
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-13-2016

Survey of Autonomic Computing and Experiments on JMX-based Survey of Autonomic Computing and Experiments on JMX-based

Autonomic Features Autonomic Features

Adel R. Azzam
The University of New Orleans, arazzam@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Systems Architecture Commons

Recommended Citation Recommended Citation
Azzam, Adel R., "Survey of Autonomic Computing and Experiments on JMX-based Autonomic Features"
(2016). University of New Orleans Theses and Dissertations. 2123.
https://scholarworks.uno.edu/td/2123

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uno.edu%2Ftd%2F2123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2123?utm_source=scholarworks.uno.edu%2Ftd%2F2123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Survey of Autonomic Computing and Experiments on JMX-Based Autonomic Features

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Adel Azzam

B.S. University of New Orleans, December 2010

May 2016

 II

Dedication

I dedicate this to my family, for all their love and support.

 III

Acknowledgement

There are many people who have helped me along my journey. I feel so blessed and

fortunate to have the family, friends, colleagues, classmates and teachers that I do. I

don't think I can remember everyone but the following people come to mind.

I would firstly like to thank my advisor, Dr. Shengru Tu. He has been very supportive,

patient, and helpful through it all. He has gone above and beyond, sometimes even

meeting with me on weekends to help me with the work. I am very appreciative of his

mentorship and wisdom. I cannot express my gratitude adequately in writing.

Also, I would like to express my gratitude to my other committee members - Dr.

Mahdi Abdelguerfi and Dr. Minhaz Zibran. They have both been supportive and helpful.

Many thanks to both committee members for taking time out of their busy schedules to

help me.

Furthermore, I would like to thank Dr. Adlai DePano , Dr. Christopher Summa,

and Dr. Christopher Taylor, and Dr. Walter Michaelis for being great teachers and

mentors for me through the years.

I would like to thank fellow UNO alumni Daniel Stocker (MS, class of 1996) and James

Sauvinet (MS, class of 2013) for their help and mentoring.

Other students who deserve thanks are Jorge Chao, Md. Rakibul Islam, Lu Yang, and

Nathan Cooper.

I would like to thank my parents and my siblings. They have always been there for me.

My father, Dr. Rasheed Azzam, helped me with editing, reviewing, and mentoring. My

brother Omar Azzam also helped. I also must acknowledge the support of my extended

family overseas and in the United States.

Finally, I thank all of the staff of UNO - from the Aramark employees to the RIS center

custodial staff. I must especially thank Ms. Melanie Bopp, the Circulation Services

Coordinator of EKL library, for her excellent support in helping me obtain a carrel.

 IV

Table of Contents

List of Figures .. VII

List of Tables .. IX

Abstract ... X

Chapter 1. Introduction .. 1

Chapter 2. Survey of Autonomic Computing ... 3

2.1 Individual Implementations of Autonomic Computing .. 3

2.1.1 DARPA Projects .. 3

2.1.2 NASA ... 4

2.2 System Approach to Autonomic Software .. 5

2.2.1 IBM’s Grand Vision of 2001 ... 5

2.2.2 Self-CHOP Properties of an Autonomic Computing System 6

2.2.3 Evolutionary Levels in Pursuit of Autonomic Computing 7

2.2.4 Key Features of Autonomic Computing ... 9

2.2.5 MAPE-K Model .. 9

2.2.6 Research on Decision-Making Techniques ... 11

2.3 IBM’s Autonomic Computing Architectural Concepts and Toolkit 12

2.3.1 Key Component Areas ... 14

2.3.2 Technologies ... 14

2.3.3 Tools .. 14

2.3.4 Scenarios ... 15

2.3.5 Information and Documentation ... 15

2.3.6 Autonomic Computing Toolkit Technologies .. 15

2.3.7 Autonomic Management Engine .. 19

2.4 CASCADAS ACE ... 20

2.4.1 The ACE Theoretical Principles ... 21

2.4.1.1 Semantic Self-Organization .. 21

2.4.1.2 Clustering .. 21

2.4.1.3 Differentiation .. 21

 V

2.4.1.4 Synchronization .. 22

2.4.1.5 Situation Awareness ... 23

2.4.1.6 Pervasive Supervision .. 23

2.4.1.7 Functionality Repository.. 24

2.5 Autonomic Computing in Practice .. 25

2.5.1 DB2 .. 25

2.5.2 Oracle .. 27

2.5.3 Monit .. 30

2.5.4 MapReduce ... 32

2.7.5 Watchdog Scripts ... 34

2.7.6 Apache Commons Daemon ... 34

2.7.7 daemontools .. 35

2.8 Code Adaptation .. 36

2.8.1 Operating System-Level Adaptation .. 36

2.8.2 Application Program-Level Adaptation ... 38

2.8.3 Program-Level Adaptation in Light of the Java Language 40

2.9 Autonomic Computing and its Relation to Service-Oriented Architecture (SOA) . 42

2.9.1 Service-Oriented Architecture .. 42

2.9.2 Autonomic Multimodal Interaction Model Utilizing Service-Oriented Architecture

in a Pervasive Environment ... 44

2.9.3 Service Configuration and Composition Design Pattern for Autonomic

Computing Systems ... 46

Chapter 3. Applied Technology and Techniques ... 48

3.1 Java Management extensions (JMX) ... 48

3.1.2 The Roles of JMX in Autonomic Computing .. 50

3.1.3 JMX for Autonomic Logging ... 50

3.1.4 JMX for Self-Healing with Respect to Memory Usage 51

3.2 Logging and Checkpointing as a Means of Facilitating AC Features 52

Chapter 4. Experiments on JMX-Based Autonomic Features 54

4.1 The JMX-based API Supporting Autonomic Features .. 56

4.2 Conversation by Sockets ... 65

 VI

4.3 Distributed Matrix Multiplication by Pipelines ... 68

4.3.1 Matrix Multiplication Pipelines .. 68

4.3.2 Instrumentation in the Pipeline Program for Autonomic Features 71

Chapter 5. Discussion and Conclusion .. 75

References .. 77

Vita .. 82

 VII

List of Figures

Figure 2.1 - Self-CHOP properties ..7

Figure 2.2 - Evolutionary Levels in AC spectrum .. 10

Figure 2.3 - Autonomic Computing Reference Architecture 13

Figure 2.4 - Autonomic Management Engine Hosting Environment 20

Figure 2.5 - Two types of Inter-ACE communication ... 22

Figure 2.6 - Configuring Automatic Maintenance in DB2..................................... 26

Figure 2.7 - The Self-Tuning Memory Manager .. 27

Figure 2.8 - Monit .. 31

Figure 2.9 - MapReduce .. 33

Figure 2.10- Watchdog Script .. 34

Figure 2.11 - OS-Level Autonomic Manager ... 37

Figure 2.12 - RACS and RAPS architectures .. 43

Figure 2.13 - The Multimodal Model .. 45

Figure 3.1 - Commonly used JMX interfaces .. 49

Figure 3.2 - JConsole .. 51

Figure 3.3 - The autonomic_util package ... 55

Figure 4.1 - Interface CheckpointMBean ... 56

Figure 4.2 - Part of class Checkpoint .. 57

Figure 4.3 - Method notifyCheckpointDone in class Checkpoint 58

Figure 4.4 - Method handleNotification in class CheckpointListener 60

Figure 4.5 - Interface IOMonitorMBean ... 61

Figure 4.6 - Interface SocketMonitorMBean .. 61

 VIII

Figure 4.7 - Method notifySocketException in class SocketMonitor 62

Figure 4.8 - handleNotification method in class SocketListener 62

Figure 4.9 - Method handleNotification in class MemListener 63

Figure 4.10 - ServerSideManager , executed as an independent thread 64

Figure 4.11- Rollback function in class ServerSideMonitor 64

Figure 4.12 - State Diagram of FixedMessageSequenceProtocol 65

Figure 4.13 - Instrumentation in FixedMessageSequenceServer 67

Figure 4.14 - Initializing matrix a ... 69

Figure 4.15 - Initializing matrix b ... 69

Figure 4.16 - Computing a term in matrix c ... 70

Figure 4.17 - The second round of matrix multiplication 71

 IX

List of Tables

Table 1 - Evolutionary Levels in the Autonomic Computing Spectrum8

Table 2 - Oracle Database’s AC Abilities .. 30

Table 3 - Monit’s AC Abilities .. 31

Table 4 - MapReduce's AC Abilities .. 33

Table 5 - Apache Common’s AC Abilities .. 35

 X

Abstract

Autonomic Computing (AC) aims at solving the problem of managing the rapidly-

growing complexity of Information Technology systems, by creating self-managing

systems. In this thesis, we have surveyed the progress of the AC field, and studied the

requirements, models and architectures of AC. The commonly recognized AC

requirements are four properties - self-configuring, self-healing, self-optimizing, and self-

protecting. The recommended software architecture is the MAPE-K model containing

four modules, namely - monitor, analyze, plan and execute, as well as the knowledge

repository.

In the modern software marketplace, Java Management Extensions (JMX) has

facilitated one function of the AC requirements - monitoring. Using JMX, we

implemented a package that attempts to assist programming for AC features including

socket management, logging, and recovery of distributed computation. In the

experiments, we have not only realized the powerful Java capabilities that are unknown

to many educators, we also illustrated the feasibility of learning AC in senior computer

science courses.

Keywords: Autonomic Computing; Java; distributed computing; multi-agent systems;

process control theory; grid computing

 1

Chapter 1. Introduction

Autonomic computing is a concept that brings together many fields of computing

with the purpose of creating computing systems that manage themselves (Huebscher

2008). Autonomic computing is a paradigm for dealing with the growing complexity of

computer systems, which currently requires system administration. This paradigm

contributes to a number of other technologies such as grid computing, virtualization, and

service-oriented architecture (SOA) (Ganek 2007). Autonomic computing is inspired by

the human autonomic nervous system (ANS), which regulates our body functions.

IBM forecasts that the number of computing devices will grow at the rate of 38%

per year (“IBM” 2). While business productivity is rising, these advances are creating

management challenges for IT staff. Applications often span multiple resources –

application servers, Web servers, integration middleware, and legacy systems. These

composite applications are difficult to manage. At the same time there is a growing

volume of data, escalating demand and requiring more complex IT environments.

Estimates indicate that up to 80% of an average company’s IT budget goes to the

maintenance of existing software (Ganek 2007).

As demand for skilled IT personnel easily outstrips supply, labor costs now

exceed equipment costs by a large ratio, up to 18:1. IBM started calling for the grand

challenge of autonomic computing in 2001. This initiative aimed to develop computing

systems capable of self-management, to overcome the rapidly growing complexity of

systems management (Kephart 2003).

 2

 In this thesis, we will review the autonomic computing landscape, the system

requirements, the essential properties, and the architectural models of autonomic

computing. At the heart of autonomic computing is the concept of software adaptation

which can be achieved either at the operating system levels or at the specific

programming levels. We will discuss the techniques at both levels, briefly including

program-level adaptation in light of the Java language. The thesis will pay more

attention to the relation of autonomic computing to Service-Oriented Architecture (SOA).

Particularly, we will study the SOA-approach to autonomic computing for pervasive

systems, as well as a software architecture for the dynamic configuration and

composition of communication services, which applies the composition design pattern.

The literature surveyed has clearly indicated that autonomic computing has been

in the requirements of all the modern critical enterprise systems. Autonomic features

have been implemented in numerous distributed applications. A trend of increasing

demand for autonomic features has been demonstrated in both Web and mobile

applications, as well as cloud-based information systems. However, such a critically

important aspect of computation has not been studied enough in computer science

education. A goal of this thesis is to investigate the feasibility of adopting autonomic

computing concepts and techniques in advanced computer science courses. A

particular focus will be on distributed programs because of the inherently unreliable

nature of network communication. Through a series of experimental programming

exercises, we hope to develop a software library that can simplify implementations of

autonomic features.

 3

Chapter 2. Survey of Autonomic Computing

2.1 Individual Implementations of Autonomic Computing

 Even before IBM’s Autonomic Computing initiative came into existence, inroads

into the subject area were being made by the US Department of Defense and NASA. In

this chapter, we review Autonomic Computing history, and also look at current software

that demonstrates Autonomic Computing abilities.

2.1.1 DARPA Projects

 Many self-management research projects were launched by DARPA for military

applications. The first set of DARPA projects were focused on enabling a generation of

self-repairing, self-forming, self-defending and heterogeneous networks, in order to

provide security and critical advantages in unpredictable and dangerous environments.

