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Abstract 
 

Autonomic Computing (AC) aims at solving the problem of managing the rapidly-

growing complexity of Information Technology systems, by creating self-managing 

systems. In this thesis, we have surveyed the progress of the AC field, and studied the 

requirements, models and architectures of AC. The commonly recognized AC 

requirements are four properties - self-configuring, self-healing, self-optimizing, and self-

protecting. The recommended software architecture is the MAPE-K model containing 

four modules, namely - monitor, analyze, plan and execute, as well as the knowledge 

repository. 

In the modern software marketplace, Java Management Extensions (JMX) has 

facilitated one function of the AC requirements - monitoring. Using JMX, we 

implemented a package that attempts to assist programming for AC features including 

socket management, logging, and recovery of distributed computation. In the 

experiments, we have not only realized the powerful Java capabilities that are unknown 

to many educators, we also illustrated the feasibility of learning AC in senior computer 

science courses. 
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Chapter 1. Introduction 
 

Autonomic computing is a concept that brings together many fields of computing 

with the purpose of creating computing systems that manage themselves (Huebscher  

2008). Autonomic computing is a paradigm for dealing with the growing complexity of 

computer systems, which currently requires system administration. This paradigm 

contributes to a number of other technologies such as grid computing, virtualization, and 

service-oriented architecture (SOA) (Ganek 2007). Autonomic computing is inspired by 

the human autonomic nervous system (ANS), which regulates our body functions.  

IBM forecasts that the number of computing devices will grow at the rate of 38% 

per year (“IBM” 2).  While business productivity is rising, these advances are creating 

management challenges for IT staff. Applications often span multiple resources – 

application servers, Web servers, integration middleware, and legacy systems. These 

composite applications are difficult to manage. At the same time there is a growing 

volume of data, escalating demand and requiring more complex IT environments. 

Estimates indicate that up to 80% of an average company’s IT budget  goes to the 

maintenance of existing software (Ganek 2007). 

As demand for skilled IT personnel easily outstrips supply, labor costs now 

exceed equipment costs by a large ratio, up to 18:1. IBM started calling for the grand 

challenge of autonomic computing in 2001. This initiative aimed to develop computing 

systems capable of self-management, to overcome the rapidly growing complexity of 

systems management (Kephart 2003). 
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 In this thesis, we will review the autonomic computing landscape, the system 

requirements, the essential properties, and the architectural models of autonomic 

computing.  At the heart of autonomic computing is the concept of software adaptation 

which can be achieved either at the operating system levels or at the specific 

programming levels.  We will discuss the techniques at both levels, briefly including 

program-level adaptation in light of the Java language. The thesis will pay more 

attention to the relation of autonomic computing to Service-Oriented Architecture (SOA).  

Particularly, we will study the SOA-approach to autonomic computing for pervasive 

systems, as well as a software architecture for the dynamic configuration and 

composition of communication services, which applies the composition design pattern.    

The literature surveyed has clearly indicated that autonomic computing has been 

in the requirements of all the modern critical enterprise systems.  Autonomic features 

have been implemented in numerous distributed applications.  A trend of increasing 

demand for autonomic features has been demonstrated in both Web and mobile 

applications, as well as cloud-based information systems.  However, such a critically 

important aspect of computation has not been studied enough in computer science 

education.  A goal of this thesis is to investigate the feasibility of adopting autonomic 

computing concepts and techniques in advanced computer science courses.  A 

particular focus will be on distributed programs because of the inherently unreliable 

nature of network communication.  Through a series of experimental programming 

exercises, we hope to develop a software library that can simplify implementations of 

autonomic features.  
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Chapter 2. Survey of Autonomic Computing 
 

2.1 Individual Implementations of Autonomic Computing 

  

 Even before IBM’s Autonomic Computing initiative came into existence, inroads 

into the subject area were being made by the US Department of Defense and NASA. In 

this chapter, we review Autonomic Computing history, and also look at current software 

that demonstrates Autonomic Computing abilities. 

2.1.1 DARPA Projects 

 Many self-management research projects were launched by DARPA for military 

applications. The first set of DARPA projects were focused on enabling a generation of 

self-repairing, self-forming, self-defending and heterogeneous networks, in order to 

provide security and critical advantages in unpredictable and dangerous environments. 

Some of these projects included the Small Unit Operations-Situational Awareness 

System (SUO-SAS) program, the Optical RF Combined Link experiment (ORCLE), 

Future Combat Systems Communications (FCS-C), and the Wireless Networks after 

Next (WNaN) program. 

 A series of DARPA programs was launched for addressing autonomy issues in 

battery-powered wireless systems, such as unattended ground sensor (UGS) networks 

(Lalanda 2014). 

 One of the more interesting projects launched by DARPA was the Dynamic 

Assembly for System Adaptability, Dependability and Assurance (DASADA), which 

commenced in 2000. The goal of DASADA was the development of technology for 
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ensuring the dependability of mission-critical systems. Some of the research motivated 

by this project has initiated architecture-driven solutions for self-managing large-scale 

distributed systems. These solutions rely on the extraction of runtime software 

"gauges." These gauges are used for the monitoring of system dependability properties 

(e.g. safety, security, and architectural coherence), analyzing the collected information 

for detecting variance from the predicted behavior, and dynamically adapting the system 

in order to prevent violations of acceptable behavior (for example, self-repairing running 

systems) (Lalanda 2014).   

 

 2.1.2 NASA  

 NASA has a natural interest in the field of autonomic capabilities, due to the 

nature of its unmanned space missions. In these missions, communication between 

land-based control centers and spacecraft is frequently unavailable and continuously 

affected by long round-trip delays. In these contexts, the success of costly explorations 

has been totally dependent on the autonomic capabilities of spacecraft devices, which 

allow rapid control decisions to be made in real-time. Self-repair and self-reconfiguration 

are also critical capabilities in these missions, since direct communication with the 

devices is impossible. 

 The autonomic ability in NASA space missions includes star-tracking based 

navigation, self-directing antennas, automatic fault reactions, and data storage and 

retransmission. One example is the AutoNav autonomous navigation system, which 

was employed on board the Deep Space 1 (DS1) and Deep Impact spacecrafts for 

enabling high-speed encounter missions to small bodies, like comets and asteroids.  
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 The popular Mars rover was another example of an autonomic system. Planet 

surface explorations demand the autonomous rovers to find their way through often 

difficult and rugged territories. 

 Yet another project with a futuristic slant that NASA unveiled is called the 

Autonomous Nano Technology Swarm (ANTS) program (2000). ANTS uses the idea of 

a generic architecture for human/robotic space mission, which is based on an ant 

colony analogy. The ant-colony provides an excellent example of self-organization that 

engenders a resilient and relatively cheap system.  The ANTS system also utilizes high 

social interaction capabilities that enable self-organization into various structures in 

order to achieve predefined goals (Lalanda 2014). 

2.2 System Approach to Autonomic Software 

2.2.1 IBM’s Grand Vision of 2001 

On October 15th, 2001, the vision of autonomic computing was made explicit by 

Paul Horn, the then senior vice president of IBM Research. In his speech he suggested 

to build computer systems that “regulate themselves much in the same way our 

autonomic nervous system regulates and protects our bodies” (Ghosh 2007). In other 

words, there should be a minimum of human interference (IBM 2).   

To solidify and prove their mission, IBM released an IBM Autonomic Computing 

Toolkit through its DeveloperWorks website. It was a free add-on to the Eclipse 

development environment. This was implemented in Java and had features such as 

“Common Base Events” and a “Generic Log Adapter”, along with an “Autonomic 

Management Engine.” However, support for this toolkit was discontinued by IBM in 

2007.  
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2.2.2 Self-CHOP Properties of an Autonomic Computing System 

 There are four key properties for any given autonomic computing system: self-

configuration, self-healing, self-optimization and self protection.  These properties are 

often abbreviated as the "Self-CHOP properties" (also termed "Self-X"). Below we 

summarize what these terms mean. 

 Self-Configuration 

 Self-Configuration means the system’s ability for automatic configuration of 

components, according to high-level goals. More specifically, this capability gives the 

system the power to adapt to unpredictable situations. For example, it may remove or 

add new components, or install software changes (without stopping the current service) 

(Huebscher 2008). 

 Self-Healing 

 Self-healing denotes the ability to automatically discover, and subsequently 

correct, faults. For example, a service disruption in a major website can be prevented if 

our system has self-healing abilities. This is of interest to all major websites, as they can 

increase profits by minimizing their downtime (Huebscher 2008). 

 Self-Optimization 

 This refers to the automatic control of resources, and monitoring them to ensure 

peak functioning with respect to the defined requirements. In other words, this enables 

the system to tune itself on-the-fly to proactively improve the current processes, and to 

reactively respond to environmental conditions. This quality is of interest in the security 

domain, where hackers may compromise the system at any time. 
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  Self-Protecting 

 The system must be able to proactively identify and protect against any arbitrary 

attacks or vulnerabilities. For example, any large enterprise system may be susceptible 

to denial-of-service attacks. This is vital in the current era of ever-increasing 

connectivity, as exemplified by the rapid adoption of smart phones. 

Self-protection also includes a system's ability to prevent physical harm – such 

as the motion detection in modern laptops, which protects disk drives by temporarily 

parking the disk-drive head upon sensing that it is being dropped. 

 

2.2.3  Evolutionary Levels in Pursuit of Autonomic Computing 

 IBM introduced five evolutionary levels in the autonomic computing spectrum. 

These levels are defined as follows in Table 1 (Gusworld 1): 

 

 

 

Figure 2.1 - Self-CHOP properties (Jacob) 
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Table 1 - Evolutionary Levels in the Autonomic Computing Spectrum 

Level Description 

Level 1  Basic 

Level 2 Managed 

Level 3 Predictive 

Level 4 Adaptive 

Level 5 Autonomic 

 

 At the very beginning, Level 1 is the Basic level. This level corresponds to the 

situation today - where systems are mostly managed manually. Here, we have many 

sources of system generated data, that require a highly skilled staff. 

 The next level is Managed, and here we have greater system awareness, 

improved productivity and consolidation of data and management tools. 

 In Level 3, the Predictive level, the system monitors and recommends actions, 

and the staff will approve or disapprove those actions. Thus, it “figures out” the plan and 

awaits a human’s approval. 

 Next is Level 4 – the Adaptive level where the system monitors and initiates 

action, and then the staff manage that against service level agreements. 

