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Abstract  

A two-step synthesis was performed to fabricate type-II heterojunction ZnO/ZnSe core/shell 

nanowires. First, ZnO core NWs were synthesized on ITO substrate via chemical vapor deposition 

(CVD). Then pulsed laser deposition (PLD) technique was carried out to coat the ZnO core with 

ZnSe Shell. The ZnO/ZnSe core-shell NWs which has application on optoelectronics, such as 

photodetectors and photosensors were characterized via scanning electron microscope (SEM), 

transmission electron microscope (TEM) and finally photodetector devices were measured via 

current–voltage characteristics under ultraviolet (UV) illumination to investigate the effect of the 

inner piezopotential. The ZnO-nanowire-based photodetector ultraviolet (UV) light devices with 

core/shell structure show excellent photo-responsivities. Ultimately, the results in this work of 

ZnO/ZnSe core/shell heterojunction with excellent piezoelectric properties is demonstrated to 

show great promise in the piezo-phototronic device application.  
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Introduction and Background 

Recent development advances have allowed wide band-gap II-VI compound semiconductors to 

approach applications of these materials to fabricate novel devices, such as optoelectronic devices, 

light emitting diode, laser diode, solar cell, sensor, pyroeletric & piezoelectric devices, self-

compensating gas sensor, substrate transparent electrode, electronic devices, filed-effect transistor, 

high power electronic devices, low threshold optical pumping, SAW devices, SAW filter and SAW 

oscillator. Wide band-gap II-VI compound semiconductors can be obtained when group II 

elements and group VI elements are combined in a synthetic way. In addition, wide-bandgap II–

VI compounds such as ZnS, ZnO, ZnSe, ZnTe, CdSe and CdTe have been studied and applied to 

optoelectronic devices like photodetectors or photosensors (1). 

 

We begin with a study of some of the properties of zinc oxide (ZnO) and zinc selenide (ZnSe) 

semiconductor materials. The reason for the higher melting point for zinc oxide (ZnO) and zinc 

selenide (ZnSe) is due to the high ionicity of wide-bandgap II–VI compounds. Also, the nature of 

direct and wide-band gap zinc oxide (ZnO) and zinc selenide (ZnSe) semiconductors allow them 

to be ultraviolet (UV) and visible to light detection. The advantage of utilizing wide bandgap 

semiconductor such as ZnSe with ZnO to form type-II heterostructures to generate narrower 

indirect bandgap will improve the charge carrier collection which leads to reduced recombination 

losses. Thus, synergistic effect between the two components ZnO/ZnSe and abrupt interfacial 

potential between the core and shell materials allow photodetector devices to detect photons with 

energies significantly smaller than~2.2 eV (2). The structure of type II heterojunction ZnO/ZnSe 

core/shell nanowire array is schematically illustrated in Figure 1.1. The fact is that a core/shell 

structure has been utilized to fabricate the photodetector devices due to its favorable radial 

geometry, which can improve the charge carrier collection and reduce recombination losses (3). 
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Figure 1.1 Schematic representation of type II heterojunction ZnO/ZnSe core/shell nanowire 

array  

 

1.1 The basics of ZnO  

Zinc oxide (ZnO) is a II-VI compound semiconductor, which is called a multifunctional material 

due to its unique physical and chemical properties. Zinc oxide is an intrinsic n-type semiconductor 

because of a deviation from stoichiometry, due to the presence of intrinsic defects such as oxygen 

vacancies and zinc interstitials (4). Its application for optoelectronics refers to its physical and 

chemical properties, such as high chemical stability, high electrochemical coupling coefficient, 

broad range of radiation absorption and high photostability (5).  

 

Zinc oxide is an attractive semiconductor material that displays semiconducting and piezoelectric 

properties. It has been studied and found to be a very promising material for optoelectronic devices. 