Some of these projects included the Small Unit Operations-Situational Awareness

System (SUO-SAS) program, the Optical RF Combined Link experiment (ORCLE),

Future Combat Systems Communications (FCS-C), and the Wireless Networks after

Next (WNaN) program.

 A series of DARPA programs was launched for addressing autonomy issues in

battery-powered wireless systems, such as unattended ground sensor (UGS) networks

(Lalanda 2014).

 One of the more interesting projects launched by DARPA was the Dynamic

Assembly for System Adaptability, Dependability and Assurance (DASADA), which

commenced in 2000. The goal of DASADA was the development of technology for

 4

ensuring the dependability of mission-critical systems. Some of the research motivated

by this project has initiated architecture-driven solutions for self-managing large-scale

distributed systems. These solutions rely on the extraction of runtime software

"gauges." These gauges are used for the monitoring of system dependability properties

(e.g. safety, security, and architectural coherence), analyzing the collected information

for detecting variance from the predicted behavior, and dynamically adapting the system

in order to prevent violations of acceptable behavior (for example, self-repairing running

systems) (Lalanda 2014).

 2.1.2 NASA

 NASA has a natural interest in the field of autonomic capabilities, due to the

nature of its unmanned space missions. In these missions, communication between

land-based control centers and spacecraft is frequently unavailable and continuously

affected by long round-trip delays. In these contexts, the success of costly explorations

has been totally dependent on the autonomic capabilities of spacecraft devices, which

allow rapid control decisions to be made in real-time. Self-repair and self-reconfiguration

are also critical capabilities in these missions, since direct communication with the

devices is impossible.

 The autonomic ability in NASA space missions includes star-tracking based

navigation, self-directing antennas, automatic fault reactions, and data storage and

retransmission. One example is the AutoNav autonomous navigation system, which

was employed on board the Deep Space 1 (DS1) and Deep Impact spacecrafts for

enabling high-speed encounter missions to small bodies, like comets and asteroids.

 5

 The popular Mars rover was another example of an autonomic system. Planet

surface explorations demand the autonomous rovers to find their way through often

difficult and rugged territories.

 Yet another project with a futuristic slant that NASA unveiled is called the

Autonomous Nano Technology Swarm (ANTS) program (2000). ANTS uses the idea of

a generic architecture for human/robotic space mission, which is based on an ant

colony analogy. The ant-colony provides an excellent example of self-organization that

engenders a resilient and relatively cheap system. The ANTS system also utilizes high

social interaction capabilities that enable self-organization into various structures in

order to achieve predefined goals (Lalanda 2014).

2.2 System Approach to Autonomic Software

2.2.1 IBM’s Grand Vision of 2001

On October 15th, 2001, the vision of autonomic computing was made explicit by

Paul Horn, the then senior vice president of IBM Research. In his speech he suggested

to build computer systems that “regulate themselves much in the same way our

autonomic nervous system regulates and protects our bodies” (Ghosh 2007). In other

words, there should be a minimum of human interference (IBM 2).

To solidify and prove their mission, IBM released an IBM Autonomic Computing

Toolkit through its DeveloperWorks website. It was a free add-on to the Eclipse

development environment. This was implemented in Java and had features such as

“Common Base Events” and a “Generic Log Adapter”, along with an “Autonomic

Management Engine.” However, support for this toolkit was discontinued by IBM in

2007.

 6

2.2.2 Self-CHOP Properties of an Autonomic Computing System

 There are four key properties for any given autonomic computing system: self-

configuration, self-healing, self-optimization and self protection. These properties are

often abbreviated as the "Self-CHOP properties" (also termed "Self-X"). Below we

summarize what these terms mean.

 Self-Configuration

 Self-Configuration means the system’s ability for automatic configuration of

components, according to high-level goals. More specifically, this capability gives the

system the power to adapt to unpredictable situations. For example, it may remove or

add new components, or install software changes (without stopping the current service)

(Huebscher 2008).

 Self-Healing

 Self-healing denotes the ability to automatically discover, and subsequently

correct, faults. For example, a service disruption in a major website can be prevented if

our system has self-healing abilities. This is of interest to all major websites, as they can

increase profits by minimizing their downtime (Huebscher 2008).

 Self-Optimization

 This refers to the automatic control of resources, and monitoring them to ensure

peak functioning with respect to the defined requirements. In other words, this enables

the system to tune itself on-the-fly to proactively improve the current processes, and to

reactively respond to environmental conditions. This quality is of interest in the security

domain, where hackers may compromise the system at any time.

 7

 Self-Protecting

 The system must be able to proactively identify and protect against any arbitrary

attacks or vulnerabilities. For example, any large enterprise system may be susceptible

to denial-of-service attacks. This is vital in the current era of ever-increasing

connectivity, as exemplified by the rapid adoption of smart phones.

Self-protection also includes a system's ability to prevent physical harm – such

as the motion detection in modern laptops, which protects disk drives by temporarily

parking the disk-drive head upon sensing that it is being dropped.

2.2.3 Evolutionary Levels in Pursuit of Autonomic Computing

 IBM introduced five evolutionary levels in the autonomic computing spectrum.

These levels are defined as follows in Table 1 (Gusworld 1):

Figure 2.1 - Self-CHOP properties (Jacob)

 8

Table 1 - Evolutionary Levels in the Autonomic Computing Spectrum

Level Description

Level 1 Basic

Level 2 Managed

Level 3 Predictive

Level 4 Adaptive

Level 5 Autonomic

 At the very beginning, Level 1 is the Basic level. This level corresponds to the

situation today - where systems are mostly managed manually. Here, we have many

sources of system generated data, that require a highly skilled staff.

 The next level is Managed, and here we have greater system awareness,

improved productivity and consolidation of data and management tools.

 In Level 3, the Predictive level, the system monitors and recommends actions,

and the staff will approve or disapprove those actions. Thus, it “figures out” the plan and

awaits a human’s approval.

 Next is Level 4 – the Adaptive level where the system monitors and initiates

action, and then the staff manage that against service level agreements.

 Finally, Level 5 is fully Autonomic. The system will monitor and initiate actions

based on business processes. In this stage the IT staff can focus on implementing

business requirements.

 9

2.2.4 Key Features of Autonomic Computing

 IBM's autonomic computing manifesto identified eight key characteristics that

define an autonomic system (Lalanda 2014):

1. Holding self-knowledge and consisting of elements that have system

identification information

2. Being able to reconfigure in reaction to environmental changes (which are

potentially unpredictable)

3. Always in a state of striving to optimize functioning, in order to reach predefined

criteria

4. To first detect, and then recover, from component failures in order to maintain

global dependency

5. In regards to various threats, being able to anticipate, detect and avoid them in

order to maintain integrity and security.

6. Acquiring environment knowledge and behaving in a context-sensitive manner

7. Implementing open standards in order to be able to survive in a heterogeneous

ecosystem

8. Hiding complexity through bridging the gap between underlying IT resources and

business goals.

2.2.5 MAPE-K Model

 Central to the autonomic computing architecture is the idea of an autonomic

manager and a MAPE-K loop. This is simply a logical architecture, not a mandatory

blueprint, which defines the various activities to be carried out in order to have

 10

autonomic loops. MAPE-K is an acronym for monitor, analyze, plan, execute, and

knowledge. These are the aspects involved within any autonomic cycle.

Figure 2.2 – MAPE-K Model (Parashar)

In the first stage, monitoring, we build a model of the managed artefacts and

execution context. Following this, analysis uses the blueprint built by the monitoring to

assess the situation and determine any anomalies (Lalanda 2014).

The planning stage comes after analysis. Its purpose is to figure out a set of

management actions that allow the passage from a current state to a desired state. And

 11

lastly, the execution stage carries out plans, dealing directly with the effectors that are

provided through the managed artifacts (Lalanda 2014).

The MAPE-K logical architecture is extremely important in the field of autonomic

computing. It gives a structural framework to begin with when creating an autonomic

system. The architecture is scalable because the activities can be run on different

machines (Lalanda 2014).

2.2.6 Research on Decision-Making Techniques

There is significant research in the area of decision making, in regards to

autonomic computing. A paper by Maggio et al. describes various approaches and

techniques, and outlines five main techniques for them: heuristic solutions, standard

control–based solutions, advanced control-based solutions, model-based machine

learning solutions, and model-free machine learning solutions (Maggio 2011).

Heuristic solutions begin with a guess about application needs, and adjust it.

They are designed for simplicity and performance, and thus sacrifice precision. They

usually cannot be proven to converge to the optimum value. For example, the greedy

approach optimizes resource allocation and energy management in a hosting center

(Maggio 2011).

 Standard control-based solutions use canonical models and apply standard

control techniques such as Proportional Integral (PI) controllers, Proportional Integral

and Derivative (PID) controllers, optimal controllers, or Petri nets. Two examples of

these models are discrete-time linear models and discrete event systems. Important

properties may be enforced such as convergence time and stability (Maggio 2011).

 12

 Advanced control-based solutions involve complex models (involving some

unknown parameters like machine workload) that may be estimated online, to provide

Adaptive Control (AC). Adaptive Control requires the ability to change controller

parameters in real-time, and an identification mechanism. Another advanced control

strategy is Model Predictive Control (MPC). In MPC the controller selects the next

actions based on the prediction of the future system reactions. Although the overhead of

such solutions is greater than that of standard controls, one may still be able to formally

analyze parameter-varying systems. Thus, one may prove stability and obtain formal

guarantees even in the case of unknown operating conditions. For example, one real-

world example adjusts the CPU percentage dedicated to a web server adaptively

(Maggio 2011).

 In model-based machine learning solutions, a framework is required in which to

learn system behavior and adjust tuning points online. Neural Networks (NN) are often

used to build control-oriented nodes. Once trained, NNs may predict the system

reaction to various inputs. It should be noted that the structure of the network and the

training data quality are paramount.

2.3 IBM’s Autonomic Computing Architectural Concepts and Toolkit

 In IBM’s 2005 white paper (“An architectural blueprint for autonomic computing”)

a common approach was outlined, along with terminology, to describe a self-managing

autonomic computing system. This approach shows how all parts of an autonomic

 13

system are connected using enterprise service bus patterns. This enterprise service bus

integrates the various building blocks, which include:

 Touchpoints for managed resources

 Knowledge Sources

 Autonomic Managers

 Manual Managers

Figure 2.3 below shows this autonomic computing reference architecture:

Figure 2.3 – Autonomic Computing Reference Architecture ("An architectural blueprint")

IBM’s software framework for Autonomic Computing was released in 2004, and

was called the “Autonomic Computing Toolkit.” It was built in Java, and distributed

through the IBM developerWorks website.

 14

2.3.1 Key Component Areas

 The content of the IBM Autonomic Computing Toolkit can be divided into four

main categories:

 Technologies

 Tools

 Scenarios

 Information and documentation

2.3.2 Technologies

System capabilities that utilize the technologies in the Autonomic Computing

Toolkit include common systems administration, problem determination, and solution

installation and deployment.

Problem determination capabilities can be enhanced via the Autonomic

Management Engine (AME), the Generic Log Adapter, the Log and Trace Analyzer, and

Common Base Events. The Integrated Solutions Console is used to create effective

common systems administration capabilities. Finally, the Solution Install technologies

provide capabilities for solution configuration and deployment (Jacob 2004).

2.3.3 Tools

The Autonomic Computing Toolkit also provides the tooling needed to customize

the technologies so that solutions can be created for specific needs. Tools like the

Integrated Solutions Console Toolkit, Resource Model Builder, Adapter Rule Editor, and

other Eclipse plug-ins are used for the creation of custom solutions.

 15

2.3.4 Scenarios

The Autonomic Computing Toolkit also provides scenarios that show how the

technologies work together, and how they may be used in realistic solutions. The

scenarios are used as testing environments. All scenarios are demonstrated using the

technologies and tools available in the Autonomic Computing Toolkit. There is a

problem determination scenario performing self-healing, as well as two automated

installation scenarios performing self-configuring tasks.

2.3.5 Information and Documentation

The Autonomic Computing Toolkit also has useful material for educating users. It

provides detailed individual technology and tooling documentation, to assist with

developing autonomic solutions (Jacob 2004).

2.3.6 Autonomic Computing Toolkit Technologies

The tools and technologies contained in the Autonomic Computing Toolkit are

intended to help product developers create autonomic capabilities in their products. One

example of an implementation of an autonomic manager is provided by the Autonomic

Management Engine (AME). The AME includes built-in representations of the four parts

of the control loop (monitor, analyze, plan, execute).