 Finally, Level 5 is fully Autonomic. The system will monitor and initiate actions 

based on business processes. In this stage the IT staff can focus on implementing 

business requirements. 
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2.2.4 Key Features of Autonomic Computing  

 IBM's autonomic computing manifesto identified eight key characteristics that 

define an autonomic system (Lalanda 2014): 

1. Holding self-knowledge and consisting of elements that have system 

identification information 

2. Being able to reconfigure in reaction to environmental changes (which are 

potentially unpredictable) 

3. Always in a state of striving to optimize functioning, in order to reach predefined 

criteria 

4. To first detect, and then recover, from component failures in order to maintain 

global dependency 

5. In regards to various threats, being able to anticipate, detect and avoid them in 

order to maintain  integrity and security. 

6. Acquiring environment knowledge and behaving in a context-sensitive manner 

7. Implementing open standards in order to be able to survive in a heterogeneous 

ecosystem 

8. Hiding complexity through bridging the gap between underlying IT resources and 

business goals. 

 

2.2.5 MAPE-K Model 

 Central to the autonomic computing architecture is the idea of an autonomic 

manager and a MAPE-K loop. This is simply a logical architecture, not a mandatory 

blueprint, which defines the  various activities to be carried out in order to have 
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autonomic loops. MAPE-K is an acronym for monitor, analyze, plan, execute, and 

knowledge. These are the aspects involved within any autonomic cycle.  

 

Figure 2.2 – MAPE-K Model ( Parashar ) 

 

In the first stage, monitoring, we build a model of the managed artefacts and  

execution context. Following this, analysis uses the blueprint built by the monitoring to 

assess the situation and determine any anomalies (Lalanda 2014). 

The planning stage comes after analysis. Its purpose is to figure out a set of 

management actions that allow the passage from a current state to a desired state. And 
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lastly, the execution stage carries out plans, dealing directly with the effectors that are 

provided through the managed artifacts (Lalanda 2014).  

The MAPE-K logical architecture is extremely important in the field of autonomic 

computing. It gives a structural framework to begin with when creating an autonomic 

system. The architecture is scalable because the activities can be run on different 

machines (Lalanda 2014).  

2.2.6 Research on Decision-Making Techniques 

 

There is significant research in the area of decision making, in regards to 

autonomic computing. A paper by Maggio et al. describes various approaches and 

techniques, and outlines five main techniques for them: heuristic solutions, standard 

control–based solutions, advanced control-based solutions, model-based machine 

learning solutions, and model-free machine learning solutions (Maggio 2011).  

Heuristic solutions begin with a guess about application needs, and adjust it. 

They are designed for simplicity and performance, and thus sacrifice precision. They 

usually cannot be proven to converge to the optimum value. For example, the greedy 

approach optimizes resource allocation and energy management in a hosting center 

(Maggio 2011).  

 Standard control-based solutions use canonical models and apply standard 

control techniques such as Proportional Integral (PI) controllers, Proportional Integral 

and Derivative (PID) controllers, optimal controllers, or Petri nets. Two examples of 

these models are discrete-time linear models and discrete event systems. Important 

properties may be enforced such as convergence time and stability (Maggio 2011).   



 12 
 

 Advanced control-based solutions involve complex models (involving some 

unknown parameters like machine workload) that may be estimated online, to provide 

Adaptive Control (AC). Adaptive Control requires the ability to change controller 

parameters in real-time, and an identification mechanism. Another advanced control 

strategy is Model Predictive Control (MPC). In MPC the controller selects the next 

actions based on the prediction of the future system reactions. Although the overhead of 

such solutions is greater than that of standard controls, one may still be able to formally 

analyze parameter-varying systems. Thus, one may prove stability and obtain formal 

guarantees even in the case of unknown operating conditions. For example, one real-

world example adjusts the CPU percentage dedicated to a web server adaptively 

(Maggio 2011).  

 In model-based machine learning solutions, a framework is required in which to 

learn system behavior and adjust tuning points online. Neural Networks (NN) are often 

used to build control-oriented nodes. Once trained, NNs may predict the system 

reaction to various inputs. It should be noted that the structure of the network and the 

training data quality are paramount.  

 

 

2.3 IBM’s Autonomic Computing Architectural Concepts and Toolkit 
 

 In IBM’s 2005 white paper (“An architectural blueprint for autonomic computing”) 

a common approach was outlined, along with terminology, to describe a self-managing 

autonomic computing system. This approach shows how all parts of an autonomic 
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system are connected using enterprise service bus patterns. This enterprise service bus 

integrates the various building blocks, which include: 

 Touchpoints for managed resources 

 Knowledge Sources 

 Autonomic Managers 

 Manual Managers 

Figure 2.3 below shows this autonomic computing reference architecture:  

Figure 2.3 – Autonomic Computing Reference Architecture ("An architectural blueprint") 

 

IBM’s software framework for Autonomic Computing was released in 2004, and 

was called the “Autonomic Computing Toolkit.” It was built in Java, and distributed 

through the IBM developerWorks website. 
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2.3.1 Key Component Areas 

 The content of the IBM Autonomic Computing Toolkit can be divided into four 

main categories: 

 Technologies 

 Tools 

 Scenarios 

 Information and documentation 

 

2.3.2 Technologies 

System capabilities that utilize the technologies in the Autonomic Computing 

Toolkit include common systems administration, problem determination, and solution 

installation and deployment. 

Problem determination capabilities can be enhanced via the Autonomic 

Management Engine (AME), the Generic Log Adapter, the Log and Trace Analyzer, and 

Common Base Events. The Integrated Solutions Console is used to create effective 

common systems administration capabilities. Finally, the Solution Install technologies 

provide capabilities for solution configuration and deployment (Jacob 2004). 

2.3.3 Tools 

The Autonomic Computing Toolkit also provides the tooling needed to customize 

the technologies so that solutions can be created for specific needs. Tools like the 

Integrated Solutions Console Toolkit, Resource Model Builder, Adapter Rule Editor, and 

other Eclipse plug-ins are used for the creation of custom solutions. 
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2.3.4 Scenarios 

The Autonomic Computing Toolkit also provides scenarios that show how the 

technologies work together, and how they may be used in realistic solutions. The 

scenarios are used as testing environments. All scenarios are demonstrated using the 

technologies and tools available in the Autonomic Computing Toolkit. There is a 

problem determination scenario performing self-healing, as well as two automated 

installation scenarios performing self-configuring tasks. 

2.3.5 Information and Documentation 

The Autonomic Computing Toolkit also has useful material for educating users. It 

provides detailed individual technology and tooling documentation, to assist with 

developing autonomic solutions (Jacob 2004 ). 

2.3.6 Autonomic Computing Toolkit Technologies 

The tools and technologies contained in the Autonomic Computing Toolkit are 

intended to help product developers create autonomic capabilities in their products. One 

example of an implementation of an autonomic manager is provided by the Autonomic 

Management Engine (AME). The AME includes built-in representations of the four parts 

of the control loop (monitor, analyze, plan, execute).  

Developers use several technologies to create touchpoints to enable managed 

resources to communicate with autonomic managers. One example of these 

technologies is the Generic Log Adapter, which is included in the Toolkit to translate 

product log messages into a Common Base Event (CBE) data format. The Common 

Base Event is an XML structure which can be consumed by an autonomic manager 

(Jacob 2004 ). 
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The Log and Trace Analyzer is then used to process these messages. Afterward, 

it analyzes them and presents a view of the log events.  

Self-configuration is enabled also, via the Solution Install components of the 

Toolkit, while self-management capabilities are enabled via the Integrated Solutions 

Console. Administrative console functions vary from run-time monitoring and control to 

setup and configuration (Jacob 2004). 

Referring again to the MAPE-K figure (Figure 2.2), let us consider how 

information is passed to the autonomic manager. In the Autonomic Computing Toolkit 

this would be accomplished through the sensor interface. For unsolicited events, a 

current resource might generate its own log file. Then the Generic Log Adapter facility 

would be utilized to convert log entries to Common Base Events. It is also possible for 

an application to create its own Common Base Events directly (Jacob 2004). 

The Generic Log Adapter (GLA) is one example of a facility that helps adapt a 

product to participate in the autonomic computing architecture. It does this by creating 

Common Base Events which can then be consumed by an autonomic manager. For 

example, using the GLA we can use a product log file to generate Common Base Event 

data.   First, a rule-based parser processes a log file, and then the log file is translated 

into the Common Base Event format. The Autonomic Computing Toolkit includes the 

GLA to help products adapt to the autonomic architecture without having to alter the 

way it creates its log files (Jacob 2004).  

One single GLA runtime may be used to parse the log files of multiple products, 

as long as the rules have been defined for each log message format. The adapter 
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includes a handler that can pass the Common Base Event information to the autonomic 

manager (using the effector and sensor interfaces) (Jacob 2004). 

In conjunction with the GLA, the Adapter Rule Editor tool is used. This provides 

the tooling to create the specific parser rules, which are used by the GLA at runtime to 

create CBE objects.  

The next MAPE-K component is monitoring. This component can either consume 

unsolicited Common Base Events, or can request specific sensor information. The 

building blocks for monitoring the IT environment are resource models, which are 

leveraged via automated best practices. These resource models contain specific 

metrics, thresholds, events, and parameters which are used to gauge the health of IT 

resources. They also contain specifications for corrective actions, if failures and error 

conditions come up (Jacob 2004). 

The Resource Model Builder provides a standard Eclipse-based interface that 

provides a wizard to build resource models. This facility uses predefined resource 

models to specify which resource data gets accessed from the system at runtime and 

how this data is processed. For example, the Process resource model retrieves data 

related to running system processes. The resource model automatically collects 

performance data, and this gets processed by an algorithm to determine whether or not 

the system is performing up to expectations (Jacob 2004). 

When a resource model is run (at a managed resource), it gathers data at regular 

intervals, known as cycles. A resource model with a cycle time of 100 seconds gathers 

information every 100 seconds, and the data collected is a snapshot of the status of the 
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resources (which are specified in the resource model). The default cycle time of each 

supplied resource model can be modified as required.  

Furthermore, each resource model has thresholds. A threshold is a named 

property of the resource (with a default value that can be modified).  

The autonomic manager consists of the monitoring, analysis, plan, and execute 

components. The Autonomic Computing Toolkit provides an implementation called the 

Autonomic Management Engine. It is intended primarily for testing the components of 

the autonomic environment, and is a black-box implementation (Jacob 2004).  

AME monitors system resources using resource models. It also sends 

aggregated events and performs corrective actions for problems. AME constantly 

monitors the system, checking for events to handle. 

The Log and Trace Analyzer (LTA) may be considered a partial implementation 

of the autonomic manager, covering the monitor and analyze parts of the control loop. 

