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Abstract

Installation of reactive compensators is widely used for improving power system voltage

stability. Reactive compensation also improves the system loading margin resulting in more

stable and reliable operation. The improvements in system performance are highly depen-

dent on the location where the reactive compensation is placed in the system. This paper

compares three load flow analysis methods - PV curve analysis, QV sensitivity analysis, and

Continuation Load Flow - in identifying system weak buses for placing reactive compensa-

tion. The methods are applied to three IEEE test systems, including modified IEEE 14-bus

system, IEEE 30-bus system, and IEEE 57-bus system. Locations of reactive compensation

and corresponding improvements in loading margin and voltages in each test system obtained

by the three methods are compared. The author also analyzes the test systems to locate

the optimal placement of reactive compensation that yields the maximum loading margin.

The results when compared with brute force placement of reactive compensation show the

relationship between effectiveness of the three methods and topology of the test systems.

Keywords: Reactive Power, Static Voltage Stability, Placement, Load Flow Analysis,

Comparative Analysis
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1 Introduction

This chapter provides an overview of the evolution and establishment of mod-

ern power systems. Various aspects of power systems including load flow techniques, voltage

stability, voltage stability analysis techniques, and loading margin in particular are intro-

duced. A historical review of voltage stability analysis of power systems and methods of volt-

age stability analysis are presented. This thesis presents a comparative analysis of techniques

in load flow analysis for steady state voltage stability and loading margin improvements.

The remainder of this chapter includes an overview of modern power systems in

subsection 1.1, power system stability in subsection 1.2, voltage stability of power system in

subsection 1.3, voltage stability analysis methods in subsection 1.4, and practical techniques

for prevention of voltage collapse in subsection 1.5. The specific scope of this thesis is

represented in subsection 1.7 after providing a historical review of major blackouts caused

by voltage instability in subsection 1.6.

1.1 Modern Power Systems

The commercial use of electricity began in the late 1870s when arc lamps were

used for lighthouse illumination and street lighting [1]. The first complete electric power

system (comprising a generator, cable, fuse, meter, and loads) was built by Thomas Edison -

the historic Pearl Street Station in New York City which began operating in September 1882.

The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an

underground cable system. Within few years similar systems were in operation in most large

cities throughout the world. With the development of motors by Frank Sprague in 1884,
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motor loads were added to such systems.

Initially, dc systems were widely spread but by 1886 were completely super-

seded by ac systems. The reason being the increasingly apparent limitations of dc systems.

DC systems could deliver power only a short distance from the generators. To keep trans-

mission losses (I2R) and voltage drops to acceptable levels, voltages had to be high for

long-distance power transmission. Such high voltages were not acceptable for generation

and consumption of power, therefore a convenient means for voltage transformation became

a necessity. Some of the main reasons for the transition from dc to ac systems are easy

transformation of voltages thus providing the flexibility for use of different voltages for gen-

eration, transmission, and distribution, AC generators are much simpler than dc generators,

and AC motors are much simpler and cheaper than dc motors.

The decision to choose ac at Niagara Falls to transmit power about 30 km away

to Buffalo ended the ac versus dc controversy and established victory for the ac systems. In

early period of ac power transmission, frequency was not standardized. The use of many

different frequencies posed problems for interconnection. So eventually 60 Hz was adopted

as standard in North America, many other countries selected 50 Hz. The increasing need

for transmitting large amounts of power over longer distances created an incentive to use

progressively higher voltage levels. To avoid the proliferation of an unlimited number of

voltages, the industry has standardized voltage levels. The standards are 115, 138, 161, 230

KV for high voltage (HV) class, and 345, 500 and 765 KV for the extra-high voltage (EHV)

class [1].

Interconnection of neighboring utilities leads to improved security and econ-

omy of operation due to the mutual assistance that the utilities can provide. Several benefits
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including the ones described above have been recognized from the beginning and intercon-

nections continue to grow leading to todays one big complex interconnected system with

almost all the utilities in United States and Canada. The design and secure operation of

such a system are indeed challenging problems.

In recent years, power demands around the world generally and particularly

in North America have experienced rapid increase due to the increase of customers’ require-

ments. The report from Renewable Energy Transmission Company (RETCO) [2] about the

infrastructure situation of U.S. electric grids states that electricity consumption accounts for

40% of all energy consumed in the U.S. and the electricity demand grows significantly and

it will reach an increase rate of 26% by 2030.

Since 1982, growth in peak demand for electricity has exceeded transmission

growth by almost 25% every year. Yet spending on research and development is the lowest

of all industries [3]. Even with increase in demand, there has been chronic underinvestment

in getting energy where it needs to go through transmission and distribution which limits

grid efficiency and reliability. Since 2000, only 668 additional miles of interstate transmission

have been built [3]. As a result, system constraints worsen at a time when outages and power

quality issues are estimated to cost American business more than $100 billion on average

each year. Under these extreme conditions, the need for maintaining stable operation of the

grid is most important.

1.2 Power System Stability

Reference [4] defines power system stability as “the ability of an electric power

system, for a given initial operating condition, to regain a state of operating equilibrium

after being subjected to a physical disturbance, with most system variables bounded so that
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practically the entire system remains intact” . This definition applies to an interconnected

power system as a whole where the stability of a particular generator or a group of generators

is of interest. A remote generator may lose synchronism without causing cascading instability

of the whole system. Similarly, stability of particular loads or load areas may be of interest.

The power system is a highly nonlinear system that operates in a constantly

changing environment; loads, generator outputs and key operating parameters change con-

tinually. When subjected to a disturbance, the stability of the power system depends on

the initial conditions and nature of the disturbance. Power systems are subjected to a wide

range of disturbances, small and large. Small disturbances in the form of load changes occur

continually; the system must be able to adjust to the changing conditions and operate satis-

factorily. It must also be able to survive numerous disturbances of a severe nature, such as

a short circuit on a transmission line or loss of a large generator. A large disturbance may

lead to structural changes due to the isolation of the faulted elements.

However, it is impractical and uneconomical to design power system to be

stable for every possible disturbance [4]. The design contingencies are selected on the basis

that they have a reasonably high probability of occurrence. A stable equilibrium set thus has

a finite region of attraction; the larger the region, the more robust the system with respect to

large disturbances. The region of attraction changes continually with changes in operating

conditions of the power system.

Power system stability is a high dimensional and complex problem and in

order to deal with different types of instabilities occurring in the system it helps to make

simplifying assumptions to analyze specific types of problems using an appropriate degree of

detail system representation and appropriate analytical techniques. The understanding of
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stability problem is greatly facilitated by the classification of stability into various categories

[1]. The power system stability is mainly divided into rotor angle stability, frequency stability

and voltage stability. Voltage stability is explained in detail in subsequent sections as it is

the main focus of this thesis.

1.3 Voltage stability of Power System

Voltage stability is the ability of a power system to maintain steady accept-

able voltages at all buses in the system under normal operating conditions and after being

subjected to a disturbance [1]. A system enters voltage instability when a disturbance, in-

crease in load demand, or change in system condition causes a progressive and uncontrollable

drop in voltage. The main factor causing instability is the inability of the power system to

meet the demand for reactive power. A possible outcome of voltage instability is the loss

of load in an area, or tripping of transmission lines and other elements by their protective

systems leading to cascading outages. Voltage collapse is the process by which the sequence

of events accompanying voltage instability leads to a blackout or abnormally low voltages in

a significant part of the power system.

Voltage instability is mainly caused because of the loads; after a disturbance,

power consumed by the loads tends to be restored by the action of voltage regulators, tap

changing transformers, and thermostats. Restored loads increase the stress on high voltage

network by increasing the reactive power consumption and causing further voltage reduction.

A run-down situation causing voltage instability occurs when load dynamics attempt to

restore power consumption beyond the capability of transmission network and the connected

generation [1] [5].

There is also a risk of overvoltage instability in the system which has been
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experienced at least once [6]. This is caused by the capacitive behavior of the network as

well as by under excitation limiters preventing generators and/or synchronous compensators

from absorbing the excess reactive power. This instability is associated with instability of

the combined generation and transmission system to operate below some load level.

Voltage stability problems may also be experienced at HVDC links [7]. They

are usually associated with HVDC links connected to weak ac systems and may occur at

rectifier or inverter stations, and are associated with the unfavorable reactive power “load”

characteristics of the converters. The HVDC link control strategies have a significant in-

fluence on such problems, since the active and reactive power at the ac/dc junction are

determined by the controls. If the resulting loading on the ac transmission is relatively with

the time frame of interest being in order of one second or less.

It is useful to classify voltage stability into sub categories as discussed below:

1. Large - disturbance voltage stability is the ability of the system to maintain steady per-

missible voltages following large disturbances such as system faults, generator trips or

other circuit contingencies. This phenomenon is affected by the system and load charac-

teristics, and the interactions of both continuous and discrete controls and protections.

Determination of large signal voltage stability requires the examination of the nonlinear

response of the power system over a period of time sufficient to capture the performance

and interactions of devices such as motors, under load tap changers, generator field cur-

rent limiters, and speed governors. The study period of interest may extend from a few

seconds to tens of minutes. Therefore, long-term dynamic simulations are required for

analysis.

2. Small - disturbance voltage stability is the ability of the power system to maintain steady
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permissible voltages when subjected to small perturbations such as incremental changes

in system load. This form of stability is influenced by the characteristics of the load,

continuous controls, and discrete controls at a given instant of time. This concept is

useful in determining, at any instant, how the system responds to small system changes.

To identify the factors influencing stability, system equations can be linearized for the

analysis with appropriate assumptions.

The time frame of interest for voltage stability problems may vary from a few

seconds to tens of minutes. Therefore, voltage stability can be classified into short term and

long term on this basis.

1. Short - term voltage stability involves dynamics of fast acting load components such

as induction motors, electronically controlled loads, and HVDC converters. The study

period of interest is in order of several seconds, and the analysis requires solution of

appropriate system differential equations [4]. This analysis needs dynamic modeling of

loads.

2. Long - term voltage stability involves slower acting equipment such as tap-changing

transformers, thermostatically controlled loads, and generator and current limiters.

This analysis assumes that inter - machine synchronizing power oscillations have dumped

out, resulting in a uniform system frequency [8]. The focus is on slower and longer du-

ration phenomena that accompany large scale system upsets and on the resulting large,

sustained mismatches between the generation and consumption of active and reactive

powers. Long - term stability is usually concerned with system disturbances that involve

contingencies beyond the normal system design criteria.
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1.4 Methods of Voltage Stability Analysis

Voltage stability problems normally occur in heavily stressed systems. While

the disturbance leading to voltage collapse may be initiated by a variety of causes, the

underlying problem is a inherent weakness in the power system. The main factors other than

the design limitations of the system are generator reactive power/voltage control limits, load

characteristics, characteristics of reactive compensations devices, and the action of voltage

control devices such as under load tap changing transformers (ULTCs) [1].

The voltage stability analysis for a given system state involves the examination

of two concepts [9]:

1. Proximity to Voltage Instability: A measure of how close the system is to voltage in-

stability. Physical quantities such as load levels, active power flow through critical

interface and reactive power reserve can be used to measure the distance to instability.

The most appropriate measure for a given situation depends on the specific system and

the intended use of the margin. Considerations must be given to possible contingencies

such as line outages, loss of generating units or reactive power sources, etc.,

2. Mechanism of Voltage Instability: This includes the determination of the cause of insta-

bility including the key factors, voltage - weak areas and also finding out the measures

to improve stability.

The voltage instability problem is solved by many different methods, which

can be distinguished mainly in two groups: static and dynamic methods. Dynamic methods

apply real - time simulation in time domain using precise dynamic models for all instruments

in a power system. It shows the time domain events and their characteristic curves which
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eventually lead the system into voltage collapse. These methods mainly depend on the

solutions of large sets of differential equations created to describe the model characteristics of

electrical devices and their internal connections. Dynamic simulation is particularly effective

for detailed study of specific voltage collapse situations and coordination of protection and

time dependent action of controls. The dynamic simulation of large-scale power system is

time consuming and relies heavily on the computer’s performance.

The system dynamics influencing voltage instability are usually slow. There-

fore, static methods can be used to analyze many aspects of the problem. The static analysis

techniques allow examination of a wide range of system conditions and, if appropriately used,

can provide much insight into the nature of the problem and identify the key contributing

factors.

Static Analysis captures snapshots of system conditions at various time frames

along the time-domain trajectory. The electric utility industry has been widely dependent

on conventional power-flow techniques for static analysis of voltage stability. V-P and V-Q

curves are the most commonly used methods for voltage stability analysis. Although these

methods involve the establishment of stability characteristics by unrealistically stressing each

individual bus in the system. As a consequence, several techniques have been proposed for

voltage stability analysis using the static approach.

F. D. Galiana proposed a novel technique based on concept called the load

flow feasibility region (FR) and the steady state stability or feasibility margin (FM) [10].

The method does not rely on load flow solutions to give an estimate of how close the bus

injection vectors (P, Q, or V 2) are to the boundary of FR thus avoiding the problems of non-

convergence under the system loading limits. The FR is the set of generalized bus injections
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and the FM is a scalar ranging from 0 and 1. FM is a measure of the angle between the bus

injection vector and the closest injection vector on the the boundary of the FR along some

specified direction. A value of FM equal to 0 implies that the injections are on the boundary

of the FR and a value of FM greater than 0 indicates that the injections are inside the FR.

B. Gao, G. K. Morris, P. Kundur presented a technique to analyze the voltage

stability of large power systems using modal analysis technique [9]. The method computes

a specified number of the smallest eigenvalues and the associated eigen vectors of a reduced

Jacobian matrix and the associated bus, branch and generation participation factors. The

magnitude of the eigen values, each of which is associated with a mode of voltage/reactive

power variation determines the degree of stability of the ith modal voltage. The smaller the

eigen value, closer the mode is to instability. The eigenvectors are used to describe the mode

shape and to information about the network elements and generators which participate

in each mode. The magnitude of eigen values provides a relative measure to instability.

However, they do not provide an absolute measure because of the nonlinearity of the problem

[1]. At any given operating condition, the system is stressed incrementally until it becomes

unstable to obtain a MW distance to instability. Modal analysis is then applied at each

operating point which gives the information about how stable the system is and how much

extra load the system can take. At the system’s voltage stability critical point, modal analysis

helps identify the voltage stability critical areas and elements participating in each mode.

