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ABSTRACT 

Many fish face low oxygen concentrations (hypoxia) in their natural environments, and 

they respond to hypoxia through a variety of behavioral, physiological, and cellular mechanisms. 

Some of these responses involve changes in gene expression. In mammals, the hypoxia inducible 

factor (HIF) family of transcription factors are the “master regulators” of gene expression during 

hypoxia, but the study of HIF in fish has been hampered by the lack of reagents to detect this 

protein in non-mammalian vertebrates. The goals of this thesis are to affinity purify antibodies 

against HIF from the killifish Fundulus heteroclitus and use them to recover and quantify HIF 

from killifish cells and tissues. Purified, validated antibodies represent a critical reagent for 

future studies of the role of HIF in the molecular response of this and other fish to fluctuations in 

oxygen in their natural environments. 
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1. INTRODUCTION 

1.1 Oxygen 

Energy transformations are a defining characteristic of life. In animals, the energy 

required to support activities, such as growth, locomotion, and reproduction, is obtained by the 

degradation of complex foodstuff molecules, generally through the process of aerobic 

metabolism. In aerobic metabolism, the production of energy depends upon oxygen as the final 

acceptor of electrons in mitochondrial electron transport. When cellular oxygen levels are low 

(hypoxia) or absent (anoxia), other pathways of energy production may be invoked, but these 

yield less energy per molecule of starting material and are limited in duration by the availability 

of fermentable substrates and the accumulation of waste products (Hochachka and Somero, 

2002). For those cells, organs, and animals that rely upon aerobic metabolism for the bulk of 

their energy, therefore, a deficiency of oxygen is associated with decreased energy production, 

cellular dysfunction, organ impairment, and, if not reversed, death.  

Because of oxygen’s central role in aerobic metabolism, metazoans have evolved a suite 

of responses to ensure adequate oxygen delivery to tissues, or when these do not meet tissue 

energy requirements, to tolerate periods of tissue hypoxia (Hochachka and Somero, 2002; 

Semenza, 2014). These responses may be behavioral (increased ventilation rate), physiological 

(redistribution of blood flow to critical tissues), cellular (new blood vessel growth), or 

biochemical (increased glucose transport into and utilization by cells). Many of these responses 

depend on changes in gene expression, for example increased expression of erythropoietin (EPO) 

to signal red blood cell maturation, vascular endothelial growth factor (VEGF) to stimulate new 

blood vessel growth, and glucose transporters and glycolytic enzymes to support increased 

glucose metabolism. Thus, elucidating the control of gene expression in response to low oxygen 



2 
 

is key to understanding the ability of animals to survive periods of oxygen deprivation. 

1.2 Hypoxia-Inducible Factors 

One response in mammals to low oxygen is a dramatic increase in the synthesis of 

erythropoietin (EPO). This glycoprotein hormone stimulates the maturation of red blood cells, 

and its activity is important in ensuring adequate red blood cell number during blood loss or 

tissue hypoxia. In studies of the physiological regulator of EPO synthesis, Semenza and Wang 

(1992) described a protein factor that was induced by hypoxia that bound to a regulatory region 

of the EPO gene and increased its expression. This protein was named hypoxia inducible factor-1 

(HIF-1). Subsequently, HIF-1 was found to be expressed in cells that do not function in 

erythropoiesis and, in those cells it regulates the expression of other genes involved in the 

hypoxia response of mammalian cells (Semenza, 2009). Moreover, HIF-1 is one member of a 

family of transcription factors that include other members (HIF-2 and HIF-3) (Kaelin, 2005). As 

a group, the hypoxia-inducible factors (HIFs) are now referred to the “master regulators” of 

oxygen homeostasis in mammals (Semenza, 2010).  

HIF-1 is a heterodimer whose subunits are basic helix-loop-helix (bHLH) Per-ARNT-

Sim (PAS)-family proteins (Semenza, 1998). The  subunit is oxygen regulated and the  

subunit is constitutively expressed (Semenza, 1999). HIF-1 was previously described as the aryl 

hydrocarbon receptor nuclear translocator (ARNT) and plays a central role in the cellular 

response to hydrocarbon pollutants (McIntosh et al., 2010). The protein structure of both 

subunits is characterized by bHLH and PAS domains in the N-terminal half that are involved in 

dimerization of the protein subunits and binding to target DNA (Figure 1) (Gradin et al., 1996; 

Minet et al., 1999). Oxygen sensitivity of the  subunit is localized within the oxygen-dependent 
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degradation (ODD) domain and the expression of target genes is regulated by the transactivation 

domain (TAD) near the C-terminus (Semenza, 2000). 

Under normoxia, or normal oxygen tension, prolyl hydroxylase domain enzymes (PHD) 

hydroxylate proline residues in the ODD domain. Hydroxylation promotes the interaction 

between the  subunit and the von Hippel-Lindau ubiquitin ligase complex that marks the  

subunit for degradation by the 26S proteasome (Figure 2) (Huang et al., 1998; Maxwell et al., 

1999; Kaelin, 2005). In addition, another hydroxylase, factor-inhibiting HIF (FIH), modifies an 

asparagine residue in the C-TAD (Mahon, 2001). This modification prevents HIF from recruiting 

the coactivator proteins p300 and CREB binding protein (CBP), thereby limiting gene expression 

by HIF, which might escape degradation (Kaelin, 2005).  

When oxygen levels drop, proline and asparagine hydroxylation are inhibited due to the 

lack of oxygen and the HIF- subunit is stabilized (Semenza, 2000). HIF- accumulates (Jewell 

et al., 2001), dimerizes with HIF- (Kallio et al., 1998), and recruits p300/ CBP. In the nucleus, 

the complex binds to regulatory DNA regions, hypoxia response elements (HREs), of specific 

genes (Wenger and Gassmann, 1997) and activates their transcription. The result is changes in 

the expression of genes that enhance oxygen delivery to tissues or increase the cellular tolerance 

of low oxygen. 

1.3 The Aquatic Environment 

In mammals, low oxygen levels at the tissues occur during development and normal 

physiology (e.g., strenuous exercise), or in a variety of pathological conditions (e.g., stroke, 

ischemia, certain cancers). Except for high altitudes and subterranean burrows, however, 

mammals and other air-breathing vertebrates respire air with a relatively high and constant 

oxygen content. This is not true of water-breathing animals, including fish. Oxygen is only about 
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1/30th as soluble in water as it is in air. In addition, oxygen solubility in water decreases as 

temperature or salinity increases (Wetzel, 2001). Also, the diffusion rate of oxygen in water is 

1/10,000th its diffusion rate in air. The physical properties of oxygen in water result in wide 

fluctuations in dissolved oxygen concentration when the processes that deplete oxygen and the 

process that produce or replenish it are not balanced. 

Oxygen is absorbed by water by diffusion from the atmosphere or produced by 

photosynthesis. Photosynthetic oxygen production depends upon photoperiod, water clarity, and 

the abundance of plants and phytoplankton. On the other hand, oxygen is consumed by chemical 

and biological processes, notably respiration of the organisms in the water column and on the 

bottom of the channel or basin. (Wetzel, 2001). In many aquatic habitats, therefore, the 

concentration of dissolved oxygen peaks during the day and declines at night, in some cases 

taking overnight dissolved oxygen values close to zero (Wetzel, 2001). In addition to diurnal 

cycles, dissolved oxygen can vary with tides and season, and in some cases hypoxia persists 

throughout the year (Wetzel, 2001; Rabalais et al., 2010).  

Aquatic hypoxia has existed throughout geologic time, and fish and other aquatic 

organisms have evolved a range of adaptations to variable oxygen concentration. This make fish 

ideal systems for the study of hypoxia responses. In addition, aquatic hypoxia has intensified in 

estuarine and coastal areas due to human activities in the last 25 years (Diaz and Rosenberg, 

1995; Rabalais et al., 2010), in some cases exceeding the capacity of fish to tolerate low oxygen. 

In these cases, mass mortality or “fish kills” occur. More subtle, non-lethal responses have also 

been documented, for example poor growth or reproduction (Pollock et al., 2007). Some species 

are more tolerant of low oxygen, presumably through compensatory mechanisms, which may 

include changes in gene expression, possibly regulated by hypoxia inducible factors.  
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1.4 Fish and HIF 

Although most of what is known about HIF has been learned from studies of mammals in 

the context of disease, the literature demonstrates the existence of HIF in fish and suggests that it 

plays a role in the response of fish to ecological hypoxia (Nikinmaa and Rees, 2005; Richards, 

2009). Like mammals, fish have three forms of HIF, HIF-1, HIF-2, and HIF-3, which are likely 

orthologs of the mammalian genes (Rytkonen et al., 2011). The regulation of HIF levels in fish 

has received some attention, and there are some similarities, as well as some important 

differences when compared to mammals. Among the differences is that in several species, the 

mRNA levels of HIF-1 appear to be influenced by oxygen levels rather than being oxygen-

independent. For example, in sea bass, HIF-1α mRNA was highly expressed in the liver after 4 h 

hypoxia exposure (DO 1.9 mg/l) (Terova et al., 2008). In the same study, after a chronic hypoxia 

exposure for 15 days, mRNA copy number was also higher in liver but lower in the muscle, 

kidney, brain, and heart compared with normoxic controls (Terova et al., 2008). In Atlantic 

croaker, ovarian HIF-1α mRNA levels increases within 12 h hypoxia exposure (DO 1.7 mg/l) 

