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Abstract 

Aggression and violence are social behaviors that exact a significant toll on human 

societies. Individuals with aggressive tendencies display deficits in effortful control, particularly 

in affectively charged situations. However, not all individuals with poor effortful control are 

aggressive. This study uses event-related potentials (ERPs) to decompose the chronology of 

cognitive functions underlying the link between effortful control and aggression. Specifically, 

this study investigates which ERPs moderate the effortful control - aggression association. We 

examined three successive ERP components (P2, N2 and P3) for stimuli that required effortful 

control. Results indicated that N2 activation, but not P2 or P3 activation, moderated the 

relationship between effortful control and aggression. These effects were present in negative and 

neutral contexts. This moderating effect was consistent with previous studies linking neural 

processing efficiency with reduced activation during cognitive control tasks. Our results suggest 

that efficient cognitive processing moderates the association between effortful control and 

aggression. 
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1, Introduction 

 

Aggression and violence are complex social behaviors that exact a significant toll on 

human societies (Mehta & Beer, 2007). Overly aggressive behaviors have been associated with 

increased impulsivity and limited self-regulatory skills (Nelson & Trainor, 2007). In the context 

of individuals who score high on measures of interpersonal aggression, particular deficits in 

effortful control can be seen. Effortful control is defined in part as the process of inhibiting a 

dominant response in favor of a subdominant response (Rothbart & Rueda, 2005). Since much of 

human behavior consists of habitual or instinctive actions (Hikosaka & Isoda, 2008), effortful 

control is necessary specifically in those situations when a “default mode” of behavior must be 

overridden and different action initiated (Goldstein et al., 2007). Given the diversity and 

complexity of computing different action plans, it is not surprising that many areas in the brain 

are involved in effortful control (Rothbart et al., 2007; Bush et al., 2000). In addition, there is 

considerable variability in the control strategies displayed by different individuals, and many 

psychiatric disorders, such as substance abuse and ADHD, are thought to result partly from 

effortful control impairments (Wiers et al., 2013; Vaidya et al., 2014; Siegle et al., 2007). People 

with aggressive tendencies may have difficulty regulating their behavior during negative 

emotional situations, resulting in harmful interpersonal behaviors (Lewis et al., 2007). However, 

not all individuals who have poor effortful control are aggressive. The present study uses event-

related potentials (ERPs) to decompose the chronology of cognitive functions underlying 

effortful control, and ascertains which of these cognitive functions contributes to the association 

with aggressive behavior. More specifically, the current study investigates which ERPs moderate 

the effortful control - aggression association. Additionally, the current study uses linear inverse 

models to investigate which cortical regions underlying specific ERPs moderate the association 
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between effortful control and aggression. Furthermore, to ascertain how effortful control-related 

activation patterns change depending on emotional context, this study uses an experimental 

paradigm intended to capture participants’ control abilities during negative emotional contexts, 

positive emotional contexts, and relatively unemotional contexts.  

A key aspect of effortful control is to switch from a dominant response to a subdominant 

response (Rothbart & Rueda, 2005), i.e., effectively switch action strategies. The ability to 

flexibly switch action strategies likely requires a number of underlying cognitive functions (e.g., 

Badre & Wagner, 2006; Braver et al., 2009; Eslinger & Grattan, 1993). Given that any one of 

these functions could show deficits that might contribute to aggressive behavior, understanding 

the chronology underlying effective action switching is important to set the stage for targeted 

treatment. Some cognitive processes that might contribute to flexible action switching are 

attentional orienting (Weissman et al., 2002), cognitive control (Botvinick et al., 2001), and 

context updating for subsequent behavioral action (Friedman et al., 2001). For example, a person 

needs to orient their attention towards new environmental information in order to effectively 

process this information. Additionally, a person needs to apply cognitive control to process or 

monitor conflicting information, i.e., information that would have led to the previous action 

strategy vs. information leading to the current (changed) action strategy. Lastly, the new 

information needs to be encoded to prepare for the new action strategy. These three processes 

can be measured using ERPs. To examine the time course of neural activation related to effective 

action switching, we examined three successive ERP components for a stimulus that required 

effortful control. P2 activation has been related to attentional orienting, and is thought to have 

underlying neural sources in widespread areas including occipital, temporal, and frontal regions 

