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Abstract

Motivated by primality and integer factorization, this thesis introduces generalizations of standard binary
multiplication to commutative n-ary operations based upon geometric construction and representation. This
class of operations are constructed to preserve commutativity and identity so that binary multiplication is in-
cluded as a special case, in order to preserve relationships with ordinary multiplicative number theory. This leads
to a study of their expression in terms of elementary symmetric polynomials, and connections are made to results
from the theory of polyadic (n-ary) groups. Higher order operations yield wider factorization and representa-
tion possibilities which correspond to reductions in the set of primes as well as tiered notions of primality. This
comes at the expense of familiar algebraic properties such as associativity, and unique factorization. Criteria for
primality and a naïve testing algorithm are given for the ternary arithmetic, drawing heavily upon modular arith-
metic. Finally, connections with the theory of partitions of integers and quadratic forms are discussed in relation
to questions about cardinality of primes.

Number Theory, Partitions, Symmetric Polynomials, Primality Testing, n-ary Algebra, Integer Factorization
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Becoming sufficiently familiar with something is a

substitute for understanding it.

John H. Conway

1
Introduction

Geometry has a long history of inspiring algebraic and arithmetic investigations in mathematics. This is

evident, for instance, in the extension from the complex numbers to the quaternions in order to describe spatial

rotations. The development from natural numbers to integers to rationals to reals can be viewed as an endeavor

to capture the notion of spatial continuum. However, this vigorous pursuit has perhaps limited development

of algebraic constructions that rely only upon the most fundamental set, the natural numbers. This thesis seeks

to partially remediate that deficiency by contributing a class of algebraic operations overNn. In motivating their

construction, we will take spatial considerations into account, while keeping in mind the goal to eventually be-

come independent of geometry.

We take natural numbers (from which we will exclude zero throughout) as fundamental correlates of
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consciousness, requiring no justification or act of construction. From this vantage, how we choose to manip-

ulate and represent those objects becomes largely arbitrary. The standard binary operations,+,×, have been

engrained as the fundamental logic of the set, impossible to deny or ignore when performing manipulations of

natural numbers. Rather than argue to the contrary, we will argue to support the idea that these constitute a lim-

ited portion of what may be reasonably be called “operations” overN.

Of course, an n-ary operation is merely a function that associates some n-tuple of elements from n do-

main sets with some element from a co-domain set. There are limitless ways to construct arbitrary operations over

natural numbers (i.e. fromNn 7→ N). There are relatively fewer that would seem somehow natural or worthy

of attention. How we choose these may be informed by which familiar notions from algebra we should wish to

preserve, which we should ignore, and what new ones we might add. These attributes, perhaps owing to the suc-

cess of group theory, seem to have become a sort of hierarchy in which some are seen as more fundamental than

others.

This hierarchy is artificial, and need not be observed. Rather, one can look to other sources of inspira-

tion such as geometry and symmetry to determine a bundle of algebraic properties. In order to tread the middle

ground between mathematical tradition and arbitration, this thesis will develop operations that maintain a con-

nection with conventional number theory by retaining some of the properties of our binary operations, while

simultaneously illustrating the possibilities of arithmetical expansion. In particular, the properties of identity and

commutativity will allow us to maintain a connection with the number theory that results from the definition of

our binary operations.

The kernel of inspiration motivating these investigations is the idea that binary multiplication is simply

the construction of rectangular figurate numbers. We follow the single and very thin thread of what may occur

if we allow representations of other figurate numbers, especially hexagons, to define novel arithmetic operations.

The opportunities for research here are vast–while substantial literature has been devoted n-ary algebras, non-

associative algebra and the like, explicit connections with arithmetic are rarer. Perhaps the closest thing in spirit

is the study of tetration and other hyper-operations which constitute another sequence of recursive arithmetic

functions, however they do not increase in arity and are perhaps less relevant to multiplicative number theory.

Research in arithmetic is a lot like staring at the sun. Insight and impairment might easily be confused

when performing either activity, hence it will be helpful to set down the goals and guiding principles of the treat-

ment at hand.
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Prospects. We shall develop non-trivial n-ary generalizations of binary multiplication on the natural numbers

via geometric intuition. Operations of high arity shall seek to include lower arity operations as special cases.

To explain the motivations, we first examine the structure of ordinary, binary multiplication. As a con-

sequence of its iterative nature, binary multiplication can be represented in a familiar rectangular grid of points.

For instance, 3 · 5 = 3 + 3 + 3 + 3 + 3 = 5 + 5 + 5 = 15 can be represented by taking a row of three evenly

spaced points, and laying it down beside itself five times, or vice versa. It is worth noting the resemblance between

this representation and Young and Ferrers diagrams from partition theory, a subject that will be treated in more

depth later on.

The resulting object, which we will refer to as a rectangular crystal, possesses notable symmetry qualities

– two-fold reflective symmetry and one rotational symmetry. In case the operands are identical, we get a square

with four of each kind of symmetry (i.e. the dihedral groupD4). We have had to sacrifice the diagonal symmetries

of the square in order to allow for sides of distinct length, but this looser symmetry allows crystals to depict an

algebraic operation that takes independent arguments fromN.

The requirement of two-fold reflective symmetry also admits parallelogram crystals. Insofar as the crystal

represents an algebraic operation whose result depends only on the side lengths (in terms of number of points,

rather than distance under some metric), we wish to describe a visual geometric process by which we discover the

output, relying upon minimal outside mathematical machinery. Consider the following constructive process:

Geometric Construction of Binary Multiplication.

Step 1. Select two elements, m, n, from N as arguments.

Step 2. Construct a set of m distinct collinear points. Starting from one point (not necessarily an endpoint) of this

set, construct n collinear points (including the point in common) such that the line defined by this set is distinct

from the line defined by the set of m points.

Step 3. Construct the line through each point that is parallel to either of the two lines defined by each set.

Step 4. Count the distinct intersections of all pairs of lines. This number is the product m · n.

This process describes a general geometric way of interpreting the product of two natural numbers. We

shall refer to a set ofm collinear points as anm factor in order to distinguish if from just the numberm. Note that
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in this description, neither the spacing between the points nor the angle between the lines matters so long as the

lines are distinct. If, for instance,m is 1 then there is no line defined by that factor, hence we construct no new

points of intersection and the product is just n.

The construction also suggests a further generalization - what occurs if we proceed with more sets of

collinear points? Can we define operations of higher arity that are distinct from iterative binary multiplication?

Here, the construction becomes much more sensitive to angle and spacing particularities of the factors. Further-

more, there arises a question of whether to count all intersections of any two lines, or only the intersections of

the maximal number of lines, as well as how to classify and predict when each type of intersection arises. The del-

icacies here have been studied and generalized in the domain of incidence combinatorics. However, as a basis for

development of algebraic operations over the natural numbers, many such constructions would be too irregular

to be satisfying.

Instead, we will choose to pursue a more restrictive and “regular” regime in order to exploit its symmetry

properties and demonstrate with simplicity the possibilities that arise from pursuing geometry-inspired arith-

metic. Hence, given that in the binary multiplication operation, our construction yields a convex quadrilateral,

we will take up a ternary operation that enumerates intersections that lie within a convex hexagon. To simplify

the geometry, we will make this hexagon equiangular, and the points in each factor will be evenly spaced.

This results that the lines defined by each factor will be at angles of 2π
3 to one another, and all points of

intersection are equidistant from their nearest neighbors. In other words, the points of intersection lie on points

of a hexagonal (equilateral triangle) lattice. The exceptional symmetry of this lattice corresponds to the fact that

our operation will be fully commutative. First, we shall describe the construction as a process analogous to the

binary case, appealing to ordinary language and perception for clarity at the temporary expense of generality and

mathematical orthography.*

Geometric Construction of Ternary Multiplication.