The wide range of useful properties, including high electron mobility 100 cm2/Vs, high thermal 

conductivity, large exciton binding energy ~60meV (electron-hole binding energy) and high 

thermal and mechanical stability, making it suitable for optoelectronic devices (6) and (7). 
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Additionally, zinc oxide mainly exhibits a wide and direct bandgap ~3.37 eV. Since the zinc oxide 

(ZnO) bandgap is too large for visible light absorption, it makes it very attractive for optoelectronic 

devices in the near UV region. Besides, the inherent piezoelectric property of ZnO can produce 

voltage output from applied stress. Therefore, the semiconducting and piezoelectric properties of 

ZnO means that it can be used as photodetectors (8). 

 

Zinc oxide (ZnO) which is an important and promising metal oxide has been widely studied in 

many areas because of its diverse properties and potential applications. ZnO as a semiconductor 

has been used for medicinal purposes and in electronics, such as in laser diodes, LED’s, transparent 

thin film coatings, and various piezoelectrics. Practically, it shows very promising application in 

nanoscale range, such as ultralight UV detectors, actuators, transistors, sensors, etc (9). 

 
 

Physical parameters of ZnO 

Physical parameters Values 

bandgap energy Eg 3.37 eV 

space group P63mc 

a 0.32495 nm 

c 0.52069 nm 

Crystal structure  Wurtzite 

Density 5.606 g cm-3 

Melting point 1975 °C 

Exciton binding energy 60 meV 

Electron affinity  4.3 eV 

 

Table 1.1 Typical physical parameters of zinc oxide (ZnO) (10) & (11). 
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1.1 The basics of ZnSe 

Zinc selenide (ZnSe), a II-VI compound semiconductor with cubic zinc blende structure and a 

direct bandgap of 2.7 eV, is considered a very favorable semiconductor material for optoelectronic 

devices. Due to its great bandgap as well, it has low optical absorption in the visible and infrared 

spectral region. It has potential to be used in optoelectronic devices such as light emitting diodes, 

optical coatings, ultrasonic transducers, and photodetectors due to its wide range of useful 

properties, such as large band gap, low resistivity and photosensitivity (12). 

 

Physical parameters of ZnSe 

Physical parameters Values 

bandgap energy Eg 2.7 eV 

space group F4̅3m 

a 0.567 nm 

Crystal structure  Zincblende (cubic) 

Density  5.27 g cm-3 

Melting point 1525 °C 

Exciton binding energy 20 meV 

Electron affinity 4.09 eV 

 

Table 1.2 Typical physical parameters of zinc selenide (ZnSe) (10) & (13). 

 

1.2 Importance of piezo electronic materials 

Piezoelectric materials are semiconductor compounds and possess a wurtzite structure that has 

been used since the beginning of the 18th century. Piezo is a Greek word which means to squeeze 

or press, while piezoelectric means electricity resulting from pressure (14). There are two types of 

piezoelectric materials, which are natural or synthetic. The natural piezoelectric materials, such as 

Quartz, Tourmaline and Rochelle, and some of the most used synthetic piezoelectric materials 

nowadays, such as ZnO, GaN, InN, and CdS, shows electric, semiconducting and photoexcitation 

https://www.google.com/search?biw=1920&bih=955&q=define+synthetic&sa=X&ei=qplnVebcNMeCsAWF6oPIDw&sqi=2&ved=0CCAQ_SowAA
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properties (15). These piezoelectric materials have been employed in an impressive range of 

applications, such as piezoelectric resonators, transducers, sound emitters, receivers, solar cells, 

photodetectors and LEDs. Moreover, sonar is a sound navigation and ranging, which is a device 

used for board ships, boats and submarines to detect other sonar objects under water. TMD is a 

tuned mass damper device that is used in skyscrapers at the top of the building as a motion control 

device. TMD is a system being used in skyscrapers to stabilize the building in the case that its 

stability is ever threaten by earthquakes, storms, or heavy winds (16). Therefore, piezoelectric 

materials are very important in our lifestyle and in the following paragraphs the coupling system, 

important definitions, effects and mechanism of these materials will be discussed.  