The relation between voltage instability and multiple load flow solutions has

been investigated by Y. Tamura [11]. A set of N criteria are preset to differentiate between the

solution pair of the load flow to identify the stable and unstable one. The criterion used in this

discussion are sign of Jacobian determinant in the load flow calculation, load flow sensitivity
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for node injections and system parameters, and increase or decrease of stored energy of the

elements L and C in the electric power system due to small frequency disturbance raise.

Although the criterion 1 has some disadvantages in that it needs Jacobian J in the stable

system and involves uncertainty of sign{det J} when the even number of the eigenvalues

vary to the unstable mode, in the criteria 2 and 3 the property of solution can be judged at

any time point without the prior information.

The QV curve method [1], [27] has been used as a planning tool by many

utilities. QV curve may help engineers to identify critical buses in the system as well as the

reactive power injections needed at those buses to ensure voltage security. Pablo Guimaraes,

Ubaldo Fernandez, Tito Ocariz, Fritz W. Mohn, A. C. Zambroni de Souza presented a work

where they used QV and PV curves as planning tools of analysis [28]. In this work, a

planning tool based on some voltage stability criteria is proposed. They employed tangent

vectors to identify citical buses in the system and QV curves to identify the buses with least

and larger reactive power to obtain a good planning strategy. QV sensibility and curves have

been employed for voltage stability assessment [29], [30] in other power system studies.

V-Q sensitivity analysis has advantage that it provides voltage stability-related

information from a system-wide perspective and clearly identifies areas that have potential

problems. The elements of the Jacobian matrix gives the sensitivity between power flow and

bus voltage changes. The V-Q sensitivity at a bus represents the slope of the Q-V curve at

the given operating point. A positive V-Q sensitivity is indicative of stable operating, the

smaller the sensitivity, the more stable the system. As stability decreases, the magnitude of

the sensitivity increases, becoming infinity at the stability limit. A negative V-Q sensitivity is

indicative of unstable operation, even a small negative sensitivity represents a very unstable
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operation [1]. A detailed mathematical description of Q-V sensitivity is given in further

chapters.

The PV curves represent the voltage variation with respect to the variation

of load active power. They are produced by a series of load flow solutions for different

load levels uniformly distributed, by keeping constant power factor. The active power is

proportionally incremented to the participating factors of each generator. PV curves are

widely used in industry for static voltage stability analysis of power system. The PV curves

are plotted for each bus and the bus which reaches the stability margin is identified as the

weak bus. A detailed mathematical description of the PV curves and how they are derived

is given in further chapters. S. Corsi and G. N. Taranto presented a paper elaborating the

understanding of dependence of the shape of the “nose” of a Power-Voltage (PV) curve in a

EHV bus, by the power system dynamics [13]. The paper showed in detail the involvement

of control loops in voltage instability phenomenon and their effect on the shape of PV curve.

Venkataraman Ajjarapu, Colin Christy presented a method of finding a con-

tinuum of power flow solutions starting at some base load and leading to the steady state

stability limit (critical point) of the system [12]. The method uses reformulated power flow

equations with a load parameter as an additional parameter. The continuation algorithm is

then applied to the system of reformulated power flow equations. The process involves pre-

dictor and corrector steps to find the consecutive solutions, it remains well conditioned near

and beyond the stability limit consequently avoiding the problems of conventional power-flow

which are prone to convergence problems at operating condition near the stability limit. A

detailed mathematical description of the method is given in further chapters.

Ana Claudia M. Valle presented the use of tangent vectors for voltage collapse
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analysis [24] where the system tangent vectors were computed using inverse of the Jacobian

matrix. In this work, normalized tangent vectors were compared to the eigenvectors to whom

the same normalization was applied. A. C. M. Valle later presented a paper where he used

tangent vectors and eignevectors in power system voltage collapse analysis [25]. In this work,

a relation between the tangent vectors and eigenvectors is used to converge to the bifurcation

point sooner and to identify the most sensible bus and the generator which most influence

the bus voltage oscillation.

B. Isaias Lima Lopes, A. C. Zambroni de Souza, and P. Paulo C. Mendes

presented a paper that talked about the use of tangent vectors as a tool for voltage collapse

analysis considering a dynamic model [26]. In this work, they employed the continuation

method for the power flow model to calculate the indices for each operating point and

the process is repeated for dynamic system model. The results are compared and showed

that dynamic model may be more pessimistic for loading margin evaluation, since the static

model tends to produce results more conservative. They conclude that monitoring the indices

during the system load increase may not be enough to identify the voltage collapse point.

However, tangent vector presents a better behavior than the least eigenvalue, since latter is

associated with a sudden variation at the voltage collapse point.

Continuation load flow has been used in several instances for steady state power

system analyses and to obtain system tangent vectors [28] [31] [32] [33]. A. Sode-Yome, N.

Mithulananthan, K. Y. Lee presented a paper comparing various FACTS devices [14]. They

used several performance measures including PV curves, voltage profiles, and power losses

are compared to evaluate their performance. Continuation load flow was used for steady

state analysis to identify weak bus of the system to install reactive compensation. The
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paper investigates both placement and sizing techniques for better choice of FACTS devices

for enhancing loading margin and static voltage stability.

1.5 Practical Techniques for Prevention of Voltage Collapse

Several measure could be taken to avoid voltage collapse, system design mea-

sures and system operating measures are the common practices for this purpose [1]. System

design measures that can be taken to avoid voltage collapse are:

1. Application of Reactive Power-Compensating devices: Adequate stability mar-

gins should be maintained by selecting the appropriate sizes, ratings, and locations

for reactive compensation devices based on detailed studies covering the most onerous

system conditions for which the system is required to operate satisfactorily

2. Control of Network Voltage and Generator Reactive output: Generator AVR

regulates voltages on the high-tension side of the step-up transformer moving the point

of constant voltage electrically closer to the loads. A secondary outer control loop with

response time of about 10 seconds is used to regulate network side voltage.

3. Coordination of Protections/Controls: Lack of coordination between equipment

protections/controls and power system requirements could lead to voltage collapse, ad-

equate coordination should be ensured based on dynamic simulation studies. Adequate

control measures should be provided for relieving any overload conditions before iso-

lating equipment from the system, tripping of equipment should be the last resort to

prevent an overloaded condition.

4. Control of Transformer Tap Changers: Tap changing transformers are used to

reduce the risk of voltage collapse. Strategies developed based on knowledge of the load
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and distribution system characteristics must be employed to improve ULTC control

[1]. Microprocessor-based ULTCs on the other hand provide unlimited flexibility in

implementing control strategies so as to take advantage of the load characteristics.

5. Undervoltage Load Shedding: Load shedding based on carefully designed schemes

to cater unplanned or extreme situations is a low cost means of preventing widespread

system collapse. It is employed in both underfrequency and undervoltage control, the

characteristics and locations of loads to be shed are more important for voltage problems

than they are for frequency problems [1].

System-operating measure that can be taken to avoid voltage collapse are:

1. Stability Margin: Maintaining adequate voltage stability margin by scheduling of

reactive power and voltage profiles could help avoid voltage collapse. All systems are

different and should be the parameters and degree of margin designed based on the

particular system.

2. Spinning Reserve: Maintaining adequate spinning reserves and switching in capaci-

tors by appropriately identifying the need to maintain the desired voltage profile.

3. Operators’ Action: Operators must be able to identify voltage stability-related symp-

toms and take remedial actions based on well designed strategies to prevent voltage col-

lapse. On-line monitoring and analysis could direct to appropriate preventive actions

so as to avoid voltage collapse situation.

1.6 Major Blackouts caused by Voltage Instability

Power industries were initially dedicated as service oriented and driven com-

pletely by government. Gradually as the system became large with increasing demand,
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deregulation was introduced to improve the managerial efficiency. This lead to a compet-

itive market structure with increase in system utilization and it also increased the risk on

system operations by stressing the power systems and reducing the predictability of opera-

tions. Interconnection with neighboring countries or sub systems made the network stronger,

however this also increases the area covered by the network thus increasing risk on external

interferences. This also increases the risk of having many disturbances at the same time

therefore makes it difficult to design the system to sustain N-1 contingency and reduce the

security of the power system.

The first officially reported major blackout was the Northeast power failure

on 9th November 1965. The backup protection tripped one of the five line connecting the

northeast and southwest under heavily loaded conditions [15]. This eventually led to the

tripping of rest of the four lines diverting 1700 MW of power which eventually led to total

system collapse. It was also identified that there was not enough spinning reserve kept at

the time the blackout was initiated. The blackout affected 30 million people and New York

City was in darkness for 13 hours. The 13th July 1977 collapse of Con Edison System left

8 million people in darkness, including New York City for periods from 5 to 25 hours [15].

Lack of preparation for major emergencies, operating errors, questionable system design,

and equipment malfunction with a combination of natural events were recognized as the

causes of the event. Imperfect operation of protective equipment resulted in three of four

lines tripping which resulted in transmission ties overloading eventually opening them which

led to total system operation failure.

On 23rd July 1987, a power failure occurred in Tokyo, Japan due to insufficient

reserve. There was an outage of 3.4 GW power out of the maximum power demand of 38.5
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GW, the 1.52 GW reserve was insufficient for the unusual high peak demand due to extreme

hot weather [15]. Widely used constant power characteristic loads such as air conditioners

reduced the network voltage rapidly and caused dynamic voltage instability. The Western

North American power system reported an interruption leading to failure on 2nd July 1996.

It was initiated with a flashover to a tree which created a short circuit on a transmission line

causing a 2 GW power interruption. This line was a series compensated with a capacitor, the

loss of power transfer caused voltage depression and thus tripped a few hydro generators due

to high field current causing a voltage decay. To prevent further down process, five islanded

sub systems were formed with controlled and uncontrolled load shedding.

50 million people were affected on 14th August 2003 in US and Canadian due

to a blackout which interrupted 63 GW load. In this event 400 transmission lines and 531

generating units at 261 power plants tripped. The major reason was found to be insufficient

reactive power, which lead to voltage instability. Failure was initiated with tripping voltage

regulator due to over excitation and when the operators tried to restore the regulators,

generators which were generating high reactive power were tripped. Finally, tripping of a tie

line lead to cascading blackout of the entire region. Several other blackouts were reported

over the past decade including 23rd September 2003 blackout in Europe, the Swedish/Danish

system, 28th September 2003 blackout in Italy, and a major interruption in Victoria, Australia

on 16th January 2007 that interrupted service to 480,000 customers.

Operator action and load shedding could have greatly reduced the impact in

most of the situations listed above [15]. Gathering and analysis of technical information on

the root cause of blackouts, development of load shedding schemes with technical explana-

tion, a detailed study about the restoration problems with critical study, and exclusive focus
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on requirement of the system operator’s training are few of the measures that could avoid a

system wide blackout.
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1.7 Scope and Contribution of Thesis

Over the years, various methods have been used to identify the weak buses of a

system for reactive power installation in several studies. This thesis is an investigation into

whether there are any differences in improvement of the system design and consequently

performance caused by the use of different load flow analysis techniques to identify the

location for installing reactive compensation. The investigation conducted in this thesis

consists of comparing three methods namely Continuation Load Flow, PV Curve Analysis,

and QV sensitivity analysis to identify the weak buses in multiple systems and a reactive

compensation is installed at these locations. Various metrics including maximum loading

margin and the system differential active and reactive power losses are compared to the

results of installing a reactive compensation at the optimal location obtained from brute-

force to identify the method(s) that identifies a location that gives better results compared

to other method(s).

Load flow equations are multi dimensional and coupled set of equations, which

usually are solved using iterative techniques. Several techniques have been developed for this

purpose and the results obtained are analyzed using even more techniques. PV curve analysis

and QV sensitivity analysis are obtained from the traditional load flow. Continuation load

flow is more recent developed method of load flow analysis which gives other sensitivity

information useful in system analysis.

PV curves are the plots of real power and voltage at some critical buses which

help determine the static voltage stability of the system. For any given loading condition the

bus voltage has two possible values except at the stability limit where the load flow equations

do not converge. One of these two is in stable operating mode and the other one is not. It
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is of utmost importance to never operate the system at unstable voltage levels, this could

cause a serious black out though uncontrollable collapse of voltage levels in the system. PV

curves help identify the operating voltages for different levels of real power requirement and

also specify the weak buses in the system which are prone to voltage instability.

QV sensitivity analysis is the change in bus voltage with injection or absorption

of reactive power (Q) at any bus. For a system to be in stable operating mode, it is necessary

that all the buses in the system have a positive QV sensitivity. The degree of sensitivity can

be observed in the elements of the Jacobian matrix of load flow equations. For a given set

of parameters (P,Q, V and θ), the magnitude of elements of the Jacobian matrix identify the

buses that are highly sensitive to Q. The small the QV sensitivity, the more stable the bus

is. As the stability decreases, the magnitude of QV sensitivity increases becoming infinite

at stability limit. However, even a small negative QV sensitivity is an indicative of highly

unstable operation.

Continuation load can be used to compute the load flow solutions beyond

the stability limit of the system which conventional load flow techniques fail to provide.

This is due to the convergence problems of the Jacobian matrix in conventional load flow

methods, which the Continuation load flow method over comes by employing a prediction

and correction of tangent vectors at a given solution of the load flow equations. The method

provides very useful sensitivity information at no additional cost at all. The magnitudes of

the tangent vectors at a given solution provide the sensitivity information of all the buses.

The greater the magnitude, the more unstable the bus is in the system.

Reactive power installation is a widely used technique for voltage stability and

loading margin improvement of the system. The location for reactive power installation
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plays a crucial role in determining the improvement that can be obtained in the system.

Installation of reactive compensation at weak buses of the system has shown to improve

the system voltage stability and loading margin [14]. However, the definition of a weak bus

changes with the load flow and sensitivity analysis used. Thus, it is important to identify the

differences in improvement of system performance based on the analysis method employed.

The measure of improvement in system performance is an important aspect

for analysis purposes. Several metrics could be used to achieve this purpose. Differential

real and reactive power losses of the system and maximum loading margin of the system are

the metrics used in this thesis to measure the system performance.