(Rahman and Thomas, 2007). In a field study, Atlantic croaker collected from hypoxic sites in 

the Gulf of Mexico showed elevated HIF-1α mRNA expression in ovarian tissue compared to 

fish collected from normoxic sites (Thomas and Rahman, 2009). In other species, however, 

mRNA levels are not altered by hypoxia. In rainbow trout gonad cells (RTG-2) and Chinook 

salmon embryonic cells (CHSE-214), HIF-1 mRNA expression did not change during a 2 and 4 

h hypoxia exposure (DO ~ 0.4 mg/l) (Soitamo et al., 2001). In Wuchang bream, levels of HIF-1 

mRNA varied among tissues under normoxic conditions, but there were no significant changes in 

HIF-1 mRNA in liver and kidney tissue taken from hypoxic fish (DO 1mg/l, 4 h) (Shen et al., 

2010). 
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Less is known about HIF protein levels in fish during the transition from normoxia to 

hypoxia. The original report of HIF-1 in fish cells showed an increase in protein abundance at 

modest levels of hypoxia and normoxic degradation was blocked by an inhibitor of the 

proteasome (Soitamo et al., 2001). In another study, accumulation of HIF-1 protein was 

detected after a 6 h hypoxia exposure using nuclear protein extracts from crucian carp gills 

(Sollid et al., 2006). Law et al. (2006) reported that HIF- 1 protein was detected in liver of 

normoxic grass carp and expression increased after 4 and 24 h hypoxia exposures. In general, the 

lack of reagents to reliably detect HIF- protein in fish has resulted in a fragmentary picture of 

HIF protein abundance, regulation, and function in fish. 

1.5 Antibodies 

Polyclonal antibodies are secreted by different B-cell lineages with the body. They are a 

collection of immunoglobulin molecules that recognize multiple epitopes on a specific antigen. 

The antibodies are produced after immunization of goat, mouse, rabbit, or chicken. Often 

antibodies are tagged with reporter molecules such as horseradish peroxidase (HRP) or alkaline 

phosphatase (AP) so they can be detected by light or color changes. 

 Immunized hens transfer immunoglobulins (Ig) from the serum to the egg yolk, leading 

to the designation IgY (Leslie and Clem, 1969).  They differ from mammalian antibodies by 

molecular mass, structure, and where they occur (in yolk rather than plasma). As a non-

mammalian species, chickens offer many advantages over conventional antibody production 

using mammalian species (Camenisch, 1999). Chicken housing is inexpensive, egg collection is 

noninvasive, and low quantities of antigen are required to attain high IgY titers in egg yolk 

(Gassmann et al., 1990; Hatta et al., 1993; Song et al., 1985). The amount of IgY harvested from 

a week’s worth of eggs is significantly greater than antibodies acquired from rabbit blood 
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collected during an equivalent period (Gassmann et al., 1990). Camenisch et al. (1999) generated 

a polyclonal HIF-1 antibody in chicken against the human HIF-1. They validated that affinity 

purified HIF-1 antibody was successful in detecting HIF-1 protein from various mammals in 

many applications.  

1.6 Fundulus as a Model System  

Fundulus heteroclitus (Atlantic killifish or the mummichog) is a small teleost found 

along the Atlantic coast of North America. The sister species Fundulus grandis (Gulf killifish) is 

native to the Gulf of Mexico and the Atlantic coast of Florida to Cuba. These fishes inhabit 

brackish and coastal waters. F. heteroclitus and F. grandis are non-migratory fish, thriving best 

at warm temperatures (Fangue et al., 2009; Brown et al., 2011). Their ability to tolerate a variety 

of environmental conditions, including wide fluctuation in temperature, salinity, and oxygen 

concentration, make these species popular scientific models for studying physiological and 

biochemical responses to varying environmental conditions (Burnett et al., 2007). In particular, 

several studies indicate that both F. heteroclitus and F. grandis tolerate lower levels of dissolved 

oxygen than many other salt marsh fish species (Cochran and Burnett, 1996; Love and Rees, 

2002; Stierhoff et al., 2003; Wannamaker and Rice, 2000). Other characteristics that make F. 

heteroclitus a good model system include a sequenced genome and the availability of cultured 

cells (Gignac et al., 2014). In addition, F. heteroclitus and F. grandis are abundant in nature and 

are easy to maintain in the laboratory. 

1.7 Research Goals 

The first goal of this thesis is to purify antibodies against HIF from the killifish Fundulus 

heteroclitus. This goal will be addressed by cloning, expressing, and purifying a recombinant 

protein corresponding to a fragment of the F. heteroclitus HIF-1, and using it to affinity purify 
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antibodies specific for this protein. The second goal of this thesis is to use these antibodies to 

quantify HIF-1 in killifish cells and tissues. To this end, the technique of immunoprecipitation 

will be optimized and applied to killifish cells and tissues subjected to normoxia, hypoxia, or 

cobalt chloride (CoCl2), a hypoxic mimetic. Purified, validated antibodies represent a critical 

reagent and immunoprecipitation is a key technical approach that will enable future studies of the 

role of HIF in the molecular response of this and other fish to fluctuations in oxygen in their 

natural environments. 
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2. MATERIALS AND METHODS 

2.1 Anti-HIF-1 IgY 

Chicken polyclonal antibodies were generated by Aves Labs against a recombinant 

fragment of HIF-1 from Fundulus heteroclitus (Townley et al., in prep). The fragment 

corresponds to amino acids 406-510 

(ELQPQDCLYDLLKEQPDALTLLAPAAGDMIISLDFSRPETEPQLLKDVPLYSDVMLPSA

DDKLALPLSPLSPTEPLEASSCEEAKPDGFAPAVSTSPPRKPSDVD) which has a calculated 

molecular mass of 11.3 kD. All experiments reported in this thesis used IgYs purified by the 

vendor from eggs collected from hen #6210.  

2.2 Cloning, Expression, and Purification of Polyhistidine-tagged HIF-1 Peptide 

To generate polyhistidine-tagged HIF-1 peptide (104 amino acids), the pETDuet vector 

system (Novagen) was used. Approximately 2 g of HIF-1/pcDNA generated by Townley et 

al. (in prep) and 0.2 g of pETDuet were digested at 37C in 20 l reactions containing 2l 10X 

NEBuffer 3 (1X Buffer Components: 100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM 

dithiothreitol (DTT), 0.2 l 100X BSA (10 mg/ml), 1 l Sal-1 (20,000 units/ml; NEBiolabs), and 

1 l of Pst-1 (20,000 units/ml; NEBiolabs). Sal-1 was added first and the reactions incubated for 

one hour. Then Pst-1 was added and reactions were incubated for an additional hour. Products 

were separated by gel electrophoresis in 0.8% agarose (Seakem LE Agarose; Cambrex) in 1X 

TAE Buffer (0.04 M Tris-acetate, 0.001 M EDTA) and visualized by post staining in 1g/ml 

ethidium bromide (Fisher Biotech) in 1X TAE buffer. The migration of digests was compared 

against a 2-log DNA ladder (NEBiolabs). The fragment corresponding to the partial HIF-1 

cDNA (312 bp) and digested pETDuet vector (5400 bp) were excised and purified (Geneclean; 

MP Biomedicals).  
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 The HIF-1 partial cDNA and pETDuet DNA were ligated at a molar ratio containing 

approximately 40 ng HIF-1 DNA and 50 ng pETDuet DNA (14.4:1 molar ratio). The reaction 

contained 1X ligase buffer (NEBiolabs), 400 units of T4 ligase (NEBiolabs) and DNA in a final 

volume of 20 l. The reaction was incubated at 14C for 18 h. The HIF-1/pETDuet 

recombinant plasmid from the ligation was transformed into E.coli DH5 competent cells 

(Invitrogen). DH5 cells (50 l) were allowed to thaw on ice, after which 5 l of each ligation 

reaction were added to separate tubes of cells. The tubes were mixed gently, returned to ice, and 

incubated for 30 min. The tubes were heated at 42C for 30 s then returned to ice for 2 min after 

which 400 l room temperature SOC medium (EMD Millipore) was added to each tube. Tubes 

were incubated for 1 h at 37C. Two volumes of cells for each ligation combination (40 l and 

400 l) were spread onto LB agar plates containing ampicillin (100 g/ml; MP Biomedicals) and 

incubated at 37C for 18 h. Colonies were selected and used to inoculate 5 ml cultures in LB 

containing ampicillin. Cultures were grown for 18 h at 37C while shaking at 220 rpm. 

StrataPrep Plasmid Miniprep Kits (Agilent Technologies) were used to purify HIF-1/pETDuet 

plasmid from E.coli cultures. 

Ligation was confirmed by PCR amplification of plasmids using an MJ Mini Personal 

Thermal Cycler (BioRad) programed for 30 cycles (30 s at 95C, 30 s at 55C, 30 s at 72C). 

PCR was carried out using 25 l reactions containing 0.5 l forward primer pETUpstream (10 

M) 5'-ATGCGTCCGGCGTAGA-3 (Novagen), 0.5 l reverse primer DuetDOWN1 (10 M) 

5'-GATTATGCGGCCGTGTACAA-3 (Novagen), 13 l PCR master mix (2X) (Promega), 1 l 

of plasmid DNA, and 10 l RNase free water.  PCR products were verified by electrophoresis 

(as described previously). 
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Ligations were also verified by restriction enzyme digestion of plasmids. Each reaction 

contained 15.6 l of plasmid (~850 - 1000 ng plasmid DNA of which 50-55 ng is the HIF-1 

insert), 2.2 l NEBuffer 3 (10X), 0.22 l 100X BSA (10 mg/ml), 1 l Sal-1 (20,000 units/ml) 

and 1 l Pst-1 (20,000 units/ml). Reactions incubated for 2 hours at 37C. Restriction digest 

products were verified by electrophoresis (as described previously). 

