
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Summer 8-11-2015 

API-Based Acquisition of Evidence from Cloud Storage Providers API-Based Acquisition of Evidence from Cloud Storage Providers 

Andres E. Barreto 
University of New Orleans, aebarret@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Data Storage Systems Commons, and the Information Security Commons 

Recommended Citation Recommended Citation 
Barreto, Andres E., "API-Based Acquisition of Evidence from Cloud Storage Providers" (2015). University of 
New Orleans Theses and Dissertations. 2030. 
https://scholarworks.uno.edu/td/2030 

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by 
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any 
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you 
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative 
Commons license in the record and/or on the work itself. 
 
This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by 
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uno.edu%2Ftd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uno.edu%2Ftd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2030?utm_source=scholarworks.uno.edu%2Ftd%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


API-Based Acquisition of Evidence from Cloud Storage Providers

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

by

Andres E. Barreto

B.Eng. Escuela Superior Politécnica del Litoral (ESPOL), 2006

August 2015



Abstract

Cloud computing and cloud storage services, in particular, pose a new challenge to digital forensic investi-
gations. Currently, evidence acquisition for such services still follows the traditional approach of collecting
artifacts on a client device. In this work, we show that such an approach not only requires upfront substantial
investment in reverse engineering each service, but is also inherently incomplete as it misses prior versions
of the artifacts, as well as cloud-only artifacts that do not have standard serialized representations on the
client.

In this work, we introduce the concept of API-based evidence acquisition for cloud services, which
addresses these concerns by utilizing the officially supported API of the service. To demonstrate the utility
of this approach, we present a proof-of-concept acquisition tool, kumodd, which can acquire evidence from
four major cloud storage providers: Google Drive, Microsoft One, Dropbox, and Box. The implementation
provides both command-line and web user interfaces, and can be readily incorporated into established forensic
processes.

Keywords: Cloud forensics, cloud storage, kumodd, API-based evidence acquisition, Google Drive, Drop-
box, OneDrive, Box.

ii



Contents

1 Introduction 1

2 Background 3
2.1 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Infrastructure as a Services (IaaS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Platform as a Service (PaaS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Software as a Service (SaaS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Issues at each stage of a forensic investigation . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Cloud forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Saas Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Design and Implementation 8
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Tool Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Command-line arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 User authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Content discovery and acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.4 Web GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Package installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Cloud Storage Providers APIs 21
4.1 Google Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 API authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Files resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Dropbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 API authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Account information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Files and metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 OneDrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 API authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Drive resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Item resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 API authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 File object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



4.4.3 Folder object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Evaluation 37
5.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Download times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Mirrored data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Cloud-only data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion 40

Appendix A Google Drive API 43
A.1 Google Drive resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.1.1 About Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.1.2 Children resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.1.3 Revisions resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.2 Google Drive resource representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2.1 About resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2.2 Files resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2.3 Children resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.4 Revisions resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Vita 53

iv



List of Figures

2.1 Cloud service models and ownership of layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Kumodd architectural diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Authentication step 2: Provide account credentials . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Authentication step 3: Authorize access to the account by kumodd . . . . . . . . . . . . . . . 12
3.4 Steps of evidence acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Contents of the generated CSV file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Drive contents downloaded to a local directory . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 Metadata of every downloaded file saved in a local directory . . . . . . . . . . . . . . . . . . . 15
3.8 Web GUI: Service selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9 Web GUI: File selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10 Web GUI: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11 Service credentials in the developer console (Google Drive) . . . . . . . . . . . . . . . . . . . . 20

4.1 Google Developers Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Files:list method response example (abbreviated) . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Files:get method response example (abbreviated) . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Dropbox App Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 OAuth 2 flow diagram. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 OAuth 2 flow diagram. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Box Developers Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Get file response example (abbreviated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.1 About:get method response example (abbreviated) . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Children:get method response example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.3 Revisions:get method response example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



List of Tables

4.1 Files resource methods; all URIs relative to https://www.googleapis.com/drive/v2. A com-
plete list of methods is available in in the Drive REST API reference provided by Google
[26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 OneDrive API authorization scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Kumodd download times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.1 Children resource methods; URIs relative to https://www.googleapis.com/drive/v2. A com-
plete list of methods is available in in the Drive REST API reference provided by Google . . 45

A.2 Revisions resource methods; URIs relative to https://www.googleapis.com/drive/v2. A com-
plete list of methods is available in in the Drive REST API reference provided by Google
[26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



Listings

3.1 Listing all files stored in a Dropbox account . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Listing only images stored in a Box account . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Download just PDF files stored in OneDrive and save the in the Desktop folder . . . . . . . . 10
3.4 Download files from Google Drive using files listed in a CSV file stored in /home/user/Desktop/ 10
3.5 Authentication step 1: Connect to Google Drive for the first time . . . . . . . . . . . . . . . . 11
3.6 Authentication step 4: Input access code in the terminal (if necessary) and allow the applica-

tion to retrieve results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Output of listing all files in a Google Drive account (partial results are being shown) . . . . . 13
3.8 Starting the web GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9 Kumodd download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 Obtaining the Python version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Installation of Python 2.7.6 and its dependencies on Debian/Ubuntu . . . . . . . . . . . . . . 19
3.12 python-gflags installation command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 google-api-python-client installation command . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.14 dropbox installation command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.15 boxsdk installation command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.16 Flask and Flask-Classy installation command . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Google Drive Authorization scopes [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Files:list response tructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Dropbox user information example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 get file request using the Dropbox Python library . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Metadata of a file in Dropbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 revision request using the Dropbox Python library . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Revisions method response body example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Drive resource response example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.9 Item resource response example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.10 OneDrive list children example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.11 Successful download file response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.12 Successful Content API authorization response . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.13 Array of versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.14 Items inside a folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.1 Children:list response body structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2 Revisions:list response body structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3 About resource representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.4 Files resource representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.5 Children resource representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.6 Revision resource representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Chapter 1

Introduction

Cloud computing (or, the cloud) is the emerging primary model for delivering information technology (IT)
services to Internet-connected devices. It abstracts away the physical compute and communication infras-
tructure, and allows customers to effectively rent, instead of own and maintain, as much compute capacity
as needed. As per NIST’s definition [3], there are five characteristics–on-demand self service, broad network
access, resource pooling, rapid elasticity, and measured service–that distinguish the cloud service model from
previous ones.

The underpinning technology development that has made the cloud possible is the massive adoption
of virtualization on commodity hardware systems. Ultimately, it allows for a large pool of resources, such as
a data center, to be provisioned and load-balanced at a fine granularity, and for the computations of different
users (or uses) to be strongly isolated.

The first public cloud services–Amazon Web Services (AWS)–were introduced by Amazon in 2006.
As of 2015, according to RightScale’s State of the Cloud Report [4], cloud adoption has become ubiquitous:
93% of businesses are at least experimenting with cloud deployments, with 82% adopting a hybrid strategy,
which combines the use of multiple providers (usually in a public-private configuration). Nonetheless, much
of the technology transition is still ahead as 68% of enterprises have less than 20% of their application
portfolio running in a cloud setup. Similarly, Gartner [5] predicts another 2-5 years will be needed before
cloud computing reaches the “plateau of productivity” marking the period of mass mainstream adoption
and widespread productivity gains.

Unsurprisingly, cloud forensics is still in its infancy; there are few practical solutions for the acquisi-
tion and analysis of cloud evidence and most of them are minor adaptations of existing methods and tools.
Indeed, NIST–the main standardization body in the US–is still working to build consensus on what the
challenges are with respect to performing forensics of cloud data; in [3] they have enumerated 65 separate
ones.

In this work, we are concerned with one particular problem–the acquisition of data from cloud
storage services. These have emerged as one of the most popular services with the average consumer as
many providers, such as Dropbox, Box, Google Drive, and Microsoft’s OneDrive, allow between 2 and 15GB
of cloud storage for free. Cloud storage is also widely used on mobile devices to share data across applications
(which are otherwise isolated from each other). Therefore, having a robust evidence acquisition method is a
necessity today ; further, due to the wide variety of these services, and the rapid introduction of new ones,
the tool and methodology should be adaptable and extensible.

In traditional forensic models, the investigator works with physical evidence carriers, such as storage
media or integrated compute devices. Thus, it is possible to identify the computer performing the compu-
tations and the media that store (traces of) the processing, and to physically collect, preserve and analyze
information content. Because of this, research has focused on discovering and acquiring every little piece of
log and timestamp information, and extracting every last bit of discarded data that applications and the OS
have left behind.

Conceptually, cloud computing breaks this model in two major ways. First, resources–CPU cycles,
RAM, storage, etc.–are first pooled (e.g., RAID storage) and then allocated at a fine granularity. This results
in physical media potentially containing data owned by many users, and to data relevant to a single case

1



being spread among numerous providers. Applying the conventional model creates a long list of procedural,
legal, and technical problems that are unlikely to have an efficient solution in the general case. Second, both
computations and storage contain a much more ephemeral record as virtual machine (VM) instances are
created and destroyed with regularity and working storage gets sanitized.

As we discuss in more detail in the next chapter, current work on cloud storage forensics has treated
the problem as just another instance of application forensics. It applies basic differential analysis techniques
to gain a basic understanding of the artifacts left on client devices by taking before and after snapshots of the
target compute system, and deducing relevant cause and effect relationships. During an actual investigation,
the analyst would be interpreting the state of the system based on these known relationships.

Unfortunately, there are several serious problems with this extension of existing client-side methods:

• Completeness. The reliance in client-side data can leave out critical case data. One example is older
versions of the files, which most services provide; another one is cloud-only data, such as a Google Docs
document, which literally has no serialized local representation other than a link. Some services, such
as a variety of personal information management applications, live only in the browser so a flush of
the cache would make them go away.