Step 1. Select three elements, i, j, k, from N as arguments.

Step 2. Construct the i-factor, oriented so that it makes an angle of 2π
3 with the horizontal, measuring from stan-

dard position.
*The construction of the convex hull can also be described in terms of movements along the vectors of the planar hexag-

onal lattice. We are skirting these technicalities to get directly to the arithmetic aspects.
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Step 3. From the southeast endpoint of this set, construct the j factor in the horizontal direction to the right.

Step 4. Beginning from the rightmost point of the j factor, construct the k factor in the northeast direction so that

its containing line makes a standard position angle of π
3 with the horizontal.

Step 5. Proceeding clockwise from the northeast endpoint of the k factor, append, in order, another i, j and k fac-

tor such that the interior angle between each adjacent containing line segment is 2π
3 . The last point of the final k

factor is the first point of the first i factor.

Step 6. Through each point in each factor, construct all lines parallel to the containing lines of each factor.

Step 7. Count, including factor points, the intersections of all such lines that lie on the boundary and interior of

the hexagon constructed in Step 5. This number is the ternary product of i, j, and k.

We will denote the ternary multiplication operation described above as ⟨i, j, k⟩, wherein the positions

correspond respectively to the left, middle, and right factors along the bottom half of this standard visual repre-

sentation of our operation. We are guaranteed that the hexagon is well constructed by the fact that the second

set of factors constructed in Step 5 are of equal length and in opposite direction to their corresponding factors

constructed prior.

We have now summarized an interest in diversifying the cannon of arithmetical operations, and we have

specified an approach to creating higher arity generalizations of binary multiplication via geometric construction.

Over the course of the next chapters we will discuss properties of the particular construction at hand that advance

its case as a natural extension. However, it is worth restating that this is but one possibility, and there are myriad

others that may lend other insights into traditional number theory.
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The investigation of the symmetries of a given

mathematical structure has always yielded the most

powerful results.

Emil Artin

2
Symmetry

We begin with a discussion of a few of the basic properties of this ternary multiplication operation, which

may also denoted as a function⊛3 : N× N× N 7→ N. These properties will be used to construct the higher arity

generalizations, though we will return to a more thorough investigation of (N,⊛3) in Chapter 3. First observe

that ⟨1, 1, n⟩ = ⟨1, n, 1⟩ = ⟨n, 1, 1⟩ = n. In each case, the hexagon degenerates into a single factor that absorbs the

1 factors, and the second n factor from Step 5 overlays onto the points already constructed. The only line defined

is that which contains this n factor so no new points of intersection are created, though the orientation of this line

changes in each corresponding standard representation.
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Furthermore, we have that

⟨1,m, n⟩ = ⟨1, n,m⟩ = ⟨m, 1, n⟩ = ⟨n, 1,m⟩ = ⟨m, n, 1⟩ = ⟨n,m, 1⟩ = mn = nm.

This fact follows from that, in each construction, the 1 factors degenerate into vertices of the acute angles of a

parallelogram with sides that come from them and n factors. Then, the rest of the process is identical to that of

binary multiplication which required only that the factor lines be at non-zero angles to one another. Hence,⊛3

contains binary multiplication of natural numbers as a subset in which one of the operands is 1. We have then

preserved 1 as an identity element.

A more efficient way to characterize the operation⊛3 is to say that it enumerates the hexagonal lattice

points contained by a convex lattice hexagon of side lengths (in cyclic order) i, j, k, i, j, k.* This phrasing, suggests

a more combinatorial and discrete geometry approach, subverting the arithmetical focus of this investigation. But

one of the tools of such an approach, Erhart polynomials, does suggest that we should be able to find a polyno-

mial representation of our operation,⊛3. We turn now to the discovery of that polynomial that will capture all

possible hexagonal figurate numbers.

If we dilate our hexagon by adding one to one of the factors pairs, our construction grows by the sum of

the other two sides, minus the point they have in common, i.e.

⟨i+ 1, j, k⟩ = ⟨i, j, k⟩+ j+ k− 1. (2.1)

Then, since ⟨1, j, k⟩ = jk, we can develop the sequence,

⟨1, j, k⟩ = jk

⟨2, j, k⟩ = jk+ j+ k− 1

⟨3, j, k⟩ = (jk+ j+ k− 1) + j+ k− 1 = jk+ 2(j+ k− 1)

⟨4, j, k⟩ = jk+ 3(j+ k− 1)
...

⟨i, j, k⟩ = jk+ (i− 1)(j+ k− 1), (2.2)
*Binary multiplication again has an analogous characterization as the enumeration of lattice points within an appropri-

ate lattice quadrilateral.
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where this final equation can be rewritten as,

⟨i, j, k⟩ = ij+ jk+ ki− i− j− k+ 1, (2.3)

or,

⟨i, j, k⟩ = i(j− 1) + j(k− 1) + k(i− 1) + 1 (2.4)

or perhaps less obviously,

⟨i, j, k⟩ = ijk− (i− 1)(j− 1)(k− 1). (2.5)

We see immediately that⊛3 is commutative from its expression in terms of the commutative operations

of addition and binary multiplication. This was perhaps already clear from the geometric intuition, since permut-

ing factors just reorients the standard representation of our hexagon. This also follows from the 3-fold symmetry

properties of the hexagonal lattice.

Before proceeding with a thorough investigation of the arithmetic and algebraic properties of our ternary

operation, it is worth describing a means of generalizing⊛3 to operations of higher arity. We have already com-

pressed our simple construction of intersections of parallel lines through factor points by restricting to a sym-

metric convex hull whose sides are determined by the operands. The shape of this hull and resulting number of

interior intersections has depended on the underlying lattice. We have patterned a commutative n-ary operation

to rely upon a lattice that shares symmetry properties with the regular 2n-gon, since otherwise the sides of the

polytope might not lie along the lattice vectors. However, a consequence of crystallographic restriction is that

a lattice of 8-fold rotational and reflective symmetry (like the regular octagon, and that might correspond to a

quaternary operation) must embed in at least 4-dimensional Euclidean space. 3 The embedding dimension con-

tinues to increase with the number of symmetries. While it is surely possible to enumerate the points of a higher

dimensional lattice contained within a given lattice polytope through geometric reasoning, we will generalize our

operation algebraically.

The form of⊛3 given by equation 2.3 suggests one way to do this. We see that this is an alternating sum

of the first three elementary symmetric polynomials over three arguments. For a quaternary operation, we wish

to maintain commutativity and preserve the identity by reducing to⊛3 in the case where any one of the operands

is 1. To achieve this, we should first define a modified sequence of symmetric polynomials using our ternary oper-
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ation.

Given a set of three elements, i, j, k, fromN, we assign as usual, the elementary symmetric polynomials,

σ0(i, j, k) = 1

σ1(i, j, k) = i+ j+ k

σ2(i, j, k) = ij+ jk+ ki

so that each σn is the sum of all nth degree homogeneous terms composed of distinct elements. Then our defini-

tion of ⟨i, j, k⟩ fits description as an alternating sum as given above, i.e.