The inserts were also verified by sequence. Plasmid DNA was concentrated by ethanol 

precipitation (Sambrook et al., 1989) with some modifications. Plasmid (21 l) was combined 

with 2.3 l 3 M sodium acetate and 46.7 l 100% ethanol, incubated on ice for 30 min, and 

collected by centrifugation. Precipitated DNA was dissolved in 10 l of water. Sequencing 

reactions contained approximately 300 ng of plasmid DNA and 1 l of either pETUpstream 

primer or DuetDOWN 1 primer (10 M). Sequencing was performed in the Keck Center for 

Conservation and Molecular Genetics following the ABI protocol. 

A verified, concentrated HIF-1/pETDuet recombinant plasmid (3F) was transformed 

into E.coli BL21 competent cells (Invitrogen). BL21 cells (5 l) were allowed to thaw on ice, 

after which 1 l of the plasmid was added. The transformation protocol was as described above 

except that after the heat shock step, 80 l of room temperature SOC was added to the tube. One 

colony grown on a plate overnight was used to make a 5 ml culture (3Fa) in LB. The culture was 

incubated for 18 h at 37C with shaking at 220 rpm. The culture was stored in 80% sterile 

glycerol at -80C. 

Polyhistidine-tagged HIF-1 peptide was expressed following the QIAexpressionist 

protocol (Qiagen) with modifications. A sample of the frozen 3Fa/BL21(DE3) stock was 

obtained by scraping and used to inoculate 50 ml of LB and incubated for 18 h at 37C with 
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shaking (220 rpm). The 50 ml culture was used to inoculate 1 l LB and incubated at 37C with 

shaking (220 rpm) until an OD600 of 0.6 was reached. Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) (Gold Biotechnology) was added to the culture (final concentration of 1 mM) to induce 

HIF-1 peptide expression and the culture was allowed to incubate for 18 h at 37C with shaking 

(220 rpm). 

E.coli from multiple 1 l cultures were harvested separately by centrifugation at 8,000 g 

for 10 min at 4C. Cell pellets were resuspended, lysed, and homogenized in glass homogenizers 

on ice in lysis buffer containing 20 mM Tris pH 8.0, 50 mM NaCl, and 50mM KCl. To each 

lysate, 50 l of protease inhibitor (10X) (Roche) and 40 l of lysozyme (10 mg/ml) (ICN 

Biomedicals) were added and incubated on ice for 30 min. Lysates were passed through a French 

pressure cell disrupter (SIM-AMINCO) at 12,000 psi a total of five times, after which they were 

centrifuged at 13,000 g for 20 min at 4C. Supernatants were saved and pellets resuspended in 

lysis buffer for protein analysis (see below). 

Polyhistidine tagged HIF-1 peptide was purified by Ni-NTA chromatography. The 

column contained 5 ml of Ni-NTA agarose (Qiagen) equilibrated with lysis buffer. Lysate 

supernatants from multiple cultures were applied to the column separately and slowly drained. 

The flow-through fraction was reloaded on the column and drained two more times. Then, the 

column was washed with one column volume of Buffer A1 (20 mM Tris-HCl pH 8, 50 mM 

NaCl, 50 mM KCl, 20 mM Imidazole, and 5% glycerol), then Buffer B (20 mM Tris-HCl pH 8, 

500 mM NaCl, and 500 mM KCl), then Buffer A2 (20 mM Tris-HCl pH 8, 50 mM NaCl, 50 mM 

KCl, and 30 mM Imidazole). The polyhistidine tagged HIF-1 peptide was eluted with 8 x 5 ml 

washes with Buffer C (20 mM Tris-HCl pH 8, 50 mM NaCl, 50 mM KCl, and 200 mM 

Imidazole). 
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Elution fractions from Ni-NTA chromatography were dialyzed against Buffer I (20mM 

Imidazole, 20 mM NaCl, 1 mM DTT, and 5 mM -mercaptoethanol) for 18 h at 4C using 

Spectra/Por membrane tubing (10,000 molecular weight cut-off; Spectrum Labs), pooled, and 

loaded on an anion exchange column. The 2.5 x 10 cm column contained 10 ml DEAE Sephacel 

cellulose (100 l particle size) (Pharmacia Fine Chemicals) equilibrated with Buffer I. The 

column was washed extensively with Buffer I and polyhistidine tagged HIF-1 peptide was 

eluted in 4 x 5 ml fractions of Buffer I containing 250 mM NaCl followed by an additional 4 x 5 

ml fractions of Buffer I containing 500 mM NaCl. All fractions from the column were collected 

for gel electrophoresis and protein determination (see below). 

Fractions from anion exchange containing polyhistidine tagged HIF-1 peptide were 

further purified by size exclusion chromatography. A 1 cm x 30 cm column containing 20 ml of 

Superdex 75 agarose (GE) was washed with water (to remove ethanol) and equilibrated with 

Buffer I. Fractions 1 – 3 from the 250 mM NaCl elution of anion exchange were pooled (15 ml) 

and concentrated to approximately 1 ml using centrifugal concentrators (Amicon Ultra 4, 10 K 

cutoff). The 1 ml sample was divided into two 500 l aliquots, which were each concentrated to 

50 - 60l (Amicon Ultra 0.5 ml, 10 K cutoff). These samples were separately applied to the gel 

filtration column at a flow rate of 0.227 ml/min. The column was washed Buffer I and fractions 

of approximately 1.1 ml were collected. All fractions from the column were collected for gel 

electrophoresis and protein determination (see below). 

2.3 Protein Assay, Electrophoresis, and Western Blotting 

Total protein was determined by the bicinchoninic acid protein assay (Pierce, 

ThermoFisher Scientific) with bovine serum albumin standards (Smith et al., 1985). Prior to 

assay, interfering substances were removed by precipitation with trichloroacetic acid and 
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deoxycholate (Brown et al., 1989). Standards and samples were assayed in triplicate and 

absorbance was measured with a Beckman DU-640 spectrophotometer. 

Polyacrylamide gel electrophoresis (PAGE) employed Bis-Tris NuPage gels (Invitrogen). 

Protein samples were combined with loading sample buffer (LSB) and 50 mM DTT and heated 

at 70C for 10 min. Proteins were routinely separated on 4-12% Bis-Tris NuPage gels in 1X 

MOPS SDS running buffer (50 mM MOPS, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA, pH 

7.7). Prestained molecular weight markers (Invitrogen) and biotinylated molecular weight 

markers (Cell Signaling) were included for protein visualization in protein staining and western 

blotting, respectively. Gels ran at 150 V for 65 min at room temperature. 

Gels were stained for protein using colloidal Coomassie blue. Gels were fixed for 1 h in 

50% (v/v) ethanol and 3% (v/v) phosphoric acid, washed with water for 5 min, and then stained 

overnight in colloidal Coomassie blue solution (34% v/v methanol, 6% w/v ammonium sulfate, 

2% v/v phosphoric acid, and 0.1% w/v Coomassie brilliant blue G-250). Gels were destained 

with water for up to 3 days. Gel images were captured with a Bio-Rad Chemidoc-XRS imager 

and analyzed with Quantity One software (Bio-Rad). 

For western blotting, gels were transferred to polyvinyldene difluoride (PVDF) 

membranes for 2 h at 100 V and 10C using 1X transfer buffer (25 mM Bicine, 25 mM Bis-Tris, 

1 mM EDTA pH 7.2) containing 20% (v/v) methanol and 0.05% (w/v) SDS. After transfer, blots 

were blocked by incubating in TBS-T (20 mM Tris pH 7.6, 150 mM NaCl, 0.05% Tween-20) 

containing 5% non-fat dry milk powder for 1 h at room temperature. To follow the purification 

of the polyhistidine-tagged HIF-1 peptide, the primary antibody was the chicken polyclonal 

IgY directed against F. heteroclitus HIF-1. In other experiments, affinity purified HIF-1 

antibodies were used as described below. The primary antibody was diluted 1:500 in TBS-T 
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containing 5% non-fat dry milk and membranes were incubated for 1 h at room temperature on 

an orbital shaker, then overnight at 4C without shaking. After 3 x 5-min washes in TBS-T, 

donkey anti-chicken antibody conjugated with horseradish peroxidase (Thermo Scientific) 

diluted to 1:5000 in TBS-T containing 5% non-fat dry milk was added, and blots were incubated 

for 1 h at room temperature on an orbital shaker. Membranes were then washed 5 x 5-min in 

TBS-T. The antigen was visualized by incubating membranes in enhanced chemiluminescence 

detection reagents (an equal mix of 100 mM Tris, pH 8.5, 2.5 mM luminol, 0.4 mM p-coumaric 

acid and 100 mM Tris, pH 8.5 containing 0.02% H2O2) for 1 min. Images were obtained with 

ChemiDoc XRS and analyzed with Quantity One (Bio-Rad).  

In some cases membranes were stripped by incubating in 62.5 mM Tris, pH 6.8, 2% SDS, 

114 mM -mercaptoethanol at 50C for 30 min, followed by rinsing in running water for 10 min, 

washing 4 x 5 min in TBS-T, and reblocking in TBS-T containing 5% non-fat dry milk powder 

for 1 h at room temperature. Stripped membranes were then re-probed with another antibody. 