The LTA enables analysis, viewing, and correlation of log files. It therefore makes it 

easier to resolve problems within multi-tier systems by consuming data in the Common 

Base Event format and providing specialized visualization and analysis of the data 

(Jacob 2004).  

The LTA contains a log-analysis engine, which provides an algorithm that takes 

an incident which is recorded in a log file as an input parameter. Then it matches this 

incident based on predefined rules against the symptoms of an available symptom 

database, and finally returns an array of objects representing the directives and 

solutions for the matched symptoms. The LTA provides a default implementation of an 
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analysis engine, and a set of instruments which could be used to implement a custom 

analysis engine (Jacob 2004). 

Rather than using the rules-based parser provided by the GLA, the LTA enables 

the writing of Java code-based parsers. Parsers written in Java code are usually used 

when the individual log messages are very complex. The Autonomic Computing Toolkit 

provides a number of parsers and rules for several existing IBM products (Jacob 2004). 

 

2.3.7 Autonomic Management Engine 

 The Autonomic Management Engine (AME), illustrated in Figure 2.4 below, 

supplies a hosting environment for the resource model decision algorithms. These 

autonomic resource models are created using JavaScript. The core decision algorithm 

of the resource model is the  VisitTree() method which is run by the AME at a given 

time cycle defined by the resource model descriptor, which itself is an XML file (Jacob 

2004).  
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Figure 2.4 - The Autonomic Management Engine Hosting Environment (Jacob) 

 

2.4 CASCADAS ACE 

 

 A European consortium picked up where IBM left off, implementing their own 

version of an autonomic computing platform. It is called the Component-ware for 

Autonomic Situation-aware Communications, and Dynamically Adaptable Services 

(CASCADAS) Autonomic Communication Elements (ACE) Toolkit, and is an open-



 21 
 

source platform used to set up autonomic services in a distributed environment (ACE 

Autonomic Toolkit).    

 

2.4.1 The ACE Theoretical Principles 

 

2.4.1.1 Semantic Self-Organization 

 The Autonomic Communication Element (ACE) framework stores algorithms that 

support semantic self-organization of ACEs. These algorithms come in the form of 

autonomous clustering, synchronization, and differentiation.  The commonality among 

all three aggregation methods is that the choice of aggregation partners is influenced by 

knowledge (and hence, evaluation) of the context they are operating in ("ACE 

Autonomic Toolkit"). 

2.4.1.2 Clustering  

 If an ACE detects a discrepancy in its list of required or available functionality 

(perhaps because of a change in the local environment due to a surge in demand), then 

it starts a “rewiring” procedure.  The initiating node’s algorithm can pick one or more of 

the first ACE neighbors as match-makers. Also, the constraint on the conservation of 

the number of links may be relaxed ("ACE Autonomic Toolkit"). 

2.4.1.3 Differentiation 

 The purpose of differentiation is to allow ACEs to decide whether to terminate 

themselves (locally) under an inappropriate workload. Thus, resources can be 

transferred between applications in a way such that released resources can be re-

assigned to another application. The term differentiation is derived from morphogenesis 
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– a biological phenomenon which means “the development of form and structure in an 

organism during its growth from embryo to adult" (“morphogenesis”).  

   

2.4.1.4 Synchronization 

 The purpose of synchronization is to find or create partnerships based on the 

time activity patterns of the constituent ACEs. The synchronization requires two main 

prerequisites: 

1. Establishing a collaborative overlay which combines components that  feature 

activity patterns that are compatible a priori starting from a random bootstrap 

configuration 

2. Finding ways of adjusting individual time-cycles in order to create opportunities 

for collaborating (which would not exist if every individual activity pattern was set 

from the beginning). 

 

Figure 2.5 - Two types of Inter-ACE communication: Connection-less (Service-discovery) and 
Connection-oriented(Service Usage) ("ACE Autonomic Toolkit") 
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2.4.1.5 Situation Awareness 

 Situation-awareness denotes the ability of refining decisions according to the 

specific contextual situation, and this requires tools and models for analyzing and 

organizing pieces of information. There, the ACE Framework defines a Knowledge 

Network (KN) service, which is accessible (through aggregation) by ACEs as a system-

wide service. Knowledge Networks process information in order to make a collection of 

Knowledge Atoms (KAs). These KAs structure the processed information into a data 

model which is built on the basis that any amount of contextual knowledge is created as 

a result of an event occurring. Furthermore, a dedicated data model is made to 

represent any fact as a 4-tuple of the form (who, what, where, when).  

2.4.1.6 Pervasive Supervision 

 To detect and correct hazard situations, an ACE needs a supervision system. 

This is an ongoing system with a Sensor that links the supervision system with the ACE. 

Every ACE uses the dedicated supervision organ to export a management interface 

through which internal state and session objects can be obtained. 

 Whenever a new event arrives, the Executor adds the input of each PEX to it. 

Processing speeds of individual PEXs may differ, but the whole system is unaffected 

because PEXs are independent (run on separate threads and have separate input 

queues).  

 It is important to note that there are two PEX types: a “Normal” PEX, which at 

start-up gets a new input queue and a new Execution Session; and a “Child” PEX, 

which at start-up will inherit the Execution Session of its parent PEX, and also inherits 

the content in the parent’s input queue. Child Plans may be used for starting separate 
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processes/Plans for each client. Parent and Child share the Execution Session and so 

they can synchronize through reading/writing into it. 

 

2.4.1.7 Functionality Repository 

 The Functionality Repository is the ACE organ which takes care of deploying and 

managing functionalities (common and specific functionalities) within the ACE. It also 

provides features for calling these functionalities using Events. 

 The main purpose of the Functionality Repository is to enable common and 

specific functionalities to be deployed into the ACE instance. Once deployed into the 

ACE they can be accessed through ACE events. Thus the Functionality Repository has 

two sides: as a storage facility and as a provider of an accessible interface. 

 As a storage facility, the Functionality Repository keeps track of the deployed 

functionalities, creates and stores instances of the underlying classes, and maintains 

call-related variables. 

As an accessible interface, it listens to specific ACE events and then interprets 

them as calls to the functionalities.  The ACE Functionality Repository also follows the 

Event-based access model as the ACE organs. Therefore, the input of each invocation 

is an internal ACE event (called FunctionalityCallEvents) that is produced by the 

Executor when the execution of a transition begins (and is sent directly or through the 

Bus). Also, the output of a call is an arbitrary set of events (that may be fixed or varying) 

created by the functionality. The Functionality Repository transmits these events to the 

Bus or Gateway, depending on the event type. 
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2.5 Autonomic Computing in Practice 
 

 The autonomic computing principles have been applied to many enterprise 

software systems. A number of software utility packages are available in the market 

today.  

2.5.1 DB2 

 IBM is the main user of Autonomic Computing principles. This is exemplified in 

the enterprise database suite, DB2. DB2 version 9 has a number of autonomic features 

that are designed to make database administration almost effortless, such as: 

 self-tuning memory management 

 auto-configuration enabled by default 

 automatic database maintenance 

 automatic storage management 

Figure 2.6 below shows a screenshot of the automatic maintenance feature: 1  

                                                
1 http://www.ibm.com/developerworks/data/library/techarticle/dm-0606ahuja2/ 



 26 
 

 

Figure 2.6 –Configuring Automatic Maintenance in DB2 (screenshot) 

 

DB2 9 utilizes a feature called self tuning memory manager (STMM), which is 

shown below in Figure 2.7. This feature eases the task of memory configuration (often a 

burden on database administrators). It does this by automatically setting optimal values 

for most of the memory configuration parameters, including package cache, buffer 

pools, locking memory, sort heap, and the total database shared memory.2 

                                                
2 http://www.ibm.com/developerworks/data/library/techarticle/dm-0709saraswatipura/ 
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Figure 2.7 - The Self-Tuning Memory Manager (Saraswatipura) 

 

 

2.5.2 Oracle 

 In Oracle SQL versions 11g and up, there are a number of tools that can aid in 

implementing an autonomic system. One example is using REDO logs, which are binary 

files that store change vectors. The changes are written to the redo logs in a circular 

fashion. Most enterprises operate in a mode called ARCHIVELOGMODE. This means 
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that as the instance switches from one redo log to another, the previous log is written 

out to an archive log file. 

 The following is an example of how we can use Oracle’s memory management 

functions: 

ALTER SYSTEM SET log_archive_dest_1='LOCATION=[/LOCATION]' 

SCOPE=both; 

 If we want to simulate a series of log switches, we may use the following 

command several times: 

ALTER SYSTEM SWITCH LOGFILE; 

 In general, Oracle Database provides a built-in infrastructure for defining 

maintenance activities. There is powerful scheduling functionality introduced with Oracle 

Database 11g Schedule to run tasks such as the following: 

 gathering optimizer statistics in order to update the system catalog with 

information on the data in indexes and tables 

 creating statistical profiles for optimal statistics collection (based on table 

analysis and query feedback) 

 Performing database backups 

 Reorganizing fragmented tables 

 By default the maintenance window begins at 10:00 PM every night, and lasts 

until 6:00 AM the next morning and throughout the weekend. All the maintenance 

window attributes are customizable (start/end time, frequency, days of the week, etc). 



 29 
 

This allows it to adapt to specific scheduling needs. The tasks of automated optimizer 

statistics collections, automatic SQL tuning, and reorganizing fragmented tables are all 

built into Oracle Database 11g and run periodically. 

Oracle - Resource Control 

 One powerful aspect of running a task in a maintenance window is the ability to 

control the system resources and limit resource use in favor of more business-critical 

activities. By using bandwidth quotas, the Oracle Resource Manager optimizes resource 

utilization globally and allows maintenance tasks to use the available resources without 

affecting higher priority activities. 

Oracle - Space Reorganization 

 Tables in a database become fragmented, and therefore reorganization tasks are 

run to increase object access performance and optimize space usage. Oracle 11g is 

capable of scheduling reorganization jobs online. Also, it provides a set of options like 

moving tables, adding/dropping partitions, changing structures, etc. 

Oracle - Automation of SQL Tuning  

 Oracle provides a SQL Tuning Advisor, which analyzes problematic SQL 

statements and makes specific recommendations to tune it. The core of this technology 

is the Automatic Tuning Optimizer (ATO).  ATO is an improved version of Oracle's query 

optimizer that runs the actual analyses on behalf of the SQL Tuning Advisor. It uses 

dynamic sampling and partial execution methods to verify its own estimates of 

selectivity, cost, and cardinality. It also uses the past execution history of the SQL 

statement in order to determine optimal settings for the optimizer. Recommendations 

generated by the ATO include creation of new indexes, updating of optimizer statistics, 

optimizing of the SQL statement design, and creation of a SQL Profile (a database 
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object in Oracle 11g offering a way to tune SQL statements). Then it collects information 

on predicate selectivity, skews, and data correlations for the specific SQL statement. 