Developers use several technologies to create touchpoints to enable managed

resources to communicate with autonomic managers. One example of these

technologies is the Generic Log Adapter, which is included in the Toolkit to translate

product log messages into a Common Base Event (CBE) data format. The Common

Base Event is an XML structure which can be consumed by an autonomic manager

(Jacob 2004).

 16

The Log and Trace Analyzer is then used to process these messages. Afterward,

it analyzes them and presents a view of the log events.

Self-configuration is enabled also, via the Solution Install components of the

Toolkit, while self-management capabilities are enabled via the Integrated Solutions

Console. Administrative console functions vary from run-time monitoring and control to

setup and configuration (Jacob 2004).

Referring again to the MAPE-K figure (Figure 2.2), let us consider how

information is passed to the autonomic manager. In the Autonomic Computing Toolkit

this would be accomplished through the sensor interface. For unsolicited events, a

current resource might generate its own log file. Then the Generic Log Adapter facility

would be utilized to convert log entries to Common Base Events. It is also possible for

an application to create its own Common Base Events directly (Jacob 2004).

The Generic Log Adapter (GLA) is one example of a facility that helps adapt a

product to participate in the autonomic computing architecture. It does this by creating

Common Base Events which can then be consumed by an autonomic manager. For

example, using the GLA we can use a product log file to generate Common Base Event

data. First, a rule-based parser processes a log file, and then the log file is translated

into the Common Base Event format. The Autonomic Computing Toolkit includes the

GLA to help products adapt to the autonomic architecture without having to alter the

way it creates its log files (Jacob 2004).

One single GLA runtime may be used to parse the log files of multiple products,

as long as the rules have been defined for each log message format. The adapter

 17

includes a handler that can pass the Common Base Event information to the autonomic

manager (using the effector and sensor interfaces) (Jacob 2004).

In conjunction with the GLA, the Adapter Rule Editor tool is used. This provides

the tooling to create the specific parser rules, which are used by the GLA at runtime to

create CBE objects.

The next MAPE-K component is monitoring. This component can either consume

unsolicited Common Base Events, or can request specific sensor information. The

building blocks for monitoring the IT environment are resource models, which are

leveraged via automated best practices. These resource models contain specific

metrics, thresholds, events, and parameters which are used to gauge the health of IT

resources. They also contain specifications for corrective actions, if failures and error

conditions come up (Jacob 2004).

The Resource Model Builder provides a standard Eclipse-based interface that

provides a wizard to build resource models. This facility uses predefined resource

models to specify which resource data gets accessed from the system at runtime and

how this data is processed. For example, the Process resource model retrieves data

related to running system processes. The resource model automatically collects

performance data, and this gets processed by an algorithm to determine whether or not

the system is performing up to expectations (Jacob 2004).

When a resource model is run (at a managed resource), it gathers data at regular

intervals, known as cycles. A resource model with a cycle time of 100 seconds gathers

information every 100 seconds, and the data collected is a snapshot of the status of the

 18

resources (which are specified in the resource model). The default cycle time of each

supplied resource model can be modified as required.

Furthermore, each resource model has thresholds. A threshold is a named

property of the resource (with a default value that can be modified).

The autonomic manager consists of the monitoring, analysis, plan, and execute

components. The Autonomic Computing Toolkit provides an implementation called the

Autonomic Management Engine. It is intended primarily for testing the components of

the autonomic environment, and is a black-box implementation (Jacob 2004).

AME monitors system resources using resource models. It also sends

aggregated events and performs corrective actions for problems. AME constantly

monitors the system, checking for events to handle.

The Log and Trace Analyzer (LTA) may be considered a partial implementation

of the autonomic manager, covering the monitor and analyze parts of the control loop.

The LTA enables analysis, viewing, and correlation of log files. It therefore makes it

easier to resolve problems within multi-tier systems by consuming data in the Common

Base Event format and providing specialized visualization and analysis of the data

(Jacob 2004).

The LTA contains a log-analysis engine, which provides an algorithm that takes

an incident which is recorded in a log file as an input parameter. Then it matches this

incident based on predefined rules against the symptoms of an available symptom

database, and finally returns an array of objects representing the directives and

solutions for the matched symptoms. The LTA provides a default implementation of an

 19

analysis engine, and a set of instruments which could be used to implement a custom

analysis engine (Jacob 2004).

Rather than using the rules-based parser provided by the GLA, the LTA enables

the writing of Java code-based parsers. Parsers written in Java code are usually used

when the individual log messages are very complex. The Autonomic Computing Toolkit

provides a number of parsers and rules for several existing IBM products (Jacob 2004).

2.3.7 Autonomic Management Engine

 The Autonomic Management Engine (AME), illustrated in Figure 2.4 below,

supplies a hosting environment for the resource model decision algorithms. These

autonomic resource models are created using JavaScript. The core decision algorithm

of the resource model is the VisitTree() method which is run by the AME at a given

time cycle defined by the resource model descriptor, which itself is an XML file (Jacob

2004).

 20

Figure 2.4 - The Autonomic Management Engine Hosting Environment (Jacob)

2.4 CASCADAS ACE

 A European consortium picked up where IBM left off, implementing their own

version of an autonomic computing platform. It is called the Component-ware for

Autonomic Situation-aware Communications, and Dynamically Adaptable Services

(CASCADAS) Autonomic Communication Elements (ACE) Toolkit, and is an open-

 21

source platform used to set up autonomic services in a distributed environment (ACE

Autonomic Toolkit).

2.4.1 The ACE Theoretical Principles

2.4.1.1 Semantic Self-Organization

 The Autonomic Communication Element (ACE) framework stores algorithms that

support semantic self-organization of ACEs. These algorithms come in the form of

autonomous clustering, synchronization, and differentiation. The commonality among

all three aggregation methods is that the choice of aggregation partners is influenced by

knowledge (and hence, evaluation) of the context they are operating in ("ACE

Autonomic Toolkit").

2.4.1.2 Clustering

 If an ACE detects a discrepancy in its list of required or available functionality

(perhaps because of a change in the local environment due to a surge in demand), then

it starts a “rewiring” procedure. The initiating node’s algorithm can pick one or more of

the first ACE neighbors as match-makers. Also, the constraint on the conservation of

the number of links may be relaxed ("ACE Autonomic Toolkit").

2.4.1.3 Differentiation

 The purpose of differentiation is to allow ACEs to decide whether to terminate

themselves (locally) under an inappropriate workload. Thus, resources can be

transferred between applications in a way such that released resources can be re-

assigned to another application. The term differentiation is derived from morphogenesis

 22

– a biological phenomenon which means “the development of form and structure in an

organism during its growth from embryo to adult" (“morphogenesis”).

2.4.1.4 Synchronization

 The purpose of synchronization is to find or create partnerships based on the

time activity patterns of the constituent ACEs. The synchronization requires two main

prerequisites:

1. Establishing a collaborative overlay which combines components that feature

activity patterns that are compatible a priori starting from a random bootstrap

configuration

2. Finding ways of adjusting individual time-cycles in order to create opportunities

for collaborating (which would not exist if every individual activity pattern was set

from the beginning).

Figure 2.5 - Two types of Inter-ACE communication: Connection-less (Service-discovery) and
Connection-oriented(Service Usage) ("ACE Autonomic Toolkit")

 23

2.4.1.5 Situation Awareness

 Situation-awareness denotes the ability of refining decisions according to the

specific contextual situation, and this requires tools and models for analyzing and

organizing pieces of information. There, the ACE Framework defines a Knowledge

Network (KN) service, which is accessible (through aggregation) by ACEs as a system-

wide service. Knowledge Networks process information in order to make a collection of

Knowledge Atoms (KAs). These KAs structure the processed information into a data

model which is built on the basis that any amount of contextual knowledge is created as

a result of an event occurring. Furthermore, a dedicated data model is made to

represent any fact as a 4-tuple of the form (who, what, where, when).

2.4.1.6 Pervasive Supervision

 To detect and correct hazard situations, an ACE needs a supervision system.

This is an ongoing system with a Sensor that links the supervision system with the ACE.

Every ACE uses the dedicated supervision organ to export a management interface

through which internal state and session objects can be obtained.

 Whenever a new event arrives, the Executor adds the input of each PEX to it.

Processing speeds of individual PEXs may differ, but the whole system is unaffected

because PEXs are independent (run on separate threads and have separate input

queues).

 It is important to note that there are two PEX types: a “Normal” PEX, which at

start-up gets a new input queue and a new Execution Session; and a “Child” PEX,

which at start-up will inherit the Execution Session of its parent PEX, and also inherits

the content in the parent’s input queue. Child Plans may be used for starting separate

 24

processes/Plans for each client. Parent and Child share the Execution Session and so

they can synchronize through reading/writing into it.

2.4.1.7 Functionality Repository

 The Functionality Repository is the ACE organ which takes care of deploying and

managing functionalities (common and specific functionalities) within the ACE. It also

provides features for calling these functionalities using Events.

 The main purpose of the Functionality Repository is to enable common and

specific functionalities to be deployed into the ACE instance. Once deployed into the

ACE they can be accessed through ACE events. Thus the Functionality Repository has

two sides: as a storage facility and as a provider of an accessible interface.

 As a storage facility, the Functionality Repository keeps track of the deployed

functionalities, creates and stores instances of the underlying classes, and maintains

call-related variables.

As an accessible interface, it listens to specific ACE events and then interprets

them as calls to the functionalities. The ACE Functionality Repository also follows the

Event-based access model as the ACE organs. Therefore, the input of each invocation

is an internal ACE event (called FunctionalityCallEvents) that is produced by the

Executor when the execution of a transition begins (and is sent directly or through the

Bus). Also, the output of a call is an arbitrary set of events (that may be fixed or varying)

created by the functionality. The Functionality Repository transmits these events to the

Bus or Gateway, depending on the event type.

 25

2.5 Autonomic Computing in Practice

 The autonomic computing principles have been applied to many enterprise

software systems. A number of software utility packages are available in the market

today.

2.5.1 DB2

 IBM is the main user of Autonomic Computing principles. This is exemplified in

the enterprise database suite, DB2. DB2 version 9 has a number of autonomic features

that are designed to make database administration almost effortless, such as:

 self-tuning memory management

 auto-configuration enabled by default

 automatic database maintenance

 automatic storage management

Figure 2.6 below shows a screenshot of the automatic maintenance feature: 1

1 http://www.ibm.com/developerworks/data/library/techarticle/dm-0606ahuja2/

 26

Figure 2.6 –Configuring Automatic Maintenance in DB2 (screenshot)

DB2 9 utilizes a feature called self tuning memory manager (STMM), which is

shown below in Figure 2.7. This feature eases the task of memory configuration (often a

burden on database administrators). It does this by automatically setting optimal values

for most of the memory configuration parameters, including package cache, buffer

pools, locking memory, sort heap, and the total database shared memory.2

2 http://www.ibm.com/developerworks/data/library/techarticle/dm-0709saraswatipura/

 27

Figure 2.7 - The Self-Tuning Memory Manager (Saraswatipura)

2.5.2 Oracle

 In Oracle SQL versions 11g and up, there are a number of tools that can aid in

implementing an autonomic system. One example is using REDO logs, which are binary

files that store change vectors. The changes are written to the redo logs in a circular

fashion. Most enterprises operate in a mode called ARCHIVELOGMODE. This means

 28

that as the instance switches from one redo log to another, the previous log is written

out to an archive log file.

 The following is an example of how we can use Oracle’s memory management

functions:

ALTER SYSTEM SET log_archive_dest_1='LOCATION=[/LOCATION]'

SCOPE=both;

 If we want to simulate a series of log switches, we may use the following

command several times:

ALTER SYSTEM SWITCH LOGFILE;

 In general, Oracle Database provides a built-in infrastructure for defining

maintenance activities. There is powerful scheduling functionality introduced with Oracle

Database 11g Schedule to run tasks such as the following:

 gathering optimizer statistics in order to update the system catalog with

information on the data in indexes and tables

 creating statistical profiles for optimal statistics collection (based on table

analysis and query feedback)

 Performing database backups

 Reorganizing fragmented tables

 By default the maintenance window begins at 10:00 PM every night, and lasts

until 6:00 AM the next morning and throughout the weekend. All the maintenance

window attributes are customizable (start/end time, frequency, days of the week, etc).