 

Piezoelectric potential or piezopotential is created when pressure/stress is applied upon the 

piezoelectric material. For instance, there are several ways that the coupling system can be 

combined and therefore each coupling system or sometimes combination of them can be used for 

a variety of applications of the piezoelectric material, such as Piezotronics, Piezophotonics, Opto-

electronics and Piezo phototronics. Piezotronics can be obtained when piezo-electricity and 

semiconductor are coupled, while by joining piezo-electricity and photonic excitation, a 

Piezophotonics can be attained. Also, by coupling the semiconductor and photonic excitation, a 

Piezo phototronics can be achieved. Finally Piezo-phototronics is a result of the three-way-

coupling between piezo-electricity, photonic excitation and semiconductor. Consequently, by 

using piezoelectric semiconductor materials, the piezoelectric, photoexcitation and 

semiconducting properties can be coupled together to investigate their physics and novel 

applications (17). 

 

The elements ZnO, GaN, InN, and CdS in group II-VI and III-V in the periodic table are wide 

bandgap semiconductor materials that possesses piezopotential, which in turn leads them to be 

fabricated as a device causing their piezoelectric potential to be used. The piezopotential is an 

inner potential inside the crystal that is formed by non-mobile, non-annihilative ionic charges. 

There are two ways to study the piezopotential distribution inside nanowire. The first one is when 

an axial strain is introduced to the nanowire and the other is when a transverse strain is applied. In 

a theoretical study of piezoelectric field, using lattice-mismatched nanowire heterostructures can 
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significantly boost piezopotential inside the nanowire and this in turn improves charge carrier 

transport (18) and (19).  

 

Recently, rapid progress in the dominant fields of piezo-phototronics and piezotronics has been 

observed. The significance of the piezo-phototronic devices are to use the inherent piezoelectric 

polarization to tune the charge generation, separation, and transport and/or recombination process 

at the interface for enhancing optoelectronic processes, while piezotronics is about using the built-

in piezopotential as a ‘gate’ voltage to adjust charge-carrier transport across the metal–

semiconductor contact or the p–n junction. Piezoelectric charges at the interface/junction can 

significantly affect the charge carrier separation and transport. For instance, when optoelectronic 

devices are fabricated using piezo-phototronic effect, their performance and interaction with light 

are significantly changed by externally applied strain. Finally, charge generation, separation, 

transport and recombination process are the essential physics of piezotronic and piezo-

phototronics devices (20). 

 

As it is very well known, piezoelectric materials can be used to convert mechanical energy into 

electric energy and vice versa. For instance, when an external voltage is applied to devices 

fabricated using the piezoelectric potential like sensors and actuators, a mechanical action or 

geometric deformation occurs, and this phenomena is known as “Inverse Piezoelectric Effect”. 

Also, when piezoelectric semiconductor materials are under externally applied forces, an electric 

filed “voltage” will be generated, and this phenomena is called “Direct Piezoelectric Effect” (17) 

and (20).  

 

The piezopotential of piezoelectric materials can be affected by applying light illumination and/or 

external strain. For light illumination, the effect of piezopotential reduces with increasing 

illumination intensity. For straining, a piezoelectric potential can be created under different 

straining conditions including stretching, twisting, bending, axial and transverse compression, and 

their combination. Upon straining, piezopotential continuously moves from one side of the 

nanowire to the other. Making electron increases from one end to the other (17) and (20). 
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Growth of ZnO nanowire 

2.1 Background 

The growth techniques of ZnO are very important since they influence their structure and since 

there are a lot of techniques to synthesize ZnO NWs, the choice method to make ZnO NWs for 

optoelectronic device is a crucial step. Choosing the appropriate method allows one to take 

advantage of its useful properties. Zinc oxide naturally crystallizes in wurtzite structure. ZnO 

which has a melting point of 2248 K typically show three types of growth direction like [211̅̅̅̅ 0], 