These are then used by the query optimizer to produce an ideal execution plan 

(“Oracle" 10). 

Table 2 - Oracle Database’s AC Abilities 

Self-Configuring  Self-Healing Self-Optimizing Self-Protecting 

 

Resource Control 

Space Reorganization 

 

 

n/a ATO n/a 

 

 

2.5.3 Monit 

 Monit is a utility available on UNIX systems, which is used to manage and 

monitor the operating system. It is an open source program.  

 Monit can exhibit proactive capabilities. For example, if sendmail is not running, 

Monit can restart sendmail automatically. Also, if Apache is using excessive resources 

then Monit can stop/restart Apache, and send the user an alert. Monit also can monitor 

specific process characteristics (i.e. how much memory a process is using, CPU usage, 

and Load Average).3 

                                                
3 http://mmonit.com/monit/ 
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 Monit is also used to monitor files, directories, and file systems on localhost. 

This is useful for checking issues such as timestamp changes, size changes, or 

checksum changes. Security issues can also be monitored – you can check that md5 or 

sha1 checksum of files do not change. 

 Below in Figure 2.8 is a graph generated by Monit, which shows CPU and 

memory usage, along with other information  : 

 

Figure 2.8 - Monit ("Danschultzer/monit-graph") 

 

 

Table 3 - Monit’s AC Abilities 

Self-Configuring  Self-Healing Self-Optimizing Self-Protecting 

 

Applicable n/a Applicable n/a 
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2.5.4 MapReduce  

 MapReduce has gained huge popularity, mainly due to its adoption by Google.4 

MapReduce borrows from the autonomic computing genre in that it utilizes distributed 

computing. MapReduce is used to process and generate large data sets, via a 

distributed and parallel algorithm on a cluster.5 

 MapReduce is useful in a large range of applications, including distributed 

sorting, distributed pattern-based searching, web link-graph reversal, Singular Value 

Decomposition, web access log stats, inverted index construction, machine learning, 

document clustering, and statistical machine translation. Furthermore, the MapReduce 

model has been ported to several computing environments such as multi-core and 

many-core systems, desktop grids, volunteer computing environments, mobile 

environments, and dynamic cloud environments.  

 Google, for example, used MapReduce to completely regenerate its index of the 

Internet. This replaced old ad hoc programs that updated the index and ran analyses. 

 A distributed file system is used to store stable inputs and outputs for 

MapReduce. The transient data is stored on local disk, and fetched by the reducers. 

 

 

 

                                                
4 http://research.google.com/archive/mapreduce.html 
5 http://en.wikipedia.org/wiki/MapReduce 
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 In Figure 2.9 below is a high-level diagram of MapReduce, which is an algorithm 

used to divide a computation among many computers for parallel processing: 

 

 

 

Table 4 - MapReduce AC Abilities 

Self-Configuring  Self-Healing Self-Optimizing Self-Protecting 

 

Applicable n/a Applicable n/a 

 

 

Figure 2.9 - MapReduce ("Deploy")  
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2.7.5 Watchdog Scripts 

 One way that programmers often implement failsafe abilities is via "watchdog 

scripts." A watchdog script is simply a system script that is triggered after a specific 

action on the program being monitored. The following is a simple example of a Windows 

watchdog script, which utilizes a Windows batch file: 

 

 A watchdog script is especially useful for system administrators, who often need 

to keep track of runaway processes. These scripts are popular in Unix and Linux system 

administration. 

2.7.6 Apache Commons Daemon 

 One way autonomic computing behavior can be implemented using Java is to 

use an Apache utility called Daemon.6 

 Apache Daemon has two parts: a native library written in C which interfaces with 

the operating system, and the library that provides the Daemon API (written in Java). 7  

                                                
6 http://stackoverflow.com/a/30020831/763029 

Figure 2.10 – Watchdog Script (Windows Batch File) 
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Depending on which operating system we are using, an application can be run either as 

a service (Windows) or a daemon (Linux). On Windows, we may use ProcRun.exe to 

run the Java application as a service. And on Unix, we may use JSvc for running the 

Java application.  

Table 5 - Apache Common’s AC Abilities 

Self-Configuring  Self-Healing Self-Optimizing Self-Protecting 

 

n/a  Applicable through 

ProcRun.exe on 

Windows, or JSvc 

on Unix 

n/a n/a 

 

 

2.7.7 daemontools 

 Specific to the UNIX operating system, there is a very useful utility called 

daemontools. This is a collection of tools for managing UNIX services, and among them 

there is a program called supervise. supervise starts and monitors a service. It is 

run as follows: 

supervise  s 

 When run, it switches to the directory named s and starts ./run. It restarts 

./run if ./run exists, and also maintains status information (in a binary format) inside 

the directory s/supervise (which must be writable to supervise). This status 

                                                                                                                                                       
7 http://en.wikipedia.org/wiki/Commons_Daemon 
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information can be read by svstat.  To check whether supervise is running 

successfully, one may use the svok tool.8 

 

 

2.8 Code Adaptation 
 

 At the heart of autonomic computing is the concept of software adaptation. Self-

management cannot be achieved without the ability to modify the behavior and structure 

of a system. Software adaptation requires changing low-level code, which is often 

intricate and complicated. Side effects could be unforeseen. Since the code that is to be 

modified has been run, the computation state has to be preserved. Software adaptation 

can be achieved either at the operating system levels or at the specific programming 

levels (Lalanda 2014). 

2.8.1 Operating System-Level Adaptation 

 Figure 2.11 below demonstrates an OS-Level Autonomic Manager: 

                                                
8 http://cr.yp.to/daemontools/supervise.html 
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Figure 2.11 – OS-Level Autonomic Manager (Parashar) 

  

 Dynamic adaptation at the operating system level is not intrusive because the 

internals of the programs are not changed. They change the resources and services 

provided by the operating system.  

 Much research has been conducted in order to allow the dynamic integration of 

services and resources. For example, most operating systems are capable of 

integrating new resources in real-time without interruption of services. This is the case 

of the Universal Plug and Play (UPnP) standard, originally developed by Microsoft 

(Lalanda 2014). 
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 Operating systems allow the dynamic deployment of new services. Deployment 

includes activities such as installation, activation, and deactivation. On Linux and many 

Unix systems, in order to install a new shell command one simply copies the executable 

(binary file/script) into the ‘/bin’ directory. The service is "launched" afterward by typing 

its name, and it then becomes available to the OS computing environment. In a sense, 

operating systems have an infrastructure that appears autonomic, in order to 

dynamically adapt software systems. But new code is not finely integrated into the 

existing code. Rather, it is packaged and deployed as a stand-alone service in the OS 

file. Some running code can then call this new service (Lalanda 2014). 

 In spite of the aforementioned ability to dynamically integrated new code, building 

a dynamic application on top of an OS is very complex. It is often based on ad hoc 

mechanisms set up by the application itself.  The example of the shell command that we 

mentioned above is based on the introspection of directories specified in a global 

environment variable.  Also, it is difficult to create an infrastructure for the interception 

and redirection of messages that are exchanged between two internal structures of the 

application code.  Thus, OS-based techniques remain impractical due to excessive 

complexity (Lalanda 2014). 

2.8.2 Application Program-Level Adaptation 

 Dynamic adaptation is at the core of many programming languages, and a 

number of techniques have been applied to allow code evolution at runtime.  Dynamic 

linking is one of them. In the Smalltalk programming language, code is dynamically 

typed and reflective. In JavaScript programming variables are weakly typed and 
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dynamic. In the Erlang language developers can dynamically load new code and 

explicitly manage code replacement (Lalanda 2014).  

 These are powerful techniques which can be used by autonomic managers to 

bring about dynamic code adaptation. However, these techniques are very hard to 

master and control. Excessive use of programming-level techniques results in buggy 

code, which is very hard to test and maintain. Programming-level techniques have a 

strong impact on the code itself. For instance, in order to dynamically load C libraries, 

extension points (variation points) need to be introduced. This results in complex code. 

Variation points cannot be introduced everywhere in the code because it quickly 

becomes unmaintainable (Lalanda 2014). 

 The C modules that can be linked dynamically are packaged into specific 

libraries. The implementation of these libraries depends on the OS. These specific 

libraries are called shared libraries (.so) in Linux and dynamic-link libraries (.dll) in 

Windows.  For example, the following code shows how to load a library with the 

dlopen() function, how to get a shared library symbol address, and finally how to 

unload the shared library with the dlclose() function: 

 

void *handle; 
int  *iptr, (*fptr)(int); 
 
/* loading expected library */ 
handle = dlopen(“/usr/home/me/mylib.so”, RTLD_LOCAL | RTLD_LAZY); 
 
/* Getting the address << my_function >> and << my_data >> */ 
*(void **)(&fptr) = dlsym(handle, “my_function”); 
iptr = (int *)dlsym(handle, “my_data”); 
/* call to << my_function >> with << my_data >> as param */ 
(*fptr)(*iptr); 
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 Dynamism in C is unwieldy and complex. Furthermore, C has little supporting 

mechanisms that limit programming errors. Dynamic libraries get loaded with no 

verification about the correctness of the new code, such as a typing system. Issues like 

dangling pointers can arise freely, as there is no preventive verification when a module 

is unloaded (Lalanda 2014).  

 

2.8.3 Program-Level Adaptation in Light of the Java Language 

 In Java, source code is always transformed into byte code to be executed by a 

virtual machine. A virtual machine is an abstraction layer that isolates applications from 

computer specifics (operating system, physical hardware architecture). This abstraction 

layer can minimize the effort involved in porting software between different systems 

(Lalanda  2014). 

 In Java there is no static linking. Loading a class is performed on demand when 

the class is needed for execution. The action of loading classes in a virtual machine at 

runtime is done by a specific entity called a class loader. The job of the class loader is 

to resolve external references. To do this it needs to locate libraries that contain the 

appropriate classes in the system resources, and then load them into the virtual 

machine. Many class loaders can be used in the same virtual machine, and their use is 

based on the following rules:               

 Every class loader (except the initial one, called a bootstrap) has a parent 

 Each class loader delegates the task of class loading to its parent before doing 

so itself 
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By default, a Java virtual machine has three hierarchical class loaders: 

 The initial class loader whose job is to load standard Java classes (rt.jar) 

 The extension class loader which loads classes of the extension directory 

(jre/lib/ext) 

 The application class loader, which loads archives defined by the CLASSPATH 

 More class loaders may be added to load specific aspects in a systematic way, 

and each class loader will then have its own name scope.  This allows the loading of 

two implementations of the same class as long as they are loaded by two different class 

loaders. Therefore, two versions of a class may be used by different parts of a system, 

which provides flexibility.  In addition, backtracking to an earlier state is made possible. 

