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ABSTRACT 

 

 

The purpose of this thesis is to study and investigate a practical and efficient 

implementation of corner orientation detection using multisteerable filters. First, practical theory 

involved in applying multisteerable filters for corner orientation estimation is presented. Methods 

to improve the efficiency with which multisteerable corner filters are applied to images are 

investigated and presented. Prior research in this area presented an optimization equation for 

determining the best match of corner orientations in images; however, little research has been done 

on optimization techniques to solve this equation. Optimization techniques to find the maximum 

response of a similarity function to determine how similar a corner feature is to a multioriented 

corner template are also explored and compared in this research. 

Key Words: Steerable filters, feature detection, orientation estimation, corner detection
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CHAPTER 1 

 

INTRODUCTION 

 

Many computer vision applications involve using features to obtain some sort of useful 

information from images. In particularly, many features are characterized by their orientation. A 

feature may be characterized by a single orientation angle, or multiple orientation angles. Steerable 

filters provide an efficient framework to determine orientation angles of various types of features 

that are oriented in one or more directions. 

1.1 Historical Review of Steerable Filter Applications 

For this thesis, much research was done on applications of multisteerable filters. This 

research provided the motivation for exploring more efficient techniques to automatically 

determine the orientation of corner features using multisteerable filters. Some examples of 

important applications of steerable filters include palmprint recognition [1], image stitching [2], 

driver assistance systems [3], facial expression recognition [4], scene flow estimation [5], detection 

of cerebral vessels [6], and many more. 

These computer vision applications are all based on the detection of features to gather 

useful information from an image. Much research has been done in the area of steerable filter 

design for detecting features such as edges [7], [8], [9]. However, edges are simple features that 

are only oriented in one direction; thus, they can be steered with only one orientation angle and 

can be detected by using single steerable filters. Many useful computer vision applications are 

based on detecting features that are oriented in multiple directions, such as crossings, wedges, and 
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corners [9]. The development of the theory for designing steerable filters which can be steered in 

two or more directions was thus an important development in the field of computer vision. 

Applications such as palmprint recognition use steerable filters to detect simple features 

such as the orientation of palm lines, and match people based on their palmprint [1]. Such 

applications are important for access granting and security systems, as well as criminal 

investigations. Steerable filters provide an efficient framework for quickly detecting these features 

in multispectral images, and using score level fusion techniques to determine likely matches 

between palm prints. 

Another important application of steerable filters involves image stitching. Image stitching 

is the process of taking multiple images of the same scene taken from different viewpoints, and 

attempting to resolve their homography differences by determining features in images. Image 

stitching has historically been done by determining corner features in images [10]. There has been 

much research and progress on the detection of corner features [11]; however, little research has 

been done on efficiently detecting the orientation of corners. Moreover, accurately determining 

the orientation of corners in an image requires the detection of two orientation angles since a corner 

is made up of two edges oriented at different angles [9]. Historically, the orientation of corners has 

either been estimated by finding the gradient direction of a corner patch [10], or rotating a corner 

template in the spatial domain for every possible angle combination [11]. However, these 

approaches are either not very accurate, or require significant computation power to be performed. 

The development of the design theory of multisteerable filters provided a significant increase in 

the possibility of efficiently determining the orientation of corner features in images. Once these 

corner features and their orientation angles are detected in images, a homography matrix can be 

determined by mapping one set of points in image A to another set of points in image B to 
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transform the images into the same space [2], [12]. Since many computer vision techniques involve 

detecting many corners in images, and their respective orientation angles, the efficiency with 

which these corners can be detecting is extremely important. 

Many Driver-Assistance (DA) systems also benefit from the research in feature detection 

using multisteerable features. With the advent of Google’s driverless car, driver-assistance systems 

are becoming an important area of technological advancement. In particular, steerable filters can 

be used to determine the lane a driver is currently in, which is important for autonomously 

navigating the road [3]. Such approaches have been based on detecting edge features using a small 

subset of single steerable filters [3]. However, this approach relies on the assumption that roads 

are well marked, which is not always true in many cities. In many areas of the world, roads are 

imperfect; thus, more complicated features must be used to effectively and autonomously navigate 

the roads in real time. In this case, the computational complexity of detecting features becomes a 

constraint on the DA system since decisions must be made in real time, or fatal accidents could 

occur. For this reason, improvements in the efficiency with which multisteerable filters can be 

applied to detect features and their orientation in images could have a significant impact on DA 

systems. 

