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Abstract 
 

 

A bench-scale tubular reactor with recirculation was built in order to study the efficiency 

of the photocatalytic oxidation of phenol on fluidized titanium oxide-coated silica gel beads. A 

UV-C lamp placed along the central vertical axes of the reactor was used as source of photons. A 

bed of silica gel beads was fluidized by means of fluid recirculation and forced to follow upward 

helical flow around the lamp. Anatase was successfully synthetized on silica gel particles of 

average diameters 224, 357 and 461 µm, as confirmed by scanning electron micrographs, through 

a sol-gel technique using a titanium (iv)isopropoxide / hydrochloric acid / ethanol precursor. 

Data was obtained from multiple 8-hours photocatalytic experiments using a determined 

mass of beads fluidized in an aqueous solution of known initial phenol concentration. Contaminant 

degradation with irradiation time was measured as COD. Beads that had been subjected to three 

consecutive coating procedures produced an 8-h removal efficiency 10% higher than beads with a 

single coat. 20 g L-1 of silica beads was found to be the optimum load for the experimental reactor 

configuration regardless of beads size, although efficiency increased with decreasing size of the 

latter.  

Experimental results confirmed that the efficiency of phenol photocatalytic degradation 

decreases with increasing pollutant concentration. Also, the highest removal was achieved with 

initial pH 3, and it decreased with increasing pH. When NaCl was added to the solution, COD 

removal increased with increasing salinity. Additionally, it was found that dissolved oxygen is 

indispensable for photocatalysis to proceed, and that saturation of the treated mixture with oxygen 

was effectively achieved by keeping the liquid surface in contact with pure oxygen at 1 atm. 

Finally, statistical analysis of the data showed that photocatalytic mineralization of phenol-

derived COD under the experimental conditions follows exponential decay. Based on this finding, 

a correlation model was proposed for the accurate prediction (minimum R2 = 0.9840) of the COD 

removal efficiency of the reactor for any given initial COD. 

 

Key words:  Titanium oxide, photocatalysis, advanced oxidation process, semiconductor, photo-

reactor, anatase, phenol oxidation, sol-gel method, catalyst synthesis, silica gel beads, bed 

fluidization, UV-C irradiation, chemical oxygen demand, photon, absorption, exponential decay 

model, statistical analysis. 
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1                                                     

Introduction 

 

 TiO2 photocatalysis represents a promising class of oxidation techniques that are intended 

to be both supplementary and complementary to the conventional approaches for the destruction 

or removal of refractory and trace organic contaminants in water and air (Ding et al., 1999; Alfano 

et al., 2000).  Light-induced redox reactions take place on the surface of a catalyst and 

unselectively oxidize the contaminants into non-toxic products such as water, CO2 and simple 

mineral acids (Hoffmann et al., 1995; Zhang el al., 1996; Crittenden et al., 1997; Malato et al., 

2002).  These processes operate at ambient temperature and pressure and they do not require the 

addition of expensive oxidants.  To date, TiO2 photocatalysis has been successfully demonstrated 

in the destruction of a variety of organic and inorganic contaminants such as aromatics, 

haloaromatics, alkanes, alkenes, haloalkenes, insecticides, pesticides, detergents, textile dyes, 

humic substances and transition metals (Linsebigler et al., 1995; Hoffmann et al., 1995; Mills and 

Le Hunte, 1997; Fujishima et al., 2000). 

 The photocatalytic reaction is a surface-mediated process; therefore, a high surface area is 

essential to achieve efficient degradation of contaminants.  Powdered TiO2 dispersion systems 

employed in most studies require an additional separation step to recover the catalyst from the 

effluent water.  This represents a major drawback for large scale application of such systems, as 

the separation step is generally energy intensive and overall capital investment and running cost 

of the process would be increased by the need for additional equipment and energy consumption 
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(Byrne et al., 1998, 2002).  Pozzo et al. (1997) estimated that the cost requirement for post-

treatment recovery of small catalyst particles may even invalidate altogether the amount of energy 

savings claimed for a solar induced decontamination process.  For easy handling, TiO2 

photocatalyst may be immobilized onto supports made of materials such as quartz, glass, zeolite 

or silica gels, eliminating or minimizing the need for post-treatment removal (Zhang et al., 1994; 

Nogueira and Jardim, 1996; Byrne et al., 2002).  In recent years, immobilized TiO2 photocatalyst 

systems have received increasing attention because they also have found application as self-

cleansing surface, on top of the conventional use in water and gaseous remediation. 

 While the immobilized-catalyst system does provide a solution to the solid-liquid 

separation problem, such a system still exhibits several shortcomings that need to be addressed. 

Firstly, immobilization of TiO2 may translate into low surface area to volume ratios, which results 

in restricted processing capacities due to possible mass transfer limitations (Turchi and Ollis, 1988; 

Matthews, 1991). There also exists the possibility of inherent inefficiencies introduced by light 

absorption and light scattering in the particle suspension medium, as well as the generation of 

significant pressure drop in the system, catalyst fouling or catalyst wash out, and the introduction 

of new technical challenges such as the need for in situ catalyst regeneration (Parent et al., 1996). 

 This document presents the results of research conducted by the author to develop and 

study a novel photocatalytic system, based on UV-C irradiation of fluidized TiO2-coated silica gel 

particles in a tubular reactor.  The motivation for this configuration is that fixation of the catalyst 

onto a large enough support facilitates the retention and recovery of the catalyst, while fluidization 

of such support in the medium maximizes exposure of the TiO2 film to light, thus improving mass 

transfer on the catalyst surface and enhancing its surface area-to-volume ratio. 
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  Chapter 2 presents an overview on semiconductor photocatalysis theory, its fundamentals 

and technological present status, including photocatalysis kinetic modeling and catalyst synthesis 

and deposition techniques. Chapter 3 explains the experimental work performed in the laboratory, 

showing details on reactor configuration and analytical procedures. Chapter 4 presents the results 

and discussion of the experimental data.  Finally, in chapter 5, research findings are summarized 

and conclusions and recommendations are presented. 

1.1. Background  

 

 In the modern oil industry, there are two major generators of oily wastewater that may 

impact the quality of seawater:  Oil spills and discharges of both untreated and partially treated 

produced water.  The preferred approach for cleaning up an oil spill in U.S. territorial waters is to 

contain and thicken the oil slick with booms, and then place skimmers to remove the floating oil 

(Argonne National Laboratory, 2009).  Unfortunately, the recovered material is a mixture of a 

water-in-oil emulsion and free water. Since the recovered water substantially reduces the storage 

space available at the site of skimming operations, chemical demulsifiers are usually added to 

promote oil-water separation, and thus be able to separate the oil from the water.  Once this 

separation is achieved by gravity, the water is usually stored or transferred to barges.  The decanted 

water cannot be discharged back to the ocean because it contains large concentrations of oil and 

grease, dispersants, demulsifiers, and dissolved hydrocarbons.  The usual practice is to carry this 

oily wastewater to shore for further processing at treatment plants or for deep-well injection. 

According to the MC252 Weekly Waste Tracking Cumulative Report by Disposal Facility 

(OSPAR, 2006), 3.1x104 m3 of oily liquid waste was the cumulative amount manifested as of 

08/01/10 after the Gulf of Mexico oil spill.  This wastewater was transported to disposal facilities 
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located throughout the Gulf of Mexico states. Brown et al. (2009) claim that 1.1x105 m3 of oily 

water mixture had been collected at the oil spill site through June 2010, some of which made its 

way to Texas for permanent disposal in underground salt domes and injection wells.  Thus, large 

volumes of oily wastewater were transported from the original collection point at the Gulf of 

Mexico to final disposal sites located as far as Texas and Florida. 

 This amount of oily wastewater generated at the Gulf oil spill pales in comparison to the 

volume of produced water generated in the US: 9.2 million m3 per day (Vik, 2007).  For every 

cubic meter of oil extracted in the US, 12 cubic meters of produced water are generated, of which 

less than 3% corresponds to federal offshore activities.  A much larger figure is presented by 

Brown et al. (2009), who point out that there are currently 118 oil and gas exploration and 

production facilities operating in the territorial seas of Louisiana, and that it is anticipated that 150 

new wells will be constructed in upcoming years.  These authors indicate that approximately 

5.5x105 m3 of produced water are discharged into the Gulf of Mexico each day by offshore oil and 

gas facilities located in Louisiana.  The same authors (Brown et al., 2009) describe that there are 

over fifty individual constituents currently found in produced waters discharged into the Gulf of 

Mexico, including monocyclic and polycyclic aromatic hydrocarbons, aliphatic hydrocarbons, and 

phenols, about twenty different metals, and radium-226 and radium-228. 

 NPDES general permits issued by the U.S. EPA regional offices currently authorize 

offshore produced water discharges into the Gulf. All of the permits contain a monthly average 

limit of 29 mg/L and a 42-mg/L daily maximum limit for oil and grease (OSPAR, 2006).  Effective 

January 1, 2007, the Oslo Paris Convention (OSPAR) has agreed that no individual offshore 

installation should exceed a performance standard for dispersed oil of 30 mg/l for produced water 

discharged into the sea (OSPAR, 2006). In Norway, the oil operators have agreed to implement a 
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policy of zero environmental harmful discharges (ZHD) after 2005 (Vik, 2007). 

In 2009, the Colorado School of Mines (CSM, 2009) generated a comprehensive report on 

existing and emerging technologies to treat produced water.  These technologies include stand-

alone treatment processes such as basic separation through biological filters, hydrocyclones, 

flotation, membrane separation, thermal technologies, adsorption, UV disinfection and chemical 

oxidation, as well as combined processes that integrate different basic technologies for an 

enhanced treatment output.  Since the volume of produced water generated in off-shore operations 

represents only a small fraction of the total, most of these processes are designed for on-shore 

operations and to meet required standards for water reuse (re-injection into reservoir) or disposal.  

Previous research conducted by the author (Rincón et al., 2012) demonstrated that oily 

emulsions can be effectively treated using a combination of electrocoagulation/electroflotation 

processes (EC/EF) to meet or exceed the NPDES discharge limits for oil and grease into natural 

waters. Nevertheless, EC/EF is still not capable of producing a ZHD effluent, since it only removes 

colloidal contaminants, leaving all the dissolved organic pollutants behind.  These dissolved or 

soluble components, responsible for the high chemical oxygen demand (COD) of this water, are 

difficult to remove. 

An ideal wastewater treatment process should be cost effective and, most importantly, it 

must not produce any hazardous by-products. In the past two decades, photocatalytic degradation 

of recalcitrant organics has been widely investigated and found to be a viable technology for 

removing dissolved contaminants from wastewater. It is effective for the removal of organic 

pollutants and microorganisms (Saquib et al., 2007; Josef et al., 2006).  
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As explained in Section 2.5, heterogeneous photocatalysis technology takes advantage of 

the capacity of semiconductor materials (i.e. TiO2) to undergo redox reactions when irradiated 

with UV light while suspended in water, leading to the generation of hydroxyl radicals (OH ) and 

the destruction of organic contaminants. In absence of a catalytic active substance, the oxidation 

of the most hydrocarbons proceeds rather slowly.  The reaction rate can be substantially increased 

using a heterogeneous photocatalytic system, which consists of a semiconductor surface (photo 

catalyst) in close contact with the liquid stream. Exposing the catalyst to UV light generates excited 

states, which are able to initiate subsequent processes like redox reactions and molecular 

transformations (Jacquot et al., 1996).  In semiconductors, like TiO2, a portion of the photo-excited 

electron-hole pairs diffuse to the surface of the catalytic particles and take part in the chemical 

reaction with the adsorbed donor or acceptor molecules. The holes can oxidize donor molecules 

whereas the conduction band electrons can reduce appropriate electron acceptor molecules.  The 

following equations summarize the set of complex reactions presented in Section 2.5, and describe 

the oxidation and reduction mechanism (Zou et al., 2007): 

 hυ - +

2 2 CB CBTiO TiO +holee                                                                                                  (3.1) 

  recombination- +

2 CB CB 2TiO +hole TiO heate                                                                               (3.2) 

+

2H O OH + H                                                                                                                       (3.3) 

VB adshole OH OH                                                                                                                 (3.4) 

The heterogeneous photo catalytic oxidation with TiO2 meets the following requirements 

that could make it competitive with respect to other processes oxidizing contaminants (Jacquot et 
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al., 1996): (a) it is a low-cost material, easy to use, and easily available. (b) The reaction is quite 

fast at mild operating conditions (room temperature, atmospheric pressure). (c) A wide spectrum 

of organic contaminants can be converted to water and CO2.  (d) No chemical reagents are added 

and no side reactions are produced. 

 Titanium dioxide has been extensively used as a photo catalyst (Akpan and Hameed, 2009; 

Tada et al., 2009; Taga, 2009; Gaya and Abdullah, 2008; Aprile et al., 2008; Pichat, 2007; D’Auria 

et al., 2009; Yue et al., 2008; Berry and Mueller, 1994) but applications to oil spills have not been 

extensively studied.  Several reports have discussed the use of TiO2 for oil degradation (Zou et al., 

2007; An et al., 2004) but due to the limited number of studies, the limited number of source oils, 

and the lack of mechanistic and product data, much remains poorly understood in these systems.  

Nevertheless, because of its low cost, low toxicity, and wide availability, this material is a good 

candidate for photo catalytic decomposition of petroleum.   

 Using titanium dioxide as photocatalyst and UV light as the energy source, this process has 

successfully reduced organic pollutants and microorganisms concentration in wastewater (Chen 

et al., 2007; Chong et al., 2010).  

Two photocatalyst configurations have been used: in slurry form and immobilized on a 

support. In a slurry reactor, the photocatalyst particles will be freely dispersed in the bulk 

throughout the reactor volume. In immobilized-photocatalyst reactors, the catalyst will be 

anchored to a support such as fiberglass, activated carbon, fiber optic cables, glass, glass beads, 

glass wool, membranes, quart sand, zeolites, silica gel, stainless steel or Teflon (De Lasa et al., 

2005). Photocathalytic activity is superior in TiO2 slurry reactors, mainly because of improved 

liquid to solid mass transfer and a high total surface area of photocatalyst per unit volume, both of 

which is limited in immobilized TiO2 reactors. However, slurry type operations have the 
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disadvantage of requiring post-treatment separation of the catalyst, increasing complexity and 

operational cost.  Table 3.1 shows a comparison between both types of reactors. 

 

Table 1.1. Suspended vs. immobilized photocatalytic systems (De Lasa et al., 2005) 

Slurry reactors Immobilized reactors 

Advantages: 

 

 Fairly uniform catalyst distribution 

 High photocatalytic surface area to 

reactor volume ratio 

 Limited mass transfer 

 Minimum catalyst fouling effects due 

to the possible continuous removal 

and catalyst replacement 

 Well mixed particle suspension 

 Low pressure drop to the reactor 

 

Advantages: 

 

 Continuous operation 

 Improved removal of organic material 

from water phase while using a support 

with adsorption properties 

 No need for an additional catalyst 

separation operation 

Disadvantages 

 

 Requires post-process filtration 

 Important light scattering and 

adsorption in the particle suspended 

medium 

Disadvantages 

 

 Low light utilization efficiencies due to 

light scattering by immobilized 

photocatalyst 

 Restricted processing capacities due to 

possible mass transfer limitations 

 Possible catalyst deactivation and 

catalyst wash out 

 

 

Until recently, the slurry photocatalytic reactor was still the preferred configuration owing 

to its high total surface area of photocatalyst per unit volume and ease of photocatalyst reactivation. 

The photocatalyst particles can be separated by settling tanks or external cross-flow filtration 

systems to enable continuous operation of the slurry reactor. On the other hand, immobilization 

and the support material in immobilized reactors influence the photocatalyst activity.  The surface 

area of the catalyst is minimized since the coating layer has a lower porosity (Balasubramaniam et 



 

9 
 

al., 2004). It was also reported that the type of support material influences the adsorption 

characteristics and consequently the decomposition rate of pollutants (Sakthievel et al., 2002).  

Furthermore, immobilized catalyst showed flow rate dependence of the reaction (Bideau et al., 

1995; Kobayakawa et al., 1998).  Thus, the support should have the following characteristics 

(Pozzo et al., 1997): (i) transparent to irradiation; (ii) strong surface bonding with the TiO2 catalyst 

without negatively affecting the reactivity; (iii) high specific surface area; (iv) good adsorption 

capability for organic compounds; (v) separability; (vi) facilitating mass transfer processes and 

(vii) chemically inert.  

For this technology to be applicable, the reactor has to be designed in a way so that optimal 

irradiation of the immobilized catalyst is guaranteed, and that it is operated continuously. Pareek 

at al. (2008) addressed that the most important factors in configuring a photocatalytic reactor are 

the total irradiated surface area of catalyst per unit volume and light distribution within the reactor.  

It has been also concluded that the photocatalytic action is local, requiring the triple encounter of 

the surface, the reactant(s) and the photons (Bideau et al., 1995). 

A technically feasible solution for solving the downstream separation of photocatalyst 

nanoparticles after treatment is via the application of a hybrid process in which the photocatalyst 

is synthesized and fixed on a substrate that can be retained in the reactor post-treatment. Using a 

tubular continuous-flow reactor packed with TiO2 photocatalyst immobilized on 2 mm diameter 

silica gel beads, Kobayakawa et al. (1998) were able to efficiently decompose water contaminants 

at high flow rate.  Hanel et al. (2010) used a cylindrical quartz tube packed with immobilized TiO2 

on glass beads to eliminate phenol in water. However, packed bed reactors require the assistance 

of various parabolic light deflectors to transfer the photons to the catalyst surface. To achieve 

uniformity in photon flux distribution within the reactor, a correct position of light source is 
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essential. The use of this type of reactors has become unfavorable nowadays due to the need of 

special configuration and high operating costs (Chong et al., 2010). 

However, an alternative to packed bed reactors is bed fluidization, given that the particulate 

support onto which the catalysts has been fixed can be entirely fluidized throughout the reactor 

volume.  Abhang et al. (2011) were able to degrade phenol in water using a fluidized bed 

rectangular reactor.  TiO2 nano-powder was anchored onto 2 mm diameter silica gel particles, 

placed in a rectangular chamber illuminated with UV light and fluidized by means of air bubbling. 

The authors showed that successful implementation of photocatalytic reactors requires increasing 

the number of photons absorbed onto the catalyst surface per unit time and per unit volume.  

 In the quest to identifying the effectiveness of photocatalytic degradation treatment using 

suspended TiO2 particles, many extrinsic and intrinsic parameters have been investigated; among 

them irradiation time, solution pH, temperature, initial concentration of substrate, catalyst 

concentration, photo-reactor design and light intensity (Huang et al., 2007; Fotiadis et al., 2007; 

Chen et al., 2007; Singh et al., 2007; Tang et al., 2004). For example, the degradation efficiency 

of the substrate decreases with increasing substrate concentration (Singh et al., 2007). It was also 

found that the initial reaction rate is directly proportional to the catalyst concentration (Huang et 

al., 2007). Also, the degradation efficiency improved with increasing incident light intensity 

(Huang et al., 2007). 

1.2. Objective and Scope of the Research 

 

Making use of a bench-scale physical model, the main objective of the present research is 

to investigate the feasibility of the photocatalytic oxidation of phenol, measured as chemical 

oxygen demand (COD), on fluidized TiO2-coated silica gel micro-beads and effect of selected 
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intrinsic and extrinsic parameters on the process efficiency. The research conducted on this 

variation of the traditional TiO2 slurry-type reactor and packed-bed reactors for photocatalytic 

oxidation, required the completion of a development and experimental phase that included: 

 Design and construction of a bench scale photocatalytic reactor. 

 Selection of type of particulate support for photocatalyst. 

 Selection of method for photocatalyst deposition. 

 Experiment design, including single experiment duration, definition of study 

variables and parameters, and analytical methods selection. 

The developed system was evaluated by measuring COD disappearance with irradiation 

time in a number of experiments in which different parameters, such as the mass and size of silica 

gel, phenol concentration, pH, salinity, dissolved oxygen concentration and number of TiO2 

coatings, were varied in order to stablish their influence on the process efficiency.  

 The presence of the synthetized TiO2 layer on the silica support was confirmed through 

scanning electron microscopy, and the amount of catalyst deposited after each coating procedure 

was also measured, showing that anatase was effectively formed through the selected sol-gel 

procedure and that silica’s surface coverage increased with repeated applications.   

The final phase of data analysis shows that photocatalysis on TiO2-coated silica beads can 

be a viable alternative to photocatalysis on anatase nano-powder.  This finding is accompanied by 

a comparative study of the effect of the evaluated variables on contaminant degradation and a 

statistical model for predicting the efficiency of the system based on initial phenol load.  
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2                                            

Overview of Fundamentals 

2.1. Background 

 

 Research on TiO2 started when Fujishima and Honda (1972) began investigating the 

properties of TiO2 in water photoelectrolysis using a photoelectrochemical cell.  Utilizing the 

strong photo-reduced oxidation power of TiO2, oxygen evolution occurs at the TiO2 electrode, 

while hydrogen evolves from the Pt counter electrode.  These findings attracted the attention of 

the scientific community, as there was an increasing interest in developing synthetic systems 

capable of harvesting solar energy and convert it into chemical or electrical energy.  Although 

notable progress has since been made, the quantum efficiency of such system has been reported to 

be low (Hashimoto et al., 2005).  Another approach to utilize solar energy involves the dye 

sensitization of TiO2 in a regenerative photoelectrochemical cell.  A single redox couple exists in 

the cell, the reduced form is oxidized at the TiO2 photoanode and the oxidized form is reduced at 

the counter electrode (Hagfeldt and Gratzel, 1995).  Gratzel et al. achieved conversion efficiencies 

of 10 to 11% in the 1990s by using ruthenium complexes as sensitizers (Nazeeruddin et al., 1993, 

1997).  

 Meanwhile, TiO2 photocatalysis has become one of the most investigated technologies for 

elimination of environmental contaminants since the success of Frank and Bard (1977) in 

demonstrating the decomposition of cyanide in the presence of powdered TiO2.  Ever since, 
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laboratory and field studies have continually confirmed the application of TiO2 photocatalysis in 

the destruction of a large variety of contaminants (Mills and Le Hunte, 1997; Fujishima et al., 

2000; Herrmann, 2005).  The fact that the studies were generally conducted using a TiO2 powdered 

dispersion renders its application on a large scale energy intensive since post-treatment separation 

of the nanopowder would be required or, at least, desirable.  For the purpose of easy handling, 

research has shifted to the development and application of immobilized systems.  TiO2 

photocatalysis has also been used to eliminate taste and odor generating contaminants, gaseous 

organic matter (Cai et al., 1991; Heller, 1995; Heneghan et al., 2004), as well as for the reductive 

deposition of heavy metals such a s platinum, palladium, gold, rhodium and silver from aqueous 

solution onto surfaces (Ollis et al., 1991; Albert et al., 1992; Inel and Ertek, 1993; Herrmann, 

2005).  The concept of light-cleaning materials coated with a TiO2 photocatalyst film has also 

attracted significant attention.  In addition to the photo-induced redox reactions on adsorbed 

substances, the photo-induced hydrophilic conversion of TiO2 itself assists in the surface cleaning 

process.  Adsorbed substances can easily be washed away by water when there is insufficient 

photon energy to completely oxidize them (Mills and Le Hunte, 1997; Pilkington Group Limited: 

08/06/2008: How self-cleaning glass works). 

 Compared to other materials for photocatalysis, TiO2 has proven to be the most suitable 

for widespread environmental application.  TiO2 is highly active, stable under photo and chemical 

corrosive environments, inexpensive, and safe to humans and the environment (Hashimoto et al., 

2005).  In this chapter, topics of particular interest are (2.2) the general electronic properties of 

semiconductors; (2.3) the operating principles of a photochemical  reactor ; (2.4) photo-effects at 

TiO2 bulk and nanocrystalline catalyst-substrate interface; (2.5) insights into light induced 

oxidative pathways of organics; (2.6) kinetic scheme to describe photocatalytic processes; (2.7) 
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factors that affect reaction rates in a typical photo catalytic process; (2.8) application of 

photocatalysis and commercially available photocatalytic products; and (2.9) research efforts in 

the synthesis of TiO2 films. 

2.2. Optical Absorption and Bandgap Photo-Excitation 

 

 The electronic energy level in a solid is described by the band model.  Large numbers of 

electronic levels are formed as the atomic orbitals interact with one another.  These resultant 

electronic levels are closely positioned and form a continuum of energy levels (Eyring, 1970).  The 

levels in which electrons are free to flow and conduct electricity constitute the conduction band 

(CB), and the levels completely occupied by the electrons represent the valence band (VB).  The 

energy difference between these bands is known as the bandgap, gE .  A schematic diagram of the 

electronic structure of an insulator, a semiconductor, and a conductor is given in Figure 2.1. 