(Britz & Pitts, 2011; Mulert et al., 2002; Vitacco et al., 2002). N2 activation has been related to 
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various aspects of cognitive control, such as conflict monitoring, inhibition, and emotion 

regulation, and is thought to have underlying neural sources in prefrontal regions, including 

DLPFC and ACC (Ladouceur et al., 2007; Bekker et al., 2005). P3 activation has been related to 

motivational processing, novelty, and compilation of higher-level decision-making processes, 

and is thought to have underlying neural sources in posterior regions, including occipital regions 

(Barry & Rushby, 2006; Volpe et al., 2007). By examining the effects of this succession of ERP 

components on the association between effortful control and aggression, we hope to gain a 

greater understanding of the impact of these temporal processes on ineffective effortful control 

and aggressive behavior. We hypothesize that temporally distinct patterns of neural activation 

will moderate the association between participant scores of effortful control and aggression. In 

order to elicit effortful control in the context of action switching, we used a modified AX 

continuous-performance task (AX-CPT; Rosvold et al., 1956). This task consists of a cue, to 

which participants have to provide a speeded response, then a delay period, and then a probe, to 

which participants have to provide a second speeded response. A preponderance of one trial type 

(A-X) creates a habitual response. Effortful control resources, on the other hand, are recruited 

when action switching is necessary in order to adjust action strategies based on new contextual 

information; that is, when the trial type changes (A-Y). 

In addition, in line with the Rothbart model of emotional reactivity impacting effortful 

control abilities (Rothbart & Sheese, 2007), we were interested in how this neural chronology 

changes in the face of salient emotions. Previous studies that required aspects of effortful control 

have yielded prefrontal cortical activation differences depending on the emotional context of the 

task. For example, Monk et al. (2003) found greater ACC activation to fearful faces than neutral 

faces during an attention task; Ochsner et al. (2004) found ACC, VLPFC, and DLPFC activation 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854958/#R26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854958/#R27
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during emotional up-regulation and down-regulation; and lastly, Lamm and Lewis (2010) found 

elevated VMPFC activation for a negative condition compared to a neutral condition in a 

motivated go/no-go task. In order to determine if moderating effects of neural activation differ 

depending on emotional context, an emotional component was included in the form of neutral, 

positive, or negative affectively charged pictures. Notably, the negative pictures shown in this 

task were usually (75 percent) of a violent or threatening nature . A picture from one of these 

categories was presented during the delay period, i.e., independent of task requirements, so that 

neural activation underlying the process of action switching could be measured in the context of 

neutral, positive, or negative (violent or threatening) affective stimuli. We hypothesize that in the 

face of negatively valenced images compared to positive or neutral images, participants would 

show greater neural activation underlying action-switching processes and thus reveal a stronger 

moderating impact on aggressive behavior.  

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854958/#R20
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2, Method 

2.1 Participants  

The sample was recruited from undergraduate students taking psychology classes at the 

University of New Orleans. Participants were 76 undergraduate students (35 male). Criteria for 

exclusion from the study were current psychiatric diagnoses, current use of psychoactive 

medication, and uncorrected visual impairments. All students were given extra credit to 

compensate for their participation. All students were English speaking. Ethical approval for the 

project was obtained from the University of New Orleans’ Institutional Review Board. 

2.2 Procedure 

 Participants were briefly introduced to the testing environment, after which informed 

consent was obtained. Participants were then seated in the testing room to complete 

questionnaires. After completion of the questionnaire battery, participants were seated 67 

centimeters in front of a computer monitor. The electrode sensor net was applied. They were 

given a practice block of 16 trials, with the option to repeat the practice block, in order to ensure 

proficiency with the task. 

2.3 Measures & Task 

2.3.1 The Adult Temperament Questionnaire Short Form (ATQ; Evans & Rothbart, 

2007) is a 77-item reliable and valid self-report measure of emotional temperament and self-

regulatory capacity. The measure consists of 13 subscales, three of which comprise the effortful 

control scale: attentional control, inhibitory control, and activation control. The effortful control 

scale was used as a measure of an adult’s ability to effortfully regulate their actions. 



 

 6 

2.3.2 The Buss Perry Aggression Scale (BPAS; Buss & Perry, 1992) is a 29-item 

standardized, valid, and reliable self-report measure of aggression in adults. The overall score 

(average of all items) was used to measure aggressive tendencies in this sample. 