⟨i, j, k⟩ = σ2(i, j, k)− σ1(i, j, k) + σ0(i, j, k). (2.6)

Now, we will deviate from the standard elementary symmetric polynomials by further assigning

σ3(i, j, k) = ⟨i, j, k⟩

and in general for a set of n natural numbers, {m1,m2, . . . ,mn},

σ3(m1,m2, . . . ,mn) =
∑

1≤i<j<k≤n
⟨mi,mj,mk⟩. (2.7)

In particular, we have for n = 4,

σ3(h, i, j, k) = ⟨h, i, j⟩+ ⟨h, i, k⟩+ ⟨h, j, k⟩+ ⟨i, j, k⟩. (2.8)

Now we may define a quaternary operation⊛4 : N4 7→ N, also denoted ⟨h, i, j, k⟩† as

⟨h, i, j, k⟩ =
3∑

l=0
(−1)3−lσl(h, i, j, k). (2.9)

†For brevity, as with the ternary operation, we should like like to refer to the symbol⊛4 when referring to general prop-
erties of the operation, and the bracketed notation when describing properties specific to the arguments. In cases where the
bracketed notation is possibly ambiguous, we may use the functional notation⊛n(m1,m2, . . . ,mn).
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The operation⊛4 is guaranteed to be a commutative as well since it is also a sum of symmetric polyno-

mials. If it generalizes the ternary operation in the sense that ⟨1, i, j, k⟩ = ⟨i, j, k⟩, then we can be sure that it

also preserves binary multiplication and the identity as special cases where the other operands are also 1, since the

ternary operation does this already. To verify this condition, we expand⊛4 out as a polynomial.

⟨h, i, j, k⟩ = ⟨h, i, j⟩+ ⟨h, i, k⟩+ ⟨h, j, k⟩+ ⟨i, j, k⟩ − hi− hj− hk− ij− ik− jk+ h+ i+ j+ k− 1

= hi+ ij+ jh− h− i− j+ 1 + hi+ ik+ kh− h− i− k+ 1 + hj+ jk+ kh− h− j− k

+ 1 + ij+ jk+ ki− i− j− k+ 1 − hi− hj− hk− ij− ik− jk+ h+ i+ j+ k− 1

= hi+ ij+ hj+ ik+ hk+ jk− 2h− 2i− 2j− 2k+ 3 (2.10)

= σ2(h, i, j, k)− 2σ1(h, i, j, k) + 3σ0 (2.11)

We can see from (2.10) that if we let any of the operands equal to 1, for instance h, then we get,

⟨1, i, j, k⟩ = i+ ij+ j+ ik+ k+ jk− 2 − 2i− 2j− 2k+ 3

= ij+ jk+ ki− i− j− k+ 1

= ⟨i, j, k⟩

as desired. Let us proceed to define the sequence of all n-ary operations that generalize binary multiplication in

this way.

Definition of n-ary Multiplication. Let {m1,m2, . . . ,mn} be a set of n natural numbers. Then their n-

ary product under the operation ⊛n is defined to be ⟨m⟩ = m for n = 1, ⟨m1,m2⟩ = m1m2 for n = 2, and for

n ≥ 3

⟨m1,m2, . . . ,mn⟩ =
n−1∑
k=0

(−1)n−1−kσk(m1,m2, . . . ,mn) (2.12)

where σk is defined by the recursive sequence,

σ0(m1,m2, . . . ,mn) = 1
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and for 1 ≤ k ≤ n,

σk(m1,m2, . . . ,mn) =
∑

1≤i1<i2<...<ik≤n
⟨mi1 ,mi2 , . . . ,mik⟩ (2.13)

There is a close relationship between⊛k and σn in that they both rely on each other recursively for def-

inition. But they are distinguished by the fact that σk can take n ≥ k arguments while⊛n must take exactly

n operands. In words, σk(m1,m2, . . . ,mn) is the sum of the set of all distinct k-ary products from n numbers.

Hence, in each of these sums there are
(n
k
)
= n!

k!(n−k)! summands. We are again guaranteed that the operations

⊛n are commutative by the fact that they are all sums of symmetric polynomials. It is less obvious, however, that

each operation extends the operations of lower arity by preserving the identity element, which merits the follow-

ing proposition.

Proposition 1. All n-ary operations ⊛n as defined above satisfy ⊛n+1(1,m1,m2, . . . ,mn) = ⊛n(m1,m2, . . . ,mn).

Proof. We proceed by strong induction. In the base case, n = 1, we know that

⟨1,m⟩ = 1m = m = ⟨m⟩

Then, we assume that

⊛k+1(1,m1,m2, . . . ,mk) = ⊛k(m1,m2, . . . ,mk)

for all k ≤ n− 1. We will demonstrate that this implies

⊛n+1(1,m1,m2, . . . ,mn) = ⊛n(m1,m2, . . . ,mn)

by showing that all of the terms in the sum,

⟨1,m1,m2, . . . ,mn⟩ =
n∑

k=0
(−1)n−kσk(1,m1,m2, . . . ,mn)

cancel out except for the contribution from σn of ⟨m1,m2, . . . ,mn⟩. This can be done, in combinatorial fash-

ion, by establishing a correspondence between the terms of σk(1,m1,m2, . . . ,mn) that take 1 as an operand and

those from σk−1(1,m1,m2, . . . ,mn) that don’t. The terms of σk are all of the possible k-products chosen from

{1,m1,m2, . . . ,mn}, hence there are
(n+1

k
)
of them,

(n
k
)
of which don’t take 1 as an operand. Hence,

(n+1
k
)
−

(n
k
)

11



of them do take 1 as an operand. Fixing 1 as an operand, this quantity is equally expressed as the number of ways

to choose the (k− 1) other operands from among the n other possibilities, {m1,m2, . . . ,mn}, i.e.
( n
k−1

)
.

By our induction hypothesis, these
( n
k−1

)
k-ary products that have 1 as an operand reduce to⊛k−1 prod-

ucts that omit the 1 for all k ≤ n. In the expansion of⊛n+1(1,m1,m2, . . . ,mn), σk−1(1,m1,m2, . . . ,mn) con-

tributes exactly
( n
k−1

)
terms which are (k − 1)-ary products that don’t include 1. These must be identical to the

degenerate cases from σk since both sets comprise all possible combinations of (k − 1) distinct elements from

the set {m1,m2, . . . ,mn}. But since the sign of σk alternates in the summation these identical sets of terms have

opposite sign and so cancel out. Then the remaining terms of σk−1 that do take 1 as an operand will cancel with

those from σk−2 that do not etc. We have a descending chain of cancellation valid for all k ≤ n, where in the final

step, k = 1, σ1 contains a single term that takes 1 as an argument, i.e. ⟨1⟩ (all of the other terms have cancelled with

degenerate terms from σ2). This 1 cancels with the 1 of opposite sign coming from σ0. Hence the only term which

we haven’t cancelled from

⟨1,m1,m2, . . . ,mn⟩ =
n∑

k=0
(−1)n−kσk(1,m1,m2, . . . ,mn)

is the n-ary product from σn that doesn’t include one. But there can only be
(n
n
)
= 1 of these, hence it is the

product ⟨m1,m2, . . . ,mn⟩ as desired.

A natural corollary from this proposition is as follows.

Corollary 1. An n-ary product ⊛n in which j of the operands are equal to one is equivalent to the ⊛n−j product

of the other n− j operands.

Proof. This follows from repeated application of Proposition 1. By the commutativity of⊛n, we can write our

product as

⟨
j︷ ︸︸ ︷1, . . . , 1,m1, . . . ,mn−j⟩.

Then, applying the Proposition j times to the above expression yields the desired result.

The case of this corollary in which j = n − 1 establishes that 1 is the n-ary identity of our operation,

⊛n, as per Dudek 5. Several interesting questions arise out of this fact, including whether or not it makes sense

to construct an operation of infinite arity along these lines; it does not. This would be an alternating series of
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polynomials where each σn would be taking the sums of all possible finite n-products from an infinite set of nat-

ural numbers of each of which is clearly divergent. The overall product is ill-defined unless only finitely many of

the operands are non-unit, so it suffices to consider finitary operations. More explicitly, we can consider the se-

quence of n-products in which every operand is 2,⊛n(2). As one may verify, this satisfies a neat progression in

that⊛n(2) = ⊛n−1(2) + n. As the minimal n-ary product that does not degenerate into a product of lower arity,

we can see that its value is unbounded as n grows.