Other important applications of steerable filters include exciting topics such as coding 

facial expressions [4], flow estimation in 3D images [5], and detecting cerebral vessels [6]. Using 

a small subset of low-level features and combining them can provide estimates of facial 

expressions people use when they are experiencing certain emotions such as happiness, sadness, 

or surprise [4]. Additionally, steerable filters can be used to estimate the flow between one image 

scene and another. This is similar to image stitching because features are detected in one image, 

and then found in a subsequent image. This approach can be used to track the movements of a 
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target within an image, and could have many important applications such as surveillance, tracking 

of aircraft, or tracking movements of fish. Finally, steerable filters also have many important 

prospects in the medical field. Research has been done on uses of steerable filters to detect cerebral 

vessels in the human body using 3D medical imaging technologies [6]. 

These computer vision techniques cover a diverse area of applications, but they all can 

benefit from steerable filter implementations. Much research has been done on single steerable 

filters which are oriented in a single direction; however, until recently, theory of the design of 

multisteerable filters for multioriented features had not been done. Multisteerable filters can be 

used to efficiently detect the orientation of features in images, thus all of the applications listed in 

this section can benefit from improvements for the efficiency of detecting features. This thesis 

explores ways to improve the efficiency of detecting corners in images and efficiently determine 

the orientation angles that characterize these angles. Furthermore, optimization techniques are 

presented and compared. With improvements in the efficiency of applying multisteerable filters to 

images, many computer applications could benefit, and applications that were previously not 

possible due to computation complexity may become possible. 
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CHAPTER 2 

 

THEORY OF MULTISTEERABLE MATCHED FILTERS 

1.1  

2.1 Basic Concepts and Definitions 

Many computer vision problems involve the detection of features, which are typically 

patterns in images which may be oriented in multiple directions. Gathering useful information in 

images about the structure of a scene typically involves the detection of low-level features such as 

lines, edges, corners, and junctions. Applications involving feature detection are many, and include 

tasks such as target tracking, contour detection, homography transformations, image stitching, and 

camera calibration. 

One common method for detecting low level features is to simply rotate a pattern template 

directly in the spatial domain for every possible angle orientation. Moreover, many features, such 

as corners, are defined by multiple orientation angles, which makes the spatial approach 

computationally intensive. Steerable filters can be used to significantly speed up the process of 

feature detection in images. 

Steerable filters are filters which can be steered in any direction through some simple 

mathematical operations. The process by which a feature is synthesized at a specific orientation 

angle is referred to as steering. 

In the past, steerable filter approaches were limited to a single orientation angle. However, 

many important image features are characterized by two or more orientation angles. A 

multisteerable filter is defined as a filter which can be efficiently steered in two or more directions. 

More recently, a new technique for efficiently implementing multisteerable matched filters at 



 6 

arbitrary rotation angles was presented for grayscale images [9]. The information presented in this 

chapter is an explanation of this research. 

2.2 Background Information and Past Approaches 

One solution for detecting low level features is to simply filter the image with a set of 

template kernels in the spatial domain, rotated at certain orientations. As previously mentioned, 

this approach is not only more computationally intensive, but many low-level features can appear 

at arbitrary rotation angles within an image. If a feature is at an orientation angle that is not one of 

the pre-computed kernels used, this feature detection method could fail. 

For features which are simple and only characterized by a single orientation angle, such as 

edges, Jacob and Unser showed that filter designs based on steerable filters can efficiently detect 

low-level features [13], [14]. The rotated filters are then composed of a weighted sum of 

predetermined base filters [14]. The problem with this approach is that many important features in 

images, such as corners, are comprised of at least two orientation angles. 

Much research has already been done in an effort to extend the concept of single steerable 

filters to multisteerable filters. These approaches are based on eigensystems, where the orientation 

is defined as a vanishing directional derivative. In these approaches, the minimum number of 

directional derivatives that are needed to make the observed signal vanish is correlated with the 

number of orientation angles of the feature [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. 