The active and reactive power losses are related to the bus voltage angle and

magnitude stability of the system. It can be observed from the system Jacobian matrix that

the voltage angle is dependent on the real power available at a bus and the voltage magnitude

is dependent on the reactive power available at a bus. Reducing the losses increases the

available real and reactive power at a bus, thus improving the voltage stability.

Maximum loading margin of a system is the load beyond which increase in load

will drive the system to instability. The system is operated by maintaining sufficient margin

from this maximum loading margin so as to always keep the system in stable operating

conditions. An increase in the system maximum loading margin will provide an improvement

in the load which the system can supply and still keep a sufficient margin from the maximum

loading margin.

In further chapters, various load flow methods, analysis techniques, and metrics

that will be used in this thesis will be discussed in detail. Then methodology is proposed

for comparing the improvement of system performance based on location of reactive power
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installation. The methodology is then applied to various test systems and the results are

presented. Conclusions are then drawn based on the simulation results obtained.
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2 Mathematical Modeling

Mathematical modeling of the load flow problem, various load flow analysis

techniques along with stability analysis techniques are discussed in this chapter.

2.1 Load Flow Problem

The main objective of solving the load flow problem is calculation of the power

flows and voltages of a transmission network for specified bus conditions. These calculations

are required for both steady state and dynamic analysis as well. The bus classification are

as described below:

1. Variables: Voltage magnitude, Voltage phase angle, real power requirement, and re-

active power requirement.

2. Voltage-Controlled (PV) bus: Voltage magnitude and active power are known quan-

tities for this kind of buses, reactive power limits are specified as well.

3. Load (PQ) bus: Active and reactive power requirements are the known quantities at

this type of bus locations.

4. Slack (Swing) bus: Voltage magnitude and phase angle are the known quantities for

this type of bus, there must be at least one bus with unspecified P and Q because of

the unknown P and Q losses in the system.

The network equations in terms of the node admittance matrix are written as

follows:
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Ĩ1

Ĩ2

Ĩ3

...

Ĩn


=



Y11 Y12 Y13 . . . Y1n

Y12 Y22 Y23 . . . Y2n

Y31 Y32 Y33 . . . Y3n

...
...

...
. . .

...

Yn1 Yn2 Yn3 . . . Ynn





Ṽ1

Ṽ2

Ṽ3

...

Ṽn


(1)

Where

n is the total number of nodes

Yii is the self admittance of node i

Yij is the mutual admittance between nodes i and j

Ṽi is the phasor voltage to ground at node i

Ĩi is the phasor current flowing into the network at node i

The set of equations 1 would be linear if Ĩ were known, however the current

injections are not known for most nodes. The relations between the node currents, P, Q,

and V are as follows:

Ĩi =
Pi − jQi

Ṽ ∗i
(2)

Due to non linearity of the problem, load flow equations are solved iteratively.

Several techniques have been developed to solve the set of equations, [16] presents various

methods developed over the years.

2.2 Load Flow Analysis Techniques

2.2.1 Gauss-Seidel Method:
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This is an iterative approach proposed by Seidel in 1874 (Academy of Science,

Munich). The equation 2 is rewritten as follows:

Pi − jQi

Ṽ ∗i
= YiiṼi +

n∑
k=1,k 6=i

YikṼk (3)

The voltage Ṽi may be expressed as

Ṽi =
Pi − jQi

YiiṼ ∗i
− 1

Yii

n∑
k=1,k 6=i

YikṼk (4)

For a load (PQ) bus, P and Q are know, and equation 4 is used to compute the

voltage Ṽi by using updated voltages as soon as they are available i.e., for the P th iteration,

the bus voltages used for computing voltage Vi at bus i are V p
1 , V

p
2 , . . . , V

p
i−1, V

p−1
i , V p−1

i+1 , . . . , V
p−1
n .

If ith bus is a generator bus, the reactive power to be generated is calculated

using equation 5. If the computed Qi is within the Q limits of the generator, the value is

used in equation 4 to compute the updated value of Vi. The value of the voltage is forced

to be the specified value by multiplying the real and imaginary parts of the equation 4 with

ratio of specified value of the magnitude of generator voltage to the magnitude of its updated

value.

Qi = −Im[Ṽ ∗i

n∑
k=1

YikṼk] (5)

On the other hand, if the computed Qi exceeds the Q limits of the generator,

it is set to the maximum or minimum limit based on whether it is above or below the limits

of the generator. The updated Ṽi is then computed by treating the bus as a PQ bus.
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The iterations are continued until the real and imaginary components of volt-

ages at each bus computed by successive iterations converge to a pre specified tolerance. The

Gauss-Seidel method has slow convergence because of weak diagonal dominance of the node

admittance matrix. Acceleration factors are often used to speed up the convergence:

˜V new
k = ˜V old

k + c( ˜V new
k − ˜V old

k ) (6)

Where c is the acceleration factor, typically on the order of 1.4 to 1.7.

2.2.2 Newton-Raphson (N-R) Method:

Newton-Raphson method is an iterative technique used for solving a set of

non-linear equations. Let equation 7 represent a set of equations with n unknowns:

f1(x1, x2, . . . , xn) = b1

f2(x1, x2, . . . , xn) = b2

f3(x1, x2, . . . , xn) = b3

. . . . . . . . . . . . . . . . . . . . .

fn(x1, x2, . . . , xn) = bn

(7)

The process stats with an initial guess of all the n unknowns x0
1, x

0
2, x

0
3, . . . , x

0
n

and if ∆x1,∆x2,∆x3, . . . ,∆xn are the corrections necessary to the initial guess so that the

equations are exactly satisfied, we have
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f1(x0
1 + ∆x1, x

0
2 + ∆x2, . . . , x

0
n + ∆xn) = b1

f2(x0
1 + ∆x1, x

0
2 + ∆x2, . . . , x

0
n + ∆xn) = b2

f3(x0
1 + ∆x1, x

0
2 + ∆x2, . . . , x

0
n + ∆xn) = b3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn(x0
1 + ∆x1, x

0
2 + ∆x2, . . . , x

0
n + ∆xn) = bn

(8)

Each of the above equations can be expanded using Taylor’s theorem. The

expanded form of the ith equation is

fi(x
0
1 + ∆x1, x

0
2 + ∆x2, . . . , x

0
n + ∆xn) = fi(x

0
1, x

0
2, x

0
3, . . . , x

0
n, )

+
( δfi
δx1

)
0
∆x1 +

( δfi
δx2

)
0
∆x2 +

( δfi
δx3

)
0
∆x3 + . . .+

( δfi
δxn

)
0
∆xn

+ terms with higher powers of ∆x1,∆x2,∆x3, . . . ,∆xn (9)

The higher order terms in equation 9 can be ignored if the initial guess is close

to the true solution. The resulting linear set of equations in matrix form is



b1 − f1(x0
1, x

0
2, x

0
3, . . . , x

0
n, )

b2 − f2(x0
1, x

0
2, x

0
3, . . . , x

0
n, )

b3 − f3(x0
1, x

0
2, x

0
3, . . . , x

0
n, )

. . . . . . . . . . . . . . . . . .

bn − fn(x0
1, x

0
2, x

0
3, . . . , x

0
n, )


=



( δf1

δx1

)
0

( δf1

δx2

)
0

( δf1

δx3

)
0
. . .

( δf1

δxn

)
0( δf2

δx1

)
0

( δf2

δx2

)
0

( δf2

δx3

)
0
. . .

( δf2

δxn

)
0( δf3

δx1

)
0

( δf3

δx2

)
0

( δf3

δx3

)
0
. . .

( δf3

δxn

)
0

. . . . . . . . .
. . . . . .(δfn

δx1

)
0

(δfn
δx2

)
0

(δfn
δx3

)
0
. . .

( δfn
δxn

)
0





∆x1

∆x2

∆x3

...

∆xn


(10)
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Or

∆f = J∆x (11)

Where J is referred to as the Jacobian. If the estimated x0
1, x

0
2, x

0
3, . . . , x

0
n were

exact, then ∆f and ∆x would be zero. However, as x0
1, x

0
2, x

0
3, . . . , x

0
n are only estimates, the

errors ∆f are finite. Equation 10 represents a linear relationship between the errors ∆f and

the corrections ∆x through the Jacobian of the simultaneous equations. A solution for ∆x

can be obtained by applying any suitable method for the solution of a set of linear equations.

Updated values of x are calculated from equation 12

x1
i = x0

i + ∆xi (12)

The iterations have quadratic convergence and they are carried out until the

errors ∆fi are lower than a specified tolerance. The Jacobian has to be recalculated at each

step.

2.2.3 Application of the N-R method to power-flow solution:

In order to apply the Newton-Raphson method to power-flow equations, the

complex equations represented by equation 3 are rewritten as two real equations in terms of

two real variables. For any node i, we have

S̃i = Pi + jQi = ṼiĨ∗i (13)

From equation 1,

Ĩi =
n∑

m=1

˜YimṼm (14)
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Substituting Ĩi given by equation 14 in equation 13 yields

Pi + jQi = Ṽi

n∑
m=1

(Gim − jBim)Ṽ ∗m (15)

The product of phasors Ṽi and Ṽ ∗m may be expressed as

ṼiṼ ∗m = (Vie
jθi)(Vme

jθm) = ViVme
j(θi−θm) = ViVm(cosθim + jsinθim)

where(θim = θi − θm)

(16)

The expressions for Pi and Qi may be written as follows:

Pi = Vi

n∑
m=1

(GimVmcosθim +BimVmsinθim)

Qi = Vi

n∑
m=1

(GimVmsinθim −BimVmcosθim)

(17)

Thus P and Q at each node is represented as a function of voltage magnitude

V and angle θ of all nodes.

If the active and reactive powers at each bus are specified, using subscript sp

to denote specified values, we may write the load flow equation:
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P1(θ1, θ2, . . . , θn, V1, V2, . . . , Vn) = P sp
1

P2(θ1, θ2, . . . , θn, V1, V2, . . . , Vn) = P sp
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pn(θ1, θ2, . . . , θn, V1, V2, . . . , Vn) = P sp
n

Q1(θ1, θ2, . . . , θn, V1, V2, . . . , Vn) = Qsp
1

Q2(θ1, θ2, . . . , θn, V1, V2, . . . , Vn) = Qsp
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qn(θ1, θ2, . . . , θn, V1, V2, . . . , Vn) = Qsp
n

(18)

Following the general procedure described earlier for the application of the N-R

method (Equation 10), we have



P sp
1 − P1(θ0

1, . . . , θ
0
n, V

0
1 , . . . , V

0
n )

. . . . . . . . . . . . . . . . . . . . . . . .

P sp
n − Pn(θ0

1, . . . , θ
0
n, V

0
1 , . . . , V

0
n )

Qsp
1 −Q1(θ0

1, . . . , θ
0
n, V

0
1 , . . . , V

0
n )

. . . . . . . . . . . . . . . . . . . . . . . .

Qsp
n −Qn(θ0

1, . . . , θ
0
n, V

0
1 , . . . , V

0
n )



=



δP1

δθ1

. . .
δP1

δθn

δP1

δV1

. . .
δP1

δVn

. . . . . . . . . . . . . . . . . .

δPn
δθ1

. . .
δPn
δθn

δPn
δV1

. . .
δPn
δVn

δQ1

δθ1

. . .
δQ1

δθn

δQ1

δV1

. . .
δQ1

δVn

. . . . . . . . . . . . . . . . . .
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∆θ1

...

∆θn

∆V1

...

∆Vn



(19)

∆P

∆Q

 =


δP

δθ

δP

δV
δQ

δθ

δQ

δV


Jacobian

∆θ

∆V

 (20)

For a PV bus, only P is specified and the magnitude of V is fixed. Therefore,
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terms corresponding to ∆Q and ∆V would be absent for each of the PV buses. Thus the

Jacobian would have only one row and one column for each PV bus.

2.2.4 PV Curve Analysis:

The V-P and Q-V characteristics have been widely used for the voltage stability

analysis. Figure 1 shows the relation between receiving end voltage and power for load at

different power factors.

Figure 1: The VR − PR characteristics of a power system for different load power factors.

VP characteristic curves are produced by using a series of power flow solutions

for different load levels. The analysis involves the increase of P i.e. real power demand in

a particular area and voltage magnitude (V) is observed at some critical load buses and

then curves for those particular buses will be plotted to determine the voltage stability of a

system by static analysis approach.
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To explain P-V curve analysis let us assume two-bus system with a single

generator, single transmission line and a load, as shown in figure 2.

Figure 2: Two bus represetation model.

The complex load assumes the form as shown in equation 21 where V1 is the

sending end voltage and V2 is the receiving end voltage and cosθ is the load power factor.

S12 = P12 + jQ12 (21)

From the Figure 2, the following equations can be derived:

P12 = |V1|2G− |V1||V2|Gcos(θ1 − θ2) + |V1||V2|Bsin(θ1 − θ2)

Q12 = |V1|2B − |V1||V2|Bcos(θ1 − θ2)− |V1||V2|Gsin(θ1 − θ2)

(22)

Let G=0, then

P12 = |V1||V2|Bsin(θ1 − θ2)

Q12 = |V1|2B − |V1||V2|Bcos(θ1 − θ2)

(23)

The load power is given by,
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SD = PD + jQD = −(P21 + jQ21)

PD = −P21 = −|V1||V2|Bsin(θ2 − θ1) = |V1||V2|Bsin(θ1 − θ2)

QD = −Q21 = −|V2|2B − |V1||V2|Bcos(θ2 − θ1) = −|V2|2B − |V1||V2|Bcos(θ1 − θ2)

(24)

Defining θ12 = θ1 − θ2

PD = |V1||V2|Bsinθ12

QD = −|V2|2B + |V1||V2|Bcosθ12

(25)

From the figure, we can also express:

SD = |V2||I|ejφ = |V2||I|(cosφ+ jsinφ)

= PD(1 + jtanφ) = PD(1 + jβ), whereβ = tanφ

QD = PDβ = −|V2|2B + |V1||V2|Bcosθ12

(26)

Equating the expressions for PD and QD, we have

(|V2|2)2 +
[2PDβ

B
− |V2|2 +

PD
B2

[1 + β2]
]

= 0 (27)

Equation 27 is a quadratic in |V2|2, eliminating θ12 and solving the second order

equation, we get
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|V2|2 =
1− βPD ±

√
[1− PD(PD + 2β)]

2
(28)

As seen in equation 28, the voltage at the load bus is affected by power delivered

to the load, the reactance of the line, and power factor of the load. It can be seen that the

equation 28 has two solutions for a given set of parameters. One of them corresponds to

stable operation and the other corresponds to unstable operation of the system.