[011̅0] or [0001] (21). ZnO single crystals and semiconductors II–VI compounds can be epitaxially 

grown in a variety of ways, such as the hydrothermal method, vapour liquid solid (VLS) (22), 

liquid-phase epitaxy (LPE) (23), hot-wall epitaxy (HWE) (24), metalorganic chemical vapor 

deposition (MOCVD) (25) or metalorganic phase epitaxy (MOVPE) (26), molecular-beam epitaxy 

(MBE) (27) and atomic-layer epitaxy (ALE) (28). Therefore, the method being used for growing 

ZnO NWs can contribute to its properties and by taking advantage of the morphologies will 

therefore effectively enable scientists to optimize optoelectronic devices.  

 

2.2 ZnO nanowire array grown on ITO by CVD 

Various techniques have been used to grow c-axis-oriented ZnO compound semiconductor 

material. Different ZnO nanostructures grown by the Chemical Vapour Deposition (CVD) method 

are being used to design and fabricate novel optoelectronic devices. For epitaxial growth, Chemical 

Vapour Deposition considers one of the most employed techniques to obtain NWs with desirable 

mechanical, electrical, magnetic, optical or chemical properties. In Chemical Vapour Deposition, 

growth rate can be determined by several parameter temperature, pressure, and composition and 

chemistry of the gas-phase. Moreover, thickness of deposited materials can be precisely controlled 

using Chemical Vapour Deposition (29). So far, mechanism of reactions occurring in the chamber 

are still not fully understood. Besides, reaction processes are considerably complex and involve a 

series of gas-phase and surface reactions (30). As shown in Figure 2.1, it illustrates mechanism 

reaction processes are considerably complex and involve a series of gas-phase and surface 

reactions. 
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Figure 2.1 Schematic representation of the CVD Chemical Vapour Deposition process shows 

how ZnO NWs can be grown on ITO Substrate. 

 

Synthesis 

The ZnO powder was loaded into an alumina boat as the source material. Cleaned ITO substrates 

(area, 1 cm x 1 cm) were placed downstream of the precursor. The furnace was heated to a preset 

temperature and maintained at this temperature for 60 minutes. A mixture of Ar/O2 as carrier gases, 

flowed into the quartz tube at a total flow rate of 60 SCCM to oxidize and transport the zinc vapor 

to the surface of substrates. Then, the system was cooled down naturally to ambient temperature.  
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Core-shell ZnO and ZnO/ZnSe synthesis 

3.1 ZnO/ZnSe core-shell nanowire array by PLD method 

In the past decade, pulsed laser deposition, PLD, is considered a very exciting technique that has 

been widely used and applied for a variety of materials. It has been extensively utilized to deposit 

or coat thin films for superconductors, semiconductors and insulators. The idea of this technique 

is based on the interaction of a pulsed laser beam with the surface of a solid target (31). The PLD 

of a semiconductor compound has been successfully carried out in our research group for 

optoelectronics and solar cell application with good optical properties (32) (33) and (34). 

 

Thin films properties, such as crystalline structure, thickness, stoichiometry and composition, can 

be controlled by using pulsed laser deposition, PLD, technique. Moreover, excellent coating 

properties can be obtained through low deposition temperatures. However, PLD has a series of 

disadvantages, some examples of this are that roughness and clusters may appear at the surface 

resulting in bad optical and electrical properties. Additionally, it cannot be made into larger 

amounts (35). 

 

Deposition parameters are extremely critical to the structural and optical properties of the 

deposited layer. For example, when we need to control the thickness of a shell, there are several 

important factors to consider, such as target-to-substrate distance, deposition duration, pulse 

repetition frequency, and laser energy density. Particularly, laser energy density fluence (F) which 

governs (i) the deposition rate, (ii) the number of particulates, and (iii) the stoichiometry and the 

uniformity of film thickness. Moreover, as the laser energy density increases, the thickness of the 

deposited layer will be increased in the central region. In addition, temperature can effectively 

manage structural, optical, and electrical properties of the zinc selenide thin layer (35) and (36). 