2.4 Destaining and Digestion of Gel Slices for Mass Spectrometry 

Mass spectrometry (MS) was used to identify proteins in two experiments: the 

purification of polyhistidine-tagged HIF-1 peptide and to verify that affinity purified HIF-1 

antibodies recognize full-length HIF-1 from killifish cells (see below). For the first application, 

all steps up to MS were done at the University of New Orleans and the MS analysis was carried 

out by Dr. Yang Cai at the Research Institute for Children, Children’s Hospital New Orleans as 

described in Abbaraju et al. (2011). For the second application, slices of polyacrylamide gels 

were sent for digestion and MS analysis by the Proteomics Core at the University of British 

Columbia, Canada. Steps performed in this thesis for the first application are described below. 
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Coomassie-stained gel bands (approximately 10 mm x 3 mm x 1 mm) corresponding to 

polyhistidine-tagged HIF-1 peptide were excised from polyacrylamide gels and diced with a 

clean scalpel (ca. 3 mm x 3 mm x 1 mm). Gel fragments were washed with 500 l water, then 

incubated sequentially in 200 l of the following solutions each for 10 min with frequent vortex 

mixing: 50 mM ammonium bicarbonate (NH4HCO3); a 1:1 mixture of acetonitrile and 50 mM 

NH4HCO3 solution; acetonitrile. Incubation steps were repeated, discarding the solutions each 

time, until all Coomassie blue was removed. Gel fragments then were submerged in 100 l 10 

mM DTT in 50 mM NH4HCO3 and incubated for 1 h at 45 C. After cooling to room 

temperature, the solution was removed and replaced with acetonitrile and incubated for 10 min. 

The acetonitrile was removed and replaced by 100 l of 55 mM iodoacetamide in 50 mM 

NH4HCO3 and incubated for 45 min in the dark with occasional vortexing. The solution was 

removed and gel fragments were incubated in 200 l 50 mM NH4HCO3 for 10 min. The solution 

was removed and gel fragments were dehydrated by adding 200 l acetonitrile for 10 min. The 

liquid was removed and gel fragments were dried in a speedvac for 15 min on aqueous setting. 

The gel fragments were rehydrated in 20 l of 50 mM NH4HCO3 containing 200 ng trypsin and 

placed on ice for 20 min. Without removing the solution, another 20 l of 50 mM NH4HCO3 

without trypsin was added and incubation was continued for 18 h at 37C. Another 40 l of 

water was added and the incubation was continued another 30 min at 37C. The liquid was 

removed and saved in a clean microcentrifuge tube. Then, gel fragments were incubated 

sequentially in 50 l of each of the following solutions each for 10 min, vortexing at 5 min, and 

removing and saving liquid each time into the same tube: acetonitrile; 25 mM NH4HCO3; 

acetonitrile. Then 50 l 25 mM NH4HCO3 was added, fragments incubated 10 min, with 

vortexing at 5 min. Without removing the liquid, 50 l acetonitrile was added, fragments 



17 
 

incubated 10 min, with vortexing at 5 min. The liquid was removed and pooled with the volumes 

collected earlier. These last washes with 25 mM NH4HCO3 and acetonitrile were repeated, 

collecting and pooling liquid. Finally, 50 l acetonitrile was added, fragments were incubated 10 

min, with vortexing at 5 min, and this liquid was saved and pooled with the other volumes 

reserved from the same sample. The combined supernatants, containing digestion products from 

individual gel bands, were dried in a speedvac for 2.5-3 h on aqueous setting. Samples were 

saved at −20C until MS analysis.  

2.5 Affinity Purification of HIF-1 Antibodies 

Fractions from gel filtration chromatography (Section 2.2) containing polyhistidine-

tagged HIF-1 peptide were pooled. The buffer was replaced with Coupling Buffer (0.1 M 

sodium citrate and 0.05 M sodium carbonate, pH 10) by centrifugation at 4,000 g for 10 min, 

4C, using Amicon Ultra 4 device (EMD Millipore). A total of 2.5 mg of purified polyhistidine-

tagged HIF-1 peptide was coupled to 2 ml of AminoLink Plus Resin (Thermo Scientific) 

following the manufacturer’s protocol. This column, in turn, was used to purify anti HIF-1 

antibodies from chicken polyclonal IgYs (Section 2.1). The affinity purification followed the 

manufacturer’s protocol with the antibodies finally eluted with 0.1 M glycine, pH 2.5, that was 

immediately neutralized by the addition of 1/10th the fraction volume of 1 M Tris, pH 8.  

Dot blotting of column fractions was used to evaluate the presence of anti HIF-1 

antibodies. Using a Bio-Rad dot blot apparatus, a 0.45 m nitrocellulose membrane (Bio-Rad) 

was first exposed to polyhistidine-tagged HIF-1 peptide. To do this, 0.24 mg semi-purified 

polyhistidine-tagged HIF-1 peptide (gel filtration fractions immediately before or after peak 

HIF-1 peptide concentration) was diluted in 10 ml TBS, and 100 l of this mixture (equivalent 

to 2.4 g protein) was applied to each of 96 wells for 30 min. After 30 min, excess solution was 
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removed by vacuum, and the membrane was blocked in TBS-T for 30 min. Excess TBS-T was 

removed by vacuum, and serial dilutions of affinity column fractions were applied to the 

membrane for 30 min. Excess solution was removed by filtration, and the membrane was washed 

with TBS-T. The dot blot apparatus was disassembled, and membranes were blocked overnight 

at 4C in TBS-T with 5% non-fat milk powder. Membranes were washed 3 x 5-min in TBS-T 

then incubated for 1 h at room temperature with HRP-conjugated donkey anti-chicken IgG 

(Thermo Scientific) diluted 1:5000 in TBT-T containing 5% non-fat milk. Membranes were then 

washed 3 x 5-min in TBS-T and 1 x 5 min in TBS, developed for chemiluminescence, and 

imaged as described above (section 2.3). Elution fractions with the highest reactivity were 

pooled, dialyzed against TBS with 0.1% sodium azide overnight, the stored at −20C. 

2.6 Immunoprecipitation 

The TNT Coupled Reticulocyte Lysate System (Promega L4611) was used to generate 

full length HIF-1, 2, 3, and ARNT as controls for western blotting and immunoprecipitation. 

In vitro transcription and translation (IVTT) was carried out according to the manufacturer’s 

protocol using pcDNA vectors encoding the appropriate cDNA from F. heteroclitus (Townley et 

al., in prep) with the addition of 200 g/ml MG132 to inhibit endogenous proteosomal activity. 

Completed reactions were aliquoted and frozen at −80C until used. 

The basic protocol for immunoprecipitation (IP) followed the protocol from Aves Labs. 

The standard conditions are described below, with specific conditions given in the Results 

section. Immunoprecipitation buffer (IP buffer) was 137 mM NaCl, 2.7 mM KCl, 10.1 mM 

Na2HPO4, 1.76 mM NaH2PO4 (final pH 7.4 – 7.5), 1% (v/v) Igepal, 0.5% (w/v) sodium 

deoxycholate, 0.1% (w/v) SDS, 1 mM sodium orthovanadate, 1% (v/v) protease inhibitor 

cocktail (Sigma P8340) and 50 g/ml MG 132. During optimization of IP, IVTT HIF-1 (1 – 10 
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l) was added to 1.0 ml IP buffer at 4C. To every IP reaction, affinity-purified HIF-1 antibody 

(4 l, equivalent to 4 g IgY) was added and reactions were incubated on ice (1 or 2 h depending 

upon experiment), inverting tubes every 30 min. PrecipHen reagent (agarose-coupled goat anti-

chicken IgY; Aves Lab; 16 – 40 l depending upon experiment) was added to each reaction and 

incubated at 4C with end-over-end rocking (for 3 h or overnight depending upon experiment). 

Samples were centrifuged at 1,500 g for 5 min, and supernatants, which contained unbound 

antigen or antigen-antibody complexes not precipitated by PrecipHen reagent, were saved 

(hereafter referred to as “supernatants”). Precipitated antigen-antibody-PrecipHen complexes 

were washed sequentially in 0.5 ml each of TBS-T, TBS, and 50 mM Tris, pH 6.8, centrifuging 

each time at 1,500 g for 5 min. The final pellets were resuspended in 40 l 1X LSB containing 

50 mM DTT and heated at 70C for 10 min. After heating, samples were centrifuged at 15,000 g 

for 5 min, and supernatants, which contained immunoprecipitated antigen, were saved (hereafter 

referred to as “pellets”). In some cases, the first supernatants were concentrated using centrifugal 

concentrators or analyzed without concentration by combining 15.6 l with 8 l 4X LSB and 2.4 

l 500 mM DTT and heated as above. All samples were analyzed by western blotting as 

described earlier, except using the affinity-purified anti-HIF-1 antibody. 

