
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Spring 5-15-2015 

A Hierarchical Bayesian Model for the Unmixing Analysis of A Hierarchical Bayesian Model for the Unmixing Analysis of 

Compositional Data subject to Unit-sum Constraints Compositional Data subject to Unit-sum Constraints 

Shiyong Yu 
Department of Mathematics, syu@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Applied Statistics Commons 

Recommended Citation Recommended Citation 
Yu, Shiyong, "A Hierarchical Bayesian Model for the Unmixing Analysis of Compositional Data subject to 
Unit-sum Constraints" (2015). University of New Orleans Theses and Dissertations. 2016. 
https://scholarworks.uno.edu/td/2016 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarworks.uno.edu%2Ftd%2F2016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2016?utm_source=scholarworks.uno.edu%2Ftd%2F2016&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

A Hierarchical Bayesian Model for the Unmixing Analysis of 
Compositional Data subject to Unit-sum Constraints 

 
 
 
 
 

A Thesis 
 
 
 
 
 

Submitted to the Graduate Faculty of the 
University of New Orleans 
in partial fulfillment of the  

requirements for the degree of  
 
 
 
 
 

Master of Science 
in 

Mathematics 
 
 
 
 
 

by 
 

Shiyong Yu 
 

M.S. Nanjing University, 1997 
Ph.D. Lund University, 2003 

 
May, 2015 

 
 
 
 



ii 
 

 

Acknowledgements 
 
 

Life appears not simply to be a Bernoulli random variable, which has a binary outcome of 

either success or failure; rather, it is a voyage full of ups and downs, following a multimodal 

distribution bounded by birth and death with love in between. I cannot believe that I could have a 

chance to come back to graduate school ten-plus years after completing my Ph.D., and I had the 

courage to confront the unforeseen challenges that may pose on my life during the study. 

Upon completion of this thesis, first and foremost, I would like to extend my special thanks 

to my supervisor Prof. Linxiong Li. His friendly sarcasm and gentle encouragement really served 

as the impetus for me to finish this work. He remained a supporter and provided insights and 

direction-right up from the beginning to the end of this thesis.  

I cannot begin to express my gratitude to my wife Mrs. Minxia Yang for her continued 

support, both financially and spiritually over the years. Thank you Minxia for being persistent and 

encouraging, for believing in me, and for the many precious memories along the way. No 

acknowledgments would be complete without giving thanks to my beloved daughter Kelly Yu. 

Her beautiful violin music always cheers me up after a day of heavy course work.  

Last, but certainly not least, I would like to thank the Chinese Academy of Sciences for 

providing me a grant (XDA05120401), which enabled me to enter inland Asia to collect lake 

sediments for testing the model. My deepest gratitude is also due to Dr. E. Dietze, who shared her 

codes with me so that I can validate the model using her method.  

 
 
 



iii 
 

Table of Contents  
 
 

List of Figures .................................................................................................................... iv 
 
List of Tables ..................................................................................................................... vi 
 
Abstract ............................................................................................................................. vii 
 
Introduction..........................................................................................................................1 
 
Chapter 1 Statements of the End-member Unmixing Problem ...........................................5 
 
Chapter 2 Literature Review................................................................................................8 
 
         2.1 Deterministic Approaches.....................................................................................8 
         2.2 Bayesian Approach ...............................................................................................9 
 
Chapter 3 Theoretical Framework .....................................................................................10 
 
         3.1 Likelihood Function............................................................................................10 
         3.2 Prior Distribution of Model Parameters and Hyperparameters ..........................10 
         3.3 Posterior Distribution of Model Parameters and Hyperparameters....................12 
 
Chapter 4 Algorithms ........................................................................................................15 
 
Chapter 5 Model Validation ..............................................................................................18 
 
         5.1 Synthetic Data.....................................................................................................18 
         5.2 Real-world Data ..................................................................................................18 
 
Chapter 6 Discussion .........................................................................................................26 
 
         6.1 Data Transformation ...........................................................................................26 
         6.2 Choice of Prior Distribution of Model Parameters .............................................27 
         6.3 Structure of Covariance Matrix of Error.............................................................27 
 
Chapter 7 Concluding Remarks.........................................................................................29 
 
References..........................................................................................................................30 
 
Appendix............................................................................................................................33 
 

         MATLAB codes .....................................................................................................33 
 
Vita.....................................................................................................................................45



iv 
 

 

List of Figures 
 

 
Figure 1. Major constituents of dry air by volume (http://en.wikipedia.org/wiki/Atmosphere_of_Earth) 

 
Figure 2. Ternary diagram showing the chemical (A) and mineral (B) composition of ceramics excavated 
from archaeological sites of late Yangshao and early Western Zhou Dynasty in Shaanxi Province, China 

 
Figure 3. Relative abundance (%) of fossil pollen and spore in sediments of Gaotai Lake, NW China. 
Shrubs and upland herbs appear to be the dominant component of the local vegetation in this arid area 

 
Figure 4. Grain-size distribution of dust trapped in Xinjiang, NW China during three storm events 
breaking out in late fall and spring (Data courtesy: Dr. C.-B. An) 

 
Figure 5. Schematic diagram illustrating the end-member unmixing problem in compositional data 
analysis. s1, s2, and sM denote M mutually independent sources involved in the linear mixing in a 
reservoir, which results in a complicated composition y. c1, c2, and cM denote the relative contribution 
(weight or fraction) of each source  

 
Figure 6. Diagram demonstrating the birth-death process. It models the changes in the number of 
component for a system with sample space of [1, 2, …, 10]  

 
Figure 7. (A) Markov chain of the number of end members (sources) modeled using a birth-death process 
for the synthetic dataset. The chain moves from an initial state of M equal to four and converges to M 
equal to two after the burn-in period (ca. 90 iterations); (B) Posterior distribution of the composition of 
two independent sources identified from the synthetic dataset. Solid lines show the results from model 
run, and open dotted lines represents the actual composition of two independent sources used to generate 
the synthetic data 

 
Figure 8. Map showing the location and topographical features of the Gaotai Lake and surrounding area, 
NW China. Filled circle indicates the location of the stratigraphical section studied here 

 
Figure 9. Diagram showing changes in lithology, carbonate content, and redness along depth in the Gaotai 
Lake, NW China 

 
Figure 10. Diagram showing the burn-in period and convergence of the Markov chain of the number of 
end members of grain-size distributions for Gaotai Lake, NW China 

 
Figure 11. Posterior distribution of the grain-size source (end-member) spectra for Gaotai Lake, NW 
China obtained using this model 

 
Figure 12. Comparison of the grain-size source (end-member) spectra for Gaotai Lake, NW China 
obtained using this method (solid lines) with those obtained using the weighted least-square regression 
method (open dotted lines) 

 
Figure 13. Comparison of the grain-size source (end-member) spectra for Gaotai Lake, NW China 
obtained using this method (solid lines) with those obtained using the vertex component analysis (open 
dotted lines) 



v 
 

 
Figure 14. Changes in the fraction of the grain-size end members alone depth for Gaotai Lake, NW China    

 
Figure 15. Comparison between models with different prior distribution of the source vector. Solid lines 
denote the uniform prior and dotted lines indicate the multivariate normal prior on a simplex  

 
Figure 16. Comparison between models with different structure of the covariance matrix of error. Solid 
lines denote results from model with an unstructured covariance matrix of error and dotted lines indicate 
results from model with a simple covariance matrix of error 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



vi 
 

List of Tables 
 
 
 
Table 1. Outline of the Metropolis-Hastings-Green-with-Gibbs algorithm 

 
Table 2. Algorithm for the birth and death move  

 
Table 3. Frequency (%) of different grain sizes in sediments of Gaotai Lake, NW China   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

Abstract 
 
 

Modeling of compositional data is emerging as an active area in statistics. It is assumed that 

compositional data represent the convex linear mixing of definite numbers of independent sources usually 

referred to as end members. A generic problem in practice is to appropriately separate the end members 

and quantify their fractions from compositional data subject to nonnegative and unit-sum constraints. A 

number of methods essentially related to polytope expansion have been proposed. However, these 

deterministic methods have some potential problems.  

In this study, a hierarchical Bayesian model was formulated, and the algorithms were coded in 

MATLAB. A test run using both a synthetic and real-word dataset yields scientifically sound and 

mathematically optimal outputs broadly consistent with other non-Bayesian methods. Also, the sensitivity 

of this model to the choice of different priors and structure of the covariance matrix of error were 

discussed.       

 
 
 
 
 
 
 
 
 

Compositional data, nonnegativity, constant sum, simplex, end member, unmixing, hierarchical 

Bayesian model, Markov chain, Monte Carlo, birth-death process 
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Introduction 

 
 

Compositional data are common in many subjects of social and natural sciences ranging from 

archaeology to zoology such as the mineral composition of ceramics, household budget composition, and 

species assemblage of zooplankton in the ocean and so on (Aitchison, 1982). In statistics, compositional 

data are referred to as the quantitative descriptions of the parts of some whole, usually denoted as an L-

tuple of nonnegative real numbers whose sum is a constant expressed as per unit (1), percent (100%), per 

mil (1000‰), parts per million (ppm), and parts per billion (ppb). Figure 1 is a pie chart illustrating the 

relative abundance of gases making up the Earth’s atmosphere. Note that the abundance of all gases was 

expressed as percentage here. But usually ppm and ppb are used when expressing the concentration of 

some rare gases such as carbon dioxide (CO2) and methane (CH4). This diagram clearly shows that the 

atmosphere is dominated by nitrogen and oxygen.   

 

 
 
 

Figure 1. Major constituents of dry air by volume (http://en.wikipedia.org/wiki/Atmosphere_of_Earth) 
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Ternary plot is another frequently used method to graphically depict the fractions of three variables 

(more variables also can be grouped into three families based on similar or related attributes) as positions 

in an equilateral triangle. Figure 2 is such a plot showing the chemical and mineral composition of 

archaeological ceramics excavated from Shaanxi Province, China. We can see that the raw materials of 

the ceramics are mainly composed of SiO2 and Al2O3, Fe2O3, and CaO, MgO, and SO3 in total only 

account for 20% (Figure 2A). The mineralogical composition is dominated by quartz and amorphous 

phases, and the rest (20%) is made up with feldspars, illite, and calcite (Figure 2B). A comparison reveals 

that the chemical and mineral compositions of archaeological ceramics are similar to loess sediments, a 

material used for making fired clay bricks in ancient China some 5000 years ago (Yang et al., 2014). 