• Reproducibility. As cloud storage applications get updated on a regular basis and versions have a
relatively short live span, it becomes harder to maintain the reproducibility of the analysis and make
require frequent repetition of the original procedure.

• Scalability. As a continuation of the prior point, manual client-side analysis is burdensome and simply
does not scale with the rapid growth of the variety of services and their versions.

In this work, we propose an alternative approach for the acquisition of evidence data from cloud
storage providers that uses the official APIs provided by the services. Such an approach has the major
advantage of taking all the reverse-engineering work out of the picture:

• APIs are well-documented, official interfaces through which cloud applications on the client commu-
nicate with the service; they tend to change slowly and changes are clearly marked–only new features
need to be incrementally incorporated into the acquisition tool.

• It is easy to demonstrate completeness (based on the API specification) and reproducibility becomes
straightforward.

• Web APIs tend to follow patterns, which makes it possible to adapt existing code to a new (similar)
service with modest effort. It is often feasible to write an acquisition tool for a completely new service
from scratch in a short time.

To demonstrate the feasibility of our approach, and to gain first-hand experience with the process,
we have developed a proof-of-concept prototype called kumodd1, which can perform complete (or partial)
acquisition of a cloud storage account’s data. It works with four popular services–Dropbox, Box, Google
Drive, and Microsoft’s OneDrive–and supports the acquisition of revisions and cloud-only documents. The
prototype is written in Python and offers both a command line and web-based user interfaces.

1The tool name is derived from the Japanese word for cloud kumo.

2



Chapter 2

Background

2.1 Cloud computing

The reference definition of cloud computing provided by the National Institute of Standards and Technology
(NIST) states that “cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service provider
interaction” [3]. With respect to public cloud services–the most common case–this means that the physical
hardware on which the computation takes place is owned and maintained the provider, as is at least part of
the deployed software stack. Generally, customers have the option to pay per unit of CPU/storage/network
use, although other business arrangements are also possible.

Depending on which part of the software stack is managed by the provider, there are three baseline
deployment options:

2.1.1 Infrastructure as a Services (IaaS)

In IaaS, cloud service providers create virtual machines and assign their full control to customers. Cus-
tomers then install operating system, and applications within the machine without any interference from
the service providers. Amazon Web Service (AWS), Microsoft Azure, Google Compute Engine (GCE) are
popular examples of IaaS. IaaS provides capabilities to take snapshots of the disk and physical memory of
virtual machines, which has significant forensic value for quick acquisition of disk and memory. Since virtual
machines have closely represent physical machines, the traditional forensic tools for data acquisition and
analysis can also be used inside the virtual machines as remote investigation of a physical machine is per-
formed. Furthermore, virtual machine introspection provided by hypervisor enables cloud service providers
to examine live memory and disk data, perform instant data acquisition and analysis. However, since the
functionality is supported at hypervisor level, customers cannot take advantage of this functionality [6]. In
summary IaaS consists of the rental and use of hardware and the user is in charge of operating system and
applications deployment.

2.1.2 Platform as a Service (PaaS)

PaaS essentially consists of the use operating system supplied by the provider and the user deploying the soft-
ware to run on them, customers develop their applications using software components built into middleware.
Google App Engine is a example of PaaS, offering quick and cost-effective solution for developing, testing,
and deploying customer applications. In other words, the cloud infrastructure hosts customer-developed
applications. PaaS provides full control to customers on the application layer including interaction of ap-
plications with dependencies (such as databases, storage etc.) and enabling customers to perform extensive
logging for forensics and security purposes [6].

3



2.1.3 Software as a Service (SaaS)

In SaaS, the provider is responsible for everything and customers access the functionality as either a web
application, or a platform-specific mobile client. Cloud service manage all the layers including application
layer that runs the software offered as a service to customers. In other words, customer has no control on
the underlying operating infrastructure and application. However, since cloud service provider manages the
infrastructure (including application), the maintenance cost on customer side is almost zero.. Google Gmail,
Microsoft 365, Salesforce, Citrix GoToMeeting, Cisco WebEx are popular examples of SaaS, which run
directly from web browser without downloading and installing any software. Their desktop and smartphone
versions are also available to run on client machine. The applications whether running on web browser or
desktop have limited presence on the client machine making investigators rely on server-side logs. SaaS
applications log extensively, which has significant forensic value. For instance, Google Docs records every
insert, update, and delete operation of characters performed by user along with the timestamps, which makes
it possible to identify specific changes made by different user in a document [6].

Figure 2.1: Cloud service models and ownership of layers

2.1.4 Issues at each stage of a forensic investigation

Using the process proposed by McKemmish [7], we briefly outline the main issues that can be encountered
in each stage of forensic analysis in a cloud environment.

4



Data identification

One of the main issues in analyzing evidence that could lead to information stored in the cloud is to identify
where the data resides and what services where being used. In these cases the source of evidence on the
client system will be web browser information such as history caches. In the case of cloud storage services it
will be remnants of client application installations and also files downloaded for local use and edition using
them.

Data preservation

Data stored in the cloud can appear and disappear or change from location rapidly, which makes it difficult to
collect. Volatility of data have to be considered when undertaking collection from cloud resources. Tools that
collect data from a cloud storage service with a focus on forensic investigations are not currently available
[8]. As present, there are only two ways of getting information from a cloud drive account; via web browser
login or using a client application provided by the service. It is important to have access to a tool that does
not manipulate evidence from its source in any way.

Data analysis

One fast growing problem is the large amount of data may need to be obtained. Therefore, an important
feature of the next generation of acquisition and analysis tools will be the ability to pre-screen and selectively
obtain relevant data. In traditional, client-centric forensics, much of the filtering is based on file crypto hashes
and timestamp data. However, these will need to be adapted to a new environment where neither filesystem
metadata (such as the MS Windows registry), nor standard crypto hashes (e.g. Dropbox ) are available [8].
At the same time, individual services may offer search capabilities that can potentially save substantial
amounts of processing time.

2.2 Cloud forensics

Cloud forensics is defined as ”the application of digital forensics in cloud computing as a subset of network
forensics. It is a cross reference between cloud computing and digital forensics” [9]. This paper focuses in
SaaS forensics (cloud storage forensics specifically) as the proposed application was developed to work with
cloud storage providers which fall in the Software as a Service classification.

Cloud storage related crimes fall in the electronic crime category which involves the use of a computer
as a tool, target or storage device. Data stored in cloud services can be a target for criminals, while cloud
storage can be used to save illicit data or crime related data. Computer related crime has three factors that
attract people to commit them; motivation, opportunity and the absence of capable guardianship [10]. As
online services adoption grow, criminal are tempted to exploit these opportunities.

2.2.1 Saas Forensics

Overall, there have been very few publications and practical tools to address identification, preservation and
analysis of cloud-stored data. The main approach has been to analyze trace data and remnant artifacts left
behind by the client applications. Since the applications are accessed from a client machine, remnants of
digital artifacts pertaining to user activities on the applications are present and can be forensically retrieved
and analyzed from the hard disk of the machine.

Cloud application forensics

Somers [11] has developed DraftBack–a browser extension that can replay the activities in a document created
in Google Docs. As it turns out, the latter records and timestamps all user inputs since the beginning the
creation of the document. DraftBack makes use of timestamps associated with every change made to a
document since it was created to identify sequence of changes, and derives the state of the document at any
instance of time.

5



Somers’ work on Google Docs, although not motivated by forensics, is probably the single best
example of SaaS analysis that does not rely on trace data resident on the client–all results are produced
solely by querying the web application’s interface. Assuming that an investigator is in possession of valid user
credentials, the examination can be performed on the spot. This is likely to be sufficient for most informal
scenarios; however, in order to make it to the court room, some additional tooling and procedure need to
be developed. Clearly, the acquisition and long-term preservation of the evidence is yet to be addressed; yet
another concern is the ability to replay the acquired log in the application. Unlike client-side applications,
a web app resides entirely in the server, and there is no practical way to acquire an archival copy of the
execution environment as of a particular date. One possible solution is to record a screencast video of the
entire user editing session.

Microsoft Office 365 also keeps detailed revisions based on edits as it supports real-time collaboration,
so–in principle–it should be possible to develop a Draftback -like tool. Other cloud drive services offer generic
file revision history, however, the available data is more limited as it is stored as simple snapshots.

Cloud drive forensics

Chung et al. [12] analyzed four cloud storage services (Amazon S3, Google Docs, Dropbox, and Evernote) in
search for traces left by them in the client system that can be helpful to investigate criminal cases. In their
research, Chung et al. reported that the analyzed services may create different artifacts depending on specific
features of the services. Chung et al. proposed a process model for forensic investigation of cloud storage
services which is based in the collection and analysis of artifacts of the analyzed cloud storage services from
client systems. The procedure includes gathering volatile data from a Mac or Windows system (if available),
and then retrieving data from the Internet history, log files, and directories. In mobile devices they rooted
an Android phone to gather data and for iPhone they used iTunes information like backup iTunes files. The
objective was to check for traces of a cloud storage service exist in the collected data.

Hale [13] analyzed Amazon Cloud Drive and discusses the digital artifacts left behind after an
Amazon Cloud Drive account has been accessed or manipulated from a computer. There are two possibilities
to manipulate an Amazon Cloud Drive Account; one is via the web application accessible using a web browser
and the other is a client application provided by Amazon and can be installed in the system. After analyzing
the two methods he found artifacts of the interface on web browser history, and cache files. He also found
that the client application left artifacts on Windows registry, application installation files on default location,
and an SQLite database used by the application to hold upload and download tasks while the status of the
task is pending.