 29

This allows it to adapt to specific scheduling needs. The tasks of automated optimizer

statistics collections, automatic SQL tuning, and reorganizing fragmented tables are all

built into Oracle Database 11g and run periodically.

Oracle - Resource Control

 One powerful aspect of running a task in a maintenance window is the ability to

control the system resources and limit resource use in favor of more business-critical

activities. By using bandwidth quotas, the Oracle Resource Manager optimizes resource

utilization globally and allows maintenance tasks to use the available resources without

affecting higher priority activities.

Oracle - Space Reorganization

 Tables in a database become fragmented, and therefore reorganization tasks are

run to increase object access performance and optimize space usage. Oracle 11g is

capable of scheduling reorganization jobs online. Also, it provides a set of options like

moving tables, adding/dropping partitions, changing structures, etc.

Oracle - Automation of SQL Tuning

 Oracle provides a SQL Tuning Advisor, which analyzes problematic SQL

statements and makes specific recommendations to tune it. The core of this technology

is the Automatic Tuning Optimizer (ATO). ATO is an improved version of Oracle's query

optimizer that runs the actual analyses on behalf of the SQL Tuning Advisor. It uses

dynamic sampling and partial execution methods to verify its own estimates of

selectivity, cost, and cardinality. It also uses the past execution history of the SQL

statement in order to determine optimal settings for the optimizer. Recommendations

generated by the ATO include creation of new indexes, updating of optimizer statistics,

optimizing of the SQL statement design, and creation of a SQL Profile (a database

 30

object in Oracle 11g offering a way to tune SQL statements). Then it collects information

on predicate selectivity, skews, and data correlations for the specific SQL statement.

These are then used by the query optimizer to produce an ideal execution plan

(“Oracle" 10).

Table 2 - Oracle Database’s AC Abilities

Self-Configuring Self-Healing Self-Optimizing Self-Protecting

Resource Control

Space Reorganization

n/a ATO n/a

2.5.3 Monit

 Monit is a utility available on UNIX systems, which is used to manage and

monitor the operating system. It is an open source program.

 Monit can exhibit proactive capabilities. For example, if sendmail is not running,

Monit can restart sendmail automatically. Also, if Apache is using excessive resources

then Monit can stop/restart Apache, and send the user an alert. Monit also can monitor

specific process characteristics (i.e. how much memory a process is using, CPU usage,

and Load Average).3

3 http://mmonit.com/monit/

 31

 Monit is also used to monitor files, directories, and file systems on localhost.

This is useful for checking issues such as timestamp changes, size changes, or

checksum changes. Security issues can also be monitored – you can check that md5 or

sha1 checksum of files do not change.

 Below in Figure 2.8 is a graph generated by Monit, which shows CPU and

memory usage, along with other information :

Figure 2.8 - Monit ("Danschultzer/monit-graph")

Table 3 - Monit’s AC Abilities

Self-Configuring Self-Healing Self-Optimizing Self-Protecting

Applicable n/a Applicable n/a

 32

2.5.4 MapReduce

 MapReduce has gained huge popularity, mainly due to its adoption by Google.4

MapReduce borrows from the autonomic computing genre in that it utilizes distributed

computing. MapReduce is used to process and generate large data sets, via a

distributed and parallel algorithm on a cluster.5

 MapReduce is useful in a large range of applications, including distributed

sorting, distributed pattern-based searching, web link-graph reversal, Singular Value

Decomposition, web access log stats, inverted index construction, machine learning,

document clustering, and statistical machine translation. Furthermore, the MapReduce

model has been ported to several computing environments such as multi-core and

many-core systems, desktop grids, volunteer computing environments, mobile

environments, and dynamic cloud environments.

 Google, for example, used MapReduce to completely regenerate its index of the

Internet. This replaced old ad hoc programs that updated the index and ran analyses.

 A distributed file system is used to store stable inputs and outputs for

MapReduce. The transient data is stored on local disk, and fetched by the reducers.

4 http://research.google.com/archive/mapreduce.html
5 http://en.wikipedia.org/wiki/MapReduce

 33

 In Figure 2.9 below is a high-level diagram of MapReduce, which is an algorithm

used to divide a computation among many computers for parallel processing:

Table 4 - MapReduce AC Abilities

Self-Configuring Self-Healing Self-Optimizing Self-Protecting

Applicable n/a Applicable n/a

Figure 2.9 - MapReduce ("Deploy")

 34

2.7.5 Watchdog Scripts

 One way that programmers often implement failsafe abilities is via "watchdog

scripts." A watchdog script is simply a system script that is triggered after a specific

action on the program being monitored. The following is a simple example of a Windows

watchdog script, which utilizes a Windows batch file:

 A watchdog script is especially useful for system administrators, who often need

to keep track of runaway processes. These scripts are popular in Unix and Linux system

administration.

2.7.6 Apache Commons Daemon

 One way autonomic computing behavior can be implemented using Java is to

use an Apache utility called Daemon.6

 Apache Daemon has two parts: a native library written in C which interfaces with

the operating system, and the library that provides the Daemon API (written in Java). 7

6 http://stackoverflow.com/a/30020831/763029

Figure 2.10 – Watchdog Script (Windows Batch File)

 35

Depending on which operating system we are using, an application can be run either as

a service (Windows) or a daemon (Linux). On Windows, we may use ProcRun.exe to

run the Java application as a service. And on Unix, we may use JSvc for running the

Java application.

Table 5 - Apache Common’s AC Abilities

Self-Configuring Self-Healing Self-Optimizing Self-Protecting

n/a Applicable through

ProcRun.exe on

Windows, or JSvc

on Unix

n/a n/a

2.7.7 daemontools

 Specific to the UNIX operating system, there is a very useful utility called

daemontools. This is a collection of tools for managing UNIX services, and among them

there is a program called supervise. supervise starts and monitors a service. It is

run as follows:

supervise s

 When run, it switches to the directory named s and starts ./run. It restarts

./run if ./run exists, and also maintains status information (in a binary format) inside

the directory s/supervise (which must be writable to supervise). This status

7 http://en.wikipedia.org/wiki/Commons_Daemon

 36

information can be read by svstat. To check whether supervise is running

successfully, one may use the svok tool.8

2.8 Code Adaptation

 At the heart of autonomic computing is the concept of software adaptation. Self-

management cannot be achieved without the ability to modify the behavior and structure

of a system. Software adaptation requires changing low-level code, which is often

intricate and complicated. Side effects could be unforeseen. Since the code that is to be

modified has been run, the computation state has to be preserved. Software adaptation

can be achieved either at the operating system levels or at the specific programming

levels (Lalanda 2014).

2.8.1 Operating System-Level Adaptation

 Figure 2.11 below demonstrates an OS-Level Autonomic Manager:

8 http://cr.yp.to/daemontools/supervise.html

 37

Figure 2.11 – OS-Level Autonomic Manager (Parashar)

 Dynamic adaptation at the operating system level is not intrusive because the

internals of the programs are not changed. They change the resources and services

provided by the operating system.

 Much research has been conducted in order to allow the dynamic integration of

services and resources. For example, most operating systems are capable of

integrating new resources in real-time without interruption of services. This is the case

of the Universal Plug and Play (UPnP) standard, originally developed by Microsoft

(Lalanda 2014).

 38

 Operating systems allow the dynamic deployment of new services. Deployment

includes activities such as installation, activation, and deactivation. On Linux and many

Unix systems, in order to install a new shell command one simply copies the executable

(binary file/script) into the ‘/bin’ directory. The service is "launched" afterward by typing

its name, and it then becomes available to the OS computing environment. In a sense,

operating systems have an infrastructure that appears autonomic, in order to

dynamically adapt software systems. But new code is not finely integrated into the

existing code. Rather, it is packaged and deployed as a stand-alone service in the OS

file. Some running code can then call this new service (Lalanda 2014).

 In spite of the aforementioned ability to dynamically integrated new code, building

a dynamic application on top of an OS is very complex. It is often based on ad hoc

mechanisms set up by the application itself. The example of the shell command that we

mentioned above is based on the introspection of directories specified in a global

environment variable. Also, it is difficult to create an infrastructure for the interception

and redirection of messages that are exchanged between two internal structures of the

application code. Thus, OS-based techniques remain impractical due to excessive

complexity (Lalanda 2014).

2.8.2 Application Program-Level Adaptation

 Dynamic adaptation is at the core of many programming languages, and a

number of techniques have been applied to allow code evolution at runtime. Dynamic

linking is one of them. In the Smalltalk programming language, code is dynamically

typed and reflective. In JavaScript programming variables are weakly typed and

 39

dynamic. In the Erlang language developers can dynamically load new code and

explicitly manage code replacement (Lalanda 2014).

 These are powerful techniques which can be used by autonomic managers to

bring about dynamic code adaptation. However, these techniques are very hard to

master and control. Excessive use of programming-level techniques results in buggy

code, which is very hard to test and maintain. Programming-level techniques have a

strong impact on the code itself. For instance, in order to dynamically load C libraries,

extension points (variation points) need to be introduced. This results in complex code.

Variation points cannot be introduced everywhere in the code because it quickly

becomes unmaintainable (Lalanda 2014).

 The C modules that can be linked dynamically are packaged into specific

libraries. The implementation of these libraries depends on the OS. These specific

libraries are called shared libraries (.so) in Linux and dynamic-link libraries (.dll) in

Windows. For example, the following code shows how to load a library with the

dlopen() function, how to get a shared library symbol address, and finally how to

unload the shared library with the dlclose() function:

void *handle;
int *iptr, (*fptr)(int);

/* loading expected library */
handle = dlopen(“/usr/home/me/mylib.so”, RTLD_LOCAL | RTLD_LAZY);

/* Getting the address << my_function >> and << my_data >> */
*(void **)(&fptr) = dlsym(handle, “my_function”);
iptr = (int *)dlsym(handle, “my_data”);
/* call to << my_function >> with << my_data >> as param */
(*fptr)(*iptr);

 40

 Dynamism in C is unwieldy and complex. Furthermore, C has little supporting

mechanisms that limit programming errors. Dynamic libraries get loaded with no

verification about the correctness of the new code, such as a typing system. Issues like

dangling pointers can arise freely, as there is no preventive verification when a module

is unloaded (Lalanda 2014).

2.8.3 Program-Level Adaptation in Light of the Java Language

 In Java, source code is always transformed into byte code to be executed by a

virtual machine. A virtual machine is an abstraction layer that isolates applications from

computer specifics (operating system, physical hardware architecture). This abstraction

layer can minimize the effort involved in porting software between different systems

(Lalanda 2014).

 In Java there is no static linking. Loading a class is performed on demand when

the class is needed for execution. The action of loading classes in a virtual machine at

runtime is done by a specific entity called a class loader. The job of the class loader is

to resolve external references. To do this it needs to locate libraries that contain the

appropriate classes in the system resources, and then load them into the virtual

machine. Many class loaders can be used in the same virtual machine, and their use is

based on the following rules:

 Every class loader (except the initial one, called a bootstrap) has a parent

 Each class loader delegates the task of class loading to its parent before doing

so itself

 41

By default, a Java virtual machine has three hierarchical class loaders:

 The initial class loader whose job is to load standard Java classes (rt.jar)

 The extension class loader which loads classes of the extension directory

(jre/lib/ext)

 The application class loader, which loads archives defined by the CLASSPATH

 More class loaders may be added to load specific aspects in a systematic way,

and each class loader will then have its own name scope. This allows the loading of

two implementations of the same class as long as they are loaded by two different class

loaders. Therefore, two versions of a class may be used by different parts of a system,

which provides flexibility. In addition, backtracking to an earlier state is made possible.

However, the class loader concept is not easy for programmers to master. This results

in buggy situations where unexpected classes are used in a program (Lalanda 2014).

 Unlike the C approach, verification is done before loading a Java library. Type

system compatibility is checked. The following example code shows how to dynamically

load a Java class:

Class type = ClassLoader.getSystemClassLoader().loadClass(name);
Class type = this.getClass().getClassLoader().loadClass(name);
Object obj = type.newInstance();

 Dynamic code loading is an essential feature that allows the introduction of new

code in the scope (namespace) of some code already running without interruption. But

the ability to integrate new code is not well supported. Unloading code is necessary

 42

when one wants to replace a class. However, a class loader cannot unload a class.

Unloading a class needs unloading the class loader itself.