Other interesting questions arise from comparison of our n-ary operations to the existing theories of

n-ary algebraic structures. Most of the relevant literature has been devoted to the study of n-ary (or polyadic)

groups. The axioms that define an n-ary group are associativity and inverse conditions that generalize those prop-

erties as they apply to ordinary groups, and imply the existence of an identity element in the case of an ordinary

binary group. We will see in the next chapter exactly how the ternary operation fails to be associative. This im-

plies that none of its higher arity generalization are associative either, since they contain the ternary operation as a

special case.

The question of inverses could be resolved, as is typical, by completing to a larger set. For instance, zero

and the negative integers are constructed in order to complete the natural numbers and form a group under the

operation of addition. The fractions 1
n are the completion of naturals with respect to group formation under the

multiplication operation. It is possible that we could construct a number system that leads to invertibility under

our n-ary operation, but we are mainly concerned with factorization and primality among the naturals, so we will

ignore here these more algebraic concerns.

However, we can at this point prove the non-associativity of⊛n without specific calculation by referring

to the theory of polyadic groups. Here, a set with an n-ary operation is referred to as an n-ary groupoid. The most

obvious way of constructing an n-ary operation is to simply take a binary operation and glue it to itself repeatedly

in an n-fold product; such an n-ary operation is said to be derived from the binary operation. Then, the n-ary

operation clearly inherits the associativity and identity properties of the binary operation. In our case, this would

mean considering the repeated binary multiplication of three natural numbers, a·b·c, as a trivial ternary operation

f(a, b, c), and so on. It turns out that this construction is the only associative ternary operation on the natural

numbers that takes f(1, a, b) = a · b, so we should not be too chagrinned by the failure of associativity in our

generalizations of binary multiplication.

We will not give here the exact definitions of n-ary associativity and invertibility, as they don’t apply to
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our operation. It should be noted that an n-ary group, (G, f), that satisfies such properties may have multiple

identity elements, or none at all. An n-ary identity element, or neutral element, e, is understood to be one that

fixes an arbitrary element x ∈ G under the operation where x appears as any single operand, and every other

operand is e. An n-ary group (G, f) is said to be reducible whenever f(x1, x2, . . . , xn) = x1 ◦ x2 ◦ . . . ◦ xn where

(G, ◦) is an ordinary group. We now state a theorem originally due to Dorntë4 and later generalized by Post9,

which gives necessary and sufficient conditions for when an n-ary group is reducible into a binary group opera-

tion.

Theorem. An n-ary group (G, f) is reducible if and only if it contains a neutral element. In particular, it is re-

ducible to the group (G, ◦) where ◦ is given by the evaluation of f in which all but two of the operands is the neu-

tral element.

The proof of the above theorem relies only upon the n-ary associativity of f. Hence, it applies equally

well to n-ary semigroups which are associative but need not exhibit invertibility. Then, the n-ary semigroup oper-

ation reduces into repeated application of an ordinary semigroup operation in exactly the same way, as has been

stated by Dudek and Mukhin6. Since the binary semigroup operation is given by the n-ary semigroup opera-

tion in which all but two of operands are this neutral element, this binary semigroup then inherits the identity

element and is in fact a monoid. It is then clear that if⊛n was an n-ary semigroup derived from any associative

binary operation, it would have to be from ordinary multiplication. Since it does not reduce into a simple string

of repeated multiplications, it must fail one of the hypotheses, namely that it was associative. Thus the only asso-

ciative n-ary operation on the natural numbers which has 1 as an identity element, and contains binary multiplica-

tion is the one whose operation is repeated binary multiplication.

We should also remind ourselves that associativity appears as a more basic property than commutativ-

ity only in order to generalize the definition of group. Any perceived hierarchy of algebraic properties is more a

matter of historical tradition than mathematical significance. Even without associativity, we will discover a form

of “reducibility” into more tractable polynomials, which is to say that our operation can be collapsed into a se-

quence of additions, just like binary multiplication and any other fully specified map that takesNn 7→ N.

Recall from before that in (2.10), upon reducing⊛4 into binary multiplication and addition, the con-

stant coefficients of the σ1 and σ0 terms changed. All n-ary products are given in terms of sums of lower order

products that are ultimately recursively decomposed into sums of the first three elementary symmetric polyno-

mials. Hence we will always be able to reduce⊛n into such an expression which we call the quadratic form of⊛n
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(precisely it is an n-ary inhomogeneous quadratic form). That is, it can be expressed as a linear combination of the

elementary symmetric polynomials σ2, σ1, and σ0[= 1] over n arguments:

⊛n(m1,m2, . . . ,mn) = anσ2(m1,m2, . . . ,mn) + bnσ1(m1,m2, . . . ,mn) + cn (2.14)

This form is considerably kinder for the purposes of evaluating n-products, and all that is left is a deter-

mination of the constants an, bn, cn. It turns out that an = 1, bn = 2 − n, and cn = (n−1)(n−2)
2 (that is, cn = Tn−2

where Tn is the n-th triangular numbers) for all n, but the details are messy and will be left for the appendix.
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The Way gave birth to unity; unity gave birth to duality;

duality gave birth to trinity; trinity gave birth to the

myriad creatures.

Dao De Jing

3
Arithmetic

We now retreat back to the ternary operation that began this pursuit in order to investigate the derangements

of arithmetic that it may yield. It bears repeating that this will entail a study of the class of hexagonal figurate

numbers, in the same way that that ordinary multiplicative number theory is a study of quadrilateral figurate

numbers. Primes are then those numbers which only have representation as degenerate quadrilateral crystals.

There is also a sense in which all quadrilateral crystals are degenerate hexagonal crystals, corresponding to the fact

that ⟨1, j, k⟩ = jk.

Essentially, by including binary multiplication as a special case of our ternary operation, we expect to

allow a more diverse range of factorization possibilities that will lead to a more subtle classification of numbers.

To clarify this discussion let us introduce some terminology and notation. We will refer to the set of ordinary
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primes from binary arithmetic as 2-primes, P2 = {2, 3, 5, 7, 11, 13, . . .}. The 3-primes are the numbers that can only

be represented in ternary multiplication as ⟨1, 1, p⟩. Alternatively, we can also define this set as numbers that are

not 3-factorable.

Definition 1. A number n ∈ N is said to be 3-factorable if and only if it is the ternary product of natural num-

bers i,j,k no more than one of which is equal to 1.

The 3-prime numbers which are not 3-factorable constitute the set P3 = {2, 3, 5, 11, 17, . . .}. This set is

a strict subset of P2, since many 2-primes have hexagonal representations. These include the “perfect hexagons”

7 = ⟨2, 2, 2⟩ and 19 = ⟨3, 3, 3⟩. In fact, all 2-primes congruent to 1 mod 3 have nondegenerate hexagonal represen-

tations (and are thus 3-factorable), as the following proposition shows.

Proposition 2. Every natural number congruent to 1 modulo 3 is 3-factorable.

Proof. Since n ≡ 1 mod 3 we can write n = 3j+ 1, where j ≥ 2. Then,

n = 3j+ 1

= 4j− (j− 1)

= (2)(j)(2)− (2 − 1)(j− 1)(2 − 1)

= ⟨2, j, 2⟩

where the last equality comes from (2.5).

The 3-factorability of 2-primes congruent to 1 mod 3 follows as a subset. This is perhaps unsurprising,

since the underlying lattice of our hexagonal representations is exactly the lattice of Eisenstein integers. Recall

that these are the complex numbers of the form z = a + bω, where ω = 1
2(−1 + i√3) = e

2πi
3 , one of the

cube roots of unity. It can be shown that integers congruent to 1 mod 3 are factorable into Eisenstein integers,

while primes congruent to 2 mod 3 are not. Here instead we find that some 2-primes congruent to 2 mod 3 are

3-factorable, such as 29 = ⟨3, 3, 5⟩.