2.7 Cell Culture Experiments 

Several experiments used killifish embryo-5 (KFE-5) culture cells, a continuous cells line 

of myogenic origin (Gignac et al., 2014). The culturing of the cells and preparation of cell 

lystates, cytosolic extracts, and nuclear extracts were kindly performed by Mr. Dillon Chung 

working in Dr. Patricia Schulte’s laboratory at the University of British Columbia. All analyses 

of total protein and HIF-1 were done at the University of New Orleans as part of this thesis. 
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KFE-5 cells were maintained at 21-25°C in T-75 tissue culture flasks on a growth 

medium of Leibovitz’s L-15 supplemented with 10% (v/v) fetal bovine serum and 1% 

penicillin/streptomycin. Routinely, experiments were started by seeding multiple replicate T-75 

flasks at 1.85 x 105 cells each (determined using a standard hemocytometer). All experiments 

were conducted in normoxic conditions. In some cases, CoCl2 was included as a hypoxic 

mimetic (Co2+ inhibits prolyl hydroxylation) at concentrations and periods of time shown in the 

Results. At the desired time, and prior to reaching confluency, cells were detached using 

commercially available TrypLE and washed 3 times using ice cold PBS (137mM NaCl, 2.7mM 

KCl, 10.1mM Na2HPO4, 1.76mM KH2PO4, pH 7.6), collecting cells by centrifugation at 600 g 

for 10 min at 4°C between washes. After the final wash, the supernatant was removed and 

packed cells were lysed by the addition of ice-cold IP buffer, followed by vortex mixing. 

Extracts were centrifuged and supernatants were snap frozen in liquid N2 and stored at −80C.  

In one experiment, cytosolic and nuclear fractions were separated. After the final wash of 

cells in PBS, the supernatant was removed and packed cells were lysed in 500 μl of Buffer A (10 

mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 0.05% Igepal, 50 μM MG-132 and 1% 

Sigma protease inhibitor cocktail, pH7.9) by repeated pipetting and vortexing (15 s). After 

incubating for 10 min on ice, extracts were centrifuged at 6,000 g for 10 min at 4°C. The 

supernatants (cytosolic extract) were removed, snap frozen in liquid N2, and stored at −80C. 

Nuclear pellets were resuspended in 200 μl of Buffer B (420 mM NaCl, 5 mM HEPES, 1.5 mM 

MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 26% glycerol (v/v), pH7.9) and pooled. Nuclear 

suspensions were vortexed for 15 s and incubated for 30 min on ice with 15 s of vortexing every 

10 min. This suspension was centrifuged at 24,000 g for 20 min at 4°C. The supernatant was 

kept as the nuclear extract, snap frozen in liquid N2, and stored at −80C.  
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Prior to IP, cytosolic and nuclear fractions were thawed and dialyzed against IP buffer. 

Immunoprecipitation followed the general protocol described above with the following 

modifications. The desired amount of lysate protein (from 0.6 to 2.2 mg, depending upon 

experiment) was brought to a total volume of 1.0 ml with IP buffer. A “pre-clearing” step was 

added to remove lysate proteins that bind non-specifically to the PrecipHen reagent. For this, 20 

l of PrecipHen was added to each reaction and incubated for 30 min at 4C with end-over-end 

rocking. Reactions were centrifuged at 1,500 g for 10 min at 4C. The pellets were treated as 

described above for western blotting (hereafter referred to as “pre-clear”). The supernatant from 

this step served as the starting material for IP as described above (i.e., starting with the addition 

of anti-HIF-1 antibody).  

From two experiments with KFE-5 cells, bands in Coomassie-stained protein gels 

corresponding to the molecular weight for HIF-1 (determined from western blotting the same 

samples in parallel gels) were excised for MS analysis. Gel destaining, protein digestion, and 

tandem MS analysis were performed by the Proteomics Core at the University of British 

Columbia, Canada. 

2.8 Animal Exposures and Tissue Lysates 

Fundulus grandis were purchased from Joe’s Landing (Barrataria, LA, USA) and kept at 

room temperature (19-24C) in dechlorinated water brought to a salinity of 10 – 13 ppt with 

Instant Ocean Synthetic Sea Salt. The fish were acclimated for a minimum of 2 weeks to 

laboratory conditions, during which time they were fed 5 to 7 times a week with TetraMin 

Tropical Flake food. Partial water changes were performed every 2 weeks. The fish were 

exposed to hypoxia by gassing the aquarium water with a mixture of nitrogen and air from 

cylinders of compressed gasses. The dissolved oxygen concentration was measured with a YSI 
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oxygen-temperature-salinity probe (Yellow Springs Instruments Model Pro2030). The level and 

duration of hypoxia are given in the Results section. All experiments with live animals were 

performed according to guidelines for research on vertebrate animals (UNO IACUC Protocols 

14-003 and 15-004). 

At the end of the hypoxia exposure, fish were euthanized with tricaine methanesulfonate 

(MS 222), and tissues (skeletal muscle, liver, gonad, and gill) were dissected, frozen in liquid 

nitrogen, and stored at −80C. Frozen fish tissues were pulverized under liquid nitrogen in a pre-

cooled mortar and pestle. Powdered tissues were homogenized in ice-cold IP buffer with 10 

strokes of a Teflon pestle in a glass tissue homogenizer (size BB; Thomas Scientific). Lysates 

were centrifuged at 10,000 g for 10 min at 4C. Supernatants were removed and saved at −80C 

until analyzed by IP as described above including the pre-clearing step.  
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3. RESULTS 

3.1 Cloning, Expression, and Purification of Polyhistidine-tagged HIF-1 Peptide 

 A partial cDNA of F. heteroclitus HIF-1 was successfully subcloned into the pETDuet 

expression vector. Sequencing of the insert showed >99% identity with the expected region of F. 

heteroclitus HIF-1 (Figure 3). The predicted molecular mass of the polyhistidine-tagged HIF-

1 peptide, including amino acids encoded by the vector, was 13.8 kD. During purification of 

proteins expressed by E. coli transformed with the HIF-1/pETDuet vector, a prominent band at 

approximately 16 kD was observed. When E. coli extracts were subjected to chromatography on 

Ni-NTA and eluted with 200 mM imidazole, this band was greatly enriched (Figure 4A), 

suggesting that it was the recombinant HIF-1 peptide. At this concentration of imidazole, a 

small number of higher molecular weight proteins co-purified with the polyhistidine-tagged HIF-

1 peptide. Trials of Ni-NTA chromatography using a step gradient of imidazole (50, 100,150, 

and 200 mM) did not result in any preferential enrichment of the 16 kD protein. Therefore, 

proteins eluted from Ni-NTA chromatography were further fractionated by anion exchange on 

DEAE-cellulose. Bound proteins were eluted at 250 mM NaCl, followed by 500 mM NaCl. The 

16 kD band eluted at the lower NaCl concentration. Several bands co-purified under these 

conditions (Figure 4B). Although the 16 kD band was expected to be the polyhistidine-tagged 

HIF-1 peptide, this was verified by MS analysis of several bands excised from peak fractions at 

250 mM and 500 mM NaCl (Figure 4C). The 16 kD band (band 1) was identified as F. 

heteroclitus HIF-1, with a p value of 2.20 x 10-15. No other bands matched F. heteroclitus HIF-

1 (Table 1). 

The expression and purification of polyhistidine-tagged HIF-1 peptide through anion 

exchange was repeated with multiple 1-liter cultures of E. coli BL21(DE3) transformed with 
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plasmid 3Fa (Figure 5A, 5B). Peak fractions from anion exchange (250 mM NaCl, fractions 1-3) 

were combined, concentrated, dialyzed, and further purified by gel filtration chromatography, 

allowing the polyhistidine-tagged HIF-1 peptide to be separated from higher molecular weight 

contaminants (Figure 5C). Figure 6 shows the overall purification of the polyhistidine-tagged 

HIF-1 peptide. With every chromatography step, the number of contaminants was reduced, 

resulting in highly purified polyhistidine-tagged HIF-1 peptide. The yield of the polyhistidine-

tagged HIF-1 peptide when starting with 4 x 1-l cultures was 2.56 mg protein (Table 2). 

3.2 Affinity Purification of HIF-1 Antibodies 

A total of 2.5 mg of purified polyhistidine-tagged HIF-1 protein was used to make a 2 

ml affinity column (AminoLink). A representative dot blot of fractions (2 ml each) from one 

round of purification is shown in Figure 7. The starting material (purified IgY fraction) has high 

reactivity (left lane). The flow through showed very little reactivity—the dot intensity at 1:100 

dilution is approximately the same as the dot intensity of the 1:12,800 dilution of the starting 

material. The sixth fraction began to show more reactivity, indicating that the capacity of the 

column had been exceeded after 10 ml of IgY had been applied to the column. After washing, 

the reactivity against HIF-1 was recovered by eluting bound antibody with three column 

volumes of 0.1 M glycine, pH 2.5. A total of 731 mg of IgY from hen #6210 in 32 ml was 

applied to the affinity column in three rounds of chromatography. The total yield of purified 

HIF-1 antibody was 12.4 mg in 13.5 ml of eluate (0.9 mg/ml). The HIF-1 antibody was less 

than 2% of the total IgY protein, which is consistent with the expected abundance of specific 

antibodies against an antigen of interest (Aves Labs). 

Western blot analysis of IVTT full length F. heteroclitus HIF-1, 2, 3 and ARNT was 

used to determine the specificity of the unpurified IgY and the affinity-purified HIF- antibody 
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(Figure 8). The major band recognized by both the unpurified and the purified antibodies is HIF-

1 (ca. 100 kD band in lanes labeled 1). Both unpurified and purified antibodies cross-react 

with other abundant proteins in the IVTT reactions. But the affinity-purified antibodies showed 

fewer cross-reactive low molecular weight bands (MW < 60 kD) and essentially no cross-

reactivity against IVTT HIF-2, HIF-3, or ARNT (1). 