Quick et al. [14] analyzed Dropbox and discusses the digital artifacts left behind after a Dropbox
account has been accessed or manipulated. Using hash analysis and keyword searches they try to determine
if the client software provided by Dropbox has been used. They get the Dropbox account username from
browser history (Mozilla Firefox, Google Chrome, and Microsoft Internet Explorer), and the use of the
Dropbox through several avenues such as directory listings, prefetch files, link files, thumbnails, registry,
browser history, and memory captures.

Martini and Choo [15] discuss the digital artifacts of ownCloud (server and client side). They were
able to recover artifacts including Sync and file management metadata (logging, database and configuration
data), cached files describing the files the user has stored on the client device and uploaded to the cloud
environment or vise versa, and browser artifacts.

Clark [16] performed metadata analysis of pictures in SkyDrive (now called OneDrive), Windows
Azure and Flickr discovering that information like positioning can be obtained from publicly shared pictures.

2.3 Summary

Considering previous work on cloud storage forensic analysis, it is evident that research and development
efforts have been focused on the traditional approach of finding local artifacts on the client. This is a limited
and inefficient approach requiring considerable manual reverse engineering effort, which ultimately is not
guaranteed to be complete. In our view, the future of SaaS forensics lies in working with the supporting web
infrastructure the way web applications do: through APIs.

6



Currently, the amount of data in cloud storage is relatively small (compared to the size of local
storage) as free services only offer up to 15GB. However, as adoption of these services increases, a fast and
substantial increase in volume is expected. As an example, GoogleDrive currently offers up to 30TB at
$10/month per terabyte. In other words, cloud storage acquisition and analysis is a problem that we can
expect to grow very quickly and current approaches offer little hope of being able to cope with it.

7



Chapter 3

Design and Implementation

The traditional local storage forensic processing pipeline–physical acquisition, file carving, analysis of unal-
located space, etc–which is historically based on the properties of file systems for magnetic disks, is quickly
becoming obsolete. For example, the mass adoption of solid-state drives (SSD), which automatically sanitize
unused space for performance reasons has eliminated unallocated space as a source of evidence. Large HDD
drives are increasingly encrypted as the performance penalty is gone; also, sanitizing a slow 6/8/10TB drive
is only practical by encrypting it and disposing of the key.

More generally, all storage devices are becoming “smart” by incorporating ever more powerful
processors and ever more complex data layout algorithms. The concept of “physical” acquisition is on its
way out as the CPU does not have direct access to the media and all data access becomes de facto logical,
even for local storage. To be sure, storage devices still support legacy protocols that nominally contain
addresses, however, there is no promise that this maps to the actual physical layout. In cloud deployments,
all storage including HDD-backed is pooled (RAID-ed), virtualized, shared, and automatically sanitized
to avoid data leaks. Therefore, attempting a traditional “physical” acquisition creates a long list of legal,
procedural, and technical problems.

Considering cloud storage services from a user perspective, they offer a similar functionality to a
physical drive–persistent file storage and retrieval. As files are not stored locally, an Internet connection
is clearly necessary, as is a client application (or web browser) to provide a convenient UI to retrieve, edit
or share them. This setup, as explained in Section 2.1.4, is a new challenge for forensics as none of the
traditional approaches for retrieving evidence can be considered valid.

Fortunately, cloud storage providers offer a well-defined mechanism to work their service via a public
API. Indeed, the applications installed on client devices work through the same mechanism (with the possible
addition of undocumented API calls). An API opens up the opportunity to build a forensic-specific client,
which can enumerate and acquire cloud-hosted artifacts in a controlled fashion. Further, an API has well-
defined semantics, which can be modeled and tested to ensure sound acquisition. This is in stark contrast
to the traditional approach of collecting leftover client artifacts, which treats the application as a black box
whose functionality is to be reverse engineered. One clear limitation here is that an application can only
work with the functionality exposed by the service; however, this is not likely to be a major restriction for
basic forensic processing, such as data acquisition.

For the remainder of this chapter, we describe the design and implementation of a proof-of-concept
prototype called kumodd; it employs the public API of four popular cloud storage services to obtain a usable
forensic image of the content of a user account.

3.1 Architecture

The overall architecture of kumodd, as shown on Figure 3.1, consists of three separate layers–user interface,
dispatcher, and acquisition drivers. The user interface is responsible for interaction with the forensic analyst
and provides both a web-based GUI (suitable for interactive exploration), and a command-line interface
(suitable for automation). The dispatcher collects acquisition parameters and schedules the acquisition
tasks against the forensic targets. The tasks are executed by service-specific driver modules that work via

8



the public API supplied by the cloud provider and return the data in different, user-specified formats, such
as JSON and CSV.

Figure 3.1: Kumodd architectural diagram

Overall, the service APIs are similar in the type of capabilities they provide. However, as our further
discussion will show, they vary substantially in their implementation and provide varying levels of detail in
terms of artifact metadata. Eventually, we expect the different drivers to provide a common, high-level
interface that can abstract away most of the implementation details.

3.2 Tool Use

After kumodd is properly configured–a process described later in this chapter–it is ready to be used from the
terminal.

3.2.1 Command-line arguments

The general format of the commands is:

python kumodd.py -s [service] [action] [filter]

The following are the currently supported argument values:

[service]

The type of cloud service being accessed:

gdrive Google Drive

dropbox Dropbox

9



onedrive Microsoft OneDrive

box Box

[action]

The action to be perform using the selected service:

-l List files stored in an account drive as a plain text table.

-d Download files stored in an account drive in an specified location.

-csv Use a CSV file to specify which files to download.

[filter]

The [filter] parameter specifies the subset of files to be listed/downloaded based on file type:

all All files stored in an account drive;

doc Only .doc/.docx/.odf files;

xls Only spreadsheet files;

ppt Only presentation files;

text Only text/source code files;

pdf Only PDF files;

officedocs All document, spreadsheet and presentation files;

image Only images;

audio Only audio files;

video Only video files;

<file> Only with -csv action: CSV file containing the files to be downloaded.

-p <path> Used with -d and -csv action: Used to specify the path in which the files will be
downloaded.

Command line examples

python kumodd.py -s dbox -l all

Listing 3.1: Listing all files stored in a Dropbox account

python kumodd.py -s box -l image

Listing 3.2: Listing only images stored in a Box account

python kumodd.py -s onedrive -d all -l /home/user/Desktop/

Listing 3.3: Download just PDF files stored in OneDrive and save the in the Desktop folder

python kumodd.py -s gdrive -csv /home/user/Desktop/gdrive_list.csv

Listing 3.4: Download files from Google Drive using files listed in a CSV file stored in /home/user/Desktop/

10



3.2.2 User authentication

When kumodd is used for the first time to connect to a cloud service, the respective driver will initiate the
authorization process which requires the user to provide access credentials (user/password) for the account.
The tool provides the user with a URL that needs to be opened in a web browser, where the standard
authentication interface for the service will request the relevant username and password:

andres@ubuntu :~/ kumodd$ python kumodd.py -s gdrive -d all

Your browser has been opened to visit:

https :// accounts.google.com/o/oauth2/auth?scope=https %3A%2F%2Fwww.googleapis.com...

--noauth_local_webserver

Listing 3.5: Authentication step 1: Connect to Google Drive for the first time

After supplying the correct credentials, the service returns an access code which the user has to
input in the command line to finish the authentication process and authorize kumodd access to the account
(Figures 3.2, 3.3). If the authentication is successful, the provided access token is cached persistently in a
.dat file is saved under /config folder with the name of the service. Future requests will find the token and
will not prompt the user for credentials.

Figure 3.2: Authentication step 2: Provide account credentials

11



Figure 3.3: Authentication step 3: Authorize access to the account by kumodd

andres@ubuntu :~/ kumodd$ python kumodd.py -s gdrive -d all

Working ...

TIME(UTC) APPLICATION USER FILE -ID REMOTE PATH REVISION LOCAL PATH HASH(MD5)

2015 -06 -25 03:48:43.600028 kumodd -1.0 andrsebr.dev@gmail.com 1L-7

o0rgPT2f6oX60OPtF4ZUFOmOJW1Crktr3DPril8o My Drive/ppt test v.2 downloaded/andrsebr.

dev@gmail.com/My Drive/ppt test -

2015 -06 -25 03:48:44.951131 kumodd -1.0 andrsebr.dev@gmail.com 1

huaRTOudVnLe4SPMXhMRnNQ9Y_DUr69m4TEeD5dIWuA My Drive/revision doc test v.3 downloaded/

andrsebr.dev@gmail.com/My Drive/revision doc test -

...

2015 -06 -25 03:48:54.254104 kumodd -1.0 andrsebr.dev@gmail.com 0B4wSliHoVUbhUHdhZlF4NlR5c3M My

Drive/test folder/stuff/more stuff/tree.py v.1 downloaded/andrsebr.dev@gmail.com/My

Drive/test folder/stuff/more stuff/tree.py 61366435095 ca0ca55e7192df66a0fe8

9 files downloaded and 0 updated from andrsebr.dev@gmail.com drive

Duration: 0:00:13.671442

Listing 3.6: Authentication step 4: Input access code in the terminal (if necessary) and allow the application
to retrieve results

3.2.3 Content discovery and acquisition

Conceptually, the acquisition process goes through three phases–discovery, filtering, and acquisition (Fig-
ure 3.4). During content discovery, the tool queries the target service and obtains a list of files of interest
to the analyst. Commonly, this would be a complete listing of all available file metadata (name, size, times-
tamps, revisions, etc.); however, kumodd offers basic filtering options based on data type. Some services offer
a search-based selection, which could (in the future) be deployed to facilitate e-discovery, especially at scale.

The result of the discovery is a list of available data in the form of a CSV file, one file per line, which
is suitable for further filtering using standard command-line tools. Alternatively, it could be imported into

12



a separate program (text editor/spreadsheet/etc.) for manual or custom processing. In all cases, the end
result is a file of the same format that specifies an acquisition plan that is passed on to kumodd for execution.

