following 3NP regimen. Mice were injected once 

per day for 7 days using an escalating regimen. The starting dose was 50 mg/kg body weight and 

increased by 15% each day, yielding rounded numbers of 50, 58, 66, 77, 89, 102, and 118 mg/kg. 

The cumulative dose was 560 mg/kg (Stefanova et al., 2005).   

The statin simvastatin (Sim), and the nitrogenous bisphosphonate zoledronic acid (ZolA) 

inhibit different enzymes at various points along the mevalonate pathway, ultimately decreasing 

protein farnesylation. ZolA (1.0 or 0.5 mg/kg) and Sim (40 mg/kg) were diluted in sterile 0.1 M 

PBS and given as 10 ml/kg. Mice were randomly assigned to receive these drug treatments 

(Table 1) over the seven day course of injections.  

Because of a general toxic effect observed in mice in some drug conditions (40 of 82 

animals died prematurely- see Results), drug treatment was terminated prior to the injections of 

Day 6 and behavior was recorded. We then added mice to the 3NP/Sal group (n = 7). In addition, 

two new drug treatment groups were added. In both, the dose of ZolA was cut by half (0.5 

mg/kg) and administered together with Sim/3NP (n = 9) or Sim/Sal (n = 6). 
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Table 1  

Drug Treatment Groups 

Squad Toxin Drug Tx Sample Size 

1 Sal Sal 12 

2 3NP Sal 12 

3 3NP Simvastatin 19 

4 3NP Zoledronate, 1 mg/kg 12 

5 3NP Simvastatin + Zoledronate, 1 mg/kg 12 

6 3NP Simvastatin + Zoledronate, .5 mg/kg 9 

7 Sal Simvastatin + Zoledronate, .5 mg/kg 6 

Total        82 

 

Cognitive behavioral tasks.  To determine whether our 3NP mouse model of HD 

developed the same cognitive dysfunction as observed in genetically modified mice with the HD 

alleles and patients with HD, we used the battery of tests described below. We chose these tests 

within the context of the brain structures that mediate the behavior required to successfully 

perform the task. 

Apparatus.  Modeled after the Oxford paddling pools (Deacon, 2013), the octagonal 

behavioral apparatus (45.72 cm diameter) was made of clear Lexan and contained eight exit 

holes (5.08 cm diameter) located medially on each wall face (20.32 x 26.67 cm) 3 cm from the 

floor. The floor was covered with water (20 - 22 �C) 2 cm deep. The water was deep enough to 

act as an aversive stimulus, but not deep enough to require swimming. The apparatus was used in 
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this open-field like structure for the shallow water variant of the MWM; however, a few 

modifications were necessary for use in the T-maze.  

T-maze.  In order to assess striatal mediated habit learning, Lexan walls (painted black to 

reduce visual cues) were inserted into the center of the maze to create a three-armed enclosure in 

the shape of a “T” (arms: 20.32 x 5.08 x 22.86 cm). The start arm and one of the side arms 

terminated with a false exit (i.e. the escape arm was blocked), and the remaining arm ended with 

a true exit connected to a black escape tube (30.48 cm long). Mice were placed in a heated cage 

after having found the true exit. Following counterbalancing and randomization, left and right 

true exits were pre-assigned to each mouse and designated for escape throughout experimental 

testing.  

Habituation.  Two black walls were extended from the south to north exits to create an 

enclosed straight path. Mice were placed at the south end and given two 60 second trials to 

escape through the exit tube located at the north end.  

Striatal mediated habit learning.  Methodology is based on that used by Guariglia and 

Chadman (2013). Mice were given 20 trials on the sixth day prior to injections to find the left or 

right exit pre-assigned to them. In the first five trials, the start arm was located south with the 

east and west arms serving as either true or false exits. By doing this, we were able to establish 

either a left or a right body turn necessary for exit per mouse, forcing mice to use an egocentric, 

striatally-mediated strategy. During the remaining 15 trials, the three armed enclosure was 

continuously rotated counterclockwise on the N/S/E/W cardinal axis moving the start arm from 

the south to the east, north, west, and south again. By doing this, we were able to remove the 

potential for guidance by spatial cues and ensure a habit was formed through body turns. Mice 

were allotted 60 seconds per trial and were given a rest period in a heated cage following escape. 
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If they could not find the exit, mice were manually guided to it. Entrances into the false arm or 

failure to move past the start arm were counted as errors. If a mouse found the true exit by initial 

body turn, it received a score of 0; if a mouse made any errors, it received a score of 1. The 

maximum number of errors per mouse was 20.    

