
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-11-2015

Creating Volatility Support for FreeBSD Creating Volatility Support for FreeBSD

Elyse Bond
University of New Orleans, ebond@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Bond, Elyse, "Creating Volatility Support for FreeBSD" (2015). University of New Orleans Theses and
Dissertations. 2033.
https://scholarworks.uno.edu/td/2033

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.uno.edu%2Ftd%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2033?utm_source=scholarworks.uno.edu%2Ftd%2F2033&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Creating Volatility Support for FreeBSD

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

Requirements for the degree of

Master of Science
in

Computer Science
Information Assurance

by

Elyse Bond

B.S. Southeastern Louisiana University, 2012

August, 2015

Table of Contents

List of Figures .. iii
Abstract .. iv
Chapter 1 - Introduction ...1
Chapter 2 – Related Work..2
Chapter 3 – Foundation ..3
 3.1. Profile Creation ..3
 3.2. Overlay Creation and Profile Interpretation ..4
Chapter 4 – Plugins ..6
 4.1. Process List ..6
 4.1.1. Motivation ..6
 4.1.2. Process List Implementation in FreeBSD ..6
 4.1.3. Volatility Plugin: freebsd_pslist ..6
 4.2. Mounted File Systems ...7
 4.1.1. Motivation ..7
 4.1.2. Implementation of Mounted File Systems in FreeBSD7
 4.1.3. Volatility Plugin: freebsd_mount ...8
 4.3. Network Connections ..8
 4.1.1. Motivation ..8
 4.1.2. Implementation of Network Connection in FreeBSD8
 4.1.3. Volatility Plugin: freebsd_network_conns ...9
Chapter 5 – Current Progress ...11
 5.1. Motivation ..11
 5.2. Implementation ..11
 5.3. Volatility Plugin: freebsd_list_files ...11
 5.4. Future Work ...12
Chapter 6 – Conclusions ..13
 6.1. Overview ..13
 6.2. Future Work ...13
References ..14
Vita ...15

ii

List of Figures

Figure 1: FreeBSD 10.1 kernel debug information and resulting vtypes3
Figure 2: FreeBSD 10.1 system map compiled from the kernel.symbols file3
Figure 3: FreeBSD overlay in Volatility 2.4 ..4
Figure 4: Finding the FreeBSD DTB value ...5
Figure 5: freebsd_pslist plugin output from a FreeBSD 10.1 memory image7
Figure 6: freebsd_mount plugin output from a FreeBSD 10.1 memory image8
Figure 7: freebsd_network_conns plugin output from a FreeBSD 10.1 memory image ...10
Figure 8: freebsd_list_files plugin output from a FreeBSD 10.1 memory image12

iii

Abstract

Digital forensics is the investigation and recovery of data from digital hardware. The field
has grown in recent years to include support for operating systems such as Windows, Linux and
Mac OS X. However, little to no support has been provided for less well known systems such as
the FreeBSD operating system.

The project presented in this paper focuses on creating the foundational support for
FreeBSD via Volatility, a leading forensic tool in the digital forensic community. The kernel and
source code for FreeBSD were studied to understand how to recover various data from analysis
of a given system’s memory image. This paper will focus on the base Volatility support that was
implemented, as well as the additional plugins created to recover desired data, including but not
limited to the retrieval of a system’s process list and mounted file systems.

Digital Forensics, Data Recovery, FreeBSD, Volatility, Kernel, Memory Image

iv

Chapter 1 – Introduction

The need for digital forensic analysis has essentially been around since the beginning of
the digital age. Where there is digital information, there are those that wish to exploit it, or those
that need to utilize it for investigative purposes. Despite the necessity of the field, it is still
somewhat in its beginnings. There is a surprising lack of support for all but the most popular of
the operating systems.