 

 

Figure 2.1. Energy bands in insulator, semiconductor and conductor (Singleton, 2001) 
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 In conductors such as metals, there is a continuum of electronic states. Valence electrons 

move freely to conduct electricity.  A bandgap exists between the VB and the CB in 

semiconductors and insulators.  The large bandgap in insulators does not allow electrons injection 

into the CB.  Electrons in a completely filled band do not conduct electricity.  Semiconductors, 

however, absorb light below the fundamental absorption edge, g , to inject electrons into the CB 

and generate holes (electron deficiencies) in the VB.  These charge carriers can recombine or be 

present at the semiconductor surface to carry out redox reactions.  The de-excitation of these charge 

carriers favors the path which minimizes the lifetime of the excited state (Linsebigler et al., 1995).  

g  is related to the bandgap energy via the following equation (Gratzel, 1988): 

 
 

1240
nm

eV
g

gE
                                                                                                                       (2.1) 

 The gE  of a semiconductor can be determined by means of optical absorption.  Near g

the absorption behaviors of a semiconductor are depicted by the following function (Hagfeldt and 

Gratzel, 1995): 

 const
n

ghv hv E                                                                                                                  (2.2) 

where   is the reciprocal absorption length, h  is the Planck’s constant,   is the frequency of the 

light wave, and gE  is the bandgap energy, 0.5n  for a direct transition and 2n  for an indirect 

transition.  Electron distribution in a semiconductor is described by the Fermi level, FE .  Electron 

occupancy is approximately half when the energy level is at the FE  (Morrison, 1980). FE  also 

locates the energy of both charge carriers at the semiconductor-electrolyte interface (Litter, 1999), 

and it is indicative of the thermodynamic limitations for the photoreactions that can take place 
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(Hagfeldt and Gratzel, 1995).  For a perfect semiconductor, the FE is located in the middle of the 

gE at zero Kelvin (Morrison, 1980). 

 The presence of impurities or defects caused by vacancies, interstitials, dislocations, and 

grain boundaries in the semiconductors perturbs their electronic structures by donating electrons 

to the CB (Morrison, 1980).  These perturbations give rise to new energy levels to produce n-type 

and p-type semiconductors.  In an n-type semiconductor, electrons are the majority carrier, while 

in a p-type semiconductor, holes are the majority carrier.  TiO2, ZnO, WO3 and Fe2O3 are naturally 

n-type semiconductors, while Cu2O, NiO, and Cr2O3 are p-type semiconductors.  Semiconductors 

such as Si, GaAs, and InP can be made to exhibit n or p-type behavior by introducing different 

impurities (Lindgren, 2004).  For an n-type semiconductor, the FE lies close to the CB, and can be 

approximated by the following equation (Morrison, 1980): 

ln C
F C B

D

N
E E k T

N
                                                                                                                    (2.3) 

where CN  (~1019 cm-3) is the effective density of states in the CB, DN (~1017 cm-3) is the donor 

density, Bk is the Boltzmann constant, T  is the temperature, and CE is the CB edge energy. 

 Figure 2.2 depicts the band positions of various semiconductors that are in contact with 

aqueous media at pH 0 together with the redox potentials of water.  Thermodynamically, the 

potential of the conduction band edge ( CE ) must be more negative than the reduction potential of 

a chemical species in order to photo-reduce the particular chemical species, whereas the potential 

of the valence band edge ( VE ) must be more positive than the oxidative potential of a chemical 

species in order to photo-oxidize the chemical species (Litter, 1999).  Energy levels in between 

the VB and CB are often referred to as traps or recombination centers, depending on the electron 
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life time in the state (Bahnemann et al., 1997).  These sub-bandgap energy states are originated 

from defects in the crystal structure of the semiconductor.  By using time-resolved laser flash 

photolysis on TiO2, Bahnemann et al. (1997) classified the traps into shallow and deep traps, based 

on the energy distance from CB.  It was reported that the charge carrier recombination was fast in 

shallow traps, and shallowly trapped holes exhibited high oxidation potential.  In contrast, charge 

carriers were long lived (~200 nanoseconds) in deep traps, and deeply trapped holes were 

unreactive towards hole scavengers (Bahnemann et al., 1997).  The redox potentials of the trapped 

electrons or holes are inherently lowered compared to the CB or VB potentials.  The trapping and 

de-trapping of electrons in these sub-bandgap energy states play an important role in the charge 

transport and recombination dynamics in polycrystalline and nanostructured semiconductors 

(Hagfeldt and Gratzel, 1995). 

 

Figure 2.2. Band edge position for various semiconductors in contact with aqueous electrolyte at 

pH 0 (Serpone and Pelizzeti, 1989).  The bandgap of TiO2 in anatase allotropic form is 

approximately 0.2 eV higher than that of rutile. 
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 Owing to the high vE  position (3.1 V vs. SHE), TiO2 has a strong oxidation power and 

high photocatalytic reactivity toward different organics.  This semiconductor is stable and does 

not suffer from chemical corrosion or photo-corrosion.  Unfortunately, TiO2 exhibits low 

absorption properties in the visible spectrum, as the large gE requires wavelengths shorter than 400 

nm for excitation.  A great deal of research has focused on lowering the threshold energy for 

excitation of TiO2 in order to harvest visible light for photochemical energy conversion (Asahi et 

al., 2001; Khan et al., 2002; Piera et al., 2003; Diwald et al., 2004).  ZnO is another semiconductor 

that has large gE .  It is unstable in illuminated aqueous solution as it is preferentially oxidized by 

the photo-generated holes and releases 2Zn  ions (Bahnemann et al., 1987; Carraway et al., 1994; 

Sun et al., 2007).  Zn(OH)2 is formed on the particle surface and results in catalyst inactivation 

over time.  Small bandgap semiconductors such as CdS, CdSe and Fe2O3 are excellent in utilizing 

solar energy.  However, these materials lack the stability for catalysis in aqueous medium as they 

readily undergo photoanodic corrosion (Howe. 1998; Fisher et al., 1989; Kaesche, 2003).  WO3 

has also been investigated as a potential photocatalyst but it exhibited lower photocatalytic activity 

than TiO2 (Angelidis et al., 1998).  Clearly, there is no semiconductor that fits the list of ideals.  

Despite its substantial limitation, TiO2 appeared to be the most promising for photocatalytic 

oxidation of organic pollutants as it provided the best compromise between catalytic performance 

and stability in aqueous media. 

2.3. The Photoelectrochemical Cell 

 

 A typical photoelectrochemical (PEC) cell consists of a cathode and a semiconductor 

photoanode fixed in an electrolyte solution as illustrated in Figure 2.3.  Electron-hole pairs are 
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formed by irradiating the semiconductor, and electron transfer processes occur over the 

electrode/electrolyte interfaces.  This disturbs the chemical equilibrium in the cell and creates a 

photo-voltage.  The resulting current of electrons flows from the anode to the cathode via an outer 

circuit to complete the circuit.  In a regenerative PEC cell such as Ru-bipyridyl complexes 

sensitized solar cell, a single active redox couple is present in the electrolyte, and no chemical 

reaction takes place in the system  (Hagfeldt and Gratzel, 2000; Lindgren, 2004).  On the contrary, 

different redox couples are active at the anode compared to the cathode in a non-regenerative PEC 

cell.  The different redox couples give rise to a net chemical process in the electrolyte when the 

cell is illuminated with light of sufficient energy (Lindgren, 2004).  The PEC cell for water splitting 

that was reported by Fujishima and Honda in 1972 is one of the examples of non-regenerative PEC 

cells.  At the anode, oxidation of water occurs: 

2 22H O + 4 4H OVBh                                                                                                            (2.4) 

At the cathode, electrons reduce protons  H to hydrogen  2H : 

22H 2 HCBe                                                                                                                          (2.5) 

The overall reaction is: 

2 2 24 2H O O Hhv                                                                                                                (2.6) 

 The operating principles of a photoelectrocatalytic process are similar to water splitting 

reactions in a PEC cell.  Oxidation of organic compounds occurs at the photoanode, while the 

electrons reduce any electronegative species at the cathode.  In both, the powder dispersion and 

immobilized system, the degree of charge recombination is high as their working potential is given 

by the open circuit condition.  For the photoelectrocatalytic process, semiconductor films 
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supported on conducting substrates allow for biasing, thus avoiding charge recombination as 

encountered in unbiased systems. 

 

Figure 2.3. Schematic of photoelectrochemical cell for direct water oxidation. O2 is formed at the 

anode (TiO2) by oxidation of water, and H2 is evolved at the cathode (Pt) by reduction of water 

(Hashimoto et al., 2005). 

 

2.4. Space Charge Layers and Band Bending 

 

 When a bulk semiconductor, such as an ideal crystal, is immersed into an aqueous solution, 

interfacial charge transfer and formation of a double layer take place in the presence of an 

electroactive species.  If the FE  of the semiconductor lies above that in solution, electrons flow 

from the inside to the surface to adjust the FE  of the semiconductor (Bard et al., 1991).  At the 

thermodynamic equilibrium, the FE  of the semiconductor is shifted to the position of the redox 

potential in the solution.  A space charger layer (depletion layer) is formed near the surface of the 

bulk semiconductor.  As the semiconductor band edges are fixed, there is difference in potential 
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between the surface and the inside of the semiconductor.  This phenomenon is known as band 

bending.  Upon illumination, electrons would drift towards the bulk semiconductor in the direction 

consistent with the existing electric field, while the holes move in opposite direction to the 

semiconductor-electrolyte interface (Bard et al., 1991).  Only holes are available for reaction at the 

semiconductor surface.  The thickness of the space charge layer is in the order of 1x103 nm 

(Hashimoto et al., 2005).  In the electrolyte, corresponding compensating charged layers are 

formed.  The layer closest to the semiconductor surface is called the Helmholtz layer.  It contains 

solvent molecules and ions or molecules that are specifically absorbed (Bard and Faulkner, 2000).  

Outside the Helmholtz layer is the Gouy-Chapman layer.  This layer is made up of non-specifically 

adsorbed solvated ions (Bard and Faulkner, 2000).  Figure 2.4 illustrates the three different 

situations for an n-type semiconductor in contact with an aqueous solution.  Albery and Barlett 

(1984) derived the potential distribution in a spherical semiconductor particle using a linearized 

Poisson-Boltzmann equation.  The potential difference between the centre of a semiconductor 

particle ( 0r  ) and a distance r  is given by: 
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                                                                              (2.7) 

where SC  is the potential drop within the layer, W is the width of the space charge layer, q is 

the elementary charge, Bk is the Boltzmann constant, T is the temperature and DL is the Debye 

length.  For large semiconductor particles or planar electrodes, the potential drop over the space 

charge layer is given by (Bard et al., 1991): 
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 Studies in single crystal TiO2 electrodes were most active in the 1970s and early 1980s, 

when the research interest focused on the photoelectrolysis of water.  Among the different facets, 

rutile (110) surface was extensively investigated as this surface was found to be the most stable 

thermodynamically (Charlton et al., 1997; Swamy et al., 2002; Lindsay et al., 2005).  Other facets 

will reconstruct upon heating to high temperatures to produce (110) facets (Poirier et al., 1993; 

Carroll et al., 1994; Thomson and Yates, 2006).  Generally, single crystal surfaces are expensive 

and not suitable for a wide range of applications because of the difficulty in fabricating them.  

However, it has been regarded that single-crystal semiconductor electrode materials are most likely 

to represent the ideal situation of the interfacial electron transfer processes (Hagfeldt and Gratzel, 

1995; 2000).  Early work employing a planar semiconductor for a dye-sensitized cell found that 

this type of electrode had poor light harvesting efficiency as only the first monolayer of adsorbed 

dye resulted in an efficient electron injection into the semiconductor (Hagfeldt and Gratzel, 1995). 

 

 

Figure 2.4. Space charge layer formation at an n-type semiconductor-aqueous solution interface 

(a) at flat band situation; (b) under dark, and (c) when expose to photons of energy higher than the 

gE of TiO2 (Lindgren, 2004). 
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 There has been a rapid expansion of research in semiconductors with colloidal dimensions 

since Gratzel and co-workers published the first report on the light driven redox reactions with a 

nanocrystalline system in the early 1980s (Gratzel, 1981; Duonghong et al., 1981; Kiwi, 1981).  

The electronic property of nano-sized particulate semiconductor deviates from the bulk structure.  

The potential drop within each particle is described by the following equation (Hagfeldt and 

Gratzel, 1995): 
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                                                                                                                     (2.9) 

 As the radius of the particle is extremely small, there is no substantial potential drop within 

the particle.  The formation of electric field within the particle is dubious.  High dopant levels are 

required to produce a significant potential difference between the surface and the center of the 

particle (Hagfeldt and Gratzel, 1995).  Charge separation occurs within the particle via diffusion.  

Upon illumination, electron-hole pairs are oriented in a spatially random fashion along the optical 

path.  These charge carriers would recombine or diffuse to the particle surface for chemical 

reactions.  High efficiencies can be achieved if the diffusion of charge carriers to the particle 

surface can occur more rapidly than their recombination, followed by the fast removal of at least 

one type of charge carrier, i.e., either electrons or holes, upon their arrival at the interface (Hagfeldt 

and Gratzel, 1995, 2000).  As both species of charge carriers are present on the surface, a careful 

consideration of both the oxidative and the reductive paths is required (Hoffman et al., 1995). 

 A nanocrystalline film is a porous structure built up from interconnecting semiconductor 

nanoparticles.  These films are characterized by high porosity and a large internal surface area.  

When used as electrodes, the nanosized particles which constituted the films are in electronic 

contact, allowing for electric charge percolation through such films.  This charge transport is 
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highly efficient, with the quantum yield being practically unity (Nazeeruddin et al., 1993; Hagfeldt 

et al., 1992).  Band bending model from the bulk semiconductor breaks down as the aqueous 

solution penetrates the entire colloidal film up to the surface of the back contact and a 

semiconductor/aqueous solution junction exists at each nanoparticle (Soedergren et al., 1994; 

Franco et al., 1999; Hagfeldt and Gratzel, 2000).  The charge separation and transport in a 

nanocrystalline semiconductor is far from fully understood.  A qualitative model was proposed to 

describe the charge separation in nanocrystalline electrodes based on the results on charge 

separation measurements in TiO2, CdS and CdSe films (Hodes et al., 1992; Hagfeldt et al., 1992).  

Upon illumination, the reaction that consumes holes (for TiO2) at the interface is much faster than 

the reaction that consumes electrons and the recombination process.  The electrons create a 

gradient in the electrochemical potential between the particle and the back contact.  The driving 

force for the electron transport to the back contact is the concentration gradient of electrons over 

the nanocrystalline film.  The most efficient charge separation takes place close to the back contact 

(Hagfeldt et al., 1992).  The probability for the electron to recombine depends on the distance 

between the photo-excited particle and the back contact (Hagfeldt et al., 1992).  In recent years, 

considerable interest has been shown in developing nanocrystalline films from colloidal 

semiconductors for dye-sensitized solar cells, photoconductors, electrochromic devices and 

photocatalytic degradation of organic contaminants (Hagfeldt and Gratzel, 1995). 

2.5. Light-Induced Electron Transfer Processes 

 

 The initial process for TiO2 photocatalytic oxidation of organic compounds is the 

generation of electron-hole pairs in the semiconductor particles.  These charge carries may be 

trapped either in shallow or deep traps, and subsequently react with the electron donors or 
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acceptors adsorbed on the semiconductor surface, or within the surrounding double layer of the 

charged particle (Linsebigler et al., 1995; Hoffmann et al., 1995).  By a combination of electron 

paramagnetic resonance (EPR) and infrared spectroscopy measurements, Berger et al. (2005) 

reported that photo-generated electrons are either trapped at localized states with the bandgap (Ti3+ 

centers) or promoted to CB, while photo-excited hole species was detected as O .  Approximately 

90% of photo-excited electrons were found to reside in the CB in TiO2 (Berger et al., 2005).  It has 

previously been shown that the photo-redox chemistry that occurs at the semiconductor surface is 

emanated from trapped electrons and trapped holes rather than from free valence band holes and 

conduction band electrons (Serpone et al., 1996).  In the absence of suitable electron and hole 

scavengers, these charge carriers recombine directly through band-to-band recombination or 

indirectly via bulk or surface defects with the release of heat (Pichat, 2007).  The recombination 

rate is affected by factors such as charge trapping, the chemisorptions or physisorption of target 

molecules and the incident light intensity (Thompson and Yates, 2006). 

 At the semiconductor-liquid interface, the oxidative pathways of organic compounds 

remain ambiguous and controversial.  Photocatalytic oxidation of organics has been proposed to 

proceed directly via surface oxidation of adsorbate molecules by trapped holes or indirectly by the 

reactive oxygen species such as OH , 2O
, 2OH

, 2 2H O , and 2HO
(Caraway et al., 1994; Herrmann, 

2001; Villarreal et al., 2004).  Among the reactive species, OH appears to be the predominant 

oxidant as it has the highest thermodynamic oxidation potential (+2.85 eV vs. SHE) (Oppelt, 

1998).  The OH species are formed through the reaction of trapped holes with adsorbed 2H O/OH

or the reaction of electrons with adsorbed oxygen molecules (Serpone, 1995; Bhatkhande et al., 

2002).  The existence of OH was verified by electron spin resonance (ESR) detection (Riegel and 
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Bolton, 1995; Hirakawa and Nosaka, 2002; Ueda et al., 2003).  Chemical identification of the 

hydroxylated oxidation intermediates in the system that consists of aromatic compounds, such as 

benzoic acid (Matthew, 1984), phenol (Trillas et al., 1992; Okamoto et al., 1985), 4-chlorophenol 

(Bahnemann et al., 1997; Mills et al., 1993) and herbicides (Parra et al., 2002) appears to support 

the hydroxyl radical mechanism. It was proposed that OH was responsible for the oxidative attack 

on the aromatic ring and OH can diffuse into the solution and subsequently oxidize weakly 

adsorbed organics (Gonzalez-Elipe et al., 1979; Turchi and Ollis, 1990; Parra et al., 2002). 

 In the meantime, the adsorption of organic compounds on TiO2 surface is reported to be 

critical for direct hole oxidation mechanism.  It was found that the degradation of carboxylic acids 

such as chlorobenzoic acid (Tahiri et al., 1998), oxalic acid, and trichloroacetic acid (Mao et al., 

1991) were initiated by direct hole attack via a photo-Kolbe reaction.  Carraway et al. (1994) also 

provided experimental evidence for the direct hole oxidation of tightly bound electron donors such 

as formate, acetate, and glyoxylate at the semiconductor surface.  Ishibashi et al. (2000) estimated 

the quantum yield of OH production and hole generation to be 7x10-5 and 6x10-2, respectively.  As 

the quantum yield of ordinary photocatalytic reactions are reported to be ~10-2, it was suggested 

that oxidative reactions on TiO2 photocatalyst occur mainly via photo-generated holes but not via 

OH (Ishibashi et al., 2000).  Despite the intense investigation, the findings did not permit the 

unambiguous delineation of the OH driven mechanism versus the direct hole oxidation 

mechanism.  In many cases, similar reaction intermediates are expected from these two schemes 

in an aqueous system under an oxygen rich condition (Bahnemann et al., 1997).  Besides, the 

mechanism of photocatalytic degradation of organic compounds could result from the integration 

of direct oxidation by holes with oxidation by radical groups, either on the surface or in the solution 

(Chen et al., 1999a; 1999b).  Sun and Pignatello (1995) found that the initial step of photocatalytic 
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transformation of 2,4-dichlorophenoxyacetic acid was direct hole oxidation at pH 3.  At other pH 

conditions, the reaction shifted to hydroxyl-radical-mediated mechanism.  The direct and indirect 

deactivation paths of photo-generated electron-hole pairs are illustrated in Figure 2.5. 

 

Figure 2.5. Direct and indirect oxidative pathways of organics on TiO2 photocatalyst (Mills and 

Le Hunte, 1997). 

 

 The different interfacial transfer processes involving electrons and holes and their 

deactivation by recombination can also be summarized as a series of complex reactions (Equations 

2.10-2.25) as follows (Serpone, 1995; Bhatkhande et al., 2002; Hufschmidt et al., 2004): 

 The excitation by photon  hv with energy larger than gE : 

+

2 CB VBTiO e hhv                                                                                                                 (2.10) 
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Charge carriers trapping: 

   IV 2 IV + IV IV

VBbulk bulk
Ti O Ti h Ti O Ti                                                                     (2.11) 

   IV III

CBTi e Ti                                                                                                                 (2.12) 

Interfacial electron transfer from adsorbed donor  R and to adsorbed acceptor  M : 

+ +

ads VB adsR h R                                                                                                                       (2.13) 

ads CB adsM e M                                                                                                                      (2.14) 

Charge carriers recombination: 

CB VBe h heat                                                                                                                        (2.15) 

Formation of hydroxyl radicals: 

   IV 2 IV • + IV 2 IV

abs VB absTi O Ti OH h Ti O Ti O H                                                      (2.16) 

   IV 2 IV + IV 2 IV

2abs VB absTi O Ti OH h Ti O Ti O H H                                              (2.17) 

+

2 VBH O h HO H                                                                                                               (2.18) 

HO R HO R                                                                                                                   (2.19) 

Formation of other peroxy species: 

2 CB 2O e O                                                                                                                           (2.20) 

2 2O H HO                                                                                                                          (2.21) 

2 2 2 2 2 2O HO O HO H O                                                                                                  (2.22) 

2 2 2 22HO O H O                                                                                                                    (2.23) 

2 2 CBH O e OH OH                                                                                                            (2.24) 
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2 2 2H O O OH OH                                                                                                            (2.25) 

 Extensive investigation have been carried out by several research groups (Choi et al., 1994; 

Serpone et al., 1995; Colombo and Bowman, 1995; Bahnemann et al., 1997; Berger et al., 2005) 

in order to identify the factors that govern the dynamics of interfacial electron and holes transfer 

reactions.  According to Choi et al. (1994), the process of charge generation is very rapid and is in 

the order of femtoseconds (fs).  By using UV/Vis absorption spectroscopy techniques, Colombo 

and Bowman (1995; 1996) found that the process of photo-generated electron trapping is in the 

order of 10-10 s.  About 90% of the excited pairs may actually recombine within 10-9 s upon 

illumination (Colombo and Bowman, 1995; 1996).  Choi et al. (1994) also found that shallow 

trappings of both holes and electrons took place in the order of 10-10 s while deep trappings of 

electrons required 10-8 s.  Interfacial charge transfer was estimated to occur between 10-7 and up 

to 10-3 s (Choi et al. 1994).  Such results highlight that the overall efficiency for interfacial charge 

transfer is determined by the competition between the recombination and the trapping of charge 

carriers, as well as by the completion between the recombination of trapped charge carriers and 

the interfacial charge transfer (Hoffmann et al., 1995; Henderson et al., 2003). 

2.6. Reaction Kinetics 

 

 When investigating the kinetics of a photocatalytic reaction, there are series of elementary 

aspects that need to be considered.  Among the aspects are mass transport onto catalyst surface, 

adsorption, electron-pair generation, charge transfer and desorption processes (Ilisz et al., 1999; 

Herrmann, 2005).  The proposed reaction mechanism in a well-mixed powdered-dispersion  photo-

reactor is usually based on a reaction controlled by adsorption kinetics as mass transfer limitations 
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have been found to be negligible (Matthews, 1990; Bacsa and Kiwi, 1998).  In general, the kinetics 

of photo-mineralization of organic substrates on steady state illumination fit a Langmuir-

Hinshelwood (L-H) kinetic scheme (Ollis, 2005).  As the L-H model is surface-area dependent, 

the reaction rate is expected to increase with irradiation time since less organic substrate will 

remain after increased irradiation time with higher surface availability. A zero rate of degradation 

is associated with total mineralization of the target contaminant.  Numerous assumptions for the 

L-H saturation kinetics have been made, and in applying this approach for the determination of 

rate of photo-mineralization, any of this four possible scenarios is valid: (i) reactions take place 

between two adsorbed components of radicals and organics; (ii) the reactions are between the 

radicals in water and adsorbed organics; (iii) reactions take place between the radical on the surface 

and organics in water; (iv) reaction occurs with both radical and organics in water (Chong et al., 

2009). 

The L-H model was initially developed to quantitatively describe gaseous-solid reactions 

(Satterfield, 1970). It was later used by Ollis (1985) to describe solid-liquid reactions. This 

approach assumes that reactions take place at the surface of the catalyst particle. According to this 

model, the rate of reaction ( r ) is proportional to the fraction of surface covered by the substrate     

(θ ): 

LH

dC
 = k θ

dt
r                                                                                                                                 (2.26) 

 Langmuir’s equation, which relates the surface coverage   to the initial concentration of 

the substrate C, can be expressed as a function of the adsorption equilibrium constant K,  

KC
θ =

1+KC
                                                                                                                                            (2.27) 
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and replacing in Eq. 2.26, gives: 

LH
LH

k KCdC
= k θ = 

dt 1+KC
r                                                                                                        (2.28) 

LHk  is the true rate constant, which takes into account several parameters (Fernandez et 

al., 1995), such as the catalyst mass, photon flow efficiency, O2 layer adsorbed on TiO2. The value 

of LHk  is also found to exhibit a dependence on the flow rate, indicating mass transfer dependence 

(Turchi and Ollis, 1988). K is the L-H adsorption equilibrium constant, or the Langmuir constant.  