Morris water maze.  This task modeled after the Oxford water paddling pool task 

(Deacon, 2013) was utilized to assess allocentric spatial learning mediated by the hippocampus. 

Of the eight exit holes, seven were plugged with a plastic stopper. The remaining true exit was 

attached to a black tube for escape from the aversive open water field. Mice were placed into a 

heated cage after finding the true exit. Visually stimulating cues (horizontal, vertical, right 

diagonal, and left diagonal stripes) were adhered to the north, south, east, and west walls of the 

maze to aid in spatial navigation. To reduce the potential for cue preference, true exits were only 

assigned to the walls of the maze that did not contain visual stimuli (northwest, northeast, 

southwest, and southeast). Following careful counterbalancing and randomization, these four 

cardinal directions were pre-assigned to each mouse and designated for escape throughout 

experimental testing. 

Hippocampal mediated learning.  Methods for acquisition were modeled after those used 

by Pettan-Brewer and colleagues (2013). On the sixth day prior to injections, mice were given 

eight trials to navigate to the pre-assigned exit hole using spatial landmarks. Mice were lowered 

by the base of their tails into the center of the apparatus and allotted 60 seconds to find the 

escape. If they could not find the exit in that time frame, they were manually guided to it. 

Following escape, mice were placed on a platform above the water and in front of their deemed 

exit tube for 30 seconds. This gave them time to notice their surroundings in relation to their 

escape hole. Each was given an inter-trial rest period in a heated cage following escape and 
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platform time. If a mouse approached a false exit within heads distance and touched it with its 

nose or forepaw, it was charged with an error. Mice failing to find the exit within 60s were 

assigned the ceiling 7 errors/trial (Deacon, 2013). The maximum number of errors per mouse 

was 56.  

Results 

We utilized a 3NP model for HD to test whether drug treatment targeting the 

farnesylation of Rhes would alleviate striatally- and hippocampally-mediated cognitive decline 

as measured by subjects’ performance in a shallow water variant of a T-Maze and a MWM. 

Before analyzing the data, we examined our independent variables,  Drug Treatment group and 

Number of treatment Injections, and our dependent variables: T-Maze: Amount of Time to 

complete the task and Task Performance, and MWM: Task Performance and Health (healthy 

(=1), sickly (=2), or dead (=3)) for theoretical and practical issues that may limit our planned 

analyses of covariance. The sample included 82 animals, of which 40 subjects were missing data 

at all measures and omitted from analysis. Due to the high sickness and mortality rate, we 

conducted analyses on the health of the animals to investigate a toxicity issue. We further 

screened the variables to evaluate assumptions of normality, homogeneity of variance, linearity, 

multicolinearity, and homogeneity of regression. 

Animal health and drug toxicity 

Data were analyzed with analyses of covariance (ANCOVA) in order to investigate 

whether Health of the animals (dependent variable: healthy, sickly, or dead) was affected by their 

placement in Drug Treatment groups (independent variable: Table 1) while controlling for the 

Number of treatment Injections (covariate). Scatter plot and Pearson correlation suggested that 

Health (dependent variable) and Number of treatment Injections (covariate) were not linearly 
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related (p = .250); therefore, we decided to conduct a one way analysis of variance (ANOVA) to 

test whether Health (dependent variable) varied across different Drug Treatment groups 

(independent variable). 

One subject was removed from analysis due to a death caused by experimenter error 

rather than ‘natural’ means. There were no outliers or signs of abnormal kurtosis and skew; 

however, Levene’s test was significant (p < .001). We therefore could not assume homogeneity 

of variance and conducted Dunnett C post hoc tests to determine where among Drug Treatment 

groups differences in Health existed. Results indicated significant variation in Health amongst 

the different Drug Treatment groups [F(6, 74) = 13.492, p < .001]. Table 2 presents the means, 

standard deviations, and sample size (n) for each group.  