2.3.3 Action Switching Task. The task was a modified AX continuous performance task 

(Rosvold, Mirsky, Sarason, Bransome, & Beck, 1956). Images were presented on a 17-in 

monitor using E-prime Software (Psychology Software Tools, Inc., Pittsburgh, PA; Schneider, 

Eschman, & Zuccolotto, 2002). Stimuli were shown on a black screen and consisted of negative 

and neutral photos from the International Affective Picture System (IAPS; Lang, Bradley, & 

Cuthbert, 2008) and single letters presented in either blue (cue) or white (probe). Negative, 

positive, and neutral pictures were 11 cm wide by 8 cm tall and presented in black and white 

(visual angle was 9.39 degrees). Letters were presented in 60-point size uppercase bold Courier 

New font. Trials were roughly 3.7 seconds in duration and consisted of the following events (see 

Figure 1): fixation (500 ms), cue (100-1000 ms), delay (1500 ms), probe (100-1000 ms), and 

post probe fixation (500 ms). Cue and probe trial times were adjusted dynamically based on 

participant performance (within each trial cue and probe trial times were always identical). The 

delay period was comprised of fixation (500 ms), IAPS picture (800 ms), and fixation (200 ms). 

Neutral, positive, and negative pictures were presented during the delay in pseudo-random order 

(all participants received the same random order). A diagram of the task is shown in Figure 1. 
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Figure 1. Modified AX-CPT Task Diagram. 

 

 

 

The task consisted of two trial types, AX and AY, distributed randomly throughout the 

blocks. “A” stands for targeted cues and “X” stands for targeted probes while “Y” stands for any 

nontargeted probes. AX trials were the propensity setting trial type (66% of trials) and required 

participants to push a 2 after the cue and a 3 after the probe. AY trial types were presented less 

frequently (33% of trials) and required participants to push the 2 button after both the cue and the 

probe. Because AX trials were the propensity setting trial type, AY trials required participants to 

alter their usual action plans from pushing a 3 after the probe to pushing a 2 after the probe. The 

task was broken down into three blocks of 100 trials (300 hundred trials total) with opportunities 
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to rest in between each of the blocks. The task yielded two behavioral measures: performance 

accuracy and reaction times. 

Participants completed two practice blocks of 8 trials each in which no pictures were 

displayed but task performance feedback was provided to ensure task proficiency. Feedback was 

presented for erroneous cue/probe response patterns or late responding and consisted of a red 

line, presented for 200 ms. Performance feedback was only provided during the practice block 

and not during the actual test blocks.  

2.4 EEG data collection and analyses 

EEG was recorded using a 128-channel Geodesic Sensor Net and sampled at 250 Hz, 

using EGI software (Net Station; Electrical Geodesic, Inc., Eugene, OR [data were also 

processed using Net Station]). Once the impedance values for all EEG channels were reduced to 

below 50 kΩ, data acquisition began. During recording, all channels were referenced to Cz and 

after acquisition, data were re-referenced using an average reference. 

Data were filtered using a FIR bandpass filter with a low-pass frequency of 50 Hz and a 

high-pass frequency of .3 Hz. To best capture eye blink artifacts, the threshold was set to 140 µV 

(peak-to-peak) and all trials in which this threshold was violated were excluded from analyses. 

Furthermore, signal activation change (peak-to-peak) exceeding 150 µV across the entire 

segment and fast transits exceeding a difference (peak-to-peak) of 140 µV were marked as bad 

and interpolated. Trials with more than 10 bad channels were excluded from analyses. 

2.4.2 Scalp data analyses. Waveforms for correct AX and AY trials were segmented into 

epochs from 400 ms before to 600 ms after stimulus onset and baseline corrected for the 400 ms 

preceding stimulus onset. Mediofrontal P2 activation was maximal between 160 and 270 ms 

after stimulus onset, mediofrontal N2 activation was maximal between 270 and 390 ms after 
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stimulus; and parietal P3 activation was maximal between 270 and 490 ms after stimulus onset. 

Peak activations were therefore extracted during these time windows. The mean number of trials 

comprising correct AX ERPs was 42.9 (SD = 9.6; range = 40), and the mean number of trials 

comprising correct AY ERPs was 18.4 (SD = 4.5; range = 24). 