 

 

 
 
Figure 2. Ternary diagram showing the chemical (A) and mineral (B) composition of ceramics excavated from 

archaeological sites of late Yangshao and early Western Zhou Dynasty in Shaanxi Province, China 

 
 
 

Essentially based on the series plot, area graph is also commonly used to display compositional 

data, particularly to illustrate the trend of changes of the composition over time. Figure 3 is stacked area 

graph showing the changes in the assemblage of fossil pollen and spores along a sediment core from Lake 

Gaotai, a small playa situated on the southern margin of the Badain Jaran Desert in NW China. A total of 

36 taxa were identified in the laboratory, and their relative abundance is expressed as percentage, 

calculated based on the total counts of the taxa in each sample. Here these taxa are grouped as trees, 

shrubs, upland herbs, wetland herbs, and ferns and algae, and their percentages are potted against depth. 

As we can see, vegetation around the lake is dominated by shrubs and upland herbs, representing a desert-

steppe landscape under a dry climate condition prevailing over recent geological time.  
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Figure 3. Relative abundance (%) of fossil pollen and spore in sediments of Gaotai Lake, NW China. Shrubs and 
upland herbs appear to be the dominant component of the local vegetation in this arid area 

 
  

In some case, frequency distribution diagram is used to display compositional data, particularly 

when there are too many components. Figure 4 is grain-size distribution of dust trapped in Xinjiang, NW 

China during three storm events occurring in 2003, 2004, and 2005. The frequency (%) of particles 

passing through 93 bins having different sizes was determined with a granulometer using laser diffraction 

technique. This graph reveals a bimodal structure of the grain-size frequency distribution. The mode of 10 

µm represents the suspension of particles with upward turbulent winds, while the mode of 100 µm 

represents the saltation transport by near-ground winds.     

 

 
 

Figure 4. Grain-size distribution of dust trapped in Xinjiang, NW China during three storm events (Data courtesy: 

Dr. C.-B. An) 
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The above examples only serve as an intuitive exposition of the constrained nature of 

compositional data commonly known as nonnegativity and constant sum. Let [ ]1 2, , , L

Lx x x= ∈x K � be an 

L-part compositional data vector where all components are nonnegative real numbers that convey only 

relative information of each component for a subject, then x has the following properties (Aitchison, 

1986).  

  

(1) The sample space of x is an L−1 simplex defined as 

[ ]{ }1 11 1

1 2 1 1 1
, , , : 0 , ,  and 

L LL L

L j j L jj j
x x x x x x xκ κ κ

− −− −
− = =

∆ = = ∈ ≤ ≤ ≤ = −∑ ∑x K � , where 1, ,j L= K , and κ 

is a unity (e.g. 1, 100%, or 1000‰). This means that we can always omit one element while analyzing 

compositional data.   

  

(2) Closure under affine transformation. Suppose 1

1 2 , , , 
M

L−∆∈x x xK . There exist scalars 

( )1 2 1
, , , 0 1 and 1

M

M i ii
λ λ λ λ λ

=
≤ ≤ =∑K such that 1

1 1 2 2

L

M M
λ λ λ −= + + + ∈∆x x x xK . This is a crucial 

property for the unmixing analysis of compositional data.   

 

3) Scale invariance. For example, suppose [ ]1 0.2,  0.3,  0.5=x and [ ]2 20%,  30%,  50%=x , clearly x1 and 

x2 are equivalent. 

 

(4) Permutation invariance. Changing the order of components in the L-tuple would not alter the sum. 

 

(5) Linear dependence. A change of one element in an L-tuple would lead to the changes of the other 

elements accordingly.  

  

Statistical analysis of compositional data should take into account these properties, particularly 

when constructing models, designing algorithm, and dealing with the covariance matrix. In this study, the 

above properties are fully acknowledged as revealed in the following sections.  

 
 
 
 
 
 
 
 
 



5 
 

 

Chapter 1 Statements of the End-member Unmixing Problem 
 
 

Analysis and modeling of compositional data are emerging as an active area in statistics. A 

classical problem in practice is source identification known as the unmixing problem, which is illustrated 

in Figure 5. For example, a lake receives water from several sources each having a characteristic 

composition of pollutants. Given an observational dataset of pollutant composition of lake water 

measured from different sites of the lake, how to identify the sources of pollutants and quantify the 

relative contribution (fraction) of each source by unmixing the data? Here, we assume that each source 

has a unique composition. Therefore, they are mutually independent commonly referred to as end 

members.  

 

 

Figure 5. Schematic diagram illustrating the end-member unmixing problem in compositional data analysis. The 
vectors s1, s2, and sM denote M mutually independent sources involved in the linear mixing during a process, which 

results in a complicated composition measured as y. The scalars c1 to cM denote the relative contribution (weight or 

fraction) of each source  

 

The following is a full account of this problem. Regarding the notation throughout the text, 

boldface lowercase letters refer to vectors, and boldface uppercase letters denote matrices. Italics 

lowercase letters refer to the entries, subscripts indicate the dimension, and superscript T denotes the 
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transpose operation of a vector or matrix. Unless otherwise stated elsewhere, 0 represents the zero vector, 

u denotes the unit vector, and I refers to the identity matrix. The operand ⋅  and ( )tr ⋅ denotes the 

determinant and trace of a matrix, respectively. Scalars are written in italics. 

For the univariate case, let [ ]1 2, , ,
T L

Ly y y= ∈y K R be an L-part compositional data vector whose 

sample space is an L−1 simplex. Suppose that y is generated from a linear combination of M independent 

sources such that 

= +y Sc ε ,      (1.1) 

where [ ]1, , M=S s sK is the source matrix containing M vectors whose attribute is the same as the data 

vector (i.e. an L−1 simplex), [ ]1 2, , ,
T

Mc c c=c K is the fraction vector whose sample space is an M−1 

simplex, and [ ]1 2, , ,
T

Lε ε ε=ε K  is an L-part vector denoting the random errors.  

In practice, we usually need to deal with a large dataset. Let’s consider the multivariate case. 

Suppose we have a dataset containing a large number of, say N, subjects (samples) each being an L-part 

compositional data vector. Let Y denote this L×N data matrix 

[ ]
11 1

1

1

, ,

N

L N N

L LN

y y

y y

×

 
 = =  
  

Y y y

K

K M O M

K

,   (1.2) 

S denote the L×M source matrix   

[ ]
11 1

1

1

, ,

M

L M M

L LM

s s

s s

×

 
 = =  
  

S s s

K

K M O M

K

,   (1.3) 

C denote the M×N fraction matrix 

[ ]
11 1

1

1

, ,

N

M N N

M MN

c c

c c

×

 
 = =  
  

C c c

K

K M O M

K

,   (1.4) 

and E denote the L×N error matrix 

[ ]
11 1

1

1

, ,

N

L N N

L LN

ε ε

ε ε
×

 
 = =  
  

E ε ε

K

K M O M

K

.   (1.5) 

Then we can express the linear mixing problem in terms of matrices 

= +Y SC E .      (1.6) 

 With the assumption of mutual independence, this kind of question has three levels of complexity per 

se (Renner, 1991): (1) both the composition of the source, S, and the number of sources, M, are known. In 
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this case, we only need to solve for C; (2) only the composition of the sources, S, are known, but the 

number of sources, M, and the fraction of the sources, C, are unknown; and (3) the composition of the 

sources, S, the number of sources, M, and the fraction of the sources, C, are all unknown.      

The end-member unmixing problem appears to be ill-posed in terms of model identifiability. This 

implies that the solution is non-unique. Specifically, there always exists a positive definite matrix, X, 

which can slightly rotate S and C but makes Y be invariant such that 1− +Y = SX XC E . However, this 

issue can be overcome and optimal solutions may be obtained by implementing the full unit-sum 

constraints through a weighted least-square regression (Weltje, 1997; Weltje and Prins, 2007). 

Alternatively, this issue can be tackled through a probabilistic approach as proposed in this work.  

In this work, the end-member unmixing problem with a complexity of level three will be tackled. 

Note that in this problem, both S and C are subject to the unit-sum constraint, adding another level of 

complexity. Usually, the source vector, s, is sum to 100%, and the fraction vector, c, is sum to 1. A 

hierarchical Bayesian model will be presented in the following sections along with a full exposition of the 

reversible jump Markov chain Monte Carlo algorithm. Non-informative prior distributions for the source 

and fraction vectors are used in order to real the lack of knowledge about these random variables. By 

making use of the conjugacy to the multivariate Gaussian likelihood function, an analytical expression of 

the posterior distribution of the model parameters was derived. The posterior distribution of the number of 

end members was modeled using the birth-death process, a generalization of Poisson process commonly 

used to model the changes in the number of components in a system. The composition and fraction of the 

end members were updated from their posterior distribution using a Gibbs sampler. These procedures 

were coded in MATLAB® by making use of some built-in functions for generating random numbers and 

visualizing the results. Codes are given in appendices. The model was validated using a synthetic and a 

real-world dataset, yielding satisfactory outputs broadly consistent with other non-Bayesian methods.  
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Chapter 2 Literature Review 

 

 

2.1 Deterministic Approaches  

Compositional data arise naturally in both social and natural sciences, typically in earth science 

where the relative abundance of chemical elements is usually expressed relative to a total in terms of parts 

per one, percentage, ppm, ppb, molar concentrations and so on (Buccianti et al., 2006). This constrained 

nature makes compositional data difficult to handle statistically, because the variables involved in the 

analysis are restricted in part of the real space (i.e. the simplex). The concept of compositional data can be 

traced back to the work of Ferrers (1866). Pearson (1896) was the first to realize the complexity of 

analyzing compositional data, and he pointed out that a spurious correlation may arise when analyzing 

ratio data whose numerators and denominators contain common parts. Aitchison (Aitchison, 1982, 1994) 

and several others (Piepel, 1988; Reyment, 1989; Pawlowsky-Glahn and Egozcue, 2006) have formulated 

the concept of compositional data analysis during recent years, pointing out the pitfalls of traditional 

statistical methods used to treat compositional data.  