In figure 1, the nose of the curve corresponds to the maximum loading point

of the system. For a given loading pattern, the PV curves are plotted for selected PQ buses.

This reveals the maximum loading margin of the system after which at least one of the

bus voltages becomes unstable, which means the system is no longer in stable operating

condition. The bus which enters voltage instability first for a given loading pattern can be

identified as the weak bus of the system. Installation of reactive compensation devices at

such locations can greatly improve the voltage stability and loading margin of the system.

2.2.5 QV Curve Analysis:

Voltage stability is affected considerably by the variations in Q (reactive power

consumption) at loads. A more useful characteristic for voltage stability analysis is the Q-

V relationship, which shows the sensitivity of bus voltage with respect to reactive power

injections and absorptions. A system is voltage stable if V-Q sensitivity is positive for all

the buses and is unstable if it is negative for at least one bus.

Figure 3 shows a typical VR −QR characteristic curve of power system.

The base case operating point of the system is represented by the X-intercept

of the Q-V curve.
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Figure 3: The VR −QR characteristics of a power system.

When a solution is reached using N-R method, we have a linearized model

around the given operating point.

[
J

]∆θ

∆V

 =

∆P

∆Q



Where [J ] =


δP

δθ

δP

δV
δQ

δθ

δQ

δV


(29)

The elements of the Jacobian matrix represent the system sensitivity informa-

tion, i.e., expected small change in bus voltage angle (θ) and voltage magnitude (V) for small

changes in P and Q. System voltage stability is affected by both P and Q. In this analysis,

at each operating point, P is kept constant and voltage stability is analyzed by considering
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the incremental relationship between Q and V. Based on these considerations, in equation

29, let ∆P = 0 , we have

∆Q = JR∆V

where JR = [JQV − JQθJ−1
PθJPV ]

(30)

Where JR is the reduced Jacobian matrix. From equation 30, we may write

∆V = J−1
R ∆Q (31)

The matrix J−1
R is the reduced V-Q Jacobian. Its ith diagonal element is the

V-Q sensitivity at bus i. For computational efficiency, the V-Q sensitivities are computed

from equation 30.

The V-Q sensitivity of a bus represents the slope of the Q-V curve at the

given operating point. A positive V-Q sensitivity is an indicative of stable operation; the

smaller the sensitivity, the more stable the system. As stability decreases, the magnitude

of the sensitivity increases, becoming infinite at stability limit. A negative V-Q sensitivity

however, is an indicative of unstable operation, even a small negative sensitivity represents

very unstable operation.

2.2.6 Continuation Load Flow Analysis:

The Jacobian matrix of power flow equations becomes singular at the voltage

stability limit. Consequently, conventional power-flow algorithms are prone to convergence

problems at operating conditions near the stability limit. Continuation power flow overcomes
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this problem. It does so by reformulating the power-flow equations so that they remain well-

conditioned at all loading conditions.

The continuation power-flow analysis uses an iterative process involving pre-

dictor and corrector steps as depicted in figure 4.

Figure 4: Representation of a typical continuation power-flow process.

From a know initial solution (A), a tangent predictor is used to estimate the

solution (B) for a specified patter of load increase. The corrector step then determines

the exact solution (C) using a conventional power-flow analysis with system load assumed

to be fixed. Successive solutions are obtained by the same predictor and corrector steps.

Eventually, the system reaches a loading condition where a corrector step with loads fixed

would not converge; therefore, a corrector step with fixed voltage at the monitored bus is

applied to find the exact solution (E).

Mathematical Formulation:
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The injected powers for ith bus of an n-bus system as represented by equation

17

Pi = Vi

n∑
m=1

(GimVmcosθim +BimVmsinθim)

Qi = Vi

n∑
m=1

(GimVmsinθim −BimVmcosθim)

(17)

The equations for the real and reactive power injections at bus i are given by

equation 32

Pi = PGi − PDi

Qi = QGi −QDi

(32)

The subscript G and D denote generation and demand respectively for bus i.

A load parameter λ is introduced as an additional parameter in equations 32

to simulate load change in the system.

Pi = PGi − (PDi + λ(P∆base))

Qi = QGi − (QDi + λ(Q∆base))

(33)

In equation 33, P∆base and Q∆base are given quantities of powers chosen to scale λ appro-

priately. The reformulated power-flow equations, with provision for increasing generation as

the load is increased may be expressed as follows
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F (θ, V ) = λK (34)

Where

λ is the load parameter

θ is the vector of bus voltage angles

V is the vector of bus voltage magnitudes

K is the vector representing percentage load change at each bus

The equation 34 may be rearranged as equation 35 and is solved by specifying

a value for λ as shown in equation 36. Where λ = 0 represents the base load condition, and

λ = λcritical represents the critical load of the system.

F (θ, V, λ) = 0 (35)

0 ≤ λ ≤ λcritical (36)

Predictor Step:

To find the solution of the set of equations represented by equation 35, a linear

approximation is used by taking an appropriately sized step in direction tangent to the

solution path. Therefore, the derivative of equation 35 is taken, which gives
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Fθdθ + FV dV + Fλdλ = 0

or

[
Fθ FV Fλ

]

dθ

dV

dλ

 = 0

(37)

The set of equations 37 have one additional unknown i.e., λ the load parameter.

Hence, one more equation is needed to solve these equations. This is satisfied by setting one

of the components of the tangent vectors to +1 or -1. This component is referred to as

continuation parameter. Setting one of the tangent vector components +1 or -1 imposes

a non-zero value on the tangent vector and makes the Jacobian matrix nonsingular at the

critical point. With the additional equation, we have

Fθ FV Fλ

ek



dθ

dV

dλ

 =

 0

±1

 (38)

Where ek is the appropriate row vector with all elements equal to zero except

the kth element (corresponding to the continuation parameter) begin equal to 1. Initially,

the load parameter λ is chosen as the continuation parameter. Subsequently, the parameter

with greatest rate of change at a given solution is chosen as the continuation parameter.

This is due to the fact that the use of λ as the continuation parameter near critical loading

conditions can cause the solution to diverge if the estimate exceeds the maximum load.

Conversely, when the voltage magnitude is used as the continuation parameter the solution

40



may diverge if large steps in voltage change are used. A good practice is to choose the

continuation parameter as the state variable that has the greatest rate of change near the

given solution. If the parameter is increasing +1 is used, if it is decreasing -1 is used in the

tangent vector equation 38.

The tangent vectors can be obtained by solving equation 38. Once these are

solved for, the prediction can be made as follows


θ

V

λ



p+1

=


θ

V

λ



p

+ σ


dθ

dV

dλ

 (39)

Where the superscript p + 1 denotes the next predicted solution. The step

size σ is chosen so that the predicted solution is within the radius of the convergence of the

corrector. If for a step size the solution could not be found, a smaller step size is chosen.

Corrector Step:

The original set of equations 35 is augmented by one equation that specifies

the state variable selected as the continuation parameter. This gives

F (θ, V, λ)

xk − η

 = [0] (40)

Where xk is the state variable chosen as continuation parameter and η is the

predicted value of this state variable. Equation 40 can be solved using a slightly modified

Newton-Raphson power-flow method.
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The continuation power-flow analysis can be continued beyond the critical

point and thus obtain solutions corresponding to the lower portion of the V-P curve. It

should be noted that the tangent component of λ is positive before the critical point is

reached, zero at the critical point, and negative beyond this point. Therefore the sign of dλ

shows whether the critical point is reached or not.

Sensitivity Information:

In continuation process, the tangent vector proves useful in describing the

direction of the solution path. If one looks at the elements of the tangent vector as differential

changes in the state variables (dVi and dδi) in response to a differential change in system

load (Cdλ, where C is some constant), the potential for a meaningful sensitivity analysis

becomes apparent [12].

It can be observed that the voltage at bus i is affected by load changes at

not only itself but at other buses as well. Hence the best method for deciding which bus is

nearest to its voltage stability limit is to find the bus with the largest
dVi

dPTotal
, where dPTotal

is the differential change in active load for the whole system.

Using the reformulated power flow equations, the differential change in active

system load is as follows:

dPTotal =
∑
n

dPLi =
∑
n

[kLiS∆Basecosψi]dλ

= [S∆Base

∑
n

kLicosψi]dλ = Cdλ

(41)
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Thus, the weakes bus would be

busj :
∣∣∣ dVj
dPTotal

∣∣∣
=
∣∣∣ dVj
Cdλ

∣∣∣ = max
[∣∣∣ dV1

Cdλ

∣∣∣, ∣∣∣ dV2

Cdλ

∣∣∣, . . . , ∣∣∣ dVn
Cdλ

∣∣∣] (42)

Since the value of Cdλ is same for each dV element in a given tangent vector,

the weakest bus can be identified as the bus with largest dV component.

2.3 Summary

Both the load flow techniques Newton-Raphson method and Continuation load

flow method have been discussed in detail. The analysis methods PV curve analysis, QV

sensitivity analysis, and Continuation load flow analysis have also been explained in this

chapter. In the next chapter, a method of analyzing the improvement in system performance

is introduced and it is then applied to various test systems in further chapters. Results are

then discussed and conclusions based on these results are drawn in the following chapters.
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3 Proposed Analysis Method

This chapter is an overview of the procedure followed for comparative analysis

of steady state stability methods used for selecting a weak bus where reactive compensation

is placed in order to improve voltage stability and loading margin. Three test systems namely

the modified IEEE 14 bus system, the IEEE 30 bus system, and the IEEE 57 bus system

are used for simulations. The test systems are subjected to an increase in load at load buses

based on the bus participation factors until at least one of the bus voltages reaches 0.85 pu.

The systems are then simulated using three different stability analysis methods- PV curve

Analysis, Continuation Powe Flow, and QV Sensitivity Analysis. Based on each method’s

indices, a ‘weakest bus’ within the system is selected for placement of reactive compensation.

We first need to define the term ‘weak bus’ as opposed to ‘optimal location’.

In the context of this paper, the weakest bus is the location that is nearest to experiencing

voltage collapse. And the optimal location for installation of reactive compensation is the

bus location where a reactive compensation when installed, gives the greatest improvement

in loading margin of the system.

Each method used in this thesis identifies a system weak bus based on different

indices. The definition of weak bus according to each of the analysis techniques is as follows:

• For PV Curve Analysis, the weak bus would be the one that is closest to turning point

or “knee” of the curve. For the purpose of this study, the bus that reaches the lowest

allowed voltage first for a given load is identified as the weak bus.

• For QV analysis, the elements of the Jacobian matrix with highest
dQ

dV
magnitude are
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the weakest buses in the system. The elements of the
δQ

δV
portion of Jacobian matrix

gives the information about the buses most sensitive to changes in Q (reactive power

absorption/injection). The ith diagonal element with greatest magnitude implies bus i

is most sensitive to Q changes.

• The continuation load flow gives tangent vectors of bus voltage magnitude (dV ) and

angle (dθ) at each bus for different loading conditions. The bus with greatest magnitude

of tangent vector of voltage magnitude for loading condition when one of the bus voltage

reaches 0.85 pu is identified as the weakest bus of the system.

Each of the analysis techniques has different indices to identify a weak bus.

It is useful to identify which method can give better location for installation of reactive

compensation.

A reactive compensation device is installed at each of the locations identified

as a weak bus of the system using different analysis techniques and various stability metrics

are measured. The optimal location for installation of reactive compensation is obtained

by brute-force method. Then the metrics such as loading margin, and differential real and

reactive power losses when the reactive compensation is installed at the weak buses identified

by the stability methods are compared to the metrics measured when a reactive compensation

is installed at the optimal location identified by brute-force. This gives a great insight into

which method is able to identify the bus which gives the best results in terms of voltage

stability and loading margin improvement of the system, relative to the optimal location.
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3.1 Approach

The test system weak bus is identified using the three analysis methods. The

maximum loading margin, dPloss, and dQloss are noted. Then, brute-force method is applied

to assess the improvement in system performance when a reactive compensation is placed

at different locations using loading margin, dPloss, and dQloss as the metrics. Comparative

analysis is then performed.

Figure 5: Description of the Approach

3.2 Metrics

The various metrics maximum loading margin, dPloss, and dQloss used to assess

the improvement in system performance are explained in detail below.

• Maximum Loading Margin: Maximum Load at which all bus Voltages (Vi wherei ∈

[1, 2, 3...n]) ≥ 0.85 pu

• dPloss : Ploss for max incremental transfer - Ploss for base case.
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• dQloss : Qloss for max incremental transfer - Qloss for base case.

3.3 4 Step Methodology

A four step methodology has been developed for performing comparative anal-

ysis. Figure 6 and Figure 7 show a detailed description of the process followed in this thesis.

Figure 6: Steps 1, 2, 3

Here, bus 1 is assumed to be the slack bus and is exempted from the study.

Hence the placement of reactive compensation begins from bus 2.

First, the test system total real and reactive losses for the base-case load is

determined. The system load is then increased until one of the bus voltages reaches 0.85 pu.

The increased MW load, along with total system real and reactive losses are determined.
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Figure 7: Step 4

The test system with this load is then solved using the three stability methods to identify

the system weak buses. The differences in real and reactive losses with the two different

loads will give the dPloss and dQloss for the system with no reactive compensation.

A reactive compensation is then placed on each bus of the test system with the

increased load from last step. Corresponding total system Ploss and Qloss are determined.

The differences between these system losses to those of base-load condition with no reactive

compensation will give the new dPloss and dQloss corresponding to the location where a

reactive compensation is placed.

When a reactive compensation is placed at each of the locations, increasing
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the load till one of the bus voltage reaches 0.85 pu will reveal the new max load the system

can supply. Comparing these values to the maximum loading margin of the system when no

reactive compensation is installed will reveal the improvement in system loading margin.