One substantial effort at data recovery is the Volatility project (Volatility, 2015).
Volatility utilizes the kernel debug information and kernel symbols of an operating system to
build a profile for analyzing a system’s memory image. These profiles can be created quickly for
each version of an operating system, such as Windows XP and Windows 7. The ease of this
process is substantial in supporting future version support for each operating system.

Once a profile has been created for an operating system, Volatility recovers the actual
data from a system’s memory image via the use of plugins. Each plugin is designed by studying
and utilizing the volatility types, or vtypes, created with the system’s profile. These vtypes are
built from the operating system’s data structures, making it easier to access those structures
needed for data recovery.

With the relative simplicity of Volatility’s recovery approach in mind, it seemed the
obvious choice for use in creating digital forensic support for FreeBSD.

FreeBSD, while obscure or unheard of to many, is still a widely used operating system.
Its open source policy leads to an increased number of bug fixes and security updates by the
community, but also opens the operating system up to exploitation by those who care to utilize
its documentation for negative purposes. The need for forensic support was seen as necessary,
and has even been requested by those in the FreeBSD community. The following project seeks to
set the foundation for those needs.

1

Chapter 2 – Related Work

FreeBSD has received little to no attention from the digital forensic community. Support
has mostly been devoted to the more popular operating systems: Windows, Linux, OS X and
Android. Despite its similarity to both Linux and OS X, FreeBSD also has no support in the
Volatility project.

One attempt at creating support for FreeBSD was released in 2011, by the name of
Volafunx (Volafunx, 2011). As the name suggests, it was a derivative of Volatility. Volafunx
greatly changed the way in which Volatility creates and interprets profiles, resulting in an excess
of hard coded code. While the project did succeed in recovering various data elements, there was
no support beyond the initial hard coded versions of the systems, including 7.X and 8.X. At the
time of this paper’s writing, FreeBSD is already at 10.X, and no longer works correctly with
Volafunx. However, the effort was useful in providing a bit of insight into FreeBSD’s structural
workings.

Considering that Mac OS X is derived in large part from BSD, forensic support for OS X
was heavily consulted in preparation for creating similar support for FreeBSD.

In 2010, the first substantial research effort for Mac OS X was presented by Matthew
Suiche at Black Hat DC (Suiche, 2010). The effort focused on the data structures and relevant
background information needed for supporting data recovery for the operating system.

Shortly after Suiche’s presentation, Volafox was released in 2011 (Volafox, 2015).
Another derivative of Volatility, Volafox was created by Kyeong-Sik Lee, the same individual
who created Volafunx. While Volafox was largely successful in its efforts, it included similar
limitations to those found in Volafunx. The architecture was greatly altered from Volatility,
resulting in a more complicated process of designing plugins, and severely limiting future
version support. However, it was successful in recovering and listing process lists, mounted file
systems, network connections and other relevant data.

The Volafox effort, despite its limitations, did influence Volatility’s own OS X support,
released the very next year in 2012. Volatility continues with OS X support today, currently
offering well over fifty plugins for the operating system. Volatility’s plugins and base support
were largely referenced for creating both foundational and plugin support for FreeBSD.

2

Chapter 3 – Foundation

In this section we discuss the foundational support created for FreeBSD in Volatility.
This includes the kernel symbol and system map recovery from FreeBSD 10.1 for profile
creation, the vtype generation for use in creating plugins, and the resulting basic memory image
analysis accomplished by Volatility.

3.1. Profile Creation

 Volatility differentiates between operating systems by identifying profiles. Profiles are a
combination of the given system’s kernel debug information and kernel symbols. The kernel
debug information is parsed into a file containing volatility types, or vtypes. The FreeBSD
vtypes are made up of the system’s struct objects and their members. Some members are simply
a variable, while others are pointers to another struct object. See Figure 1 below for a comparison
of the debug info and resulting vtypes. The kernel symbols are compiled into a file referred to as
system.map, seen below in Figure 2.