In photocatalytic studies the value of K is obtained empirically through a kinetic study in the 

presence of light, or it can be obtained using a linearized form of Eq. 2.28, where 1 r is plotted 

against 1/C: 

LH LH

1 1 1
+

k k KCr
                                                                                                                   (2.29) 

 C is the concentration of organic pollutant or substrate at time t.  Applicability of Eq. 2.28 

depends on several assumptions, which include: (i) the reaction system is in dynamic equilibrium; 

(ii) the reaction is surface mediated; (iii) the competition for TiO2 active sites by the intermediates 

and other reactive oxygen species is not limiting (Chong et al., 2009). 

 Eq. 2.28 can be integrated to yield: 

 0
0 LH

C
ln + K C  - C  = k Kt

C

 
 
 

                                                                                                (2.30) 

where C0 is the initial concentration of organic substrate and t is the irradiation time.  
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Eq. 2.28 will become zero order when the concentration C (mol L-1) is relatively high, that 

is, larger than 35 10  (Herrmann, 1999), since KC > 1, in which case the reaction rate will be 

maximal. In the case of diluted solutions, C (mol L-1) < 310 , KC becomes 1, and the 

denominator of Eq. 2.28 can be neglected, thus turning it into an apparent first order reaction: 

LH app

dC
= k KC = k C

dt
r                                                                                                          (2.31) 

where appk  is the apparent rate constant of a pseudo first order reaction.  Therefore, Eq. 2.30 can 

be simplified to a first order reaction when C0 is small, in which case the resulting equation is: 

0
app

C
ln = k t

C

 
 
 

                                                                                                                          (2.32) 

 The apparent rate constant, however, is only served as a comparison and description for 

the photocatalytic reaction rate in the reactor system.   

 A lump-sum L-H saturation kinetics profile has also been used to simplify the 

approximation for a specific photocatalytic reactor system (Minero et al., 1996).  In such an 

empirical lump-sum L-H approach, the degree of organics mineralization is actually expressed in 

terms of TOC (Eq. 2.33): 

 
 

1

,0

2 3

TOC

TOC
TOCr



 



                                                                                                              (2.33) 

Eq. 2.33 allows the prediction of TOC degradation as a function of irradiation time.  Similar 

reciprocal plots of 1 r against  1 TOC can be used to determine the empirical parameters 1 2, 

and 3 as in Eq. 2.29.  The irradiation time taken to achieve the fractional degradation of TOC can 
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also be estimated when Eq. 2.33 is expressed as in Eq. 2.30.  This empirical lump-sum approach 

is a useful tool for approximation of mineralization kinetics in a photo-reactor, provided that 

sufficient data is collected for the determination of rate parameters (Chong et al., 2010). 

2.7. Parameters Influencing the Photocatalytic Process 

 

 There are many factors that can affect the reaction rate in a typical photocatalytic process.  

They can be classified generally into extrinsic and intrinsic parameters.  The extrinsic parameters 

include the pH of the solution, the initial concentration of organics, the light intensity, the catalyst 

dosage, the temperature, the circulating flow rate, the oxygen flow rate and the presence of ions in 

solution (Litter, 1999; Basca and Kiwi, 1998; Surender et al., 1998; Xu et al., 1999; Hermann, 

2005).  The intrinsic properties of the photocatalyst such as the surface area (active site), the 

crystalline phase, and the porosity can also influence the photocatalytic performance considerably. 

 2.7.1. Extrinsic Parameters 

 

 The incident light intensity ( ) determines the rate of electron-hole pairs generation, 

which consequently influences the electron-hole pair concentration on an illuminated 

semiconductor.  For a powdered dispersion system, degradation rates have been found to be 

proportional to 
1 at low intensity, and to

0.5 at high intensity (Al-Sayyed et al., 1991; Chen and 

Ray, 1999).  The square root dependence of the reaction rate at high intensity is attributed to the 

enhanced electron-hole recombination. 

 The pH of the solution has been found to have a number of significant effects on the 

photocatalytic degradation of organics.  Due to the amphoteric nature of TiO2, hydroxyl groups on 
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the semiconductor surface can undergo protonation or de-protonation depending on the pH, as 

follows (Kormann et al., 1991): 

 s

2 a1-TiOH  -TiOH H pK                                                                                           (2.34) 

 s

a2-TiOH  -TiO H pK                                                                                                (2.35) 

where □-TiO2 represents the “titanol” surface group and 
s

a1pK  and 
s

a2pK  are the acid dissociate 

constants.  From a previous study, 
s

a1pK  and 
s

a2pK  were reported to be 4.5 and 8.0, respectively, 

to yield a zero charge potential pH,   s s

zpc zpc a1 a2pH pH = pK =pK 2 value of 6.25 (Kormann et al., 

1991).  The zpcpH value would vary for different samples of TiO2.  Below zpcpH , a net positive 

charge accumulates on the TiO2 surface due to the increasing fraction of the total surface species 

that are present as 2-TiOH
, while at a high pH the surface has a net negative charge due to a 

significant fraction of the total surface sites being present as -TiO (Kormann et al., 1991).  The 

effect of pH on the reaction rate can be interpreted in terms of electrostatic interactions between 

the charged TiO2 surfaces and the organics.  For organics that undergo de-protonation/protonation 

reactions, the change in pH will influence their adsorption quantity as well as the surface 

complexation modes.  In addition, the pH also changes the band edge energy or flat band potential, 

FE  of TiO2 in solution.  The FE  follows Nernstian pH dependence and decreases by 59 mV per 

pH unit (Ward et al., 1983).  This changes the redox potentials of the photo-generated electrons 

and holes in the conduction and valence bands.  In a slurry type reactor, there has been evidence 

that the pH has an influence on the dispersion stability, and therefore the observed photo-

degradation rates (Dyk and Heyns, 1998).  The pH of the solution has also been reported to affect 

the stability of photocatalyst that is immobilized on a support.  It was found that the coated film 
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showed excellent stability in the range of pH 2-9.  Outside this pH range, the coating became 

unstable and was stripped off the glass support (Haarstrick et al., 1996). 

 Dissolved oxygen plays an imperative role in the overall photocatalytic reaction.  In the 

absence of any highly electronegative species, adsorbed O2 molecules scavenge electrons from 

TiO2 surface to form 2O
 (Szczepankiewicz et al., 2000; Xiao-e et al., 2000; Berger et al., 2005).  

Gerischer et al. (1992; 1993) analyzed the photooxidation kinetics of organic molecules on the 

powdered TiO2 dispersion and found that the rate of photooxidation is equal to and limited by the 

reduction rate of the dissolved oxygen in the solution.  According to their findings, if O2 is not 

reduced at a sufficiently high rate, electrons accumulate on the photocatalyst particles, and the rate 

of recombination is enhanced until the sum of the electron-hole recombination and the electron 

transfer to O2 is equal to the rate of the hole photo-generation (Gerischer, 1993; Gerischer and 

Heller, 1992).  Berger et al. (2005) showed that an additional of ~83% 2O
 was produced as photo-

generated electrons were transferred to O2 during irradiation.  Unlike the photocatalysis reaction, 

the efficiency of photoelectrocatalysis is less dependent on the dissolved oxygen concentration, 

due to the retarding effect of applied potential on electron-hole recombination.  Kim and Anderson 

(1994) reported that photoelectrocataltytic systems could be used in anaerobic conditions as the 

electrons reduce any available species on the cathode.  The presence of oxygen also enhances the 

formation of superoxide radical 2O
.  As mentioned earlier, this radical is capable of attacking 

other organic molecules and could function as an alternative source of surface bound hydroxyl 

radicals upon protonation (Fox and Dulay, 1993). 

 Dissolved ions in solution can significantly affect the photocatalysis process (Abdullah et 

al., 1990; Fernandez-Nieves et al, 1999; Chen et al, 1997; Lu et al, 1999; Beydoun et al., 2002; 
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Lam et al., 2005).  As a consequence of competitive adsorption on the photo-activated reaction 

sites, and for photo-generated holes, the presence of sulphate, chloride and phosphate ions, even 

at a concentration of 1 mM, can reduce the rate by 20 to 70% (Abdullah et al., 1990). For example, 

Abdullah et al. (1990) reported that chloride ion interacts with photo-generated holes to generate 

chlorine radicals which do not initiate any oxidation reactions of the pollutant.  Transition metal 

ions such as Fe3+ and Cu2+ have also been found to induce significant effect on photocatalytic 

reactions.  Beydoun et al. (2002) reported that the presence of 5 mM Cu2+ improved the 

photocatalytic oxidation of sucrose by 3 times compared to the oxidation by the pure TiO2 system.  

The enhancement was attributed to electron trapping by the 2Cu    2Cu e Cu e Cu      

which subsequently quenched the recombination reaction as well as to homogeneous reactions 

such as photo-redox cyclic and photo-Fenton type reactions (Beydoun et al., 2002).  Lam et al. 

(2005) found that 3Fe  enhanced the photochemical and photocatalytic oxidation of resorcinol. 

OH was said to yield from Fe(III) hydroxo-complex and advanced the oxidation of the organic 

(Lam et al., 2005). 

 2.7.2. Intrinsic Parameters 

 

 TiO2 can exist in either amorphous or crystalline form.  The crystalline TiO2 has three 

polymorphs, namely anatase, rutile, and brookite (Gamboa and Pasquevich, 1992; Yang et al., 

1997).  Upon heating, the metastable forms, brookite and anatase, transform exothermically and 

irreversibly to the stable rutile form.  The photocatalytic activity of anatase has been extensively 

studied.  In general, it is usually assumed that anatase is more photocatalytically active than rutile 

(Chhabra et al., 1995; Basca and Kiwi, 1998), although there is some evidence that this is not 

always the case.  Domenech (1993) has shown in his study that a rutile sample is a better 
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photocatalyst than anatase for the oxidation of cyanide.  Abe et al. (2001) also claimed that rutile 

is more active than anatase towards the oxidation of water.  In many photoelectrochemical studies 

of TiO2, no clear distinction is made between the behavior of anatase and that of rutile.  When the 

inferior role of rutile is observed, it is often related to the lower concentration of surface hydroxyl 

groups.  The surface hydroxyl group is responsible for the adsorption of oxygen in TiO2.  Oosawa 

and Gratzel (1984; 1988) have previously shown that by removing the surface hydroxyl on TiO2 

through calcinations, the photocatalytic generation of oxygen could be increased significantly 

compared to the uncalcinated sample.  Given that oxygen adsorption is required to trap the 

photoelectrons during photocatalysis, the low hydroxylation in rutile would result in higher 

recombination of electron-hole pairs compared to anatase, and therefore, produce lower quantum 

efficiency. 

 In applied catalysis, a high surface area is beneficial as it provides higher concentration of 

active sites per square unit, which generally leads to superior reactivity (Abrahams et al., 1985).  

In the case of TiO2, the number of active sites is taken as the product of the surface density of OH 

groups and the specific surface area (Mills and Le Hunte, 1997).  Physical gas adsorption is 

normally the technique of choice to measure the surface area of TiO2 powder.  However, the actual 

surface area of the TiO2 photocatalyst dispersed in solution will also depend on the degree of 

aggregation.  Although all the surface sites occupied by the hydroxyl groups might not be 

necessarily active, Kobayakawa et al. (1990) had pointed out that the concentration of OH is 

closely related to the density of surface hydroxyl groups.  
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2.8. Applications and Commercially Available Photocatalytic Processes and Products 

 

 Most of the early work on photocatalysis focused on the use of semiconductors in the 

powdered dispersion form.  As a result, extensive work on the synthesis of TiO2 photocatalyst has 

been carried out by different groups.  Predictably, different samples of TiO2 exhibit different 

photocatalytic activities towards the same organic substrate under otherwise identical experimental 

conditions (Mills and Sawunyama, 1994; Serpone et al., 1996).  Variances in morphology, crystal 

phase, specific surface area, particle aggregate size and surface density of OH groups in the TiO2 

samples are attributed to such differences in activity (Mills and Le Hunte, 1997).  By common 

consent, a standard form of TiO2 is needed such that general findings of one group can be related 

to another.  Degussa P25 is a commercially available TiO2 sample.  Owing to its high photoactivity 

towards a wide range of organic substrates, it has been set as the standard for photonic efficiency 

comparison for various photocatalyst (Serpone et al., 1996; Serpone, 1997; Ohtani, 2008).  The 

material is produced from high temperature (1200 C) flame hydrolysis of TiCl4 in a stream of 

hydrogen and oxygen.  It consists of non-porous crystals of anatase and rutile in a ratio of 80:20 

(Mills and Le Hunte, 1997).  It is manufactured for use as a thermal stabilizer for heat resistant 

silicone rubber (Fujishima et al., 1999).  Other commercially available photocatalyst include the 

ST series, produced by Ishihara Sakai Chemical Industries, and Hombikat UV100, supplied by 

Sachtleben Chemie. 

 There are several companies that promote semiconductor photocatalysis as a method for 

water purification and also provide commercial scale photo-reactor systems for such application.  

For example, Purifics Environmental Technologies Inc. is a Canada-based water purification 

company which supplies industrial photocatalytic treatment systems to remediating ground water.  

Their Photo-Cat ® system utilizes TiO2 in the form of powdered dispersion and operates at pH 3 
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or lower to avoid iron fouling (Purifics ES Incorporated: 15/06/2008: Photo-Cat).  The TiO2 

powder is recovered via a proprietary filtration system.  The use of powdered TiO2 dispersions in 

commercial photo-reactors is attractive because such dispersions are cheap, very effective, and 

easy to replace.  However, a method of filtration is required to allow for the separation of 

photocatalyst and the purified effluent.  This step is no easy task, and has restricted the widespread 

application of this technology for water treatment. 

 In recent years, there is a growing interest in the use of thin, transparent TiO2 films for the 

photo-destruction of thin organic films.  Such TiO2 films need to be clear, adherent and 

photoactive.  In order to obtain such TiO2 films, the particles used must be smaller than the 

wavelength of visible light, typically less than 30 nm.  This largely rules out the use of Degussa 

P25 particles, which have aggregate particle diameters of approximately 0.1 μm.  Numerous 

research groups have developed several methods for creating such films.  It usually involves a sol-

gel process in which a titanium alkoxide is hydrolyzed, coated onto a glass substrate, and 

subsequently calcinated at high temperature (~500 C) for a short period.  The thickness of the film 

is usually in the range of 100 nm.  In addition to being photocatalytically active, these films are 

also capable of photo-induce super-hydrophilicity.  Upon ultra-bandgap irradiation, the surface 

properties of the TiO2 film are altered and it becomes exceedingly hydrophilic.  As a consequence, 

water droplets cannot form on the film, but spread across its surface.  These films have an anti-

fogging action.  

 TOTO is a major ceramics company in Japan that appears to be one of the pioneers in 

applying super-hydrophilic photocatalyst technology to their products.  These products are 

commercialized under the name of Hydrotech TM.  The procedure consists on depositing the TiO2 

photocatalyst onto a thin plastic film before being applied onto mirrors or tiles (TOTO Limited: 
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20/06/2008: Principle of Hydrotech Technology).  Murakami Corporation is another Japanese 

company that supplies TiO2 coated mirrors.  A layer of TiO2 is coated onto a porous silica film.  

The silica layer is highly hydrophilic but tends to lose this property over time as stains are 

deposited.  The function of the TiO2 underlayer is to photo-degrade any organic material that may 

deposit onto the surface of the film, thus preserving the overall hydrophilic nature of the coating 

(Murakami Corporation: 21/06/2008: Hydrophilic Clear Mirror).  There are also a few companies 

that supply TiO2 coated self-cleaning glass, such as Activ TM, produced by Pilkington Glass, and 

SuncleanTM, supplied by Pittsburgh Plate Company.  Most of above mentioned companies 

employ a chemical vapor deposition method to prepare their TiO2 coatings. 

 In addition to the previously discussed applications, Matthews et al. (1990) described a 

method which uses TiO2 photocatalyst to convert organic carbon to CO2 in order to determine the 

amount of organic carbon in water.  Based on the same concept, Fox and Tien (1988) also reported 

a flow-through TiO2/Pt photochemical detector suitable for attachment to a high-pressure liquid 

chromatograph for the detection of oxidizable functional groups.  More recently, 

photoelectrochemical methods to determine chemical oxygen demand have been developed based 

on the principles of photocatalysis and photoelectrocatalysis (Kim et al., 2000; Zhao et al., 2004). 

2.9. Preparation of TiO2 Films 

 

 Creating TiO2 films onto the surface of various substrates has been done by many research 

groups.  Often, the immobilization technique and the post immobilization heat treatment determine 

the crystal structure, crystallinity, particle size and surface hydroxyls of the TiO2 films produced, 

which in turn establishes the photocatalytic properties of the catalyst.  The different techniques 

used are summarized in the following section: 



 

41 
 

 2.9.1. Powder Films 

 

 Pre-synthesized TiO2 powders can be deposited on a substrate using “doctor Blading” 

method.  In this method, separately made photocatalyst such as Degussa P25 is ground in a mortar 

in a mixture of water, acetyl acetone and surfactant to obtain a well-dispersed colloidal sol (Cao 

et al., 1996).  The colloidal sol is then dropped on a substrate and spread with a glass rod to give a 

thick TiO2 film.  Scotch tape is usually used as spacer to adjust the thickness of the film.  The air-

dried film is then sintered to improve the adherence and conductance of the particles onto the 

substrate.  This procedure is relatively simple and has been adopted widely to prepare TiO2 

electrodes for dye-sensitized solar cells.  However, such films are usually not mechanically robust 

and be easily removed by rubbing or by applying the 3M Scotch Tape test, and thus highly 

unsuitable for photocatalytic applications (Mills and Le Hunte, 1997).  Besides, the optical opacity 

of TiO2 powder films renders them unsuitable for many of the current commercial applications 

such as transparent photoactive coatings on glass or ceramics. 

 Pre-synthesized TiO2 can also be deposited onto a substrate by electrophoretic deposition 

(EPD).  In this technique, charged particles in a suspension of electrolyte, particles, additives and 

solvent are moved toward an oppositely charged electrode and are deposited onto a substrate under 

an applied DC electric field (Byrne et al., 1998; Yum et al., 2005).  The films obtained from this 

method are reproducible.  This technique is particularly useful when the substrate is susceptible to 

high temperature thermal treatment.  Other advantages of EPD include its low cost, the fact that it 

is relatively fast and reproducible, and its potential for use in continuous processing. 

 An alternative method for TiO2 immobilization presented in the literature refers to the 

deposition of pre-synthesized TiO2 on a porous substrate like silica gel or quartz by preparing a 
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suspension with Degussa P25 and water through sonication for a few minutes, followed by wet 

deposition on the target substrate.  Then, the substrate is dried at high temperature (~500 °C) for 

an hour, till the TiO2 has anchored (Bideau et al., 1995, Vinodgopal and Kamat, 1995). 

 2.9.2. Chemical Vapor Deposition 

 

 Chemical vapor deposition (CVD) is a generic name for a group of processes that involve 

depositing a solid material from a gaseous phase.  During the process, a volatile compound of the 

substance to be deposited is vaporized and the vapor is thermally decomposed or reacted with other 

gases, vapors or liquids to yield a non-volatile reaction product which deposit onto the supports 

(Rice, 1987; Jung et al., 2005; Murakami et al., 2004).  The supports are normally held at an 

elevated temperature (800 °C – 1150 °C), and the deposition chamber is maintained at a reducing 

atmosphere (Jung et al., 2005; Rice, 1987; Murakami et al., 2004).  Flow rate, gas composition, 

deposition temperature, pressure, deposition chamber geometry, are the process parameters by 

which deposition can be controlled to have the desired characteristics (Shinde and Bhosale, 2008).  

As CVD is capable of depositing high quality thin films without post-annealing for crystallization, 

this method is employed commonly in the industry for the deposition of TiO2 films on glass 

supports.  In addition, this process is able to evenly coat variable shaped surfaces such as screws 

threads, blind holes or channels or recesses, without build-up on edges (Kempster: 01/07/2008: 

Recent Development in Chemical Vapor Deposition).  CVD is also claimed to be less costly than 

their wet counterparts due to the expensive precursors (i.e. metal alkoxides) used in the wet 

chemical precipitation methods (Ying and Sun, 1997).  Despite its advantages, CVD often involves 

dealing with toxic and corrosive gases, and it also has to be carried out at relatively high 

temperatures, therefore limiting its application only onto supports that can tolerate such conditions. 
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 2.9.3. Oxidation of Ti Metal 

 

 Due to the reactive nature of titanium, a natural oxide film normally forms on the metal.  

The thickness of this oxide layer ranges from 5 to 70 Å, depending on the composition of the metal 

and the surrounding medium (Aladjem, 1973).  The formation mechanism of anodic oxide films 

starts with the development of an adsorbed layer of oxygen on the metal surface.  The formation 

of the oxide layer is preceded by the electric charging of the double layer at the metal-electrolyte 

interface (Young, 1961; Yahalom and Zahavi, 1970; Aladjem, 1973).  The oxide growth involves 

field-assisted migration of Ti2+ ions through the oxide films.  Both Ti2+ and O2- contribute 

simultaneously to the growth at the oxide solution interface (Yahalom and Zahavi, 1970; Ammar 

and Kamal, 1971a; 1971b).  The growth behaviors and properties of the oxide layer are critically 

influenced by electrochemical parameters (Sul et al., 2001).  The increasing thickness of the oxide 

layer results in the systemic changes of the surface topography, particularly in the surface pore 

configuration (Jeong, 1993).  The role of the electrolyte in this formation mechanism has been 

studied in detail. It is generally accepted that the nature of the anions influences both the chemical 

composition (Tabrizi, 1989) as well as the crystal structures of the TiO2 (Mattsson and Rolander, 

1985; Arsov et al., 1991; Fonseca et al., 1995). 

 2.9.4. Sol-Gel Technique 

 

 The sol-gel technique is one of the most common for preparing TiO2 films.  This process 

generates inorganic oxides via gelation, precipitation or hydrothermal treatment (Ying and Sun, 

1997; Niederberger, 2007).  The main step in this process involves the hydrolysis of a precursor 

material, such as a metal alkoxide or an inorganic salt, to form oxides.  The reaction between the 

precursor material and water results in the formation of a M-OH bond: 
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   24 3
Ti- OR H O RO -Ti-OH ROH                                                                                 (2.36) 

Once the OH groups are created, propagation occurs through a polycondensation process 

producing condensates (Gopal et al., 1997).  The three competitive mechanisms of condensation 

are summarized as follows: 

 

Olation 

 

Alcoxolation 

 

Oxolation 

                          

 

A heat treatment step is usually required to transform the amorphous oxide formed into a 

crystalline form.  By varying certain parameters during the hydrolytic condensation, one can 

change the kinetics of the reactions that form the molecular structure (Sullivan and Cole, 1959; 

Yoldas, 1982; Schubert, 2005).  This allows for the tailoring of certain desired structural 

characteristics, such as compositional homogeneity, grain size, particle morphology and porosity 

(Ying and Sun, 1997).  These parameters include the type of metal alkoxide (alkyl groups in the 
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alkoxide), the amount of water (R value = H2O/metal alkoxide mole ratio), pH (catalyst), 

concentration of metal alkoxide (molecular separation by dilution), aging and the reaction 

temperature (Yoldas, 1984). 

 The main advantage of the sol-gel technique is that it allows extremely uniform mixtures 

of different colloidal oxides to form a sol or a gel that is homogeneous on a molecular or nanometer 

scale.  The other motivation for sol-gel processing includes higher purity products, and lower 

processing temperatures, when compared to CVD.  The process also permits to generate 

nanocrystalline materials with little capital investment (Ying and Sun, 1997; Niederberger, 2007).  

However, the sol-gel technique requires long processing times, and is prone to shrinkage of 

products during drying and sintering. 

 Considerable effort has been extended to understand the reaction mechanisms involved 

during the different processes used for preparing TiO2 films, and to identify key experimental 

parameters which can be manipulated to control these systems.   
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3                                         

Experimental Phase 
 

This section describes the equipment, materials and methods used during the laboratory 

experimental phase of the research. In this chapter, the following topics are discussed in detail: 

 Description of the photocatalytic treatment system, including characteristics and 

components of the bench-scale tubular reactor, UV-C source and peristaltic pump. 

 TiO2 photocatalyst deposition on granular silica gel by the selected sol-gel technique. 

 Experiment design and methodology for evaluation of the following system characteristics: 

o TiO2 uniformity and stability 

o Reactor maximum efficiency 

o Effect of intrinsic and extrinsic parameters (mass and size of silica gel, number of 

photocatalyst coats, aeration, initial contaminant concentration, conductivity and 

pH) on contaminant photo-degradation. 

An introductory section briefly describing the preliminary research leading to the final system 

design has also been included. 