Figure 3.4: Steps of evidence acquisition

Discovery

In the current implementation, the discovery is implemented by the list (-l) command, followed by a [filter]
following the format shown earlier.

Output: A list of files that meet the provided criteria will be displayed with general information such as
the file ID, remote path, number of revisions and (cryptographic) hashes.

andres@ubuntu :~/ kumodd$ python kumodd.py -s gdrive -l all

Working ...

FILE -ID REMOTE PATH REVISION HASH(MD5)

...1 qCepBpY6Nchklplqqqc My Drive/test 1 -

... oVUbhaG5veS03UkJiU1U My Drive/version_test 3 ... bcdee370e5

...

... oVUbhUHdhZlF4NlR5c3M My Drive/test folder/stuff/more stuff/tree.py ...2 df66a0fe8

Listing 3.7: Output of listing all files in a Google Drive account (partial results are being shown)

A CSV file with a list of the displayed files is saved under /localdata folder with the name of the service
and the user. The generated file can be edited or used to download files listed in it. Figure 3.5 shows the
file opened in a spreadsheet application.

Figure 3.5: Contents of the generated CSV file

Acquisition

The acquisition is performed by the download (-d), followed by a [filter] specification. In this case, the
download is performed as a single discovery-and-acquisition step. The intended use is either one-command
full acquisition, or interactive exploration, followed by one, or more, download commands.

13



Output: A list of successfully downloaded files be displayed with information such as download date,
application version, username, file ID, remote path, download path, revisions, and cryptographic hashes.
This information is also logged in the log file /downloaded/<username>/<service-name>.log Downloaded
files will be located in the /downloaded/<username>/ directory. Figure 3.6. Metadata files with detailed
information of downloaded files is stored in /downloaded/< username>/metadata/ in JSON format.

Another acquisition option is the -csv command, which takes as an input a CSV file, which contains
the acquisition plan and must be in the correct format. For this the directory in which the CSV file is located
must be specified.

Figure 3.6: Drive contents downloaded to a local directory

14



Figure 3.7: Metadata of every downloaded file saved in a local directory

3.2.4 Web GUI

Another alternative to use kumodd is using the provided Web GUI, which is run from a local web server
invoked with the kumodd-gui.py module:

python kumodd -gui.py

The application GUI will be available at http://localhost:5000 and is accessible via any web browser.
(Note: At this point, the server is not secure, so it should not be run on a remote system, unless security is
assured by other mechanisms.)

andres@ubuntu :~/ kumodd$ python kumodd -gui.py

* Running on http ://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

Listing 3.8: Starting the web GUI

The web GUI uses the same modules used with the command line application for authenticate,
discovery and acquisition.

Authentication

As kumodd was originally planed to be a command line application; there is a step that involves inputting
data in the command line while the web server is running. This step is the authentication, once the access
code is retrieved from a service it has to be put in the command line while the application waits to retrieve
this value (this step is not necessary while using Google Drive).

Just like using the command line interface; after the authentication is granted all the authorization
information is saved locally so the user will not have to go through the authentication step again unless a
new user account needs to be accessed or the access token provided by the service has expired and need to
be retrieved again.

Discovery and acquisition

The web interface simplifies the user interactions and, for the simple case of wholesale data acquisition, the
process can be accomplished in three button clicks.

15



After pressing the Get started! button, the user is presented with the choice of the target service
and the action to perform (Figure 3.8). After this step a detailed window with a list of files and the option
of choosing which to download is presented (Figure 3.10). Once the files to acquire are selected, a result
screen is presented with paths to files and other relevant information. (Note: Every step of the process can
be seen in the terminal as well.)

Figure 3.8: Web GUI: Service selection

16



Figure 3.9: Web GUI: File selection

Figure 3.10: Web GUI: Results

17



3.3 Implementation

3.3.1 Development environment

Kumodd was developed and tested using the following environment:

• Operating System: Ubuntu Linux 14.04 LTS (64-bit)

• Python 2.7.6

• Packages:

– python-gflags 2.0

– google-api-python-client 1.3.1

– dropbox 2.2.0

– boxsdk 1.1.3

– Flask 0.10.1

– Flask-Classy 0.6.10

• Google Chrome 43.0.2357.81 (64-bit)

3.3.2 Python

Python is a multi-platform, interpreted, object-oriented, high-level programming language with dynamic
semantics. It supports modules and packages for program modularity and code reuse. [17]

3.3.3 Packages

python-gflags

This package is a an equivalent of the C++ command line flag implementation developed by Google (gflags).
This package contains a library that implements command line flags processing. It includes built-ins support
for Python types and allows to define flags in the source file which they are used. [18] [19]

google-api-python-client

This package contains the Python client library provided by Google for discovery-based APIs. [20]

dropbox

This package contains Python specific libraries that wrap the raw HTTP calls to the Dropbox API. [21]

boxsdk

This package contains Python specific libraries that wrap the raw HTTP calls to the Box API. [22]

Flask

Flask is a web application framework written in Python. It is based on the Jinja2 template engine and
Wekzeug toolkit. This framework is used to give back-end applications a web based interface. [23]

Flask-Classy

This is an extension of Flask that adds class based views functionality. [24]

18



3.4 Installation

3.4.1 Requirements

1. Unix-based operating system

2. Python 2.7.x or above

3. Required packages:

• python-gflags

• google-api-python-client

• dropbox

• boxsdk

• Flask

• Flask-Classy

4. Google Chrome or Firefox web browser (for web interface)

5. User credentials for account access

3.4.2 Package installation

Kumodd

Kumodd can be downloaded from its Gitlab repository using the following command:

git clone https :// github.com/andresebr/kumodd.git

Listing 3.9: Kumodd download

Python

Python comes preloaded in almost every Linux distribution and OSX by default. It is possible to know if
the system has Python installed and its version by running the command. (For package installations, either
the easy install, or the pip package managers can be used.)

python --version

Listing 3.10: Obtaining the Python version

If Python is not installed in the system:

sudo apt -get install build -essential

sudo apt -get install libreadline -gplv2 -dev libncursesw5 -dev libssl -dev libsqlite3 -dev tk-dev

libgdbm -dev libc6 -dev libbz2 -dev

cd ~/ Downloads/

wget http :// python.org/ftp/python /2.7.6/ Python -2.7.6. tgz

tar -xvf Python -2.7.6. tgz

cd Python -2.7.6

./ configure

make

sudo make install

Listing 3.11: Installation of Python 2.7.6 and its dependencies on Debian/Ubuntu

19



python-gflags

sudo easy_install python -gflags

Listing 3.12: python-gflags installation command

google-api-python-client

sudo easy_install --upgrade google -api -python -client

Listing 3.13: google-api-python-client installation command

dropbox

sudo easy_install dropbox

Listing 3.14: dropbox installation command

boxsdk

sudo easy_install boxsdk

Listing 3.15: boxsdk installation command

Flask and Flask-Classy

sudo easy_install flask flask -classy

Listing 3.16: Flask and Flask-Classy installation command

3.5 Configuration

Once kumodd has been downloaded from the repository, it is necessary to configure the services that are be
going to be used. The first step is registering the application in its respective service consoles. See sections
4.1.1, 4.2.1, 4.3.1, and 4.4.1. For this step a developer account must be created in every service intended to
be used.

Once the application is registered, two unique keys will be provided; an application identifier and a
secret key. The keys needed will be available in the credentials section. In the developer consoles it is also
possible to configure application redirections and permission settings (Figure 3.11).

The keys provided by the services must be used in the kumodd configuration file /configuration/

config.cfg before first use. For Google Drive the credentials must be specified in /configuration/gdrive_

config.json.

Figure 3.11: Service credentials in the developer console (Google Drive)

20



Chapter 4

Cloud Storage Providers APIs

This chapter provides additional technical details in the form of descriptions of the service APIs that kumodd
utilized. Namely, each of the four providers in our study–Google, Dropbox, Microsoft, and Box–provide a
REST API and a Python SDK that simplifies its use druting development. As our discussion will show, the
various services carry both substantial similarities and non-trivial differences.

4.1 Google Drive

The main functionality of the Drive API provided by Google is to upload and download in Google Drive. It
also supports other features, such as file searching, file sharing and collaboration, and conversion and export
of Google Docs [25], [26].

4.1.1 API authorization

All requests to the Google Drive API need to be authorized by an authenticated user; this process is performed
using the OAuth 2.0 protocol [27]. Applications using Google Drive (or any of the Google services) must
follow the same basic authorization pattern:

1. Register the application in the Google Developers Console (Figure 4.1).

2. Request that the user grant access to data in their account.

3. If the user allows grants access, the application request and receives access token credentials to access
the Drive API.

4. When the token expires, the authentication process must be repeated.

21



Figure 4.1: Google Developers Console

Authorization scopes are used to express the permissions requested to users when they use authen-
ticate using an application that request access to their account. In Listing 4.1 all the authorization scopes
supported by Google Drive are explained.

https :// www.googleapis.com/auth/drive.file "Per -file access to files created or opened by

the app"

https :// www.googleapis.com/auth/drive "Full , permissive scope to access all of a user ’s

files. Request this scope only when it is strictly necessary. Tokens with scope https ://

docs.google.com/feeds are accepted and treated the same as tokens with scope https ://www

.googleapis.com/auth/drive."

https :// www.googleapis.com/auth/drive.apps.readonly "Allows apps read -only access to the

list of Drive apps a user has installed ."

https :// www.googleapis.com/auth/drive.readonly "Allows read -only access to file metadata

and file content"

https :// www.googleapis.com/auth/drive.metadata.readonly "Allows read -only access to file

metadata , but does not allow any access to read or download file content"

https :// www.googleapis.com/auth/drive.metadata "Allows read -write access to file metadata ,

but does not allow any access to read , download , write or upload file content. Does not

support file creation , trashing or deletion. Also does not allow changing folders or

sharing in order to prevent access escalation ."

https :// www.googleapis.com/auth/drive.install "Special scope used to let users approve

installation of an app"

https :// www.googleapis.com/auth/drive.appfolder "Allows access to the Application Data

folder"

https :// www.googleapis.com/auth/drive.scripts "Allows access to Apps Script files"

Listing 4.1: Google Drive Authorization scopes [28]

22



4.1.2 Files resource

The files resource has several methods that allow external access to the files stored in a Google Drive account.
These are summarized in Table 4.1 with the two methods used for kumodd development shown in bold.