Figure 1: FreeBSD 10.1 kernel debug information and resulting vtypes

Figure 2: FreeBSD 10.1 system map compiled from the kernel.symbols file

3

To create an initial profile for FreeBSD, we need to recover the kernel debug information
and kernel symbols for the given version, in this case 10.1. This information is all that is needed
to create additional profiles for both past and future versions of the operating system.

FreeBSD stores the kernel debug information in a file called kernel.debug, under
/usr/obj/usr/src/sys/GENERIC/. In the case that a custom kernel has been created for the system,
the kernel.debug file can be found under /usr/obj/usr/src/sys/[custom kernel]/. The kernel.debug
file is in the format of an ELF executable binary file. By using the dwarfdump command on this
kernel module with debugging enabled, we are able to generate the necessary vtypes, seen above
in Figure 1. The dwarfdump application utilizes the libdwarf library to convert dwarf data into a
legible format. The resulting vtypes are the first piece used in creating the FreeBSD profile.

The second piece we need to create is the system map. In Linux, there is already a file
included with the kernel symbols called System.map. This file can be used as-is in creating a
Linux profile. In FreeBSD, there is no such file. However, it can be easily created by performing
nm on the kernel.symbols file also located at /boot/kernel/. The command nm on a Unix based
system extracts the symbols from an object file.

Now we have the two files necessary for our FreeBSD Volatility profile,
freebsd10_vtypes.py and system.map. Zipping these files together, we are now ready to create an
overlay in Volatility to interpret the profile.

3.2. Overlay Creation and Profile Interpretation

To handle different operating system types, Volatility uses overlays tailored to the
specific operating system in question. An overlay is a python file specifically coded to process
the FreeBSD profile and interpret the unique structure of its architecture. These overlays are
created for each operating system Volatility supports. To introduce FreeBSD into Volatility, a
FreeBSD overlay was created with the approach further discussed in this section, part of which
can be seen below in Figure 3.

Figure 3: FreeBSD overlay in Volatility 2.4

4

Volatility uses a parser to interpret the dwarfdump output of the profiles for Linux, called
dwarf.py. Since we used the same format for the FreeBSD profile, we can use this same parser,
with a few modifications to account for variable types not found in the Linux profiles.

Once the profile has been parsed, Volatility needs the DTB, the kernel’s cr3 value for
Intel architectures. The DTB is the directory table base, or the address of the operating system’s
page directory. Volatility needs this value to translate kernel virtual addresses to physical
addresses properly. The address for the page table mapping in FreeBSD is stored in the symbol
kernel_pmap_store located in our system.map file. The offset for the cr3 value itself is then a
member of the kernel_pmap_store symbol, called pm_cr3. Adding the cr3 offset to the page
mapping address gives us the approximate address of the cr3 value. However, we still need to
account for the 64-bit architecture, so we subtract a preset shift of 0xffffffff80000000. We can
then unpack this result to retrieve the exact address of the kernel’s cr3 value. See the related code
in Figure 4.

Figure 4: Finding the FreeBSD DTB value

Now that we have the cr3 value, Volatility needs to check that the value is valid. We do
this by mapping a physical address found in the system.map file to the virtual address calculated
by Volatility. Pulling the address stored in system.map for some symbol, in this case the version
symbol, we compare that to the address provided by Volatility. If the two addresses match, then
we have correctly translated the kernel virtual addresses.

Now that we are translating addresses correctly, we can begin writing plugins to recover
the actual data.

5

Chapter 4 – Plugins
Plugins can be written to address numerous data recovery needs, ranging in difficulty

depending on the data being retrieved. For the purposes of demonstrating the potential for future
FreeBSD support, we will present and discuss three different plugins that have been
implemented for the operating system.

4.1. Process List
4.1.1. Motivation

 One of the necessary and most insightful bits of data that can be retrieved is the system’s
process list. The process list can give a quick look into the given machine’s state at the time of
the memory image’s capture. From the data recovered from the system’s process list, especially
if the process IDs can be retrieved, the trail can begin for finding more information stored on the
machine.