Also recall that hexagonal representations of integers are certainly not unique, since, for instance 19 =

⟨2, 6, 2⟩ = ⟨3, 3, 3⟩. We may be tempted to claim that factorization into ternary products of 3-primes is unique,

but there we find the early counterexample 34 = ⟨2, 2, 11⟩ = ⟨2, 5, 5⟩.
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Given the failure of a number of desirable algebraic properties here, it may be interesting to determine

exactly how and by how much they fail. Here, we refer, for comparison, to the theory of ternary semigroups as

described in Duplij et. al.2 A nonempty setGwith one ternary operation [ ] is said to be a ternary groupoid. If

this ternary operation satisfies the associativity relationship

[[ghi]jk] = [g[hij]k] = [gh[ijk]] (3.1)

then the pair (G, [ ]) is a ternary semigroup. It is interesting to note that we might have instead constructed a fam-

ily of associative n-ary operations overN that did not treat 1 as an identity element, but it is unclear what relation-

ships with binary multiplication could have been salvaged in that case. Furthermore, it is possible to construct

any number of commutative n-ary operations by taking sums of multiples of symmetric polynomials. In this re-

spect, the nice properties and geometric foundations of our operation makes it a good starting point for further

investigation.

As we have mentioned, associativity must fail in our ternary operation since otherwise we would have

the ternary semigroup derived from binary multiplication given by [ijk] = i · j ·k, or we might otherwise sacrifice 1

as an identity element. Equivalently, we can say that (N, ·) is the retract of (N, []). How exactly does associativity

fail under⊛3? We may directly calculate, using (2.5)

⟨⟨g, h, i⟩, j, k⟩ = ⟨gh+ hi+ ig− g− h− i+ 1, j, k⟩

= (gh+ hi+ ig− g− h− i)(j+ k− 1) + jk, (3.2)

where the second equality comes from equation (2.2). By symmetry, we can then get that

⟨g, ⟨h, i, j⟩, k⟩ = (hi+ ij+ jh− h− i− j)(g+ k− 1) + gk (3.3)

⟨g, h, ⟨i, j, k⟩⟩ = (ij+ jk+ ki− i− j− k)(g+ h− 1) + gh (3.4)

and subtracting (3.2) from (3.3) and simplifying gives

⟨⟨g, h, i⟩, j, k⟩ = ⟨g, ⟨h, i, j⟩, k⟩+ (j− g)(hi− hk− ik+ 2k− 1) (3.5)

18



This equation captures the basic “associativity” relationship. Notice that this single-shift associativity

obviously holds in case j = g, since both nested and outer products are identical. Alternatively we can have

hi− 1 = k(h+ i− 2) (3.6)

hi ≡ 1 mod h+ i− 2 (3.7)

There is a class of solutions to these equations where h = i =: n is an odd integer, since then we can take

n2 − 1 = k(2n− 2)

(n+ 1)(n− 1) = 2k(n− 1)

k = n+ 1
2 .

Furthermore, if we let k = 1, then we can write (3.6) as

hi− i− j+ 1 = 0

(h− 1)(i− 1) = 0

so either of h or imust be 1. This case corresponds to our nested ternary products degenerating into a sequence of

binary multiplications, whence the associativity. Explicitly, and without loss of generality, we may let h = 1 and

observe

⟨⟨g, 1, i⟩, j, 1⟩ = ⟨gi, j, 1⟩ = (gi)j = g(ij) = ⟨g, ij, 1⟩ = ⟨g, ⟨1, i, j⟩, 1⟩. (3.8)

Whether or not there are other solutions from the naturals to (3.6) seems like a potentially difficult problem.* We

will limit ourselves to the suggestive remark that it bears some resemblance to the problem from RSA cryptogra-

phy of solving

ed− 1 = k(N− (p+ q− 1)) (3.9)

where (N, e) is a public key pair, d, p and q are secret and k is unknown.8

Let us check the failure of associativity when two arguments are shifted. We can apply (3.5) and commu-
*Recall Hilbert’s 10th problem on the decidability of Diophantine equations.
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tativity to get

⟨g, ⟨h, i, j⟩, k⟩ = ⟨g, h, ⟨i, j, k⟩⟩+ (k− h)(ij− gi− gj+ 2g− 1), (3.10)

and substituting this back into (3.5) we get

⟨⟨g, h, i⟩, j, k⟩ = ⟨g, h, ⟨i, j, k⟩⟩+ (k− h)(ij− gi− gj+ 2g− 1) + (j− g)(hi− hk− ik+ 2k− 1), (3.11)

which simplifies to

⟨⟨g, h, i⟩, j, k⟩ = ⟨g, h, ⟨i, j, k⟩⟩+ ghk+ ghj− gjk− hjk+ 2jk− 2gh+ g+ h− j− k. (3.12)

Again we find an easy set of solutions that reduces the non-associative part to zero when g = j and h = k

(or equivalently g = k, h = j). Non-trivial solutions (or proving their non-existence) is probably an even greater

challenge here though, since the non-associative part does not factor quite as nicely.

Studying the failure of associativity leads to the question of how much a ternary product can change

when one or two of the operands are held fixed. Referring back to (2.2) we have the identity

⟨i, j, k⟩ ≡ ikmod i+ k− 1 (3.13)

and we can capture all numbers that satisfy this congruence and are greater than ik just by incrementing j. Should

we wish to keep one argument fixed, i for instance, and examine which numbers are expressible as “3-multiples”

of i, it is useful to note

ik+ i2 − i = i(i+ k− 1)

ik = i− i2 + i(i+ k− 1) (3.14)

so that

⟨i, j, k⟩ ≡ ik ≡ i− i2 mod i+ k− 1. (3.15)

This form allows us to increment our modulus ranging over kwhile keeping i and hence i − i2 fixed. In

order to make this explicitly independent of the other arguments we might note that, since we can choose k to

20



make our modulus anything we want greater than or equal to i, we can express this congruence as

⟨i, j, k⟩ ≡ i− i2 ≡ nmod i2 − i+ n (3.16)

where

i2 − i+ n ≥ i

n ≥ 2i− i2

since,

i− i2 − n = −(i2 − i+ n) ≡ 0 mod i2 − i+ n.

Given the spectacular failure of unique factorization under this operation, integer factorization be-

comes a more delicate and disparate problem; we might be interested in finding a particular factorization of a

given number or all of the factorizations of that number. However, it appears slightly more straightforward to

ask whether or not an arbitrary number is a 3-prime. This will come down to determining whether it satisfies any

of the congruence relations above. We now describe a naive sieving method for determining 3-primality. This will

consist of fixing a modulusm = i + k − 1 and checking whether the numberNwe are testing satisfies any of

the possible congruences achievable by ikmod i + k − 1, i. e. we will run through the list of partitions ofm into

two smaller numbers and check whether those any of those products give the same residue mod i + k − 1. When

this condition is satisfied, we may recover a 3-factorization ofN, but this is not necessarily the only factorization

ofN. If in no caseN satisfies one of these congruences up to a bound onm, then we can be sure that it is not a

“multiple” of any pair of i and k, and henceN is not 3-factorable.

We will assumeN is odd, otherwise it is trivially not 3-prime. This will also allow us to eliminate the need

to test any of the congruences for evenm, as the following proposition shows.

Proposition 3. Let N ∈ N. Then N is odd if and only if all of its 3-factors have the same parity.
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Proof. LetN = ⟨i, j, k⟩. Then

N ≡ ikmod i+ k− 1

≡ jkmod j+ k− 1

≡ ijmod i+ j− 1.