Table 4.1: Files resource methods; all URIs relative to https://www.googleapis.com/drive/v2. A complete
list of methods is available in in the Drive REST API reference provided by Google [26]

Method HTTP request Description
list GET /files Lists the user’s files.
get GET /files/fileId Gets a file’s metadata by ID.

Files:list

This method lists the files stored in an user account; this includes trashed files as long as they have not been
entirely deleted from the server.

• HTTP Request: GET https://www.googleapis.com/drive/v2/files

• Parameters: No parameter is required.

• Authorization: For this request an authorization with at least one of he following scopes is required:

– https://www.googleapis.com/auth/drive

– https://www.googleapis.com/auth/drive.file

– https://www.googleapis.com/auth/drive.readonly

– https://www.googleapis.com/auth/drive.metadata.readonly

– https://www.googleapis.com/auth/drive.appdata

– https://www.googleapis.com/auth/drive.apps.readonly

– https://www.googleapis.com/auth/drive.metadata

• Response: If successful, this method returns a response body with the following structure:

{

"kind": "drive#changeList",

"etag": etag ,

"selfLink ": string ,

"nextPageToken ": string ,

"nextLink ": string ,

"largestChangeId ": long ,

"items": [

changes Resource

]

}

Listing 4.2: Files:list response tructure

23



Figure 4.2: Files:list method response example (abbreviated)

24



Files:get

Obtains the metadata of a file by its (service-provided) ID.

• HTTP Request: GET https://www.googleapis.com/drive/v2/files/fileId

• Parameters: fileId

• Response: JSON with a File resource in the response body. Figure 4.3

Figure 4.3: Files:get method response example (abbreviated)

Information about additional resources is available in Appendix A.

25



4.2 Dropbox

Like other cloud storage platforms, Dropbox allows developer access to user documents through its Core
API which is based on HTTP and OAuth. There are SDK libraries that handle low-level calls to access and
manipulate Dropbox accounts for a wide range of programming languages such as Java, Python, PHP, and
popular mobile platforms [29].

To start using the Dropbox API it is necessary to register the application in the Dropbox App
Console as shown in Figure 4.4. The App Console is also used to manage general application settings and
permissions that are required to access user information.

Figure 4.4: Dropbox App Console

4.2.1 API authorization

For an application to connect to a Dropbox account it is necessary that a user authenticate through Dropbox
for identity verification and to give the application permission to access their data. Dropbox API uses OAuth
v2 for the authentication process [1]. At the end of the authorization process the application receives an
access token–a string generated by Dropbox which uniquely identify both the app and the end user. The
access token is provided with all requests made to Dropbox through the application (Figure 4.5).

The use of OAuth means that the application does not store or transmit user passwords, and that
user can control the permissions at all times.

26



Figure 4.5: OAuth 2 flow diagram. [1]

4.2.2 Account information

The following sections explains the method used to obtain general information form the analyzed Dropbox
account.

/account/info

Retrieves account information of the user.

• HTTP Request: GET https://api.dropbox.com/1/account/info

• Parameters: No parameter required.

• Response: User account information:

{

"uid": 12345678 ,

"display_name ": "John User",

"name_details ": {

"familiar_name ": "John",

"given_name ": "John",

"surname ": "User"

},

"referral_link ": "https ://www.dropbox.com/referrals/r1a2n3d4m5s6t7",

"country ": "US",

"locale ": "en",

"is_paired ": false ,

"team": {

"name": "Acme Inc.",

"team_id ": "dbtid :1234 abcd"

27



},

"quota_info ": {

"shared ": 253738410565 ,

"quota": 107374182400000 ,

"normal ": 680031877871

}

}

Listing 4.3: Dropbox user information example

4.2.3 Files and metadata

In the following sections the methods used in the development of kumodd to handle files an metadata that
belongs to an authenticated user are explained.

/files(GET)

This method is used to download a file from a Dropbox account using the remote file path as identifier.

f,metadata = client.get_file_and_metadata(’/magnum -opus.txt’)

out = open(’magnum -opus.txt’, ’wb’)

out.write(f.read())

out.close()

Listing 4.4: get file request using the Dropbox Python library

• HTTP Request: GET https://api-content.dropbox.com/1/files/auto/path

• Parameters: path

• Response: The specified file content.

{

’bytes ’: 77,

’icon ’: ’page_white_text ’,

’is_dir ’: False ,

’mime_type ’: ’text/plain ’,

’modified ’: ’Wed , 20 Jul 2011 22:04:50 +0000’,

’path ’: ’/magnum -opus.txt ’,

’rev ’: ’362e2029684fe ’,

’revision ’: 221922 ,

’root ’: ’dropbox ’,

’size ’: ’77 bytes ’,

’thumb_exists ’: False

}

Listing 4.5: Metadata of a file in Dropbox

/revisions

Obtains metadata for all available revisions (max. 1,000) of a specific file by providing its remote path as an
identifier. Revision are only available for thirty days unless the user has an extended version history which
is a paid feature.

revisions(path)

Listing 4.6: revision request using the Dropbox Python library

• HTTP Request: GET https://api.dropbox.com/1/files/auto/path

• Parameters: path

28



• Response: A list of revisions:

[

{

"is_deleted ": true ,

"revision ": 4,

"rev": "40000000d",

"thumb_exists ": false ,

"bytes": 0,

"modified ": "Wed , 20 Jul 2011 22:41:09 +0000" ,

"path": "/hi2",

"is_dir ": false ,

"icon": "page_white",

"root": "app_folder",

"mime_type ": "application/octet -stream",

"size": "0 bytes"

},

{

"revision ": 1,

"rev": "10000000d",

"thumb_exists ": false ,

"bytes": 3,

"modified ": "Wed , 20 Jul 2011 22:40:43 +0000" ,

"path": "/hi2",

"is_dir ": false ,

"icon": "page_white",

"root": "app_folder",

"mime_type ": "application/octet -stream",

"size": "3 bytes"

}

]

Listing 4.7: Revisions method response body example

4.3 OneDrive

Microsoft OneDrive API provides access to data stored in an authenticated OneDrive user account. Inter-
action with OneDrive API is done using RESTful patterns. [30]

OneDrive API support OData V4; an open protocol used to standardize the way RESTful APIs are
consumed. It defines an abstract data model and a protocol that let any client access information stored in
any data source. [31]

OneDrive has classified its API functions by resource type. The two major resources are:

• Drive (top-level object)

• Item (files, folders, etc)

4.3.1 API authorization

To have access to OneDrive API and start sending requests; an application must be registered in the Microsoft
Developer Center before starting using the OneDrive API. [2]

Like Google Drive and Dropbox; Ondrive uses OAuth 2.0 for authentication and the procedure (flow)
is almost the same. In this case it is a three-step process with separate calls. The first step of the process is
to get an authorization code which will allow the app to retrieve an access token to start sending requests.

After a successful authentication a token is received which contains a set of permissions for a user;
this access token is used for every API request. Figure 4.6 [2]

29



Figure 4.6: OAuth 2 flow diagram. [2]

For every request the access token can be specified in the HTTP header (Authorization: bearer

{token }) or as a query parameter to the end of the request URL (?access token=token ).

Authentication scopes

Authentication scopes are used to determine the access will be granted to an application when an user
authenticates trough it. Table 4.2

Scope name Description Required
wl.signin Allows sign-on capabilities. No
wl.offline access Receive refresh token. No
onedrive.readonly Grants read-only permission Yes
onedrive.readwrite Read and write permission. Yes
onedrive.appfolde Read and write permission to a folder Yes

Table 4.2: OneDrive API authorization scopes

4.3.2 Drive resource

This is the top level resource of a user OneDrive account. It contains lower level resources such as files and
folder. The Drive resource method used to develop Kumodd is explained.

30



/drive

This request is used to get metadata with general information about the default drive of an user account.

• HTTP Request: GET https://api.onedrive.com/v1.0/drive

• Parameters: No parameter required.

• Request body: No request body is necessary.

• Response: If successful, a Drive resource is returned in the response body:

{

"id": "0123456789 abc",

"driveType ": "consumer",

"owner": {

"user": {

"id": "12391913 bac",

"displayName ": "Ryan Gregg"

}

},

"quota": {

"total": 1024000 ,

"used": 514000 ,

"remaining ": 1010112 ,

"deleted ": 0,

"state": "normal"

}

}

Listing 4.8: Drive resource response example

4.3.3 Item resource

Items are the folders or files that reside in OneDrive file system. The main item methods used to develop
Kumodd are explained.

/drive/items/{id}

Retrieve metadata of an item on OneDrive by giving its remote path or id.

• HTTP Request: Any of the following requests are valid:

– GET https://api.onedrive.com/v1.0/drive/items/item-id

– GET https://api.onedrive.com/v1.0/drive/root:/item-path

• Authorization scope: Read access.

• Parameters: item-id or item-path .

• Request body: No request body is necessary.