4.1.2. Process List Implementation in FreeBSD

 FreeBSD stores the addresses for its processes in a struct object called the proclist. A
pointer to the beginning of the system’s process list can be found in the kernel symbol allproc.
The address for the first process stored in the process list is referenced by the proclist list entry
member lh_first.

The process struct objects themselves, designated proc, contain the following relevant members:

 p_comm
 p_pid
 p_numthreads
 p_ucred.cr_uid

These members make up the process’s name, process ID, number of threads and user ID,
respectively. In the case of the p_comm member, this variable is actually a character array. We
define p_comm in the FreeBSD overlay as a string dict of length twenty, to allow Volatility to
more easily parse the member’s contents. Each process also contains a list entry member called
p_list, containing pointers to the addresses for both the previous and next process entries in the
process list, or proclist.

4.1.3. Volatility Plugin: freebsd_pslist

 To begin, we need to find the process list starting address for Volatility. By consulting
the FreeBSD documentation, we find that a pointer to this starting address is stored in the allproc
symbol found in the system.map file. Now we need to know the address for the process list itself.
In FreeBSD, the process list is stored in the proclist struct object found in our vtypes file. By
referencing this object and providing the pointer we retrieved from the allproc symbol, we are
able to get the address for the first process in the process list. We are then able to recover each
individual process by iterating through the proc objects. Starting with the address found in the
proclist list entry member lh_first, we can then access each subsequent process by referencing
the member p_list.le_next from the current proc struct object.

6

The proc object also stores several more members that could be of interest, depending on
the desired information to be recovered. The plugin can be easily modified to provide this
information in addition to what is seen in Figure 5 below.

Figure 5: freebsd_pslist plugin output from a FreeBSD 10.1 memory image

4.2. Mounted File Systems

4.2.1. Motivation

When analyzing a memory image for forensic purposes, it is helpful to know which file
systems were mounted at the time of image capture. By reviewing the list of mounted devices, it
can also be discovered whether any file systems were mounted via an external source.

4.2.2. Implementation of Mounted File Systems in FreeBSD

FreeBSD stores the file system information under /boot/etc/fstab. It can be queried from
within the operating system, simply by entering the command “fstab” into the terminal.

However, for our purposes, the file systems for FreeBSD are stored in a doubly linked
list, a struct object called mntlist. Each individual entry has an instance record stored in another
struct object designated mount. These entries are linked to one another by the mount object’s
member mnt_list.

Much of the relevant information for each mounted device is stored under a struct object
called statfs, linked to by the mount object’s member mnt_stat.

7

Under the statfs object can be found the following members:

 f_mntonname
 f_mntfromname
 f_fstypename

These members refer to the file system’s device name, mount point and file system type,
respectively.

4.2.3. Volatility Plugin: freebsd_mount

First we need to find the address for the beginning of the list of mounted file systems.
This can be found via the symbol mountlist in our system.map file. With this address, we
reference the tailq_head struct object mntlist, and we find the address stored in its member
tqh_first.

At this point we can begin looping through the mounted devices. Using the individual
mount object’s tailq_entry member mnt_list, we can access each subsequent device in the list via
mnt_list.tqe_next.

As with the pslist plugin, there are many additional members stored within the mount
object that could be useful depending on the information desired. This data can be added easily
in the future, in addition to those members found in Figure 6 below.

Figure 6: freebsd_mount plugin output from a FreeBSD 10.1 memory image

4.3. Network Connections

4.3.1. Motivation

Another very useful piece of digital forensic data is the network information found on the
system. Recovering a list of connections the machine possessed at the time of image capture can
be very useful in analyzing the given system’s purpose and/or activities.