Therefore, it is very important to optimize such parameters to study the structural and optical 

properties of the as-synthesized ZnO/ZnSe core/shell nanowire array (37) and (38). 
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3.2 Structures analysis of ZnO/ZnSe core-shell nanowire  

A two-step synthesis has been utilized to fabricate type II heterojunction ZnO/ZnSe core/shell 

nanowire array. First, as-grown ZnO NWs on ITO substrates (area, 1 cm x 1 cm), their samples 

were taken to be examined by Scanning Electron Microscope, SEM, to look for morphological 

and structural details of the as-synthesized ZnO. Subsequently, the ITO substrate with ZnO 

nanowire array was taken to perform a coating layer of ZnSe layer on the surface of NWs. 

 

 

Figure 3.1 SEM images of ZnO nanowire array on ITO substrate (a, b and c) top-view SEM 

images at different magnifications of ZnO Nanowire array on ITO substrate (d) Cross-sectional 

SEM image of ZnO nanowire array with an average length of 5μm 

 

The morphology of the as-synthesized ZnO nanowires were characterized using a JSM-5410 

scanning electron microscope SEM. Figure 3.1 shows typical SEM images of the as-synthesized 

ZnO nanowires with smooth surfaces and high density. As shown in Figure 3.1(a), (b) and (c), top-

view SEM images at lower and higher magnifications of the ZnO nanowires which were 
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synthesized by CVD method revealed that entire ITO substrate 1cm×1cm was covered with 

nanowire array and high density nanowires were obtained. A cross-sectional image in Fig. 3(d) 

exhibits the nanowires are perpendicular to the substrate and are varied in length. The SEM images 

indicate that ZnO nanowire arrays with high integrity have a diameter that is about 80–100 nm, 

while their length is about 5–8 micrometers. Therefore, ZnO nanowires are successfully grown on 

ITO substrates and ready to be processed for the next step.  
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Figure 3.2 TEM image and EDX pattern of the as-synthesized ZnO/ZnSe core/shell 

heterostructures: (a) TEM image of the ZnO/ZnSe core/shell heterostructure tip upper and mid 

lower pictures. (b) The corresponding EDS spectrum of the samples taken from the NW tip, mid- 

and root, respectively. The signals for C and Cu peaks is originated from the amorphous carbon 

substrate and the TEM grid substrate, respectively. 

 

In order to obtain detailed information of the as-synthesized ZnO/ZnSe core-shell nanowire 

Transmission Electron Microscope (TEM), JEOL Model 2010 with energy dispersive X-ray 
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spectrometer (EDS) was conducted to investigate the coated ZnO/ZnSe core/shell nanowire array 

structure. Figure 3.2(a) displays a typical low-magnification TEM image of a ZnO/ZnSe core/shell 

nanowire array heterostructures. The interface region between the ZnO core and ZnSe shell is 

clearly observed and the thickness of the ZnSe shell is about 18 nm. For further investigation, the 

corresponding EDS spectrum was conducted on tip middle and root of a single core/shell nanowire 

structure. Figure 3.2(b) shows the composition distribution of the as-synthesized ZnO/ZnSe core-

shell nanowire array heterostructures, the spatial distribution of the ZnO and ZnSe elements in the 

core and shell, respectively, were obtained by using EDS spectrum. The spectrum exhibits strong 

Zn and Se peaks indicating the formation of ZnSe product. The C and Cu signals come from the 

amorphous carbon substrate and the TEM grid, respectively. 