While these approaches can successfully detect two or more orientation angles that compose a 

feature, cannot distinguish between a corner, L-junction, T-junction, X-junction, or checkerboard 

feature [9]. One solution for detecting the orientations of multi-oriented features, while still being 

able to distinguish between different patterns oriented in the same directions, was proposed by 

Muhlich, Friedrich, and Aach, and is based on modeling these features [9]. 
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2.3 Design of Single Steerable Filters 

Steerable filters of a single orientation can be approximated by a template that is polar 

separable. These single-oriented filters can then be combined to produce a multisteerable filter, 

such that the relationship of the orientation angles of the individual single-oriented filters directly 

relates to the multiple orientations of the resultant multisteerable filter [9]. By inserting single 

steerable filters as arguments to a polynomial equation, and equating them to the desired pattern, 

multisteerable filters can then be determined by finding polynomial coefficients [9]. The resulting 

multisteerable filter is guaranteed to also be steerable [9]. This approach can be used to construct 

multi-oriented patterns like corners, L, T, and X-junctions. Thus, the problem of being able to 

detect the orientation angles of a pattern, but not the underlying pattern, is no longer present with 

this method [9]. 

2.3.1 Matched Filtering and Steerable Filters 

The problem of detecting a template g in a feature f can be formulated as maximizing the 

correlation between the two patterns. In images, features often need to be detected at arbitrary 

rotation angles; therefore, the concept of matched filtering must be extended to rotated matched 

filtering [9]. To simplify notation, the rotation operator (∙)θ is introduced to rotate a bivariate 

function by the angle θ as shown in equation 2.1. 

 𝑔𝜃(𝑟, 𝜙) = 𝑔(𝑟, 𝜙 − 𝜃)  (2.1) 

This notation allows for the definition of rotated matched filtering. The problem of 

detecting a template g in an image f can thus be formalized in equation 2.2 by introducing Amax, 

which is a measure of how strongly the template is found in the image.  

 𝐴𝑚𝑎𝑥 = 𝐴(�⃗�, 𝑥0) = 𝑚𝑎𝑥
𝜃

([𝑓(𝑥) ∗ 𝑔𝜃(𝑥)]𝑥0
) (2.2) 
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with “*” denoting correlation, [∙]x0 meaning “evaluated at x
0
”, and the template and image patches 

are both normalized to unit energy. The feature is said to be present at the point x0 and in the 

direction  �⃗� at points which exhibit sufficiently large local maxima. Steerable filters allow for an 

efficient method to compute equation 2.2.  

2.3.2 Single Steerable Filters 

Since many important low-level features have the property of polar separability, the 

template g can be split into two parts as shown below in equation 2.3. 

 𝑔(𝑟, 𝜙) = 𝑔𝑑𝑖𝑠𝑡(𝑟)𝑔𝑎𝑛𝑔(𝜙) (2.3) 

 One example of a polar separable template is an edge, which can be represented by the 

radial and angular function given below in equation 2.4.  

 𝑔𝑑𝑖𝑠𝑡(𝑟) = {
1,   𝑟 ≤ 𝑟𝑚𝑎𝑥

0,    𝑟 > 𝑟𝑚𝑎𝑥
 

 𝑔𝑎𝑛𝑔(𝜙) = {
1,   0 ≤ 𝜙 < 𝜋

−1,   − 𝜋 ≤ 𝜙 < 0
 (2.4) 

The polar separability of the radial and angular function is further depicted in Figure 2.1. 

 

   *     =   

Figure 2.1: Polar Separability of a Single Steerable Filter 

This is a single steerable filter. The filter can be steered by finding the Fourier coefficients 

of the single steerable filter, and multiplying them by 𝑒−𝑗𝑝𝜃, which rotates the feature by the angle 

θ. The Fourier coefficients of a polar separable filter can be found by using equation 2.5. 

  𝑥𝑝 = ∑ 𝑓2𝑃
−2𝑃 𝑒−𝑗𝑝𝜃 (2.5) 

Where xp is the pth coefficient of the steerable filter in the Fourier domain. 



 9 

2.4 Design of Multisteerable Filters 

The main idea for creating multisteerable filters is that two or more single steerable filters 

can be combined in such a way that they represent a multi-oriented template such that the resulting 

template is also steerable with two or more steering angles [9]. This chapter presents information 

that is mainly obtained from the work by Muhlich, Friedrich, and Aach [9]. 