However, the class loader concept is not easy for programmers to master. This results 

in buggy situations where unexpected classes are used in a program (Lalanda 2014). 

 Unlike the C approach, verification is done before loading a Java library. Type 

system compatibility is checked. The following example code shows how to dynamically 

load a Java class: 

 

 

Class type = ClassLoader.getSystemClassLoader().loadClass(name); 
Class type = this.getClass().getClassLoader().loadClass(name); 
Object obj = type.newInstance(); 
 

 

 

 Dynamic code loading is an essential feature that allows the introduction of new 

code in the scope (namespace) of some code already running without interruption.  But 

the ability to integrate new code is not well supported. Unloading code is necessary 



 42 
 

when one wants to replace a class. However, a class loader cannot unload a class.  

Unloading a class needs unloading the class loader itself.  

 In this case, it is necessary to be able to deploy, load, and instantiate the new 

structure.  Finally, the structure to be replaced is then required to vanish. It has been 

unloaded from the virtual memory, with clients of the old structure being rerouted into 

the new one (Lalanda 2014). 

 

2.9 Autonomic Computing and its Relation to Service-Oriented Architecture 

(SOA) 
 

 Service-Oriented Architecture provides an architectural framework where 

software components communicate with other components using an agreed-upon 

protocol. It provides an easy way to build up complex applications from many different 

sources. SOA may also be used to implement AC features. 

2.9.1 Service-Oriented Architecture 

 Many data centers, including Google and eBay, organize their systems using 

Service Oriented Architecture (SOA).  A collection of servers, applications, and data at a 

site is called a farm, while a collection of farms is termed a geoplex. 

  A service is either cloned or partitioned.  Cloning means that the data is copied 

onto a collection of nodes. Each node can provide its own storage (inefficient if many 

nodes) or it may use a shared disk or disk array. The collection of clones is called a 

Reliable Array of Cloned Services, or RACS.   We may then partition the data among a 

collection of nodes. These partitions may be replicated onto a few new nodes, which 
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then form a pack. The set of nodes that provide a packed-partitioned service is called a 

Reliable Array of Partitioned Services (or RAPS).  

 

Figure 2.12 - RACS and RAPS architectures (Parashar) 

 

 A RAPS is functionally superior to a RACS, but a RACS is easier to build and 

maintain. Therefore, many data centers try to maximize the use of the RACS design. 

RACS are good for read-only, stateless services (often found at the front end of a data 

center), while RAPS are better for update-heavy states (as found in storage back-end). 

Figure 2.12 above illustrates both architectures. 

 Most data centers apply SOA principles. All these systems have developed in an 

organic way, beginning with a few machines in a single room. The configuration and 

management of these systems is a daunting task, and problems that result in black-outs  
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need to be resolved within seconds. Thus, automation is a highly desired quality (van 

Renesse 2007). 

 In modern SOA technology, each service has its own management console. 

However, the deployed services depend on one another. If one service is problematic, it 

may be due to a failure in another service. Therefore, obtaining a global view and 

quickly finding the source of the problem is necessary. When each service supports for 

self-management and self-configuration, a global diagnosis could be possible (van 

Renesse 2007). 

 A Scalable Monitoring and Control Infrastructure (SMCI) can be used to solve 

these problems. It can monitor arbitrary sensor data available in the system, and has a 

global presence. Following this, the SMCI can give a global view by installing an 

appropriate aggregation query. Not only is this useful to a system administrator, but 

such data can also be fed back into the system to automate the control of resource 

allocation or even drive actuators (rendering the system self-managing and self-

configuring) (van Renesse 2007).  

2.9.2 Autonomic Multimodal Interaction Model Utilizing Service-Oriented 

Architecture in a Pervasive Environment 

 There is a wealth of research on the SOA-approach to autonomic computing for 

pervasive systems. One approach is described by Avouac et al (Avouac 2011). 

 Pervasive computing systems typically consist of multiple devices and software 

entities that may interact with each other.  Many types of devices can be made available 

for different purposes – interacting with the real environment, providing display and 

control services to users, or exposing data and application interfaces to other devices. 
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The challenge of pervasive computing lies in providing coherent pervasive 

environments. These environments offer useful applications and services in a 

heterogeneous setting with varied and distributed dynamic devices and software 

services, that communicate via various protocols (Avouac 2011).  

 Advances in SOA have improved the outlook of pervasive computing. Many 

smart devices today are exposed as services, and their capabilities are described and 

dynamically published by service providers, and are chosen and called by service 

consumers at runtime (Avouac 2011). 

 SOA allows ample flexibility in operations and functions which results in powerful 

solutions that are hard to manage. To meet the challenges in management a “Dynamic 

Multimodality” software framework is proposed. In this framework the whole multimodal 

processing system is generated and maintained at runtime by an autonomous manager. 

The processing system is modular and is made of service-oriented components. This 

framework is shown below in Figure 2.13: 

 

Figure 2.13 – The Multimodal Model (Avouac 2011) 
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 The purpose is to clearly separate the multimodal processes, the input interaction 

devices (which are volatile and may leave/join the environment), and the applications 

that may appear and disappear dynamically (Avouac 2011).  

2.9.3 Service Configuration and Composition Design Pattern for Autonomic 

Computing Systems 
 Mannava and Ramesh (Mannava and Ramesh, 2012 B) proposed a software 

architecture, which uses a service configuration and composition design pattern for the 

dynamic configuration and composition of communication services. It does this by 

satisfying the self-configuration and self-composition characteristics of autonomic 

computing systems, which software designers and/or programmers can utilize to drive 

their work (Mannava 2012). 

 The aforementioned architecture is divided into four modules: the monitoring 

module, the decision-making module, and the Self-Optimization and Self-Configuration 

modules (Mannava 2012).  

 There are a number of design patterns used in this architecture. The following is 

a list of these design patterns : 

 Observer: A One-to-Many dependency between objects, so that when an object 

changes state, all of its dependents will be notified 

 Cased based reasoning: this design pattern separates the decision-making 

logic  from the functional logic  
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 Row Data Gateway: Borrowing from database theory,  enfold the data structures 

and their database access code within row data gateways whose internal 

structure models a database record (which offers a representation-independent 

data access interface to clients) 

 Adaptation Detector: Interpret monitoring data and decide when an adaptation 

is required 

 Event Notifier: Enable components to react to the occurrence of particular 

events in other components without knowledge of each other (while allowing 

dynamic participation of components and introduction of new events) 

 Strategy: Family of encapsulated algorithms that can be interchanged. Strategy 

allows the algorithm to vary based on the client 

 Master-Slave: used when implementing an encapsulated implementation. We 

may need to provide fault tolerance, increased performance, or result accuracy 

for a component implementation 

 Thread per connection: a single thread is created for each process. This design 

pattern is usually used for the client-server model 

 Server reconfiguration: This pattern is used  to reconfigure an application 

structured as a server-client architecture. Components can be removed from the 

server architecture through the Component Removal Pattern. 

 In real software systems, pattern composition has been known to be a challenge 

to applying design patterns. The authors, Mannava et al, utilized a number of design 

patterns including web services, which is defined based on three roles: service provider, 

service registry, and service requester (Mannava 2012). 
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Chapter 3. Applied Technology and Techniques 
 

 In this chapter, we will explore technologies and techniques that are used in the 

quest of making systems demonstrate aspects of autonomic computing functionality. 

We will look firstly at Java Management Extentions (JMX), which is a powerful means of 

enabling autonomic functionality. Afterward, we will delve into the topic of checkpoints. 

Checkpoints are used, upon system failure, to bring a system back to a reasonable 

state whereby the user can continue working without undue inconvenience. 

Checkpoints are a key feature of almost all complex systems (operating systems, major 

office applications, database management systems, etc). 

3.1 Java Management extensions (JMX) 
 

 Java Management Extensions was added to Java in the Java 2 Platform, 

Standard Edition (J2SE)  5.0 release.  JMX technology is a standardized way to 

manage resources dynamically (devices, services, and/or applications) using Java. JMX 

can monitor and manage the Java Virtual Machine (JVM). Furthermore, JMX is 

extensively used in Java Enterprise Edition application servers, along with other 

middleware, for administrative purposes.  

 In order to use the JMX technology, resources are paired with Java objects 

known as Managed Beans (MBeans). These MBeans are registered in a JMX server 

known as an MBean server, that behaves as a management agent defined by the JMX 

specifications.  An MBean server and a set of services for handling the MBeans make up 

a JMX agent. Following this pattern, properly configured JMX agents control resources 

and then make them available to remote management apps ("Instrumenting"). 
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 JMX technology defines standard connectors (known as JMX connectors) with 

which a management application can manage resources  transparently, regardless of 

communication protocol used ("Lesson: Overview"). Figure 3.1 below shows a sampling 

of some of the more commonly used JMX interfaces, along with a sample method for 

each. 

 

Figure 3.1  Commonly used JMX interfaces ("Online") 

 

 For Java software, at the lowest layer the Java Virtual Machine is the most 

essential resource. The JMX technology can be used to manage the Java Virtual 

Machine (JVM). To monitor and manage different aspects of the JVM, the JVM includes 

a platform MBean server and special MXBeans that are used by management 

applications. 
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 MXBeans are provided with the Java SE platform to manage the JVM and other 

parts of the Java Runtime Environment (JRE). Different parts of the JVM functionality, 

such as a class-loading system and garbage collector, are encapsulated by a platform 

MXBean. These MXBeans are displayed and interacted with by using a monitoring and 

management tool that complies with the JMX specification.  The Java SE platform's 

JConsole graphical user interface is one of such monitoring and management tools. 

Java SE provides the platform MBean server that allows the platform MXBeans to be 

registered. The platform MBean server can also be used for custom MBeans.  Further, all 

application and platform MBeans that are registered in a connected JMX agent such as 

the  platform MBean server can be accessed through the MBeans tab of the JConsole. 

 

3.1.2 The Roles of JMX in Autonomic Computing 

 JMX facilitates the self-configuration properties of the Autonomic Computing 

paradigm. For instance, using MXBeans one can manage and configure Java's garbage 

collection abilities in real-time. More importantly, JMX facilitates the self-monitoring 

capability with the uniformed model MBeans and MXBeans ("Instrumenting"). All the self-

CHOP properties can be implemented in corresponding MBean client components. 