4.3.2. Implementation of Network Connections in FreeBSD

FreeBSD stores its network layer state for TCP, UDP and raw IPv4 and IPv6 sockets in a
struct called inpcb. Pointers to all local and foreign host table entries and socket numbers can be
found in or referenced through this object.

8

A terminal line command to access some of this information can be entered directly in
the operating system, as netstat.

Some of the relevant members stored within, or accessed through, the inpcb object are as
follows:

 s_addr (local)
 ie_lport
 s_addr (foreign)
 ie_fport
 t_state

These members are the network connection’s local IP address, local port, foreign IP address,
foreign port and TCP state in the case the connection is a TCP protocol.

4.3.3. Volatility Plugin: freebsd_network_conns

To begin accessing the network connection information for FreeBSD, we start with the
symbols tcbinfo, udbinfo and ripcbinfo found in our system.map file. These symbols provide the
addresses for the three different types of inpcb objects we will be recovering, if present on the
system. The tcbinfo symbol refers to a TCP connection, and the udbinfo symbol refers to a UDP
connection.

Next we provide these addresses for the struct object inpcbinfo. This object contains a
member inpcb_listhead pointing to the struct object inpcbhead. This object contains the member
lh_first pointing to the first in the list of inpcb objects found on the system. As before, we are
now able to loop through the objects via the list_entry member inp_list.le_next or
inp_list.le_prev.

As we reference each object in the list, we are able to gather the IPv4 information for the
object. This information is linked through a long list of struct objects listed below.

Local IP:

 inp_inc
 inc_ie
 ie_dependladdr
 ie46_local
 ia46_addr4
 s_addr

Local Port:

 inp_inc
 inc_ie
 ie_lport

9

Foreign IP:

 inp_inc
 inc_ie
 ie_dependfaddr
 ie46_foreign
 ia46_addr4
 s_addr

Foreign Port:

 inp_inc
 inc_ie
 ie_fport

Finally, we get the state information for TCP connections. Through the member inp_ppcb we
access a tcpcb struct object containing the state information stored as t_state. For connections
other than TCP, we leave the state blank.

The information shown below in Figure 7 can be expanded if more information is desired. As
in the case of the previous two plugins, freebsd_network_conns is easily modifiable.

Figure 7: freebsd_network_conns plugin output from a FreeBSD 10.1 memory image

10

Chapter 5 – Current Progress

Currently in progress is a plugin to list the files found on the FreeBSD memory image. In
this section we will discuss the plugin itself, as well as its completion status and expected output.

5.1. Motivation

When recovering data from a memory image, there are many cases where it is important
to be able to find or see a list of files stored there. Even if the file itself cannot be recovered, it is
helpful to know which files were open or cached on the system at the time of image capture.

5.2. Implementation

FreeBSD has utilized UFS/UFS2, the Unix File System, as its default file system since
FreeBSD version 5.0. Starting with FreeBSD 7.0, the Z File System, or ZFS, has also been
available.

For every active file or current directory in Unix based systems, there is an associated
unique vnode. A vnode, or virtual node, is an internal representation of a file or directory.
FreeBSD stores its file information in relation to each of these vnodes.

The path or name for a particular file is resolved through a struct object called the
namecache, or the name lookup cache. Each vnode stores a link to the associated namecache
entry for the file in question. However, the namecache utilizes a least recently used (LRU)
algorithm to store its information. In other words, only the most recently used or accessed files
will have their information stored in the namecache. Hence not all vnodes will find a namecache
entry to return.

5.3. Volatility Plugin: freebsd_list_files

To start listing the files found on the system, we begin with the mounted file systems.
Each file system will have its own list of associated vnodes. The mounted file systems can be
accessed via the mountlist symbol discussed in the freebsd_mount plugin.

Each file system references its list of vnodes via the mnt_nvnodelist member. To find the
beginning of the list, we access the mnt_nvnodelist.tqh_first member. Each vnode contains a
member called v_nmntvnodes, with a tqe_next member pointing to the next vnode in the list. We
are then able to enumerate the list of vnodes found on the given file system.