Once the new maximum loading margins, dPloss’s, and dQloss’s when a reactive

compensation is placed at different locations of the system is computed, an optimal location

for placement of reactive compensation can be identified based on the improvement in met-

rics. A comparative analysis can now be performed considering the locations suggested by

each method of analysis and the optimal locations.
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4 Simulation Tools and Test Systems

For the purpose of simulating three different methods, three applications namely

PSS/E for PV curves, Matlab for QV sensitivity, and UWPflow for Continuation Load Flow

are used. Three test systems namely the modified IEEE 14 bus system, the IEEE 30 bus

system, and the IEEE 57 bus system are used in this thesis.

4.1 Simulation Tools

4.1.1 PSS/E:

The Power System Simulator for Engineering (PSS/E) is a premier software

tool owned and distributed by Siemens. Since its introduction in 1976 it has become the most

widely used commercial program of its type. PSS/E is a robust tool for analyzing steady state

and dynamic performance of a power system. It is an interactive and integrated tool with

wide applications including power flow, optimal power flow, balanced and unbalanced fault

analysis, dynamic simulation, extended term dynamic simulation, open access and pricing,

transfer limit analysis, and network reduction.

4.1.2 Matlab:

MATLAB is a high-level language and interactive environment for numerical

computation, visualization, and programming. It includes several built in math functions

which enable the user to explore multiple approaches and reach the solution faster than with

spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB

can be used for a range of applications, including signal processing and communications,

image and video processing, control systems, test and measurement, computational finance,
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and computational biology. It is a great tool for data analysis, developing algorithms and

creating models, and also features application development.

4.1.3 UWPflow:

UWPflow is a voltage stability analysis program developed by Claudio A.

Canizares from the University of Waterloo, Waterloo, Ontario, Canada. The program was

developed in C and C++ and has no limitations on system size. It is a research tool designed

to calculate local bifurcations related to system limits or singularities in system Jacobian.

The program also generates a series of output files that allow further analysis, such as tan-

gent vectors, left and right eigen vectors at a singular bifurcation point, Jacobians, Power

flow solutions at different loading levels, and voltage stability indices. The program can be

obtained from [17] for educational purposes.

The program can take WSCC/BPA/EPRI formats or IEEE common format

as input data format. Additional files such as load and generation change direction files are

required for performing a continuation power flow. These files can be obtained from original

power flow data and can be user defined. The program also outputs several files in Matlab

file format for further analysis.

UWPflow is run by entering commands with options into the command line.

This is very similar to unix commands with options. A detailed description of the program

along with all the available options can be found in the program manual.

4.2 Test Systems

All the test systems used in this study are obtained in IEEE common data

format and converted to other formats as needed.
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4.2.1 Modified IEEE 14 Bus System:

The IEEE 14 bus test case represents a portion of the American Electric Power

System (in the Midwestern US) as of February, 1962. The 14 bus test case does not have

line limits. The system has five PV controlled buses including the slack bus, two with

generators and three with synchronous compensators, 11 loads and three transformers. Bus

1 is designated as slack bus of the system. For the purpose of this study, the synchronous

compensators at buses 6 and 8 are replaced with generators. The one line diagram and

system data were downloaded from [18] and are presented below.

Figure 8: Modified IEEE 14 bus test system.

The bus data and line data of the 14 bus test system are presented in Table 1

and Table 2 respectively.
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1 Bus 1 HV 1 1 3 1.06 0 0 0 232.4 -16.9 0 1.06 0 0 0 0 0
2 Bus 2 HV 1 1 2 1.045 -4.98 21.7 12.7 40 42.4 0 1.045 50 -40 0 0 0
3 Bus 3 HV 1 1 2 1.01 -12.72 94.2 19 0 23.4 0 1.01 40 0 0 0 0
4 Bus 4 HV 1 1 0 1.019 -10.33 47.8 -3.9 0 0 0 0 0 0 0 0 0
5 Bus 5 HV 1 1 0 1.02 -8.78 7.6 1.6 0 0 0 0 0 0 0 0 0
6 Bus 6 LV 1 1 2 1.07 -14.22 11.2 7.5 0 12.2 0 1.07 24 -6 0 0 0
7 Bus 7 ZV 1 1 0 1.062 -13.37 0 0 0 0 0 0 0 0 0 0 0
8 Bus 8 TV 1 1 2 1.09 -13.36 0 0 0 17.4 0 1.09 24 -6 0 0 0
9 Bus 9 LV 1 1 0 1.056 -14.94 29.5 16.6 0 0 0 0 0 0 0 0.19 0
10 Bus 10 LV 1 1 0 1.051 -15.1 9 5.8 0 0 0 0 0 0 0 0 0
11 Bus 11 LV 1 1 0 1.057 -14.79 3.5 1.8 0 0 0 0 0 0 0 0 0
12 Bus 12 LV 1 1 0 1.055 -15.07 6.1 1.6 0 0 0 0 0 0 0 0 0
13 Bus 13 LV 1 1 0 1.05 -15.16 13.5 5.8 0 0 0 0 0 0 0 0 0
14 Bus 14 LV 1 1 0 1.036 -16.04 14.9 5 0 0 0 0 0 0 0 0 0

Table 1: Bus data for14 bus test system

1 2 1 1 1 0 0.01938 0.05917 0.0528 0 0 0 0 0 0 0 0 0 0 0 0
1 5 1 1 1 0 0.05403 0.22304 0.0492 0 0 0 0 0 0 0 0 0 0 0 0
2 3 1 1 1 0 0.04699 0.19797 0.0438 0 0 0 0 0 0 0 0 0 0 0 0
2 4 1 1 1 0 0.05811 0.17632 0.034 0 0 0 0 0 0 0 0 0 0 0 0
2 5 1 1 1 0 0.05695 0.17388 0.0346 0 0 0 0 0 0 0 0 0 0 0 0
3 4 1 1 1 0 0.06701 0.17103 0.0128 0 0 0 0 0 0 0 0 0 0 0 0
4 5 1 1 1 0 0.01335 0.04211 0 0 0 0 0 0 0 0 0 0 0 0 0
4 7 1 1 1 0 0 0.20912 0 0 0 0 0 0 0.978 0 0 0 0 0 0
4 9 1 1 1 0 0 0.55618 0 0 0 0 0 0 0.969 0 0 0 0 0 0
5 6 1 1 1 0 0 0.25202 0 0 0 0 0 0 0.932 0 0 0 0 0 0
6 11 1 1 1 0 0.09498 0.1989 0 0 0 0 0 0 0 0 0 0 0 0 0
6 12 1 1 1 0 0.12291 0.25581 0 0 0 0 0 0 0 0 0 0 0 0 0
6 13 1 1 1 0 0.06615 0.13027 0 0 0 0 0 0 0 0 0 0 0 0 0
7 8 1 1 1 0 0 0.17615 0 0 0 0 0 0 0 0 0 0 0 0 0
7 9 1 1 1 0 0 0.11001 0 0 0 0 0 0 0 0 0 0 0 0 0
9 10 1 1 1 0 0.03181 0.0845 0 0 0 0 0 0 0 0 0 0 0 0 0
9 14 1 1 1 0 0.12711 0.27038 0 0 0 0 0 0 0 0 0 0 0 0 0
10 11 1 1 1 0 0.08205 0.19207 0 0 0 0 0 0 0 0 0 0 0 0 0
12 13 1 1 1 0 0.22092 0.19988 0 0 0 0 0 0 0 0 0 0 0 0 0
13 14 1 1 1 0 0.17093 0.34802 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Line data for 14 bus test system
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4.2.2 IEEE 30 Bus System:

The IEEE 30 bus test case represents a portion of the American Electric Power

System (in the Midwestern US) as of December, 1961. Bus 1 (Glen Lyn) is the slack bus of the

system. The system has 6 PV controlled buses including the slack bus. It has 4 synchronous

compensators and two three winding transformers. There is only one additional generator

at bus 2 other than the slack bus. There are 22 buses including bus 2 with loads on them in

the system.

The system one line diagram and its bus and line data are obtained from [19]

and presented in Figure 9, Table 3, and Table 4 respectively.

Figure 9: IEEE 30 bus test system.
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1 Glen Lyn 132 1 1 3 1.06 0 0 0 260.2 -16.1 132 1.06 0 0 0 0 0
2 Claytor 132 1 1 2 1.043 -5.48 21.7 12.7 40 50 132 1.045 50 -40 0 0 0
3 Kumis 132 1 1 0 1.021 -7.96 2.4 1.2 0 0 132 0 0 0 0 0 0
4 Hancock 132 1 1 0 1.012 -9.62 7.6 1.6 0 0 132 0 0 0 0 0 0
5 Fieldale 132 1 1 2 1.01 -14.37 94.2 19 0 37 132 1.01 40 -40 0 0 0
6 Roanoke 132 1 1 0 1.01 -11.34 0 0 0 0 132 0 0 0 0 0 0
7 Blaine 132 1 1 0 1.002 -13.12 22.8 10.9 0 0 132 0 0 0 0 0 0
8 Reusens 132 1 1 2 1.01 -12.1 30 30 0 37.3 132 1.01 40 -10 0 0 0
9 Roanoke 1 1 1 0 1.051 -14.38 0 0 0 0 1 0 0 0 0 0 0
10 Roanoke 33 1 1 0 1.045 -15.97 5.8 2 0 0 33 0 0 0 0 0.19 0
11 Roanoke 11 1 1 2 1.082 -14.39 0 0 0 16.2 11 1.082 24 -6 0 0 0
12 Hancock 33 1 1 0 1.057 -15.24 11.2 7.5 0 0 33 0 0 0 0 0 0
13 Hancock 11 1 1 2 1.071 -15.24 0 0 0 10.6 11 1.071 24 -6 0 0 0
14 Bus 14 33 1 1 0 1.042 -16.13 6.2 1.6 0 0 33 0 0 0 0 0 0
15 Bus 15 33 1 1 0 1.038 -16.22 8.2 2.5 0 0 33 0 0 0 0 0 0
16 Bus 16 33 1 1 0 1.045 -15.83 3.5 1.8 0 0 33 0 0 0 0 0 0
17 Bus 17 33 1 1 0 1.04 -16.14 9 5.8 0 0 33 0 0 0 0 0 0
18 Bus 18 33 1 1 0 1.028 -16.82 3.2 0.9 0 0 33 0 0 0 0 0 0
19 Bus 19 33 1 1 0 1.026 -17 9.5 3.4 0 0 33 0 0 0 0 0 0
20 Bus 20 33 1 1 0 1.03 -16.8 2.2 0.7 0 0 33 0 0 0 0 0 0
21 Bus 21 33 1 1 0 1.033 -16.42 17.5 11.2 0 0 33 0 0 0 0 0 0
22 Bus 22 33 1 1 0 1.033 -16.41 0 0 0 0 33 0 0 0 0 0 0
23 Bus 23 33 1 1 0 1.027 -16.61 3.2 1.6 0 0 33 0 0 0 0 0 0
24 Bus 24 33 1 1 0 1.021 -16.78 8.7 6.7 0 0 33 0 0 0 0 0.043 0
25 Bus 25 33 1 1 0 1.017 -16.35 0 0 0 0 33 0 0 0 0 0 0
26 Bus 26 33 1 1 0 1 -16.77 3.5 2.3 0 0 33 0 0 0 0 0 0
27 Cloverdle 33 1 1 0 1.023 -15.82 0 0 0 0 33 0 0 0 0 0 0
28 Cloverdle 132 1 1 0 1.007 -11.97 0 0 0 0 132 0 0 0 0 0 0
29 Bus 29 33 1 1 0 1.003 -17.06 2.4 0.9 0 0 33 0 0 0 0 0 0
30 Bus 30 33 1 1 0 0.992 -17.94 10.6 1.9 0 0 33 0 0 0 0 0 0

Table 3: Bus data for IEEE 30 bus test system
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1 2 1 1 1 0 0.0192 0.0575 0.0528 0 0 0 0 0 0 0 0 0 0 0 0
1 3 1 1 1 0 0.0452 0.1652 0.0408 0 0 0 0 0 0 0 0 0 0 0 0
2 4 1 1 1 0 0.057 0.1737 0.0368 0 0 0 0 0 0 0 0 0 0 0 0
3 4 1 1 1 0 0.0132 0.0379 0.0084 0 0 0 0 0 0 0 0 0 0 0 0
2 5 1 1 1 0 0.0472 0.1983 0.0418 0 0 0 0 0 0 0 0 0 0 0 0
2 6 1 1 1 0 0.0581 0.1763 0.0374 0 0 0 0 0 0 0 0 0 0 0 0
4 6 1 1 1 0 0.0119 0.0414 0.009 0 0 0 0 0 0 0 0 0 0 0 0
5 7 1 1 1 0 0.046 0.116 0.0204 0 0 0 0 0 0 0 0 0 0 0 0
6 7 1 1 1 0 0.0267 0.082 0.017 0 0 0 0 0 0 0 0 0 0 0 0
6 8 1 1 1 0 0.012 0.042 0.009 0 0 0 0 0 0 0 0 0 0 0 0
6 9 1 1 1 0 0 0.208 0 0 0 0 0 0 0.978 0 0 0 0 0 0
6 10 1 1 1 0 0 0.556 0 0 0 0 0 0 0.969 0 0 0 0 0 0
9 11 1 1 1 0 0 0.208 0 0 0 0 0 0 0 0 0 0 0 0 0
9 10 1 1 1 0 0 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0
4 12 1 1 1 0 0 0.256 0 0 0 0 0 0 0.932 0 0 0 0 0 0
12 13 1 1 1 0 0 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0
12 14 1 1 1 0 0.1231 0.2559 0 0 0 0 0 0 0 0 0 0 0 0 0
12 15 1 1 1 0 0.0662 0.1304 0 0 0 0 0 0 0 0 0 0 0 0 0
12 16 1 1 1 0 0.0945 0.1987 0 0 0 0 0 0 0 0 0 0 0 0 0
14 15 1 1 1 0 0.221 0.1997 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 1 1 1 0 0.0524 0.1923 0 0 0 0 0 0 0 0 0 0 0 0 0
15 18 1 1 1 0 0.1073 0.2185 0 0 0 0 0 0 0 0 0 0 0 0 0
18 19 1 1 1 0 0.0639 0.1292 0 0 0 0 0 0 0 0 0 0 0 0 0
19 20 1 1 1 0 0.034 0.068 0 0 0 0 0 0 0 0 0 0 0 0 0
10 20 1 1 1 0 0.0936 0.209 0 0 0 0 0 0 0 0 0 0 0 0 0
10 17 1 1 1 0 0.0324 0.0845 0 0 0 0 0 0 0 0 0 0 0 0 0
10 21 1 1 1 0 0.0348 0.0749 0 0 0 0 0 0 0 0 0 0 0 0 0
10 22 1 1 1 0 0.0727 0.1499 0 0 0 0 0 0 0 0 0 0 0 0 0
21 22 1 1 1 0 0.0116 0.0236 0 0 0 0 0 0 0 0 0 0 0 0 0
15 23 1 1 1 0 0.1 0.202 0 0 0 0 0 0 0 0 0 0 0 0 0
22 24 1 1 1 0 0.115 0.179 0 0 0 0 0 0 0 0 0 0 0 0 0
23 24 1 1 1 0 0.132 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0
24 25 1 1 1 0 0.1885 0.3292 0 0 0 0 0 0 0 0 0 0 0 0 0
25 26 1 1 1 0 0.2544 0.38 0 0 0 0 0 0 0 0 0 0 0 0 0
25 27 1 1 1 0 0.1093 0.2087 0 0 0 0 0 0 0 0 0 0 0 0 0
28 27 1 1 1 0 0 0.396 0 0 0 0 0 0 0.968 0 0 0 0 0 0
27 29 1 1 1 0 0.2198 0.4153 0 0 0 0 0 0 0 0 0 0 0 0 0
27 30 1 1 1 0 0.3202 0.6027 0 0 0 0 0 0 0 0 0 0 0 0 0
29 30 1 1 1 0 0.2399 0.4533 0 0 0 0 0 0 0 0 0 0 0 0 0
8 28 1 1 1 0 0.0636 0.2 0.0428 0 0 0 0 0 0 0 0 0 0 0 0
6 28 1 1 1 0 0.0169 0.0599 0.013 0 0 0 0 0 0 0 0 0 0 0 0