When the means are ordered from low to high mortality, two homogenous subsets 

emerge with one overlapping mean.  There are no significant difference between Sal/Sal and 

either of the groups in which ZolA was given at a dose of 0.5 mg/kg, even when 3NP was 

included.  Based on homogeneity, these are the “healthy” groups.  The group given 3NP in 

addition to Sim is not significantly different from any other group, indicating a “sickly” group, 

not healthy, but not close to death. Likewise, the group given 3NP alone was significantly more 

sickly than the two “healthy” groups administered drugs in combination with Sal but were 

significantly healthier than the sickest group, 3NP/Sim+1ZolA. A second homogenous group, 

3NP-treated animals that were given Sim or ZolA at a dose of 1 mg/kg either alone or in 

combination constitutes the sickest subset, significantly worse than the healthy subset. Figure 2 

represents these findings. The results indicate that, when given in combination with 3NP, Sim 

and the higher dose of ZolA are highly toxic, especially when given together. One anomaly is 

that 3NP-Sim was not toxic when combined with the lower dose of ZolA.  



 

Figure 2.  Animal health as a function of drug treatment. 
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as a function of drug treatment. Horizontal bars indicate significance to 

the p < .05 level. 
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Table 2 

Mean Scores and Differences Across Health as a Function of Drug Treatment  

 

 

Sal/Sal
1 

N = 11 

3NP/Sal
2 

N = 19 

3NP/Sim 

N = 12 

3NP/1Zol
3 

N = 12 

3NP/Sim+1Zol
4 

N = 12 

3NP/Sim+.5Zol
5 

N = 9 

Sal/Sim+.5Zol
6 

N = 6 

F 

 Means (SD)  

Health 1.00 (.00)
1234 

1.68 (.82)
1246 

1.92 (.90) 2.67 (.79)
1356 

2.83 (.39)
12456 

1.22 (.67)
345 

1.00 (.00)
2346 

13.492* 

Note: Like superscripts indicate significant differences on post-hoc contrasts, Dunnett C (p < .05).  * = p < .001 

 

 

Table 3 

Summary of Regression Analysis: Drug Treatment Predicting Health 

R
2
 Adjusted 

R
2 

Std. Error of the 

Estimate 

Change Statistics 

 
 

 R
2
 Change F Change df1 df2 Sig. F Change 

0.51 0.49 0.66 0.51 20.12 4 76 .000 

Predictors: 3NP, Sim, 1ZolA, 0.5ZolA 
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Table 4 

Summary of Regression Analysis: Drug Treatments Predicting Health 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Correlations 

 B Std. 

Error 

Beta   Zero-order Partial Part 

(Constant) 3.568 .574  6.216 .000    

3NP -.541 .200 -.239 -2.710 .008 -.469 -.297 -.217 

Sim -.236 .179 -.128 -1.319 .191 -.061 -.150 -.105 

1 ZolA -.986 .179 -.488 -5.506 .000 -.641 -.534 -.440 

0.5 ZolA .532 .242 .224 2.197 .031 .365 .244 .176 

Dependent Variable: Health 
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T-Maze 

Data were analyzed using a multivariate analysis of variance (MANOVA) in order to test 

the hypothesis that Time to Complete the task and Task Performance (the dependent variables) 

differed as a function of Drug Treatment group (independent variables: Drug Treatment) while 

controlling for the influence of Number of treatment Injections (covariate). 

There was no sign of existing outliers or abnormalities in kurtosis and skew. Further, 

scatter plot and Pearson correlations suggested that Time to Complete the task and Task 

Performance (dependent variables) as well as Number of Injections (covariate) were linearly 

related (p < .05), but not to a strong degree (i.e. multicolinearity should not be an issue of 

concern, r < .65); thus, assumptions of normality and linearity posed no threat to MANOVA 

interpretation. Due to the high degree of association between the dependent variables (r > .65), 

we interpreted univariate results with caution. Box’s M test was not significant (p = .058), thus 

Wilks’ Lambda criterion was used to determine multivariate main effects of the independent 

variable and its interaction with the covariate. The non-significant Levene’s tests for both Time 

to Complete the task (p = .666) and Task Performance (p = .321) allowed us to assume 

homogeneity of variance. As recommended by Tabachnick and Fidell (2001), homogeneity of 

regression was tested by creating and examining an interaction term between the Number of 

Injections and Drug Treatment group in relation to Performance on the T-maze. Because the 

interaction was non-significant (p = .264), we could assume homogeneity of regression.   