A generic problem in compositional data analysis is to extract the underlying independent sources 

from a large set of observational data. This linear mixing problem is common in audio, radio, and 

hyperspectral image processing (Wölfel and McDonough). A number of methods essentially about 

polytopic vector analysis have been proposed heuriscically over the years. Prevailing algorithms include 

the N-FINDR method (Winter, 1999), independent component analysis (Hyvärinen et al., 2004), and 

vertex component analysis (Nascimento and Bioucas Dias, 2005). For this kind of problem, the unit-sum 

constraint for the source vector is not essential. However, in some applications, the components of source 

vector must sum to unity. For example, it has become known that sediment transport is a sorting process 

(Visher, 1969; Ashley, 1978; McLaren and Bowles, 1985; Le Roux and Rojas, 2007), which may be 

approximated as a continuous process of fractionation both mechanically (grains may break down into 

smaller sizes) and dynamically (only grains with specific combination of sizes, shapes, and densities will 

be transported together), thereby resulting in characteristic spectra of grain-size distributions that is sum 

to 100%. Therefore, the above-mentioned methods are not readily applicable to the source vector subject 

to the unit-sum constraint, and methods are needed ad hoc to address this issue.  

Numerical separation of independent sources (end members) subject to the unit-sum constraint in 

earth science was initially proposed by Klovan (1966), and subsequently improved by Renner (1993) and 

Weltje (1997). Several other methods such as factor analysis (Klovan and Imbrie, 1971; Clark, 1976; 

Miesch, 1976; Dietze et al., 2012), linear programming (Banks, 1979; Braun, 1986; Gordon and Dipple, 

1999) have also been proposed, but the weighted least-square regression (Renner, 1993; Weltje, 1997) 
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represents a conceptual innovation in the analysis of compositional data subject to unit-sum constraints. 

Curve fitting using a prescribed kernel distribution function, for example, log-hyperbolic (Sutherland and 

Lee, 1994), log-Laplace (Flenley et al., 1987; Fieller et al., 1992; Purkait, 2002; Parker and Bloemendal, 

2005), log-normal (Sun et al., 2001; Leys et al., 2005), and Weibull (Kondolf and Adhikari, 2000; Sun et 

al., 2002) was also widely used. However, this method appears to be misleading, because the frequency 

distribution of the end members is not necessarily monomodal.  

Given that each independent source (end member) represents a vertex of a simplex, an approach 

through polytope expansion has been proposed (Weltje and Prins, 2003, 2007). The prevailing algorithm 

based on constrained weighted least-square approximation and eigenvector decomposition collectively 

known as the end-member modeling analysis (EMMA) originally proposed by Weltje (1997) and 

improved recently by Dietze et al. (2012) represents a robust and flexible method. However, the major 

problem of this method is the optimal estimate of the number of end members, although it can be roughly 

determined by examining the Scree plot (Dietze et al., 2012). Another issue is the method used for data 

transformation. Usually there are so many leading and trailing zeros for some samples in the dataset. The 

normalization of the data using an inter-percentile range may cause numerical problems when it happens 

to be zero.      

 

2.2 Bayesian Approach 

Since Green’s (1995) innovative work in analyzing compositional data by introducing the 

reversible jump Markov chain Monte Carlo (MCMC) method (see Chapter 4 for technical details), the 

end-member unmixing problem of compositional data tends to be casted into a Bayesian paradigm. The 

Bayesian approach is advantageous over the deterministic approach in several aspects. A significant 

advantage is its flexibility in dealing with prior information, because the Bayesian approach treats the 

unknown model parameter as a random variable. As such, the initial belief of the unknown model 

parameter can be incorporated in the model as prior information, which will be updated and the objective 

belief (posterior) will be obtained when observational data are applied. Also, the Bayesian approach can 

efficiently deal with the uncertainty of the model parameter in terms of probability distribution function. 

Bayesian models have been increasingly used to solve the end-member unmixing problem in the areas of 

environmental hydrology and geochemistry (Billheimer, 2001; Soulsby et al., 2003; Palmer and Douglas, 

2008; Brewer et al., 2011; Tolosana-Delgado et al., 2011; Parnell et al., 2013). However, there are still 

several issues remain unsolved: (1) How to estimate the number of sources optimally within the context 

of a Bayesian model; (2) How to appropriately handle the nonnegative and unit-sum constraints of the 

source vector by choosing a proper prior? (3) How to properly deal with the covariance matrix of the error 

in terms of linear dependence?  
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Chapter 3 Theoretical Framework 

 
 

3.1 Likelihood Function 

In this study, we assume that the L-part error sequence, εεεε, is a random vector having a multivariate 

normal distribution with mean vector 0L and L×L positive definite covariance matrix 

11 1

1

L

L LL

σ σ

σ σ

 
 =  
  

Σ

K

M O M

K

.         (3.1) 

As compositional data are linearly dependent, the covariance matrix of error appears not to have a 

pattered form. Due to lack of knowledge about the actual structure of the covariance matrix of the error, a 

fully unstructured covariance matrix of error is used in this study. Also, for the sake of simplicity, it is 

reasonable to assume that the covariance matrix of error for each data vector is the same. By virtue of 

definition of multivariate normal distribution as well as the above assumptions, the likelihood function for 

the linear mixing model turns out to be  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ){ }

1 1122
21

1 1122
2 1

1 1122
2

, , , 2 exp

2 exp

2 exp

NNL
N T

i i i ii

NNL
N T

i i i ii

NNL
T

M

tr

π

π

π

− − −

=

− − −

=

− − −

 = − − − 

 = − − − 

 = − − − 

∏

∑

Y S C Σ Σ y Sc Σ y Sc

Σ y Sc Σ y Sc

Σ Y SC Y SC Σ

l

,   (3.2) 

where Y is the compositional data matrix, y the compositional data vector, S the source matrix, C the 

fraction matrix, c the fraction vector, M the number of sources, N the number of compositional data 

vectors, and L the length of the compositional data vector as defined before. 

 

3.2 Prior Distribution of Model Parameters and Hyperparameters 

Given the likelihood function, Bayes’ theorem states that the initial beliefs (prior information) of 

the unknown model parameters can be updated from the observational data. The prior distribution of the 

unknown model parameters are defined as below. 

The discrete uniform distribution supported on [ ]max1, ,M M∈ L was chosen for the prior of the 

number of end members. The probability mass function is defined as 

( ) max1f M M= ,         (3.3) 

where max 1M L≤ − is a positive integer that represents the maximum number of end members possibly 

involved in the unmixing process.  
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 The symmetric Dirichlet distribution with a concentration parameter being one was assigned to 

the prior of the source vector. It is equivalent to the uniform distribution supported on a L−1 simplex, 

which is appropriate for modeling the prior of compositional data where knowledge favoring one 

component over another is lacking (Dobigeon et al., 2008). The probability distribution function is given 

by 

( ) ( )

[ ]{ }
1

1 11

1 1 1 1
, , : 0 ,  ,  and 

L

L LT L

L j j L jj j

f M

s s s s s sκ κ κ

−

− −−
− = =

= ∆

= ∈ ≤ ≤ ≤ = −∑ ∑

s s

L �
,  (3.4) 

where κ is a constant (e.g. 1, 100%, or 1000‰). The assumption of mutual independence of the source 

vectors yields the prior distribution for the source matrix  

( )
1

( )
M

kk
f M f M

=
=∏S s .        (3.5) 

Similar to the source vector, the symmetric Dirichlet distribution was chosen for the prior of the 

fraction vector. The probability distribution function is defined as 

( )
[ ]{ }

1

1 11

1 1 1 1

( )

, , :  0 1,  1,  and 1

M

M MT M

M k k M kk k

f M

c c c c c c

−

− −−
− = =

= ∆

= ∈ ≤ ≤ ≤ = −∑ ∑

c c

L �
.  (3.6) 

Assuming the samples are mutually independent, the prior of fraction matrix C can be expressed as 

( ) ( )
1

N

ii
f M M

=
=∏C c .         (3.7) 

The inverse Wishart distribution was chosen for the prior of the covariance matrix of the error 

vector. The probability distribution function of inverse Wishart distribution is written as 

( )
( )

( )
2

12
1 112

2

2

, exp

2

L

L

L

f trν

ν
ν

ν

ν
+ +

− − = − 
Γ

Ψ
Σ Ψ Σ ΨΣ ,     (3.8) 

whereΨ is a L×L positive definite scale matrix, 1Lν > − is the degrees of freedom, and ( )LΓ ⋅ is the 

multivariate gamma function. In practice, ν remains fixed, while Ψ changes so as to make the prior 

vague. Here,Ψ is assumed to follow the Wishart distribution with a probability distribution function 

defined by  

( )
( )

( )
2

1

2
1 112

2

2

, exp

2

L

L

L

f trϑ

ϑ
ϑ

ϑ

ϑ

− −

− − = − 
Γ

Ψ
Ψ Φ Φ Φ Ψ ,     (3.9) 

where Φ is a L×L positive definite matrix and ϑ the degrees of freedom. In practice, a less informative 

prior can be obtained by setting hyperparameters Lϑ = and
L

ϑ=Φ I . 
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3.3 Posterior Distribution of Model Parameters and Hyperparameters  

According to Bayes’ theorem, the joint posterior distribution of the model parameters and 

hyperparameters can be expressed as a hierarchical structure 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , ,p M M f M f M f M f fν ϑ∝S C Σ Ψ Y Y S C Σ S C Σ Ψ Ψ Φl , (3.10) 

where ∝ denotes “proportional to.” Integrating out the covariance matrix of error by making use of the 

definition of the multivariate gamma function lead to a simplified expression of the above structure 

( ) ( ) ( ) ( ) ( ) ( )
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 ,  (3.11) 

where ( )( )T = − − + Λ Y SC Y SC Ψ . 