• Response: If successful, an Item resource is returned in the response body:

{

"id": "0123456789 abc",

"name": "example.xlsx",

"eTag": "etag",

"cTag": "etag",

"createdBy ": { "user": { "id": "1234" , "displayName ": "Ryan Gregg" } },

"createdDateTime ": "datetime",

"lastModifiedBy ": { "user": { "id": "1234" , "displayName ": "Ryan Gregg" } },

"lastModifiedDateTime ": "datetime",

"size": 1234,

31



"webUrl ": "http :// onedrive.com/...",

"parentReference ": { "driveId ": "12345" , "id": "root", "path": "/ drive/root:" },

"folder ": { "childCount ": 4 }

}

Listing 4.9: Item resource response example

/drive/items/{id}/children

This request is used to get a list of items inside a folder by specifying it id or remote path.

• HTTP Request: Any of the following requests are valid:

– GET https://api.onedrive.com/v1.0/drive/items/item-id /children

– GET https://api.onedrive.com/v1.0/drive/root:/item-path /children

• Authorization scope: Read access.

• Parameters: item-id or item-path .

• Request body: No request body is necessary.

• Response: If successful, an list of items that are children of the target item resource is returned in
the response body:

{

"value": [

{"name": "myfile.jpg", "size": 2048, "file": {} },

{"name": "Documents", "folder ": { "childCount ": 4} },

{"name": "Photos", "folder ": { "childCount ": 203} },

{"name": "my sheet (1).xlsx", "size": 197 }

]

Listing 4.10: OneDrive list children example

/drive/items/{id}/content

Method to download an item from OneDrive by providing its id or remote path.

• HTTP Request: Any of the following requests are valid:

– GET https://api.onedrive.com/v1.0/drive/items/item-id /content

– GET https://api.onedrive.com/v1.0/drive/root:/item-path /content

• Authorization scope: Read access.

• Parameters: item-id or item-path .

• Request body: No request body is necessary.

• Response: If successful, the method returns a 302 Found response directing to the URL of the item
to proceed to download it.

HTTP /1.1 302 Found

Location: https ://b0mpua -by3301.files .1drv.com/y23vmagahszhxzlcvhasdhasghasodfi

Listing 4.11: Successful download file response

32



4.4 Box

Box allows developers to access user documents through its RESTful Content API. Libraries that simplify
development are available for different programming languages such as Java, Python, Objective-C, etc. [32]

To start using the Dropbox API it is necessary to register the application in the Box Developers
Console. Figure 4.7. The console is also used to manage general settings and authorization scopes. Box has
classified its API in objects; the objects used for Kumodd development are Files and Folders.

Figure 4.7: Box Developers Console

4.4.1 API authorization

Box uses OAuth 2.0 for authentication. The process it uses to authenticate an is similar to the other
services. After a user authenticates and gives the application the permissions necessary to interact with its
Box account; it receives an access token that will be used in every request header. [33]

{

"access_token ": "T9cE5asGnuyYCCqIZFoWjFHvNbvVqHjl",

"expires_in ": 3600,

"restricted_to ": [],

"token_type ": "bearer",

"refresh_token ": "J7rxTiWOHMoSC1isKZKBZWizoRXjkQzig5C6jFgCVJ9

bUnsUfGMinKBDLZWP9BgR"

}

Listing 4.12: Successful Content API authorization response

4.4.2 File object

A file object is every item stored in a Box drive. Except folders. Methods used to get information about file
objects are explained.

33



Figure 4.8: Get file response example (abbreviated)

/files/{id}

Method to get information of a file.

• HTTP Request: GET https://api.box.com/2.0/files/file-id

34



• Parameters: file-id .

• Response: If successful, the method returns a File object in the response body. Figure 4.8

/files/{id}/content

Method to get the content and download a file.

• HTTP Request: GET https://api.box.com/2.0/files/file-id /content

• Parameters: file-id .

• Response: If successful, the method returns 302 Found response along with the download URL of
the target file.

/files/{id}/versions

Method to retrieve older versions of a file.

• HTTP Request: GET https://api.box.com/2.0/files/file-id /versions

• Parameters: file-id .

• Response: If the target file has older versions an array of version objects is returned:

{

"total_count ": 1,

"entries ": [

{

"type": "file_version",

"id": "672259576" ,

"sha1": "359 c6c1ed98081b9a69eb3513b9deced59c957f9",

"name": "Dragons.js",

"size": 92556 ,

"created_at ": "2012 -08 -20 T10 :20:30 -07:00" ,

"modified_at ": "2012 -11 -28 T13 :14:58 -08:00" ,

"modified_by ": {

"type": "user",

"id": "183732129" ,

"name": "sean rose",

"login": "sean+apitest@box.com"

}

}

]

}

Listing 4.13: Array of versions

4.4.3 Folder object

/folders/{FOLDER-ID}/items

Retrieves all files and folders contained in the target folder.

• HTTP Request: GET https://api.box.com/2.0/folders/FOLDER-ID /items

• Parameters: FOLDER-ID .

• Response: If successful, a collection of items contained in the folder is returned:

35



{

"total_count ": 24,

"entries ": [

{

"type": "folder",

"id": "192429928" ,

"sequence_id ": "1",

"etag": "1",

"name": "Stephen Curry Three Pointers"

},

{

"type": "file",

"id": "818853862" ,

"sequence_id ": "0",

"etag": "0",

"name": "Warriors.jpg"

}

],

"offset ": 0,

"limit": 2,

"order": [

{

"by": "type",

"direction ": "ASC"

},

{

"by": "name",

"direction ": "ASC"

}

]

}

Listing 4.14: Items inside a folder

36



Chapter 5

Evaluation

5.1 Functionality

As explained in Chapter 3. The current version of Kumodd has three main functions–content discovery,
filtering, and acquisition (Figure 3.4).

Discovery

Discovery is implemented by means of listing the files in the target account–by default, all files and revisions
are exhaustively listed. An abbreviated version of the results is sent to the standard output device, with the
complete data returned placed in a log file. The fields listed include the ID of the file which is important for
request the actual file content and metadata at the time of the data acquisition step. Also other important
information is included such as the remote path where the file is contained, the number of revisions and
cryptographic hash information.

5.1.1 Filtering

The tool has built-in filters for a number of common (groups of) file types–documents, text, images, audio,
video, etc.–which can be used to quickly filter both the list of discovered files and the list of files to acquire.
For more complex filtering criteria, the analyst can build on-the-fly text filters from Unix-style text processing
commands.

5.1.2 Acquisition

When the investigator has discovered and filtered relevant files. Then the last step would be to download
the local files.

It is important to note that the data downloaded is preserved as it is in the cloud, no information is
manipulated in the process. Kumodd also recreates the directory structure of the cloud drive and download
every change made to a file as a separate files.

Metadata information of each file will also be downloaded which contain more detailed information
about the file. Like creation dates, owners, etc.

If a file already exists locally the application will perform an update to that if necessary, or will skip
it if no changes were made.

Every download or update operation is logged; this way the investigator would be aware of errors
and what files where downloaded including directory information.

5.2 Download times

Using an Amazon EC2 (US-West, N. California) instance for each one of the four supported services and
running a cron job in Linux everyday for seven days at 10:00 AM (PDT) To download 1024 MB of data

37



(1023 files). Download times for each service supported by Kumodd were obtained:

Table 5.1: Kumodd download times
Service Average time (mm:ss.ms)
Google Drive 17:21.57
Dropbox 16:59.71
OneDrive 18:21.29
Box 18:21.00

The instances used to get these results were general purpose instances; variable ECUs, 1 vCPUs,
2.5 GHz, Intel Xeon Family, 1 GiB memory, EBS only, low to moderate network performance.

5.3 Completeness

In this section the completeness of Kumodd is evaluated in terms of what it can do with mirrored data and
cloud-only data compared to traditional acquisition approaches.

5.3.1 Mirrored data

We define mirrored data as files that can reside in a client device and also in a cloud storage service.
When a user has installed a client application from one (or more) cloud storage provider. It is possible to
use traditional methods to obtain this files as are downloaded locally, provided the user has not modified
default setting and the files sored in the services are being downloaded partially (files from a specific remote
directory) or completely (all the cloud drive content). Traditional acquisition methods are the option to take
in cases that it is known the suspect had made use of cloud storage services and access credentials are not
available.

In case credentials are available it is possible to acquire all the files stored in a cloud drive using
Kumodd. This will obtain not only the files but its metadata with detailed information and older version if
available.

5.3.2 Cloud-only data

There are some files that only reside in the cloud. For example, files created using Google web applications
such as Google Docs, Sheets or Spreadsheets can be only obtained using an API approach and exporting
them to a compatible format. This can be done using Kumodd as a traditional approach would only get a
placeholder file which is basically a link to the resource.

Kumodd ca also obtain a complete history of changes of this files, downloading them as revisions.

5.4 Discussion

As mentioned in earlier sections, some differences can be found between the analyzed cloud storage providers.
For example; it is possible to retrieve cryptographic hashes from the files stored in each services, except for
Dropbox.

Dropbox provides with very basic information when the metadata of a file is requested. The only
identifier that it offers in place of a cryptographic hash is a nine characters long string.

Other difference between these services is that Google Drive has its Google Docs service. This is a
web-only suite for creation and edition of documents. Google Docs is embedded in Google Drive, in fact;
when a file is created using a Google Docs application its content is stored in the cloud and this information
is not mirrored in the system of the user. The client application downloads these files as an URL which
redirects the user to the application location in the cloud for viewing and edition purposes. The only way to
obtain the content of the files for local analysis is by exporting it to a local document viewer extension such
as .pdf, .doc, etc. As the files created by Google Docs are cloud artifacts, cryptographic information about
these files cannot be obtained.

38



Other services suffers from lack of important features such as the retrieval of revisions. OneDrive
for example does not offer any way to get older revision of its files trough its API, although it is known that
the service store this information in its servers.