3.3 Immunoprecipitation Optimization 

Preliminary attempts to detect HIF-1 by western blotting of total tissue lysates did not 

show a reproducible band of the correct molecular weight, presumably because, as a 

transcription factor, the abundance of HIF-1 is very low. Thus, IP was optimized as an 

approach to enrich and measure HIF-1 levels. To start, the concentration of antibody, the 

concentration of precipitating reagent (PrecipHen), and the incubation times were optimized for 

IP of IVTT HIF-1 added to IP buffer. The binding capacity of 1 ml PrecipHen (packed volume) 

is 1 mg chicken IgY and the recommended ratio of PrecipHen to antibody is 2:1 (Aves Labs). 

PrecipHen is provided as a hydrated resin and 2 ml hydrated resin is equivalent to 1 ml packed 

volume. So, the ratio of hydrated PrecipHen to precipitating antibody should be no less than 4 

ml:1 mg. At a constant amount of IVTT HIF-1 (10 l in 1.0 ml IP reactions), the total amount 

of antibody and PrecipHen were increased while maintaining this 4:1 ratio (Figure 9A). Every 

reaction showed that some IVTT HIF-1 remained in the supernatant, suggesting that either the 

antibody or PrecipHen reagent was not sufficient. Because the band intensity of HIF-1 in the 

pellet did not increase with increasing volume of antibody (Figure 9A), this suggested that the 

PrecipHen reagent, not the primary antibody was limiting. For the remainder of the experiments, 

4 l (ca. 4 g) of affinity-purified HIF-1 antibody was used in each IP reaction. 



26 
 

To determine the optimal ratio of PrecipHen to antibody, increasing volumes of 

PrecipHen were included in IP reactions using 4 l (ca. 4 g) of affinity-purified HIF-1 

antibody (Figure 9B). IVTT HIF-1 was cleared from the supernatant at >16 l PrecipHen. For 

the remainder of the experiments, a volume of 20 l of PrecipHen (10 l packed volume) was 

used in each IP reaction. This experiment also included control reactions with no IVTT lysate or 

IVTT lysate that had no pcDNA to evaluate non-specific binding of rabbit reticulocyte proteins 

by PrecipHen reagent (none observed). 

Next, optimal incubation times for the primary antibody and the precipitating reagent 

were determined (Figure 9C). Incubation times of 1 or 2 h with the affinity-purified HIF-1 

antibody were equivalent in clearing the supernatant of IVTT HIF-1. For the precipitating 

reagent (PrecipHen), however, 3 h incubation was not long enough, as shown by the substantial 

amounts of IVTT HIF-1 remaining in the supernatant. Overnight incubation with PrecipHen, 

on the other hand, effectively cleared the supernatant of IVTT HIF-1. Therefore, an incubation 

of 1 h with primary antibody followed by overnight incubation with PrecipHen was used for the 

remainder of the experiments. To evaluate the ability of the affinity-purified HIF-1 antibody to 

precipitate lower amounts of IVTT HIF-1, the volume of IVTT added to IP buffer was 

decreased from 10 l to 1 l (Figure 9D). The antibody precipitated IVTT HIF-1 down to 1 l. 

Lower amounts of IVTT HIF-1 were not tested. 

3.4 Immunoprecipitation of HIF-1 from KFE-5 Cell Extracts 

The optimized IP protocol was next applied to extracts derived from the F. heteroclitus 

cell line, KFE-5. The initial experiments were done with total cell lysates prepared from KFE-5 

cells grown under normoxic conditions (no CoCl2). Increasing amounts of IVTT HIF-1 were 

added to aliquots of identical KFE-5 extracts prior to IP. A pre-clearing step was included to 
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remove proteins that bind non-specifically to the PrecipHen reagent (see Methods). With 

increasing volume of IVTT HIF- added, a band of increasing intensity was observed at 100 kD 

in the final pellets, whereas no band of the same molecular weight was observed in the pre-

clearing step or in the initial IP supernatant. Thus, the optimized protocol effectively precipitates 

added IVTT across this range. Importantly, an endogenous band of the same molecular weight 

was observed in KFE-5 lysates with no added IVTT HIF-1 (Pellet, lane 0) (Figure 10). This 

experiment not only validated the IP protocol for cell lysates, but suggest that normoxic KFE-5 

cells express HIF-1. 

Next, KFE-5 cells were incubated with 0 and 100 M CoCl2 for 24 h to see if the 

intensity of this 100 kD protein increases during exposure to this hypoxic mimetic. Total cell 

lysates were used in IP with the affinity-purified antibody. There was variation in the intensity of 

the 100 kD band among replicate lysates (representing replicate cell culture flasks) with or 

without CoCl2 (Figure 11A). One CoCl2 lysate (sample 2) showed an aberrant banding pattern, 

presumably due to protein degradation, making quantitative comparison difficult. Overall, there 

was no apparent increase in band intensity in the presence of CoCl2 

The next experiment varied the concentration of CoCl2 and the duration of exposure. 

Again, there was no obvious effect CoCl2 on the intensity of the 100 kD band (Figure 11B). All 

three lysates from cells exposed to 100 M CoCl2 showed low intensities for the 100 kD band, as 

well as for the immunoprecipitating IgY band (65 kD), suggesting some sample loss occurred 

during IP. Therefore, the IP of the 0 M and 100 M CoCl2 were repeated. In this experiment, 

the 6 and 24 h samples from 0 M CoCl2 were pooled and compared to the 24 h sample from 

100 M CoCl2, enabling an increase in the total protein used in IP to 2.15 mg (Figure 11C). 
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Densitometry and image analysis using Quantity One (BioRad) revealed a small increase in 

intensity (20-30%) of the 100 kD band in the CoCl2 treated sample. 

To learn if the protein at 100 kD translocates from the cytosol to the nucleus during 

CoCl2 exposure, KFE-5 cells were incubated with 0 and 100 M CoCl2 for 24 h. Cell extracts 

were separated into cytosolic and nuclear fractions, and IP was carried out on the entire protein 

in cytosolic and nuclear fractions pooled from several cell culture flasks. After IP, increasing 

volumes of the final precipitated material from each fraction were used for western blotting 

(Figure 12). By comparing lanes containing the same volume of IP material (e.g., 6 l) from 

cytosolic and nuclear fractions, it is clear that staining intensity was more intense for nuclear 

extracts. Alternatively, if one compares lanes of similar intensity and asks what volume of IP 

material was used, then similar band intensities were observed when half as much nuclear extract 

was electrophoresed compared to cytosolic extracts (e.g., compare 6 l of nuclear extract to 12 

l of cytosolic extract). The trend towards greater staining intensity in nuclear extracts was the 

same regardless of CoCl2, suggesting that nuclear localization of 100 kD protein was unaffected 

by this hypoxic mimetic. Image analysis using the intensity of the IgY band to control for 

efficiency of the IP, verified that 100 kD protein is 2-fold enriched in the nucleus compared to 

the cytosol, both with and without CoCl2.  

The same samples from IP of cytosolic and nuclear fractions of KFE-5 cells exposed for 

24 h to 0 and 100 M CoCl2 were electrophoresed and stained with colloidal Coomassie blue. 

Two bands between 70 and 120 kD were barely visible (Figure 13). Based upon the sensitivity of 

colloidal Coomassie blue (Candiano et al., 2004), the protein content of these bands was on the 

order of 50-100 ng. Two gel regions from IP of nuclear extracts, corresponding to roughly 90 to 

120 kD (bands 1 and 3; Figure 13B) and 70 to 90 kD (bands 2 and 4) were excised for MS 
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analysis. Prior to in-gel digestion and MS analysis, gel bands of a given MW range from cells 

exposed to 0 and 100 M CoCl2 were pooled. In a parallel gel used in western blotting, the 

affinity-purified HIF-1 antibody showed strong reaction with a band in the heavier MW range 

(ca 100 kD). Tandem MS analysis followed by automated database searching matched 4 peptides 

from gel bands 1+3 to HIF-1 from the Southern platyfish (Xiphophorus maculatus)(combined 

score = 74). Subsequent manual analysis showed the same peptides exist in F. heteroclitus. 

Analysis of bands 2+4 did not provide matches with any HIF- subunits. 

3.5 Immunoprecipitation of HIF-1 from F. grandis tissues 

To reveal if the affinity-purified HIF-1 antibodies precipitate HIF-1 protein from 

tissue samples, extracts of several tissues of the Gulf killifish, F. grandis, were prepared and 

analyzed by IP. To begin, IVTT full length HIF-1 was added to tissue lysates from normoxic 

fish to determine if anything in the extract interfered with the IP. As with KFE-5 cell extracts, 

the pre-clearing step was included in the IP protocol. The IVTT HIF-1 was 

immunoprecipitated, but with variable degrees of efficiency: there was better recovery from 

extracts of skeletal muscle and ovary than from extracts of liver and gill (Figures 14A-D). For 

comparison, the amount of IVTT that was added in the 10 l volume should have produced a 

band intensity (if 100% recovered) equivalent to the band intensity shown in the input lane (far 

left). The low recoveries of added IVTT HIF-1 in liver and gill could be the result of higher 

protein degradation in these extracts despite the inclusion of protease inhibitors in all tissue 

lysates. Similar to experiments with KFE-5 cells, affinity-purified antibody recognized a protein 

at approximately the same molecular weight as the full-length HIF-1 (100 kD) in muscle, liver, 

and ovary. Based upon similarity of molecular weight, and given the positive identification in 