For each individual vnode, we need to print its filename and file path, if the information
is present on the system. The vnode’s entry in the namecache can be accessed via the
v_cache_dd member, pointing to the namecache struct object. If the vnode is a file, we attempt to
recover the file’s name and path.

To retrieve the filename, we need only return the nc_name member. To rebuild the file
path, we must iterate upward through the hierarchy of parent vnodes. Each of these vnodes will
be directory entries making up the complete path to the file from root. The namecache entry for
each vnode contains a link to the parent, if one exists, called nc_dvp. Once we’ve accessed the
parent vnode, we retrieve the filename as we did for the child, using the nc_name member. We

11

continue in this manner until we have reached the top of the tree. Combining the returned names
together, we are able to build the full file path for the vnode in question.

An example of data returned from the current freebsd_list_files plugin can be seen below
in Figure 8.

Figure 8: freebsd_list_files plugin output from a FreeBSD 10.1 memory image

5.4. Future Work

Due to the nature of the namecache’s method for storing information, the LRU algorithm,
many of the vnodes return a null entry. For the future, the author hopes to implement a more
reliable method for returning file information.

The author also hopes to more robustly test the above plugin to further verify its
reliability.

12

Chapter 6 – Conclusions

6.1. Overview

The foundational analysis and supporting plugins discussed in this paper were tested on
FreeBSD 10.1.

Testing was performed on memory samples obtained from virtual machines generated
during the research of this project. Virtual machine guests’ memory was captured using
snapshots on VM Ware Workstation 11.

This paper has demonstrated that forensic support is possible for the FreeBSD operating
system, specifically within the Volatility project. We discussed several situations in which
pertinent data was successfully recovered from a FreeBSD memory image. The data recovered
included the system’s running processes, mounted file systems, network connections and cached
files. The data was recovered by studying the operating system’s source code and relevant kernel
information, as well as developing Volatility base support and plugins to automate the process.

For the foundational support, we built a Volatility profile for FreeBSD using the
operating system’s kernel debug information and kernel symbols. This profile was interpreted by
utilizing and building onto the existing Volatility dwarf parser. We further studied the kernel
symbols and memory addresses to determine correct virtual to physical address translation within
Volatility.

For each plugin that was developed, we studied the operating system’s source code to
determine how and where the relevant data was stored within the memory image. The resulting
information determined which symbols and memory addresses and offsets we would need to
access to recover the data in question.

The Volatility support for FreeBSD and its related plugins will be freely available after
the publication of this project.

6.2. Future Work

The foundation for FreeBSD forensic support is now in place within Volatility. The
plugins discussed earlier in this paper build upon this foundation and significantly demonstrate
the type of data that can be accessed via this project. For the future, we aim to continue creating
and improving upon support for the FreeBSD operating system. As with the other operating
systems Volatility supports, we are confident that the forensic community will also be able to
contribute additional plugins and support to the FreeBSD portion of the Volatility project.

13

References

Suice, M., 2010. Advanced Mac OS X physical memory analysis.
In: Blackhat DC Security Conference.

Volafox, 2015. Volafox memory analysis framework.
 https://code.google.com/p/volafox/.

Volafunx, 2011. Volafunx memory analysis framework.
 https://code.google.com/p/volafox/.

Volatility, 2015. Volatility memory analysis framework.
 https://github.com/volatilityfoundation/volatility.

14

Vita

 The author was born in New Orleans, Louisiana. She obtained her Bachelor’s degree in
computer science from Southeastern Louisiana University in 2012. She joined the University of
New Orleans computer science graduate program to pursue a Master of Science degree in
information assurance, and currently works for NASA as a programmer analyst.

15

	Creating Volatility Support for FreeBSD
	Recommended Citation

	tmp.1438178618.pdf.FHTlp