This joint posterior distribution is still too complicated to handle. Here, the Markov chain Monte Carlo 

(MCMC) method was used to simulate the conditional posterior distribution of individual model 

parameter, which takes an analytical form in terms of the Gibbs sampler as given below. 

Let 
k

S be the source matrix with the kth ( 1, ,k M= K ) source vector being removed, and
,k i

c be the 

fraction vector with the corresponding kth element being removed for the ith ( 1, ,i N= K ) sample. 

According to Bayes’ theorem, tedious algebraic operations yield the conditional posterior of the source 

matrix, which follows a multivariate normal distribution supported on a L−1 simplex  
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where ( ) 2

, ,,1 1

N N

k i k i k ik k ii i
c c

= =
= −∑ ∑µ y S c is the mean vector and 2
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N

k ii
c

=
= ∑Ξ Σ is the covariance matrix. 

Let , MM
=   S S s and 

, ,
,1

T

i M i M i
 = − c c uc  be a partition of the source matrix, S, and the ith 

( 1, ,i N= K ) fraction vector, c, where
M

S is the source matrix except the last column, say
M

s ,
,M i

c is the 

fraction vector except the last element, and [ ]1, ,1=u L is a unit vector of size M−1. By making use of 

Bayes’ theorem, elaborative algebraic operations yield the conditional posterior of the fraction matrix, 

which follows a multivariate normal distribution supported on a M−1 simplex 
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where ( ) ( ) ( ) ( )
1

1 1T T

i M M M i MM M M

−
− −   = − − − −

   
θ S s u Σ S s u S s u Σ y s is the mean vector, and 

( ) ( )
1

1T

i M MM M

−
− = − −

 
Ω S s u Σ S s u is the covariance matrix. 

Applying Bayes’ theorem results in the conditional posterior for the covariance matrix of error,ΣΣΣΣ, 

which follows the inverse Wishart distribution with updated parameters  

( ) ( ) ( )

( ) ( )( ){ }
( )

( )

( )

( )
( )( ){ }

[ ][ ]( )

2

2

12
1 1 1 11 12 22

2 2

2

12
1 112

2

2
2

1

, , , , , , ,

2 exp exp

2

exp

2

,

L

N L

N LNL
T

L

N L
T

NL

L

T

p M M f

tr tr

tr

W N

ν

ν

ν
ν

ν

ν
ν

ν

ν

π

π

ν

+

+ +
− − − − −

+ + +
− −

−

∝

   = − − − −  
Γ

 = − − − + 
Γ

= − − + +

Σ Y S C Y S C Σ Σ Ψ

Ψ
Σ Y SC Y SC Σ Σ ΨΣ

Ψ
Σ Y SC Y SC Ψ Σ

Y SC Y SC Ψ

l

. (3.14) 

A straightforward application of Bayes’ theorem yields the conditional posterior of 

hyperparameterΨ , which follows the Wishart distribution as well but with updated parameters  
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Chapter 4 Algorithms 

 
The unknown model parameters were inferred from their conditional posterior using the reversible 

jump Markov chain Monte Carlo (MCMC) method. For the source and the fraction matrices, a reversible-

jump scheme (Green, 1995; Richardson and Green, 1997) in conjunction with a Gibbs sampler (Dobigeon 

et al., 2009) was employed to propose the move of the Markov chains and to update the state of the chains 

sequentially, while for the number of sources, a birth-death process was used to browse the parameter 

space, say[ ]max1,M . The algorithm was outlined in Table 1. 

Table 1. Outline of the Metropolis-Hastings-Green-with-Gibbs algorithm 

Initialization 

Set [ ] [ ] [ ]0 0 0 [ [0] ]0, , , ,MS C Ψ Σ ; 

 
Iterations and Updates 

for i = 1 : the number of MCMC runs do 
%The Metropolis-Hastings-Green procedure 

Draw m from a discrete uniform distribution supported on [ 1,1]− ; 

if m = 1, propose a birth move (Table 2); 
else propose a death move (Table 2);  
Calculate the acceptance probability, A; 

Draw ρ from a uniform distribution ( )0,1U ;  

if ( )min 1, Aρ < , accept the proposed move;  

else stay in current state; 

 
%The Gibbs procedure 

Update the source matrix, S, according to Eq. 3.12; 
Update the fraction matrix, C, according to Eq. 3.13; 
Update the covariance matrix of error,Σ , according to Eq. 3.14;  
Update the hyperparameter matrix,Ψ , according to Eq. 3.15; 

end 

 
Post processing 

Sample the Markov chain of S, C, M, and ΣΣΣΣ; 
Calculate the descriptive statistics of S, C, and M; 
Visualize S, C, and M; 

 
Specifically, given an initial guess of the model parameters, a death or birth move is proposed first 

by drawing a random number from a population of [ ]1,  1−  with equal probability (birth is defined by 1, 

while death is defined by −1), and then a new state of the model parameters is proposed and the 

acceptance probability is calculated. If the move is accepted, then the model parameters and their 

hyperparameters will be updated accordingly by sampling their conditional posterior distributions using 

the Gibbs samplers as given explicitly in Eqs. 12 to 15.  
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Note that for the birth process, a move when M is equal to one is mandatory, while a move when M 

is equal to Mmax is prohibited. Therefore, the transit probability is defined as [ ]1,0.5,...,0.5,0b = . 

Conversely, for the death process, a move when M is equal to one is prohibited, while a move when M is 

equal to Mmax is mandatory. Therefore, the transit probability turns out to be [ ]0,0.5,...,0.5,1d = . Each 

birth or death move would lead to a change in the number of end members by one (Figure 6). Therefore, a 

rescaling of the fraction vector is required (Eches et al., 2010).  The algorithm was given in Table 2.  

 
 
Figure 6. Diagram demonstrating the birth-death process. It models the changes in the number of component for a 
system with sample space of [1, 2, …, 10]  

 
 

Table 2. Algorithm for the birth and death move  
Birth Move 

Set * 1M M= + ;  

Draw ps from the symmetric Dirichlet distribution supported on a L−1 simplex; 

Add ps to the source matrix such that *

1, , ,M p
 =  S s s sL ; 

Draw [ ]1, ,
N

ω ω=ω L from the Beta distribution ( )1,B M ; 

Add ωωωω to the fraction matrix C and rescale it to satisfy the unit-sum constraint such that 

( )* 1
T

diag= −  C C ω ω ; 

Calculate the acceptance probability of the birth move, Ab, according to Eq. 4.1; 
Set the acceptance probability A = Ab; 

 
Death Move 

Set * 1M M= − ;  

Draw p from the discrete uniform distribution ( )1, ,U ML ; 

Set ,1 ,, ,p p Nc c =  ω L ;  

Remove the pth column from the source matrix such that *

1 1 1, , , , ,p p M− + =  S s s s sL L  ; 

Remove the pth row (i.e. ωωωω) from the fraction matrix and rescale it to satisfy the unit-sum constraint such 

that ( )* 1
1

diag −=
ω ω

C C ;   

Calculate the acceptance probability of the death move, Ad, according to Eq. 4.2; 
Set the acceptance probability A = Ad; 
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The acceptance probability for a birth move is 
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and the acceptance probability for a death move is 
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Chapter 5 Model Validation 
 

 

5.1 Synthetic Data 

The performance of the model was validated using a small-size synthetic dataset, which contains 20 

samples each was mixed through a superposition of two independent sources whose composition is 

known. These independent sources (end members) were generated by sampling a lognormal distribution 

with a structured covariance matrix of variance components. The components of each source were 

rescaled so as they are sum to 100%. The fractions (weight) of each source were constructed by sampling 

a Dirichlet distribution (numbers generated from this distribution are always sum to 1).  

The Markov chain of the number of end members was plotted in Figure 7A. After a short burn-in 

period beginning with an initial value of M equal to four, the chain converges at M equal to two, revealing 

the presence of two end members in the dataset as known a priori. The unmixed end-member spectra 

were plotted in Figure 7B along with the actual end members used for the synthesis of the dataset for 

comparison. As we can see that the actual end members can be successfully recovered using this model.  

 

 

 
Figure 7. (A) Markov chain of the number of end members (sources) modeled using a birth-death process for the 
synthetic dataset. The chain moves from an initial state of M equal to four and converges to M equal to two after the 
burn-in period (ca. 90 iterations); (B) Posterior distribution of the composition of two independent sources identified 
from the synthetic dataset. Solid lines show the results from model run, and open dotted lines represents the actual 
composition of two independent sources used to generate the synthetic data 

 

 

5.2 Real-world Data 

A test run of the model was also conducted using a relatively large dataset obtained from Gaotai 

Lake, a small playa located on the southern margin of the Badain Jaran Desert, NW China (Yu et al., 
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2014). Climatic conditions in this area are primarily controlled by the westerlies. The sediment sequence 

studied here was recovered by digging a trench up to 4 m deep on the north shore of the lake (39°46′42″ 

N, 99′12′38″ E).  