 

Device processing and measurements 

4.1 Experimental   

 

 
 

 
 

 

Figure 4.1 Schematic illustration of the fabrication process of ZnO/ZnSe core/shell NWs. A-F, 

present commonly used configurations of the device integration.  
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Figure 4.1 illustrates the brief fabrication of the final ZnO/ZnSe core/shell nanowire array 

heterostructures photodetector devices. After providing several procedures including: 4.1(a), ITO 

substrate with standard wafer cleaning procedure; 4.1(b), ZnO NWs grown on ITO sub. via CVD 

method; 4.1(c), ZnSe product as a shell coated on ZnO core using PLD technique; 4.1(d), PMMA 

layer spin-coated on ZnO/ZnSe core/shell; 4.1(e), Ag/polyester zigzag electrode on the tips of 

ZnO/ZnSe core/shell; 4.1(f), finished device structure where the device was integrated as followed. 

First, the portion of the ITO mother substrate was etched using diluted HCl so that a copper wire 

can be attached directly to the ITO surface. Second, after connecting a copper wire to the 

Ag/polyester zigzag using a silver paste, the top electrode was placed on the top of the ZnO/ZnSe 

and then kapton protective film was used to package the device. 

 

Growth of ZnO nanowires NWs by Chemical Vapour Deposition (CVD) 

The synthesis of ZnO nanowires was conducted on SiO2 passivated indium tin oxide (ITO) coated 

glass substrate (Rs = 70 – 100 Ω) (area, 1 cm x 1 cm) via Chemical Vapour Deposition. ZnO NWs 

were initially synthesized on a cleaned ITO substrate to cover the entire substrate surface. The 

CVD system contained a horizontal quartz tube furnace with three heating zones, however only 

the central and right zones were used. Firstly, 4.0 g of high purity metallic Zn powder (Alfa Aesar, 

99.9% purity, metals basis) as the source material was loaded into a ceramic boat and placed inside 

the chamber at the central heating zone. The target substrates were placed downstream of the Zn 

powder ceramic boat at the right zone. The target to the substrate distance was about 15 

centimeters. Prior to heating, the system was pumped down to 1 x 10-3 Torr and filled with inert 

gases Ar/O2. Argon and Oxygen gases with 40 and 300 SCCM flow rate, respectively, were 

introduced into the chamber to serve as the carrier gas. The reactor temperature was programmed 

via temperature controllers for the central and right zones as depicted in Figure 4.2. During the 

growing process, the right zone temperature ramped gradually at a rate of 10°C/min to 500°C and 

was maintained there for 150 minutes. The central zone temperature was kept for 50 minutes at 

room temperature and was raised slowly at a rate of 10°C/min to 900°C and held there for 60 

minutes. After the tube was heated and the growth temperature reached the end, the chamber was 

slowly cooled to room temperature. Finally, The ZnO NWs with a diameter ranging from 80–100 

nm were successfully grown on ITO substrates using chemical vapor deposition, CVD, method. 
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Figure 4.2. This graph shows the temperature profiles for both zones. The central heating zone is 

labeled as a blue line and the right heating zone as a grey line. The approximate time consumed 

for cooling each zone is depicted as dashed lines. 

 

Deposition of ZnSe layer by pulsed laser deposition (PLD) 

In order to synthesize ZnO/ZnSe core/shell nanowires, a single ITO substrate with as-grown ZnO 

nanowires was transferred into a pulsed laser deposition system. LOTIS TII LS-2147 Pulsed 

Nd:YAG Laser was applied to ablate the target. The laser wavelength, energy density, and pulse 

frequency were 1064 nm, 45 mJ cm-2, and 3 Hz, respectively. The target substrate was loaded in a 

quartz tube and placed near the ZnSe target disc where the target source was cold-pressed into a 

pellet and placed into a ceramic boat. The quartz tube placed inside the furnace was first vacuumed 

1 x 10-3 Torr base pressure one hour before raising the temperature. Then the temperature of the 

furnace was ramped gradually to 500 °C and left at this temperature during the deposition process, 

which lasted for 10 minutes. After the deposition process took place, the chamber was allowed to 

cool down naturally. Finally, the coating of ZnSe layer on the ZnO NWs surface was successfully 

carried out and the substrate was ready for structural, optical characterizations and device 

fabrication. 
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4.2 Piezo-phototronic photodetector performance of ZnO/ZnSe nanowire 

array 

 
Piezo-phototronic photodetector 
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Figure 4.3 IV Current–voltage characteristic of ZnO/ZnSe core/shell nanowire array 

photodetectors under different UV illumination densities as shown in Figure (a). Photocurrent 

response under variable UV illumination (b) and (c) calculated relative responsivity under various 

illumination densities  

 