There are other limitations that are different even in the same service. For example, Box has a lot
of limitations of what the API can do when connected to a non-premium account. Revisions are just stored
for 30 days in free tiers and these could represent an important loss of evidence in an investigation.

It is important to take into account that as of today, cloud storage services offers a large amount of
data for premium users. As of today, Google Drive offers a max amount of 30TB for a rate of $299.99 per
month [34]. Using an API approaches in these case could be very ineffective and time consuming.

5.5 Future work

Kumodd was structured in a way that adding more functions to it would not represent too much work or a
need for the developer to understand code of a current version.

In a future it could be possible to support more services. Not only cloud drive services but note
taking services like Evernote and social network support for services such as Facebook or Google+ which
could be useful to get chat logs and other forensically relevant information of users that have accounts on
those services. To do this is it is important to perform an API evaluation of the services and analyze if what
they provide could be useful for evidence acquisition in an investigation.

It is important to implement a way of organizing investigation cases as there is the possibility that the
investigator is involved in more than one investigation. Also implement more forensic aimed functionalities
such as time-lining the cloud account from the time its user logged in from the first time would be helpful
in the future. As of now this is only possible by using file time stamps but some services offer a way of
obtaining information about file deletion or relocation.

In terms of usability it would be very useful to optimize the application to make better use of the
web GUI and also develop an authentication system so it can be used by various users.

39



Chapter 6

Conclusion

Some of previous investigations done was based on traditional approaches; thats is finding ways to get
forensically relevant information from remnants left by client applications or user web navigation. While
this approach could lead to some advances without having user credentials to authenticate in every cloud drive
account the user has logged in, it is almost impossible to get a complete information of he user interaction
with those services.

Using the API acquisition approach, it is possible to obtain the content of each file stored in an
account, metadata information and also a detailed history of file changes. The downside of this is that user
credentials are necessary to be able to access user accounts and perform API request to the service. But this
is a only issue that this paper does not cover.

Kumodd was developed thinking in the API approach. This Python application connects to four
cloud storage services; Google Drive, Dropbox, OneDrive and Box. It retrieves every possible information
from the files (metadata) stored in each service and also gives a way of trace the changes made too each one
of them.

From the cloud storage providers we analyzed it is possible to be aware of the differences each one
of them has compared to the others. One ef the problems with trying to develop tools for cloud forensic
investigation is that each service provider is different; each one of them has its own standards about what
information can be obtained and the format it is presented. This aspect complicates performing forensic
investigations on the cloud and every attempt to develop any tool for this cause will reach a point where
is not possible to cover every cloud service as long as the different guidelines, rules and requirement each
company enforces on their respective services is not standardized.

An example of this issue is that from the four cloud storage services covered in this paper. It is
possible to obtain cryptographic hashes of the files that reside in them except for files stored in Dropbox.
Also Google Drive offers cryptographic hash information for each file that was not created using a Google
Web (Google Docs, Google Sheets, Google Slides, etc.). It is possible to download these files by exporting
them to a format that a client application like one of the Microsoft Office Suite or other document editors
can process and open, but it is impossible to obtain cryptographic hashes of them as these documents reside
in the cloud.

Another problem that should be addressed in the future is that the amount of data the cloud services
are offering is increasing and new approaches should be implemented. Cloud service providers should offer
a way to process a large amount of data to improve efficiency in an investigation.

40



Bibliography

[1] (2015) Dropbox - OAuth guide. Dropbox Inc. [Online]. Available: https://www.dropbox.com/
developers/reference/oauthguide

[2] (2015) OneDrive Dev Center - OneDrive authentication and sign-in. Microsoft. [Online]. Available:
https://dev.onedrive.com/auth/msa\ oauth.htm

[3] P. Mell and T. Grance, “The nist definition of cloud computing.” [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[4] (2015) Rightscale releases 2015 state of the cloud report. [Online]. Available: http://www.rightscale.
com/press-releases/rightscale-releases-2015-state-of-the-cloud-report

[5] (2014) title. Gartner. [Online]. Available: http://www.gartner.com/technology/research/
methodologies/hype-cycle.jsp

[6] I. Ahmed and V. Roussev, “Analysis of cloud digital evidence.”

[7] R. McKemmish, “What is forensic computing,” no. 118. [Online]. Available: http://www.aic.gov.au/
media\ library/publications/tandi\ pdf/tandi118.pdf

[8] D. Quick, “Cloud storage forensic analysis.” [Online]. Available: https://wiki.cis.unisa.edu.au/wki/
images/1/18/QUICK\ Cloud\ Storage\ Forensic\ Analysis.pdf

[9] The basics of cloud forensics. [Online]. Available: http://cloudtimes.org/2012/11/05/
the-basics-of-cloud-forensics/

[10] P. Grabosky. Computer crime: A criminological overview. Australian Institute of Criminology. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/

[11] J. Somers. How i reverse engineered google docs to play back any document’s keystrokes. [Online].
Available: http://features.jsomers.net/how-i-reverse-engineered-google-docs/

[12] H. Chung, J. Park, S. Lee, and C. Kang, “Digital forensic investigation of cloud storage services,”
vol. 9. [Online]. Available: http://dx.doi.org/10.1016/j.diin.2012.05.015

[13] J. Hale, “Amazon cloud drive forensic analysis,” vol. 10, pp. 295–265, October 2013. [Online].
Available: http://dx.doi.org/10.1016/j.diin.2013.04.006

[14] D. Quick and K. R. Choo, “Dropbox analysis: Data remnants on user machines,” vol. 10, pp. 3–18,
June 2013. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-24212-0\ 3

[15] B. Martini and K. R. Choo, “An integrated conceptual digital forensic framework for cloud computing,”
vol. 9, pp. 71–80, November 2012. [Online]. Available: http://dx.doi.org/10.1016/j.diin.2012.07.001

[16] P. Clark, “Digital forensics tool testing – image metadata in the cloud.” [Online]. Available:
http://brage.bibsys.no/xmlui/handle/11250/143978

[17] What is python? executive summary. Python.org. [Online]. Available: https://www.python.org/doc/
essays/blurb/

41



[18] python-gflags. [Online]. Available: https://code.google.com/p/python-gflags/

[19] python-gflags documentation. [Online]. Available: http://python-gflags.googlecode.com/svn/trunk/
gflags.py

[20] google-api-python-client. Google Inc. [Online]. Available: https://github.com/google/
google-api-python-client

[21] Install Core API SDKS. Dropbox Inc. [Online]. Available: https://www.dropbox.com/developers/
core/sdks/python

[22] box-python-sdk. [Online]. Available: https://github.com/box/box-python-sdk

[23] A. Ronacher. (2014) Welcome — Flask (A Python Microframework). [Online]. Available:
http://flask.pocoo.org/

[24] Flask-Classy — Flask Classy 0.6.7 documentation. [Online]. Available: https://pythonhosted.org/
Flask-Classy/

[25] Google Drive REST API Overview - Drive REST API — Google Developers. Google Inc. [Online].
Available: https://developers.google.com/drive/web/about-sdk

[26] API Reference - Drive REST API — Google Developers. Google Inc. [Online]. Available:
https://developers.google.com/drive/v2/reference/

[27] Authorizing Your App with Google Drive - Drive REST API — Google Developers. Google Inc.
[Online]. Available: https://developers.google.com/drive/web/about-auth

[28] Choose Auth Scopes — Drive REST API — Google Developers. Google Inc. [Online]. Available:
https://developers.google.com/drive/web/scopes

[29] (2015) Dropbox - Developer guide. Dropbox Inc. [Online]. Available: https://www.dropbox.com/
developers/reference/devguide

[30] (2015) OneDrive Dev Center - Develop with the Onedrive API. [Online]. Available: https:
//dev.onedrive.com/README.htm

[31] (2015) Introducing OData. Microsoft. [Online]. Available: https://msdn.microsoft.com/en-us/data/
hh237663.aspx

[32] (2015) Box Platform Developer Documentation. Box Inc. [Online]. Available: https://developers.box.
com/sdks/

[33] (2015) Content API. Box Inc. [Online]. Available: https://box-content.readme.io/

[34] Buy and manage storage plans. Google Inc. [Online]. Available: https://support.google.com/drive/
answer/2375123?hl=en

42



Appendix A

Google Drive API

A.1 Google Drive resources

A.1.1 About Resource

The about resource has a general method to obtain information about the authenticated user Google Drive
Account.

About:get

Gets information about the user and Drive API settings.

• HTTP Request: GET https://www.googleapis.com/drive/v2/about

• Parameters: No parameter is required.

• Authorization: For this request an authorization with at least one of he following scopes is required:

– https://www.googleapis.com/auth/drive

– https://www.googleapis.com/auth/drive.file

– https://www.googleapis.com/auth/drive.readonly

– https://www.googleapis.com/auth/drive.metadata.readonly

– https://www.googleapis.com/auth/drive.appdata

– https://www.googleapis.com/auth/drive.metadata

• Response: If successful, this method returns an about resource in the response body. Figure A.1

43



Figure A.1: About:get method response example (abbreviated)

A.1.2 Children resource

The children resource has several methods that allow external interaction with children resources that are
stored in an specific resource. Like files that are contained in a folder. Children methods used in the
development of Kumodd are summarized in Table A.1.

44



Table A.1: Children resource methods; URIs relative to https://www.googleapis.com/drive/v2. A complete
list of methods is available in in the Drive REST API reference provided by Google

Method HTTP request Description
get GET /files/folderId/children/childId Gets a specific child reference.
list GET /files/folderId/children Lists a folder’s children.

Children:get

This methods is used to get a specific child reference.

• HTTP Request: GET https://www.googleapis.com/drive/v2/files/folderId /children/childId

• Parameters: childId , folderId .