 

 
  
 
Figure 8. Map showing the location and topographical features of the Gaotai Lake and surrounding area, NW China. 
Filled circle indicates the location of the stratigraphical section studied here 

 
 
 

Four lithological units can be identified (Figure 9). The lowermost unit (Unit I, 285 to 350 cm) is 

light-brown very fine sand deposited in shallow waters; Unit II (85 to 285 cm) is a thick layer of light-

gray clay interbedded with dark-gray silt, indicating an open water environment; Unit III (15 to 85 cm) is 

dark-brown crossbedded fine sand deposited in a littoral environment; and the uppermost unit (Unit IV, 0 

to15 cm) is modern sand dune composed of light-brown fine sand.  
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Figure 9. Diagram showing changes in lithology, carbonate content, and redness along with depth in the Gaotai 
Lake, NW China 

 
 
 

A total of 136 samples were collected at 2 to 3 cm intervals along the exposure. The concentration 

of carbonate was measured using the gas balance method described by Yu (2007), and color analyses 

were conducted using a MINOLTA CM-508i spectrophotometer. Bulk samples of ca. 1 cm3 were 

pretreated with 10% HCl to remove carbonate minerals. After repeated rinsing with deionized water, the 

samples were further treated with 30% H2O2 consecutively for seven days to allow the complete removal 

of organic matter. Grain-size distributions of the samples were measured using a Malven Mastersizer 

2000 laser diffraction grain-size analyzer with 100 bins ranging from 0.02 to 2000 µm. All of the above 

analyses were conducted in the State Key Laboratory of Loess and Quaternary Geology, CAS. Table 1 

shows part of the entire data set, which is too large to display here. The data are summarized by grouping 

all of the grain sizes into three grades such as clay (very fine, fine, medium, and coarse), silt (very fine, 

fine, medium, and coarse), and sand (fine, medium, and coarse).  
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Table 3. Frequency (%) of different grain sizes in sediments of Gaotai Lake, NW China   

 

Sample  Clay  Silt  Sand 

no.  1.46µm 1.95µm 3.91µm 7.81µm  15.63µm 31.25µm 62.50µm 125µm  250µm 500µm 1000µm 

1  1.79 2.31 4.57 6.64  6.62 4.25 5.87 25.74  31.65 10.56 0.00 

2  1.39 1.83 3.49 4.60  4.83 3.85 7.55 29.30  32.81 10.35 0.00 

3  0.83 1.08 2.16 2.81  2.82 2.13 3.91 25.83  39.83 18.42 0.19 

4  1.50 1.87 3.91 6.38  8.26 10.02 17.08 26.80  18.79 5.34 0.06 

5  1.57 2.15 4.72 8.14  10.67 10.38 12.96 22.78  19.78 6.79 0.07 

6  0.86 1.35 2.93 4.44  5.00 3.91 3.84 19.90  36.06 20.84 0.87 

7  2.90 4.17 8.03 10.38  10.22 10.55 15.66 21.14  12.62 4.29 0.06 

8  2.58 3.41 7.12 10.87  13.45 17.11 20.64 17.06  6.16 1.53 0.06 

9  6.91 9.50 18.66 22.67  15.76 9.10 7.97 6.38  2.21 0.70 0.14 

10  8.51 10.23 18.62 21.81  14.58 8.85 6.76 3.96  1.69 4.10 0.90 

11  1.09 1.54 3.22 4.37  4.47 3.32 5.92 26.23  33.51 15.22 1.10 

12  3.24 4.14 8.59 13.02  12.00 7.30 7.61 16.74  16.61 9.94 0.82 

13  1.68 2.35 4.89 7.34  8.55 8.71 10.93 19.33  22.03 13.27 0.91 

14  1.96 2.69 5.32 7.91  9.14 8.05 9.06 19.30  23.19 12.83 0.54 

15  0.88 1.39 3.09 4.67  5.29 5.03 5.16 19.29  35.70 19.29 0.21 

16  1.85 2.57 5.32 7.93  9.66 10.83 14.69 22.11  17.57 7.35 0.12 

17  0.74 1.17 2.74 4.41  5.92 5.56 8.87 29.06  31.24 10.27 0.01 

18  1.19 1.42 3.35 6.68  11.23 13.05 17.74 27.18  16.82 1.34 0.00 

19  1.71 2.22 4.69 7.81  11.39 14.58 21.78 25.33  9.58 0.91 0.00 

20  2.92 4.55 9.64 13.86  14.46 13.22 17.25 18.81  5.30 0.00 0.00 

21  3.85 5.41 13.49 22.00  20.89 13.34 10.60 8.56  1.87 0.00 0.00 

22  5.14 7.30 15.40 22.03  22.78 16.89 7.63 2.42  0.42 0.00 0.00 

23  6.50 8.11 15.53 22.56  23.46 15.38 6.05 2.05  0.36 0.00 0.00 

24  7.49 7.79 14.22 24.35  27.89 14.78 3.04 0.42  0.00 0.00 0.00 

25  7.27 8.06 16.12 28.17  26.37 10.48 2.61 0.90  0.02 0.00 0.00 
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The model begins to run with an initial guess of five end members (Figure 10). After about 200 

iterations, the chain of the number of end members tends to converge to three, suggesting that, in this 

example, essentially three end members can be decomposed. After the burn-in period, the posterior 

distributions of the grain-size end-member spectra were sampled from the Markov chains (Figure 11).  

 

 

Figure 10. Diagram showing the burn-in period and convergence of the Markov chain of the number of end 
members of grain-size distributions for Gaotai Lake, NW China 

 
 
 

 

 
Figure 11. Posterior distribution of the grain-size source (end-member) spectra for Gaotai Lake, NW China obtained 
using this model 
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The corresponding grain-size source (end-member) spectra obtained from the weighted least-square 

regression method (Dietze et al., 2012) were also plotted here for comparison (Figure 12). The results 

from these two models are broadly consistent. Both models reveal the multimodal and asymmetrical 

structure of the grain-size end-member spectra. The slight deviation may have resulted from the different 

scheme of normalization and rescaling employed by the weighted least-square regression method. For 

example, the Bayesian method does not normalize the data, while the weighted least-square regression 

method uses the inter-percentile range (i.e. between the 99th and the first percentile) for normalization of 

the data. Also, rescaling is not needed in this method to satisfy the unit-sum constraint, as the simplex was 

sampled to simulate the posterior distribution of the source and fraction matrices. However, the weighted 

least-square regression method imposes a “brutal force” (i.e. rescaling) to the intermediate results in order 

to meet the unit-sum constraints of the source vector.      

 

 

 
Figure 12. Comparison of the grain-size source (end-member) spectra for Gaotai Lake, NW China obtained using 
this method (solid lines) with those obtained using the weighted least-square regression method (open dotted lines) 

 
 
 

The results are also completed with those obtained from the vertex component analysis 

(Nascimento and Bioucas Dias, 2005), another deterministic method in the spirit of polytopic vector 

analysis. Both methods yield a multimodal and asymmetrical structure of the grain-size end-member 

spectra. Again, the minor difference is due likely to the rescaling employed by the vertex component 

analysis (Figure 13). 
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Figure 13. Comparison of the grain-size source (end-member) spectra for Gaotai Lake, NW China obtained using 
this method (solid lines) with those obtained using the vertex component analysis (open dotted lines) 

 
 

 
The grain-size end members identified here represent three distinct transport processes under 

certain climatic and hydrological conditions. For example, the first end member is characterized by an 

asymmetrical monomodal structure with a mode at about 40 µm (coarse dust), This grain-size distribution 

may represent the poorly sorted (reworked dune) sediments, suggesting the near-source transport and thus 

the short-term suspension and saltation processes by local storms breaking out in the winter and spring 

when near-ground turbulent airflow prevails (Qin et al., 2005; Qiang et al., 2007). The second end 

member of grain-size distributions is marked by a bimodal structure with a dominant mode at about 125 

µm (very fine sand) and a minor mode at about 4 µm (coarse dust). Given the location of the study site, 

this end member may represent the suspended sediments from the fluvial/alluvial process or prolonged 

sediment reshuffling in the littoral zone of the lake while lake-level was lowering. The third end member 

also exhibits a bimodal structure but with a dominant mode at about 4 µm (coarse dust) and a minor mode 

at about 150 µm (fine sand). This end member represents the well-sorted sediments, indicating remote 

dust input associated with the upper-level westerly wind transport and localized sediment trapping 

dynamics related to the tropospheric turbulence structure (Dietze et al., 2013a).  

Changes in the fraction of these end-member spectra with depth were plotted in Figure 14. The first 

end member dominated the period of higher lake level corresponding to lithological unit II. This period is 

marked by frequent storm activities, which delivered massive coarse dusts (>50%) to the lake from the 

surrounding dune fields. The second end member dominated the early and late phases of lower lake level. 
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It contributed ca. 80% of detrital materials from the neighboring deserts and alluvial fans, indicating 

enhanced erosion due to seasonal flooding of the Heihe River. The third end member contributed >50% 

clay to the lake. Superimposed on a weakening trend, the westerlies exhibited a remarkable variability, 

which exhibits a nearly anti-phase variability with the first one, revealing a dynamic connection of local 

storminess with the westerlies.  

 

 

 
Figure 14. Changes in the fraction of the grain-size end members alone with depth for Gaotai Lake, NW 
China    
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Chapter 6 Discussion 

 
 

6.1 Data Transformation 

In order to eliminate the spurious correlations between the components of compositional data, 

Aitchison (1986) proposed the logratio transformation. Let [ ]1, , Ly y y= K be an L-part compositional data 

vector. The mapping :T →x y  is defined as 

1 1log , , log L

L L

y y

y y

−
    

=     
    

x K .       (6.1) 

The one-to-one inverse mapping 1 :T
− →y x   is given as 
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1 1 1
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x x
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j j j
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−

− − −

= = =

 
 =
 + + + ∑ ∑ ∑

y K .     (6.2) 

The major advantages of logratio transform are: (1) as the value of variable x varies in the 

interval ( ),−∞ +∞ , the unit-sum constraint was relaxed, and it is easier to choose a function fitting for the 

model in the real space; and (2) it has been proved that if compositional data vector y follows the additive 

logistic normal distribution, then the transformed vector x will follow the multivariate normal distribution 

(Aitchison and Bacon-Shone, 1999). However, it was called question by Tauber (1999) when applying 

this transformation to compositional data with zero components. Actually, numerical problem arises 

immediately when the last component, say yL happens to be zero. This situation is common in practice. 

Padding with tiny positive numbers would violate the unit-sum constraint.  

A transformation based on inter-percentile range has also been proposed (Dietze et al., 2012). 