 In this case, it is necessary to be able to deploy, load, and instantiate the new

structure. Finally, the structure to be replaced is then required to vanish. It has been

unloaded from the virtual memory, with clients of the old structure being rerouted into

the new one (Lalanda 2014).

2.9 Autonomic Computing and its Relation to Service-Oriented Architecture

(SOA)

 Service-Oriented Architecture provides an architectural framework where

software components communicate with other components using an agreed-upon

protocol. It provides an easy way to build up complex applications from many different

sources. SOA may also be used to implement AC features.

2.9.1 Service-Oriented Architecture

 Many data centers, including Google and eBay, organize their systems using

Service Oriented Architecture (SOA). A collection of servers, applications, and data at a

site is called a farm, while a collection of farms is termed a geoplex.

 A service is either cloned or partitioned. Cloning means that the data is copied

onto a collection of nodes. Each node can provide its own storage (inefficient if many

nodes) or it may use a shared disk or disk array. The collection of clones is called a

Reliable Array of Cloned Services, or RACS. We may then partition the data among a

collection of nodes. These partitions may be replicated onto a few new nodes, which

 43

then form a pack. The set of nodes that provide a packed-partitioned service is called a

Reliable Array of Partitioned Services (or RAPS).

Figure 2.12 - RACS and RAPS architectures (Parashar)

 A RAPS is functionally superior to a RACS, but a RACS is easier to build and

maintain. Therefore, many data centers try to maximize the use of the RACS design.

RACS are good for read-only, stateless services (often found at the front end of a data

center), while RAPS are better for update-heavy states (as found in storage back-end).

Figure 2.12 above illustrates both architectures.

 Most data centers apply SOA principles. All these systems have developed in an

organic way, beginning with a few machines in a single room. The configuration and

management of these systems is a daunting task, and problems that result in black-outs

 44

need to be resolved within seconds. Thus, automation is a highly desired quality (van

Renesse 2007).

 In modern SOA technology, each service has its own management console.

However, the deployed services depend on one another. If one service is problematic, it

may be due to a failure in another service. Therefore, obtaining a global view and

quickly finding the source of the problem is necessary. When each service supports for

self-management and self-configuration, a global diagnosis could be possible (van

Renesse 2007).

 A Scalable Monitoring and Control Infrastructure (SMCI) can be used to solve

these problems. It can monitor arbitrary sensor data available in the system, and has a

global presence. Following this, the SMCI can give a global view by installing an

appropriate aggregation query. Not only is this useful to a system administrator, but

such data can also be fed back into the system to automate the control of resource

allocation or even drive actuators (rendering the system self-managing and self-

configuring) (van Renesse 2007).

2.9.2 Autonomic Multimodal Interaction Model Utilizing Service-Oriented

Architecture in a Pervasive Environment

 There is a wealth of research on the SOA-approach to autonomic computing for

pervasive systems. One approach is described by Avouac et al (Avouac 2011).

 Pervasive computing systems typically consist of multiple devices and software

entities that may interact with each other. Many types of devices can be made available

for different purposes – interacting with the real environment, providing display and

control services to users, or exposing data and application interfaces to other devices.

 45

The challenge of pervasive computing lies in providing coherent pervasive

environments. These environments offer useful applications and services in a

heterogeneous setting with varied and distributed dynamic devices and software

services, that communicate via various protocols (Avouac 2011).

 Advances in SOA have improved the outlook of pervasive computing. Many

smart devices today are exposed as services, and their capabilities are described and

dynamically published by service providers, and are chosen and called by service

consumers at runtime (Avouac 2011).

 SOA allows ample flexibility in operations and functions which results in powerful

solutions that are hard to manage. To meet the challenges in management a “Dynamic

Multimodality” software framework is proposed. In this framework the whole multimodal

processing system is generated and maintained at runtime by an autonomous manager.

The processing system is modular and is made of service-oriented components. This

framework is shown below in Figure 2.13:

Figure 2.13 – The Multimodal Model (Avouac 2011)

 46

 The purpose is to clearly separate the multimodal processes, the input interaction

devices (which are volatile and may leave/join the environment), and the applications

that may appear and disappear dynamically (Avouac 2011).

2.9.3 Service Configuration and Composition Design Pattern for Autonomic

Computing Systems
 Mannava and Ramesh (Mannava and Ramesh, 2012 B) proposed a software

architecture, which uses a service configuration and composition design pattern for the

dynamic configuration and composition of communication services. It does this by

satisfying the self-configuration and self-composition characteristics of autonomic

computing systems, which software designers and/or programmers can utilize to drive

their work (Mannava 2012).

 The aforementioned architecture is divided into four modules: the monitoring

module, the decision-making module, and the Self-Optimization and Self-Configuration

modules (Mannava 2012).

 There are a number of design patterns used in this architecture. The following is

a list of these design patterns :

 Observer: A One-to-Many dependency between objects, so that when an object

changes state, all of its dependents will be notified

 Cased based reasoning: this design pattern separates the decision-making

logic from the functional logic

 47

 Row Data Gateway: Borrowing from database theory, enfold the data structures

and their database access code within row data gateways whose internal

structure models a database record (which offers a representation-independent

data access interface to clients)

 Adaptation Detector: Interpret monitoring data and decide when an adaptation

is required

 Event Notifier: Enable components to react to the occurrence of particular

events in other components without knowledge of each other (while allowing

dynamic participation of components and introduction of new events)

 Strategy: Family of encapsulated algorithms that can be interchanged. Strategy

allows the algorithm to vary based on the client

 Master-Slave: used when implementing an encapsulated implementation. We

may need to provide fault tolerance, increased performance, or result accuracy

for a component implementation

 Thread per connection: a single thread is created for each process. This design

pattern is usually used for the client-server model

 Server reconfiguration: This pattern is used to reconfigure an application

structured as a server-client architecture. Components can be removed from the

server architecture through the Component Removal Pattern.

 In real software systems, pattern composition has been known to be a challenge

to applying design patterns. The authors, Mannava et al, utilized a number of design

patterns including web services, which is defined based on three roles: service provider,

service registry, and service requester (Mannava 2012).

 48

Chapter 3. Applied Technology and Techniques

 In this chapter, we will explore technologies and techniques that are used in the

quest of making systems demonstrate aspects of autonomic computing functionality.

We will look firstly at Java Management Extentions (JMX), which is a powerful means of

enabling autonomic functionality. Afterward, we will delve into the topic of checkpoints.

Checkpoints are used, upon system failure, to bring a system back to a reasonable

state whereby the user can continue working without undue inconvenience.

Checkpoints are a key feature of almost all complex systems (operating systems, major

office applications, database management systems, etc).

3.1 Java Management extensions (JMX)

 Java Management Extensions was added to Java in the Java 2 Platform,

Standard Edition (J2SE) 5.0 release. JMX technology is a standardized way to

manage resources dynamically (devices, services, and/or applications) using Java. JMX

can monitor and manage the Java Virtual Machine (JVM). Furthermore, JMX is

extensively used in Java Enterprise Edition application servers, along with other

middleware, for administrative purposes.

 In order to use the JMX technology, resources are paired with Java objects

known as Managed Beans (MBeans). These MBeans are registered in a JMX server

known as an MBean server, that behaves as a management agent defined by the JMX

specifications. An MBean server and a set of services for handling the MBeans make up

a JMX agent. Following this pattern, properly configured JMX agents control resources

and then make them available to remote management apps ("Instrumenting").

 49

 JMX technology defines standard connectors (known as JMX connectors) with

which a management application can manage resources transparently, regardless of

communication protocol used ("Lesson: Overview"). Figure 3.1 below shows a sampling

of some of the more commonly used JMX interfaces, along with a sample method for

each.

Figure 3.1 Commonly used JMX interfaces ("Online")

 For Java software, at the lowest layer the Java Virtual Machine is the most

essential resource. The JMX technology can be used to manage the Java Virtual

Machine (JVM). To monitor and manage different aspects of the JVM, the JVM includes

a platform MBean server and special MXBeans that are used by management

applications.

 50

 MXBeans are provided with the Java SE platform to manage the JVM and other

parts of the Java Runtime Environment (JRE). Different parts of the JVM functionality,

such as a class-loading system and garbage collector, are encapsulated by a platform

MXBean. These MXBeans are displayed and interacted with by using a monitoring and

management tool that complies with the JMX specification. The Java SE platform's

JConsole graphical user interface is one of such monitoring and management tools.

Java SE provides the platform MBean server that allows the platform MXBeans to be

registered. The platform MBean server can also be used for custom MBeans. Further, all

application and platform MBeans that are registered in a connected JMX agent such as

the platform MBean server can be accessed through the MBeans tab of the JConsole.

3.1.2 The Roles of JMX in Autonomic Computing

 JMX facilitates the self-configuration properties of the Autonomic Computing

paradigm. For instance, using MXBeans one can manage and configure Java's garbage

collection abilities in real-time. More importantly, JMX facilitates the self-monitoring

capability with the uniformed model MBeans and MXBeans ("Instrumenting"). All the self-

CHOP properties can be implemented in corresponding MBean client components.

3.1.3 JMX for Autonomic Logging

 JMX can be used to change log levels dynamically, according to the state of a

process (in-process, waiting, finished, etc), which is a fulfillment of self-optimization

(Sharif). This is done with the built-in LoggingMXBean along with enhancements in two

aspects. In the subject processes, an enhanced MBean that uses the standard

Runnable and Callable interfaces is deployed to track tasks as they go through their

 51

lifecycle. In the logging component, which is the client of the enhanced MBean, we can

set a desired logging level for the reported process state. Or we can fine-tune logging in

powerful ways - one way is to log the level after N number of logs at a certain level (for

instance, change from INFO to WARN upon tracking 5 INFO log messages).

3.1.4 JMX for Self-Healing with Respect to Memory Usage

 JMX also has powerful memory management abilities through its JConsole tool.

As shown below in Figure 3.2, JConsole dynamically displays the memory usage

(Heap Memory and Non-Heap Memory Usage). In this case, JConsole is the client of

the built-in platform MBean that tracks memory usage.

The standard memory MBean has four attributes :

HeapMemoryUsage - read-only attribute describing the current heap memory usage

NonHeapMemoryUsage - read-only attribute describing non-heap memory usage

ObjectPendingFinalizationCount - read-only attribute describing the number of

objects pending for finalization

Figure 3.2 - JConsole Screenshot

 52

Verbose - boolean attribute describing the garbage collector's verbose tracing

setting. This may be dynamically set

 Details about the MBean interface are defined in the

java.lang.management.MemoryMXBean specification. A particularly noteworthy class

in regards to autonomic computing is the MemoryPoolMXBean, which contains a

collection usage threshold which can be queried with the

isCollectionUsageThresholdExceeded() function.

 It should be noted, though, that not all garbage-collected memory pools choose

to support the collection usage threshold. In this case we should first call the

isCollectionUsageThresholdSupported() method to check whether the collection

usage threshold method is supported.

 By replacing JConsole with a customized client of the same platform MBean, we

will be able to achieve self-healing when heap memory usage exceeds a threshold. At

such a moment, the customized client component can restart the same Java program in

a new JVM with larger heap memory claim.

3.2 Logging and Checkpointing as a Means of Facilitating AC Features

 Logging is also another technology that facilitates autonomic computing, and has

existed since the early days of information technology. It was developed for system

recovery and auditing. Among the most popular logging frameworks is Apache Log4J

(now Apache Logback). The author utilized this framework extensively in logging

experiments. By using Log4j, we can have logging at runtime, without modifying the

 53

application binary. This allows us to have a much clearer picture of system failures.

Logging via Apache Log4j or Logback is very flexible, and output can be directed to an

OutputStream, a file, a java.io.Writer, a remote Unix Syslog daemon, a remote

Log4j server, or many other output targets ("Apache Log4j 1.2").

 In regards to checkpointing tools, one such technology is called the Berkeley

Lab Checkpoint/Restart (BLCR). This technology, developed for Linux, is a hybrid

kernel/user implementation of checkpoint/restart. The goal is to provide a robust

implementation that provides checkpoints for a wide range of applications, without

requiring any changes to be made to the application code. Checkpointing is needed to

develop robust distributed computing applications, because it enables us to roll back to

a correct logical state. BLCR focuses on checkpointing parallel applications that

communicate through the Message Passing Interface (MPI). BLCR also focuses on

compatibility with the SciDAC Scalable Systems Software ISIC software suite

("Berkeley").