3.1. Preliminary Research 

Initial stages of the present research focused on defining the objectives of the project and 

accordingly selecting the type of treatment process for experimental development. Aiming to 

investigate the effectiveness and efficiency of an advanced TiO2-based oxidation technology on 
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hydrocarbons-contaminated wastewater, photoelectrocatalysis was initially researched owing to 

its apparent simplicity and superior efficiency in comparison to more conventional methods like 

photocatalysis and catalytic/chemical oxidation. Several attempts to carry out the proposed project 

were made during a research phase that extended for approximately 2 years, from the fall of 2011 

until mid-2013, including the fabrication of the photoelectrocatalytic bench-scale reactor shown 

in Figures 3.1 a and b. 

The design and construction of a photoelectrocatalytic rectangular batch reactor with 

recirculation made of UV-resistant acrylic laminate began in September of 2011.  Titanium plates 

305 mm x 355 mm x 6 mm were used as the cell electrodes, and an electric voltage applied from 

a regulated DC power supply.  The source of photons consisted in three UV-C lamps centrally 

aligned along the longitudinal axes of the vessel and encased in high-transparency quartz sleeves. 

6 liters of bulk liquid would be recirculated horizontally through 4 evenly spaced inlet/outlet ports 

using a peristaltic pump, as seen in Figures 3.1 a and b. 

 
Figure 3.1.a. Photoelectrocatalytic bench-scale reactor 
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Figure 3.1.b. Photoelectrocatalytic bench-scale reactor 

 

It was thought that by coating the titanium plates with a film of TiO2, catalyst would be 

activated by the UV irradiation from the lamps, while the applied electric potential would impede 

recombination of the photo-generated electron-hole sites. Initially, TiO2 was deposited 

sequentially onto the plates by spray pyrolysis using a 15% w/w anatase aqueous dispersion 

provided by US Research Nanomaterials Inc. The resulting catalyst coat, depicted in Figure 3.2, 

showed poor adherence to the metal surface during photoelectrocatalytic experiments, falling off 

after few hours of use. Next, a different method consisting in direct TiO2 synthesis on the metal 

surface by a hydrothermal process (Mali et al., 2011) was attempted.  According to this method, 

the metal plates were placed in a Teflon®-coated container, covered with a 

TiCl4/ethanol/HCl/HNO3/NaCl precursor solution and heated at 120°C for 3 hours, as shown in 

Figure 3.3.  The procedure could not be completed due to the decomposition of Teflon® at high 

temperatures and low pH.   



 

49 
 

 

 
Figure 3.2. Titanium plate coated by spray pyrolysis. 

 

 

 

 
Figure 3.3. Teflon® tray containing titanium plate submerged in precursor solution. 
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 Finally, it was decided to leave the metal plates uncoated and add the catalyst in the form 

of anatase nano-powder directly to the bulk liquid in an attempt to use the reactor as a 

photocatalytic system.  The results obtained from several experiments showed low catalyst 

efficiency possibly due to insufficient photon supply.  This reactor was abandoned in early 2013.  

 Later that year, the construction of the stainless steel tubular reactor described in Section 

3.2 was started.  This reactor was initially conceived as a photoelectrocatalytic system, with the 

original design including a UV bulb encased in a TiO2-coated electrically conducting quartz 

sleeve.  An electric potential would be applied to the conductive glass by a DC power supply.  

Attempts were made to apply fluorine-doped-tin-oxide (FTO) conducting coatings onto the quartz 

support by spray pyrolysis according to the method described by Shinde et al. (2008).  A stannic 

chloride pentahydrate/ammonium fluoride precursor was sprayed onto the clean quartz sleeve 

through a nozzle using compressed air as carrier gas. Next, using the same application technique, 

a TiO2 thin film synthetized from a titanium (iv) isopropoxide/isopropanol mixture would be 

deposited onto the conductive support, as explained by Ayieko et al. (2012).  By following this 

procedure, it was not possible to reproduce the results reported in the literature. The coated quartz 

surface never reached the conductivity necessary for the intended application, forcing to reengineer 

the existing reactor design, which later resulted in the definitive photocatalytic treatment system 

described in the following sections. 

 

3.2. Photocatalytic Treatment System 

The photocatalytic treatment system designed and constructed for the present research consists 

of a stainless steel tubular batch reactor equipped with a concentric UV-C lamp, shown in Figure 

3.4.a and 3.4.b. During operation, a bed of silica gel particles coated with TiO2 is fluidized 
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uniformly throughout the bulk liquid in the reactor by means of fluid recirculation. Phenol was 

selected as the model contaminant, and its degradation rate under different operational conditions 

was measured using chemical oxygen demand (COD) as indication of pollutant concentration. 

The selection and design of the photocatalytic reactor was made considering ease of 

implementation and light distribution uniformity across the bulk. Stainless steel 316 was used for 

all parts of the reactor, and it consists of a vertical tube 457 mm long, 50.8 mm inside diameter 

and 800 ml total capacity.  The photon source is a UV-C lamp (LMP-GPH436T5L/HO/4PSE) with 

a nominal output of 120 μW cm-2 at 254 nm. It is placed concentrically inside the reactor and 

encased in a high clarity quartz sleeve of 25.4 mm external diameter.  The resulting annular area 

of the reactor is 1.6x10-3 m2. 

The irradiated length, which corresponds to the arc section of the lamp submerged in liquid is 

375 mm, then yielding an effective or irradiated volume of 600 ml.  

 

 

 

 

 

 

 

Figure 3.4.a. Plan view of the photocatalytic reactor showing the placement of inlet and outlet 

ports, and fluid circulation pattern. 
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Figure 3.4.b. Elevation view of the photocatalytic treatment system showing the placement of 

inlet, outlet and oxygen supply ports, and fluid conduits. 

 

Table 3.1 shows a summary of the fixed characteristics and operational parameters of the 

reactor, such as irradiance and radiant flux, of the photocatalytic treatment system. 

 

Table 3.1. Characteristics and operational parameters of treatment system  

Parameter    Parameter     

Reactor inside diameter 50.8 mm  Irradiated length (LR) 375 mm 

Bulb case outside diameter 25.4 mm  Irradiated surface area (AR) 14962 mm2 

Annular area 1600 mm2  Irradiated volume (VR) 600 ml 

Annular area width 12.7 mm  Irradiance at AR (ER) 25 mW cm-2 

Total volume (VT) 800 ml  Radiant flux at AR (ΦR) 3740 mW 

         

The intensity of irradiated UV-C light perpendicular to the surface of the lamp as measured 

with a UV sensor (Cole Parmer Digital Radiometer UVX-25) is shown in Figure 3.5. 

Oxygen supply 

Sample collection 

Fluid conduit 

UVC bulb 
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Figure 3.5. Irradiance profile of UV lamp at 254 nm 
 

 

 
Figure 3.6. Bench-scale photocatalytic treatment system as used in the experimental phase. 
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At the top of the tube, rubber rings seal the reactor by closing the gap between the quartz 

casing and the internal metal surface, allowing for the supplied oxygen to remain above and in 

contact with the liquid surface at about 1x103 kPa. Stainless steel fittings that serve as water inlet 

and outlet ports are perpendicular and tangential to the surface of the tube (Figure 3.4.a), with the 

inlet placed at the bottom and the outlet port at the top of the reactor length.  As result, the fluid 

flows upward and in a helical pattern inside the reactor.  Additional inlets placed at the top and 

bottom end of the tube allow for water loading and oxygen supply, and sample withdrawing, 

respectively. Mixing in the batch reactor is achieved through fluid recirculation with a peristaltic 

pump (Cole Parmer Masterflex I/P modular analog pump with benchtop controller, model 77601-

10), and Tygon E-LFL Masterflex  tubing of 12.7 mm internal diameter, as shown in Figure 3.4.b 

and 3.6. The benchtop controller of the pump allows for flow rate variation in the range between 

1.4x10-5 m3 s-1 and 1.3x10-4 m3 s-1 as shown in Figures 3.7. 

 

 
 

Figure 3.7. Peristaltic pump calibration curve. 
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3.3. Phenol as Model Pollutant 

Most of the documented kinetic or mechanistic studies over the irradiated TiO2 surface usually 

involve a single model organic substrate. In the present research, phenol was selected as the target 

contaminant for all photocatalytic degradation experiments. Phenol is an aromatic organic 

compound characterized by a hydroxyl (-OH) group attached to a carbon atom that is part of an 

aromatic ring. It is known to be poorly adsorbed onto TiO2 surface and it also presents the back 

reaction in the degradation mechanism (Valencia et al., 2011).  

Under UV-Vis irradiation, an aqueous solution of phenol has a characteristic absorption 

spectrum with clearly identifiable behavior. A shown in Figure 3.8, in a 1 mmol L-1 aqueous phenol 

solution, absorption typically peaks at around 216 and 269 nm. This means that phenol is 

susceptible to direct mineralization through UV-C photolysis or photocatalysis, and such 

transformation can be tracked by monitoring the corresponding changes in its absorption profile. 

 

 

Figure 3.8. UV-Vis absorption spectrum of a 1.0 mmol L-1 aqueous phenol solution 
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Phenols and their degradation products (polyphenols, quinones, etc) are major toxic aquatic 

pollutants and they can inhibit or even eliminate micro-organisms in biological treatment plants 

(Laoufi et al., 2008). Also, as they are relatively stable and more soluble in water than alcohols, it 

is rather difficult to achieve their degradation to safe levels in the range of 0.1 – 1.0 mg L-1.  Even 

though photocatalysis has been proven to be an effective technique for eliminating phenolic 

compounds from wastewater, as complete mineralization has been achieved under a variety of 

conditions (Serpone et al., 1993; D’Oliveira, 1990; Azevedo et al., 2009; Laoufi et al., 2008; Bessa 

et al., 2001; Al-Rasheed et al., 2003, Tao et al., 2003), literature addressing the photocatalytic 

degradation of phenols in a fluidized bed reactor is scarce to this day. 

The path to complete mineralization of phenol involves the formation of numerous 

intermediates (Grimes and Ngwang, 2000). Fourteen intermediates have been identified when 

conducting experiments on phenol degradation. However, out of all the intermediates found, only 

three were formed in significant amounts: hydroquinone, catechol, and 3-phenyl-2-propenal, in 

this order (Azevedo et al., 2009).  Although hydroquinone and catechol are more toxic than phenol 

(Arana et al., 2010), acute toxicity tests showed that none of the intermediates, at the 

concentrations generated in the reaction mixture, exhibited a higher toxicity than the parent 

compound (Azevedo et al., 2009).   

From the engineering standpoint, the indirect mineralization path of phenol, which is 

characteristic of most aromatic hydrocarbons, combined with the non-selective nature of the OH  

and other oxidative radicals, means that the disappearance rate of the studied compound with 

irradiation time should not be referred as a reliable standard for reactor design purposes. Instead, 

the concentration of organics can be expressed collectively as COD or TOC concentration to yield 

an in-depth, all-inclusive understanding of the photo-mineralization process.  
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Phenol of molecular biology grade from Sigma Aldrich was used as the substrate in the 

synthetic wastewater.  A known concentration of phenol was dissolved by mixing in deionized 

water to achieve the desired COD in the final solution.  Complete oxidation of phenol to carbon 

dioxide and water occurs according to the following reaction: 

C6H5OH +  7O2
yields
→      6CO2  +  3H2O 

Therefore, for a given concentration of phenol in an aqueous solution, the theoretical COD can 

be estimated according to the relationship: 

COD = mmoles of Phenol L⁄  x 224
mg

mmol⁄                                                                                   (3.1) 

where COD is the chemical oxygen demand in mg L-1 of solution. 

Given the multiple intermediate products of phenol mineralization, the above relationship only 

applies to the initial aqueous phenol solution, in which phenol has not yet undergone any 

transformation toward the final oxidation products.  Once photocatalytic reactions initiate, the 

COD of the solution will reflect the concentration of the remaining phenol plus that of the reaction 

intermediates. 

 

3.4. TiO2 Synthesis and Deposition 

The fluidized bed reactor devised for this research is expected to maximize exposure of the 

surface bounded catalyst to photon radiation, improving quantum efficiency over the limited light 

penetration achieved in fixed-bed reactors. Also, by having the TiO2 fixed to the bed particles, 

downstream separation of the catalyst is not necessary.  
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The selected bed material consists of high-purity grade silica gel particles (SiO2, Davisil Grade 

636) size range 250 to 500 μm (35-60 mesh) supplied by Sigma Aldrich. Figure 3.9 shows the 

particle size distribution analysis performed on 1 kg of silica gel. Experiments were performed 

using sieve-separated particles retained in the 0.2, 0.3 and 0.425 mm sieves with mean geometric 

diameters of 0.224, 0.357 and 0.461 mm, respectively. A bed of silica gel of any of the evaluated 

sizes is fully expanded throughout the annular volume of the reactor in the experimental range of 

flow rate, while also allowing for rapid particle settling after the operation stops.   

 

Figure 3.9. Cumulative size-frequency for Davisil silica gel 35-60 mesh. 

 

For a silica sample of any of the selected sizes, bed porosity (ε) in water was calculated to be 

0.45, with an approximate pore volume of 0.95 ml g-1 of silica gel. A sphericity factor (φ) of 0.78 

was chosen for the silica gel beads due to the angular shape of the sample particles observed under 

the scanning electron microscope. The external silica surface area was then find through the 

following equation: 
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Am =
Pore volume

φ

6(1−ε)

dε
                                                                                                 (3.2) 

where d represents the mean geometric diameter of the silica beads. 

Table 3.2 shows the external surface area per unit mass for the different particle diameters used 

as catalyst support. 

Table 3.2. External surface area per unit mass for different silica gel particle diameters. 

 

Mean geometric 

diameter  (d), m 

Hydraulic radius of 

silica beads (R), m 

External silica surface 

area per gram (Am), m2 g-1 

2.24E-04 2.38E-05 3.99E-02 

3.57E-04 3.80E-05 2.50E-02 

4.61E-04 4.90E-05 1.94E-02 

 

TiO2 was synthetized and deposited on the silica gel particles by dip coating and heating of a 

TiO2 precursor solution using a modified procedure of the sol-gel method presented by 

Kobayakawa et al. (1998). According to this technique, 2.7 ml of concentrated HCl were added 

into a mixture of 15 ml titanium (IV) isopropoxide (98+% by Acros Organics) and 100 ml absolute 

ethanol. A 100 ml beaker containing silica gel beads was placed in a 300-ml beaker containing 

ethanol. This 300-ml beaker was covered with a watch glass and warmed at 80 °C for 1 hour.  

Silica gel beads were then washed with ethanol, immersed in the precursor solution for 90 min, 

filtered using suction, and dried at 110°C following drying at room temperature overnight. Silica 

gel beads were then heated in an electric furnace at 450°C for 3 hours to convert the precursor gel, 

formed by coated sol gelation with water vapor in air during filtration and drying, to TiO2 

(Kobayakawa et al., 1998). In this last step, the electric furnace automatically increased 

temperature at 10°C min-1 until reaching 450°C, then the resultant sample was allowed to cool 
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naturally in the furnace. To increase the amount of fixed TiO2, the above process, starting from 

ethanol treatment, can be repeated as many times as desired.  For the purpose of this research, up 

to three sol-gel layers were applied onto silica gel beads using the above described coating method, 

and its weight recorded after each deposition. The quality and uniformity of the photocatalyst layer 

was also analyzed by direct observation of the deposited material through scanning electron 

microscopy with a Carl Zeiss LEO 1530VP-FESEM located in the Advanced Materials Research 

Institute (AMRI) of the Department of Chemistry at UNO. 

The mass of fixed catalyst on the silica particles increases with the number of layers, and the 

latter affects the quality and uniformity of the deposited TiO2.  Consequently, the amount of TiO2 

deposited determines the surface area of catalyst available for irradiation, and therefore, the overall 

photocatalytic efficiency of the system. Kobayakawa et al. (1998) reported one single layer to be 

optimum for catalyst uniformity and treatment efficiency.  

 

3.5. Photocatalytic Experiments and Analytical Methods 

All the experiments described in this document where performed in the Analytical Chemistry 

Laboratory of the Department of Civil and Environmental Engineering located in Room 125 in the 

CERM building, making use of the previously described photocatalytic treatment system. A 

number of experiments were carried out varying different parameters, except for those summarized 

in Table 3.1, which were kept constant throughout the course of the experimental phase. In a 

typical photocatalytic experiment, the reactor was loaded with a known mass of coated silica gel 

beads and 800 ml of an unbuffered phenol aqueous solution of a given concentration.  The resulting 

mixture was then recirculated at a rate of 8.9x10-6 m3 s-1 (530 ml min-1) with a peristaltic pump.  
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In order to oversaturate the phenol solution with molecular oxygen, a pocket of gas was maintained 

on top of the bulk liquid at about 101 kPa by feeding compressed oxygen from a cylinder through 

the top of the sealed reactor at a constant flow rate. Temperature of the mixture in the reactor 

varied during the course of experiments due to the lack of a temperature control mechanism.  

During the first hour of the experiment the mixture was recirculated in the dark (no UV-C 

lamp) in order to allow for the substrate and coated silica gel to reach adsorption equilibrium. 

Then, at time zero (0), the first sample was taken and UV-C irradiation was initiated by placing 

the lamp inside the quartz casing. Subsequent samples were taken at predetermined time intervals 

throughout the experiment (typical experiment ran for 8 hours after initiating irradiation of the 

mixture). Each sample consisted in approximately 30 ml of mixture withdrawn from the sampling 

port of the reactor.  Temperature, pH and DO were measured immediately after collection of the 

sample with Thermo Scientific Orion probes and multimeter. Then, the sample was filtered 

through a 0.45 μm cellulose nitrate filter (Whatman Ltd.) to remove suspended and colloidal matter 

(Standard Method 5910 for Determination of UV-C Absorbing Organic Constituents). COD 

determination was performed with a UV-Vis Spectrophotometer (Hach DR 5000) according to the 

USEPA Reactor Digestion Method (Method 8000) using Hach TNT Plus 822 and 821 vials for 

high and low range COD concentrations, respectively, and a Hach DRB200 digital reactor block.  

Test accuracy is ± 2% for high range and ± 5% for low range COD determination. 

Adsorption in the dark (non-UV irradiated mixture), photolysis (UV-irradiated phenol 

solution) and photocatalysis without added oxygen (UV-irradiated mixture) experiments were 

carried out as control.  
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Stability of the surface bound TiO2 layer was determined by running a series of three 

consecutive 24-h photocatalytic experiments using the same stock of coated silica gel beads and 

measuring its COD removal efficiency after each use. At the end of each experiment, the silica gel 

was recovered, dried in an electric furnace at 120°C for 5 hours, let cool down overnight and reused 

without further treatment.  

The maximum reactor efficiency was stablished as that obtained from a slurry-type reactor. To 

reproduce such conditions, a set of experiments using a mixture of the phenol solution with initial 

concentrations varying from 0.25 to 4.0 mmol L-1, and 1.2 g L-1 of powdered TiO2 (anatase nano-

powder, < 25 nm particle size, 99.7% trace metals basis by Sigma Aldrich) were performed using 

the same configuration of the treatment system and analytical methods as in a previously described 

typical experiment. 

In order to determine the optimal concentration of sol-gel-coated silica in the mixture, different 

mass loads were used (5, 10, 20 and 30 g L-1), while keeping the initial concentration of phenol 

fixed.  Once the optimal amount of coated silica beads in the mixture was found, an additional set 

of experiments was run to investigate the effect of the size of beads. As mentioned earlier, silica 

gel of three different average particle sizes were used, 224, 357 and 461 μm.  Next, the effect of 

contaminant load on the system efficiency was determined through experiments where the initial 

phenol concentration was varied gradually from 0.25 mmol L-1 to 4.0 mmol L-1 and the mass of 

coated silica was kept constant. For these experiments, silica gel beads were coated with a single 

layer of photocatalyst using the technique described in Section 3.3.   

 The influence of other parameters, like conductivity and pH, on the photocatalytic process 

was evaluated in a similar fashion.  For measuring the effect of pH, experiments with initial pH of 
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3, 7 and 9.5 were run without controlling any other parameter and letting pH to freely fluctuate 

over the course of the experiment. Adjustment of initial pH was done with either HCl 0.1 M or 

NaOH 1 M.  The effect of conductivity, as with pH, was determined by modifying the initial 

conductivity of the phenol solution.  NaCl in concentrations of 2 mmol L-1 and 20 mmol L-1 was 

used to elevate initial conductivity to 5.50 mS cm-1 and 38.6 mS cm-1, respectively. 

The effect of the mass of fixed TiO2 on treatment efficiency was studied by comparing the rate 

of elimination of COD obtained when using silica coated with one and three layers of photocatalyst 

for different initial phenol concentrations. These multiple layers were deposited onto silica beads 

with average size of 357 μm through the same sol-gel coating procedure in Section 3.3. 

 Comparative analysis of the efficiency of photo-mineralization of phenol under different 

conditions is usually done by calculating inherent kinetic parameters, usually a global reaction rate 

constant, or, as suggested by Eq. 2.33, an empirical constant based on the rate of disappearance of 

a lump-sum parameter (TOC or COD) in accordance with the kinetic mechanisms explained by 

the Langmuir-Hinshelwood model (Section 2.6).  In the case of this research, performing such a 

kinetic analysis would be incorrect given the operational conditions of the treatment system 

(uncontrolled temperature) and the nature of COD as a lump parameter involving the pollution 

strength of several components of the mixture. Ultimately, and since the objective of this research 

is to evaluate the feasibility of photocatalytically degrade phenol on fluidized TiO2-coated silica 

beads rather than developing a kinetic model for such process, and given the above mentioned 

restrictions, it is both practical and convenient to analyze the experimental results by using 

parameters that allow for a valid comparison of several individual photocatalytic experiments. 

Such parameters include the COD removal efficiency or ηCOD, and the accumulated energy or QUV, 
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in kJ L-1 (Kositzi et al., 2004). The latter takes into consideration the radiant flux density,ER, 

reaching the surface area of exposed mixture, AR, as related to the total volume of the reactor, VT, 

and is defined as follow: 

QUV,n = QUV,n−1 + ∆tnER
AR

VT
                                                                                                      (3.3) 

where ∆𝑡𝑛 is the differential experimental time, and ER, AR and VT as defined in Table 3.1. Since 

the product of radiant flux density and irradiated surface area yields the radiant flux or Φ𝑅, 

Equation 3.3 can be rewritten as: 

QUV,n = QUV,n−1 + ∆tn
ΦR

VT
                                                                                                           (3.4) 

UV spectrophotometry was also used for results comparison. The absorbance spectra of 

the filtrate between 200 nm and 330 nm was recorded by means of a wavelength scan reading 

using a UV-Vis Spectrophotometer (Hach DR 5000). As suggested by Azevedo et al. (2009), three 

significant parameters can be obtained from the scanned sample: the disappearance of phenol, 

which is given by the reduction in the absorption peak at 269 nm; the progress of overall 

mineralization, indicated by the area under the absorption spectrum curve (it represents a semi-

quantitative measure of the concentration of conjugated unsaturated compounds); and the aromatic 

ring rupture, produced by the absorption of carbonylated and carboxylated compounds, and 

reflected in the change of absorption between 235 and 240 nm. 
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4                                      

Experimental Results and Discussion 
 

Results obtained during the experimental phase are presented and discussed in this section. 

Beginning with results from preliminary experiments, which gave a glimpse on the effects of 

dissolved oxygen on photo and photocatalytic oxidation efficiency, and on the stability of the 

surface bound photocatalyst, this section shows the results and analysis of the experimental data 

obtained as described in Chapter 3, specifically: 

 Effects of concentration and size of coated silica beads in the mixture. 

 Effects of initial concentration of phenol, dissolved oxygen, pH and conductivity of the 

solution. 

 Variation of photocatalytic phenol oxidation with number of TiO2 layers. 

 Quality and uniformity of deposited TiO2 film. 

 Comparative analysis of phenol oxidation processes efficiency.  

 Reactor modeling and system performance prediction. 

4.1. Preliminary Results 

 

Exploratory experiments were performed in an early stage of the research in order to 

stablish the effectiveness of the photocatalytic system when compared to non-catalytic processes 

such as adsorption and photolysis, and to determine the need for oxygen supply.  
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The stability or surface-adherence strength of the TiO2 film was investigated by measuring 

the variation in COD removal efficiency after multiple uses of a single coated silica batch.  

4.1.1. Adsorption, Photolysis, Photocatalysis and the Effect of Oxygen on COD 

Removal. 

 

Figure 4.1 shows the results of 24-hours experiments carried out using a mixture of 

3 g L-1 of TiO2 nanopowder and a phenol solution with initial COD concentration of 550 

mg L-1. Adsorption-, photolysis- and photocatalysis-only experiments were run without 

external air supply, keeping the system sealed at all times.  When feeding air to the mixture, 

compressed air was supplied through a hose connected to the top of the reactor, as described 

in Section 3.4. When compressed air was added, photocatalysis removed COD by 98% 

after 24 hours of treatment, and phenol is completely oxidized into CO2 and water. The 

final effluent is clear water, with no color or odor.   

 

 

Figure 4.1. Comparison of COD removal efficiency for different processes. 
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Photolysis with added compressed air and photocatalysis without aeration achieve only 

partial oxidation of phenols into aromatic intermediates and aliphatic acids (characterized 

by a brownish color), as seen in Figure 4.2. From these results, the importance of aeration 

in photocatalytic treatment of the phenolic solution was determined and all subsequent 

experiments were run under oxygenated conditions. 