Visualization of the correct AX and AY stimulus-locked waveforms revealed clear N1, 

P2, and N2 components for mediofrontal electrodes and clear P3 components for parietal 

electrodes (See Figure 2 – grand averaged waves). Scalp N2 and P2 activation was exported for 

the following mediofrontal electrodes: four midline electrodes (VREF [Cz], 6 [FCz], 11 [Fz], and 

16) as well as ten flanking electrodes (10, 18, 19, 4, 5, 12, 106, 7, 112, and 13). Scalp P3 data 

was exported for the following parietal electrodes: four midline electrodes (VREF, 55, 62 [Pz], 

72) as well as eight flanking electrodes (80, 79, 78, 77, 31, 54, 61, and 67). Because of individual 

differences in peak activation across electrodes, each participant’s greatest (most negative or 

most positive, depending on ERP component) activation within these electrode clusters during 

AX or AY trials was analyzed. 

 

Figure 2. Grand average ERP waveforms. 

 

 

 

2.4.3 Source-space data analyses. A distributed inverse model that incorporates the 

change in activation from one electrode to another (in this case 129 electrodes) was used to 

Positive 
Neutral 
Negative  
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calculate the source-space activation. This type of algorithm estimates activation voxel-by-voxel 

and sample-by-sample and does not require any dipoles to be “fit”, thereby limiting the influence 

of user bias. The specific algorithm used in the current study was LORETA (Low Resolution 

Brain Electromagnetic Tomography), which applies a constraint to the minimum-norm solution 

in order to minimize the discrepancy between values of adjacent voxels (to achieve the most 

realistic model) within the GeoSource interface (Electrical Geodesic, Inc., Eugene, OR). A 

regularization constant (indicating how much noise is modeled) of 10-4 was applied. This amount 

of regularization revealed current flow patterns that matched (via visual inspection) the grand-

averaged scalp topography better than other levels. 

After the data were modeled (LORETA) for the entire cortex (2447 voxels), morphology-

based regions of interest (ROIs) were generated using the Montreal Neurological Institute (MNI) 

average adult MRI (see Figure 3). We were interested in six ROIs: the left and right VLPFC ROI 

(comprised of 22 voxels each; lateral part of BA 11 and 47), the dACC ROI (comprised of 50 

voxels; dorsal part of BA 24 and 32), the left and right DLPFC ROI (comprised of 63 voxels 

each; BA 9 and dorsal part of BA 46), and the VMPFC/OFC ROI (comprised of 147 voxels; 

ventromedial parts of BAs 11, 10, 14, and 13). Source waveform amplitudes (nA) for all voxels 

within an ROI were extracted for 400 ms before stimulus onset to 600 ms after stimulus onset 

and baseline corrected using the 400 ms before stimulus onset. To ensure that each participant’s 

maximal activation was analyzed, we chose the voxel and moment in time (within the time 

period during which the scalp ERP component was maximal) that showed the most activation for 

each ROI. 

 

 



 

 11 

Figure 3. Morphology-based regions of interest (ROIs) generated using the Montreal 

Neurological Institute average adult magnetic resonance image (MRI). 

 

 

 

 

 

2.4.4 Statistical Analyses. All EEG data with values larger or smaller than 2 SD from the 

mean were changed to show values of 2 SD from mean, thus preventing statistical analyses from 

being skewed by outliers. Regression analyses were conducted in this study in order to examine 

the moderating role of brain activation on the relation between effortful control and aggression. 

A priori t-tests revealed sex differences for some independent and dependent variables (see Table 

1); therefore, sex was entered as a covariate in all EEG analyses. Additionally, for data in the 
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negative condition, in order to capture only brain activation that was related to both cognitive 

control and negative emotional state, negative AX and neutral AY brain data were entered as 

covariates. For data in the positive condition, in order to capture only brain activation that was 

related to both cognitive control and positive emotional state, positive AX and neutral AY brain 

data were entered as covariates. For data in the neutral condition, in order to capture only brain 

activation that was related to both cognitive control and a relatively unemotional context, 

negative and positive AY and neutral AX brain data were entered as covariates. 