BLCR is divided into four main areas:

 Checkpoint/Restart for Linux (CR)

 MPI Libraries that can be Checkpointed

 Resource Management Interface to Checkpoint/Restart

 Development of Process Management Interfaces

 54

Chapter 4. Experiments on JMX-Based Autonomic Features

 In the autonomic architectural model, MAPE-K, monitoring is the first necessary

component in any implementation of autonomic computing (Lalanda 2014). The

powerful, extensive monitoring capabilities provided by JMX have proven effective in

high-end, complex enterprise software products such as Oracle databases for over a

decade. However, they have not been explored in computer science education due to

overwhelming complexity.

 Based on our understanding of autonomic computing through the survey in

Chapter 2 of this work, we have decided to develop an API that supports learning and

implementing autonomic features for programming projects in software courses. This

could not be possible without the clearly documented and readily available JMX, as

explained in Section 3.1. Meanwhile, our development is needed in assisting computer

science students’ education in autonomic computing. Even though multiple high-quality

tutorials on JMX such as (Oracle 2015) have explained the model of the JMX

framework, they all share the limit of JMX itself – monitoring only.

 Nearly every example of a JMX application delivers the results in the JConsole,

the powerful graphical user interface illustrating monitoring data from MBeans (an

essential building block of the JMX framework). We have constructed a series of MBean

classes and a set of corresponding listener classes. These MBean and listener classes

have the capabilities of monitoring sockets, I/O operation, logging, checkpointing and

memory usage. To shield complexity further, a class ServerSideACManager is

implemented using our MBean and listener classes. On one hand, all the components

 55

including the server-side manager component can be directly utilized in software to

achieve a number of features of autonomic computing. On the other hand, the students

can learn from the working examples how to incorporate autonomic actions with the

MBean listeners, and how to integrate multiple MBean listeners for self-healing actions.

 In the aforementioned API for autonomic computing, there are 12 classes and 5

interfaces. All of them are packed in package autonomic_util. Figure 3.3 below

presents a diagram of the interfaces within the package, along with two standard JMX

classes that are extended (the class NotificationBroadcasterSupport and interface

NotificationListener).

Figure 3.3 - The autonomic_util package class diagram ("Online")

 56

 To demonstrate the applications of package autonomic_util, four distributed

programs are instrumented using the MBeans, and enhanced with listeners and other

classes. These programs are (1) a pair of programs having conversation by sockets,

(2) recoverability by logging, (3) distributed matrix multiplication by pipelines, and (4) a

virtual classroom, demonstrating communication with students via sockets.

4.1 The JMX-based API Supporting Autonomic Features

 In package autonomic_util, four MBeans are implemented, which are specified

by three interfaces - CheckpointMBean, IOMonitorMBean and SocketMonitorMBean.

Figure 4.1 Interface CheckpointMBean

public interface CheckpointMBean {
 public void checkpointIntMatrix(int[][] m, int seqNum);
 public int[][] recoverIntMatrix(int seqNum);
 public void checkpointIntVector(int[] v, int seqNum);
 public int[] recoverIntVector(int seqNum);
}

 57

 The checkpoint MBean is specified above in Figure 4.1. For the purpose of

illustration, only creating and recovering integer matrices and vectors are included.

Since this package is to support distributed computation, checkpoints have to support

recovery across multiple computers. Therefore, the parameter seqNum is necessary to

indicate the sequence numbers of the checkpoint files. The recoverIntMatrix (and

recoverIntVector) takes one parameter, seqNum. It is expected to receive a correct

seqNum value from the controller agent, the ServerSideMonitor object. The actual

MBean class is class Checkpoint which contains the actual action of making a

checkpoint, such as the method shown above in Figure 4.2.

public class Checkpoint extends NotificationBroadcasterSupport
 implements CheckpointMBean {
 …
 public void checkpointIntMatrix(int[][] arr, int seqNum) {
 // Serialize an int[][]
 try {
 chkpFileName = chkpFileNamePrefix+seqNum+".dat";
 ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream(chkpFileName));
 out.writeInt(seqNum); out.writeObject(arr);
 out.flush(); out.close();
 notifyCheckpointDone();
 } catch (IOException ioe) { … }
 }

 public int[][] recoverIntMatrix(int seqNum) {
 int[][] arr = null;
 try { // Deserialize the int[][]
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream(chkpFileNamePrefix+seqNum+".dat"));
 int fileSeqNum = in.readInt();
 arr = (int[][]) in.readObject();
 in.close();
 } catch (ClassNotFoundException cfe) { … }
 return arr;
 }

Fig. 4.2 part of class Checkpoint

 58

 Not only does class Checkpoint implement interface CheckpointMBean, it also

extends class NotificationBroadcasterSupport. In doing so, class Checkpoint

inherits the capabilities of broadcasting notifications to every registered listener.

However, method notifyCheckpointDone has to be overridden as shown in Figure

4.3. Among many types, AttributeChangeNotification is chosen because it can

carry many parameters.

 The MBean objects are embedded in the subject software components that are to

be monitored. In the case of Checkpoint, this MBean is to notify the listener that a

checkpoint is made. The primary purpose of Checkpoint is to preserve progress of

computation and minimize loss caused by adversaries. If everything is normal,

checkpoints are just some overhead. If in a distributed computation a program crashes,

the coordinator of the computation has to determine the correct checkpoint in each of

the participating computer nodes, and rollback to the latest consistent state. This

capability is implemented in the ServerSideACManager object residing at a coordinator

node, which utilizes listener CheckpointListener.

 The last action of method checkpointIntMatrix is to invoke

notifyAttributeChangeDone(). As shown in Figure 4.3, this method just packs

public void notifyCheckpointDone () {
 Notification n = new AttributeChangeNotification(this, seqNum,
 System.currentTimeMillis(), callerClass, myID+"", chkpFileName, null, ip);
 sendNotification(n);

Fig. 4.3 Method notifyCheckpointDone in class Checkpoint

 59

many data items into an object notification, including the sequence number of the

checkpoint file, the application program name (callerClass), the computer node

identifier, the checkpoint file name, and the IP address of the hosting computer. Then

the sendNotification method is invoked. This method is provided as a Java built-in

capability of the abstract class NotificationBroadcasterSupport, from which our

customized MBean Checkpoint extends. Upon invocation of sendNotification, the

MBean agent server provided by the JMX framework delivers the notification to every

registered CheckpointListener object.

 The reception of notifications by an MBean listener is carried out by the

handleNotification method of a listener class. Such a method in

CheckpointListener is shown in Figure 4.4.

 Corresponding to method notifyCheckpointDone in Figure 4.3, method

handleNotification in Figure 4.4 processes the same notification object. Therefore,

the same set of data items are unpacked here. Typically, the notificationListener

is to be used by the controller or the coordinator of a distributed computation. For

simplicity, we assume that TCP/IP is the communication protocol. The order of the

messages from the same source is preserved when they arrive at each destination

node. Therefore, the latest message always arrives last. Under such a condition, we

only need to record the information of the checkpoint in the latest notification from each

source node. In an object CheckpointListener, a HashMap list cpInfo of size K

keeps the information from the latest notification from each source, where K is the

number of resource nodes.

 60

 Every Checkpoint MBean object has a sequence counter, seqNum, which is

initialized to zero. Every participating node in the same distributed computation has the

same checkpoint interval. A checkpoint carries a value of the current seqNum. When a

checkpoint is completed, seqNum increases by one. In case a rollback is needed, the

coordinator can determine the latest consistent checkpoint set based on the seqNum

value carried in the latest notification of each node. Let seqNum[i] represent the

seqNum value in the latest notification from node i.

C = MIN{ seqNum[i]) where i = 0, 1, 2, …, K-1.

 C is the latest consistent checkpoint that every node should rollback to. C will not

change unless a notification of a new checkpoint is received. Therefore, C is computed

at the end of method handleNotification. It is stored in the variable watermark.

public void handleNotification(Notification notification, Object handback) {
 if (notification instanceof AttributeChangeNotification) {
 AttributeChangeNotification acn
 = (AttributeChangeNotification) notification;
 String className = acn.getSource().getClass().getName();
 if (className == "Checkpoint") {
 Integer id = Integer.parseInt(acn.getAttributeName());
 String hostClass = acn.getMessage();
 String fileName = acn.getAttributeType();
 int seqNum = (int)acn.getSequenceNumber();
 String ip = (String)acn.getNewValue();
 CheckpointInfo info
 = new CheckpointInfo(id, hostClass, fileName, ip, seqNum);
 cpInfo.put(id, info);
 // update watermark
 ArrayList<CheckpointInfo> infoList
 = new ArrayList<CheckpointInfo>(cpInfo.values());
 if (cpInfo.size() >= numNodes) {
 watermark = Collections.min(infoList).getSeqNum();
} } } }

Figure 4.4 Method handleNotification in class CheckpointListener

 61

 The interfaces of the other two customized MBeans, IOMonitorMBean and

SocketMonitorMBean, are shown in Figures 4.5 and 4.6.

 The actual MBean SocketMonitor has method notifySocketException as

shown in Figure 4.7. This method is designed for the program that holds the monitored

socket to inform its counterpart program when a socket exception is beyond local

handling. Therefore, this method is typically used in catch-blocks. The code for the

notifySocketException method is shown in Figure 4.7. The corresponding class

SocketListener has method handleNotification, shown in Figure 4.8.

public interface IOMonitorBean {
 public void notifyIOException(int progNum);
}

public interface SocketMonitorMBean {
 public Socket reconnect();
 public Socket getSocket();
 public void setSocket(Socket socket);
 public void notifySocketException();
 public void closeSocket();
}

Figure 4.6 Interface SocketMonitorMBean

Figure 4.5 Interface IOMonitorMBean

 62

 The code for methods notifyIOException in class IOMonitor and

handleNotification in class IOMonitorListener are equally short. None of them

have more than ten lines.

 Since extensive monitoring capabilities of memory are provided by Java's built-in

platform MXBeans, autonomic features such as self-configuration can be implemented in

a customized listener class. A simple example, MemListener, is illustrated in Figure

4.9. When a MemListener object receives a notification from Java runtime’s platform

MXBean, either Java's heap memory became tight or it is out of memory . Given the

public void notifySocketException() {
 String localIp = subjectSoc.getLocalAddress().toString();
 String localPort = subjectSoc.getLocalPort()+"";
 Notification n = new AttributeChangeNotification(this,
 sequenceNumber++, System.currentTimeMillis(), callerClass,
 serverIp, serverPort+"", localIp, localPort);
 sendNotification(n);
}

public void handleNotification(Notification notification, Object handback) {
 if (notification instanceof AttributeChangeNotification) {
 AttributeChangeNotification acn =
 (AttributeChangeNotification) notification;
 String className = acn.getSource().getClass().getName();
 if (className == "SocketMonitor") {
 String nodeIp = (String)acn.getOldValue();
 String script = iplist.getProperty(nodeIp);
 ScriptExecutor.execScript(script);
} } }

Figure 4.8 handleNotification method in class SocketListener

Figure 4.7 Method notifySocketException in class SocketMonitor

 63

prior knowledge regarding the maximum number of megabytes (maxmem) that a Java

VM can have on a node (i.e, a computer), this notification handler will enlarge the Java

heap size configuration setting if the current size is less than maxmem.

 Finally, ServerSideManager is an active class to be executed as an independent

thread, as shown in Figure 4.10. It utilizes MemListener, CheckpointListener, and

IOMonitorListener objects to assist the coordinator of a distributed computation.