  After adjusting for Number of treatment Injections, results of the MANOVA suggested 

that Drug Treatment group did not have a significant multivariate effect [F(10, 68) = 1.429, p = 

.187, η
2
 = .174, Wilks’ Lambda = .683] on corrected Time to Complete task and corrected Task 

Performance. Univariate analyses of variance (ANOVA’s) showed no differences in Task 
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Performance amongst different Drug Treatment groups when controlling for Number of 

Injections [F(5, 35) = 1.401, p = .248, η
2
 = .167]; however, Time to Complete the task varied 

between Drug Treatment groups when controlling for Number of Injections [F(5, 35) = 2.946, p 

< .05, η
2
 = .296]. These results show the strength of the relationship between adjusted Time to 

Complete the task and Drug Treatment groups was η
2
 = .296, or in other words, 29.6% of the 

variance in the amount of Time to Complete the task was predicted by Drug Treatment groups 

when controlling for Number of treatment Injections. To account for type 1 error, LSD post-hoc 

tests were conducted to see where differences between Drug Treatment groups may have existed. 

Table 5 summarizes the estimated means, standard deviations, and sample size (n) for each group 

when controlling for Number of treatment Injections.  

 When controlling for Number of Injections, we can conclude that subjects in the 

3NP/Sim treatment group performed significantly worse on the T-maze than the Sal/Sal 

treatment group while needing significantly more Time to Complete the task than the Sal/Sal, 

3NP/Sim+.5Zol, and Sal/Sim+.5Zol treatment groups. These findings do not support our main 

hypothesis that the biggest difference would be between the animals in the Sal/Sal and 3NP/Sal 

treatment groups. 
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Table 5 

Mean Scores and Differences Across the Measures in the T-Maze  as a Function of Drug Treatment when Controlling for Number 

of Injections 

 Sal/Sal 

N = 11 

3NP/Sal 

N = 10 

3NP/Sim 

N = 5 

3NP/1Zol 

N = 2 

3NP/Sim+.5Zol 

N = 8 

Sal/Sim+.5Zol 

N = 6 

F 

Means (SD) 

Performance 72.2 (17.66)
1 

64 (20.11) 49 (27.02)
1 

87.5 (10.61) 74.37 (23.97) 79.17 (21.54) 1.401 

Completion Time 3.24 (1.73)
1 

3.73 (1.15) 5.43 (1.88)
1 

2.63 (.51) 2.89 (1.16)
1 

2.28 (1.02)
1 

2.946* 

Note: Like superscripts indicate significant differences on post-hoc contrasts, LSD (p < .05).  * = p < .05 
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Morris Water Maze 

Originally data were analyzed with analyses of covariance (ANCOVA) in order to test 

the hypothesis that Performance (dependent variable) differed as a function of Drug Treatment 

group (independent variables: Table 1) when controlling for the influence of Number of 

treatment Injections (covariate). Scatter plot and Pearson correlation suggested that Performance 

(dependent variable) and Number of Injections (covariate) were not linearly related (p = .453); 

therefore, we decided to conduct a one way analysis of variance (ANOVA) to test whether 

Performance (dependent variable) on the MWM varies amongst Drug Treatment groups 

(independent variable).  

There was no sign of existing outliers or abnormalities in kurtosis and skew. Levene’s 

test was non-significant (p = .065), thus we could assume homogeneity of variance. Results 

indicated no significant differences in Performance existed amongst the different Drug 

Treatment groups: F(4, 41) = .845, p = .506, although all groups improved with trials. Table 6 

presents the means, standard deviations, and sample size (n) for each group.  

 Unlike our prediction regarding the effects of striatal damage on the ability to learn the T-

maze, we did not find evidence that Performance on the hippocampally-mediated spatial task 

was influenced by Drug Treatment or the general Health of the animal, nor was there sufficient 

evidence to suggest the animals learned the task.  
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Table 6 

Mean Scores and Standard Deviations Across Performance on the MWM  as a Function of Drug 

Treatment 

 Sal/Sal 

N = 11 

3NP/Sal 

N = 12 

3NP/Sim 

N = 5 

3NP/Sim+.5Zol 

N = 8 

Sal/Sim+.5Zol 

N = 6 

F 

 Means (SD) 

Performance 60.71 

(11.85) 

58.18 

(19.27) 

49.64 

(8.87) 