KFE-5 cells, it is likely that this protein is F. grandis HIF-1. 
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Two experiments were done to investigate whether hypoxic exposure of live fish affects 

the amount of HIF-1 protein. In the first experiment, three fish were used: one was sampled 

after being held under normoxic conditions (0 h hypoxia), and one each was sampled after 24 h 

and 96 h at approximately 0.9 mg/l dissolved oxygen (11% of the air saturated value). Tissues 

were collected, lysates prepared, and IP conducted. Pellets from IP showed a very faint band in 

all tissues at 100 kD, which appeared darker in one or both hypoxic samples (24 h and 96 h) 

compared to the normoxic sample (0 h) in all tissues. Due to the low band intensity, this 

experiment was repeated with four fish, two held under normoxia and two held under hypoxia 

(0.6 mg/l oxygen or 7.5% air saturation) for 24 h. In this experiment, gill was not analyzed 

because of the low recoveries of protein in IP. The supernatants of IP reactions, representing the 

bulk of the lysate proteins, were electrophoresed and stained for total protein (Figure 16A). This 

showed that, for a given tissue, approximately equal amounts of protein were used in the IP 

reactions (corroborating the protein assay). The western blot of the IP is shown in Figure 16B. A 

protein of 100 kD was recovered in extracts made from tissues of hypoxic fish. The same protein 

was either absent (muscle) or present at lower intensities (ovary and liver) in samples prepared 

from normoxic fish. This result strongly supports the specificity of the affinity-purified antibody 

for HIF-1, and it is also one of the only reports of hypoxic induction of HIF-1 protein after 

short term exposure of live fish to low oxygen. 
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4. DISCUSSION 

Many aquatic habitats are characterized by variable concentrations of dissolved oxygen. 

Fish that occupy these habitats respond to changes in oxygen levels through behavioral, 

physiological, and biochemical adjustments. Past studies suggest the transcription factor HIF-1 

has an important role in the molecular responses to hypoxia in fish (Nikinmaa and Rees, 2005; 

Richards, 2009). The cDNA sequence and mRNA abundance HIF-1 have been reported for 

many species. Less is known about HIF-1 protein levels, primarily due to a lack of tools to 

effectively detect the protein from fish, specifically antibodies that recognize fish HIF-1. 

Because post-transcriptional control of HIF-1 is the major determinant of protein abundance 

and function, at least in mammals, better information on HIF-1 protein levels is critical to 

understanding the function of this transcription factor in the hypoxia responses of fish. 

Previously, only a few studies have used antibodies to evaluate HIF- protein in fish. 

Soitamo et al. (2001) developed a polyclonal antibody against rainbow trout HIF-1. The 

antibody was purified by Ni2+ and gel filtration chromatography. Western blotting of nuclear 

extracts of rainbow trout gonad cells (RTG-2) and Chinook salmon embryonic cells (CHSE-214) 

showed that HIF-1 protein was present under conditions of moderate hypoxia, peaking at 5% 

O2 (equivalent to about 25% of the air-saturated value or a DO of 1.9 mg/l). This level of oxygen 

is similar to that which prevails in the capillaries under normoxic conditions. In both cell lines, 

HIF-1 protein levels decrease as oxygen was dropped to lower values (Soitamo et al., 2001). 

Sollid et al. (2006) utilized the same antibodies against rainbow trout HIF-1 to characterize 

HIF-1 in crucian carp. The N-terminus of HIF-1 (from which the antibodies were developed) 

is similar between the crucian carp and rainbow trout. The antibodies were added to reaction 

mixture containing crucian carp nuclear protein. An EMSA was utilized to reveal the binding of 
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crucian carp HIF-1 to hypoxia response elements in human EPO gene. In the same study, HIF-

1 protein accumulation was observed by Western blot of nuclear proteins from crucian carp 

gills after a 6 h hypoxia exposure, with levels decreasing to normoxic levels after a 48 h hypoxia 

exposure (Sollid et al. 2006). Lower amounts of HIF-1 protein were also present under 

normoxic conditions and these were related to body mass. Thomas and Rahman (2009) tested the 

effects of hypoxia exposure in Atlantic croaker. HIF-1 and HIF-2 protein expression was 

measured after 2 and 4 weeks (2 only) hypoxia exposure at 4.5% O2 (DO 1.7 mg/l). Nuclear 

extracts from croaker ovarian samples were analyzed by western blot using commercially 

available rabbit polyclonal antibodies against human HIF-1 and HIF-2. After the continuous 

hypoxia exposure, levels of both HIF-1 and HIF-2 protein increased in ovaries. Compared to 

normoxic samples, 2 week hypoxic samples showed the concentration of HIF-1 protein to be 

3.0 fold higher (Thomas and Rahman, 2009). Additionally, it was observed that HIF-2 protein 

levels increased more slowly but were significantly higher than control values under those DO 

conditions after 4 weeks. Zhang et al. (2012) reported on the less understood HIF-3. The group 

developed their own polyclonal antibodies raised in rabbits against zebrafish HIF-3 to 

investigate the effect of hypoxia on HIF-3 protein abundance. Western blotting was used to 

determine the specificity of the antibodies utilizing HEK293T (human embryonic kidney cells) 

transfected with GFP tagged zebrafish HIF-1 and HIF-3 plasmids. Endogenous HIF-3 

protein was observed in both embryos and adult fish by Western blot after a 12 h hypoxia 

exposure at 9 % air saturation (DO 0.6 mg/l) for embryos and 26 % air saturation (DO 1.5 mg/l) 

for adults. 

The overall goal of this thesis was to purify and validate antibodies that could be used in 

various applications to measure HIF-1 protein in Fundulus heteroclitus and its sister species F. 
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grandis. Both are widely dispersed salt marsh fish that serve as model organisms in studies of 

environmental biology due to their high tolerance of stresses such as changes in temperature, 

salinity, and oxygen concentrations (Burnett et al., 2007; Brown et al., 2011). They are among 

the more hypoxia tolerant fishes in the salt marsh habitat; the F. heteroclitus genome has been 

sequenced; there is a F. heteroclitus cultured cell line; and both species are easy to collect and 

maintain in the lab. These features made F. heteroclitus and F. grandis ideal for this study. 

The first objective of this thesis was to purify polyclonal antibodies against the 

F.heteroclitus HIF-1 protein subunit. Since polyclonal antibodies contain the whole inventory 

of antibodies circulating in the immunized animal, they exhibit more versatility than monoclonal 

antibodies. However, a crude IgY fraction generates nonspecific staining in a western blot 

(Camenisch et al., 1999; Hill, 2012). By purifying the polyclonal antibodies against the protein 

of interest, nonspecific staining is avoided (Camenisch et al., 1999). The first objective of this 

thesis was accomplished by cloning and expressing a partial cDNA sequence from F. 

heteroclitus HIF-1 and isolating the recombinant protein through a sequence of nickel, ion-

exchange, and size exclusion chromatography. The recombinant HIF-1 protein was then used 

to affinity purify chicken polyclonal antibodies specific against F. heteroclitus HIF-1 protein. 

The second objective of this thesis was to measure HIF-1 from killifish cells and 

tissues. This required that the technique of immunoprecipitation be optimized, first in IP buffer, 

then in cell and tissue extracts. By adding IVTT HIF-1 to IP buffer and varying the volume of 

PrecipHen, incubation time for both PrecipHen and affinity-purified HIF-1 antibody, and the 

volume of IVTT HIF-1, the optimal conditions for recovery of HIF-1 were achieved. These 

conditions were then used to immunoprecipitate endogenous HIF-1 protein from the F. 

heteroclitus KFE-5 cell line and from tissue extracts of the closely related F. grandis. 
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Endogenous HIF-1 protein was found in the KFE-5 cells and in the F. grandis muscle and 

gonad. Recovery of HIF-1 protein from F. grandis gill and liver was poor, probably because of 

proteolytic degradation. The affinity-purified HIF-1 antibody also detected a modest increase in 

levels of HIF-1 protein during CoCl2 incubation of KFE-5 cells and a more robust induction of 

HIF-1 protein in F. grandis tissue after exposure of live animals to low oxygen. These 

observations extend what has been described in other studies on other fish (Soitamo et al., 2001; 

Sollid et al., 2006; Law et al., 2006; Thomas and Rahman, 2009; Zhang et al., 2012). 

In terms of cellular localization, about twice as much HIF-1 protein was found in the 

nuclear fraction of KFE-5 cells compared to the cytosolic fraction, and this proportion did not 

differ between normoxic and CoCl2 treated cells. While the CoCl2 response in KFE-5 cells 

requires further study, the observation of HIF-1 protein during normoxia in these cells and 

certain tissues from F. grandis coincide with other fish studies that show HIF- 1α protein is 

present during normoxia (Soitamo et al., 2001; Rissanen et al., 2006; Sollid et al., 2006). The 

presence of HIF-1 during normoxic conditions, suggests a role for oxygen-independent 

functions (Soitamo et al., 2001). 

Based on the results presented here, the goals of this thesis to affinity-purify HIF-1α 

antibodies and use them to detect HIF-1 from in killifish cells and tissues were achieved. These 

accomplishments confirm the advantages of using affinity-purified IgYs in studies of protein 

abundance. In addition to immunoprecipitation and western blotting, affinity-purified antibodies 

can be utilized in affinity chromatography, immunohistochemistry, and chromatin 

immunoprecipitation. In conclusion, this affinity-purified antibody represents a new tool in 

studying the mechanisms of hypoxia response in F. heteroclitus and F. grandis, and by 

extrapolation in other fish and vertebrates in general.  
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Table 1: Results from database searching of mass spectrometry analyses of ion-exchange elution 

fractions (Figure 4C). Matches with p-value less than 10-8 are shown. 
 