Assume some pair of the factors have different parity so that one of the above moduli will be even. Suppose,

without loss of generality, that this is true of i and k. ThenN ≡ i − i2 mod i + k − 1. We know that i and

i2 must have the same parity, so their difference must be even. ThenN is congruent to an even number with an

even modulus, soN is even.

Suppose all three factors have the same parity. Then we may recall (2.5) and observe thatN = ijk− (i−

1)(j − 1)(k − 1), and since ijk and (i − 1)(j − 1)(k − 1) clearly have opposite parity, their difference,N, must be

odd.

Hence, we have eliminated a need to check even modulim, once we have determined thatN is not even.

Given a natural numberN, the following algorithm determines whether or notN is 3-prime.

3-Primality Test.

For odd m where 3 ≤ m ≤ ⌊
√
N⌋ :

Calculate N mod m. Let im = m, km = 1. While im ≥ m+1
2 , calculate imkm mod m. If N ≡ imkm

(mod m), then N is not 3-prime and we are done. Otherwise, set im := im − 1, km := km + 1 and continue the

while loop.

If in no case for any such m we find a congruence N ≡ ikmk mod m, then conclude N is 3-prime.

This test is certainly not optimal, but will effectively give us a 3-factorization ofN in caseN is not 3-

prime, much like trial division in 2-primality testing. In this case, when we find thatN ≡ imkm (mod m), we

have found thatN = ⟨im, jm, km⟩where

jm =
N− imkm
im + km − 1 + 1 (3.17)

by solving for jm in the decomposition of the ternary product formula (2.2).
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We should explain the upper bound form. This limit allows for the case thatN does not have a com-

pletely nondegenerate 3-factorization in which one of the operands is 1, but is not 2-prime either, as occurs for

the perfect square 9. There are clearly redundancies in this algorithm however. Whenm is not a 2-prime, there

may be cases where (imkm mod m) andm are not relatively prime. In these cases, the test of whetherN ≡

imkm mod mwill already have been performed by the divisibility check whenmwas equal to

g := gcd(imkm (mod m),m).

In fact, even if g = 1, we can entirely ignore the compositem, as a result of the following proposition.

Proposition 4. Let m = pq, where p and q are not necessarily distinct integers. Then every residue class imkm

(mod m) is congruent to some ipkp (mod p) and some iqkq (mod q) where ip + kp = p+ 1, and iq + kq = q+ 1.

Proof. We can write, using (3.14) and that pq = im + km − 1,

imkm = im(pq+ 1 − im)

= pqim + im − im2

≡ im − im2 mod p

≡ ip − ip2 mod p

where im ≡ ip mod p. Since ip may range from 1 to p, we know such an ip exists. Then by equation (3.15) we know

that ipkp with kp = p + 1 − ip satisfies the same congruence. We can proceed identically for q. Hence, all of the

products imkm for compositem satisfy a congruence modulo pwith ipkp for each divisor p ofm.

From this proposition follows the easy corollary that the residue classes of such ik for any composite

modulus are already contained by those of its prime factors. We may then revise our test to restrict only to where

m is an odd 2-prime. Enumerating the 2-primes less that
√
N can be computationally demanding in itself, though

the algorithm could be readily bootstrapped to include the sieve of Eratosthenes in order to do this. We may note

that allowing this algorithm to run completely will give us all of the 3-factorizations ofN, some of which may be

redundant, but where we can determine each factorization as in (3.17) upon collision.

In contrast with the demonstration of redundancy in the previous proposition, we have the following

for prime moduli.

23



Proposition 5. Let m be an odd 2-prime. Then the residue classes given by imkm mod m are distinct for each

pair of distinct im, km where im + km − 1 = m.

Proof. Assume iaka ≡ ibkb (mod m)where ia + ka = ib + kb = m+ 1. Then we can also write

ia − ia2 ≡ ib − ib2 (mod m)

ia2 − ib2 − ia + ib ≡ 0 (mod m)

(ia − ib)(ia + ib − 1) ≡ 0 (mod m)

so thatm divides the product on the left hand side of the last congruence. Sincem is a 2-prime, this means that

eitherm | ia − ib orm | ia + ib − 1. Since each of ia, ib are bounded between 1 andm, we can write the inequalities

1 −m ≤ ia − ib ≤ m− 1

1 ≤ ia + ib − 1 ≤ 2m− 1.

Then ifm|ia − ib we must have that ia = ib, since 0 is the only number within the bounds of the inequality that

divisible bym, and so also ka = kb. Ifm | ia + ib − 1, then ia + ib = m + 1 sincem is the only value within the

bounds of the inequality that is divisible bym. This implies that ka = ib and kb = ia. In either case, the {i, k}

pairs consist of the same values, so when two such products are in the same residue class, then the pairs that give

those products must be the same. The contrapositive of this statement is the statement of the proposition.

As a brief digression, this last proposition suggests a possible 2-primality test. For a givenN, we may

calculate the set of residues iNkN mod N. In case any of these are duplicated for distinct pairs of iN, kN, one can

conclude that N is not prime (so this is really a compositeness test). Limited evidence does seem to suggest that

for compositeN > 8, there will occur at least one pair of duplicate residues. But, there is also the possibility of

Carmichael-like composite numbers for which the set of all residues iNkN mod N is distinct; a proof or conclusive

computer search is in order to shed more light, as the parallels with the Fermat primality test are certainly worthy

of further investigation.

We observed at the beginning of the chapter that the 3-primes are a subset of the 2-primes. Just how

much smaller is this set? Recalling Dirichlet’s theorem on arithmetic progressions, we may note that each con-

gruence class imkm (mod m) for 2-primem comprises an infinite number of 2-primes. For eachm, there are m−1
2
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of these congruence classes corresponding to the distinct partitions ofm into two parts. Since the proportion of

2-primes in each residue class is 1
ϕ(m) , where ϕ is Euler’s totient function, and ϕ(m) = m − 1, each fixedm elim-

inates 1
2 of all of the 2-primes from our list of candidate 3-primes. If we repeat this process over any number of

m’s, taking account of the overlap between the congruence classes of distinctm’s, it is a natural question to ask

whether or not our list is still infinite. The next chapter investigates a number of possible approaches to this and

similar questions.
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Looks like it’s pretty hairy.

General Jack Ripper

4
Partitions and More

The divergence of ternary arithmetic from binary arithmetic can be nicely expressed in terms of partition

theory. Since we are mainly concerned with conditions for factorability in the more generalized context, we again

begin by describing these properties in binary multiplication.

Fact. A number n is composite if and only if there exists a partition of n where each part is equal and greater

that one.

This is an obvious consequence of the definition of multiplication as iterated addition. There is another

generalized description of the partitions of composite numbers based on their representation as rectangular crys-

tals. Counting groups of points along diagonals rather than in vertical or horizontal groups, we can see that every
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rectangular crystal can be enumerated by a sum of the form

1 + 2 + 3 + . . .+ (m− 1) +
k︷ ︸︸ ︷

m+m+ . . .+m+(m− 1) + (m− 2) + . . .+ 3 + 2 + 1. (4.1)

In particular, consider the rectangular crystal representation of the product of two natural numbers,m

and n. Then assume without loss of generality that n ≥ m. We claim thatmn is expressed exactly by (4.1) where

k = n−m+ 1. Notice that on either end of the summation we have the sum of the naturals from 1 tom− 1, i. e.

the (m− 1)-th triangular number Tm−1 =
(m−1)m

2 . Hence,

(m− 1)m
2 +m(n−m+ 1) + (m− 1)m

2 = m(m− 1 + n−m+ 1) = mn (4.2)

and the claim is true. Moreover, this partition is unique to the choice of factorsm and n. This will be a sticking

point in the distinction between binary and ternary multiplication. There are, of course, distinct partitions of a

given numberN of this form depending on which pair of factors we choose for it. For instance 12 has the two

partitions*

12 = 1 + 2 + 3 + 3 + 2 + 1

= 1 + 2 + 2 + 2 + 2 + 2 + 1

corresponding to factorizations as 4·3 and 6·2, respectively. And of course we can write any number as a partition

into as many ones, corresponding to the product n · 1. Any of these types of partitions will be referred to asmesa

partitions. Thus, the number of distinct mesa partitions of a given numberN is equal to half of the number of

distinct divisors ofN, d(N)
2 , unlessN is a square in which case we have d(N)+1

2 . 2-primes have only the trivial mesa

partition that is a sum of 1’s, semi-primes exhibit one other, and so on. Since all of these mesa partitions begin

at 1, we may wonder what happens if we relax this restriction, in the way that triangular numbers generalize to

polite numbers and trapezoidal numbers. This question corresponds exactly to the distinction between binary

and ternary multiplication, and the representations of numbers as rectangular and hexagonal crystals.