Table 4: Line data for IEEE 30 bus test system
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4.2.3 IEEE 57 Bus System:

The IEEE 57 bus test system represents a portion of the American Electric

Power System (in the Midwestern US) as it was in the early 1960’s. Bus 1 (Kanawha) is

the slack bus of the system. The system has a total of 7 PV controlled buses including the

slack bus. It consists of 3 synchronous compensators and 4 generators including the one at

the slack bus.

The system and its bus and line data are obtained from [20] and presented in

Figure 10, Table 5, and Table 6 respectively.
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Figure 10: IEEE 57 bus test system.
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1 Kanawha V1 1 1 3 1.04 0 55 17 128.9 -16.1 0 1.04 0 0 0 0 0
2 Turner V1 1 1 2 1.01 -1.18 3 88 0 -0.8 0 1.01 50 -17 0 0 0
3 Logan V1 1 1 2 0.985 -5.97 41 21 40 -1 0 0.985 60 -10 0 0 0
4 Sprigg V1 1 1 0 0.981 -7.32 0 0 0 0 0 0 0 0 0 0 0
5 Bus 5 V1 1 1 0 0.976 -8.52 13 4 0 0 0 0 0 0 0 0 0
6 Beaver Ck V1 1 1 2 0.98 -8.65 75 2 0 0.8 0 0.98 25 -8 0 0 0
7 Bus 7 V1 1 1 0 0.984 -7.58 0 0 0 0 0 0 0 0 0 0 0
8 Clinch Rv V1 1 1 2 1.005 -4.45 150 22 450 62.1 0 1.005 200 -140 0 0 0
9 Saltville V1 1 1 2 0.98 -9.56 121 26 0 2.2 0 0.98 9 -3 0 0 0
10 Bus 10 V1 1 1 0 0.986 -11.43 5 2 0 0 0 0 0 0 0 0 0
11 Tazewell V1 1 1 0 0.974 -10.17 0 0 0 0 0 0 0 0 0 0 0
12 Glen Lyn V1 1 1 2 1.015 -10.46 377 24 310 128.5 0 1.015 155 -150 0 0 0
13 Bus 13 V1 1 1 0 0.979 -9.79 18 2.3 0 0 0 0 0 0 0 0 0
14 Bus 14 V1 1 1 0 0.97 -9.33 10.5 5.3 0 0 0 0 0 0 0 0 0
15 Bus 15 V1 1 1 0 0.988 -7.18 22 5 0 0 0 0 0 0 0 0 0
16 Bus 16 V1 1 1 0 1.013 -8.85 43 3 0 0 0 0 0 0 0 0 0
17 Bus 17 V1 1 1 0 1.017 -5.39 42 8 0 0 0 0 0 0 0 0 0
18 Sprigg V2 1 1 0 1.001 -11.71 27.2 9.8 0 0 0 0 0 0 0 0.1 0
19 Bus 19 V2 1 1 0 0.97 -13.2 3.3 0.6 0 0 0 0 0 0 0 0 0
20 Bus 20 V2 1 1 0 0.964 -13.41 2.3 1 0 0 0 0 0 0 0 0 0
21 Bus 21 V3 1 1 0 1.008 -12.89 0 0 0 0 0 0 0 0 0 0 0
22 Bus 22 V3 1 1 0 1.01 -12.84 0 0 0 0 0 0 0 0 0 0 0
23 Bus 23 V3 1 1 0 1.008 -12.91 6.3 2.1 0 0 0 0 0 0 0 0 0
24 Bus 24 V3 1 1 0 0.999 -13.25 0 0 0 0 0 0 0 0 0 0 0
25 Bus 25 V4 1 1 0 0.982 -18.13 6.3 3.2 0 0 0 0 0 0 0 0.059 0
26 Bus 26 V5 1 1 0 0.959 -12.95 0 0 0 0 0 0 0 0 0 0 0
27 Bus 27 V5 1 1 0 0.982 -11.48 9.3 0.5 0 0 0 0 0 0 0 0 0
28 Bus 28 V5 1 1 0 0.997 -10.45 4.6 2.3 0 0 0 0 0 0 0 0 0
29 Bus 29 V5 1 1 0 1.01 -9.75 17 2.6 0 0 0 0 0 0 0 0 0
30 Bus 30 V4 1 1 0 0.962 -18.68 3.6 1.8 0 0 0 0 0 0 0 0 0
31 Bus 31 V4 1 1 0 0.936 -19.34 5.8 2.9 0 0 0 0 0 0 0 0 0
32 Bus 32 V4 1 1 0 0.949 -18.46 1.6 0.8 0 0 0 0 0 0 0 0 0
33 Bus 33 V4 1 1 0 0.947 -18.5 3.8 1.9 0 0 0 0 0 0 0 0 0
34 Bus 34 V3 1 1 0 0.959 -14.1 0 0 0 0 0 0 0 0 0 0 0
35 Bus 35 V3 1 1 0 0.966 -13.86 6 3 0 0 0 0 0 0 0 0 0
36 Bus 36 V3 1 1 0 0.976 -13.59 0 0 0 0 0 0 0 0 0 0 0
37 Bus 37 V3 1 1 0 0.985 -13.41 0 0 0 0 0 0 0 0 0 0 0
38 Bus 38 V3 1 1 0 1.013 -12.71 14 7 0 0 0 0 0 0 0 0 0
39 Bus 39 V3 1 1 0 0.983 -13.46 0 0 0 0 0 0 0 0 0 0 0
40 Bus 40 V3 1 1 0 0.973 -13.62 0 0 0 0 0 0 0 0 0 0 0
41 Tazewell V6 1 1 0 0.996 -14.05 6.3 3 0 0 0 0 0 0 0 0 0
42 Bus 42 V6 1 1 0 0.966 -15.5 7.1 4.4 0 0 0 0 0 0 0 0 0
43 Tazewell V7 1 1 0 1.01 -11.33 2 1 0 0 0 0 0 0 0 0 0
44 Bus 44 V3 1 1 0 1.017 -11.86 12 1.8 0 0 0 0 0 0 0 0 0
45 Bus 45 V3 1 1 0 1.036 -9.25 0 0 0 0 0 0 0 0 0 0 0
46 Bus 46 V3 1 1 0 1.05 -11.89 0 0 0 0 0 0 0 0 0 0 0
47 Bus 47 V3 1 1 0 1.033 -12.49 29.7 11.6 0 0 0 0 0 0 0 0 0
48 Bus 48 V3 1 1 0 1.027 -12.59 0 0 0 0 0 0 0 0 0 0 0
49 Bus 49 V3 1 1 0 1.036 -12.92 18 8.5 0 0 0 0 0 0 0 0 0
50 Bus 50 V3 1 1 0 1.023 -13.39 21 10.5 0 0 0 0 0 0 0 0 0
51 Bus 51 V3 1 1 0 1.052 -12.52 18 5.3 0 0 0 0 0 0 0 0 0
52 Bus 52 V5 1 1 0 0.98 -11.47 4.9 2.2 0 0 0 0 0 0 0 0 0
53 Bus 53 V5 1 1 0 0.971 -12.23 20 10 0 0 0 0 0 0 0 0.063 0
54 Bus 54 V5 1 1 0 0.996 -11.69 4.1 1.4 0 0 0 0 0 0 0 0 0
55 Saltville V5 1 1 0 1.031 -10.78 6.8 3.4 0 0 0 0 0 0 0 0 0
56 Bus 56 V6 1 1 0 0.968 -16.04 7.6 2.2 0 0 0 0 0 0 0 0 0
57 Bus 57 V6 1 1 0 0.965 -16.56 6.7 2 0 0 0 0 0 0 0 0 0

Table 5: Bus data for IEEE 57 bus test system
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1 2 1 1 1 0 0.0083 0.028 0.129 0 0 0 0 0 0 0 0 0 0 0 0
2 3 1 1 1 0 0.0298 0.085 0.0818 0 0 0 0 0 0 0 0 0 0 0 0
3 4 1 1 1 0 0.0112 0.0366 0.038 0 0 0 0 0 0 0 0 0 0 0 0
4 5 1 1 1 0 0.0625 0.132 0.0258 0 0 0 0 0 0 0 0 0 0 0 0
4 6 1 1 1 0 0.043 0.148 0.0348 0 0 0 0 0 0 0 0 0 0 0 0
6 7 1 1 1 0 0.02 0.102 0.0276 0 0 0 0 0 0 0 0 0 0 0 0
6 8 1 1 1 0 0.0339 0.173 0.047 0 0 0 0 0 0 0 0 0 0 0 0
8 9 1 1 1 0 0.0099 0.0505 0.0548 0 0 0 0 0 0 0 0 0 0 0 0
9 10 1 1 1 0 0.0369 0.1679 0.044 0 0 0 0 0 0 0 0 0 0 0 0
9 11 1 1 1 0 0.0258 0.0848 0.0218 0 0 0 0 0 0 0 0 0 0 0 0
9 12 1 1 1 0 0.0648 0.295 0.0772 0 0 0 0 0 0 0 0 0 0 0 0
9 13 1 1 1 0 0.0481 0.158 0.0406 0 0 0 0 0 0 0 0 0 0 0 0
13 14 1 1 1 0 0.0132 0.0434 0.011 0 0 0 0 0 0 0 0 0 0 0 0
13 15 1 1 1 0 0.0269 0.0869 0.023 0 0 0 0 0 0 0 0 0 0 0 0
1 15 1 1 1 0 0.0178 0.091 0.0988 0 0 0 0 0 0 0 0 0 0 0 0
1 16 1 1 1 0 0.0454 0.206 0.0546 0 0 0 0 0 0 0 0 0 0 0 0
1 17 1 1 1 0 0.0238 0.108 0.0286 0 0 0 0 0 0 0 0 0 0 0 0
3 15 1 1 1 0 0.0162 0.053 0.0544 0 0 0 0 0 0 0 0 0 0 0 0
4 18 1 1 1 0 0 0.555 0 0 0 0 0 0 0.97 0 0 0 0 0 0
4 18 1 1 1 0 0 0.43 0 0 0 0 0 0 0.978 0 0 0 0 0 0
5 6 1 1 1 0 0.0302 0.0641 0.0124 0 0 0 0 0 0 0 0 0 0 0 0
7 8 1 1 1 0 0.0139 0.0712 0.0194 0 0 0 0 0 0 0 0 0 0 0 0
10 12 1 1 1 0 0.0277 0.1262 0.0328 0 0 0 0 0 0 0 0 0 0 0 0
11 13 1 1 1 0 0.0223 0.0732 0.0188 0 0 0 0 0 0 0 0 0 0 0 0
12 13 1 1 1 0 0.0178 0.058 0.0604 0 0 0 0 0 0 0 0 0 0 0 0
12 16 1 1 1 0 0.018 0.0813 0.0216 0 0 0 0 0 0 0 0 0 0 0 0
12 17 1 1 1 0 0.0397 0.179 0.0476 0 0 0 0 0 0 0 0 0 0 0 0
14 15 1 1 1 0 0.0171 0.0547 0.0148 0 0 0 0 0 0 0 0 0 0 0 0
18 19 1 1 1 0 0.461 0.685 0 0 0 0 0 0 0 0 0 0 0 0 0
19 20 1 1 1 0 0.283 0.434 0 0 0 0 0 0 0 0 0 0 0 0 0
21 20 1 1 1 0 0 0.7767 0 0 0 0 0 0 1.043 0 0 0 0 0 0
21 22 1 1 1 0 0.0736 0.117 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 1 1 1 0 0.0099 0.0152 0 0 0 0 0 0 0 0 0 0 0 0 0
23 24 1 1 1 0 0.166 0.256 0.0084 0 0 0 0 0 0 0 0 0 0 0 0
24 25 1 1 1 0 0 1.182 0 0 0 0 0 0 1 0 0 0 0 0 0
24 25 1 1 1 0 0 1.23 0 0 0 0 0 0 1 0 0 0 0 0 0
24 26 1 1 1 0 0 0.0473 0 0 0 0 0 0 1.043 0 0 0 0 0 0
26 27 1 1 1 0 0.165 0.254 0 0 0 0 0 0 0 0 0 0 0 0 0
27 28 1 1 1 0 0.0618 0.0954 0 0 0 0 0 0 0 0 0 0 0 0 0
28 29 1 1 1 0 0.0418 0.0587 0 0 0 0 0 0 0 0 0 0 0 0 0
7 29 1 1 1 0 0 0.0648 0 0 0 0 0 0 0.967 0 0 0 0 0 0
25 30 1 1 1 0 0.135 0.202 0 0 0 0 0 0 0 0 0 0 0 0 0
30 31 1 1 1 0 0.326 0.497 0 0 0 0 0 0 0 0 0 0 0 0 0
31 32 1 1 1 0 0.507 0.755 0 0 0 0 0 0 0 0 0 0 0 0 0
32 33 1 1 1 0 0.0392 0.036 0 0 0 0 0 0 0 0 0 0 0 0 0
34 32 1 1 1 0 0 0.953 0 0 0 0 0 0 0.975 0 0 0 0 0 0
34 35 1 1 1 0 0.052 0.078 0.0032 0 0 0 0 0 0 0 0 0 0 0 0