61.61 (12.77) 64.29 (11.52) .845 

Note: Like superscripts indicate significant differences on post-hoc contrasts, LSD (p < .05) 

 

Discussion 

In this study, we used a mouse model of selective striatal damage by 3NP administration 

to mimic symptoms presented in the genetic disorder, Huntington’s disease. We hypothesized 

that drug treatments targeting the farnesylation of Rhes would alleviate striatally- and 

hippocampally-mediated cognitive decline induced by the damaging effects of 3NP and 

measured by subjects’ performance in shallow water variants of a T-Maze and MWM. Overall, 

we failed to reject the null hypothesis that mice administered 3NP would perform worse than 

control mice on cognitive measures. In addition, we could not reliably interpret whether drug 

treatments would prevent prenylation of Rhes and alleviate the hypothesized cognitive decline 

induced by 3NP administration. Further complicating our measures, we did not anticipate the 

drugs’ severely toxic side effects.   
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Animal health and drug toxicity   

Throughout this experiment, our sample size drastically dropped from 82 subjects to 42. 

In attempting to identify which factors were having adverse, toxic effects, the following patterns 

emerged. Animals treated with ZolA at 0.5 mg/kg did not display any toxic or adverse side 

effects compared to Sal-treated animals. By contrast, when the dose of ZolA was increased to 1 

mg/kg and given in combination with 3NP, animals were the sickest and had the highest 

mortality rate. (ZolA at 1 mg/kg was not given in the absence of 3NP). Thus, in general, two 

health groups can be discerned based on whether and how much ZolA was given (0-0.5 mg/kg = 

good health; 1 mg/kg [+ 3NP] = poor health). 3NP alone had an adverse effect on health as 

indicated by the fact the health of mice given this treatment alone was in between that of the 

healthy mice and the sickest mice. The presence or absence of Sim does not alter these 

categorizations (based on homogenous subsets of non-significant differences between group 

means). 

The cumulative dose of 3NP (560 mg/kg) had highly variable results on animal welfare 

during both our pilot study and main experiment. Stefanova et al. (2005) describe the behavioral 

effects in both a low dose (430 mg/kg) and a high dose (560 mg/kg) of sub-chronic 3NP 

treatment on mice – neither of which resulted in death prior to sacrifice. Nearly half of the low 

dose group never developed motor impairment, thus we opted to use the high dose. These results 

were consistent to those found in our pilot data of both treatment regimens, and no deaths were 

recorded. Yet in our main experiment, of the initial set of twelve 3NP/Sal treated mice, four died 

before we could test them for behavior and five were too sick to perform. Because our sample 

size was therefore too low to analyze reliably, we added another seven animals to this treatment 

group; none of these additional animals died or were too sickly to perform prior to testing day. It 
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is possible that this variability in 3NP-induced toxicity was present in groups that received 

additional, ameliorative drugs, thereby reducing our power to detect significant effects of these 

drugs. Every attempt to minimize animal suffering was made; however, in some instances death 

came suddenly, making euthanasia impossible.   

Zoledronic acid at the dose of 1 mg/kg was additionally highly toxic compared to its 0.5 

mg/kg counterparts. According to Pfizer’s Material Safety Data Sheet (2010), the minimal lethal 

intravenous (I.V.) dose for mice is >10 mg/kg. Because drugs are more quickly absorbed into the 

bloodstream via I.V. administration, one would think that our dosage of 1 mg/kg 

intraperitoneally (I.P.) over six days would be a safer option. Though several studies have used 

this drug subcutaneously, intravenously, and intraperitoneally at lower doses (Green and Lipton, 

2010), we decided to take the risk to ensure the drug would be effective at crossing the BBB. 

This was a bold, but informative move. Kuiper et al. (2011) however found that ZolA 

administered at 2 µg/kg in mice adversely suppressed neutrophil activity in a dose-dependent 

manner which led to cell death and subsequent impaired immune system. Alternatively, the 

ED50 of ZolA subcutaneously administered was determined at a dose of 0.07 mg/kg (Widler et 

al., 2002). Because survivability of the 0.5 ZolA administered mice was drastically different than 

that of the 1 ZolA group, we can conclude that ZolA was toxic at higher doses. This, however, 

also could have been exacerbated by the differential toxicity in 3NP administration that we 

observed.  