• Authorization: For this request an authorization with at least one of he following scopes is required:

– https://www.googleapis.com/auth/drive

– https://www.googleapis.com/auth/drive.file

– https://www.googleapis.com/auth/drive.readonly

– https://www.googleapis.com/auth/drive.metadata.readonly

– https://www.googleapis.com/auth/drive.appdata

– https://www.googleapis.com/auth/drive.metadata

• Response: If successful, this method returns a children resource in the response body. Figure A.2

Figure A.2: Children:get method response example

Children:list

Method used to list the children of a folder. The folderId of the root folder is root.

• HTTP Request: GET https://www.googleapis.com/drive/v2/files/folderId /children

• Parameters: folderId .

• Authorization: For this request an authorization with at least one of he following scopes is required:

– https://www.googleapis.com/auth/drive

– https://www.googleapis.com/auth/drive.file

– https://www.googleapis.com/auth/drive.readonly

– https://www.googleapis.com/auth/drive.metadata.readonly

– https://www.googleapis.com/auth/drive.appdata

– https://www.googleapis.com/auth/drive.metadata

45



• Response: If successful, this method returns a response body with the following structure:

{

"kind": "drive#childList",

"etag": etag ,

"selfLink ": string ,

"nextPageToken ": string ,

"nextLink ": string ,

"items": [

children Resource

]

}

Listing A.1: Children:list response body structure

A.1.3 Revisions resource

The revisions resource has several methods that allow interaction with versions of an specific file resource.
For Google Docs a revision is created every time the document is edited. For other files, revisions are created
if the user uploads manually a new file version or the file is edited in the Google Drive application (mobile
or desktop). Revisions methods used in the development of Kumodd are summarized in Table A.2.

Table A.2: Revisions resource methods; URIs relative to https://www.googleapis.com/drive/v2. A complete
list of methods is available in in the Drive REST API reference provided by Google [26]

Method HTTP request Description
get GET /files/fileId/revisions/revisionId Gets a specific revision.
list GET /files/fileId/revisions Lists a file’s revisions.

Revisions:get

Gets metadata of a revision by specifying its ID and the file ID of the original file.

• HTTP Request: GET https://www.googleapis.com/drive/v2/files/fileId /revisions/revisionId

• Parameters: fileId , revisionId .

• Authorization: For this request an authorization with at least one of he following scopes is required:

– https://www.googleapis.com/auth/drive

– https://www.googleapis.com/auth/drive.file

– https://www.googleapis.com/auth/drive.readonly

– https://www.googleapis.com/auth/drive.metadata.readonly

– https://www.googleapis.com/auth/drive.appdata

– https://www.googleapis.com/auth/drive.metadata

• Response: JSON with a File resource in the response body.Figure A.3

46



Figure A.3: Revisions:get method response example

Revision:list

This method lists the revisions of a file.

• HTTP Request: GET https://www.googleapis.com/drive/v2/files/fileId /revisions

• Parameters: fileId .

• Authorization: For this request an authorization with at least one of he following scopes is required:

– https://www.googleapis.com/auth/drive

– https://www.googleapis.com/auth/drive.file

– https://www.googleapis.com/auth/drive.readonly

– https://www.googleapis.com/auth/drive.metadata.readonly

– https://www.googleapis.com/auth/drive.appdata

47



– https://www.googleapis.com/auth/drive.metadata

• Response: If successful, this method returns a response body with the following structure:

{

"kind": "drive#revisionList",

"etag": etag ,

"selfLink ": string ,

"items": [

revisions Resource

]

}

Listing A.2: Revisions:list response body structure

Information about additional resources, methods, parameters and a complete response overview are
available in the Drive REST API reference provided by Google [26].

A.2 Google Drive resource representations

A.2.1 About resource

{

"kind": "drive#about",

"etag": etag ,

"selfLink ": string ,

"name": string ,

"user": {

"kind": "drive#user",

"displayName ": string ,

"picture ": {

"url": string

},

"isAuthenticatedUser ": boolean ,

"permissionId ": string ,

"emailAddress ": string

},

"quotaBytesTotal ": long ,

"quotaBytesUsed ": long ,

"quotaBytesUsedAggregate ": long ,

"quotaBytesUsedInTrash ": long ,

"quotaType ": string ,

"quotaBytesByService ": [

{

"serviceName ": string ,

"bytesUsed ": long

}

],

"largestChangeId ": long ,

"remainingChangeIds ": long ,

"rootFolderId ": string ,

"domainSharingPolicy ": string ,

"permissionId ": string ,

"importFormats ": [

{

"source ": string ,

"targets ": [

string

]

}

],

"exportFormats ": [

{

"source ": string ,

48



"targets ": [

string

]

}

],

"additionalRoleInfo ": [

{

"type": string ,

"roleSets ": [

{

"primaryRole ": string ,

"additionalRoles ": [

string

]

}

]

}

],

"features ": [

{

"featureName ": string ,

"featureRate ": double

}

],

"maxUploadSizes ": [

{

"type": string ,

"size": long

}

],

"isCurrentAppInstalled ": boolean ,

"languageCode ": string ,

"folderColorPalette ": [

string

]

}

Listing A.3: About resource representation

A.2.2 Files resource

{

"kind": "drive#file",

"id": string ,

"etag": etag ,

"selfLink ": string ,

"webContentLink ": string ,

"webViewLink ": string ,

"alternateLink ": string ,

"embedLink ": string ,

"openWithLinks ": {

(key): string

},

"defaultOpenWithLink ": string ,

"iconLink ": string ,

"thumbnailLink ": string ,

"thumbnail ": {

"image": bytes ,

"mimeType ": string

},

"title": string ,

"mimeType ": string ,

"description ": string ,

"labels ": {

"starred ": boolean ,

"hidden ": boolean ,

"trashed ": boolean ,

"restricted ": boolean ,

49



"viewed ": boolean

},

"createdDate ": datetime ,

"modifiedDate ": datetime ,

"modifiedByMeDate ": datetime ,

"lastViewedByMeDate ": datetime ,

"markedViewedByMeDate ": datetime ,

"sharedWithMeDate ": datetime ,

"version ": long ,

"sharingUser ": {

"kind": "drive#user",

"displayName ": string ,

"picture ": {

"url": string

},

"isAuthenticatedUser ": boolean ,

"permissionId ": string ,

"emailAddress ": string

},

"parents ": [

parents Resource

],

"downloadUrl ": string ,

"exportLinks ": {

(key): string

},

"indexableText ": {

"text": string

},

"userPermission ": permissions Resource ,

"permissions ": [

permissions Resource

],

"originalFilename ": string ,

"fileExtension ": string ,

"md5Checksum ": string ,

"fileSize ": long ,

"quotaBytesUsed ": long ,

"ownerNames ": [

string

],

"owners ": [

{

"kind": "drive#user",

"displayName ": string ,

"picture ": {

"url": string

},

"isAuthenticatedUser ": boolean ,

"permissionId ": string ,

"emailAddress ": string

}

],

"lastModifyingUserName ": string ,

"lastModifyingUser ": {

"kind": "drive#user",

"displayName ": string ,

"picture ": {

"url": string

},

"isAuthenticatedUser ": boolean ,

"permissionId ": string ,

"emailAddress ": string

},

"editable ": boolean ,

"copyable ": boolean ,

"writersCanShare ": boolean ,

"shared ": boolean ,

50



"explicitlyTrashed ": boolean ,

"appDataContents ": boolean ,

"headRevisionId ": string ,

"properties ": [

properties Resource

],

"folderColorRgb ": string ,

"imageMediaMetadata ": {

"width": integer ,

"height ": integer ,

"rotation ": integer ,

"location ": {

"latitude ": double ,

"longitude ": double ,

"altitude ": double

},

"date": string ,

"cameraMake ": string ,

"cameraModel ": string ,

"exposureTime ": float ,

"aperture ": float ,

"flashUsed ": boolean ,

"focalLength ": float ,

"isoSpeed ": integer ,

"meteringMode ": string ,

"sensor ": string ,

"exposureMode ": string ,

"colorSpace ": string ,

"whiteBalance ": string ,

"exposureBias ": float ,

"maxApertureValue ": float ,

"subjectDistance ": integer ,

"lens": string

},

"videoMediaMetadata ": {

"width": integer ,

"height ": integer ,

"durationMillis ": long

}

}

Listing A.4: Files resource representation

A.2.3 Children resource

{

"kind": "drive#childReference",

"id": string ,

"selfLink ": string ,

"childLink ": string

}

Listing A.5: Children resource representation

51



A.2.4 Revisions resource

{

"kind": "drive#revision",

"etag": etag ,

"id": string ,

"selfLink ": string ,

"mimeType ": string ,

"modifiedDate ": datetime ,

"pinned ": boolean ,

"published ": boolean ,

"publishedLink ": string ,

"publishAuto ": boolean ,

"publishedOutsideDomain ": boolean ,

"downloadUrl ": string ,

"exportLinks ": {

(key): string

},

"lastModifyingUserName ": string ,

"lastModifyingUser ": {

"kind": "drive#user",

"displayName ": string ,

"picture ": {

"url": string

},

"isAuthenticatedUser ": boolean ,

"permissionId ": string ,

"emailAddress ": string

},

"originalFilename ": string ,

"md5Checksum ": string ,

"fileSize ": long

}

Listing A.6: Revision resource representation

52



Vita

Andres Barreto was born in Portoviejo, Ecuador on November 29th 1988. He received his Bachelor degree
in Computer Science from Escuela Superior Politécnica del Litoral (ESPOL) in 2006. He worked as a
Webmaster for three years after obtaining his bachelor degree. Currently he is pursuing his master’s in the
field of Information Assurance, under the Computer Science Department, at University of New Orleans,
Louisiana, United States of America.

53


	API-Based Acquisition of Evidence from Cloud Storage Providers
	Recommended Citation

	tmp.1437455238.pdf.o8mGZ