We may specify a mesa partition within this larger class by determining three parameters. The base of a
*We are abusing terminology slightly here. Partitions are order independent summations and generally written in de-

scending order, which we are not doing in order to make clearer the correspondence in the crystal representation.
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mesa partition is the smallest number appearing in the summation. For all of the partitions based on binary fac-

torizations above, the base was 1. But in the mesa partition of 29 as 3 + 4 + 5 + 5 + 5 + 4 + 3, the base is 3. The

range of a mesa partition is how many distinct consecutive numbers appear. In binary multiplication, this cor-

responded to the smaller factor,m, which happened to coincide with the largest number in the partition; which

we will occasionally refer to largest number in a mesa partition as the cap. Finally, there is the diameter of the

mesa partition, which is how many times the cap appears. The diameter for mesa partitions based on rectangular

crystals was n−m+ 1 above.

As might be expected, any given 3-factorization of a numberN does not uniquely determine a mesa

partition ofN. There are up to three possibly distinct mesa partitions for each 3-factorizationN = ⟨i, j, k⟩ cor-

responding to a choice of base of as i, j, or k. We will for the moment ignore degenerate 3-factorizations where

any of the arguments is equal to 1, recognizing that that will put us into the case of the binary multiplication mesa

partitions described above.

First, some notation. A mesa partition μ of a natural numberN is specified by its base b, range r, and

diameter d, and written μ(b, r, d) = N. Now suppose that i = j = k. Then we claim that

N = ⟨i, i, i⟩ = i+ (i+ 1) + . . .+ (2i− 2) + (2i− 1) + (2i− 2) + . . .+ (i+ 1) + i = μ(i, i, 1). (4.3)

First we note that the last equality follows from our definitions just given. The mesa partition begins at i, consists

of the i distinct numbers from i to 2i− 1, and 2i− 1 only appears once. The expanded sum can be written as

2i− 1 + 2
i−2∑
l=0

i+ l. (4.4)

The sum
∑i−2

l=0 is a trapezoidal number meaning it is equal to the difference of triangular numbers,

T2i−2 − Ti−1 =
(2i− 2)(2i− 1)

2 − (i− 1)i
2

so (4.4) becomes

2i− 1 + (2i− 2)(2i− 1)− (i− 1)i = 3i2 − 3i+ 1 = ⟨i, i, i⟩ (4.5)

as desired.
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These numbers given by ⟨i, i, i⟩ = μ(i, i, 1) are in fact the centered hexagonal numbers {1,7,19,37,61,91,…}

(sequence A003215 in OEIS). For comparison, the perfect squares might be described as generated by the mesa

partitions μ(1, i, 1) as one can verify visually.

Now we consider the case i = j ̸= k. We will treat this as two subcases. First, let i < k so that the

hexagonal crystal representation is like an augmented perfect hexagon. By permuting the arguments of (2.2) we

know we can write

⟨i, i, i⟩ = i2 + (i− 1)(2i− 1)

⟨i, i, k⟩ = i2 + (k− 1)(2i− 1)

and subtracting these two equations gives the identity

⟨i, i, k⟩ = ⟨i, i, i⟩+ (k− i)(2i− 1) (4.6)

so that we have enlarged the partition μ(i, i, 1) by adding k− i copies of the cap (2i− 1) giving a new diameter of

d = k− i+ 1. Hence ⟨i, i, k⟩, with i < k has a mesa partition of μ(i, i, k− i+ 1). There is another mesa partition

corresponding to treating k as the base. This is given by

μ(k, i, 1) = k+ (k+ 1) + . . .+ (k+ i− 2) + (k+ i− 1) + (k+ i− 2) + . . .+ (k+ 1) + k

= k+ i− 1 + 2
i−2∑
l=0

k+ l

= k+ i− 1 + 2(Tk+i−2 − Tk−1)

= k+ i− 1 + (k+ i− 2)(k+ i− 1)− (k− 1)k

= 2ik+ i2 − k− 2i+ 1

= ⟨i, i, k⟩

where the last two inequalities come from simplifying and applying (2.3), so the claim is proved.

Now we treat the subcase i = j > k. Using k as a base, the mesa partition μ(k, i, 1) still applies, however

μ(i, i, k − i + 1) is now invalid since this will give a negative diameter. Instead, we claim that the partition with
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base i becomes μ(i, k, i− k+ 1). By similar calculations, we can derive

μ(i, k, i+ k− 1) = i+ (i+ 1) + . . .+ (i+ k− 2) + (i+ k− 1)(i− k+ 1) + (i+ k− 2) . . .+ (i+ 1) + i

= (i+ k− 1)(i− k+ 1) + 2(Ti+k−2 − Ti−1)

= (i+ k− 1)(i− k+ 1) + (i+ k− 2)(i+ k− 1)− (i− 1)i

= i2 + 2ik− 2i− k+ 1

= ⟨i, i, k⟩

Finally, we may discuss the case where none of i, j, k are equal. Without loss of generality we may assume

i > j > k. By very similar calculation, one can find that the base i partition is μ(i, j, k− j+ 1), and the base j par-

tition is μ(j, i, k− i+ 1), and the base k partition is μ(k, i, j− i+ 1). This last set of equations makes it clear that

there is a correspondence between the set of mesa partitions of a numberN and its 3-factorizations. For any natu-

ral numbers b, r, or d, we can find an i, j, and k such that μ(b, r, d) = ⟨i, j, k⟩. Furthermore, we may enumerate

the number of mesa partitions of a given numberN by applying the algorithm from the previous chapter to find

all of the 3-factorizations ofN, and for each type of factorization we may have up to 3 mesa partitions depending

on the case.

The mesa partition counting function, Μ(N)may then be defined. This may also be an approach to

determining the cardinality of the set of 3-primes. In case this function can be eventually bounded away from 1,

then there are finitely many 3-primes. This thesis has drawn the connections between mesa partitions and factor-

izations, analogous to how the politeness of a number is determined by the number of its odd divisors. However,

a more rigorous treatment of this topic in terms of classical partition theory and q-series is in order.

Instead, we will mention another possible approach to resolving the cardinality of the 3-primes. Recall-

ing (2.3), and substituting notation to get

⟨x, y, z⟩ = xy+ yz+ xz− x− y− z+ 1,

we may recognize this more familiarly as a inhomogeneous ternary quadratic form, when considered as a poly-

nomial overZ3. These polynomials are said to be almost universal when they are capable of representing all but

finitely many natural numbers. The classification of almost universal inhomogeneous ternary quadratic forms has
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been performed by Haensch.7 In our case, we have an indefinite quadratic form since the quadratic part can be

represented as

xTQx

where

Q =


0 1 0

0 0 1

1 0 0


which has eigenvalues λ = −1, −1±i√3

2 , again revealing our connection with the Eisenstein integers. There do

certainly exist almost universal inhomogeneous indefinite ternary quadratic forms, but in order to conclude the

cardinality of the 3-primes we would be adding the additional restriction of requiring all of x, y and z to be posi-

tive, not more than one of which can be equal to one. There doesn’t seem to be a tidy theorem in extant literature

that resolves such cases, so any conclusions from this line of attack would require a more specific treatment of

such quadratic forms.