To test the performance of the device, I–V measurement of the photodetector ZnO/ZnSe core/shell 

nanowire array integrated on ITO substrate were conducted. It is well known that electron–hole 

pair is created in type II heterostructures by a photon incident to semiconductors (17) and (20). 

First of all, an original I–V characteristic of the device was measured in a dark condition. Then a 

variety of UV light intensity of 0.04, 0.12, 0.44, 0.92, 1.12 and 1.32 mW cm-2 at a bias of 1.5 V 

were applied for all of the measurements. These experimental results in Figure 4.3(a) show that 
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the photocurrent increases when UV illumination density is increased, which means an increment 

of electron–hole pair rate occurs due to the effect of higher intensity. Figure 4.3(b) exhibits 

photocurrent versus illumination intensity plotting that was taken from Figure 4.3(a) where a 

pronounced increase in photocurrent curves appear in proportion to the light intensity. The 

responsivity (Rλ) at a particular wavelength was calculated and plotted as shown in Figure 4.3(c). 

The responsivity equation at a practical wavelength is described as follows (39)  

 

𝑅
λ
 =  

𝐼𝑙𝑖𝑔ℎ𝑡− 𝐼𝑑𝑎𝑟𝑘

𝑃𝑖𝑙𝑙
 

 

Where, 

I light = Current when the photodetector is under illumination 

I dark = Current when the photodetector is in the dark  

P ill = Excitation power  

 

And light intensity (Pill) can be calculated as  

𝑃𝑖𝑙𝑙 = 𝐼𝑖𝑙𝑙 × 𝐴 

Where, 

I ill = Illumination density  

A = Active illuminated device area  

 

These excellent specific electrical properties are due to using CVD technique to grow ZnO NWs 

and PLD method for coating NWs with ZnSe shell. 
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Figure 4.4 IV Current–voltage characteristic of ZnO/ZnSe core/shell nanowire array 

photodetectors under different compressive loads. As shown in (a) and (b), the photocurrent 

response under different compressive loads when the illumination density is 0.04 mW cm-2 and 

0.12 mW cm-2, respectively. Figure (c) and (d) display photocurrent response with respect to 

compressive loads for (a) and (b), respectively.  

 

To investigate the influence of the inherent piezopotential of ZnO/ZnSe core/shell nanowire array 

I–V measurements were done. ZnO/ZnSe core/shell nanowire array photodetector devices were 

measured with/without compressive loads and at ultraviolet UV illumination densities of 0.04 mW 

cm-2 and 0.12 mW cm-2
 at a bias of 1.5 V, respectively. Figure 4.4(a) displays a variety of axial 

compressive loads on the nanowire from 0.05 kgf to 0.20 kgf (kilogram force) at a fixed wave 

length of 0.04 mW cm-2 where photocurrent peaks arise when a compressive load is being 

increased on the photodetector devices. Another I–V measurement with the same strains and only 

a change in light density to 0.12 mW cm-2 was performed in Figure 4.4(b). It gives similar results 

for the photocurrent increment in comparison to the pervious figure. However, the peak 

photocurrent 1.1 mA at 0.12 mW cm-2 is found to be higher than that of 0.04 mW cm-2 0.9 mA, 
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which is reasonable. Additionally, the photocurrent peaks can be recovered as the compressive 

load was released. Figures 4.4(c) and 4.4(d) are the plotted result for the change in peak 

photocurrent versus compressive load for figures 4.4(a) and 4.4(b). The current mA for 0.04 mW 

cm-2 and 0.12 mW cm-2 illumination is significantly enhanced from 0.4 mA to 0.9 mA and from 

0.5 mA to 1.1 mA, respectively, by introducing the compressive load, although the compressive 

load has little effect on the sensitivity to stronger light illumination. Therefore, the detection 

sensitivity of the nanowire-based photodetector is enhanced upon the UV light illumination when 

the ZnO NWs experiences compressive load. 