However, this method also has potential numerical problem. If a compositional dataset contains many 

leading and trailing zero components, a numerical problem of diving by zero would occur. The method 

presented here relies on random sampling of the L−1 simplex and no transformation is applied on the raw 

data, thereby circumventing this problem. Nevertheless, the logratio transformation of Aitchison (1986) 

provides a promising approach to the relaxation of the unit-sum constraint so that one can sample the 

multivariate normal distribution in the 1L−
� real space. Actually, this method can be improved using the 

permutation invariance property. A random permutation of the L-tuple can be conducted until the last 

component is non-zero. Alternatively, one can simply pick any non-zero component in the data vector as 

a reference, with respect to which the logratio transformation can be performed. In the future, a 

transformation of the data using this improved method will be considered. 
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6.2 Choice of Prior Distribution of Model Parameters 

It has become known that Bayesian inference is sensitive to the choice of prior (Berger, 1990; 

Lavine, 1991). In this model, the unit-sum constraint for both the source and fraction vectors was 

considered as prior information. Therefore, a least-informative prior (i.e. the uniform distribution on a 

simplex) was chosen for these model parameters. To explore how sensitive is this model to the choice of 

prior, two cases were compared: uniform vs. multivariate normal distribution for the source vector (Figure 

15). The difference appears to be negligible. As no one knows the actual distribution of the source vector 

other than this constraining information, the uniform prior is preferable. If the data were transformed 

using the improved method proposed above, the informative logistic-normal distribution (Aitchison and 

Bacon-Shone, 1999) could be an alternative. 

      

 
 
 
Figure 15. Comparison between models with different prior distribution of the source vector. Solid lines denote the 
uniform prior and dotted lines indicate the multivariate normal prior on a simplex  

 

 
 

6.3 Structure of Covariance Matrix of Error 

 Compositional data are linearly dependent, which in turn would affect the structure of the covariance 

matrix of error (Ledoit and Wolf, 2004). In this model, a fully unstructured covariance matrix of error was 

specified, adding ( )1 2L L + to the degrees of freedom of the model. To explore the sensitivity of the 

model to the structure of the covariance matrix of error, a comparative study was conducted with two 
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extreme scenarios: unstructured vs. simple structure (i.e. constant multiple of an IL×L matrix). The result 

was presented in Figure 16. The difference is large for the first source, but trivial for the other two 

sources, implying that this model could be simplified by using a reduced covariance structure (e.g. 

compound symmetry or Toeplitz).           

 

 

Figure 16. Comparison between models with different structure of the covariance matrix of error. Solid lines denote 
results from model with an unstructured covariance matrix of error and dotted lines indicate results from model with 
a simple covariance matrix of error 
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Chapter 7 Concluding Remarks 
 
 

It is assumed that compositional data represent the convex linear mixing of definite numbers of 

independent (“pure”) sources commonly referred to as end members, which has a unique spectrum that 

characterizes the composition of their source. Therefore, the overarching objective of end-member 

unmixing of compositional data is to separate these sources. Within the framework of Bayesian inference, 

a hierarchical Bayesian model for end-member unmixing of compositional data was formulated. By 

making use of the reversible jump MCMC method in conjunction with the Gibbs samplers, this model 

could not only provide an optimal estimate of the number of end members, but also produce the posterior 

distribution of the end-member spectra and their fractions completely satisfying the non-negativity and 

unit-sum constraints. A test run using both a synthetic and real-word dataset yields satisfactory outputs 

consistent with other non-Bayesian methods.  

It is noteworthy that the end-member modeling of compositional data is not mechanistic, as no 

physical processes are included. This may undermine the scientific soundness of the results. To develop a 

full inversion towards the informative and reliable inferences of the sources from observational data, 

physical modeling should be implemented along with end-member modeling for a specific problem. An 

alternate and probably feasible approach is to build up a library that includes the spectra of all possible 

sources. As such, the end-member unmixing problem would degenerate to a semi-linear unmixing 

problem (e.g. complexity of level 2). This is a trade-off between scientific soundness and mathematical 

feasibility, but it works particularly for the fingerprinting of sources. 
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Appendices 

 

MATLAB
 Codes 

 
clc; 
clear; 
load ..//data/GTlake.txt; 
Y = GTlake(2:end,2:end); 
depth = GTlake(2:end,1);  
binsize = GTlake(1,2:end);  
nMCMC = 500;  
Y = Y';  
[NM,NC,NS] = bunmixing(Y,nMCMC); 
[mode_M,mean_C,mean_S] = postprocess(NM,NC,NS,Y);  
visualization(NM,mode_M,mean_S,mean_C,binsize,depth,Y);  
EM_spct = [binsize' mean_S]; 
EM_abun = [depth mean_C']; 
save ..//outputs/GTlake_S.dat EM_spct -ascii -tabs;  
save ..//outputs/GTlake_C.dat EM_abun -ascii -tabs;  

 

function [NM,NC,NS] = bunmixing(Y,nMCMC) 
%Main program for Bayesian end-member unmixing  
%----------------------------------------------------------------------- 
%INPUT 
%       Y         : grain-size observation dataset  
%       nMCMC     : number of MCMC runs 
%OUTPUT 
%       NM        : posterior distribution of the number of end members 
%       NC        : Posterior distribution of the abundance matrix 
%       NS        : posterior distribution of the end-member matrix 
%----------------------------------------------------------------------- 
[L,N] = size(Y); 
Mmax = maxem(Y);  
M = randsample((2:Mmax),1,true,ones(1,Mmax-1)/(Mmax-1)); 
burnin = floor(nMCMC/5); 
nv = L + 1; 
theta = L; 
phi = theta*eye(L);  
psi = wishrnd(phi,theta); 
sigma = iwishrnd(psi,nv); 
C = randfixedsum(M,N,1,0,1); 
S = randfixedsum(L,M,100,0,100); 
proba_b = [1 1 ones(1,Mmax-3)/2 0];  
proba_d = [0 0 ones(1,Mmax-3)/2 1];  
NC = zeros(Mmax,N,nMCMC+1); 
NS = zeros(L,Mmax,nMCMC+1); 
NM = zeros(1,nMCMC+1); 
NC(1:M,:,1) = C; 
NS(:,1:M,1) = S; 
NM(1,1) = M; 
rho = log(rand(1,nMCMC)); 
h = waitbar(0,'Please wait...','CreateCancelBtn','closereq', 'name',... 
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    'BAYESIAN END-MEMBER UNMIXING'); 
for comp = 1:nMCMC 
    waitbar(comp/nMCMC,h) 
    rhoi = rho(:,comp); 
    [C,S,M] = move_bd(C,S,M,sigma,Y,proba_d,proba_b,rhoi,comp,burnin); 
    C = update_C(C,S,sigma,Y);  
    S = update_S(S,C,sigma,Y);  
    sigma = update_sigma(Y,S,C,psi);  
    phi = update_psi(sigma,phi);  
    NM(1,comp+1) = M; 
    NC(1:M,:,comp+1) = C; 
    NS(:,1:M,comp+1) = S; 
end 
close(h) 
end 

 

function Max = maxem(Y) 
%-------------------------------------------------------------------------- 
% Determine the maximum number of end members based on cumulative pca load. 
%-------------------------------------------------------------------------- 
[L,N] = size(Y); 
Y_bar = mean(Y,2);  
Yc = Y - Y_bar*ones(1,N);   
covMatrix = Yc*Yc'; 
 [E, D] = eig(covMatrix); 
Ld = diag(D); 
Ln = Ld / sum(Ld); 
Lv = cumsum(flipud(Ln)); 
for i=1:length(Lv) 
    if Lv(i)>0.995             
       Max=i; 
       break; 
    end 
end     
end 

 

function [x,v] = randfixedsum(n,m,s,a,b) 
%-------------------------------------------------------------------------- 
% Generate an n*m array x, each of whose m columns contains n random values 
% lying in the interval [a,b], but sum to s.   
% ------------------------------------------------------------------------- 
if (m~=round(m))|(n~=round(n))|(m<0)|(n<1) 
 error('n must be a whole number and m a non-negative integer.') 
elseif (s<n*a)|(s>n*b)|(a>=b) 
 error('Inequalities n*a <= s <= n*b and a < b must hold.') 
end 
s = (s-n*a)/(b-a); 
k = max(min(floor(s),n-1),0);  
s = max(min(s,k+1),k);  

s1 = s - [k:-1:k-n+1];  
s2 = [k+n:-1:k+1] - s; 
w = zeros(n,n+1); w(1,2) = realmax;  
t = zeros(n-1,n); 
tiny = 2^(-1074);  
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for i = 2:n 
 tmp1 = w(i-1,2:i+1).*s1(1:i)/i; 
 tmp2 = w(i-1,1:i).*s2(n-i+1:n)/i; 
 w(i,2:i+1) = tmp1 + tmp2; 
 tmp3 = w(i,2:i+1) + tiny;  
 tmp4 = (s2(n-i+1:n) > s1(1:i));  
 t(i-1,1:i) = (tmp2./tmp3).*tmp4 + (1-tmp1./tmp3).*(~tmp4); 
end 
v = n^(3/2)*(w(n,k+2)/realmax)*(b-a)^(n-1); 
x = zeros(n,m); 
if m == 0, return, end  
rt = rand(n-1,m);  
rs = rand(n-1,m);  
s = repmat(s,1,m); 
j = repmat(k+1,1,m);  
sm = zeros(1,m); pr = ones(1,m);  
for i = n-1:-1:1   
 e = (rt(n-i,:)<=t(i,j));  
 sx = rs(n-i,:).^(1/i);  
 sm = sm + (1-sx).*pr.*s/(i+1);  
 pr = sx.*pr;  
 x(n-i,:) = sm + pr.*e;  
 s = s - e; j = j - e;  
end 
x(n,:) = sm + pr.*s;  
rp = rand(n,m);  
[ig,p] = sort(rp);  
x = (b-a)*x(p+repmat([0:n:n*(m-1)],n,1))+a;  
end 