 

 
 

Figure 4.2. From left to right: Effluent of 24-h photocatalytic treatment (without 

aeration); effluent of 24-h photocatalytic treatment (with aeration). 

 

 4.1.2. Stability of TiO2 film. 

 

A 35 g batch of silica gel beads were coated three consecutive times with TiO2 

according to the sol-gel procedure described in Section 3.3. Then, in order to determine 

whether the film was capable of withstanding a full treatment cycle or not, three 24-hours 

experiments were run using the same silica gel batch, and COD concentration measured in 

the final filtered and unfiltered effluent.  Between experiments, silica beads were dried at 

120 °C for 3 hours, then reused in another 24-h run without further treatment. Table 4.1 

shows COD removal efficiencies for this set of experiments. 
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Table 4.1. COD removal efficiency for reused TiO2-coated silica gel beads. 

 24-h COD removal efficiency, % 

Sample 1 cycle 2 cycles 3 cycles 

Unfiltered 84.16 79.55 69.65 

Filtered 85.87 78.43 74.34 

 

These results show that the TiO2 film synthesized through the selected sol-gel 

technique exhibits good adherence to the silica gel and enough catalyst remains attached 

to its surface so that after three 24-h consecutive photocatalytic experiments COD removal 

efficiency decreases only by 15%.  

Despite of the relatively good stability of the photocatalyst, all subsequent 

experiments were conducted with unused, freshly coated silica beads, in order to ensure 

uniformity of the TiO2 and minimize the number of variables affecting the process 

outcome.  

4.2. Multi-parameter Analysis. 

4.2.1. Effect of Size and Concentration of Silica Gel Beads in the Mixture. 

 

Silica gel beads with an average size of 357 μm and a single TiO2 layer were initially 

selected to investigate the effect of coated beads concentration in the mixture on the 

photocatalytic degradation of phenol.  For a typical experiment, with an initial phenol 

concentration of 1.0 mmol L-1, the results of varying the mass of silica in the bulk mixture 

from 5 g L-1 to 30 g L-1 are presented in Figure 4.3 (a) and 4.3 (b).   
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Figure 4.3.a. COD photocatalytic degradation profile in a mixture of 1.0 mmol L-1 phenol 

and different single-layer 357 μm-silica gel beads concentrations. 

 

  

 COD mineralization can also be expressed as a function of accumulated energy, as 

defined in Equation 3.3, and shown in Figure 4.3(b). In these figures, the ordinate shows 

the normalized COD, or COD at any time or QUV divided by the initial COD concentration.  

 

 

Figure 4.3.b. COD photocatalytic degradation profile in a mixture of 1.0 mmol L-1 phenol 

and different single-layer 357 μm-silica gel beads concentrations. 
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It was earlier explained that mineralization of COD does not follow simple kinetic 

models, due to the fact that COD is a lump parameter that includes a number of pollutants. 

Therefore, a single overall reaction rate constant cannot be calculated.  In its place, 

alternative experimentally derived variables such as COD removal efficiency and 

accumulated energy were obtained as a mean for process comparison. The 8-h COD 

removal efficiency and the accumulated energy necessary for the mineralization of 50% 

(Q0.5) of the initial dissolved COD values under different operational conditions were 

generated by fitting of experimental data through non-linear regression using GraphPad 

Prism 6 ® software. Regression fitting is presented in dotted lines in Figures 4.3.a and b. 

The variation of 8-h COD removal efficiency and 𝑄0.5 with concentration of silica beads 

is shown in Figure 4.4 and 4.5, respectively. 

  

 
 

Figure 4.4. Variation of 8-h COD removal efficiency with concentration of single-layer 

357 μm-silica gel beads in mixture with 1.0 mmol L-1 initial phenol concentration. 
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Figure 4.5. Variation of Q0.5 with concentration of single-layer 357 μm-silica gel beads in 

mixture with 1.0 mmol L-1 initial phenol concentration. 

 

COD removal reaches a maximum of 78% when the concentration of 357 μm-silica 

beads is 20 g L-1 in the mixture, decreasing to 60% for 30 g L-1 and down to 54% for 5 g 

L-1.  Similarly,  𝑄0.5 is lowest at 20 g L-1 and highest at 5 g L-1 of silica gel, going from 48 

kJ L-1 up to 92 kJ L-1, respectively.  The observed behavior indicates that the photocatalytic 

mineralization of 1.0 mmol L-1 of phenol under the current reactor configuration is 

extremely sensitive to changes in the amount of fluidized silica particles in the bulk liquid. 

Since not only concentration but also particle size contribute to the apparent 

turbidity and light-blocking effect of the liquid mixture, similar experiments were 

performed using silica beads of 224 and 461 μm diameter. This allowed to measure and 

compare the combined influence of both parameters in the process efficiency. The results 

of typical experiments using a mixture of 1.0 mmol L-1 initial phenol concentration and 

varying single-layer 224 μm-silica beads concentration are presented in Figure 4.6.  
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Figure 4.6. COD photocatalytic degradation profile in a mixture of 1.0 mmol L-1 phenol 

and different single-layer 224 μm-silica gel beads concentrations 

 

 

 
 

Figure 4.7. Variation of 8-h COD removal efficiency with concentration of single-layer 

224 μm-silica gel beads in mixture with 1.0 mmol L-1 initial phenol concentration 
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From these results, both the 8-h COD removal efficiency and Q0.5 were calculated 

and plotted as shown in Figures 4.7 and 4.8, respectively. 

 
 

Figure 4.8. Variation of Q0.5 with concentration of single-layer 224 μm-silica gel beads in 

mixture with 1.0 mmol L-1 initial phenol concentration 

 

 

 
 

Figure 4.9. COD photocatalytic degradation profile in a mixture of 1.0 mmol L-1 phenol 

and different single-layer 461 μm-silica gel beads concentrations  
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Finally, when running the photocatalytic experiments for the same mixture of 1.0 

mmol L-1 initial phenol concentration but with the larger-diameter 461 μm-silica beads, the 

results presented in Figure 4.9 were obtained. 

 
 

Figure 4.10. Variation of 8-h COD removal efficiency with concentration of single-layer 

461 μm-silica gel beads in mixture with 1.0 mmol L-1 initial phenol concentration 

 

 

 

  
 

Figure 4.11. Variation of Q0.5 with concentration of single-layer 461 μm-silica gel beads 

in mixture with 1.0 mmol L-1 initial phenol concentration 
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The removal efficiency and Q0.5 corresponding to photocatalysis using the largest 

available silica beads are shown in Figure 4.10 and 4.11. 

Figure 4.12 and 4.13 were generated by combining results from removal efficiency 

and Q0.5 variation with silica beads concentration for the three available sizes of silica 

particles (224, 357 and 461 μm).  These figures show the variation of COD removal 

efficiency and Q0.5 with silica beads concentrations for the different beads sizes. 

In both instances, process efficiency with silica beads of average size 461 μm result 

the lowest for the entire experimental concentration range. As observed in Figure 4.12, 

these reach a maximum COD removal of 67% at 20 g L-1, with a minimum Q0.5 of 56 kJ 

L-1 at the same concentration.  In contrast, beads of 224 μm are more efficient in removing 

COD in concentrations from 15 g L-1 and lower, and 30 g L-1 and above, with beads of 

357 μm  being slightly more efficient at 20 g L-1,  concentration at which they  produce  a   

 
 

Figure 4.12. 8-h COD removal efficiency variation with concentration of single-layer 

silica gel beads for different bead sizes and 1.0 mmol L-1 initial phenol concentration 
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maximum COD removal of 78%. Figure 4.13 shows that particles of 224 μm yield the 

lowest 𝑄0.5, with a minimum of 38 kJ L-1 at 20 g L-1 concentration. 

  
 

Figure 4.13. 𝑄0.5 variation with concentration of single-layer silica gel beads for different 

bead sizes and 1.0 mmol L-1 initial phenol concentration 

 
 

 

 
 

Figure 4.14. 8-h COD removal efficiency variation with single-layer-silica gel beads 

surface area concentration for different bead sizes and 1.0 mmol L-1 initial phenol 
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Calculating the equivalent surface area, or surface area concentration, for each of 

the silica gel concentrations tried experimentally allows for better understanding and 

further analysis of the influence of the mass of catalyst support on the mineralization 

process in a tubular photo-reactor. Using the data presented in Table 3.2, Figures 4.14 and 

4.15 were generated from Figures 4.12 and 4.13, respectively.  

Assuming that the applied catalyst layer is uniform across all samples of silica 

beads, and that the fraction of particle surface covered is the same for all silica sizes, it is 

evident from these figures that as particle size increases, COD removal efficiency and Q0.5 

become more sensitive to surface area changes. 

 
 

Figure 4.15. 𝑄0.5 variation with single-layer-silica gel beads surface area concentration 
for different bead sizes and 1.0 mmol L-1 initial phenol concentration 

 

Figures 4.16 and 4.17 are the result of further data manipulation. They show the 

change in COD removal and 𝑄0.5 with particle size for a constant concentration of silica 
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Figure 4.16. 8-h COD removal efficiency variation with silica beads size for different 

single-layer silica concentrations and 1.0 mmol L-1 initial phenol concentration 

 

 

 
 

Figure 4.17. 𝑄0.5 variation with silica beads size for different single-layer silica 

concentrations and 1.0 mmol L-1 initial phenol concentration 
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catalyst support.  In general, for any mass of fluidized silica gel, the process efficiency 

decreases with increasing catalyst-support particle size, as shown in Figures 4.16 and 4.17. 

Furthermore, and according to Figures 4.12 and 4.13, for the same mass concentration of 

silica gel, the smaller the particle size the higher the COD photo-oxidation rate, which is 

an expected outcome, since for a constant mass load of particles, surface area increases 

with decreasing particle diameter, as shown in Table 3.2.  It has been found that catalysts 

with lower surface area provide lower mineralization rates (Arana et al., 2010), and also 

that a high [catalyst] surface area is beneficial as it provides higher concentration of active 

sites per square unit, which generally leads to superior reactivity (Abrahams et al., 1985).  

However, the effect of particle size in the system under study goes beyond that of available 

surface area. As seen in Figures 4.14 and 4.15, even for the same surface area 

concentration, process efficiency decreased with increasing silica particle diameter, which 

indicates that the size of the beads may have a direct influence on photon efficiency by 

producing a blocking effect between the light source and the catalyst surface.  This is 

consistent with results observed in slurry-type reactors, where concentration of TiO2 in the 

system affects the overall reaction rate in a heterogeneous catalytic regime. In this regard, 

it has been previously stablished that the amount of TiO2 is directly proportional to the 

overall photocatalytic reaction rate (Gaya and Abdullah, 2008). When the amount of TiO2 

increases above a saturation level (leading to high turbidity), the photon adsorption 

coefficient usually decreases radially. The same effect holds true for a fluidized bed reactor, 

in which the small catalyst-support particles increase the turbidity in the treated water. An 

excess of particles can create a light shielding effect that reduces the surface area of TiO2 

being exposed to illumination. Therefore, there exist an optimal amount of catalyst that 
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yields the maximum degradation efficiency, and its determination constitutes an important 

design factor for photocatalytic reactors.  Figures 4.16 and 4.17 show that for the 

photocatalytic system under study, 20 g L-1 of silica gel beads with an average diameter of 

224 μm (equivalent surface area of 0.8 m2 L-1) and coated with a single layer of TiO2 in a 

mixture containing an initial phenol concentration of 1.0 mmol L-1, yielded the lowest 

energy consumption, while particles of 224 and 357 μm (which in both cases is equivalent 

to a surface area concentration of 0.5 m2 L-1) in this same concentration produced the 

highest COD removal in 8-h treatment time. These parameters worsened for lower and 

higher silica particles concentrations. 

 The observed influence of catalyst surface area on degradation rate also sheds some 

light on the photo-oxidation mechanism prevalent for this type of system.  It has been 

reported that for compounds that can react by direct electron transfer, the removal rate 

decreases with the surface area. The opposite occurred for compounds prone to react 

through OH• radical-mediated attack (Agrios and Pichat, 2006; Enriquez and Pichat, 2006). 

Also, the photo-redox chemistry that occurs at the semiconductor surface is emanated from 

trapped electrons and trapped holes rather than from free valence band holes and 

conduction band electrons (Serpone et al., 1996), which confirms the surface-bound nature 

of the interactions between trapped covalent band electrons and valence band holes, and 

the bulk liquid suggested by the experimental results.  Therefore, either by direct substrate 

oxidation, trapped electron-hole generation of oxidative radicals, or a combination of both 

mechanisms, the photocatalytic oxidation of phenol is limited by the magnitude of catalyst 

surface area available for active sites formation, and accessible by the substrate and 
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photons.  In such scenario, mass transfer phenomena would play a secondary, non-limiting 

role. 

4.2.2. Effect of Formation of Intermediates during Phenol Mineralization. 

The mechanism through which phenol mineralizes into innocuous compounds 

involves the transformation of the original aromatic structure into several reaction 

intermediate sub-products.  The attack of hydroxyl radicals activates the phenol aromatic 

ring through a strong resonance electron-donating effect. It is well known that this effect 

is felt most strongly at the ortho and para positions (Alnaizy and Akgerman, 2000).  As 

mentioned in Section 3.2, at least fourteen transient and intermediate compounds have been 

identified during the course of phenol photocatalytic mineralization with TiO2. Aromatic 

intermediates such as hydroquinone, catechol and 3-phenyl-2-propenal have been reported 

to appear in amounts sufficient to quantify.  Although not a subject widely studied, some 

authors have found the catechol concentration to be as approximately 25 times higher than 

the hydroquinone concentration at the beginning of the photooxidation reaction, which 

suggests that the ortho-hydroxylation of the aromatic ring is preferred over the meta or 

para-substitution (Alnaizy and Akgerman, 2000). Carboxylic acids in the form of benzoic 

acid, 2-furancarboxylic acid, 2-ethylhexanoic acid, salicylic, maleic, oxalic and formic 

acids are also produced in the process, causing measurable changes in the pH of the mixture 

(Azevedo et al., 2009 and Alnaizy and Akgerman, 2000). 

A mixture containing 1.0 mmol/L of phenol and 20 g/L of silica gel beads 357 μm 

in diameter with a single layer of TiO2 in deionized water was treated in a typical 

photocatalytic experiment. The UV absorption spectrum between 200 nm and 330 nm of 
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the filtered effluent was measured at specific time intervals during the experiment. The 

resulting absorption bands are shown in Figure 4.18.  The typical phenol absorption band, 

recorder before UV irradiation began, shows two distinctive peaks, one at around 217 nm 

and the other at 269 nm. UV irradiation causes the whole band to shift upwards, which 

denotes an increased absorbance produced by the presence of highly UV-absorbing 

intermediate compounds. The appearance of absorption bands at 245-255 nm is typical of 

the formation of quinonoid structures like hydroquinone (Svetlichnyi et al., 2001).  The 

peaks on the absorption band return to the original levels in less than 240 min of irradiation, 

which represents between under 50% of the experiment duration. This is compatible with 

the formation and later degradation of compounds with increased conjugation (Okamoto 

et al., 1985; Richard and Boule, 1994, Peiro at al., 2001). 

 

 

 
 

Figure 4.18. Observed UV-absorption bands during photocatalytic mineralization of a 

mixture with an initial phenol concentration of 1.0 mmol L-1. 
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Analysis of Figure 4.18 indicates that there is no direct path to phenol 

mineralization through UV-C photocatalysis, as the transient species formed during 

irradiation, with their multiple interactions, add even more complexity to the kinetic 

possibilities.  For the oxidation of phenol by electrochemical methods, the following 

empirical reaction has been proposed (Comninellis and Pulgarin, 1993): 

 

[PhOH]
𝑘1
→[

Aromatic
 intermediates

]
𝑘2
→ [
Aliphatic
acids

]
𝑘3
→ CO2                                                       (4.1) 

 

In Equation 4.1, the rate constant k1 for phenol hydroxylation leading to the 

formation of intermediates is very high (k1 = 1010 L mol-1s-1) and this reaction can be 

considered as instantaneous, while rate constants k2 and k3 are relatively low at room 

temperature (k2 = 108 L mol-1s-1, k3 = 105 L mol-1s-1) but increase considerably with 

temperature (Comninellis and Pulgarin, 1993).  

 COD as the control parameter in photocatalytic experiments reflects not only the 

concentration of phenol but also of the phenolic intermediates and carboxylated acids. 

Thus, COD elimination rate differs significantly from that of phenol, as shown in Figures 

4.19.a and 4.19.b, where the gap between the COD and phenol curves can be attributed to 

the presence of such photocatalytic subproducts. In an experiment run with an initial phenol 

concentration of 1.0 mmol L-1, phenol is completely mineralized after 360 min of 

irradiation, while only 70% of the initial COD is eliminated in the same time frame.  
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The rate of disappearance of the phenol absorption peak at 269 nm is shown in 

Figures 4.19.a, while the rate of rupture of the aromatic ring (formation of intermediates) 

indicated by the absorbance of the effluent at 240 nm is presented in Figure 4.19.b. 

As expected, after a sudden increase in absorbance at 269 nm, this peak decreases 

with irradiation time, which shows that phenol is oxidized at a constant rate until complete 

elimination.  In contrast, the absorption of the effluent at 240 nm increases more than seven 

fold after starting irradiation, maintaining this same magnitude up to two hours into the 

experiment, point at which it begins to decline. Such behavior indicates that intermediates 

start forming immediately in the irradiated mixture at a rate that is proportional to the 

concentration of the parent phenolic aromatic ring. 

The formation of carboxylic acids in a later stage of phenol mineralization is 

suggested by the decrease in the mixture pH, as shown in Figure 4.20. Here, pH goes from 

5.7 to 4.6 in the first 30 min of irradiation. It reaches 3.8 at its lowest point to later increase 

to around 4.4 at the end of the experiment. It is worth noticing that pH recovery coincides 

with complete phenol elimination from the mixture, at around 350 min of irradiation. 

Although not an objective of this research, detection and identification of phenol 

mineralization intermediates is an important factor to consider in photocatalytic systems 

design.  As evidenced by its absorption profiles at different wavelength, phenol undergoes 

a complex path to complete oxidation, leaving behind mineralization subproducts that 

remain active after its disappearance. 
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Figure 4.19.a. COD and phenol photocatalytic elimination profile showing absorption at 

269 nm in a mixture with 20 g L-1 of 357 μm-single layer silica gel beads and 1.0 mmol 

L-1 initial phenol concentration 

 

 

 

Figure 4.19.b. COD and phenol photocatalytic elimination profile showing absorption at 

240 nm in a mixture with 20 g L-1 of 357 μm-single layer silica gel beads and 1.0 mmol 

L-1 initial phenol concentration 
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Figure 4.20. Evolution of pH, absorption at 240, 269 nm and area under absorption 

spectrum of a mixture with 20 g L-1 of 357 μm-single layer silica gel beads and 1.0 mmol 

L-1 initial phenol concentration 
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oxidized to carbon dioxide and water, but form intermediate photo-oxidation products in 

the course to complete mineralization. Such is the case of phenol.  

As discussed in Section 4.2.1, the mass concentration of catalyst-support particles, 

and consequently its active surface area, have also a significant influence on the efficiency 

of the process under the current reactor configuration. Therefore, the combined effect of 

both phenol and silica gel beads concentration was studied through a series of 

photocatalytic experiments where the initial phenol concentration was varied from 0.5 to 

2.0 mmol L-1 for different mass loads of silica gel beads of 357 μm average diameter and 

coated with a single layer of TiO2.  The results obtained are presented in Figures 4.21 

through 4.23. 

 

 

 
 

Figure 4.21. COD photocatalytic degradation profile in a mixture of 10 g L-1 single-layer 

357 μm-silica gel beads and different initial phenol concentrations. 
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Figure 4.22. COD photocatalytic degradation profile in a mixture of 20 g L-1 single-layer 

357 μm-silica gel beads and different initial phenol concentrations. 
 

 

 

Figure 4.23. COD photocatalytic degradation profile in a mixture of 30 g L-1 single-layer 

357 μm-silica gel beads and different initial phenol concentrations. 
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concentration increases. This can be seen in Figure 4.24 and 4.25, which present the 8-h 

COD removal efficiency and Q0.5for these group of experiments, respectively. 

  
 

Figure 4.24. 8-h COD removal efficiency variation with single-layer 357 μm-silica gel 

beads concentration for different initial phenol concentrations  

 

 

 
 

Figure 4.25. Q0.5variation with single-layer 357 μm-silica gel beads concentration for 

different initial phenol concentrations 

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

8
-h

 C
O

D
 r

em
o

va
l e

ff
ic

ie
n

cy

Silica gel concentration in mixture, g/L

0.5 mmol/L

1.0 mmol/L

2.0 mmol/L

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35

Q
0

.5
, k

J/
L

Silica gel concentration in mixture, g/L

0.5 mmol/L

1.0 mmol/L

2.0 mmol/L



 

90 
 

As expected, photo-oxidation efficiency decreases as the initial phenol 

concentration increases. Also, variation of coated silica beads load in the irradiated mixture 

affects both COD removal rate and the Q0.5, which was a previously observed effect in 

experiments with initial phenol concentration of 1.0 mmol L-1, but as shown in Figures 

4.24 and 4.25, this effect becomes negligible at lower substrate concentrations.  When these 

two parameters are plotted against external surface area concentration, the combined 

influence of phenol and silica beads concentration seems even more substantial. According 

to Figure 4.26, for the same catalyst surface area available per unit volume, COD removal 

efficiency is lower for higher substrate loads, with a difference in the fraction of COD 

removed of up to 30% between 0.5 and 2.0 mmol/L of phenol at the highest equivalent 

external area concentration.  A similar pattern is also observed in Figure 4.27, where the 

change in the magnitude of Q0.5 with exposed surface area exacerbates as the substrate 

concentration increases.  

 
 

Figure 4.26. 8-h COD removal efficiency variation with single-layer-357 μm-silica gel 

beads surface area concentration for different initial phenol concentrations  
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Figure 4.27. Q0.5 variation with single-layer-357 μm-silica gel beads surface area 

concentration for different initial phenol concentrations  
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concentration.  This behavior confirms that the optimum catalyst load is a design parameter 

determined by the photo-reactor configuration and type of organic substrate. 

 
 

Figure 4.28. 8-h COD removal efficiency variation with initial phenol concentration for 

different single-layer-357 μm-silica gel beads concentrations  

 

 
 

Figure 4.29. Q0.5 variation with initial phenol concentration for different single-layer-357 

μm-silica gel beads surface area concentrations  
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Both COD removal efficiency and 𝑄0.5 show the tendency to plateau at silica gel 

mass loads other than the optimal as the initial phenol concentration increases.  In the case 

of low silica concentration, this trend is indicative of system exhaustion, or the hindering 

of the photo-oxidation capabilities of the system owing to saturation and reduced photonic 

activation of the catalyst surface produced by an excessive substrate concentration relative 

to the available photo-generated active sites. In the case of too-high silica concentrations, 

the light blocking effect of particles overload is also responsible for the decreased catalyst 

activation rate.  

Similar observations have been reported in studies on the photocatalytic oxidation 

of phenol in oxygenated solutions with TiO2 powder in suspension. It was found that high 

initial phenol concentrations affected negatively the pseudo-first order reaction rate 

constant, producing an inhibitory effect on the apparent rate constant, or that phenol 

mineralization decreased with increasing initial phenol concentration (Augugliaro et al., 

1988; Wei and Wan, 1991; Alnaizy and Akgerman, 2000, Singh et al., 2007). This 

phenomenon is attributed to the photonic nature of the photocatalytic reactions, which 

means that, at high enough substrate concentrations, photocatalyst deactivation occurs due 

to the simultaneous saturation of the TiO2 surface and reduction of the photonic efficiency 

(Saquib and Muneer, 2003; Chong et al., 2010). Some authors have proposed that such 

decrement in the reaction rate at high substrate concentration is due to the presence of back 

reactions (Minero, 1999, Minero and Vione), scenario that considers the possibility of a 

substrate radical being able to inject an electron into the conduction band of the 

semiconductor surface (Villareal et al., 2004).  Figures 4.30 and 4.31 show signs of the 

above mentioned catalyst deactivation at high phenol concentrations. 
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Figure 4.30. Absorption profile at 269 nm during photocatalytic treatment of a mixture 

with 20 g L-1 of single-layer 357 μm-silica gel beads for different initial phenol 

concentrations 

 

 

 

 
 

Figure 4.31. Absorption profile at 240 nm during photocatalytic treatment of a mixture 

with 20 g L-1 of single-layer 357 μm-silica gel beads for different initial phenol 

concentrations 
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The disappearance of phenol at 269 nm, and destruction of the phenolic ring 

recorded at 240 nm, is presented in Figures 4.30 and 4.31, respectively.  Here, at low phenol 

concentrations, complete mineralization is observed to occur at a high rate, but as the 

concentration increases, phenol elimination slows down, and at an initial phenol 

concentration of 4.0 mmol L-1, it completely stops after about 120 min of treatment. This 

behavior, indicative of system saturation leading to catalyst deactivation, means that phenol 

is not being converted to intermediates, and that the intermediates that have been already 

formed remain unaltered in solution, in other words, that mineralization is no longer 

underway, as shown in Figure 4.32.  