 

Table 1. Sex Differences. 
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3, Results 

3.1 Behavioral Results 

In order to determine if there were any behavioral effects of emotional context (neutral, 

negative, positive), two repeated-measures ANOVAs were conducted on AY trials: 1) with 

performance accuracy as the dependent measure and 2) with reaction times as the dependent 

measure. Results were not significant for performance accuracy, F(2,68) = .76, p = .47, η2 = .02, 

or reaction times, F(2,68) = 1.52, p = .31, η2 = .04, suggesting that emotional context did not 

influence performance accuracy or speed during action switching.  

3.2 ERP Condition Differences 

In order to determine if there were any ERP differences due to emotional context 

(neutral, negative, positive), three repeated-measures ANOVAs were conducted: 1) P2 activation 

as dependent variable, 2) N2 activation as dependent variable, and 3) P3 activation as dependent 

variable. Since there were sex differences in the ERP data (see Table 1), sex was entered as a 

between-subjects factor in these analyses. Additionally, trial count was entered in all analyses as 

a covariate.  

Results indicated that there was no main effect of emotion context on P2 amplitude, 

F(2,122) = .89, p = .41, η2 = .01, nor was there a main effect of sex on P2 amplitude, F(1,61) = 

2.86, p = .10, η2 = .05.  

Results for N2 amplitude showed a significant interaction of emotional condition by sex, 

F(2,122) = 4.36, p = .02, η2 = .07. This result indicates that males showed less negative N2 

activation in negative trials than in positive trials (Mean difference = 1.04, p = .02), while 

females showed less negative N2 activation in neutral trials than in negative trials (Mean 

difference = .77, p = .04). Additionally, males showed significantly less negative N2 activation 
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than females in negative trials (Mean difference = 2.42, p = .004). All other contrasts were not 

significant. 

 Results for P3 amplitude indicated a significant within-subjects effect of emotional 

condition, F(2,122) = 5.42, p = .006, η2 = .08, as well as a significant main effect of sex, F(1,61) 

= 9.14, p = .004, η2 = .13, with females showing less positive P3 amplitudes than males. Pairwise 

comparisons for P3 amplitude indicated that subjects had a significantly less positive activation 

in negative trials than in neutral trials (Mean difference = 1.43, p < .001) or in positive trials 

(Mean difference = 1.79, p < .001); there was no difference in P3 activation between positive and 

neutral conditions.  

3.3 ERP Moderator Effects 

 Because not everyone with poor effortful control has aggressive tendencies, we also 

conducted a number of linear regression analyses to test whether ERP amplitudes moderate the 

association between effortful control and aggression. All covariates, outlined earlier, were 

entered in step one of the regression model.  Next, ERP amplitude and effortful control (centered 

to decrease the possibility of multicollinearity influencing results, Aiken & West, 1991) were 

entered in step two. Lastly, an interaction term of ERP amplitude and effortful control was 

computed and entered in step 3 to test for moderation effects. Aggression was entered as the 

dependent variable. Correlations between individual variables are summarized in Table 2, while 

interaction (moderating) results are presented in Table 3. Results revealed that N2 amplitude in 

both negative and neutral conditions significantly moderated the association between effortful 

control and aggression. When probed at values of 1 SD above and below the mean, additional 

regression analyses revealed that this moderating effect was driven by low (less negative) N2 

activation. At low levels of N2 activation (less negative) effortful control was a significant 
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predictor of aggression scores in both negative conditions, β = -.59, t(58) =       -3.62, p = .001, 

and neutral conditions, β = -.53, t(58) = -3.45, p = .001. At high levels of N2 activation (more 

negative), effortful control was not a significant predictor of aggression scores in negative 

conditions, β = -.11, t(58) = -.55, p = .58, or neutral conditions, β = -.20, t(58) = -1.16, p = .25. 

N2 amplitude in the positive emotional condition did not significantly moderate the association 

between effortful control and aggression. Additionally, there were no significant moderation 

effects for P2 or P3 amplitudes for any emotional conditions. Moderation plots are presented in 

Figure 4.
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Table 2. Preliminary Pearson correlation analyses (r-values) between effortful control, aggression, and brain measures. 
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Table 3. Regression Showing P2 Moderation Effects Predicting Aggression. 