 The run method is used to configure the MBean agent server, and register each

listener object at the remote nodes through JMX’s built-in MBean agent server. The

method rollback (shown in Figure 4.11) demonstrates how to manage all the

participating nodes and assist them to rollback to the latest consistent checkpoint,

recover their state to that point, and automatically continue computation.

public void handleNotification(Notification notification, Object handback) {
 String notifType = notification.getType();
 if (notifType.equals(MemoryNotificationInfo.MEMORY_THRESHOLD_EXCEEDED)
 || notifType.equals(
 MemoryNotificationInfo.MEMORY_COLLECTION_THRESHOLD_EXCEEDED)) {
 // retrieve the memory notification information
 CompositeData cd = (CompositeData) notification.getUserData();
 MemoryNotificationInfo info = MemoryNotificationInfo.from(cd);
 long xmCurrent = info.getUsage().getMax() / (1024 * 1024);
 if (xmCurrent > max_xmx) {
 System.out.println("WARNING: Memory usage exceeded threashold at "
 + notification.getSource());
 } else {
 ScriptExecutor.execScript("java -Xmx" + max_xmx + "m "
 + this.getClass().getName(), null);
} } }

Figure 4.9 Method handleNotification in class MemListener

 64

public void run() {
 // Manage the MemoryBean MBeans
 MemListener memListener = new MemListener(max_xmx);
 MemoryMXBean mbean = ManagementFactory.getMemoryMXBean();
 // Manage checkpointing
 chkpListener = new CheckpointListener(numNodes);
 NotificationEmitter emitter = (NotificationEmitter) mbean;
 emitter.addNotificationListener(memListener, null, null);
 // Manage the IOMonitor MBeans
 try {
 // register SocketMoniter MBean
 // Construct the ObjectName for the SocketMonitor MBean
 ObjectName mbeanName = new ObjectName("appmonitor_jmx:type=IOMonitor");
 // Create a dedicated proxy for the MBean instead of going directly
 // through the MBean server connection
 IOMonitorBean mbeanProxy = JMX.newMBeanProxy(mbsc, mbeanName,
 `` IOMonitorBean.class, true);
 // Add notification listener on IOMonitor MBean
 mbsc.addNotificationListener(mbeanName, ioListener, null, null);
 // register memory MBean
 mbeanName = new ObjectName("java.lang.management:type=MemoryMXBean");
 // Add notification listener on MemListener MBean
 mbsc.addNotificationListener(mbeanName, memListener, null, null);
 // register checkpoint MBean
 mbeanName = new ObjectName("appmonitor_jmx:type=Checkpoint");
 // Add notification listener on Checkpoint MBean
 mbsc.addNotificationListener(mbeanName, chkpListener, null, null);
 // keep alive
 nap.wait();
 } catch (Exception e) {
 System.err.println("Exception happened in connecting MBean SocketMonitor.");
 e.printStackTrace();
 }
 }

Figure 4.10 ServerSideManager is an active class to be executed as an independent thread

 65

4.2 Conversation by Sockets

 In this section, a simple example using Java sockets is used to illustrate the use

of SocketMonitor MBeans. In this example, classes FixedMessageSequenceServer

(Server for short) and FixedMessageSequenceClient (Client for short) interact with

int watermark = chkpListener.getWatermark();
 HashMap<Integer, CheckpointInfo> chkpList = chkpListener.getCpInfo();
 for (Map.Entry<Integer, CheckpointInfo> entry : chkpList.entrySet()) {
 int nodeId = entry.getKey();
 String hostClass = entry.getValue().getClassName();
 String fileName = entry.getValue().getFileName();
 String ip = entry.getValue().getIp();
 String cmd = "java "+hostClass+" "+fileName+" "+watermark+".dat";
 ScriptExecutor.execScript(cmd, ip);
 }
}

Figure 4.11 Rollback function in class ServerSideMonitor

Figure 4.12 State Diagram of FixedMessageSequenceProtocol

 66

messages according to a predefined script. The server controls the conversation using

a protocol enforced by an object of FixedMessageSequenceProtocol. The client

simply sends its stored sentences in a fixed order. This example represents

interactions between stateful objects. The conversation protocol enforced by

FixedMessageSequenceProtocol is shown in Figure 4.12. The output sentences are

shown below the arrows, and the conditions are shown in square brackets ([and])

above the arrows.

 The state of the object of FixedMessageSequenceProtocol contains two

variables, reqNum and the current state, which is also the state of program

FixedMessageSequenceServer. The state of program FixedMessageSequenceClient

is just reqNum. To make these two programs recoverable, we have instrumented each

of them in two places. First, after a message is sent, the program’s state is logged in a

local file using an object of StateLogger. Second, in the catch-statements information

about the state is obtained from the last line of the local log file, then the program is

restarted with the state set to the breaking point. In the socket's IOException catch-

block, a limited number (3) of retrials are allowed. Once the limit is exceeded, a

SocketException is thrown and the program restarts. Figure 4.13 shows the

instrumentation part of the FixedMessageSequenceServer program in boldfaced-font.

The StateLoggerListener object in each program’s counterpart will instruct its host

program to react.

 67

 In Figure 4.13, the four statements for “logging state” seem cumbersome

because the chosen data structure to wrap a program’s state is

java.util.jar.Attributes. Before logging, the user’s program has to put the name

and value of every state variable into an Attributes object. Thus, the number of

statements will be V+2, where V is the number of state variables in that program. The

 try {
 while (inputLine != null) {
 try {
 inputLine = in.readLine();
 System.out.println("Client said: " + inputLine); "
 outputLine = fmsp.processInput(inputLine);
 out.println(outputLine);
 System.out.println("I said: " + outputLine);
 if (outputLine.equals("Bye.")) {
 in.close(); out.close(); socket.close();
 break;
 }
 Thread.sleep(DELAYSECS);
 // logging state
 Attributes states = new Attributes(2);
 states.put(new Attributes.Name("requestNum"),
 fmsp.getRequestNum()+"");
 states.put(new Attributes.Name("state"),
 fmsp.getState()+"");
 logger.logState(states);
 } catch (InterruptedException ie) {
 ie.printStackTrace();
 } catch (IOException ioe) {
 System.out.println("Server Warning: … " + ++warnNum);
 if (warnNum >= WARNINGLIMIT) {
 System.out.println("I/O exceptions exceed limit.");
 ioe.printStackTrace();
 throw new SocketException();
 } } }
 } catch (SocketException so) {
 logger.close();
 StateInfo states = logger.getLatestState();
 String cmd = "java " + this.getClass().getName() + …
 ScriptExecutor.execScript("ClientBatch.bat");
 }

 Figure 4.13 Instrumentation in FixedMessageSequenceServer

 68

Attributes class is chosen for its flexibility. In general, the state of a program is made

of many variables.

4.3 Distributed Matrix Multiplication by Pipelines

 Various distributed matrix multiplication algorithms have long been the classic

examples of distributed programming. It's not only every engineering problem using a

linear model that needs matrix multiplication, but modern Internet search also relies on

matrix multiplication for computing metrics such as the PageRank algorithm. In this

section, a unique pipeline algorithm for matrix multiplication (Andrews) is chosen as an

example to show the use of the IOMonitor MBeans, Checkpoint MBeans, and the

ServerSideACManager object from our API.

4.3.1 Matrix Multiplication Pipelines

 For simplicity, two n × n matrices a and b are considered. We want to compute

c = a × b. In this algorithm, initially row i in a is shifted toward the left i columns as

shown in Figure 4.14; column j in b is shifted upwards j rows as shown in Figure 4.14,

where i and j take the range of 1 to n.

 69

 a a’

Figure 4.14 Initializing matrix a

 b b’

Figure 4.15 Initializing matrix b

 The product of the numbers in the corresponding cells of a’ and b’ is one term of

every cell of matrix c, as shown in Figure 4.16.

 70

a12 × b21 a13 × b32 a14 × b43 a11 × b14

a23 × b31 a24 × b42 a21 × b13 a22 × b24

a34 × b41 a31 × b12 a32 × b23 a33 × b34

a41 × b11 a42 × b22 a43 × b33 a44 × b44

Figure 4.16 Computing a term in matrix c

 Then, the entire matrix a’ is shifted leftward one column and becomes a’’; the

entire matrix b’ is shifted upward one row and becomes b’’. By multiplying the numbers

in the corresponding cells of a’’ and b’’ we obtain another term for every cell in matrix c.

 a’’ b’’

 71

a13 × b31 a14 × b42 a11 × b13 a12 × b24

a24 × b41 a21 × b12 a22 × b23 a23 × b34

a31 × b11 a32 × b22 a33 × b33 a34 × b44

a42 × b21 a43 × b32 a44 × b43 a41 × b14

 c

Figure 4.17 The second round of matrix multiplication

 Such multiply-then-shift operations continue for 4 rounds, whereby matrix c will

accumulate all four terms of products. That is,

cij = ai1×b1j + ai2×b2j + ai3×b3j + ai4×b4j

 To the extreme, every row forms a circular pipeline; so does every column. By

using 2n pipelines the algorithm can be literally implemented in super-computing

hardware. Practically, the matrices can be divided into grids of any size, for example p

rows and q columns. p or q can be as small as 1. Then p × q nodes are needed, which

form p + q pipelines. Compared to the algorithm for matrix multiplication that is used

by MapReduce, the pipeline algorithm saves the time of hashing and distributing

elements that occurs with the MapReduce framework (Leskovec).

4.3.2 Instrumentation in the Pipeline Program for Autonomic Features

 72

 In the implementation of the matrix multiplication pipeline algorithm, there are two

classes - Coordinator and Worker. The duties of Coordinator include

 configuring the grid by informing every Worker node about the IP addresses and

port numbers of its left and upper neighbor nodes

 initializing matrices a and b according to the shifting rules of the pipeline

algorithm

 distributing blocks to every node,

 collecting the blocks of the resulting matrix

 An object of ServerSideManager is instantiated in Coordinator. Its capabilities

were described in Section 4.1. In this matrix multiplication pipeline program,

ServerSideManager listens to every Checkpoint MBean and updates the information

of the latest checkpoint in each node. ServerSideManager also listens to the

IOMonitor MBean in every node. The reaction of an I/O Exception from a node is to

restart the Worker program at every node from the latest consistent checkpoint. In

addition, Coordinator also deploys one IOMonitor MBean locally. This is to monitor

the final communication phase – collecting the final result from every node. In the

catch-statement of the final receiving loop, method notifyIOException of the only

IOMonitor MBean in Coordinator looks as below.

 iom.notifyIOException(Integer.MAX_VALUE);

 73

 The actual parameter should have been a checkpoint sequence number.

However, Coordinator does not actually make any checkpoint. Therefore,

Integer.MAX_VALUE is fed into this method call, which will avoid any interference with

the computation of the watermark value among the Worker nodes.

 The actual computation carried out by each Worker node is to calculate the

multiplication of two numbers m times. Afterward, matrix a is shifted m times (leftward)

and matrix b is shifted m times (upward), where m × g = n, and where g is the grid

dimension, and m is the number of rows and columns in each grid. For simplicity, we

assume every grid is of the same size. The subject Worker class has 332 rows. The

desired autonomic feature is to recover automatically from the latest checkpoint. To

fulfill this, two MBeans from package autonomic_util are instantiated. They are

objects of Checkpoint and IOMonitor.

 cp = new Checkpoint(nodeId, checkptFilePrefix, seqNum,

 this.getClass().getName(), null);

 iom = new IOMonitor(nodeId, null, this.getClass().getName());

 The Checkpoint MBean needs information about the Worker object’s node id,

the prefix of checkpoint filenames, the checkpoint sequence number, and the program

name (the class name of the hosting object). We choose to make a checkpoint for

every m multiply-then-shift operations. Therefore, each node will make g checkpoints in

 74

a normal computation. Four lines of code are added (as shown below) at the end of the

iterations for completing m rows of a and m rows of b.

 // making checkpoint

 cp.checkpointIntMatrix(a, seqNum);

 cp.checkpointIntMatrix(b, seqNum);

 cp.checkpointIntMatrix(c, seqNum);

 seqNum++;

 In the Worker class, the sockets are hidden in helper classes. This is because

the actual required objects for shifting rows and columns across nodes are the two

DataOutputStream objects, which send the top row to the upper neighbor and the

leftmost column to the left neighbor. Furthermore, two DataInputStream objects are

needed to receive the values into the bottom row from the lower neighbor node, and to

receive the values into the rightmost column from the right neighbor node. In this case,

we have realized in addition to the SocketMBean for each socket, an MBean bounding

to all the input and output operations is needed, which is the IOMonitor MBean. In the

catch statement in each of incoming communications, method notifyIOException of

the IOMonitor MBean iom is invoked. For example, below are the operations for

receiving the bottom row.

 // receive the bottom row
 for (int i = 0; i < width; i++) {
 try {
 tempIn[i] = disBottom.readInt();
 } catch (IOException ioe) {
 System.out.println("error in receiving from bottom, col=" + i);
 ioe.printStackTrace();
 iom.notifyIOException(iterations); // call for rollback
 } }

 75

Chapter 5. Discussion and Conclusion

 Automation has always been the prime motivation behind computers themselves.