The results indicated that Sim was part of the intermediate sickly group. There is not 

extensive data to support the toxicity of Sim in animals; however, the Cayman Chemical 

Company’s Material Safety Data Sheet (2010) indicates intraperitoneal LD50 in the rat to be 705 

mg/kg – a value much higher than our 40 mg/kg administered. This finding was similar to that of 
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the 3NP/Sal treated animals, so we may be able to conclude that toxic effects were induced by 

the selective striatal neurotoxin.   

Behavioral Performance  

In regards to our first hypothesis, we did not obtain sufficient evidence to reject the null 

hypothesis. Results indicated that striatally- and hippocampally-mediated cognitive impairments 

associated with Huntinton’s disease were not consistent with our 3NP animal model. This was 

exemplified in both performance of mice in the shallow water variants of the T-maze and MWM.  

Results showed that performance on the T-maze did not differ as a function of drug 

treatment administration when controlling for number of treatment injections received. Likewise, 

results indicated that drug treatment administration did not alter performance on the shallow 

water variant of the MWM. Overall, these were inconsistent with our hypotheses and the 

literature that the lesioning effects of 3NP in the striatum and hippocampus would lead to 

striatally- and hippocampally-mediated cognitive decline as evidenced by performance in the T-

maze and MWM.  

Our current study lacks the histological data necessary to determine definitively whether 

or not our 3NP dosage regimen did in fact produce lesions similar to those seen in other studies 

(high-dose, sub-chronic treatment). Colleagues Whitmarsh and LaHoste (paper currently in 

progress), however, showed 3NP/Sal treated animals performed significantly worse on the 

rotarod (a common measure of striatal integrity) than control animals. Our cumulative treatment 

of 3NP may have been too high, mimicking the hypokinetic effects commonly seen in sub-

chronic and chronic dosing regimens (Tunez, Tasset, De La Cruz, and Santamaria, 2010). While 

the rotarod data could point to support of striatal neuronal degeneration, it could also be the mark 
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of impairment in motor behavior due to adverse effects of the drug treatments. This conclusion is 

additionally plausible due to the severely compromised health of the animals.  

Results vary in support of either of these theories because 3NP/Sim treated animals, in 

comparison to healthy controls, needed significantly more time to complete the T-maze and 

performed worse; however, they did not differ in either regard to animals in the 3NP/Sal, or any 

other, treatment group. Furthermore, performance on the MWM did not differ between mice in 

any of the treatment groups. We are forced to retain the second null hypothesis that drug 

treatment inhibiting the prenylation of Rhes would alleviate adverse cognitive symptoms caused 

by 3NP because there were no significant differences between performance and any of the drug 

treatments involving 3NP. Because we failed to reject the first null hypothesis, we cannot 

reliably conclude whether or not Sim or ZolA treatments were effective in disrupting the 

mevalonate pathway to lead to an absence of Rhes and retardation of cognitive impairment.  

It is possible that we did in fact achieve striatal and hippocampal lesions, but one could 

question whether or not our cognitive tasks were appropriate to test them. In both water and 

land-based learning mazes, rodents with lesions to the CPu fail to learn egocentric, procedural-

type learning and rather employ alternative strategies that are more allocentric or spatial-like 

while rodents with lesions to the hippocampus will fail to learn allocentrically and rather utilize 

egocentric strategies (Devan, Goad, and Petri, 1996; Oliveira, Bueno, Pomarico, and Gugliano, 

1997; and Pistel et al., 2009). Results, however, indicated that learning did in fact occur across 

treatment groups in both the T-Maze and MWM. The methodology used in our T-maze was 

sound to test for egocentric learning. The lack of differences in performance between groups of 

mice may have then been caused by the short time frame mice were allowed to learn the task, the 

timing of task conductance within drug treatment regimen, the lack of lesion to the striatum, or a 
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need to increase the number of animals in each group. Because of positive rotatod data from our 

colleagues, we strongly believe a lesion to have existed. Due to positive scores across all 

treatment groups, however, we believe our methodology on trial periods and timing in task 

administration was appropriate, and we more than likely needed to increase the number of 

animals in each treatment group. This is especially true considering the vast differences in health 

between our first group of 3NP/Sal treated animals and our second. The methodology in our 

shallow water variant of the MWM was a bit more questionable given the results. We did not 

have a tracking system to include further measures, so the amount of data collected for analysis 

was minimal. Patterned cue cards attached to the walls could have acted as both spatial 

references (spatial-hippocampal based) or as visual discriminants (procedural-striatal based). 