 

 

 

Table 4. Regression Showing N2 Moderation Effects Predicting Aggression. 
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Table 5. Regression Showing P3 Moderation Effects Predicting Aggression. 

 

 

 

Figure 4. Moderation plots: Interaction between N2 amplitudes and Effortful Control on 

aggression. 
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3.2 N2 Source Space Analyses 

Source space analyses were conducted to elucidate which cortical generators underlie the 

moderating effects outlined above. Source space analyses were only conducted for the N2 in 

negative and neutral conditions, because only this ERP in these conditions showed significant 

moderation at the scalp level. Linear regression analyses were conducted separately for all ROIs. 

Regression models were identical to the model structure outlined above, except that source space 

activation was used rather than scalp ERP activation. In other words, step one consisted of all 

covariates, step 2 consisted of main effects (source space activation underlying the N2 and 

effortful control values), step 3 consisted of the interaction between source space activation and 

effortful control, and the dependent variable was level of aggression.  Source space activation 

and effortful control values were centered to decrease the possibility of multicollinearity 

influencing results (Aiken & West, 1991). Correlations between individual variables are 

summarized in Table 4, while interaction (moderating) results are presented in Table 5. In the 

negative emotion condition, source-space ROIs that significantly moderated the association 

between effortful control and aggression included the right DLPFC, right VLPFC, VMPFC, and 

ACC. When these interactions in the negative condition were probed at values of 1 SD above 

and below the mean, additional regression analyses revealed that this moderating effect was 

driven by low source space activation. At low levels of source space activation, effortful control 

was a significant predictor of aggression scores for DLPFC right, β = -.80, t(58) = -4.76, p < 

.001, VLPFC right, β = -.63, t(58) = -3.90, p < .001, VMPFC, β = -.75, t(58) = -4.18, p < .001, 

and dACC, β = -.63, t(58) = -3.63, p < .001. At high levels of source space activation, effortful 

control was not a significant predictor of aggression scores for DLPFC right, β = -.08, t(58) = -

.43, p = .67, VLPFC right, β = -.21, t(58) = -1.24, p = .22, VMPFC, β = .04, t(58) = .17, p = .87, 



 

 20 

or dACC, β = -.06, t(58) = -.32, p = .75. In the neutral emotion condition, source-space ROIs that 

significantly moderated the association between effortful control and aggression included the 

right DLPFC, VMPFC, and ACC. When these interactions in the neutral condition were probed 

at values of 1 SD above and below the mean, additional regression analyses revealed that this 

moderating effect was also driven by low source space activation. At low levels of source space 

activation, effortful control was a significant predictor of aggression scores for DLPFC right, β = 

-.73, t(58) = -4.12, p < .001, VMPFC, β = -.69, t(58) = -4.09, p < .001, and dACC, β = -.68, t(58) 

= -3.66, p = .001. At high levels of source space activation, effortful control was not a significant 

predictor of aggression scores for DLPFC right, β = -.12, t(58) = -.56, p = .58, VMPFC, β = -.12, 

t(58) = -.63, p = .53, or dACC, β = .14, t(58) = .48, p = .63. Moderation plots are presented in 

Figure 5.
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Table 6. Pearson correlation analyses (r-values) between effortful control, aggression, and brain & behavioral measures. 
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Table 7. Moderation Effects Showing Interactions Between Source Space Activation Underlying 

the N2 and Effortful Control. Values are Regression Coefficients Predicting Aggression. 
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Figure 5. Moderation plots: Interaction between N2 amplitudes and Effortful Control on 

aggression for source-space regions. 
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4, Discussion 

4.1 General Discussion 

The present study examined the time course of neural activation underlying action 

switching processes, a key aspect of effortful control, and how these patterns of activation 

contribute to aggressive behavior. More specifically, we used ERPs and source-space activation 

(LORETA) to examine whether patterns of neural activation moderate the relationship between 

effortful control and aggression, and whether these moderating effects differed in emotionally 

salient contexts compared to a relatively neutral context. As predicted, brain processes 

underlying action switching significantly moderated the association between effortful control and 

aggression at both the scalp and source-space levels. 