 
 

Energy Band Diagram 

 

 

 
 

Figure 4.5 Schematic diagram displays type-II energy band alignment of ZnO/ZnSe 

heterojunction. The solid lines (green and red) in (a) show the natural band alignments, and the 

black dashed line shows Fermi level for both ZnO/ZnSe. (b) The dashed lines show the original 

conduction and valence band, respectively, and curved lines indicate the effective band gap 

position when the silver coated polyester zigzag electrode is being positioned on the top of 

nanowires array. (c) Under UV illumination only and (d) under applied load (32) & (37). 

 

The energy band structure diagram of ZnO/ZnSe core/shell heterostructures is depicted in Fig. 4. 

In order to understand the piezo-phototronic enhanced performance of type-II heterostructures 
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ZnO/ZnSe core/shell nanowire array photodetector, a schematic band diagram has been drawn to 

show energy band realignment in different states. As shown in the diagram above, (a) natural band 

alignments, (b) sliver Ag zigzag on the top of core/shell structure, (c) under UV illumination only 

and (d) under compressive load and UV light. Figure 4.4(a) displays the type-II heterostructures 

band alignment of ZnO/ZnSe. When silver zigzag has not been attached, the Fermi level of ZnSe 

is higher than ZnO where the bandgap, electron affinities and work function for ZnO and ZnSe are 

equal to 3.37 eV, 2.7 eV, 4.3 eV, 4.09 eV, 5.3eV and 4.84eV, respectively. All values were taken 

from publications (10, 11 and 13). The vacuum level is defined as the energy of the electron at rest 

far from the influence of the potential of the solid and the work function is the energy required to 

take an electron from the Fermi level to the vacuum level, while the electron affinity of a 

semiconductor is the energy required to remove an electron from the bottom of the conduction 

band to the vacuum level (32) and (37). 

 

In Figure 4.4(b), as the fermi level of ZnSe is higher, it means that there are more energy states in 

ZnSe than ZnO. Now, when Ag silver zigzags into contact, electronic flow will occur to balance 

the charge imbalance in the composite material. In other words, the shifting of energy bands 

continues until the energy levels EFM,ZnO and EFM,ZnSe are equalized. Therefore, after both EFM,ZnO 

and EFM,ZnSe have reached equilibrium energy or gotten to the same level, a downward bending of 

EC,ZnSe and EV,ZnSe took place. For a semiconductor, when an intense ultraviolet UV light excites 

band to band transitions, additional energy gaps can evolve within the original bands. Therefore, 

a weak type II transition occurred between EC,ZnSe and EV,ZnSe as shown in Figure 4.4(c) Upon 

straining and light illumination, upward bending of ZnO took places because of the negative 

piezoelectric charges were generated as displayed in Figure 4.4(d) 
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Conclusion 

In summary, an enhanced photoresponse of type II ZnO/ZnSe heterostructures nanowire array with 

the ZnSe coated-NW-array as the shell and ZnO NW array as the core was developed. The 

photodetector displayed sensitive photoresponse to different light intensity 0.04, 0.12, 0.44, 0.92, 

1.12 and 1.32 mW cm-2 with an external bias of 1.5 V. The excellent photoresponse of the 

photodetector device is due to the abrupt interface between ZnO and ZnSe. In addition, when 

compressive load was subjected to the photodetectors, the performance of the ZnO/ZnSe devices 

were further enhanced by order of magnitudes under UV illumination. This investigation 

demonstrates that the ZnO/ZnSe core/shell nanowires has a potential for photodetection with 

enhanced photoresponsivity. 
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