 

 
 

Figure 4.32. Area under absorption spectrum during photocatalytic treatment of a mixture 

with 20 g L-1 of single-layer 357 μm-silica gel beads for different initial phenol 

concentrations 
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4.2.4. Effect of initial pH. 

The pH of the solution is an important variable in the evaluation of aqueous phase 

mediated photocatalytic reactions. It has been determined that pH has a dominant effect on 

the process because many properties, such as the surface state of the semiconductor, the 

flat-band potential, the dissociation of organic contaminant, show a strong dependence on 

pH (Dyk and Heyns, 1998; Kormann et al., 1991; Munter, 2001).  

The effect of pH on the photocatalytic degradation efficiency of phenol-derived 

COD in the synthetic mixture was studied through several typical experiment by varying 

the initial pH of the solution from 3 to 9.5, using either NaOH or HCl for pH adjustment, 

as explained in Section 3.4. For all experiments, a mixture of 20 g/L of 357-μm silica gel 

beads with a single TiO2 layer and 1.0 mmol L-1 of phenol in deionized water was used.  

The natural, unbuffered pH of the mixture was 5.5. Results are presented in Figure 4.33. 

 

 

Figure 4.33. COD photocatalytic degradation profile in a mixture of 20 g L-1 single-layer 

357 μm-silica gel beads and 1.0 mmol L-1 phenol for different initial pHs. 
 

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500

N
o

rm
al

iz
ed

 C
O

D

Time, min

3

5.5

7

9.5



 

97 
 

The COD photocatalytic removal efficiency decreased considerably with 

increasing pH, showing at pH 9.5 a 50% reduction from a maximum of 80% at pH 3.  Q0.5 

is also affected by the solution pH, and at alkaline pH, the system does not even achieve 

50% COD removal at the end of the 8-h experiment.  Under acidic conditions, the 

photocatalytic removal of COD is enhanced, and higher degradation rate is obtained at pH 

3. Figures 4.34 and 4.35 show the variation of the process efficiency with pH. 

A number of authors have reported similar observations. Low pHs seem to affect 

positively the process performance, with pH 3.5 being the optimum for the photocatalytic 

decomposition of phenol (Okamoto et al., 1985, Serpone et al., 1996, Leyva et al., 1998; 

Laoufi et al., 2008).  Other substrates such as 2,4-dichlorophenol and landfill leachate have 

been optimally degraded at pH 3.0 (Yung-Hsu and Ting-Shan, 1995; Munter, 2001). 

 

 

 Figure 4.34. 8-h COD removal efficiency variation with initial pH 
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point or the surface charge of TiO2 (Chong et al., 2009; Ochuma et al., 2007; Chin et al., 

2006; Toor et al., 2006). 

  

 

Figure 4.35. Q0.5 variation with initial pH 
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From the evolution of the solution absorbance at 269 nm presented in Figure 4.36, 

previous observations are corroborated. At pH 3, the disappearance of the phenol peak 

occurs at the fastest pace, while it is very slow at pH 9.5.  This rate is almost identical for 

neutral pH 5.5, and 7.  

 

Figure 4.36. Absorption profile at 269 nm of a mixture of 20 g L-1 of single-layer 357 

μm-silica gel beads and 1.0 mmol L-1 phenol for different initial pHs 

 

 

Figure 4.37. Absorption profile at 240 nm of a mixture of 20 g L-1 of single-layer 357 

μm-silica gel beads and 1.0 mmol L-1 phenol for different initial pHs 
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Figure 4.38. Area under absorption spectrum of a mixture of 20 g L-1 of single-layer 357 

μm-silica gel beads and 1.0 mmol L-1 phenol for different initial pHs 
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4.2.5. Effect of Salinity. 

The effect of solution salinity on the photocatalytic degradation of phenol was 

studied through controlled change in initial conductivity by means of NaCl addition.  The 

control 1.0 mmol L-1 aqueous phenol solution, with a conductivity of 8.0 μS cm-1, was 

altered by adding 2 and 20 mmol L-1 of NaCl, bringing the conductivity up to 5.5 and 38.6 

mS cm-1, respectively.  Typical experiments were run using mixtures of these solutions and 

20 g L-1 of 357 μm silica gel beads with a single TiO2 layer.  Results are shown in Figure 

4.39. 

 

 

Figure 4.39. COD photocatalytic degradation profile in a mixture of 20 g/L single-layer 

357 μm-silica gel beads and 1.0 mmol L-1 phenol for different initial NaCl concentrations 
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general, an increment in reaction rate constants accompanied by a decrease in the 

absorption ones have been observed.  Also, during the photocatalytic oxidation of phenol 

with powdered TiO2, the concentration of intermediates formed increased with salinity 

(Azevedo et al., 2009). 

 

 
 

 Figure 4.40. 8-h COD removal efficiency variation with NaCl concentration 

 

 

 

 

Figure 4.41. Q0.5 variation with NaCl concentration 
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4.2.6. Effect of Dissolved Oxygen. 

The importance of dissolved oxygen in the TiO2-mediated photocatalytic 

mineralization of organics have been attributed to its role as electron scavenger for 

conduction band photo-generated electrons. Although the organic substrate itself can be 

reduced by conduction band electrons (Hisanaga et al., 1990), the usual scavenger of 

electrons is molecular adsorbed oxygen (Pelizzetti et al., 1992; Gerisher and Heller, 1992; 

Minero et al., 1996; Szczepankiewicz et al., 2000; Xiao-e et al., 2000; Berger et al., 2005), 

as per Equation 2.20, which prevents the recombination reactions and leads the vacancies 

to exert their oxidizing actions directly on the organic material or by intermediate 

generation of OH• radicals (Equations 2.18 and 2.19). Dissolved oxygen may also be 

involved in the formation of other radical oxidative species and the stabilization of radical 

intermediates (Equations 2.21 through 2.25), mineralization and direct photocatalytic 

reactions (Chong et al., 2010). 

The influence of dissolved oxygen on the photocatalytic elimination of 

phenol/COD was investigated by comparing the results obtained from photocatalytic 

experiments with and without added oxygen.  During the course of a typical experiment, 

pressurized pure oxygen was fed through a valve at the top of the photo-reactor, thus 

maintaining the mixture in permanent contact with the gas at approximately 1x103 kPa (1 

atm), as explained in Section 3.1.  As it has been found by others (Bedford et al., 1994; 

Wyness et al., 1994; Klausner and Goswami, 1995), there is no need to bubble the gas 

through the reaction mixture since the performance does not depend on aeration. The 

absorption of oxygen by the surface of the solution is sufficient for photocatalytic 
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oxidation.  This means that the absorption of oxygen by the liquid phase is not the rate 

limiting process (Munter, 2001).  

During the alternative experiment, no oxygen was supplied and the reactor was kept 

sealed at the top, impeding the entrance of atmospheric air.  Results are presented in Figure 

4.42.  

 

 

Figure 4.42. COD photocatalytic degradation and dissolved oxygen concentration 

profiles in a mixture of 20 g L-1 single-layer 357 μm-silica gel beads and 1.0 mmol L-1 

phenol with and without added oxygen 
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8-h of irradiation, 78% COD removal is achieved if oxygen is added, while only 30% of 

COD is eliminated if not. 

 

Figure 4.43. Temperature profile during a typical photocatalytic experiment 

 

Figures 4.44 through 4.46 show the evolution of phenol mineralization with and 
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Figure 4.44. Absorption profile at 269 nm of a mixture of 20 g L-1 of single-layer 357 

μm-silica gel beads and 1.0 mmol L-1 phenol with and without added oxygen 

 

 

 

 

 

 

Figure 4.45. Absorption profile at 240 nm of a mixture of 20 g L-1 of single-layer 357 

μm-silica gel beads and 1.0 mmol L-1 phenol with and without added oxygen 
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Figure 4.46. Area under absorption spectrum of a mixture of 20 g L-1 of single-layer 357 

μm-silica gel beads and 1.0 mmol L-1 phenol with and without added oxygen 
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fixed TiO2 have shown that the catalyst deposited only on the surface of the beads. This 

means that the precursor sol does not penetrate the silica micropores since ethanol 

molecules already occupy these (Kobayakawa et al., 1998).  

Due to the nature of the precursor deposition and catalyst synthesis processes, 

quality and uniformity of the TiO2 layer depend on many factors, such as grade of reagents, 

age of sol precursor, mass of silica gel per batch, frequency and velocity of silica beads/sol 

precursor stirring, air flow rate during calcination, among others.  Although it has been 

found that, once the photocatalyst adheres to the support, a very thin layer of a few hundred 

angstroms is sufficient to absorb all the available light (Bideau et al., 1995), repeated 

depositions could be necessary to ensure full coverage of the silica gel particle. 

 

 

Figure 4.47. SEM image of uncoated silica gel beads with average diameter of 357 μm 
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Scanning electron microscopy of the coated silica beads (Figures 4.48 through 4.50) 

shows that a single coat of photocatalyst deposits as an irregular film with visible creases 

(Figures 4.48.a and b). In some areas, this first coating may have fractured and fallen off, 

leaving behind pieces of catalyst that remained attached to the surface.   

Additional coatings lead to the formation of a thicker but cracked catalyst layer 

(Figures 4.49.a, b and c).  Figure 4.50 shows a SEM image of TiO2 particles agglomeration 

taken on silica beads after three coatings. The observed morphology resembles that of 

anatase as reported by the literature (de Lasa et al., 2005). 

 

 

 
Figure 4.48.a. SEM image of silica gel beads after one TiO2 coating 
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Figure 4.48.b. SEM image of silica gel beads after one TiO2 coating 

 

 

 

 

 
Figure 4.49.a. SEM image of silica gel beads after three TiO2 coatings 
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Figure 4.49.b. SEM image of silica gel beads after three TiO2 coatings 

 

 

 

 

 
Figure 4.49.c. SEM image of silica gel beads after three TiO2 coatings (detail) 
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Figure 4.50. SEM image of TiO2 primary particles (anatase) agglomeration 

 

Reports on grain average diameter of anatase synthetized by the sol-gel method, 

measured through scanning electron micrographs, show a particle size ranging from 80 to 

200 nm (Rodriguez and Matousek, 2004; de Lasa et al., 2005), which coincides with that 

of the small and isolated grains observed in Figure 4.50.  The also common mineral form 

of TiO2, rutile, forms larger particles in the range of 300 to 1060 nm (de Lasa et al., 2005). 

Up to three consecutive coats of TiO2 were applied onto the silica gel beads, as 

described in Section 3.3, and their weight increase after each application is reported in 

Table 4.2. In average, each coating deposited 6.5% of the silica mass as TiO2. 

 

 

 



 

113 
 

Table 4.2. Percent weight increase of 357 μm-silica gel beads with number of TiO2 layers 

      

 
Silica gel Mass (g) 

% Weight 

Increase 
Cumulative 

% Increase   

Uncoated 60.6366     

1 Coat 64.7888 34.478  6.85 6.85 

2 Coats  36.6025 19.5084 6.16 13.43 

3 Coats   20.7739 6.49 20.79 

      

 

 

The COD removal efficiency achieved when using silica gel beads of 357 μm in 

average diameter with one, two and three TiO2 coats was measured by means of typical 

photocatalytic experiments run with a mixture of an aqueous phenol solution of 1.0 mmol 

L-1 and 20 g L-1 of coated silica beads. The results obtained with each type of silica particles 

is presented on Figure 4.51.  

 

 

Figure 4.51. COD photocatalytic degradation profile in a mixture of 1.0 mmol L-1 phenol 

and 20 g L-1 of 357 μm-silica gel beads with different number of TiO2 layers 
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As expected, the system efficiency increased with the number of photocatalyst 

layers, indicating that the added TiO2 mass improved catalyst availability for photon 

absorption and substrate oxidation.  As shown in Figure 4.52, COD removal efficiency 

after 8 hours of irradiation increased by 10% after two additional layers of TiO2 were 

applied onto the catalyst support. Similarly, 𝑄0.5 decreased from 48 to 31 kJ L-1, as shown 

in Figure 4.53. 

 

 Figure 4.52. 8-h COD removal efficiency variation with number of TiO2 layers 

 

 

 

Figure 4.53. 𝑄0.5 variation with number of TiO2 layers 
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 Figure 4.54. Variation of 8-h COD removal per gram of TiO2 with number of TiO2 layers 

 

In general, the deposition of additional photocatalyst through the experimental 

technique herein utilized improves COD removal by enhancing silica coverage and 

therefore, increasing the TiO2 surface area exposed to irradiation.  However, in a mg L-1-

of COD-removed per gram-of-deposited-catalyst basis, the opposite is true, as shown by 

Figure 4.54.  Such results confirm that the catalyst deposits as a layer on the silica surface, 

and that is not the thickness of this layer but its extension that influence the photocatalytic 

degradation rate of the organic substrates. 
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i) Adsorption only, by running an experiment “in the dark” with a mixture of the 

phenol solution and 20 mg L-1 of 357 μm-uncoated silica gel beads. 

ii) Photolysis only, by irradiating the phenol solution with UV-C light in the absence 

of silica beads and a catalyst. 

iii) Photolysis + adsorption, through a typical experiment using a mixture of the phenol 

solution and 20 g L-1 of 357 μm-uncoated silica. 

iv) Photocatalysis with anatase powder, by running the system as a slurry type reactor, 

where the mixture consisted of a suspension of the phenol solution and 1.25 g L-1 

of TiO2 nano-powder (This amount of TiO2 is equivalent to the mass of catalyst 

deposited on 20 g L-1 of silica gel beads after a single sol-gel coating). 

The results of this set of control experiments is presented in Figure 4.55. For comparison 

purposes, results of the photocatalytic experiments preformed using a mixture of the phenol 

solution and silica beds with one and three TiO2 layers has also been included. 

 

 

Figure 4.55. COD elimination profile in a 1.0 mmol L-1 phenol solution for different processes 
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Adsorption of phenol on the silica gel particles is low, and COD removal after 8 hours of 

contact is negligible.  On the other hand, photocatalysis with anatase nano-powder is a highly 

efficient process, removing 100% of the COD after only 4 hours of irradiation.  Photolysis only 

was slightly more efficient than photolysis in the presence of uncoated silica, evidencing the light-

blocking effect of the silica beads. Photocatalysis with TiO2-coated silica gel was 100% more 

efficient than photolysis only, being able to remove more than twice the initial COD after 8 hours 

of treatment.  

Absorption profiles of the phenol solution acquired during the course of the experiments, 

presented in Figures 4.56 through 4.58, show the differences in the mineralization progress for 

each process type. The rate of phenol mineralization is the fastest for anatase nano-powder 

photocatalysis. This rate is lower for coated-silica photocatalysis, and it tends to zero in the case 

of adsorption.  Although UV-C photolysis is capable of oxidizing phenol by itself, the pace at 

which the phenol peak at 269 nm disappears and intermediates are eliminated, is noticeably slower 

than that for both modes of photocatalysis. 

As discussed in Section 4.2.3, the initial substrate concentration in the target solution has 

a significant effect on the photocatalytic COD removal efficiency.  Figures 4.59 and 4.60 show 

that this variable not only affects the fixed-catalyst photo-mineralization process, but that it has a 

marked influence on the organics photo-oxidation mechanism.  By measuring the COD removal 

in a solution with different initial phenol concentrations, the effect of substrate load on process 

efficiency was evaluated in the case of photolysis only and anatase nano-powder photocatalysis, 

and compared to that of its  TiO2-coated-silica gel counterpart. 
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Figure 4.56. Absorption profile at 269 nm of a 1.0 mmol L-1 phenol solution for different 

processes 
 

 

 

 

Figure 4.57. Absorption profile at 240 nm of a 1.0 mmol L-1 phenol solution for different 

processes 
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Figure 4.58. Area under absorption spectrum of a 1.0 mmol L-1 phenol solution for different 

processes 
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50% of the initial COD.  However, photolysis can only achieve the half-concentration point at very 

low phenol initial loads (less than 0.25 mmol L-1).   

 

 

Figure 4.59. 8-h COD removal efficiency variation with initial phenol concentration for different 

photo-oxidation processes 

 

 
 

Figure 4.60. 𝑄0.5 variation with initial phenol concentration for different photo-oxidation 
processes 
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The photolytic degradation of phenol has been found to be considerably more efficient 

under UV-C (λ < 254 nm) than under UV-A (λ > 350 nm) light (Matthews and McEvoy, 1992; 

Chun et al., 2000; Puma and Yue, 2002), owing to the shorter penetration capability of the higher 

energy photons yielding more electron-hole pairs available for the substrate molecules. But when 

a photocatalyst is added to a system where the emission spectrum of the light source coincides 

with that of the target compound, as is the case in the studied photo-reactor, both the catalyst and 

the organic molecules will compete for the photons, with one of the two mechanisms 

predominating in the process (Bayarri et al, 2007).  Therefore, comparing photolysis and 

photocatalysis under similar experimental conditions gives an idea of the magnitude of the 

contribution of the former to substrate removal. By the results shown in Figure 4.59, concomitant 

photolytic and photocatalytic reactions play a part in COD degradation at very low phenol 

concentrations, but as the latter increases, the fraction of photons absorbed by the TiO2 surface 

also increases, and then mineralization proceeds mainly through photocatalytic mechanisms.   

In general, the presence of TiO2 as catalyst, either as a fixed layer on fluidized silica gel 

beads or as powder suspended in the mixture, enhances the process efficiency significantly over 

that of UV-C photolysis by increasing photon uptake (Bayarri et al., 2007). However, at high 

phenol concentrations, substrate oxidation by photocatalysis becomes ineffective and energy 

consuming.  

 

4.4. Photo-Reactor Modeling 

Developing a comprehensive kinetic model for the photocatalytic oxidation of organic 

substrates poses a particular challenge for kineticists since experimental data has shown a 
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dependence of the Langmuir adsorption constant on the intensity of the photon flux (Emeline et 

al., 2000).  Such a fact is a contradiction of the Langmuir-Hinshelwood model premise that 

assumes equilibrated adsorption/desorption of reactants during irradiation. Besides, the adsorption 

constants of contaminants on the TiO2 surface obtained from adsorption equilibrium experiments 

in the dark do not correspond with those obtained from kinetic experiments (Chen and Ray, 1999).   

The L-H model does not represent the mechanism of heterogeneous photocatalysis since it 

ignores a number of steps such as: the generation of charge-carriers by absorption of photons, free 

electrons in the conduction band and free holes in the valence band, reduction of oxygen by the 

photogenerated electrons, trapping of photogenerated holes in surface states, recombination of 

charge carriers, oxidation of organic matter by free holes or surface holes, and presence of back 

reactions (Valencia et al., 2011).  However, despite this discordance, many studies are still basing 

their kinetic analysis of organics photocatalysis on the calculation of the L-H 

adsorption/desorption constant.  

In the case of multi-organic matrices treatment, a more realistic approach to process 

modeling can be done by studying the photo-mineralization of global lump-sum parameters such 

as TOC or COD under controlled operational conditions, as suggested in Section 2.6 through 

Equation 3.33. This has been done in a number of studies for photo-reactors operated as slurry-

type systems (Minero et al., 1996; Bayarri et al, 2007).   

The photocatalytic system developed in this research uses TiO2-coated silica beads 

fluidized in the bulk liquid. The COD decay profile obtained with this system may indicate catalyst 

saturation occurs during irradiation for it reaches a plateau or minimum COD.  Such behavior was 

not observed when using anatase nano-powder (Section 4.3).   The system also lacks a temperature 
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control mechanism, thus temperature increases with irradiation time, as shown in Figure 4.43, 

which has an accelerating effect on reaction rates during phenol mineralization (Section 4.2.2, 

Comninellis and Pulgarin, 1993).  These conditions of non-ideality make the fitting of the 

experimental data to conventional kinetic models or the development of new ones very 

challenging, placing it beyond the scope of this research.  

However, for practical purposes, the system performance can be predicted for any given 

initial phenol concentration through a simple model based on correlation of parameters derived 

from statistical analysis of the experimental data. As mentioned before, in the case of 

photocatalytic degradation over fixed TiO2, the concentration of COD in the mixture decays 

exponentially with irradiation time (or energy consumption), and even at low phenol 

concentrations, substrate concentration plateaus before reaching complete elimination. Thus, 

experimental data points can be fitted through non-linear regression (GraphPad Prism 6 ®) to a 

one phase decay model of the form: 

Y = (Y0 − Plateau)e
−kX + Plateau                                                                                             (4.2) 

Which can be rewritten for the case of COD decay vs. time as: 

 

Ct = (C0 − CL)e
−kt + CL                                                                                                            (4.3) 

where Ct represents the COD (in mg/L) remaining at time t (in min); C0 and CL are the initial and 

minimum COD, respectively, and k is the photocatalytic pseudo-constant in min-1.   

Statistical fitting was done on data from typical photocatalytic experiments using a mixture 

containing 20 g L-1 of 357 μm silica gel beads with a single coat of TiO2 in aqueous phenol solution 
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of different initial concentrations, unbuffered pH, and no NaCl added. Figure 4.61 show the 

experimental data points and best fit curves for different initial phenol concentrations. 

 

 
 

Figure 4.61. COD vs time experimental points and exponential decay fit curves for 

photocatalytic experiments using a mixture of 20 g L-1 357 μm-silica gel beads coated once and 

different initial phenol concentrations 
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regression fit of k as a function of C0 through Equation 4.4 are presented in Figure 4.62.  
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Figure 4.62. k vs C0 exponential fit for photocatalytic experiments using a mixture of 20 g L-1 

357 μm-silica gel beads coated once and different initial phenol concentrations 

 

 

Similarly, the minimum COD, CL, can be written as a power function of C0, as follows: 

CL = kωC0
k∗                                                                                                                                 (4.5) 

where kω and k∗ are also constant for the system under study.  The regression results are shown 

in Figure 4.63. 
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Figure 4.63. CL vs C0 power fit for photocatalytic experiments using a mixture of 20 g L-1 357 
μm-silica gel beads coated one and different initial phenol concentrations 

 

 

 

 

Figure 4.64. COD vs time experimental points and exponential decay fit curves for 

photocatalytic experiments using a mixture of 20 g L-1 357 μm-silica gel beads with three coats 

and different initial phenol concentrations 
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Figure 4.65. k vs C0 exponential fit for photocatalytic experiments using a mixture of 20 g L-1 
357 μm-silica gel beads with three coats and different initial phenol concentrations 

 

 

 

Figure 4.66. CL vs C0 power fit for photocatalytic experiments using a mixture of 20 g L-1 357 
μm-silica gel beads with three coats and different initial phenol concentrations 

 

Table 4.3 summarizes the statistical analysis results for the two different set of experiments. 
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Equation 4.3, remaining COD at any time during irradiation can be predicted for any given initial 

concentration between 50 and 900 mg L-1 of phenol-derived COD. 

 

Table 4.3. Statistical model correlation constants for the photo-reactor system using silica gel 

beads with one and three TiO2 coatings 

 

  One TiO2 coat Three TiO2 coats 

𝐤𝟎 , min-1 2.19E-02 1.87E-02 

𝐤𝐋, min-1 5.41E-03 4.74E-03 

𝐤′,  L mg-1 1.86E-02 7.22E-03 

𝐤𝛚 4.50E-03 2.80E-05 

𝐤∗              1.708 2.432 

 

Figures 4.67 and 4.68 show the performance curves generated using the proposed statistical 

model. 

 

Figure 4.67. COD vs time experimental points and statistical model curves for photocatalytic 

experiments using a mixture of 20 g L-1 357 μm-silica gel beads coated once and different initial 

phenol concentrations 
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Figure 4.68. COD vs time experimental points and statistical model fit curves for photocatalytic 

experiments using a mixture of 20 g L-1 357 μm-silica gel beads with three coats and different 

initial phenol concentrations 

 

 

 

The coefficient of determination or R2 values of the experimental data fit to the exponential 

decay and statistical model for both types of coated silica gel beads are presented in Table 4.4. 

 

Table 4.4. Coefficients of determination of experimental data fit to exponential decay and 

statistical model 

 

  R2 (Exponential decay fit)   R2 (Statistical model fit) 

Initial phenol 

concentration 

(mmol L-1) 

Number of TiO2 coats 

One Three  One Three 

0.25 0.9892 0.9916  0.9898 0.9870 

0.5 0.9985 0.9964  0.9985 0.9963 

1.0 0.9921 0.9953  0.9930 0.9954 

2.0 0.9940 0.9873  0.9952 0.9840 

3.0 0.9968 0.9902  0.9939 0.9944 

4.0 0.9950 0.9847   0.9963 0.9878 
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Coefficient of determinations or the goodness of fit of the experimental data to the 

predicted degradation profile curves generated with the proposed statistical model (Table 4.4) are 

all higher than 0.98. It is safe to say then that this procedure allows for process output estimation 

with acceptable accuracy.  