Given that the ability to flexibly switch action strategies likely requires a number of 

underlying cognitive functions (e.g., Badre & Wagner, 2006; Braver, Paxton, Locke, & Barch, 

2009; Eslinger & Grattan, 1993) and that any one of these functions could show deficits that 

might contribute to aggressive behavior, we decomposed the time course underlying action 

switching. Our results indicate that only activation during the N2 window significantly 

moderates the effortful control – aggression relationship. Given that the N2 has been associated 

with aspects of cognitive control (Lamm, Zelazo, & Lewis, 2006) as well as aggression (Lamm, 

Granic, Zelazo, & Lewis, 2011; Lewis, Granic, & Lamm, 2006), this suggests that activation 

during the N2 time window might be a neural mechanism that influences self-control over 

aggressive tendencies. However, it is not clear as to why the P2 and the P3 did not also moderate 

the effortful control – aggression association. Given that P2 activation has been associated with 

attentional orienting (Kanske, Plitschka, & Kotz, 2011; Eimer, Van Velzen, Gherri, & Press, 

2006) and the fact that the current task presents all stimuli in the same location, it may be that 
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our task did not require enough attentional orienting. Thus, it may be that we had insufficient 

attentional-orienting-related variance to reveal moderational effects. It is possible that in the 

context of a task with active attentional orienting demands, P2 activation would play a 

moderating role in the effortful control - aggression relationship. 

 P3 activation, which has generally been associated with novelty (Friedman, Cycowicz, & 

Gaeta, 2001; Debener, Makeig, Delorme, & Engel, 2005), context updating (Donchin & Coles, 

1988; Verleger, 1988), and motivation (Boksem et al., 2006; Potts, 2004), was not a significant 

moderator of the effortful control – aggression relationship. While there has been research 

linking P3 activation with aggression (Bartholow, Bushman, & Sestir, 2006) and externalizing 

behavior (Lacono et al., 2002), research linking P3 activation to effortful control is much sparser. 

For this reason, while P3 amplitude seems to be related to aggressive behavior, it does not seem 

to specifically moderate the association between effortful control and aggression.  

The direction of the moderating effect for N2 activation was consistent with previous 

studies linking neural processing efficiency with reduced activation during cognitive control 

tasks (e.g. Lamm, Pine, & Fox, 2013; Casey et al., 1997; Durston et al., 2006). For example, 

Lamm, Pine, & Fox (2013) found that participants who successfully deployed a reactive (to the 

environment) style of responding showed less prefrontal activation when required to execute 

last-minute environmentally-triggered action switching. This decrease in prefrontal activation 

was interpreted to reflect increased efficiency of cognitive-control-related cortical processing. 

Thus, our results suggest that efficient cognitive control processing moderates the association 

between effortful control and aggression. Follow-up analyses were conducted using source space 

models (LORETA) to determine which neural generators drive the moderating effect. ROIs 

moderating the association between effortful control and aggression included DLPFC, VLPFC, 
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dACC, and VMPFC. The direction of these effects is also consistent with an efficiency 

hypothesis, in that lower (efficient) activation in these regions is associated with lower levels of 

aggression at high levels of effortful control. This pattern of results supports the Lamm et al. 

(2013) findings and suggests that improved control during the presence of last-minute 

environmentally triggered information, as measured by an action-switching paradigm, is related 

to low prefrontal cortical activation. More specifically, these findings, in combination with the 

related extant literature, suggest a nascent theory of efficiency that may inform our 

understanding of the neural underpinnings of cognitive control. 

Interestingly, moderation effects existed only at low levels of N2 activation, which 

suggests that low or efficient N2 activation during action switching, in conjunction with high 

effortful control, contributes to less aggressive outcomes. We expected to find the converse as 

well, that is, high N2 amplitude and poor effortful control should result in higher aggression. 

Instead, the relationship between effortful control and aggression is flat at high levels of N2 

activation. This suggests that our data might have an issue with restriction of range; that is, our 

participants may not have shown enough variability in aggression. This argument is supported by 

the fact that we recruited participants from a university environment. Recruitment from a less 

preselected (academic) sample might reveal a greater range of aggression scores and thus 

potentially reveal both the high effortful control – efficient processing – low levels of aggression 

effect and the poor effortful control – inefficient processing – high levels of aggression effect. 

Future research should replicate this study on a more diverse sample.   