Table 6: Line data for IEEE 57 bus test system
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35 36 1 1 1 0 0.043 0.0537 0.0016 0 0 0 0 0 0 0 0 0 0 0 0
36 37 1 1 1 0 0.029 0.0366 0 0 0 0 0 0 0 0 0 0 0 0 0
37 38 1 1 1 0 0.0651 0.1009 0.002 0 0 0 0 0 0 0 0 0 0 0 0
37 39 1 1 1 0 0.0239 0.0379 0 0 0 0 0 0 0 0 0 0 0 0 0
36 40 1 1 1 0 0.03 0.0466 0 0 0 0 0 0 0 0 0 0 0 0 0
22 38 1 1 1 0 0.0192 0.0295 0 0 0 0 0 0 0 0 0 0 0 0 0
11 41 1 1 1 0 0 0.749 0 0 0 0 0 0 0.955 0 0 0 0 0 0
41 42 1 1 1 0 0.207 0.352 0 0 0 0 0 0 0 0 0 0 0 0 0
41 43 1 1 1 0 0 0.412 0 0 0 0 0 0 0 0 0 0 0 0 0
38 44 1 1 1 0 0.0289 0.0585 0.002 0 0 0 0 0 0 0 0 0 0 0 0
15 45 1 1 1 0 0 0.1042 0 0 0 0 0 0 0.955 0 0 0 0 0 0
14 46 1 1 1 0 0 0.0735 0 0 0 0 0 0 0.9 0 0 0 0 0 0
46 47 1 1 1 0 0.023 0.068 0.0032 0 0 0 0 0 0 0 0 0 0 0 0
47 48 1 1 1 0 0.0182 0.0233 0 0 0 0 0 0 0 0 0 0 0 0 0
48 49 1 1 1 0 0.0834 0.129 0.0048 0 0 0 0 0 0 0 0 0 0 0 0
49 50 1 1 1 0 0.0801 0.128 0 0 0 0 0 0 0 0 0 0 0 0 0
50 51 1 1 1 0 0.1386 0.22 0 0 0 0 0 0 0 0 0 0 0 0 0
10 51 1 1 1 0 0 0.0712 0 0 0 0 0 0 0.93 0 0 0 0 0 0
13 49 1 1 1 0 0 0.191 0 0 0 0 0 0 0.895 0 0 0 0 0 0
29 52 1 1 1 0 0.1442 0.187 0 0 0 0 0 0 0 0 0 0 0 0 0
52 53 1 1 1 0 0.0762 0.0984 0 0 0 0 0 0 0 0 0 0 0 0 0
53 54 1 1 1 0 0.1878 0.232 0 0 0 0 0 0 0 0 0 0 0 0 0
54 55 1 1 1 0 0.1732 0.2265 0 0 0 0 0 0 0 0 0 0 0 0 0
11 43 1 1 1 0 0 0.153 0 0 0 0 0 0 0.958 0 0 0 0 0 0
44 45 1 1 1 0 0.0624 0.1242 0.004 0 0 0 0 0 0 0 0 0 0 0 0
40 56 1 1 1 0 0 1.195 0 0 0 0 0 0 0.958 0 0 0 0 0 0
56 41 1 1 1 0 0.553 0.549 0 0 0 0 0 0 0 0 0 0 0 0 0
56 42 1 1 1 0 0.2125 0.354 0 0 0 0 0 0 0 0 0 0 0 0 0
39 57 1 1 1 0 0 1.355 0 0 0 0 0 0 0.98 0 0 0 0 0 0
57 56 1 1 1 0 0.174 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0
38 49 1 1 1 0 0.115 0.177 0.003 0 0 0 0 0 0 0 0 0 0 0 0
38 48 1 1 1 0 0.0312 0.0482 0 0 0 0 0 0 0 0 0 0 0 0 0
9 55 1 1 1 0 0 0.1205 0 0 0 0 0 0 0.94 0 0 0 0 0 0

Table 7: Continued..Line data for IEEE 57 bus test system
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5 Simulations And Results

The proposed method of study to determine the differences in improvement of

system performance and identify the stability analysis method that gives the best location for

installation of reactive compensation compared to the optimal location identified by brute-

force is applied on modified IEEE 14 bus, IEEE 30 bus, and IEEE 57 bus systems. Initially,

load flow is performed and the results are compared with other references [14] [18] [19] [20] to

ensure validity of the data. The system data are entered in all three tools, PSS/E, Matlab,

and UWPflow. Simulations are carried out and the results are presented below:

5.1 Simulations in PSS/E

The test system is built in PSS/E and load flow is performed. Once the load

flow converges successfully, the system is stressed until one of the bus voltages reaches 0.85 pu

and the PV curves are plotted. Plotting the PV curves of the system reveals the maximum

loading margin of the system after which at least one of the bus voltages reaches below pre set

minimum value. The total system real power losses (Ploss) and reactive power losses (Qloss)

for the base load and increased load are noted. The difference between these values referred

to in this thesis as the differential real (dPloss) and reactive (dQloss) losses of the system

are calculated. The calculated dPloss and dQloss correspond to the system with no reactive

compensation installed and are expected to improve (reduce) when a reactive compensation

is added to the system. The maximum loading margin of the system is noted as well. By

observing the PV curve, the weak bus of the system (i.e., the bus that reaches the minimum

voltage) is identified.
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5.2 Simulations in Matlab

The test system data is provided in a .m file and a program is used to solve

for the load flow solution. The system load is increased until one of the bus voltages will

reach below the pre set minimum voltage and load flow is carried out at this condition.

This reveals the Jacobian matrix of the system for the set of variable (bus voltages, voltage

angles, real powers and reactive powers). As discussed in previous chapters, each element

of the Jacobian matrix has significant information about the power system. The elements

of 4th quadrant of the Jacobian matrix represent the sensitivities of the bus voltages to the

reactive power available at the buses. Identifying the bus corresponding to the diagonal

element with the greatest magnitude for increased loading condition will reveal the bus that

is most sensitive to the reactive power. This according to QV analysis is identified as the

system weak bus.

5.3 Simulations in UWPflow

The test system data is provided to the program and solved for the load flow

solution using the continuation load flow method. Load flow is stopped when the system

load is increased to where one of the bus voltages goes below the pre set minimum voltage.

During the process of load flow solution using continuation load flow, tangent vectors of

the bus voltage magnitudes and angles are calculated as an integral part of the process.

Identifying the bus with tangent vector with greatest magnitude corresponding to voltage

magnitude at the increased load will reveal the weakest bus of the system.

Installing a reactive compensation at any of the above identified weak buses
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should improve (increase) the system loading margin while all of the bus voltage magnitudes

are maintained above the pre-set minimum voltage. The three methods of load flow anal-

ysis could lead to three different weak buses in a given test system. A comparison of the

improvement in system performance when a reactive compensation is installed at each of

the locations suggested by the three stability methods would reveal which location is better

compared to others. However, it is possible that there could be another location in the

system (i.e., optimal location) where installation of a reactive compensation improves the

system performance better than the locations suggested by the three stability methods. For

this reason, the reactive compensation is placed at all bus locations in the test system one by

one (i.e., brute force) and the corresponding improvement in system performance is recorded

and compared to identify the optimal location for placement of reactive compensation based

on the metrics.

5.4 Results

Below is a table displaying the maximum incremental transfers, differential real

power losses (dPloss), and differential reactive power losses (dQloss) of the three test systems

when no reactive compensation is installed at any of the buses.

System Max Incremental transfer (MW) dPloss (MW) dQloss (MVAR)

14 bus 185 32.83 127.96
30 bus 105 24.18 93.52
57 bus 190 24.26 99.51

Table 8: Maximum Incremental Transfer (for Vi ≥ 0.85pu), dPloss, and dQloss when no reactive compensation
in the test systems

A list of the voltages from PV curves, elements of the fourth quadrant of

the Jacobian matrix with the greatest magnitude from QV analysis, and tangent vectors

corresponding to the voltage magnitudes for the increased load from Continuation Load flow
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for each of the test system are presented in the tables below.

Bus Voltage

14 0.8411
3 0.8906
10 0.8912
8 0.8967
9 0.8994

Table 9: 14 bus system Voltages
from PV Curves

Bus Jacobian Elements

4 32.31
5 30.56
9 18.61
7 16.01
10 11.31

Table 10: 14 bus system Magni-
tude of Jacobian Elements from
QV sensitivity Analysis

Bus Tangent Vector

14 0.0040809
10 0.0035445
13 0.0034105
9 0.0034006
11 0.0032381

Table 11: 14 bus system greatest
magnitude tangent vectors from
Continuation Load Flow

Bus Voltage

30 0.8409
26 0.8519
29 0.8597
25 0.8803
24 0.8834

Table 12: 30 bus system Volt-
ages from PV Curves

Bus Jacobian Elements

6 75.19
4 51.2
21 40.42
10 38.51
23 36.95

Table 13: 30 bus system Magni-
tude of Jacobian Elements from
QV sensitivity Analysis

Bus Tangent Vector

19 0.00035921
20 0.0003541
18 0.00034704
23 0.00032977
15 0.00031486

Table 14: 30 bus system greatest
magnitude tangent vectors from
Continuation Load Flow

Bus Voltage

31 0.85196
30 0.87619
33 0.88269
32 0.88554
25 0.89734

Table 15: 57 bus system Volt-
ages from PV Curves

Bus Jacobian Elements

22 76.5
13 70.84
15 64.94
38 63.58
14 52.94

Table 16: 57 bus system Magni-
tude of Jacobian Elements from
QV sensitivity Analysis

Bus Tangent Vector

31 0.016733
20 0.015963
18 0.015933
23 0.015861
15 0.015368

Table 17: 57 bus system greatest
magnitude tangent vectors from
Continuation Load Flow

The tables [Table 9-Table 17] show which buses have been identified as weak

buses in the test systems by the three load flow analysis methods. According to PV curve

analysis, bus 14 is the weakest bus in modified 14 bus system, bus 30 in 30 bus system, and

bus 31 in 57 bus system. According to Jacobian sensitivity analysis, bus 4 is the weakest bus

in modified 14 bus system, bus 6 in 30 bus system, and bus 22 in 57 bus system. According

to Continuation Load Flow analysis, bus 14 is the weakest bus in modified 14 bus system,

bus 19 in 30 bus system, and bus 31 in 57 bus system.
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Now that a weak bus has been identified in each of the test systems using

the three load flow analysis methods, a reactive compensation device can be installed at

these locations to compare the improvement in system performance based on the location of

installation. The reactive compensation is also installed at all remaining buses one at a time

in each of the test system to verify if a better location for of reactive compensation exists

and differs from the weak buses identified earlier.

Below are graphs showing the dPloss, dQloss, maximum incremental transfer,

size of reactive compensation resulting in maximum incremental transfer, and the improve-

ment in incremental transfer per unit reactive compensation when a Continuous Controlled

Switched Capacitance of 150 MVAR is installed at each of the buses (brute-force method)

in all three test systems.

Figure 11: The dQloss plot of 14 bus system.
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Figure 12: The dPloss plot of 14 bus system.

Figure 13: The Maximum Incremental Transfer and size of reactive compensation at Maximum Incremental
Transfer of 14 bus system.
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Figure 14: The plot of improvement in Incremental Transfer per unit MVAR in 14 bus system.

Figure 15: The dQloss plot of 30 bus system.
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Figure 16: The dPloss plot of 30 bus system.

Figure 17: The Maximum Incremental Transfer and size of reactive compensation at Maximum Incremental
Transfer of 30 bus system.
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Figure 18: The plot of improvement in Incremental Transfer per unit MVAR in 30 bus system.

Figure 19: The dQloss plot of 57 bus system.
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Figure 20: The dPloss plot of 57 bus system.

Figure 21: The Maximum Incremental Transfer and size of reactive compensation at Maximum Incremental
Transfer of 57 bus system.
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System Optimal PV curves Continuation Load Flow Jacobian Sensitivity

14 bus Bus 4,4 14 14 4
dPloss(MW) 29.55 31.77 31.77 29.55

dQloss(MVAR) 113.78 121.76 121.76 113.78
Max Transfer(MW) 270 245 245 270

30 bus Bus 6,6 30 19 6
dPloss(MW) 18.94 22.19 21.43 18.94

dQloss(MVAR) 71.88 84.48 81.7 71.88
Max Transfer(MW) 205 135 140 205

57 bus Bus 36,34 31 31 22
dPloss(MW) 22.72 23.29 23.29 23.41

dQloss(MVAR) 93.35 95.25 95.25 96
Max Transfer(MW) 480 450 450 280

Table 18: Maximum Incremental Transfer (for Vi ≥ 0.85pu) for placement of Reactive compensation at weak
buses

Figure 22: The plot of improvement in Incremental Transfer per unit MVAR in 57 bus system.

The optimal locations for each of the test sytems listed in Table 18 are obtained

through brute-force method. A location is deemed as optimal when it yields the greatest

improvement in metrics (loading margin, differential real and reactive power losses) of a test

system compared to the placement of reactive compensation at any other bus in the system.
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In modified 14 bus system, bus 4 is the optimal location for improvement in all three metrics.

In 30 bus system, bus 6 is the optimal location for improvement in all three metrics as well.

In 57 bus system however, bus 36 is the optimal location for improvement in loading margin

and bus 34 is the optimal location for improvement in differential real and reactive power

losses (dPloss, dQloss) of the system. We can now compare these results to the locations

suggested by the three stability analysis methods.

The results obtained show that QV sensitivity analysis identified the location

where installation of reactive compensation would give the greatest improvement in maxi-

mum incremental transfer, dPLoss, and dQLoss in both modified 14 bus and 30 bus systems.