Gel Band  

Apparent 

MW (kD) Top hits p-value 

Actual MW 

(kD) 

1 16 Fundulus heteroclitus HIF-1 2.20 E-15 83.9 

2 21 *cyclic AMP receptor protein 1.40 E-13 23.6 

2 21 *orf, conserved hypothetical protein 3.10 E-10 21.2 

3 54 *pyruvate kinase 3.50 E-13 51.3 

3 54 

*glucose-6-phosphate 1-

dehydrogenase 1.30 E-08 55.6 

4 70 *hypothetical protein b2255 4.90 E-15 74.2 

4 70 *molecular chaparone DnaK 1.30 E-10 69 

5 25 *hypothetical protein b2255 1.27 E-12 74.2 

5 25 

*FKBP-type peptidyl-prolyl cis-trans 

isomerase 9.30 E-12 20.8 

6 65 

*D-fructose-6-phosphate 

amidotransferase 1.33 E-14 66.8 

6 65 *hypothetical protein b2255 1.07 E-11 74.2 

 

*from E.coli database  
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Table 2: Purification of polyhistidine-tagged HIF-1 peptide from 4 x 1- l E.coli cultures.  

 

Sample 

Protein 

concentration 

(mg/ml) 

Total volume 

(ml) 

Total protein 

(mg) 

Lysate (supernatant) 5.08 200 1016 

Ni-NTA eluate 0.81 15 12.15 

Ion exchange eluate 32.61 0.205* 6.68 

Gel filtration eluate 4.74 0.54* 2.56 

 
*volumes after sample concentration and dialysis. 
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Figure 1: Schematic representation of HIF-1 domains. Basic helix-loop-helix (bHLH), Per-

ARNT-Sim (PAS), C-terminal transactivation (C-TAD), oxygen-dependent degradation domain 

(ODDD), Proline (P) and Asparagine (N). Amino acid numbers from human HIF-1. Figure 

modified from Kaelin, 2005.  
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Figure 2: Schematic representation of hypoxia-inducible factor (HIF) regulation under normoxic 

and hypoxic conditions. Under normoxia, prolyl hydroxylase (PHD) enzymes hydroxylate 

proline (P) residues 402 and 564, targeting HIF-1 for ubiquitination (Ub) by pVHL, and 

degradation by the 26S proteasome. In addition, factor-inhibiting HIF (FIH) hydroxylates 

asparagine (N) residue 803 preventing recruitment of coactivators. Under hypoxia, PHD and FIH 

activities decrease and HIF-1 accumulates, dimerizes with HIF-1, and recruits coactivators 

p300 and CBP. The complex translocates to the nucleus and binds to hypoxia response elements 

(HRE) on specific target genes, resulting in increased rates of transcription. Amino acid numbers 

from human HIF-1. 
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Figure 3: Sequence alignment of cloned cDNA with F. heteroclitus HIF-1α. 
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Figure 4: (A) SDS-PAGE gel of Ni-NTA fractions stained for total protein. MW is molecular 

weight marker; L is total cell lysate added to the column; F is flow-through; I is 200 mM 

imidazole fraction. (B) SDS-PAGE gel of ion-exchange fractions stained for total protein. The 

column was eluted with Buffer I containing 250 mM and 500 mM NaCl (showing fractions 1- 4 

for each). (C) Same gel as in part (B) indicating bands (1-6) excised for mass spectrometry 

analysis.   
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Figure 5: (A) SDS-PAGE gel showing the polyhistidine-tagged HIF-1 peptide by Ni-NTA 

chromatography. Imidazole elution fractions 1- 3 show a prominent band at 16 kD. (B) SDS-

PAGE gel of ion-exchange chromatography results. I is the eluate from the Ni-NTA column that 

was applied to the ion-exchange column; F is flow-through. The column was eluted with Buffer I 

containing 250 mM and 500 mM NaCl (showing fractions for each). (C) SDS-PAGE gel of gel 

filtration of the pooled 250 mM NaCl fractions from ion-exchange chromatography. The 16 kD 

band corresponding to polyhistidine-tagged HIF-1 peptide eluted in fractions 10-16.  
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Figure 6: SDS-PAGE gel showing the overall purification of polyhistidine-tagged HIF-1 

peptide. (P) Cell pellet; (L) Cell lysate supernatant added to Ni-NTA column; (I) eluate from Ni-

NTA column; (NaCl) eluate from ion-exchange column (250 mM fractions pooled); (GF) eluate 

from gel filtration column. In GF, the only band present corresponds to the polyhistidine-tagged 

HIF-1 peptide. 
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Figure 7: Dot blot analysis of HIF-1 antibody purification. Start is the total IgY applied to the 

affinity column. Flow-through is what did not bind to the column. Wash with TBS. Elution of 

column with 0.1 M glycine pH 2.5. Followed with wash with TBS. Dilution corresponds to serial 

dilution of all fractions. The starting volume was 10-12 ml of IgY (varied among experiments), 

and all column fractions were 2 ml each. 
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Figure 8: Western blot analysis of in vitro-expressed full length of HIF-1 (1), HIF-2 (2), 

HIF-3 (3) and ARNT (), all at a volume of 3 l of IVTT full length protein, probed with 

unpurified HIF-1 antibody (1:1000) or purified HIF-1 antibody (1:500).  
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Figure 9: Optimization of immunoprecipitation. In is for the positive control lane contained 4 l 

IVTT full length HIF-1. (A) Antibody variation at a constant Ab: PrecipHen ratio. All reactions 

contained 10 l IVTT HIF-1 lysate. (B) PrecipHen variation. Control reactions (-), the first had 

no added lysate and the second is an unprogrammed rabbit reticulocyte lysate. Positive reactions 

(+) contain 16, 24, 32, and 40 l of PrecipHen. All reactions had 4 l Anti-HIF-1 antibodies 

and 10 l IVTT HIF-1 lysate. (C) Incubation time variation. Primary antibody incubation: 1 

and 2 h. PrecipHen incubation: 3 and 18 h. All reactions had 4 l Anti-HIF-1 antibodies, 20 l 

of PrecipHen, and 10 L IVTT HIF-1 lysate. (D) Variation in added IVTT HIF-1 lysate: 1, 

2.5, 5, and 10 l IVTT HIF-1 lysate. 
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Figure 10: Immunoprecipitation of extracts from normoxic KFE-5 cells using 0.8 mg/ml of 

protein per reaction and IVTT HIF-1 lysate added at: 1, 2.5, 5, and 10 l. “In” is the positive 

control lane containing 4 l IVTT HIF-1 lysate. The pre-clear step was included to remove 

non-specific proteins. An endogenous HIF-1 band was detected in the KFE-5 extract without 

added IVTT HIF-1 lysate (0 l, Pellet). 
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Figure 11:  Immunoprecipitation of KFE-5 cell extracts after CoCl2 stimulation. (A) Triplicate 

cell culture flasks (1, 2, 3) were incubated with or without 100 M CoCl2 for 24 h. IP reactions 

contained 0.8 mg/ml protein. (B) KFE-5 cells were incubated at 0, 100, or200 M CoCl2 for 6, 

24, or 48 h. IP reactions had 0.8 mg/ml protein except the 6 h 100 M sample was 0.6 mg/ml due 

to limited sample. (C) KFE-5 cell lysates from 0 M CoCl2 (6 and 24 h combined) and 100 M 

CoCl2 (24 h) were immunoprecipitated at 2.15 mg/ml protein.  
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Figure 12: Immunoprecipitation of KFE-5 cell extracts with or without 24 h 100 M CoCl2 

treatment. Prior to IP, lysates were separated into cytosol and nuclear fractions. The volume of 

each IP reaction loaded on the gel was 3l (3), 6l (6) or 12 l (12) for each sample.  
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Figure 13: Total protein stain of KFE-5 cell extracts with or without 24 h 100 M CoCl2 

treatment. (A) Colloidal Coomassie stained SDS-PAGE gel of cytosolic (C) and nuclear (N) 

fractions from 0 M CoCl2 (-) and 100 M CoCl2 (+) treated cells. (B) Magnification of the gel 

region containing the bands cut for mass spectrometry analysis (boxes labeled 1-4). IgY is 

chicken immunoglobulins. 
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Figure 14: Immunoprecipitation of tissue lysates from normoxic F. grandis. Reactions contained 

2 mg/ml of tissue lysate protein and IVTT HIF-1 as indicated. (A) Muscle (B) Liver (C) Ovary 

(D) Gill. HIF-1 migrates at 100 kD (see input) and a band of this size was observed in tissue 

extracts without added IVTT HIF-1 (0 l). 
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Figure 15: Immunoprecipitation of tissue lysates from F. grandis held for 0, 24, or 96 h at ~ 0.9 

mg/l DO (11% of the air-saturated value). Reactions contained 2 mg/ml of lysate protein. (A) 

Muscle (B) Liver (C) Gonad (D) Gill. HIF-1 migrates at 100 kD (see input). 
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Figure 16: Results of IP of tissues from F. grandis held under normoxia (N) or hypoxia (H). 

Reactions contained 2 mg/ml of lysate protein. Fish (N=2 for each treatment) incubated for 24 h 

at ~ 7.9 mg/l (99% air saturation) for normoxia or 0.6 mg/l (7.5% air saturation) for hypoxia. (A) 

SDS-PAGE gel stained for total protein with Colloidal Coomassie. (B) Immunoprecipitated 

proteins detected by western blotting. Note the band at 100 kD that is more abundant in hypoxic 

samples. 
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