Previous literature has found emotion-specific increases in ERP activation for negative 

emotional contexts compared to emotionally neutral contexts (e.g., Lamm, Pine, & Fox, 2013; 

Lewis et al., 2006; Lamm & Lewis, 2010). However, because these studies did not include a 
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positive emotional condition, it is unclear if these effects were due to valence or arousal. 

Similarly, Van Wouwe et al. (2010) found decreased N2 activation (less negative) for a positive 

compared to a relatively neutral emotional condition in a similar AX-CPT task that showed 

positive affective video clips. However, this study did not examine negative emotional 

conditions. The current results add to the extant literature by examining this issue within a single 

task, allowing direct comparison between positive, neutral, and negative contexts. Interestingly, 

women showed the expected increased N2 activation in the negative condition while males did 

not. This pattern of results is, however, in line with research by Lithari et al. (2010), who showed 

that females demonstrate significantly more negative N2 amplitudes than males when passively 

viewing negative affective stimuli. Additionally, there was a main effect of emotion for P3 

amplitude, showing that following violent imagery participants had lower P3 activation than in 

neutral or positive contexts. This finding might be informative for studies of emotion regulation, 

and suggests that following negative emotional stimuli, we are left with fewer neural resources 

with which to encode future actions. It is not clear why emotion differences were not found for 

P2 amplitude, though the fact that emotional trials were presented randomly within each block 

might have “watered down” the impact of the negative trials. Future research should compare 

design differences, i.e., emotional random design vs. emotional block design, to ascertain if this 

is indeed the case.   

Additionally, results from the current study showed that N2 activation moderates the 

effortful control – aggression relationship in the negative and neutral conditions but not in the 

positive condition. These results suggest that in the face of negatively-charged (specifically, 

violent or threatening) events, individuals with efficient cognitive control are less likely to 

respond in an aggressive manner. Additionally, in the context of positively-charged events, likely 
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we require few cognitive-control-related resources to prevent us from lashing out aggressively. 

Given that our neutral stimuli were not overly emotionally arousing, e.g., a chair, it is not clear 

why we found significant moderation effects for this condition. It may be that our randomized 

presentations of emotional trials lead to an emotional carryover effect from negative to neutral 

trials, and that positive trials were arousing enough (positive valence) to override this emotional 

carryover effect. Future research should replicate this study using an emotional block design.  

4.2 Limitations 

There are limitations to the current study. First, the use of source-space analyses allowed 

us to ask region specific questions that scalp ERPs did not. However, activation patterns are 

estimated effects and therefore should be interpreted with caution. Furthermore, since activation 

is estimated, measuring activation differences for small ROIs or regions close together is 

difficult.  

Second, the current study used questionnaire-based proxies to measure both effortful 

control and aggression. Questionnaire-based measures may be more subjective than biological or 

behavioral measures, generally for reasons relating to social desirability (Sjöström & Holst, 

2002; Richmond, Kiesler, Weisband, & Drasgow, 1999; Armitage & Conner, 1999). Therefore, 

these results should be replicated using behavioral measures of aggression and effortful control. 

Finally, the current study had a small age range of participants. Previous neuroimaging 

research has shown that neural activation during cognitive control tasks differs between 

adolescents and adults (Rubia et al., 2006; Luna, Padmanabhan, & O’Hearn, 2010; Eshel et al., 

2007), and therefore the adults included in this study might not be fully representative of the 

adult range. This limits generalizability of results to other age ranges. Future work should expand 
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on the age range of participants, in order to determine if moderating effects differ throughout 

development, including later adulthood. 

4.3 Conclusions 

These results suggest that neural mechanisms underlying flexible action switching 

moderate the association between effortful control and aggression. Specifically, these results 

suggest that low or efficient prefrontal cortical activation associated with effortful control 

contributes to less aggressive outcomes. Future studies should build upon these results by 

examining whether the converse is also true; that is, does high or inefficient activation during the 

N2 time window contribute to more aggressive outcomes? These studies should prescreen 

individuals to ensure that some participants are high in aggressive behavior so that there is 

enough variability in aggression scores for these effects to be discernable. Additionally, future 

research should incorporate longitudinal developmental data to ascertain whether inefficient use 

of regulatory resources early in life predicts future aggressive behavior problems, thereby 

highlighting a neural mechanism (or biomarker) that might be targeted by treatment approaches. 
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