 

function Ae = gen_em(R,varargin) 
%-------------------------------------------------------------------------- 
% Generate the mean of end-member spectra  
%-------------------------------------------------------------------------- 
         verbose = 'on';  
         snr_input = 0;   
         dim_in_par = length(varargin); 
         if (nargin - dim_in_par)~=1 
            error('Wrong parameters'); 
         else if rem(dim_in_par,2) == 1 
            error('Optional parameters should always go by pairs'); 
         else 
            for i = 1 : 2 : (dim_in_par-1) 
                switch lower(varargin{i}) 
                  case 'verbose' 
                     verbose = varargin{i+1}; 
                  case 'endmembers'      
                     p = varargin{i+1}; 
                  case 'snr'      
                     SNR = varargin{i+1}; 
                     snr_input = 1;  
                  otherwise 
                     fprintf(1,'Unrecognized parameter:%s\n', varargin{i}); 
                end  
            end  
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         end  
         if isempty(R) 
            error('there is no data'); 
         else 
            [L N]=size(R);   
         end                    
         if (p<0 || p>L || rem(p,1)~=0),   
            error('ENDMEMBER parameter must be integer between 1 and L'); 
         end 
         if snr_input==0, 
            r_m = mean(R,2);       
            R_m = repmat(r_m,[1 N]);  
            R_o = R - R_m;            
            [Ud,Sd,Vd] = svds(R_o*R_o'/N,p);  
            x_p =  Ud' * R_o;  
            SNR = estimate_snr(R,r_m,x_p); 
            if strcmp (verbose, 'on')  

   fprintf(1,'SNR estimated = %g[dB]\n',SNR);  

  end 
         else if strcmp (verbose, 'on')  

  fprintf(1,'input    SNR = %g[dB]\t',SNR);  

    end 
         end 
         SNR_th = 15 + 10*log10(p); 
         if SNR < SNR_th,    
                if strcmp (verbose, 'on'),  
                    fprintf(1,'... Select the projective proj.\n',SNR);  
                end 
                d = p-1; 
                if snr_input==0,  
                     Ud= Ud(:,1:d);     
                else 
                     r_m = mean(R,2);       
                     R_m = repmat(r_m,[1 N]);  
                     R_o = R - R_m;            
                     [Ud,Sd,Vd] = svds(R_o*R_o'/N,d);                        

      x_p =  Ud' * R_o;   
                end 
                Rp =  Ud * x_p(1:d,:) + repmat(r_m,[1 N]); 

                x = x_p(1:d,:);              

                c = max(sum(x.^2,1))^0.5; 
                y = [x ; c*ones(1,N)] ; 
         else 
                if strcmp (verbose, 'on'),  
                    fprintf(1,'... Select proj. to p-1\n',SNR);  
                end 
                d = p; 
                [Ud,Sd,Vd] = svds(R*R'/N,d 

                x_p = Ud'*R; 
                Rp =  Ud * x_p(1:d,:);       

                x =  Ud' * R; 
                u = mean(x,2);         
                y =  x./ repmat( sum( x .* repmat(u,[1 N]) ) ,[d 1]); 
        end 
indice = zeros(1,p); 
A = zeros(p,p); 
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A(p,1) = 1; 
for i=1:p 
      w = rand(p,1);    
      f = w - A*pinv(A)*w; 
      f = f / sqrt(sum(f.^2)); 
      v = f'*y; 
      [v_max indice(i)] = max(abs(v)); 
      A(:,i) = y(:,indice(i));   
end 
Ae = Rp(:,indice); 
Ae = abs(Ae); 
Ae = 100*Ae./(ones(size(Ae,1),1)*sum(Ae,1)); 
return; 

%% 
function snr_est = estimate_snr(R,r_m,x) 
         [L N]=size(R); 
         [p N]=size(x); 
         P_y = sum(R(:).^2)/N; 
         P_x = sum(x(:).^2)/N + r_m'*r_m; 
         snr_est = 10*log10( (P_x - p/L*P_y)/(P_y- P_x) ); 
return; 

 

function [C_out,S_out,M_out]=  

move_bd(C,S,M,sigma,Y,proba_d,proba_b,rhoi,comp,burnin) 
%-------------------------------------------------------------------------- 
% Propose a birth/death move 
%-------------------------------------------------------------------------- 
[L N] = size(Y); 
move = randsample([-1 1],1,true,[proba_d(M) proba_b(M)]); 
M_star = M + move; 
S_star = gen_em(Y,'Endmembers',M_star,'verbose','off'); 
if move == 1  
    w = betarnd(1,M,1,N); 
    C_star = [C*diag(1-w); w]; 
else   
    indm = unidrnd(M); 
    C_new = C; 
    w = C_new(indm,:); 
    C_new(indm,:) = []; 
    C_star = C_new*diag(1./(1-w)); 
end 
accept=proba_bd(S_star,S,C_star,C,M_star,M,sigma,Y,proba_d,proba_b,w,rhoi,com

p,burnin); 
if accept == 1 
    M_out = M_star; 
    C_out = C_star; 
    S_out = S_star; 
else 
    M_out = M; 
    C_out = C; 
    S_out = S; 
end 
end 
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function accept = 

proba_bd(S_star,S,C_star,C,M_star,M,sigma,Y,proba_d,proba_b,w,rhoi,comp,burni

n) 
%-------------------------------------------------------------------------- 
%Compute the acceptance ratio of birth/death move 
%-------------------------------------------------------------------------- 
[L,N] = size(Y); 
a1 = (Y-S_star*C_star)*(Y-S_star*C_star)'*inv(sigma); 
a2 = (Y-S*C)*(Y-S*C)'*inv(sigma); 
A = 0.5*(trace(a2)-trace(a1)); 
if M_star-M == 1 
    A = A + gammaln(L); 
else     
    A = A - gammaln(L); 
end 
if M_star-M == 1 
    A = A + N*(gammaln(M+1)-gammaln(M)); 
else     
    A = A - N*(gammaln(M)-gammaln(M-1)); 
end 
if M_star-M == 1 
    A = A + log(proba_d(M+1)) - log(proba_b(M)) ; 
else 
    A = A + log(proba_b(M-1)) - log(proba_d(M)) ; 
end 
if M_star-M == 1 
   A = A - sum(log(betapdf(w,1,M)),2) - (N+1)*log(M+1);  
else 
   A = A + sum(log(betapdf(w,1,M-1)),2) + (N+1)*log(M); 
end 
if M_star-M == 1 
   A = A + sum(log((1-w).^M),2); 
else 
   A = A - sum(log((1-w).^(M-1)),2); 
end 
if comp < burnin 
    accept = rhoi < max([0,A]); 
else 
    accept = rhoi < min([0,A]); 
end 
end 

 
function S_out = update_S(S,C,sigma,Y) 
%-------------------------------------------------------------------------- 
% Sample the posterior distribution of the end-member matrix  
% INPUT 
%   S : current state of end-member matrix  
%   C : current state of fraction matrix 
%   sigma : covariance matrix of error 
%   Y : observational data  
% OUTPUT 
%   S_out : updated end-member matrix 
%-------------------------------------------------------------------------- 
[L,N] = size(Y); 
M = size(S,2); 
S_out = S; 



39 
 

 

[matP,matU,Y_bar] = whitenmat(Y,1,M-1); 
T_out = matP*(S - Y_bar*ones(1,M)); 
em_proj = matP*(S - Y_bar*ones(1,M)); 
K = size(T_out, 1); 
for r = randperm(M)     
    comp_r = setdiff(1:M,r); 
    alpha_r = C(comp_r,:); 
    alphar(1:N) = C(r,:); 
    invSigma_r = sum(C(r,:).^2)*(matU'*inv(sigma)*matU); 
    Sigma_r = inv(invSigma_r); 
    er = em_proj(:,r); 
    for k = randperm(K); 
        tr = T_out(:,r); 
        comp_k = setdiff((1:K),k); 
        S_r = S_out(:,comp_r); 
        Delta_r = (Y-S_r*alpha_r-Y_bar*alphar); 
        mu = Sigma_r*matU'*(sum(inv(sigma)*(Delta_r.*(ones(L,1)*alphar)),2)); 
        skr = Sigma_r(comp_k,k); 
        Sigma_r_k = Sigma_r(comp_k,comp_k); 
        inv_Sigma_r_k = inv(Sigma_r_k); 
        muk = mu(k) + skr'*inv_Sigma_r_k*(tr(comp_k,1)-er(comp_k,1)); 
        s2k = Sigma_r(k,k) - skr'*inv_Sigma_r_k*skr; 
        vect_e = (-Y_bar - matU(:,comp_k)*tr(comp_k,1))./matU(:,k); 
        setUp = (matU(:,k)>0); 
        setUm = (matU(:,k)<0); 
        mup = max([-1/eps max(vect_e(setUp))]); 
        mum = min([ 1/eps min(vect_e(setUm))]); 
        T_out(k,r) = dtrandn_MH(T_out(k,r),muk,sqrt(s2k),mum,mup); 
        S_out(:,r) = abs(matU*T_out(:,r) + Y_bar);  
    end 
end 

 
function [wmat, dwmat, Y_bar] = whitenmat(Y, firstEig, lastEig) 
%-------------------------------------------------------------------------- 
% Whiten a matrix using the eigenvectors between firstEig and lastEig 
% INPUT 
%   Y : observational data 
%   firstEig : first eigenvalue to keep 
%   lastEig : last eigenvalue to keep 
% OUTPUT 
%   wmat : whiten matrix 
%   dwmat : unwhiten matrix 
%   Y_bar : columnwise mean of Y 
%-------------------------------------------------------------------------- 
[L,N] = size(Y); 
Y_bar = mean(Y,2);  
Yc = Y - Y_bar*ones(1,N);   
covMatrix = Yc*Yc'; 
[E, D] = eig(covMatrix); 
rankTolerance = 1e-7; 
maxLastEig = sum (diag (D) > rankTolerance); 
if maxLastEig == 0, 
  fprintf (['Eigenvalues of the covariance matrix are' ... 
        ' all smaller than tolerance [ %g ].\n' ... 
        'Please make sure that your data matrix contains' ... 
        ' nonzero values.\nIf the values are very small,' ... 
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        ' try rescaling the data matrix.\n'], rankTolerance); 
  error ('Unable to continue, aborting.'); 
end 
eigenvalues = sort(diag(D), 'descend'); 
oldDimension = size (Y, 1); 
if lastEig < oldDimension 
  lowerLimitValue = (eigenvalues(lastEig) + eigenvalues(lastEig + 1))/2; 
else 
  lowerLimitValue = eigenvalues(oldDimension) - 1; 
end 
lowerColumns = diag(D) > lowerLimitValue; 
if firstEig > 1 
  higherLimitValue = (eigenvalues(firstEig - 1) + eigenvalues(firstEig))/2; 
else 
  higherLimitValue = eigenvalues(1) + 1; 
end 
higherColumns = diag(D) < higherLimitValue; 
selectedColumns = lowerColumns & higherColumns; 
E = selcol(E, selectedColumns); 
D = selcol(selcol(D, selectedColumns)', selectedColumns); 
E = rotatefactors(E(:,firstEig:lastEig), 'Normalize', 'off'); 
wmat = sqrt(D)\E'; 
dwmat = E * sqrt (D); 
return; 
%% 
function newMatrix = selcol(oldMatrix, maskVector) 
if size(maskVector, 1) ~= size(oldMatrix, 2), 
  error ('The mask vector and matrix are of uncompatible size.'); 
end 
numTaken = 0; 
for i = 1 : size (maskVector, 1), 
  if maskVector(i, 1) == 1, 
    takingMask(1, numTaken + 1) = i; 
    numTaken = numTaken + 1; 
  end 
end 
newMatrix = oldMatrix(:, takingMask); 
return; 