As a final note, we mention that as the arity of our operation⊛n increases, the list of n primes is reduced

further and further. For instance, ⟨2, 2, 2, 2⟩ = 11. Hence, if there are infinitely many 3-primes, we may ask the

question of whether there exists an n ∈ N such that there are only finitely many n-primes.
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A
The Quadratic Form

This section is dedicated to the proof of the formula for⊛n as an inhomogeneous n-ary quadratic form given

below, where n ≥ 2.

⟨m1,m2, . . . ,mn⟩ = σ2(m1,m2, . . . ,mn)− (n− 2)σ1(m1,m2, . . . ,mn) +
(n− 1)(n− 2)

2 (A.1)

It was described at the end of Chapter 2 why such a symmetric quadratic representation should be possible. It

remains to prove the value of the coefficients of each symmetric polynomial, including the constant term which

goes with σ0.

First we prove that the coefficient of σ2 is 1, i.e. that each pair of productsmimj appears exactly once
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after cancellations in the expansion of⊛n, where n is at least two (otherwise the product is undefined). We pro-

ceed here by induction. In the base case, we have trivially that ⟨m1m2⟩ = m1m2 and the formula is valid. Now

assume that the formula is valid for all⊛k where k ≤ n. We will prove that this implies that the coefficient of

σ2 in the quadratic form of⊛n+1 is 1. Recall from the definition of n-ary multiplication and equation (2.13) that

⊛n+1 is an alternating sum of symmetric polynomials of k-products⊛k where k ≤ n. We can then fix an arbi-

trary product pairmimj and determine its coefficient in the quadratic form of⊛n+1 by calculating the sum of its

coefficients over all of the⊛k products in which it appears. By our induction hypothesis, the pair has coefficient 1

in the quadratic form of every k-product, where k ranges from 2 to n. The sign of the symmetric polynomial of k-

products alternates and is positive when k = n. Furthermore, for each symmetric polynomial of⊛k products, the

pair will appear in
(n−1
k−2

)
of the terms of the sum in (2.13) corresponding to choosing the other (k − 2) elements

for a k-product from out of the (n − 1) other distinctmi. . Hence, the coefficient of that pair in the quadratic

form can be expressed as the sum,
n∑

k=2
(−1)n−k

(
n− 1
k− 2

)
(A.2)

which can be re-indexed as
n−2∑
j=0

(−1)n−j
(
n− 1
j

)
. (A.3)

Since (−1)n−j(n−1
j
)
evaluates to−1 when j = n− 1, we can write (A.3) as

1 +
n−1∑
j=0

(−1)n−j
(
n− 1
j

)
. (A.4)

The we may recall the well-known identity,

n∑
j=0

(−1)jj
(
n
j

)
= 0. (A.5)

Since the positive terms and the negative terms balance each other exactly, it doesn’t matter where the alternation

begins. Then, we can see that the summation on the right of (A.4) is equal to 0, and hence the coefficient of our

arbitrary pair is the remaining 1. Since, the choice ofmimj is arbitrary, every possible pair has the same coefficient

(the quadratic form is still a symmetric polynomial), and hence σ2 has a coefficient of 1 in the quadratic from of

⊛n+1.
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We may prove that σ1 has a coefficient of−(n − 2) in the quadratic form of⊛n along very similar lines.

Here, we can even say that this fact extends to the base case n = 1, where ⟨m⟩ = m = σ1(m). Again, proceeding

by strong induction, assume that⊛k obeys (A.1) so that the coefficient of σk is−(k − 2) for all k ≤ n. We will

prove that an arbitrary operandm appears with coefficient−(n − 1) in the quadratic form of⊛n+1. Such an

element will appear in
( n
k−1

)
distinct k-products corresponding to the choices of (k − 1) other elements from the

set of n other operands. Each in each one of these it will have coefficient−(k− 2), which alternates down from n.

Hence the sum of coefficients can be written

n∑
k=1

(−1)n−k−1
(

n
k− 1

)
(k− 2) (A.6)

which can be re-indexed and rearranged as

n−1∑
j=0

(−1)n−j
(
n
j

)
(j− 1) =

n−1∑
j=0

(−1)n−jj
(
n
j

)
+

n−1∑
j=0

(−1)n−j−1
(
n
j

)

= −n+
n∑

j=0
(−1)n−jj

(
n
j

)
+ 1 +

n∑
j=0

(−1)n−j−1
(
n
j

)

to which we may apply the identity (A.5) and another well-known identity,
∑n

j=0(−1)j
(n
j
)
= 0 to discover that

both of the summations above drop out leaving us with−n+ 1 = −(n− 1) as desired.

Finally, we may prove the value of the constant term (or the coefficient of σ0) which is

(n− 1)(n− 2)
2 =

(
n− 1

2

)
(A.7)

for⊛n. Again we proceed by induction. In the base case, for n = 1, the constant term is (1−1)(1−2)
2 = 0 which

holds since⊛1 is just the identity map. We assume that (A.7) gives the value of the constant term for all⊛k, k ≤

n. We will prove that the constant term in the quadratic form of⊛n+1 is n(n−1)
2 . By the induction hypothesis,

each⊛k product contributes a constant of
(k−1

2
)
, and there are

(n+1
k
)
of these corresponding to all choices of k

operands from the list of (n+ 1). They alternate over k, and are positive when k = n. Finally, σ0(m1,m2, . . . ,mn)

enters as (−1)n. We can then write the total value of the constant term as

(−1)n +
n∑

k=1
(−1)n−k

(
n+ 1
k

)(
k− 1

2

)
(A.8)
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which can be rewritten using the recursive formula
(n+1

k
)
=

( n
k−1

)
+

(n
k
)
to give

(−1)n +
n∑

k=1
(−1)n−k

(
n

k− 1

)(
k− 1

2

)
+

n∑
k=1

(−1)n−k
(
n
k

)(
k− 1

2

)
. (A.9)

We can re-index the first summation as
n−1∑
j=0

(−1)n−j−1
(
n
j

)(
j
2

)
(A.10)

and apply the identity 1
n∑

j=0
(−1)j

(
n
j

)(
j
m

)
= 0 (A.11)

to get that (A.9) is equal to

(−1)n + n(n− 1)
2 +

n∑
k=1

(−1)n−k
(
n
k

)(
k− 1

2

)
. (A.12)

By another application of the recursive formula for binomial coefficients, we have that

(
k− 1

2

)
=

(
k
2

)
−

(
k− 1

1

)
=

(
k
2

)
− (k− 1)

so that (A.12) equals

(−1)n + n(n− 1)
2 +

n∑
k=1

(−1)n−k
(
n
k

)(
k
2

)
+

n∑
k=1

(−1)n−k−1
(
n
k

)
(k− 1). (A.13)

We can then absorb the leading (−1)n into the second summation, and use that
(0
2
)
= 0 to write this as,

n(n− 1)
2 +

n∑
k=0

(−1)n−k
(
n
k

)(
k
2

)
+

n∑
k=0

(−1)n−k−1
(
n
k

)
(k− 1). (A.14)

Then the first summation is zero by the identity (A.11) and the second summation can be shown to vanish as well

by splitting it and applying (A.5) and the other alternating sum identity for binomial coefficients. All that is left is
n(n−1)

2 , as desired. This concludes the proof of the constant term of⊛n, and of (A.1).
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