3.1.3 JMX for Autonomic Logging 

 JMX can be used to change log levels dynamically, according to the state of a 

process (in-process, waiting, finished, etc), which is a fulfillment of self-optimization 

(Sharif).  This is done with the built-in LoggingMXBean along with enhancements in two 

aspects. In the subject processes, an enhanced MBean that uses the standard 

Runnable and Callable interfaces is deployed to track tasks as they go through their 
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lifecycle. In the logging component, which is the client of the enhanced MBean, we can 

set a desired logging level for the reported process state. Or we can fine-tune logging in 

powerful ways - one way is to log the level after N number of logs at a certain level (for 

instance, change from INFO to WARN upon tracking 5 INFO log messages). 

3.1.4 JMX for Self-Healing with Respect to Memory Usage 

 JMX also has powerful memory management abilities through its JConsole tool. 

As shown below in Figure 3.2, JConsole dynamically displays  the memory usage 

(Heap Memory and Non-Heap Memory Usage). In this case, JConsole is the client of 

the built-in platform MBean that tracks memory usage. 

 

 

 

The standard memory MBean has four attributes : 

 

HeapMemoryUsage -  read-only attribute describing the current heap memory usage 

NonHeapMemoryUsage -  read-only attribute describing non-heap memory usage 

ObjectPendingFinalizationCount -   read-only attribute describing the number of 

objects pending for finalization 

Figure 3.2 - JConsole Screenshot 
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Verbose -  boolean attribute describing the garbage collector's verbose tracing 

setting. This may be dynamically set  

 

 Details about the MBean interface are defined in the 

java.lang.management.MemoryMXBean specification. A particularly noteworthy  class 

in regards to autonomic computing is the MemoryPoolMXBean, which contains a 

collection usage threshold which can be queried with the 

isCollectionUsageThresholdExceeded() function.  

 It should be noted, though, that not all garbage-collected memory pools choose 

to support the collection usage threshold. In this case we should first call the  

isCollectionUsageThresholdSupported()  method to check whether the collection 

usage threshold method is supported. 

 By replacing JConsole with a customized client of the same platform MBean, we 

will be able to achieve self-healing when heap memory usage exceeds a threshold. At 

such a moment, the customized client component can restart the same Java program in 

a new JVM with larger heap memory claim. 

3.2 Logging and Checkpointing as a Means of Facilitating AC Features 
 

 Logging is also another technology that facilitates autonomic computing, and has 

existed since the early days of information technology. It was developed for system 

recovery and auditing. Among the most popular logging frameworks is Apache Log4J 

(now Apache Logback). The author utilized this framework extensively in logging 

experiments. By using Log4j,  we can have logging at runtime, without modifying the 
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application binary. This allows us to have a much clearer picture of system failures. 

Logging via Apache Log4j or Logback is very flexible, and output can be directed to an 

OutputStream, a file, a java.io.Writer, a remote Unix Syslog daemon, a remote 

Log4j server, or many other output targets ("Apache Log4j 1.2" ).  

  In regards to checkpointing tools, one such technology is called the Berkeley 

Lab Checkpoint/Restart (BLCR). This technology, developed for Linux, is a hybrid 

kernel/user implementation of checkpoint/restart. The goal is to provide a robust 

implementation that provides checkpoints for a wide range of applications, without 

requiring any changes to be made to the application code. Checkpointing is needed to 

develop robust distributed computing applications, because it enables us to roll back to 

a correct logical state. BLCR focuses on checkpointing parallel applications that  

communicate through the Message Passing Interface (MPI). BLCR also focuses on 

compatibility with the SciDAC Scalable Systems Software ISIC software suite 

("Berkeley").  

BLCR is divided into four main areas: 

 Checkpoint/Restart for Linux (CR) 

 MPI Libraries that can be Checkpointed 

 Resource Management Interface to Checkpoint/Restart 

 Development of Process Management Interfaces 
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Chapter 4. Experiments on JMX-Based Autonomic Features 
 

 In the autonomic architectural model, MAPE-K, monitoring is the first necessary 

component in any implementation of autonomic computing (Lalanda 2014).  The 

powerful, extensive monitoring capabilities provided by JMX have proven effective in 

high-end, complex enterprise software products such as Oracle databases for over a 

decade.  However, they have not been explored in computer science education due to 

overwhelming complexity.    

 Based on our understanding of autonomic computing through the survey in 

Chapter 2 of this work, we have decided to develop an API that supports learning and 

implementing autonomic features for programming projects in software courses.  This 

could not be possible without the clearly documented and readily available JMX, as 

explained in Section 3.1.  Meanwhile, our development is needed in assisting computer 

science students’ education in autonomic computing.  Even though multiple high-quality 

tutorials on JMX such as (Oracle 2015) have explained the model of the JMX 

framework, they all share the limit of JMX itself – monitoring only.   

 Nearly every example of a JMX application delivers the results in the JConsole, 

the powerful graphical user interface illustrating monitoring data from MBeans (an 

essential building block of the JMX framework).  We have constructed a series of MBean 

classes and a set of corresponding listener classes.  These MBean and listener classes 

have the capabilities of monitoring sockets, I/O operation, logging, checkpointing and 

memory usage.  To shield complexity further, a class ServerSideACManager is 

implemented using our MBean and listener classes.  On one hand, all the components 
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including the server-side manager component can be directly utilized in software to 

achieve a number of features of autonomic computing.  On the other hand, the students 

can learn from the working examples how to incorporate autonomic actions with the 

MBean listeners, and how to integrate multiple MBean listeners for self-healing actions.   

 In the aforementioned API for autonomic computing, there are 12 classes and 5 

interfaces.  All of them are packed in package autonomic_util.  Figure 3.3 below 

presents a diagram of the interfaces within the package, along with two standard JMX 

classes that are extended (the class NotificationBroadcasterSupport and interface 

NotificationListener). 

 

Figure 3.3 - The autonomic_util package class diagram ("Online") 
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 To demonstrate the applications of package autonomic_util, four distributed 

programs are instrumented using the MBeans, and enhanced with listeners and other 

classes.  These programs are (1) a pair of programs having conversation by sockets, 

(2) recoverability by logging, (3) distributed matrix multiplication by pipelines, and (4) a 

virtual classroom, demonstrating communication with students via sockets.   

  

4.1 The JMX-based API Supporting Autonomic Features  
 

 In package autonomic_util, four MBeans are implemented, which are specified 

by three interfaces - CheckpointMBean, IOMonitorMBean and SocketMonitorMBean.   

 

Figure 4.1  Interface CheckpointMBean 

public interface CheckpointMBean { 
 public void checkpointIntMatrix(int[][] m, int seqNum);  
 public int[][] recoverIntMatrix(int seqNum);  
 public void checkpointIntVector(int[] v, int seqNum);  
 public int[] recoverIntVector(int seqNum);  
} 
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 The checkpoint MBean is specified above in Figure 4.1.  For the purpose of 

illustration, only creating and recovering integer matrices and vectors are included. 

Since this package is to support distributed computation, checkpoints have to support 

recovery across multiple computers.  Therefore, the parameter seqNum is necessary to 

indicate the sequence numbers of the checkpoint files.  The recoverIntMatrix (and 

recoverIntVector) takes one parameter, seqNum.  It is expected to receive a correct 

seqNum value from the controller agent, the ServerSideMonitor object.  The actual 

MBean class is class Checkpoint which contains the actual action of making a 

checkpoint, such  as the method shown above in Figure 4.2.   

public  class Checkpoint extends NotificationBroadcasterSupport  
      implements CheckpointMBean {  
 … 
 public void checkpointIntMatrix(int[][] arr, int seqNum) { 
  // Serialize an int[][] 
  try { 
   chkpFileName = chkpFileNamePrefix+seqNum+".dat";  
   ObjectOutputStream out = new ObjectOutputStream( 
     new FileOutputStream(chkpFileName)); 
   out.writeInt(seqNum);  out.writeObject(arr); 
   out.flush();  out.close();   
   notifyCheckpointDone();  
  } catch (IOException ioe) { … } 
 } 
  
 public int[][] recoverIntMatrix(int seqNum) { 
  int[][] arr = null; 
  try {  // Deserialize the int[][] 
   ObjectInputStream in = new ObjectInputStream( 
     new FileInputStream(chkpFileNamePrefix+seqNum+".dat")); 
   int fileSeqNum = in.readInt(); 
   arr = (int[][]) in.readObject(); 
   in.close(); 
  } catch (ClassNotFoundException cfe) { … } 
  return arr; 
 } 

Fig. 4.2  part of class Checkpoint 
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 Not only does class Checkpoint implement interface CheckpointMBean, it also 

extends class NotificationBroadcasterSupport.  In doing so, class Checkpoint 

inherits the capabilities of broadcasting notifications to every registered listener.  

However, method notifyCheckpointDone has to be overridden as shown in Figure 

4.3.  Among many types, AttributeChangeNotification is chosen because it can 

carry many parameters.  

 

 The MBean objects are embedded in the subject software components that are to 

be monitored.  In the case of Checkpoint, this MBean is to notify the listener that a 

checkpoint is made. The primary purpose of Checkpoint is to preserve progress of 

computation and minimize loss caused by adversaries. If everything is normal, 

checkpoints are just some overhead.  If in a distributed computation a program crashes, 

the coordinator of the computation has to determine the correct checkpoint in each of 

the participating computer nodes, and rollback to the latest consistent state.  This 

capability is implemented in the ServerSideACManager object residing at a coordinator 

node, which utilizes listener CheckpointListener.   

 The last action of method checkpointIntMatrix is to invoke 

notifyAttributeChangeDone().  As shown in Figure 4.3, this method just packs 

public void notifyCheckpointDone () {  
 Notification n = new AttributeChangeNotification(this, seqNum,  
 System.currentTimeMillis(), callerClass, myID+"", chkpFileName, null, ip); 
 sendNotification(n); 

Fig. 4.3  Method notifyCheckpointDone in class Checkpoint 
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many data items into an object notification, including the sequence number of the 

checkpoint file, the application program name (callerClass), the computer node 

identifier, the checkpoint file name, and the IP address of the hosting computer.  Then 

the sendNotification method is invoked.  This method is provided as a Java built-in 

capability of the abstract class NotificationBroadcasterSupport, from which our 

customized MBean Checkpoint extends.  Upon invocation of sendNotification, the 

MBean agent server provided by the JMX framework delivers the notification to every 

registered CheckpointListener object.   

 The reception of notifications by an MBean listener is carried out by the 

handleNotification method of a listener class.  Such a method in 

CheckpointListener is shown in Figure 4.4.  