From mapping to calculating taxes to running enterprise websites, automation is a huge

source of profit for companies. Yet, only recently have we witnessed that we could

benefit from automating the management of computers. IBM's manifesto points out that

there are still great challenges ahead (“IBM” 1):

"To really benefit IT customers, autonomic computing will need to deliver measurable

advantage and opportunity by improving interaction with IT systems and the quality of

the information they provide, and enabling e-sourcing to be adopted as the future of IT

services delivery."

 In recent years, the emphasis of autonomic computing has been focused on the

data center, and has even touched the physical infrastructure. As Kephart states : “In

terms of emphasis, it is disappointing but understandable that the preponderance of

work in the field continues to focus on self-optimization, with self-healing and self-

configuration receiving far less attention” (Kephart 2011). As technology continues to

advance, we will witness ever-increasing demands of autonomic computing. It is only

natural that the ongoing evolution of computing will include great advancements in

autonomic computing.

In this thesis, we have provided a survey of autonomic computing - both

historically and as it currently exists. The original IBM Autonomic Computing toolkit, as

well a European follow-up to it, were touched upon. We also discussed the Java

 76

Management Extensions technology, and how it provides monitoring that can be

leveraged to build applications displaying autonomic computing features.

Furthermore, by using JMX, we have implemented an API (package

autonomic_utils) that supports learning and implementing autonomic features for

programming projects. These AC features include socket management, I/O exception

handling, logging, checkpointing, and recovery of distributed computation. This API has

been applied to the implementation of AC features in two distributed Java programs,

conversation by sockets and distributed matrix-multiplication by pipelines.

In the experiments, we have not only realized the powerful capabilities of Java

that are unknown to many Java educators, we also illustrated the feasibility of learning

and practicing autonomic computing as early as in senior computer science courses.

 77

References

ACE Autonomic Toolkit. http://acetoolkit.sourceforge.net/. 4/20/2016

Alaya, Mahdi Ben, Salma Matoussi, Thierry Monteil, and Khalil Drira. "Autonomic

Computing System for Self-management of Machine-to-machine Networks."

Proceedings of the 2012 International Workshop on Self-Aware Internet of Things - Self-

IoT '12 (2012): n. pag. Web.

"An architectural blueprint for autonomic computing." IBM. 2005. 13 Jun. 2015

<http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf>.

Andrews, Gregory R. Foundations of Multithreaded, Parallel, and Distributed

Programming. Reading, MA: Addison-Wesley, 2000. Print.

"Apache Log4j 1.2 -." Apache Log4j 1.2 -. N.p., n.d. Web. 27 Mar. 2016.

<https://logging.apache.org/log4j/1.2/>.

Avouac, Pierre-Alain, Philippe Lalanda, and Laurence Nigay. "Service-Oriented

Autonomic Multimodal Interaction in a Pervasive Environment." Proceedings of the 13th

International Conference on Multimodal Interfaces - ICMI '11 (2011): n. pag. Web.

Benko, Borbala. CASCADAS Deliverable D7.2: Electronic learning material. 2008.

"Berkeley Lab Checkpoint/Restart (BLCR) for LINUX." Berkeley Lab Checkpoint/Restart

(BLCR). N.p., n.d. Web. 27 Mar. 2016. <http://crd.lbl.gov/departments/computer-

science/CLaSS/research/BLCR/>.

"Danschultzer/monit-graph." GitHub. N.p., n.d. Web. 07 Apr. 2016.

<https://github.com/danschultzer/monit-graph>.

"Deploy an OpenStack Private Cloud to a Hadoop MapReduce Environment." Deploy

an OpenStack Private Cloud to a Hadoop MapReduce Environment. IBM, n.d. Web. 07

Apr. 2016. <http://www.ibm.com/developerworks/cloud/library/cl-openstack-

deployhadoop/>.

Duc, Bao Le, Pierre Châtel, Nicolas Rivierre, Jacques Malenfant, Philippe Collet, and

Isis Truck. "Non-functional Data Collection for Adaptive Business Processes and

Decision Making." Proceedings of the 4th International Workshop on Middleware for

Service Oriented Computing - MWSOC '09 (2009): n. pag. Web.

 78

"Dynamic Java Log Levels with JMX/LoggingMXBean, JConsole, VisualVM, and
Groovy."JavaWorld. JavaWorld, n.d. Web. 14 Mar. 2016.
<http://www.javaworld.com/article/2073316/dynamic-java-log-levels-with-jmx-
loggingmxbean--jconsole--visualvm--and-groovy.html>.

Ganek, Alan. "Overview of Autonomic Computing: Origins, Evolution, Direction."

Autonomic Computing: Concepts, Infrastructure, and Applications . Ed. Manish

Parashar, Salim Hariri. Boca Raton: CRC Press, 2007. 3-18.

Ghosh, Sukumar. Distributed Systems: An Algorithmic Approach. Boca Raton:

Chapman & Hall/CRC, 2007. Print.

 Gusworld Article Archive. Autonomic Transmission.

<http://www.gusworld.com.au/writing/auton.htm>

Huebscher, Markus C., and Julie A. Mccann. "A Survey of Autonomic Computing—

Degrees, Models, and Applications." CSUR ACM Comput. Surv. ACM Computing

Surveys 40.3 (2008): 1-28. Web.

IBM Research | Autonomic Computing. <http://www.research.ibm.com/autonomic/> .

4/20/2016.

IBM Research | Autonomic Computing | Glossary.

<http://www.research.ibm.com/autonomic/glossary.html> . 4/20/2016.

IBM Research Autonomic Computing Overview Frequently Asked Questions.

<http://www.research.ibm.com/autonomic/overview/faqs.html>. 4/20/2016

"Instrumenting Your Resources for JMX Technology." Instrumenting Your Resources for

JMX Technology. Oracle, 02 Aug. 2008. Web. 11 Apr. 2016.

<http://docs.oracle.com/javase/8/docs/technotes/guides/jmx/overview/instrumentation.ht

ml>.

International Business Machines. Autonomic Computing: IBM's Perspective on the State

of Information Technology. Armonk: International Business Machines, 2001. Print.

Jacob, Bart, Richard Lanyon-Hogg, Devaprasad Nadgir, Amr Yassin. A Practical Guide

to the IBM Autonomic Computing Toolkit. N.p: IBM, 2004. Print.

Jasnowski, Mike. JMX Programming. New York, NY: Wiley Pub., 2002. Print.

Kephart, J.O.; Chess, D.M. (2003), "The vision of autonomic computing", Computer 36:

41-52, doi:10.1109/MC.2003.1160055

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FMC.2003.1160055

 79

Kephart, Jeffrey O. "Autonomic Computing: The First Decade." Proceedings of the 8th

ACM International Conference on Autonomic Computing - ICAC '11 (2011): n. pag.

Web.

Kephart, Jeffrey O. "Autonomic Computing." Proceedings of the 8th ACM International

Conference on Autonomic Computing - ICAC '11 (2011): n. pag. Web.

Kephart, J.O. "Research Challenges of Autonomic Computing: An Industry

Perspective." International Conference on Autonomic Computing, 2004. Proceedings.

(2004): n. pag. Web.

Kephart, Jeffrey O. "Engineering Decentralized Autonomic Computing Systems."

Proceeding of the Second International Workshop on Self-Organizing Architectures -

SOAR '10 (2010): n. pag. Web.

Kreger, Heather, Ward Harold, and Leigh Williamson. Java and JMX: Building

Manageable Systems. Boston: Addison-Wesley, 2003. Print.

Lalanda, Philippe, Julie McCann, and Ada Diaconescu. Autonomic Computing:

Principles, Design and Implementation. London: Springer, 2014. Print.

Leskovec, Jurij, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets /

Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Standford University. N.p.:

n.p., n.d. Print.

"Lesson: Overview of the JMX Technology." (The Java Tutorials Java Management

Extensions (JMX)). Oracle, n.d. Web. 14 Mar. 2016.

<https://docs.oracle.com/javase/tutorial/jmx/overview/index.html>.

Maggio, Martina, Henry Hoffmann, Marco D. Santambrogio, Anant Agarwal, and Alberto

Leva. "Decision Making in Autonomic Computing Systems." Proceedings of the 8th

ACM International Conference on Autonomic Computing - ICAC '11 (2011): n. pag.

Web.

Mannava, Vishnuvardhan, and T. Ramesh. "Multimodal Pattern-Oriented Software

Architecture for Self-Optimization and Self-Configuration in Autonomic Computing

System Using Multi Objective Evolutionary Algorithms." Proceedings of the International

Conference on Advances in Computing, Communications and Informatics - ICACCI '12

(2012): n. pag. Web.

Mannava, Vishnuvardhan, and T. Ramesh. "A Service Configuration and Composition

Design Pattern for Autonomic Computing Systems Using Service Oriented

Architecture." Proceedings of the Second International Conference on Computational

Science, Engineering and Information Technology - CCSEIT '12 (2012): n. pag. Web.

 80

"MemoryMXBean (Java Platform SE 7)." MemoryMXBean (Java Platform SE 7).
Oracle, n.d. Web. 14 Mar. 2016.
<https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryMXBean.htm
l>.

"MemoryPoolMXBean (Java Platform SE 7)." MemoryPoolMXBean (Java Platform SE
7). Oracle, n.d. Web. 14 Mar. 2016.
<https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryPoolMXBean
.html>.

"morphogenesis." Dictionary.com Unabridged. Random House, Inc. 25 May. 2015.

<Dictionary.com http://dictionary.reference.com/browse/morphogenesis>.

"Oracle Database 11g vs IBM DB2 UDB V9.7 Manageability Overview." Oracle.com.

Dec. 2009. http://www.oracle.com/technetwork/database/manageability/oracle-11g-vs-

db2-9-7-manageability-131878.pdf

"Online Diagram Creation Tool - Sign up for Free Trial | Gliffy.com." Online Diagram

Creation Tool - Sign up for Free Trial | Gliffy.com. N.p., n.d. Web. 07 Apr. 2016.

<https://www.gliffy.com/home/>.

Parashar, Manish. "Autonomic Computing: A System-Wide Perspective." Autonomic

Computing: Concepts, Infrastructure, and Applications. Ed. Manish Parashar, Salim

Hariri. Boca Raton: CRC Press, 2007. 49-70. Print.

Sharif, Fahd. "Fahd.blog." : Change Logging Levels Using JMX [Howto]. Blogspot, n.d.

Web. 15 Mar. 2016. <http://fahdshariff.blogspot.com/2008/06/change-logging-levels-

using-jmx-howto.html>.

Saraswatipura, Mohankumar. "Understanding the Advantages of DB2 9 Autonomic

Computing Features." DeveloperWorks. IBM, n.d. Web. 06 Apr. 2016.

<http://www.ibm.com/developerworks/data/library/techarticle/dm-0709saraswatipura/>.

Tretola, Giancarlo, and Eugenio Zimeo. "Autonomic Internet-Scale Workflows."

Proceedings of the 3rd International Workshop on Monitoring, Adaptation and Beyond -

MONA '10 (2010): n. pag. Web.

Zhang, Li, and Danilo Ardagna. "SLA Based Profit Optimization in Autonomic

Computing Systems." Proceedings of the 2nd International Conference on Service

Oriented Computing - ICSOC '04 (2004): n. pag. Web.

Unknown. "A Metamodel for the Runtime Architecture of an Interactive
System." SIGCHI Bull. ACM SIGCHI Bulletin 24.1 (1992): 32-37. Web.

 81

"Using JConsole to Monitor Applications." Using JConsole to Monitor Applications.
Oracle, n.d. Web. 14 Mar. 2016.
<http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html>.

van Renesse, Robbert, and Birman, Kenneth P. "Autonomic Computing: A System-

Wide Perspective." Autonomic Computing: Concepts, Infrastructure, and Applications.

Ed. Manish Parashar, Salim Hariri. Boca Raton: CRC Press, 2007. 35-47. Print.

Vasilakos, Athanasios V., Parashar, Manish, Karnouskos, Stamatis, Pedrycz, Witold.

Autonomic Communication. Springer Science. New York: 2009.

 82

Vita

The author was born in New Orleans, Louisiana in 1985. He graduated from Grace King High

School in 2003 (Metairie, Louisiana), and received his Bachelor of Science in Computer Science

from The University of New Orleans in 2010. He then joined the Computer Science graduate

program at UNO in 2010, working under Dr. Shengru Tu in the area of autonomic computing.

The author is currently employed by IBM.

	Survey of Autonomic Computing and Experiments on JMX-based Autonomic Features
	Recommended Citation

	tmp.1461159124.pdf.QqrGH