The values shown in Table 4.3 apply only to this specific type of process where the 

photocatalytic reactor geometry, light intensity, type of photocatalyst and contaminant and 

operational conditions are the ones used during the experimental phase of this research, all of 

which have been described in previous sections of this document. Nonetheless, given the 

complexity of the photocatalytic oxidation process and the inherent difficulty in generating the 

necessary data for developing a detailed kinetic model, a practical predictive tool like the model 

herein presented can be generated for different reactor configurations using fluidized TiO2-coated 

support and any organic substrates through similar statistical analysis of experimental data. 
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5                                         

Summary, Conclusions and Recommendations 
 

TiO2 heterogeneous photocatalysis is an effective process for oxidizing a variety of organic 

and inorganic contaminants, but so far the use of this technology has been restricted mostly to 

slurry-type systems, in which the photocatalyst nano-powder is directly mixed with the liquid 

waste. Such an approach, although ideal from the photo-reaction kinetics standpoint due to the 

maximization of the catalyst surface area to photon flux ratio, is inherently costly and energy 

intensive because of the need for catalyst powder removal from the effluent.  Alternative methods 

consisting of immobilization of the photocatalyst have also been developed (Table 1.1), offering 

the advantage of continuous operation without catalyst separation but sacrificing quantum 

efficiency owing to light scattering and lower catalyst surface availability. 

The present research investigates the feasibility of degrading phenol through photocatalysis 

on TiO2 that has been synthetized in the laboratory and deposited on silica gel beads through a sol-

gel method, then fluidizing a bed of the coated silica in a tubular bench-scale batch reactor with 

recirculation (Figures 3.4.a and b) equipped with a concentrically positioned UV-light bulb as 

source of high-energy photons.  

Experimental results showed that the photo-reactor tubular configuration makes the 

removal of COD highly sensitive to changes in the amount and size of the fluidized coated silica 

gel beads. 20 g of silica per liter of mixture was found to be the optimum reactor mass load for all 
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the beads sizes available (224, 357 and 461 μm), with process efficiency decreasing for lower and 

higher silica concentrations.  

The size of the catalyst-support particles also has a significant effect on the COD 

elimination rate under the experimental conditions. Maximum COD removal and minimum 𝑄0.5 

was obtained with 20 g L-1 of 224-μm beads (equivalent surface area of 0.8 m2 L-1).  In general, 

for any mass of fluidized silica gel, the process efficiency decreased with increasing silica gel 

particle size. For the same mass concentration of silica gel, the smaller the particle the higher the 

COD photo-oxidation rate, meaning that the surface area of photocatalyst increases with 

decreasing particle diameter.  However, this effect was found to be not only related to the extension 

of the catalyst surface area but also to the presence of the silica bead in the mixture.  For a constant 

surface area concentration, process efficiency decreased with increasing silica particle diameter, 

indicating that the size of the bead affects photon efficiency.  A larger support particle circulating 

in the immediate vicinity of the light source increases apparent mixture turbidity, preventing 

irradiation from reaching particles in the background. 

The presence of intermediate compounds formed during phenol photo-mineralization was 

indirectly determined through UV-Vis spectrophotometry. Absorption spectra captured at 240 and 

269 nm, and the magnitude of the area under this spectra was used to infer the rate at which phenol 

disappeared and intermediates were produced.  Solution absorbance readings at high phenol 

concentrations gave evidence of intermediates and acids formation and elimination reactions 

occurring simultaneously in the mixture during the course of irradiation. The presence of these 

compounds is believed to slow down the photocatalytic oxidation process by increasing the time 

and energy necessary for COD elimination due to the direct competition over limited unselective 
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reactive sites on the semiconductor surface and to the reduction in photon efficiency caused by the 

increased absorbance of the mixture.   

The decrease in process efficiency with substrate concentration is an expected outcome in 

this type of photo-reactors, given the light-absorbing nature of the substrate and its reaction by-

products, as mentioned before.  COD removal rate was highest at 0.25 mmol L-1 of phenol, and 

decreased with increasing phenol concentration. But besides this predictable finding, by looking 

at the behavior of COD degradation for different initial phenol and silica gel concentrations, it 

could also be observed that there exists an optimal load of silica particles at which removal is 

highest and that such a load is independent of substrate concentration.  This behavior confirms that 

the optimum catalyst-support load in the mixture is a design parameter determined by the photo-

reactor configuration and type of organic substrate. 

The observed tendency of both COD removal efficiency and 𝑄0.5 to plateau at silica gel 

mass loads other than the optimal as the initial phenol concentration increases can be interpreted, 

in the case of too low silica gel concentrations, as a sign of saturation of the photo-oxidation 

capabilities of the system due to an excess of substrate relative to the available catalyst surface.  In 

the case of too-high silica concentrations, the light blocking effect of particles overload is the main 

factor responsible for the decreased removal efficiency.  

The initial pH of the mixture was also found to affect the photo-reactor performance. Under 

acidic conditions, the photocatalytic removal of COD was enhanced, reaching the highest 

degradation rate at pH 3, which is considered the optimum for this type of process. In the pH range 

investigated, efficiency decreased with increasing pH, and at 9.5 it is 35 % less efficient than at 

pH 3.  Such effect is attribute to inhibition of the photo-mineralization mechanism in alkaline 

medium. 
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The effect of the solution salinity on the photocatalytic degradation of phenol was studied 

through controlled change in initial conductivity by means of NaCl addition.  Under the 

experimental conditions, the medium salinity had a noticeable effect on the COD removal 

efficiency, which increased with increasing NaCl concentration, and at 20 mmol/L of NaCl, COD 

was completely removed from solution after 8 h of UV-C irradiation.   

The influence of dissolved oxygen on the photocatalytic elimination of phenol/COD was 

investigated by comparing the results obtained from photocatalytic experiments with and without 

added oxygen. Dissolved oxygen was found to be indispensable for the activation and progress of 

photo-mineralization reactions, since the formation of active oxygen species in aqueous medium 

is a rate-limiting reaction step.  It was also confirmed that there is no need to bubble the gas through 

the reaction mixture since the performance does not depend on aeration. The absorption of oxygen 

by the surface of the solution is sufficient for photocatalytic oxidation to occur. 

The 357-μm silica gel beads used as TiO2 support were coated up to three times through 

the selected sol-gel method. The presence of the deposited catalyst was confirmed by scanning 

electron microscopic observation of the silica surface. On beads coated only once, the 

photocatalyst appeared as an irregular film with visible fractures while additional coatings lead to 

the formation of a thicker but cracked catalyst layer.  Catalyst surface morphology and grain size 

indicated the formation of anatase as the dominant form of synthetized TiO2.  The results from 

photocatalytic experiments performed with silica beads coated once and three times showed that 

COD removal efficiency increased with the number of photocatalyst layers, signaling improved 

catalyst availability for photon absorption and substrate oxidation owing to the added TiO2 mass. 

Further analysis of these results also confirmed that the catalyst deposits as a layer on the silica 
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surface, and that is not the thickness of this layer but its extension that influence the photocatalytic 

degradation rate of the organic substrate. 

The maximum photo-reactor efficiency was found by running the reactor in slurry mode 

using anatase nano-powder in a concentration of 1.25 g L-1. When comparing results from 

photocatalysis over TiO2 nano-powder, silica gel beads with one and three coatings and photolysis, 

the nano-powder type process was more efficient than the others for the entire range of phenol 

concentrations, but as efficient as photocatalysis over silica beads with three coatings at end low 

and high phenol concentrations, 0.25 and 4.0 mmol L-1, respectively. Absorption spectra from 

these experiments showed that both photolytic and photocatalytic reactions occur during COD 

degradation at very low phenol concentrations, but as the latter increases, the fraction of photons 

absorbed by the TiO2 surface also increases, and then mineralization proceeds mainly through 

photocatalytic mechanisms.   

Finally, through statistical analysis of the experimental data it was determined that the 

photocatalytic degradation of phenol-derived COD in the tubular bench-scale reactor follows 

exponential decay behavior, with the COD concentration reaching a plateau at some point during 

irradiation.  The degradation pattern was the same for silica gel beads with one and three TiO2 

coatings. Thus, experimental data points were fitted through non-linear regression to a one phase 

decay model using GraphPad Prism 6 ®.  Mathematical expressions relating the parameters from 

the decay-model fit equations to initial substrate concentrations were also found, which allowed 

for generating a statistical model specific for the experimental system that accurately predicts the 

COD in the effluent at any time during irradiation knowing the initial COD of the mixture.  
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Regarding the role and effect of the evaluated intrinsic parameters on the photocatalytic 

degradation of phenol, the following conclusion can be drawn: 

The sol-gel technique used for catalyst deposition onto silica gel particles produces anatase 

as the main TiO2 form.  The particle surface coverage by the catalyst increases with the number of 

coating procedures, with each coating increasing the weight of the silica gel particles by 6.5% in 

average. 

The adherence of the deposited catalyst onto the silica bead surface is mediocre. COD 

removal efficiency achieved with particles coated three consecutive times decreases by 15 % after 

72 hours of use, due to the catalyst layer washing off the silica surface. 

Experiments performed with silica gel beads coated three times produced an 8-h COD 

removal 10% higher and a Q0.5 17 kJ L-1 lower than those with beads coated only once.  Therefore, 

it is necessary to subject silica particles to at least three consecutive sol-gel coating procedures for 

added catalyst stability and treatment efficiency. 

For the experimental reactor configuration, 20 g of silica gel per liter of mixture is the 

optimum concentration for achieving maximum COD removal. This was true for all particle sizes 

evaluated. However, for the same silica mass load, process efficiency increases with decreasing 

silica gel particle size. 

All of the extrinsic parameters investigated have a measurable and significant effect on the 

photocatalysis of phenol under the experimental conditions. Based on the experimental results, the 

following conclusions can be made: 
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Process removal efficiency decreases with increasing substrate concentration, regardless 

of the size and load of the silica gel particles used for catalyst support. 

The initial pH affects the photocatalytic reaction mechanism. Highest removal efficiency 

was achieved at initial pH 3, and it decreases with increasing pH. 

In the presence of NaCl, it was found that photocatalytic COD removal increases with 

increasing salinity.  

The role of dissolved oxygen in the treated solution is that of an electron-hole scavenger. 

Continuous oxygen supply during the course of the experiment is indispensable for photocatalysis 

to proceed.  Oxygen saturation of the mixture in the experimental photo-reactor can be effectively 

achieved by keeping the liquid in contact with pure oxygen at 1 atm.  

Photocatalytic degradation of phenol-derived COD on TiO2-coated silica gel beads in the 

tubular reactor fits an exponential decay model, regardless of the experimental conditions of the 

system. 

The statistical model presented allows for estimation of the reactor efficiency for any initial 

COD of the mixture with high accuracy (minimum R2 of 0.9840).  It is reasonable to expect that a 

similar model based on statistical analysis of performance data can be generated for any tubular 

reactor using fluidized catalyst-coated silica gel for photocatalytic mineralization of dissolved 

pollutants. 

In general, the proposed photocatalytic system can be considered a viable alternative to 

slurry-type reactors for complete mineralization of phenol. When comparing the use of silica gel 

beads coated three times with that of anatase nano-powder in the experimental system, both exhibit 
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a similar 8-h COD removal efficiency at initial phenol concentrations less than 0.25 mmol L-1, and 

a maximum difference of 20 % efficiency at 2.0 mmol L-1, while the latter results in a Q0.5 20 kJ 

L-1 lower for the entire range of phenol concentrations. 

The main limitations of the proposed technology are related to the stability of the deposited 

catalyst layer and the efficiency of photon penetration through the bulk liquid.  Dealing with the 

first one requires continuing research on different TiO2 deposition or synthesis techniques, and 

even exploring the use of other types of semiconductor catalysts for improved adherence and 

decreased energy consumption.   

Photonic efficiency can be improved by modifying the system design.  In a tubular reactor 

with a concentric UV source, the annular space thickness or depth of the bulk liquid must be the 

minimal as to allow for support fluidization and full light penetration. The wavelength of the 

emitted light can also be increased in order to prevent photons from being absorbed by the target 

substrate and to lower energy expenditure.  Therefore, further research should look into reducing 

the annular space between the bulb casing and the internal walls of the reactor and also into 

studying the effect of replacing UV-C for UV-B and UV-A light. 
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Appendix 
 

 

A. Results of Photocatalytic Experiments by Date 

 

This section presents the raw experimental results. Each insert contains a description of the 

type of experiment, size of silica gel particle, quartz sleeve diameter, initial phenol concentration, 

volume of solution in the reactor, pump’s controller setting, catalyst coating characteristics, and 

experiment’s objective. 

 

 

 

 

 

 

 

Photolysis (UV only)+oxigeno

1" sleeve

ID : 6/19/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = none

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

9:00 0 0 242 6.1 9.41 21.9 1.430 0.512 0.102 107.36

10:00 1 60 206 3.9 35 32 1.920 1.673 1.536 220.75

11:00 2 120 185 3.7 35 32 1.719 1.587 1.620 224.60

1:00 4 240 167 3.6 35 35 1.314 1.279 1.430 200.73

3:00 6 360 150 3.5 35 35 0.959 0.982 1.134 155.49

5:00 8 480 143 3.5 35 35 0.609 0.653 0.775 103.35

Photolysis experiment. UV + O2 only.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/1/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 24 g (30 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 235 5.3 8.25 21 1.459 0.517 0.078 105.51

9:00 0 248 5.1 35 23 1.411 0.567 0.170 109.04

9:30 30 221 4.3 35 28 1.560 1.118 0.973 172.23

10:00 60 196 4.1 35 28 1.468 1.098 1.041 179.04

10:30 90 181 4.0 35 32 1.356 1.043 1.038 177.23

11:00 120 169 3.9 35 34 1.251 1.006 1.035 173.72

1:00 240 144 3.7 35 35 0.770 0.721 0.809 124.34

3:00 360 117 3.7 35 35 0.377 0.400 0.470 66.22

5:00 480 99 3.8 35 35 0.156 0.177 0.208 27.72

Photocatalytic experiment using 30 g. per liter (24 g.) of silica gel size 

larger than 300 μm. Compare to 5, 10 and 20 g/L of same size silica. 

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/2/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 4 g (5 g/L) 1 coat new

Time (min)COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 229 5.6 8.25 21 1.427 0.501 0.075 105.12

9:00 0 237 5.1 35 22 1.368 0.508 0.097 103.38

9:30 30 199 4.0 35 28 1.812 1.473 1.240 194.69

10:00 60 179 3.8 35 32 1.748 1.465 1.347 206.07

10:30 90 171 3.7 35 35 1.648 1.400 1.358 206.75

11:00 120 159 3.6 35 35 1.526 1.327 1.335 203.22

1:00 240 129 3.5 35 36 1.192 1.125 1.237 183.81

3:00 360 119 3.5 35 0.846 0.865 0.994 139.18

5:00 480 109 3.5 35 36.1 0.390 0.454 0.550 70.18

Photocatalytic experiment using 5 g. per liter (4 g.) of silica gel size 

larger than 300 μm. Compare to 10, 20 and 30 g/L of same size silica. 
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/10/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 8 g (10g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 233 5.8 8.71 22.1 1.442 0.492 0.071 107.18

9:00 0 236 5.3 20 1.413 0.542 0.134 108.22

9:30 30 195 4.2 35 28 1.727 1.330 1.154 188.84

10:00 60 183 4.0 35 28 1.644 1.312 1.234 197.00

10:30 90 169 3.8 35 28 1.537 1.258 1.237 196.58

11:00 120 161 3.8 35 32 1.434 1.216 1.238 194.34

1:00 240 122 3.6 35 32 1.016 0.967 1.076 161.04

3:00 360 97 3.5 35 34 0.551 0.588 0.684 94.82

5:00 480 78 3.6 20 36 0.120 0.138 0.167 22.98

Repeat of Jun-28. Photocatalytic experiment using 10 g. per liter (8 g.) of 

silica gel size larger than 300 μm. Compare to 5, 20 and 30 g/L of same 

size silica. 

UV + TiO2

75 mesh (200 μm)

1" sleeve (new)

ID : 7/11/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 229 5.5 8.71 22.1 1.430 0.507 0.084 107.24

9:00 0 233 5.0 20 24 1.414 0.583 0.191 112.52

9:30 30 188 4.2 >20 28 1.482 1.074 0.957 171.55

10:00 60 160 4.1 35 28 1.290 0.956 0.930 168.39

10:30 90 144 3.9 35 28 1.157 0.896 0.910 163.26

11:00 120 131 3.9 35 32 1.047 0.852 0.889 154.61

1:00 240 90.4 3.7 35 32 0.573 0.549 0.620 94.14

3:00 360 59.6 3.8 35 34 0.235 0.269 0.312 38.34

5:00 480 56.2 4.2 20 36 0.146 0.182 0.208 22.17

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 200 μm. Compare to 20 g/L of size 300, 425 silica. 
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UV + TiO2

40 mesh (425 μm)

1" sleeve (new)

ID : 7/12/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 233 5.5 8.71 22.1 1.446 0.525 0.092 107.55

9:00 0 232 5.6 20 24 1.399 0.548 0.144 109.31

9:30 30 192 4.4 >20 28 1.682 1.301 1.131 187.21

10:00 60 177 4.1 35 28 1.586 1.253 1.184 193.69

10:30 90 161 4.0 35 28 1.459 1.172 1.158 190.89

11:00 120 149 4.0 35 32 1.344 1.108 1.132 186.37

1:00 240 112 3.8 35 32 0.934 0.854 0.944 147.94

3:00 360 88.7 3.7 35 34 0.544 0.557 0.645 92.87

5:00 480 75.9 3.8 20 36 0.216 0.247 0.291 37.74

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 425 μm. Compare to 20 g/L of size 200, 300 silica. 

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/14/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 230 5.5 8.25 22.9 1.434 0.494 0.084 110.18

9:00 0 228 5.3 >20 24.7 1.397 0.536 0.146 110.43

9:30 30 195 4.3 >20 29.2 1.639 1.230 1.080 184.24

10:00 60 172 4.2 >20 31.6 1.542 1.196 1.143 190.16

10:30 90 159 4.0 >20 32.9 1.418 1.140 1.146 188.44

11:00 120 145 3.9 >20 34.1 1.283 1.073 1.116 182.71

1:00 240 106 3.7 >20 35.2 0.790 0.772 0.874 129.13

3:00 360 73 3.7 >20 36.5 0.302 0.334 0.398 54.16

5:00 480 57.9 3.9 >20 36.6 0.121 0.144 0.169 20.62

Repeat of Jun-30. Photocatalytic experiment using 20 g. per liter (16 g.) of 

silica gel size larger than 300 μm. Compare to 5, 10 and 30 g/L of same size 

silica. 
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UV + TiO2

40 mesh (425 μm)

1" sleeve (new)

ID : 7/15/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 8 g (10 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 235 5.2 8.25 22.9 1.456 0.515 0.089 108.86

9:00 0 234 5.1 >20 24.7 1.413 0.546 0.136 109.39

9:30 30 202 4.3 >20 29.2 1.791 1.414 1.192 192.13

10:00 60 184 4.1 >20 31.6 1.708 1.364 1.256 200.46

10:30 90 170 3.9 >20 32.9 1.618 1.318 1.273 201.90

11:00 120 161 3.8 >20 34.1 1.522 1.258 1.258 199.40

1:00 240 146 3.7 >20 35.2 1.190 1.068 1.161 182.06

3:00 360 125 3.6 >20 36.5 0.911 0.881 1.001 148.18

5:00 480 107 3.6 >20 36.6 0.589 0.622 0.729 100.67

Photocatalytic experiment using 10 g. per liter (16 g.) of silica gel size 

larger than 425 μm. Compare to 10 of size 200 and 300 silica. 

UV + TiO2

75 mesh (200 μm)

1" sleeve (new)

ID : 7/16/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 8 g (10 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 5.5 8.25 22.9 1.469 0.520 0.090 109.77

9:00 0 238 5.0 >20 24.7 1.429 0.552 0.140 110.52

9:30 30 198 4.2 >20 29.2 1.646 1.223 1.061 182.65

10:00 60 177 4.0 >20 31.6 1.506 1.132 1.067 184.41

10:30 90 166 3.9 >20 32.9 1.401 1.080 1.063 182.80

11:00 120 149 3.8 >20 34.1 1.262 0.993 1.013 175.93

1:00 240 111 3.6 >20 35.2 0.841 0.738 0.803 132.13

3:00 360 82.5 3.6 >20 36.5 0.407 0.387 0.438 68.01

5:00 480 60.3 3.8 >20 36.6 0.147 0.157 0.183 24.51

Photocatalytic experiment using 10 g. per liter (8 g.) of silica gel size 

larger than 200 μm. Compare to 10 of size 300 and 425 silica. 
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/17/2014

Cphenol= 0.5 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 122 5.5 8.25 22.9 0.751 0.262 0.046 76.25

9:00 0 125 5.2 >20 24.7 0.748 0.309 0.108 78.69

9:30 30 102 4.5 >20 29.2 0.917 0.757 0.695 122.77

10:00 60 87.8 4.2 >20 31.6 0.770 0.659 0.668 111.67

10:30 90 76.5 4.0 >20 32.9 0.632 0.569 0.605 96.16

11:00 120 64.9 3.9 >20 34.1 0.494 0.472 0.516 78.31

1:00 240 35.9 4.0 >20 35.2 0.123 0.142 0.169 21.71

3:00 360 27.3 4.3 >20 36.5 0.085 0.104 0.120 14.07

5:00 480 21.5 4.4 >20 36.6 0.077 0.096 0.112 13.03

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm and phenol concentration of 0.5 mmol. Compare to 

higher phenol concentrations.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/21/2014

Cphenol= 2.0 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 453 5.5 8.25 22.9 2.472 1.000 0.176 148.20

9:00 0 440 5.5 >20 24.7 2.421 1.020 0.232 147.29

9:30 30 385 4.4 >20 29.2 2.828 2.009 1.636 242.95

10:00 60 349 4.2 >20 31.6 2.777 2.017 1.783 256.14

10:30 90 321 3.9 >20 32.9 2.657 1.961 1.822 259.12

11:00 120 299 3.9 >20 34.1 2.553 1.942 1.867 261.08

1:00 240 236 3.6 >20 35.2 2.102 1.776 1.883 254.20

3:00 360 202 3.5 >20 36.5 1.635 1.524 1.693 231.46

5:00 480 168 3.5 >20 36.6 1.080 1.129 1.302 182.51

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm and phenol concentration of 2.0 mmol. Compare to 

various phenol concentrations.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/22/2014

Cphenol= 3.0 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 683 5.4 8.25 22.9 2.690 1.508 0.284 170.75

9:00 0 653 5.3 >20 24.7 2.702 1.524 0.344 173.39

9:30 30 593 4.4 >20 29.2 3.225 2.700 1.998 274.19

10:00 60 557 4.1 >20 31.6 3.404 2.833 2.328 299.76

10:30 90 518 3.9 >20 32.9 3.443 2.828 2.470 311.87

11:00 120 489 3.8 >20 34.1 3.513 2.795 2.529 317.02

1:00 240 411 3.6 >20 35.2 3.363 2.749 2.805 329.17

3:00 360 343 3.5 >20 36.5 3.006 2.604 2.824 323.48

5:00 480 309 3.4 >20 36.6 2.618 2.416 2.681 309.25

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm and phenol concentration of 3.0 mmol. Compare to 

various phenol concentrations.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/23/2014

Cphenol= 0.5 mmol/L

Vol = 800 ml Speed = 8

Silica = 8 g (10 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 125 5.5 8.25 22.9 0.746 0.263 0.045 76.00

9:00 0 130 5.4 >20 24.7 0.757 0.311 0.108 80.27

9:30 30 107 4.2 >20 29.2 0.946 0.787 0.719 127.65

10:00 60 91.7 4.0 >20 31.6 0.823 0.719 0.720 119.14

10:30 90 82.2 3.9 >20 32.9 0.685 0.626 0.662 104.05

11:00 120 68.8 3.8 >20 34.1 0.530 0.516 0.563 84.13

1:00 240 40.9 3.9 >20 35.2 0.102 0.115 0.136 18.64

3:00 360 31.9 4.1 >20 36.5 0.071 0.085 0.097 12.14

5:00 480 24.3 4.3 >20 36.6 0.069 0.084 0.097 11.64

Photocatalytic experiment using 10 g. per liter (8 g.) of silica gel size 

larger than 300 μm and phenol concentration of 0.5 mmol. Compare to 

higher phenol concentrations.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/24/2014

Cphenol= 2.0 mmol/L

Vol = 800 ml Speed = 8

Silica = 8 g (10 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 460 5.3 8.25 22.9 2.484 1.020 0.179 149.14

9:00 0 456 5.1 >20 24.7 2.432 1.057 0.239 148.05

9:30 30 398 4.0 >20 29.2 2.929 2.171 1.718 249.40

10:00 60 369 3.9 >20 31.6 2.978 2.284 1.970 270.43

10:30 90 330 3.8 >20 32.9 2.949 2.261 2.056 277.69

11:00 120 301 3.7 >20 34.1 2.879 2.235 2.110 281.12

1:00 240 269 3.5 >20 35.2 2.520 2.136 2.258 285.65

3:00 360 244 3.5 >20 36.5 2.184 1.993 2.203 275.75

5:00 480 206 3.4 >20 36.6 1.831 1.795 2.038 257.72

Photocatalytic experiment using 10 g. per liter (8 g.) of silica gel size 

larger than 300 μm and phenol concentration of 2.0 mmol. Compare to 

different phenol concentrations.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/25/2014

Cphenol= 0.5 mmol/L

Vol = 800 ml Speed = 8

Silica = 24 g (30 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 118 5.4 8.25 22.9 0.745 0.263 0.043 75.52

9:00 0 118 5.3 >20 24.7 0.763 0.323 0.126 81.15

9:30 30 97 4.4 >20 29.2 0.861 0.676 0.632 116.46

10:00 60 80.6 4.1 >20 31.6 0.733 0.616 0.631 105.95

10:30 90 69.6 4.0 >20 32.9 0.595 0.539 0.579 90.24

11:00 120 57.9 3.9 >20 34.1 0.447 0.431 0.476 70.40

1:00 240 36.6 3.9 >20 35.2 0.154 0.180 0.211 25.28

3:00 360 29.4 4.2 >20 36.5 0.132 0.163 0.189 20.90

5:00 480 20.3 4.3 >20 36.6 0.142 0.178 0.208 22.80

Photocatalytic experiment using 30 g. per liter (24 g.) of silica gel size 

larger than 300 μm and phenol concentration of 0.5 mmol. Compare to 

higher phenol concentrations.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/26/2014

Cphenol= 2.0 mmol/L

Vol = 800 ml Speed = 8

Silica = 24 g (30 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 453 5.4 8.25 22.9 2.474 1.015 0.176 148.54

9:00 0 446 5.5 >20 24.7 2.420 1.041 0.275 152.90

9:30 30 392 4.5 >20 29.2 2.914 2.109 1.710 248.03

10:00 60 366 4.2 >20 31.6 2.925 2.160 1.942 269.89

10:30 90 344 4.0 >20 32.9 2.888 2.127 2.005 276.57

11:00 120 321 3.9 >20 34.1 2.824 2.121 2.057 279.64

1:00 240 273 3.7 >20 35.2 2.538 2.063 2.168 281.52

3:00 360 253 3.6 >20 36.5 2.213 1.911 2.113 271.70

5:00 480 224 3.5 >20 36.6 1.887 1.746 1.992 257.40

Photocatalytic experiment using 30 g. per liter (24 g.) of silica gel size 

larger than 300 μm and phenol concentration of 2.0 mmol. Compare to 

different phenol concentrations.