 Corresponding to method notifyCheckpointDone in Figure 4.3, method 

handleNotification in Figure 4.4 processes the same notification object.  Therefore, 

the same set of data items are unpacked here.  Typically, the notificationListener 

is to be used by the controller or the coordinator of a distributed computation.  For 

simplicity, we assume that TCP/IP is the communication protocol. The order of the 

messages from the same source is preserved when they arrive at each destination 

node. Therefore, the latest message always arrives last.  Under such a condition, we 

only need to record the information of the checkpoint in the latest notification from each 

source node.  In an object CheckpointListener, a HashMap list cpInfo of size K 

keeps the information from the latest notification from each source, where K is the 

number of resource nodes.   
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 Every Checkpoint MBean object has a sequence counter, seqNum, which is 

initialized to zero.  Every participating node in the same distributed computation has the 

same checkpoint interval.  A checkpoint carries a value of the current seqNum.  When a 

checkpoint is completed, seqNum increases by one.  In case a rollback is needed, the 

coordinator can determine the latest consistent checkpoint set based on the seqNum 

value carried in the latest notification of each node.  Let seqNum[i] represent the 

seqNum value in the latest notification from node i.   

C = MIN{ seqNum[i] ) where i = 0, 1, 2, …, K-1. 

 C is the latest consistent checkpoint that every node should rollback to.  C will not 

change unless a notification of a new checkpoint is received.  Therefore, C is computed 

at the end of method handleNotification.  It is stored in the variable watermark.  

public void handleNotification(Notification notification, Object handback) { 
    if (notification instanceof AttributeChangeNotification) { 
     AttributeChangeNotification acn  
    = (AttributeChangeNotification) notification;  
     String className = acn.getSource().getClass().getName();  
     if (className == "Checkpoint") {  
      Integer id = Integer.parseInt(acn.getAttributeName());  
      String hostClass = acn.getMessage();  
      String fileName = acn.getAttributeType();  
      int seqNum = (int)acn.getSequenceNumber();  
      String ip = (String)acn.getNewValue();  
      CheckpointInfo info  
     = new CheckpointInfo(id, hostClass, fileName, ip, seqNum);  
      cpInfo.put(id, info);  
      // update watermark  
      ArrayList<CheckpointInfo> infoList  
      = new ArrayList<CheckpointInfo>(cpInfo.values());  
      if (cpInfo.size() >= numNodes) { 
       watermark = Collections.min(infoList).getSeqNum(); 
} } } } 

Figure 4.4  Method handleNotification in class CheckpointListener 
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 The interfaces of the other two customized MBeans, IOMonitorMBean and 

SocketMonitorMBean, are shown in Figures 4.5 and 4.6.    

 

 

 The actual MBean SocketMonitor has method notifySocketException as 

shown in Figure 4.7. This method is designed for the program that holds the monitored 

socket to inform its counterpart program when a socket exception is beyond local 

handling.  Therefore, this method is typically used in catch-blocks.  The code for the  

notifySocketException method is shown in Figure 4.7.  The corresponding class 

SocketListener has method handleNotification, shown in Figure 4.8. 

public interface IOMonitorBean { 
 public void notifyIOException(int progNum);  
} 

public interface SocketMonitorMBean { 
 public Socket reconnect();  
 public Socket getSocket();  
 public void setSocket(Socket socket);  
 public void notifySocketException();  
 public void closeSocket();  
} 

Figure 4.6  Interface SocketMonitorMBean 

Figure 4.5  Interface IOMonitorMBean 
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 The code for methods notifyIOException in class IOMonitor and 

handleNotification in class IOMonitorListener are equally short.  None of them 

have more than ten lines.  

 Since extensive monitoring capabilities of memory are provided by Java's built-in 

platform MXBeans, autonomic features such as self-configuration can be implemented in 

a customized listener class.  A simple example, MemListener, is illustrated in Figure 

4.9.  When a MemListener object receives a notification from Java runtime’s platform 

MXBean, either Java's heap memory became tight or it is out of memory .  Given the 

public void notifySocketException() {  
 String localIp = subjectSoc.getLocalAddress().toString();  
 String localPort = subjectSoc.getLocalPort()+"";  
 Notification n = new AttributeChangeNotification(this,  
    sequenceNumber++, System.currentTimeMillis(), callerClass,  
    serverIp, serverPort+"", localIp, localPort); 
 sendNotification(n); 
} 

 

public void handleNotification(Notification notification, Object handback) { 
 if (notification instanceof AttributeChangeNotification) { 
  AttributeChangeNotification acn =  
       (AttributeChangeNotification) notification;  
  String className = acn.getSource().getClass().getName();  
     if (className == "SocketMonitor") {  
      String nodeIp = (String)acn.getOldValue();  
        String script = iplist.getProperty(nodeIp);  
        ScriptExecutor.execScript(script);  
} } } 

Figure 4.8 handleNotification method in class SocketListener 

Figure 4.7  Method notifySocketException in class SocketMonitor 
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prior knowledge regarding the maximum number of megabytes ( maxmem ) that a Java 

VM can have on a node (i.e, a computer), this notification handler will enlarge the Java 

heap size configuration setting if the current size is less than maxmem.   

 

  Finally, ServerSideManager is an active class to be executed as an independent 

thread, as shown in Figure 4.10.  It utilizes MemListener, CheckpointListener, and 

IOMonitorListener objects to assist the coordinator of a distributed computation.   

 The run method is used to configure the MBean agent server, and register each 

listener object at the remote nodes through JMX’s built-in MBean agent server.  The 

method rollback (shown in Figure 4.11) demonstrates how to manage all the 

participating nodes and assist them to rollback to the latest consistent checkpoint, 

recover their state to that point, and automatically continue computation.   

public void handleNotification(Notification notification, Object handback) { 
 String notifType = notification.getType(); 
 if (notifType.equals(MemoryNotificationInfo.MEMORY_THRESHOLD_EXCEEDED) 
  || notifType.equals( 
    MemoryNotificationInfo.MEMORY_COLLECTION_THRESHOLD_EXCEEDED)) { 
   // retrieve the memory notification information 
  CompositeData cd = (CompositeData) notification.getUserData(); 
  MemoryNotificationInfo info = MemoryNotificationInfo.from(cd); 
  long xmCurrent = info.getUsage().getMax() / (1024 * 1024); 
  if (xmCurrent > max_xmx) { 
   System.out.println("WARNING: Memory usage exceeded threashold at " 
        + notification.getSource()); 
  } else { 
   ScriptExecutor.execScript("java -Xmx" + max_xmx + "m " 
      + this.getClass().getName(), null); 
} } } 

Figure 4.9  Method handleNotification in class MemListener 



 64 
 

 

public void run() { 
 // Manage the MemoryBean MBeans 
 MemListener memListener = new MemListener(max_xmx); 
 MemoryMXBean mbean = ManagementFactory.getMemoryMXBean();  
 // Manage checkpointing  
 chkpListener = new CheckpointListener(numNodes);  
 NotificationEmitter emitter = (NotificationEmitter) mbean; 
 emitter.addNotificationListener(memListener, null, null); 
 // Manage the IOMonitor MBeans 
 try {  
  // register SocketMoniter MBean 
  // Construct the ObjectName for the SocketMonitor MBean 
  ObjectName mbeanName = new ObjectName("appmonitor_jmx:type=IOMonitor"); 
  // Create a dedicated proxy for the MBean instead of going directly 
  // through the MBean server connection 
  IOMonitorBean mbeanProxy = JMX.newMBeanProxy(mbsc, mbeanName, 
  ``    IOMonitorBean.class, true); 
  // Add notification listener on IOMonitor MBean 
  mbsc.addNotificationListener(mbeanName, ioListener, null, null);  
  // register memory MBean 
  mbeanName = new ObjectName("java.lang.management:type=MemoryMXBean"); 
  // Add notification listener on MemListener MBean 
  mbsc.addNotificationListener(mbeanName, memListener, null, null);  
  // register checkpoint MBean 
  mbeanName = new ObjectName("appmonitor_jmx:type=Checkpoint");  
  // Add notification listener on Checkpoint MBean 
  mbsc.addNotificationListener(mbeanName, chkpListener, null, null); 
  // keep alive 
  nap.wait(); 
 } catch (Exception e) { 
  System.err.println("Exception happened in connecting MBean SocketMonitor."); 
   e.printStackTrace(); 
  } 
 } 

Figure 4.10 ServerSideManager is an active class to be executed as an independent thread 
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4.2 Conversation by Sockets  

 

 In this section, a simple example using Java sockets is used to illustrate the use 

of SocketMonitor MBeans.  In this example, classes FixedMessageSequenceServer 

(Server for short) and FixedMessageSequenceClient (Client for short) interact with 

int watermark = chkpListener.getWatermark();  
 HashMap<Integer, CheckpointInfo> chkpList = chkpListener.getCpInfo();  
 for (Map.Entry<Integer, CheckpointInfo> entry : chkpList.entrySet()) {  
  int nodeId = entry.getKey();  
  String hostClass = entry.getValue().getClassName();  
  String fileName = entry.getValue().getFileName();  
  String ip = entry.getValue().getIp();  
  String cmd = "java "+hostClass+" "+fileName+" "+watermark+".dat";  
  ScriptExecutor.execScript(cmd, ip);   
 } 
} 

Figure 4.11 Rollback function in class ServerSideMonitor 

Figure 4.12  State Diagram of FixedMessageSequenceProtocol 
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messages according to a predefined script.  The server controls the conversation using 

a protocol enforced by an object of FixedMessageSequenceProtocol.  The client 

simply sends its stored sentences in a fixed order.  This example represents 

interactions between stateful objects.  The conversation protocol enforced by 

FixedMessageSequenceProtocol is shown in Figure 4.12. The output sentences are 

shown below the arrows, and the conditions are shown in square brackets ([ and ]) 

above the arrows.   

 The state of the object of FixedMessageSequenceProtocol contains two 

variables, reqNum and the current state, which is also the state of program 

FixedMessageSequenceServer.  The state of program FixedMessageSequenceClient 

is just reqNum.  To make these two programs recoverable, we have instrumented each 

of them in two places.  First, after a message is sent, the program’s state is logged in a 

local file using an object of StateLogger.  Second, in the catch-statements information 

about the state is obtained from the last line of the local log file, then the program is 

restarted with the state set to the breaking point.  In the socket's IOException catch-

block, a limited number (3) of retrials are allowed.  Once the limit is exceeded, a 

SocketException is thrown and the program restarts.  Figure 4.13 shows the 

instrumentation part of the FixedMessageSequenceServer program in boldfaced-font.  