 
function C_out = update_C(C,S,sigma,Y) 
%--------------------------------------------------------------------------  
%Sample the posterior distribution of the fraction matrix 
% INPUT 
%       C : Current state of fraction matrix  
%       S : current state of end-member matrix 
%       Y : observational data 
%       sigma : current state of the covariance of error 
% OUTPUT 
%       C_out : updated state of abundance matrix 
%-------------------------------------------------------------------------- 
[M,N] = size(C); 
ord = randperm(M);  
k = ord(M); 
comp_k = ord(1:(M-1)); 
alpha  = C(comp_k,:); 
u = ones(1,M-1); 
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SM = S(:,k); 
SM_u = SM*u; 
S_M = S(:,comp_k); 
T = (S_M-SM_u)'*inv(sigma)*(S_M-SM_u); 
for j=1:N 
    Sigma = inv(T); 
    Mu = Sigma*((S_M-SM_u)'*inv(sigma)*(Y(:,j)-SM)); 
    alpha(:,j) = dtrandnmult(alpha(:,j),Mu,Sigma,1); 
end 
C_out(ord(1:(M-1)),:) = alpha; 
C_out(ord(M),:) = max(1-sum(alpha,1),0); 
end 

 
function S = dtrandnmult(S,Mu,Re,unit) 
%-------------------------------------------------------------------------- 
% Sample a multivariate normal distribution with mean Mu and  
% covariance Re on a simplex bounded between 0 and unit 
%-------------------------------------------------------------------------- 
S = S(:);  
Mu = Mu(:); 
R = length(S); 
if R==1 
    S = trandn(Mu,sqrt(Re)); 
else 
    for r=1:R 
        Rm = Re;      
        Rm(r,:) = []; 
        Rv = Rm(:,r);      
        Rm(:,r) = []; 
        Sigma_mat{r} = inv(Rm); 
        Sigma_vect{r} = Rv; 
    end 
    for iter=1:10 
        for k=randperm(R) 
            Sk = S;  
            Sk(k) = []; 
            Muk = Mu;  
            Muk(k) = []; 
            Moy_Sv(k) = Mu(k) + Sigma_vect{k}'*Sigma_mat{k}*(Sk-Muk); 
            Var_Sv(k) = Re(k,k) - Sigma_vect{k}'*Sigma_mat{k}*Sigma_vect{k}; 
            Std_Sv(k) = sqrt(abs(Var_Sv(k))); 
            S(k) = dtrandn_MH(S(k),Moy_Sv(k),Std_Sv(k),0,(unit-sum(S)+S(k))); 
        end 
    end 
end 
return; 
%% 
function X = trandn(Mu,Sigma) 
%---------------------------------------------------------------------------- 

% Sample a positive normal distribution with mean Mu and standard  
% deviation Sigma  

%---------------------------------------------------------------------------- 
Mu = Mu(:); 
Sigma = Sigma(:); 
T = length(Mu); 
U = rand(T,1); 
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V = erf(- Mu./(sqrt(2)*max(Sigma,eps))); 
X = Mu + sqrt(2*Sigma.^2) .* erfinv(-(((1-V).*U + V)==1)*eps+(1-V).*U + V); 
X = max(X,eps); 
return; 
 
 
function X = dtrandn_MH(X,Mu,Sigma,Mum,Mup) 
%-------------------------------------------------------------------------- 
% Sample a truncated normal distribtuion bounded between Mum and Mup with  
% mean Mu and standard deviation Sigma  
%-------------------------------------------------------------------------- 
Mu_new = Mu - Mum; 
Mup_new = Mup -Mum; 
if Mu<Mup 
    Z= randnt(Mu_new,Sigma,1); 
else 
    delta = Mu_new - Mup_new; 
    Mu_new = -delta; 
    Z= randnt(Mu_new,Sigma,1); 
    Z = -(Z-Mup_new ); 
end 
    Z = Z+Mum; 
    cond = (Z<=Mup) && (Z>=Mum); 
    X = (Z.*cond + X.*(~cond)); 
return; 
%% 
function x = randnt(m,s,N) 
%------------------------------------------------------------------------- 

% Generate N random numbers from a positive normal distribution with  
% mean M and standard deviation S 

%------------------------------------------------------------------------- 
if s<0,  error('Standard deviation must be positive.'); end; 
if N<=0, error('N is wrong.'); end; 
Tindcand = []; 
x = [];      
NN = N; 
A  = 1.136717791056118; 
mA = (1-A^2)/A*s; 
mC = s * sqrt(pi/2); 
while length(x)<NN, 
    if m < mA,       
        a = (-m + sqrt(m^2+4*s^2)) / 2 / s^2; 
        z = -log(1-rand(N,1))/a; 
        rho = exp( -(z-m).^2/2/s^2 - a*(m-z+a*s^2/2) ); 
    else if m <= 0,   
        z = abs(randn(N,1))*s + m; 
        rho = (z>=0); 
    else if m < mC,   
        r = (rand(N,1) < m/(m+sqrt(pi/2)*s)); 
        u = rand(N,1)*m; 
        g = abs(randn(N,1)*s) + m; 
        z = r.*u + (1-r).*g; 
        rho = r.*exp(-(z-m).^2/2/s^2) + (1-r).*ones(N,1); 
    else            
        z = randn(N,1)*s + m; 
        rho = (z>=0); 
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    end; 
    reject = (rand(N,1) > rho); 
    z(reject) = []; 
    if ~isempty(z), x = [x ; z]; end; 
    N = N-length(z); 
end 
return; 

 
function sigma_post = update_sigma(Y,S,C,psi) 
%-------------------------------------------------------------------------- 
%sample the posterior distribution of the covariance matrix of error 
%-------------------------------------------------------------------------- 
[L,N] = size(Y); 
nv = L + 1; 
a = (Y-S*C)*(Y-S*C)'+ psi; 
b = nv + N; 
sigma_post = iwishrnd(a,b); 
end 
 

 

function psi_post = update_psi(sigma,phi) 
%-------------------------------------------------------------------------- 
%sample the posterior distribution of hyperparameter matrix psi 
%-------------------------------------------------------------------------- 
L = length(sigma); 
nv = L + 1; 
theta = L; 
a = inv(phi)+inv(sigma); 
b = nv+theta; 
psi_post = wishrnd(a,b); 
end 
 

 

function [mode_M,mean_C,mean_S] = postprocess(NM,NC,NS,Y) 
%-------------------------------------------------------------------------- 
% Find the modal value of the number of end members 
% INPUT 
%       NM: Markov chain of the number of end members 
%       NC: Markov chain of the abundance of the end members 
%       NS: Markov chiain of the spectra of the end members 
% OUTPUT 
%       mode_M: modal value of the number of end members 
%       mean_C: mean of the abundance of the end members 
%       mean_S: mean of the spectra of the end members 
%-------------------------------------------------------------------------- 
Mmax = maxem(Y); 
h = hist(NM,1:Mmax)/length(NM); 
mode_M = find((h == max(h))); 
indM = []; 
for i = 1:length(NM) 
    if NM(i) == mode_M 
       im = i; 
       indM = [indM im]; 
    end 
end 
C = NC(1:mode_M,:,indM); 
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S = NS(:,1:mode_M,indM);  
mean_S = 0; 
mean_C = 0; 
for i = 1:length(indM) 
    mean_S = mean_S + S(:,:,i); 
    mean_C = mean_C + C(:,:,i); 
end 
mean_S = mean_S/length(indM); 
mean_C = mean_C/length(indM); 
end 
 

 
function visualization(NM,mode_M,mean_S,mean_C,binsize,depth,Y) 
%-------------------------------------------------------------------------- 
% Plot the results 
%-------------------------------------------------------------------------- 
Mmax = maxem(Y); 
figure (1) 
subplot(1,2,1);stairs(NM(1:end-1)); 
set(gca,'yLim',[1 Mmax]); 
set(gca,'YTick',1:1:Mmax); 
set(gca,'fontsize',12); 
xlabel('Number of MCMC run'); 
ylabel('Number of end members'); 
grid on; 
subplot(1,2,2);bar(1:Mmax,hist(NM,1:Mmax)/length(NM),'b'); 
axis([0.5 Mmax+0.5 0 1]); 
set(gca,'fontsize',12); 
xlabel('Number of end members'); 
ylabel('Posterior probability'); 
grid on; 
figure (2) 
LEG = []; 
for i = 1:mode_M 
  LEG = [LEG; 'End member ', num2str(i)]; 
end 
semilogx(binsize,mean_S,'-'); 
set(gca,'fontsize',12); 
xlabel('Grain size (\mum)'); 
ylabel('Frequency (%)'); 
legend(LEG); 
grid on; 
figure (3) 
for i=1:mode_M 
    subplot(1,mode_M,i);plot(mean_C(i,:),depth,'-'); 
    set(gca,'fontsize',12); 
    xlabel('Abundance'); 
    ylabel('Depth'); 
    set(gca, 'YDir', 'reverse'); 
    title(['End member ', num2str(i)]); 
    grid on; 
end 
end 
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