However, in 57 bus system none of the methods identify the location that gives similar results.

The location identified by PV curve analysis and Continuation Load Flow in 57 bus system

yields close to maximum improvement in loading margin, dPLoss, and dQLoss. The improve-

ment in system voltage stability can be observed by the decrease in system dQLoss which

plays a key role in system voltage stability. The locations identified as best for installation

of reactive compensation also give the best results in terms of voltage stability improvement

in both modified 14 bus system and 30 bus system. However, in 57 bus system, the optimal

location for installation of reactive power compensation is not the same as the location that

gives the best improvement in voltage stability. This leads to different optimal locations for

placement of reactive compensation based on the improvement in different metrics.

The plots of improvement in incremental transfer per MVAR present efficiency

of installing a reactive compensation at any given location. Based on this, as long as the

improvement in metrics meets the requirements, most efficient location of installing a reactive

compensation can be chosen to minimize the size of reactive compensation required to meet
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the needs.

The results can be better analyzed by classifying the test systems. One way to

do this is to classify the systems based on system sparsity. The system sparsity is calculated

by dividing the number of non-zero elements (n+2m) to the total number of elements (n2;

where n = number of buses, m = number of branches) in the admittance matrix of the system

and then subtracting this from unity. In large-scale power systems, the ratio of number of

branches to the number of nodes is about 1.5 [21]. Considering this, the sparsity of such a

power system would be (1-0.008 = 0.992) 99.2 % sparse.

Test System Sparsity

modified 14 bus system 72.5 %
30 bus system 87.8 %
57 bus system 93.4 %

Table 19: Test system sparsity

Figure 23 shows sparsity plot of the three test systems used in this thesis along

with a system of 500 nodes and branches to nodes ratio of 1.5. The ratio of number of

branches to the number of nodes of the test systems used in thesis is about 1.5. The plot

shows that system sparsity increases as the number of nodes in the system increases. In

particular, the 57 bus system is the most sparse compared to the modified 14 bus and 30

bus systems.

Based on system sparsity, QV sensitivity method is able to predict the location

that gives best results when the system sparsity is 72.5 % and 87.8 %. PV curve analysis

and Continuation Load Flow on the other hand perform better when the system sparsity is

93.4 %.
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Figure 23: Test system sparsities.

6 Conclusions and Future Work

6.1 Conclusions

The modern power system is under constant stress due to continuously increas-

ing load over the decades. Increasing the maximum loading margin of the system has been

an important factor in power system operation and planning. As seen in earlier chapters,

reactive power plays a key role in determining the maximum loading of the system. It has

also been widely used to improve system loading margin and voltage stability.

The thesis presents a review on the voltage stability analysis along with various

major blackouts occurred in recent times. A detailed description of power system analysis

methods, PV curves, continuation load flow, and QV sensitivity analysis is presented in

chapter 2 along with a detailed explanation of the stability indices obtained in each method

used to identify the test system weak bus(es). A 4-step methodology has been developed
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to identify the system weak buses using different stability analysis methods, assess the im-

provement in system performance based on various metrics when a reactive compensation

is placed at various locations of the system, and then implement a comparative analysis to

identify the method(s) that perform better compared to one another. The test systems are

classified to better understand the differences in performances of the analysis methods. The

methodology is applied on three test systems, modified IEEE 14 bus system, IEEE 30 bus

system, IEEE 57 bus system and results are the presented.

It is observed from the results that each of the methods identify different

locations as the best locations for installation of reactive power compensation based on

the indices obtained. QV sensitivity analysis successfully identified the best location for

installation of reactive power compensation in test systems with sparsity of 72.5 % (modified

14 bus system) and 87.8 % (30 bus system). PV curve analysis and Continuation Load Flow

identified the location which provides closer to optimal results in the test system with 93.4

% sparsity (57 bus system).

It can be concluded that the choice of analysis methods could be based on the

system topology to obtain the best results. In this thesis system sparsity is used to classify

the systems based on which the ideal analysis method can be identified.

6.2 Future Work

As seen in the results, the ideal method of analysis is dependent on the system

under consideration. The observations made in this thesis reveal that sparsity could be used

as a factor to classify the systems based on which the ideal analysis method can be identified.

To better classify the systems, more test systems with varied sparsity could be

used to identify the margin of sparsity for selection of appropriate analysis methods. There
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is for example the 118-bus system. Additional metrics such as voltage stability indices

proposed by Mohamed [22], Musirin [23], Venikov A [34], Hong Y. H [35], and Zhuo L [36]

could be used to assess how close the system is to voltge collapse and could be used as a

measure of improvement in system performance. Specifically a reactive compensation would

help to decrease the “closeness” to voltage collapse. Other available methods of load flow

analysis shall be explored for possible implementation of the methodology proposed in this

thesis to determine their performance on different test cases. Last but not least, different

system characteristics (other than system sparsity used in this thesis) should be reviewed and

could be used to classify the test systems and evaluate the performance of stability analysis

methods in identifying the weakest bus. Having used 0.85 p.u. as the minimum voltage level

in this study, the author also suggests performing future studies using various voltage levels

that might reveal interesting results about the performance of different methods of analysis

at different loading levels.

77



References

[1] P. Kundur, Power System Stability and Control, Surrey, British Colombia: McGraw-

Hill, Inc. 1994.

[2] Stephen Burnage, “The US Electric Transmission Grid: Essential infrastructure in need

of comprehensive legislation,”, 2009.

[3] DOE, “THE SMART GRID: An Introduction”.

[4] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, “Definition and

Classification of Power System Stability,” IEEE TRANSACTIONS ON POWER SYS-

TEMS, vol.19, no.2, pp. 1387-1401, May. 2004.

[5] C. W. TAYLOR, Power System Voltage Stabiltiy. Portland, Oregon: McGraw-Hill, Inc,

1994.

[6] T. Van Cutsem and R. Mailhot, “Validation of a fast voltage stability analysis methon

on Hydro-Qubec System,” IEEE Trans. Power Systems, Vol. 12, pp. 282-292, Feb. 1997.

[7] J.D. Ainsworth, A. Gavrilovic and H.L. Thanawala, “Static and Synchronous compen-

sators for HVDC transmission convertors connected to weak systems,” 28th session

CIRGE, pp. 33-01, 1980.

[8] K. Hemmaplardh, J.W. Manke, W. R. Pauly, and J. W. Lamont, “Considerations for a

Long Term Dynamic Simulation Program,” IEEE Trans, Vol. PWRS-1, pp. 1529-1542,

Feb. 1986.

78



[9] B. Gao, G. K. Morison, and P. Kundur, “VOLTAGE STABILITY EVALUATION US-

ING MODAL ANALYSIS,” Transactions on power systems, vol. 7, no. 4, pp. 1529-1542,

Nov. 1992.

[10] Galiana. F. D, “Load Flow Feasibility and the Voltage collapse problem,” IEEE Pro-

ceedings of 23rd conference on Control and Design, pp. 485-487, Dec. 1984.

[11] Tamura.Y, H. Mori, and S. Iwamoto, “Relationship between voltage instability and mul-

tiple load flow solutions in electric power system,” IEEE Trans. on PAS, no. 5, pp.

1115-1125, May. 1983.

[12] V. Ajjarapu, C. Christy, “The Continuation Power Flow: A Tool for Steady State Volt-

age Stability Analysis,” Power Industry Comoputer Application Conference, pp. 304-

311, May. 1991.

[13] S Corsi, G. N. Taranto, Voltage Instability - The Different Shapes of the “Nose,” 2007

iREP Symposium - Bulk Power System Dynamics annd Control - VII, Revitalizing

Operational Reliability, August. 2007.

[14] A. Sode-Yome, N. Mithulananthan, K.Y. Lee, “A Comprehensive Comparison of FACTS

Devices for Enhancing Static Voltage Stability” Power Engineering Society General

Meeting, IEEE, 2007.

[15] A. Ataputharajah and T. K. Saha, “Power System Blackouts - Literature Review”

Fourth International Conference on Industrial and Information Systems, pp. 460-465,

Dec. 2009.

[16] B. Scott, “Review of Load-Flow Calculation Methods,” Proceedings of IEEE, Vol. 62,

pp. 916-929, July. 1974.

79



[17] C. A. Canizares, F. L. Alvarando, and S. Zang, “UWPflow Program,” available at

“http://www.power.uwaterloo.ca/-claudio/software/pflow.htm”, April 2015.

[18] University of Washington, “IEEE 14 bus test case,” at

“https://www.ee.washington.edu/research/pstca/pf14/pg tca14bus.htm”, April 2015.

[19] University of Washington, “IEEE 30 bus test case,” at

“https://www.ee.washington.edu/research/pstca/pf30/pg tca30bus.htm”, April 2015.

[20] University of Washington, “IEEE 57 bus test case,” at

“https://www.ee.washington.edu/research/pstca/pf57/pg tca57bus.htm”, April 2015.

[21] John J. Grainger, William D. Stevenson, Jr. “Power System Analysis” International

Editions 1994.

[22] A. Mohamed, G.B. Jasmon, and S. Yusoss, “A Static Voltage Collapse Indicator Using

Line Stability Factor” Journal of Industrial Technology, Vol 7, No. 1. Pt C, pp 73-85,

1989.

[23] Musitin, I.; Rahman, T.K.A., “Novel fast voltage stability index (FVSI) for voltage

stability analysis in power transmission system,” Research and Development, 2002,

SCOReD 2002, Student Conference on, vol., no., pp.265, 268, 2002.

[24] Ana Claudia M. Valle, Geraldo C. Guimaraes, Jose C. de Oliveira, Adelio Jose de Morais

“The Use of Tangent Vectors for Voltage Collapse Analysis,” International Conference

on Electric Utility Deregulation and Restructuring and Power Technologies 2000, City

University, London, April 2000.

80



[25] A. C. M. Valle, G. C. Guimaraes, J. C. de Oliveira, A. J. Morais “Using Tangent Vectors

and Eigenvectors in Power System Voltage Collapse Analysis” 2001 IEEE Porto Power

Tech Conference, Proto, Portugal, September 2001.

[26] B. Isaias Lima Lopes, A. C. Zambroni de Souze, P. Paulo C. Mendes, “Tangent Vector

as a Tool for Voltage Collapse Analysis Considering a Dynamic System Model,” 2001

IEEE Porto Power Tech Conference, Proto, Portugal, September, 2001.

[27] T. v. Cutsem, C. Vournas, “Voltage Stability of Electric Power Systems,” Kluwer Aca-

demic Publishers, 1998.

[28] Pablo Guimaraes, Ubaldo Fernandez, Tito Ocariz, Fritz W. Mohn, A. C. Zambroni

de Sourza, “QV and PV curves as a Planning Tool of Analysis,” 4th International

Conference on Electric Utility Deregulation and Restructuring and Power Technologies

(DRPT), IEEE conference publications, Pages: 1601-1606, 2011.

[29] M. A. Rios, C. J. zapata, O. Gomez e J. L. Sanchez, “Voltage Stability assessment with

Ranking of Contingencies using QV sensibility,” IEEE Latin America Transactions, Vol.

7, No. 6, December 2009.

[30] Noor Ropidah Bujal, Amilia Emil Hassan, Marizan Sulaiman, “Analysis of Voltage Sta-

bility Problems in Power System,” 4th International Conference on Engineering Tech-

nology and Technopreneuship (ICE2T), 2014.

[31] Aloui H, Bacha F, Gasmi M, “Continuation method applied to power system analysis

of voltage stability,” Electrical Machines (ICEM), 2010 XIX International Conference,

2010.

81



[32] Zhao J, Wang Y, Xu P, “A comprehensive on-line voltage stability assessment method

bsed on continuation power flow,” Sustainable Power Generation and Supply, 2009 SU-

PERGEN ‘09 International Conference, 2009.

[33] Antonio C. Z de Souza, Claudio A. Canizares, Victor H. Quintana, “New Techniques to

speed up Voltage Collapse computations using Tangent Vectors,” IEEE Transactions on

Power Systems, Vol. 12, No. 3, August 1997.

[34] Venikov A, Stroev, V. A, Idelchick V. I, and Tarasov V. I, “Estimation of electric power

system steady-state stability in load flow calculations,” IEEE Trans. on PAS, Vol. PAS-

94, No.3 pp. 1034-1041, May 1975.

[35] Hong Y. H, Pan C. T, and Lin W. W, “Fast calculation of voltage stability index,” IEEE

Trans. on Power Systems, Vol. 12, No. 4, November 1997.

[36] Zhuo L, “The impedance analyses of heavy load node in voltage stability studies,” CSEE

Proceedings, Vol. 20, pp: 35-39, April 2000.

82



Vita

The author was born in 1989, in India. He completed his Bachelors of Engineer-

ing degree in Electrical and Electronics Engineering from Osmania University, Hyderabad

India in 2010. He finished his Masters in Electrical Engineering from the Univeristy of New

Orleans in August 2015. He worked as a Research Assistant with Dr. Parviz Rastgou-

fard during Masters. His areas of interest are dynamic simulation studies, power systems

modeling, voltage stability.

83


	Comparative Analysis of Load Flow Techniques for Steady State Loading Margin and Voltage Stability Improvement of Power Systems
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Modern Power Systems
	Power System Stability
	Voltage stability of Power System
	Methods of Voltage Stability Analysis
	Practical Techniques for Prevention of Voltage Collapse
	Major Blackouts caused by Voltage Instability
	Scope and Contribution of Thesis

	Mathematical Modeling
	Load Flow Problem
	Load Flow Analysis Techniques
	Gauss-Seidel Method:
	Newton-Raphson (N-R) Method:
	Application of the N-R method to power-flow solution:
	PV Curve Analysis:
	QV Curve Analysis:
	Continuation Load Flow Analysis:

	Summary

	Proposed Analysis Method
	Approach
	Metrics
	4 Step Methodology

	Simulation Tools and Test Systems
	Simulation Tools
	PSS/E:
	Matlab:
	UWPflow:

	Test Systems
	Modified IEEE 14 Bus System:
	IEEE 30 Bus System:
	IEEE 57 Bus System:


	Simulations And Results
	Simulations in PSS/E
	Simulations in Matlab
	Simulations in UWPflow
	Results

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Vita