The StateLoggerListener object in each program’s counterpart will instruct its host 

program to react.   
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 In Figure 4.13, the four statements for “logging state” seem cumbersome 

because the chosen data structure to wrap a program’s state is 

java.util.jar.Attributes.  Before logging, the user’s program has to put the name 

and value of every state variable into an Attributes object.  Thus, the number of 

statements will be V+2, where V is the number of state variables in that program.  The 

  try {  
   while (inputLine != null) {  
    try {  
     inputLine = in.readLine();  
     System.out.println("Client said: " + inputLine); " 
     outputLine = fmsp.processInput(inputLine);  
     out.println(outputLine); 
     System.out.println("I said: " + outputLine);  
     if (outputLine.equals("Bye.")) {  
      in.close(); out.close(); socket.close();  
      break;  
     } 
     Thread.sleep(DELAYSECS); 
     // logging state  
     Attributes states = new Attributes(2);  
     states.put(new Attributes.Name("requestNum"),  
       fmsp.getRequestNum()+"");  
     states.put(new Attributes.Name("state"),  
       fmsp.getState()+"");  
     logger.logState(states);  
    } catch (InterruptedException ie) {  
     ie.printStackTrace(); 
    } catch (IOException ioe) {  
     System.out.println("Server Warning: … " + ++warnNum);  
     if (warnNum >= WARNINGLIMIT) {  
      System.out.println("I/O exceptions exceed limit.");  
      ioe.printStackTrace();  
      throw new SocketException();  
   } } } 
  } catch (SocketException so) {  
   logger.close();  
   StateInfo states = logger.getLatestState();  
   String cmd = "java " + this.getClass().getName() + … 
   ScriptExecutor.execScript("ClientBatch.bat");   
  } 

 Figure 4.13  Instrumentation in FixedMessageSequenceServer 
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Attributes class is chosen for its flexibility.  In general, the state of a program is made 

of many variables.   

 

4.3 Distributed Matrix Multiplication by Pipelines 
 

 Various distributed matrix multiplication algorithms have long been the classic 

examples of distributed programming.  It's not only every engineering problem using a 

linear model that needs matrix multiplication, but modern Internet search also relies on 

matrix multiplication for computing metrics such as the PageRank algorithm.  In this 

section, a unique pipeline algorithm for matrix multiplication (Andrews) is chosen as an 

example to show the use of the IOMonitor MBeans, Checkpoint MBeans, and the 

ServerSideACManager object from our API.    

 

4.3.1 Matrix Multiplication Pipelines 

 For simplicity, two n × n matrices a and b are considered.  We want to compute 

c = a × b.  In this algorithm, initially row i in a is shifted toward the left i columns as 

shown in Figure 4.14; column j in b is shifted upwards j rows as shown in Figure 4.14, 

where i and j take the range of 1 to n.   
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 a a’  

Figure 4.14  Initializing matrix a 

 

 

 

 

 

 

 

 b b’  

Figure 4.15  Initializing matrix b 

 

 The product of the numbers in the corresponding cells of a’ and b’ is one term of 

every cell of matrix c, as shown in Figure 4.16.   
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a12 × b21 a13 × b32 a14 × b43 a11 × b14 

a23 × b31 a24 × b42 a21 × b13 a22 × b24 

a34 ×  b41 a31 × b12 a32 × b23 a33 × b34 

a41 × b11 a42 × b22 a43 × b33 a44 × b44 

 

Figure 4.16  Computing a term in matrix c 

 

 

 

 Then, the entire matrix a’ is shifted leftward one column and becomes a’’; the 

entire matrix b’ is shifted upward one row and becomes b’’.  By multiplying the numbers 

in the corresponding cells of a’’ and b’’ we obtain another term for every cell in matrix c.    

 

 

 

 

 

 

 a’’ b’’ 
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a13  × b31 a14  ×  b42 a11 × b13 a12 × b24 

a24 ×  b41 a21 × b12 a22 × b23 a23 × b34 

a31 × b11 a32 × b22 a33 × b33 a34 ×  b44 

a42 × b21 a43 × b32 a44 × b43 a41 × b14 

 c 

Figure 4.17  The second round of matrix multiplication  

 

 Such multiply-then-shift operations continue for 4 rounds, whereby matrix c will 

accumulate all four terms of products.  That is,  

cij = ai1×b1j + ai2×b2j + ai3×b3j + ai4×b4j 

 To the extreme, every row forms a circular pipeline; so does every column.  By 

using 2n pipelines the algorithm can be literally implemented in super-computing 

hardware.  Practically, the matrices can be divided into grids of any size, for example p 

rows and q columns.  p or q can be as small as 1.  Then p × q nodes are needed, which 

form p + q  pipelines.  Compared to the algorithm for matrix multiplication that is used 

by MapReduce, the pipeline algorithm saves the time of hashing and distributing 

elements that occurs with the MapReduce framework (Leskovec).   

 

4.3.2 Instrumentation in the Pipeline Program for Autonomic Features 
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 In the implementation of the matrix multiplication pipeline algorithm, there are two 

classes - Coordinator and Worker.  The duties of Coordinator include  

 configuring the grid by informing every Worker node about the IP addresses and 

port numbers of its left and upper neighbor nodes  

 initializing matrices a and b according to the shifting rules of the pipeline 

algorithm  

 distributing blocks to every node, 

 collecting the blocks of the resulting matrix  

 An object of ServerSideManager is instantiated in Coordinator.  Its capabilities 

were described in Section 4.1.  In this matrix multiplication pipeline program, 

ServerSideManager listens to every Checkpoint MBean and updates the information 

of the latest checkpoint in each node.  ServerSideManager also listens to the 

IOMonitor MBean in every node.  The reaction of an I/O Exception from a node is to 

restart the Worker program at every node from the latest consistent checkpoint.  In 

addition, Coordinator also deploys one IOMonitor MBean locally.  This is to monitor 

the final communication phase – collecting the final result from every node.  In the 

catch-statement of the final receiving loop, method notifyIOException of the only 

IOMonitor MBean in Coordinator looks as below.  

      

 iom.notifyIOException(Integer.MAX_VALUE);    
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 The actual parameter should have been a checkpoint sequence number.  

However, Coordinator does not actually make any checkpoint. Therefore, 

Integer.MAX_VALUE is fed into this method call, which will avoid any interference with 

the computation of the watermark value among the Worker nodes.  

 The actual computation carried out by each Worker node is to calculate the 

multiplication of two numbers m times. Afterward, matrix a is shifted m times (leftward) 

and matrix b is shifted m times (upward), where m × g = n, and where g is the grid 

dimension, and m is the number of rows and columns in each grid.  For simplicity, we 

assume every grid is of the same size.  The subject Worker class has 332 rows.  The 

desired autonomic feature is to recover automatically from the latest checkpoint.  To 

fulfill this, two MBeans from package autonomic_util are instantiated.  They are 

objects of Checkpoint and IOMonitor.  

 

 cp = new Checkpoint(nodeId, checkptFilePrefix, seqNum,  

   this.getClass().getName(), null);  

 iom = new IOMonitor(nodeId, null, this.getClass().getName());  

 

 The Checkpoint MBean needs information about the Worker object’s node id, 

the prefix of checkpoint filenames, the checkpoint sequence number, and the program 

name (the class name of the hosting object).  We choose to make a checkpoint for 

every m multiply-then-shift operations.  Therefore, each node will make g checkpoints in 
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a normal computation.  Four lines of code are added (as shown below) at the end of the 

iterations for completing m rows of a and m rows of b.  

   // making checkpoint  

   cp.checkpointIntMatrix(a, seqNum); 

   cp.checkpointIntMatrix(b, seqNum); 

   cp.checkpointIntMatrix(c, seqNum);  

   seqNum++; 

 In the Worker class, the sockets are hidden in helper classes. This is because 

the actual required objects for shifting rows and columns across nodes are the two 

DataOutputStream objects, which send the top row to the upper neighbor and the 

leftmost column to the left neighbor. Furthermore, two DataInputStream objects are 

needed to receive the values into the bottom row from the lower neighbor node, and to 

receive the values into the rightmost column from the right neighbor node.  In this case, 

we have realized in addition to the SocketMBean for each socket, an MBean bounding 

to all the input and output operations is needed, which is the IOMonitor MBean.  In the 

catch statement in each of incoming communications, method notifyIOException of 

the IOMonitor MBean iom is invoked.  For example, below are the operations for 

receiving the bottom row.   

  // receive the bottom row  
  for (int i = 0; i < width; i++) { 
   try { 
    tempIn[i] = disBottom.readInt(); 
   } catch (IOException ioe) { 
    System.out.println("error in receiving from bottom, col=" + i); 
    ioe.printStackTrace();  
    iom.notifyIOException(iterations); // call for rollback 
  } } 
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Chapter 5. Discussion and Conclusion  
 

 Automation has always been the prime motivation behind computers themselves. 

From mapping to calculating taxes to running enterprise websites, automation is a huge 

source of profit for companies. Yet, only recently have we witnessed that we could 

benefit from automating the management of computers.  IBM's manifesto points out that 

there are still great challenges ahead (“IBM” 1):   

"To really benefit IT customers, autonomic computing will need to deliver measurable 

advantage and opportunity by improving interaction with IT systems and the quality of 

the information they provide, and enabling e-sourcing to be adopted as the future of IT 

services delivery." 

 In recent years, the emphasis of autonomic computing has been focused on the 

data center, and has even touched the physical infrastructure. As Kephart states : “In 

terms of emphasis, it is disappointing but understandable that the preponderance of 

work in the field continues to focus on self-optimization, with self-healing and self-

configuration receiving far less attention” (Kephart 2011).  As technology continues to 

advance, we will witness ever-increasing demands of autonomic computing. It is only 

natural that the ongoing evolution of computing will include great advancements in 

autonomic computing. 

In this thesis, we have provided a survey of autonomic computing - both 

historically and as it currently exists. The original IBM Autonomic Computing toolkit, as 

well a European follow-up to it, were touched upon. We also discussed the Java 
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Management Extensions technology, and how it provides monitoring that can be 

leveraged to build applications displaying autonomic computing features.  

Furthermore, by using JMX, we have implemented an API (package 

autonomic_utils) that supports learning and implementing autonomic features for 

programming projects.  These AC features include socket management, I/O exception 

handling, logging, checkpointing, and recovery of distributed computation.  This API has 

been applied to the implementation of AC features in two distributed Java programs, 

conversation by sockets and distributed matrix-multiplication by pipelines.   

In the experiments, we have not only realized the powerful capabilities of Java 

that are unknown to many Java educators, we also illustrated the feasibility of learning 

and practicing autonomic computing as early as in senior computer science courses. 
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