Depending on where lesions existed, it is difficult to predict performance on this task. Saline 

control mice could have employed either learning strategy, making comparisons to other groups 

difficult. While the literature supports that 3NP-induced hippocampal lesions do not occur 

without the presence of striatal lesions, we may be able to conclude that 3NP treated mice were 

more likely to employ their spatial, cue-based strategies to navigate the maze because it was 

likely that neurons in the striatum were more compromised than those in the hippocampus. Even 

if this is the case, however, the lack of differences in performance across the groups treated with 

3NP clearly indicated treatment drugs had no effect. It may be the case that differences in 

cognition did not exist, or that our task needed more training periods or increases in subject 

number.   

Brouillet, Jacquard, Bizat, and Blum (2005) wrote an extensive review on the 

mechanisms behind 3NP, and we may not have seen differences in performance across treated 

mice because of them. There are vast toxicity differences between mice and rats, with rats 
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reacting more adversely to 3NP I.P. injection; and there are further differences within each 

different strain of rodent. Age is a significant factor as older mice are more susceptible to 

damage, and males are more affected than females. While we did use the more fragile male 

rodents, they could have also been more protected from neuronal damage because they were 

mice and they were relatively young, ~2 months old. This could explain in part the differences 

between our study and the findings in the literature exemplifying deficits in performance on 

striatally- and hippocampally-mediated cognitive tasks. The methodology and number of animals 

used could have been appropriate, with only nature exerting its protective effect.  

Whether or not the lack of significant differences in performance on both tasks was due 

to an absent lesion, inappropriate methods, small sample size, inappropriate timing of task 

administration, natural protectants, or legitimate neurological outcomes, results showed that 

there were no differences in performance on cognitive tasks between 3NP treated mice and 

controls. The sub-chronic dosing of 3NP at 560 mg/kg over 7 days did not produce deficits in 

cognition, and thus we were unable to test whether or not drug treatment blocking the 

mevalonate pathway would exert alleviation of the non-existing symptomology. 

Future Directions 

The central goal of this thesis was to elucidate cognitive dysfunction in a 3NP mouse 

model of HD and ameliorate abnormalities by inhibiting Rhes prenylation through drug 

treatments targeting the mevalonate pathway. In understanding how certain molecular pathways 

are involved with neurodegeneration caused by either genetic means or neurotoxin, we can 

further aim to find treatments that target them and improve subsequent behavior abnormalities. 

The implications of studying such models could lead to further treatment applications to diseases 

that follow the same patterns of neurodegeneration or include the mavelonate pathway. The 
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mavelonate pathway is a ubiquitous biochemical sequence in cellular signaling.  Perhaps the 

effects of our drugs on system organs obscured any effect in the brain.  We were restricted to the 

use of drugs that crossed the blood-brain-barrier (BBB; either alone or following 3NP) and to 

drugs that could be obtained feasibly.  Future experiments could employ intracerbral 

administration of potentially ameliorative drugs, thereby by-passing their natural ability to cross 

the BBB and would require much less drug, thereby allowing the use of otherwise financially 

prohibitive drugs. 

Our study was unique and relied on previously published data for the establishment of 

experimental parameters.  Furthermore, although we controlled for potentially confounding 

variables, we did not anticipate the degree of variability that we observed. Although we did 

conduct pilot studies, we could have conducted more provided we were given the time to do so. 

Future work needs to be done to increase the literature on several aspects. There need to be more 

defined 3NP dosage regimens for acute, sub-chronic, and chronic conditions in addition to a 

more cohesive review clarifying differences in dose between rodent species. Cognitive and 

motor behavior needs to be analyzed based on these data and methodology replicated to unify the 

deviation from normalcy with the lesioning literature. Further applications to the field would be 

related to the research on inhibition of enzymatic tartgets in the malevolent pathway leading to 

prenylation of Rhes and thus retardation of motor or cognitive abnormalities. Clearly the 

literature is vastly lacking cohesive knowledge in several aspects specific to the selective striatal 

neuronal degeneration induced by 3NP treatment. Without conducting studies with more reliable 

methodology, we may never have the literature support we need to generate valid conclusions.  
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