UV + TiO2

Anatase powder

1" sleeve (new)

ID : 7/29/2014

Cphenol= 1.0 mmol

Vol = 800 ml Speed = 8

Anatase= 1 g Powder new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 234 5.3 8.25 22.9 1.468 0.513 0.090 111.31

9:00 0 232 4.6 >20 24.7 1.414 0.521 0.106 108.50

9:30 30 177 3.8 >20 29.2 1.118 0.624 0.589 149.56

10:00 60 121 3.6 >20 31.6 0.701 0.505 0.578 115.01

10:30 90 65.3 3.7 >20 32.9 0.227 0.220 0.278 44.04

11:00 120 26.6 4.1 >20 34.1 0.014 0.016 0.021 4.55

1:00 240 0 4.5 >20 35.2 0.006 0.005 0.004 2.67

3:00 360 0 4.4 >20 36.5 0.007 0.005 0.005 3.44

5:00 480 0 >20 36.6

Photocatalytic experiment using 1 g. (1.25 g/l) of anatase and phenol 

concentration of 1.0 mmol. Compare to experimentes using coated 

silica.
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UV + Silica+O2

50 mesh (300 μm)

1" sleeve (new)

ID : 7/31/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8 Conductivity =8.00 μS/cm

Silica = 16 g uncoated

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 241 5.4 8.25 1.474 0.527 0.096 111.57

9:00 0 241 6.2 >20 1.430 0.557 0.144 112.26

10:00 60 215 4.6 >20 1.893 1.495 1.271 203.38

11:00 120 200 4.2 >20 1.716 1.375 1.332 209.21

1:00 240 171 4.0 >20 1.456 1.218 1.287 201.46

3:00 360 164 3.8 >20 1.257 1.088 1.196 187.55

5:00 480 159 3.8 >20 1.076 0.961 1.084 167.64

Repeat of Jul-30. Photolysis experiment. UV+uncoated silica+ O2 

only.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/1/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8 NaCl = 2 mmol/L 1.688 mg/L

Silica = 16 g (20 g/L) 1 coat new Cond. = 5.51 mS/cm

Time (min) COD (mg/L) pH C (mS/cm)DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral Phenol

8:00 -60 238 5.6 5.51 8.25 22.9 1.459 0.514 0.088 110.92 109

9:00 0 221 4.6 5.74 >20 24.7 1.379 0.510 0.103 107.98

9:30 30 182 4.1 5.95 >20 29.2 1.278 0.897 0.814 157.31

10:00 60 160 4.0 6.16 >20 31.6 1.103 0.804 0.814 156.60

10:30 90 141 3.9 6.21 >20 32.9 0.966 0.729 0.782 151.61

11:00 120 124 3.8 6.37 >20 34.1 0.830 0.652 0.732 137.79 18

1:00 240 86.4 3.7 6.13 >20 35.2 0.386 0.365 0.464 76.80 10

3:00 360 60.1 3.8 6.46 >20 36.5 0.082 0.092 0.130 20.92 8

5:00 480 28.8 4.0 6.33 >20 36.6 0.025 0.028 0.034 5.78 7

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size larger than 

300 μm. Added 2 mmol of NaCl.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/4/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8 NaCl = 20 mmol/L 16.88 mg/L

Silica = 16 g (20 g/L) 1 coat new Cond. = 38.6 mS/cm

Time (min)COD (mg/L) pH C (mS/cm)DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 200.8 5.5 38.60 8.25 22.9 1.467 0.522 0.093 111.22

9:00 0 172 4.5 34.40 >20 24.7

9:10 10 127.2

9:20 20 140.8

9:30 30 134.4 4.2 37.10 >20 29.2 1.280 0.889 0.751 150.60

10:00 60 27.2 4.1 47.40 >20 31.6 1.156 0.826 0.804 155.54

10:30 >20 32.9

11:00 120 86.4 4.0 93.50 >20 34.1 0.883 0.650 0.724 145.60

1:00 240 28.24 3.8 >20 35.2 0.534 0.472 0.601 108.42

3:00 360 25.12 3.8 >20 36.5 0.285 0.292 0.395 71.24

5:00 480 0 4.0 >20 36.6 0.135 0.150 0.224 41.40

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size larger than 

300 μm. Added 20 mmol of NaCl.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/5/2014

Cphenol= 0.25 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 56.4 5.5 8.25 22.9 0.382 0.133 0.022 40.89

9:00 0 61.7 5.5 >20 24.7 0.403 0.184 0.084 44.86

9:15 15 50.3 5.0 >20 26 0.544 0.462 0.395 69.31

9:30 30 46.4 4.8 >20 29.2 0.504 0.454 0.431 68.50

10:00 60 38.2 4.6 >20 31.6 0.384 0.364 0.381 56.14

10:30 90 31.5 4.5 >20 32.9 0.274 0.278 0.303 41.87

11:00 120 27.4 4.4 >20 34.1 0.192 0.208 0.232 30.08

1:00 240 19.5 4.7 >20 35.2 0.095 0.115 0.130 14.10

3:00 360 11.6 4.8 >20 36.5 0.103 0.127 0.144 15.25

5:00 480 4.0 >20 36.6

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm. 0.25 mmol/L of phenol.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/5/2014

Cphenol= 4.0 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 899 4.4 8.25 22.9 2.732 1.976 0.360 188.15

9:00 0 854 5.6 >20 24.7 2.740 1.977 0.419 188.32

9:30 30 777 4.5 >20 29.2 3.291 3.509 2.559 303.88

10:00 60 735 4.2 >20 31.6 3.469 3.727 3.052 334.79

10:30 90 >20 32.9

11:00 120 662 3.9 >20 34.1 3.731 3.727 3.704 360.01

1:00 240 575 3.7 >20 35.2 3.747 3.727 3.706 375.50

3:00 360 520 3.6 >20 36.5 3.747 3.727 3.706 382.22

5:00 480 478 3.5 >20 36.6 3.747 3.727 3.706 386.31

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm. 4.0 mmol/L of phenol.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/7/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8 pH 3

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 250 2.9 8.25 22.9 1.462 0.515 0.088 110.78

9:00 0 232 3.5 >20 24.7 1.405 0.526 0.113 109.15

9:30 30 190 3.4 >20 29.2 1.432 1.043 0.911 169.59

10:00 60 162 3.3 >20 31.6 1.225 0.934 0.900 166.00

10:30 90 145 3.3 >20 32.9 1.071 0.845 0.862 159.35

11:00 120 129 3.2 >20 34.1 0.916 0.749 0.792 144.63

1:00 240 81 3.2 >20 35.2 0.428 0.388 0.425 70.74

3:00 360 59.6 3.2 >20 36.5 0.151 0.143 0.160 25.88

5:00 480 45.6 3.3 >20 36.6 0.035 0.037 0.044 6.73

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm. pH adjusted to 3 (2.9)
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/8/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8 pH 9.5

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:30 -60 231 9.5 8.25 22.9 1.411 0.596 1.580 170.76

9:30 0 231 7.1 >20 24.7 1.471 0.596 0.195 116.73

10:00 30 210 6.5 >20 29.2 1.972 1.480 1.039 184.09

10:30 60 198 6.3 >20 31.6 2.166 1.829 1.366 208.70

11:00 90 188 6.1 >20 32.9 2.252 2.004 1.577 224.48

11:30 120 186 6.2 >20 34.1 2.286 2.094 1.729 235.80

1:30 240 166 5.3 >20 35.2 2.084 2.030 1.985 254.49

3:30 360 162 4.9 >20 36.5 1.743 1.754 1.885 242.76

5:30 480 141 4.6 >20 36.6 1.290 1.371 1.529 194.16

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm. pH adjusted to 9.5 

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/14/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8 pH = 7

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH pH (filt.) DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 239 7.0 8.25 22.9 1.483 0.519 0.091 113.56

9:00 0 233 6.2 5.6 >20 24.7 1.462 0.593 0.184 115.14

9:30 30 216 5.0 5.0 >20 29.2 1.796 1.362 1.136 188.51

10:00 60 198 4.6 >20 31.6 1.671 1.298 1.216 196.23

10:30 90 170 4.3 >20 32.9 1.522 1.223 1.207 194.43

11:00 120 165 4.2 >20 34.1 1.377 1.137 1.167 188.02

1:00 240 108 3.9 >20 35.2 0.819 0.802 0.896 130.80

3:00 360 72.4 3.9 >20 36.5 0.310 0.345 0.403 52.31

5:00 480 64.9 4.3 >20 36.6 0.176 0.209 0.239 26.35

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size larger than 

300 μm. pH adjusted to 7.0 with NaOH 1N. Formation of an orange-colored 

compound in the first 30 min.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/14/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8 pH = 8 Down to 7.1 after 10 hours 

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 242 8.0 8.25 22.9 1.453 0.531 0.196 114.63

9:00 0 237 6.3 >20 24.7 1.415 0.556 0.153 111.83

9:30 30 205 5.3 >20 29.2 1.830 1.414 1.118 186.70

10:00 60 191 4.8 >20 31.6 1.720 1.375 1.257 198.73

10:30 90 169 4.5 >20 32.9 1.562 1.268 1.246 197.88

11:00 120 153 4.3 >20 34.1 1.431 1.199 1.222 193.20

1:00 240 106 4.0 >20 35.2 0.790 0.779 0.872 126.65

3:00 360 68.8 4.0 >20 36.5 0.270 0.302 0.357 47.59

5:00 480 61.2 4.4 >20 36.6 0.137 0.161 0.184 22.10

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm. pH adjusted to 8.0 with NaOH 1N. Formation of an 

orange-colored compound in the first 30 min.

Photolysis (UV only)+oxygen

1" sleeve

ID : 8/19/2014

Cphenol= 0.25 mmol/L

Vol = 800 ml Speed = 8

Silica = none

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 0 54.9 5.5 9.41 21.9 0.377 0.128 0.018 40.18

9:00 60 40.2 4.3 35 32 0.484 0.468 0.443 68.21

10:00 120 38.2 4.1 35 32 0.227 0.243 0.263 36.43

12:00 240 11.2 4.2 35 35 0.030 0.032 0.033 5.79

2:00 360 9.89 4.5 35 35 0.012 0.012 0.011 2.99

4:00 480 35 35

Photolysis experiment. UV + O2 only.
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UV + O2

1" sleeve (new)

ID : 8/20/2014

Cphenol= 2.0 mmol/L

Vol = 800 ml Speed = 8

Silica = none

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 0 454 5.6 8.25 22.9 2.483 1.019 0.177 151.22

9:00 60 393 3.9 >20 24.7 3.210 2.841 2.402 296.32

10:00 120 365 3.7 >20 31.6 3.290 2.949 2.770 323.18

12:00 240 331 3.4 >20 34.1 3.292 3.069 3.388 348.68

2:00 360 322 3.3 >20 35.2 3.062 2.988 3.647 349.91

4:00 480 304 3.3 >20 36.5 2.840 2.844 3.534 342.83

Photolysis + O2

UV + O2

1" sleeve (new)

ID : 8/21/2014

Cphenol= 4.0 mmol/L

Vol = 800 ml Speed = 8

Silica = none

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 0 932 5.6 8.25 22.9 2.768 1.960 0.355 191.35

9:00 60 830 4.0 >20 24.7 3.567 3.726 3.705 354.35

10:00 120 773 3.6 >20 31.6 3.746 3.726 3.705 381.56

12:00 240 724 3.4 >20 34.1 3.746 3.726 3.705 414.12

2:00 360 688 3.2 >20 35.2 3.746 3.726 3.705 431.93

4:00 480 648 3.2 >20 36.5 3.746 3.726 3.705 442.41

Photolysis + O2
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UV + TiO2

Anatase powder

1" sleeve (new)

ID : 8/23/2014

Cphenol= 0.25 mmol

Vol = 800 ml Speed = 8

Anatase= 1 g Powder new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 48 5.6 8.25 22.9 0.380 0.130 0.021 40.79

9:00 0 43.6 4.8 >20 24.7 0.374 0.143 0.037 40.67

9:30 30 20 4.2 >20 29.2 0.093 0.077 0.092 17.74

10:00 60 4.36 4.5 >20 31.6 0.009 0.007 0.006 2.01

10:30 90 3.45 4.7 >20 32.9 0.006 0.005 0.003 1.67

11:00 120 >20 34.1

1:00 240 0 >20 35.2

3:00 360 0 >20 36.5

5:00 480 0 >20 36.6

Photocatalytic experiment using 1 g. (1.25 g/l) of anatase and phenol 

concentration of 0.25 mmol. Compare to experimentes using coated 

silica.

UV + TiO2

Anatase powder

1" sleeve (new)

ID : 8/25/2014

Cphenol= 2.0 mmol

Vol = 800 ml Speed = 8

Anatase= 1 g Powder new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 466 5.3 8.25 22.9 2.479 0.995 0.177 151.04

9:00 0 459 4.8 >20 24.7 2.394 0.980 0.185 144.41

9:30 30 398 3.8 >20 29.2 2.426 1.205 0.853 202.37

10:00 60 349 3.6 >20 31.6 2.231 1.191 0.987 207.69

10:30 90 317 3.5 >20 32.9 2.028 1.138 1.021 205.23

11:00 120 278 3.5 >20 34.1 1.790 1.046 0.981 196.68

1:00 240 134 3.6 >20 35.2 0.620 0.440 0.470 99.99

3:00 360 22.2 4.5 >20 36.5 0.007 0.007 0.007 1.99

5:00 480 0 4.8 >20 36.6 0.005 0.004 0.003 1.84

Photocatalytic experiment using 1 g. (1.25 g/l) of anatase and phenol 

concentration of 2.0 mmol. Compare to experimentes using coated 

silica.



 

172 
 

 

 

 

 

 

UV + TiO2

Anatase powder

1" sleeve (new)

ID : 8/26/2014

Cphenol= 4.0 mmol

Vol = 800 ml Speed = 8

Anatase= 1 g Powder new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 936 5.3 8.25 22.9 2.747 1.982 0.362 189.72

9:00 0 893 5.2 >20 24.7 2.707 1.927 0.363 183.16

9:30 30 801 3.8 >20 29.2 3.165 2.500 1.474 265.21

10:00 60 774 3.6 >20 31.6 3.323 2.677 1.880 291.93

10:30 90 721 3.5 >20 32.9 3.444 2.789 2.159 309.16

11:00 120 684 3.4 >20 34.1 3.576 2.900 2.364 321.11

1:00 240 588 3.4 >20 35.2 3.741 3.060 2.888 343.77

3:00 360 433 3.2 >20 36.5 3.594 2.872 2.938 340.15

5:00 480 433 3.2 >20 36.6 3.038 2.483 2.628 313.15

Photocatalytic experiment using 1 g. (1.25 g/l) of anatase and phenol 

concentration of 4.0 mmol. Compare to experimentes using coated 

silica.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/27/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 2 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 240 5.3 8.25 22.9 1.464 0.524 0.094 111.14

9:00 0 232 5.0 >20 24.7 1.492 0.630 0.227 121.93

9:30 30 190 4.3 >20 29.2 1.509 1.031 0.891 171.12

10:00 60 163 4.0 >20 31.6 1.318 0.959 0.902 168.10

10:30 90 142 3.9 >20 32.9 1.140 0.881 0.869 159.76

11:00 120 121 3.9 >20 34.1 0.963 0.787 0.798 140.20

1:00 240 63 3.8 >20 35.2 0.360 0.365 0.398 54.37

3:00 360 48 4.1 >20 36.5 0.184 0.214 0.234 25.97

5:00 480 42 4.3 >20 36.6 0.152 0.180 0.196 21.72

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated twice.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 8/27/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 3 coats new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 236 5.0 8.25 22.9 1.473 0.526 0.090 110.47

9:00 0 229 4.9 >20 24.7 1.377 0.529 0.122 108.86

9:30 30 179 4.1 >20 29.2 1.403 0.939 0.797 162.49

10:00 60 155 3.9 >20 31.6 1.296 0.941 0.887 167.29

10:30 90 132 3.7 >20 32.9 1.119 0.878 0.873 159.21

11:00 120 116 3.7 >20 34.1 0.978 0.818 0.840 143.29

1:00 240 54.4 3.8 >20 35.2 0.328 0.345 0.378 49.48

3:00 360 36.5 4.2 >20 36.5 0.194 0.224 0.241 27.06

5:00 480 30.5 4.4 >20 36.6 0.188 0.219 0.237 26.12

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated three times.

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 9/2/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 247 5.5 8.00 22.9 1.501 0.537 0.094 109.91

9:00 0 241 6.0 11.32 24.7 1.457 0.598 0.196 115.29

9:30 30 229 5.1 7.41 29.2 1.650 1.033 0.796 165.58

10:00 60 211 4.9 5.11 34.2 1.529 0.938 0.771 163.50

10:30 90 203 4.8 4.36 34.9 1.485 0.917 0.781 163.78

11:00 120 214 4.8 5.15 35.1 1.445 0.903 0.784 163.09

1:00 240 189 4.7 4.02 36.9 1.215 0.786 0.710 150.67

3:00 360 181 4.6 4.09 36.9 1.057 0.742 0.709 141.11

5:00 480 167 4.6 4.05 37.2 0.943 0.705 0.698 130.49

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm. No oxygen.
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 9/6/2014

Cphenol= 1 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 1 coat new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral Phenol(mg/L)

8:00 -60 239 5.5 8.25 22.9 1.473 0.526 0.090 110.47 105.000

9:00 0 239 5.7 >20 24.7 1.434 0.564 0.156 112.30 103.000

9:30 30 194 4.6 >20 29.2 1.597 1.131 0.974 176.10

10:00 60 175 4.3 >20 31.6 1.474 1.094 1.027 179.78 45.000

10:30 90

11:00 120 142 4.0 0 34.1 1.191 0.960 0.989 169.88 26.000

1:00 240 95.7 3.8 0 35.2 0.588 0.563 0.623 93.94 8.000

3:00 360 67.2 4.3 0 36.5 0.164 0.179 0.208 26.71 0.000

5:00 480 47 4.4 0 36.6 0.093 0.111 0.126 14.73 0.000

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated once

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 10/13/2014

Cphenol= 0.25 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 3 coats new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 63.2 6.6 8.25 22.9 0.394 0.133 0.017 41.99

9:00 0 73 5.3 >20 24.7 0.428 0.198 0.095 48.92

9:30 30 50.7 4.4 >20 29.2 0.294 0.248 0.251 42.27

10:00 60 32.1 4.2 >20 31.6 0.192 0.192 0.207 28.31

10:30 90 28.3 4.3 >20 0.160 0.182 0.197 23.15

11:00 120 15.4 4.3 >20 34.1 0.126 0.147 0.158 17.96

1:00 240 0 4.4 >20 35.2 0.141 0.167 0.182 20.08

3:00 360 0 4.5 >20 36.5 0.119 0.143 0.155 17.03

5:00 480 0 >20 36.6

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated three times
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 10/14/2014

Cphenol= 0.50 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 3 coats new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 118 5.5 8.25 22.9 0.748 0.256 0.038 76.33

9:00 0 118 5.1 >20 24.7 0.766 0.332 0.131 80.45

9:30 30 80.9 4.4 >20 29.2 0.661 0.502 0.478 90.79

10:00 60 57.6 4.2 >20 31.6 0.481 0.413 0.424 69.59

10:30 90 41.3 4.2 >20 0.338 0.333 0.357 49.79

11:00 120 34.7 4.2 >20 34.1 0.233 0.256 0.280 34.10

1:00 240 5 4.5 >20 35.2 0.164 0.197 0.214 22.72

3:00 360 0 4.7 >20 36.5 0.173 0.210 0.230 24.00

5:00 480 0 4.8 >20 36.6 0.188 0.229 0.252 26.28

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated three times

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 10/15/2014

Cphenol= 2.00 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 3 coats new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 458 5.5 8.25 22.9 2.491 1.015 0.173 151.18

9:00 0 436 5.1 >20 24.7 2.461 1.066 0.264 154.09

9:30 30 370 4.2 >20 29.2 2.685 1.787 1.412 227.89

10:00 60 333 4.0 >20 31.6 2.559 1.756 1.516 235.48

10:30 90 301 3.8 >20 2.411 1.696 1.544 236.15

11:00 120 277 3.8 >20 34.1 2.271 1.651 1.557 235.02

1:00 240 206 3.5 >20 35.2 1.648 1.369 1.419 212.82

3:00 360 135 3.5 >20 36.5 0.897 0.840 0.915 141.59

5:00 480 83.7 3.7 >20 36.6 0.329 0.343 0.382 51.19

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated three times
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UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 10/16/2014

Cphenol= 3.00 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 3 coats new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 697 5.2 8.25 22.9 2.699 1.519 0.259 175.80

9:00 0 653 5.2 >20 24.7 2.738 1.572 0.389 181.14

9:30 30 571 4.2 >20 29.2 3.206 2.643 1.976 271.89

10:00 60 525 4.0 >20 31.6 3.341 2.676 2.187 288.53

10:30 90 484 3.8 >20 3.394 2.673 2.316 298.93

11:00 120 458 3.7 >20 34.1 3.377 2.618 2.339 300.92

1:00 240 364 3.5 >20 35.2 3.014 2.397 2.362 297.87

3:00 360 296 3.4 >20 36.5 2.522 2.144 2.245 282.38

5:00 480 239 3.4 >20 36.6 1.919 1.767 1.912 250.28

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated three times

UV + TiO2

50 mesh (300 μm)

1" sleeve (new)

ID : 10/17/2014

Cphenol= 4.00 mmol/L

Vol = 800 ml Speed = 8

Silica = 16 g (20 g/L) 3 coats new

Time (min) COD (mg/L) pH DO (mg/L) T λ @ 269 λ @ 254 λ @ 240 Integral

8:00 -60 915 5.4 8.25 22.9 2.770 1.951 0.351 191.60

9:00 0 862 5.1 >20 24.7 2.774 1.983 0.442 193.02

9:30 30 771 4.4 >20 29.2 3.259 3.265 2.359 295.45

10:00 60 718 4.1 >20 31.6 3.446 3.460 2.747 320.99

10:30 90 676 4.0 >20 3.581 3.621 2.987 336.48

11:00 120 635 3.8 >20 34.1 3.675 3.665 3.103 343.78

1:00 240 560 3.5 >20 35.2 3.739 3.490 3.424 357.69

3:00 360 458 3.5 >20 36.5 3.662 3.221 3.483 357.09

5:00 480 408 3.4 >20 36.6 3.358 2.960 3.268 344.40

Photocatalytic experiment using 20 g. per liter (16 g.) of silica gel size 

larger than 300 μm coated three times
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