2.4.1 Creating a Checkerboard Filter from Two Edge Filters 

The checkerboard pattern is an important feature, since it is used in many computer vision 

applications such as camera calibration. This pattern is characterized by two orientation angles; 

thus, it can be detected using multisteerable filters. This section shows how the combination of 

two single steerable edge filters can result in a multisteerable checkerboard filter. 

Let g1 and g2 represent two edge templates. The desire is to create a checkerboard filter k 

such that the checkerboard filter can be steered directly by the steering angles for g1 and g2. This 

approach can be expressed as shown in equation 2.6, where ○ is an unknown operator that needs 

to be found. 

 𝑘𝛼,𝛽 = 𝑔1
𝛼○𝑔2

𝛽
 (2.6) 

To find an operator that satisfies equation 2.6, Figure 2.2 is referenced. From this figure, 

an operator which satisfies equation 2.7 is desired. The only operator which satisfies this system 

of equations is the multiplication operator. Therefore, the multisteerable checkerboard pattern can 

be represented by the multiplication of two single steerable edge filters, and is also steerable by 

steering the edge filters individually. 

  ○    =   

Figure 2.2: Creation of a Checkerboard Pattern from Two Edge Filters 
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−1○ − 1 = 1             −1○ 1 = −1 

     1○ − 1 = −1               1○ 1 = 1        (2.7)        

 

Many low-level multisteerable features can be synthesized by simple multiplication. 

However, there are also many features which cannot, including corners. The method used to 

synthesize a multisteerable checkerboard feature must therefore be generalized further. 

2.4.2 Properties of Multisteerable Filters 

The previous section demonstrated that multi-oriented features must be represented as a 

product of single-oriented steerable filters. Additionally, single steerable filters can be summated 

to produce a multisteerable filter. Steerable filters are closed under multiplication and addition; 

therefore, the sum and product of two steerable filters is also steerable. Furthermore, a steerable 

filter is also steerable when multiplied by a scalar constant. Lastly, a constant mapping is steerable. 

These four properties of steerable filters are thus listed as follows: 

 Property 1:     g, h are steerable  g·h is steerable 

 Property 2:     g, h are steerable  g+h is steerable 

 Property 3:     g is steerable  c·g is steerable 

 Property 4:     A constant mapping is steerable 

These operations used in these four properties are the same operations used in a polynomial 

equation. Therefore, a multisteerable filter can be synthesized by solving a set of polynomial 

equations to find the desired pattern. 
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2.4.3 Synthesizing Multisteerable Filters from Polynomials 

The previous section demonstrated how the properties of steerable filters hint at the idea of 

synthesizing multisteerable filters from polynomial equations. This section shows how this can be 

accomplished by using a corner template as an example. 

Let p(g1, g2) represent a polynomial equation with two steerable filters as arguments. If 

using edge templates as the single steerable filters, then figure 2.3 shows the desired result. 

p( , )  =    

Figure 2.3: Synthesizing a Corner Template from Two Edge Templates 

This equation can be modeled by a bivariate polynomial equation of degree 1 as shown in Equation 

2.9. 

 𝑝(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 (2.9) 

For any points x1 in the first quadrant of g1 and x2 in the first quadrant of g2, g1(x1) = 1 and g2(x2)= 

-1, which results in p=1. Similar, if a point is selected in each quadrant, and plugged into equation 

2.9, the set of polynomial shown in Equation 3.10 is obtained. 

 𝑝(1, −1) = 𝛼1 + 𝛼2 − 𝛼3 − 𝛼4 = 1  

 𝑝(1,1) = 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = −1  

 𝑝(−1,1) = 𝛼1 − 𝛼2 + 𝛼3 − 𝛼4 = −1 

 𝑝(−1, −1) = 𝛼1 − 𝛼2 − 𝛼3 + 𝛼4 = −1 (2.10) 
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Putting this set of polynomial equations into matrix form then yields the following system 

of equation shown in Equation 2.11. 

 [

1 1
1 1

−1 −1
1 1

1 −1
1 −1

1 −1
−1 1

] [

𝛼1

𝛼2
𝛼3

𝛼4

] = [

1
−1
−1
−1

]  (2.11) 

Solving the system of equations shown in Equation 2.11 results in α1 = -0.5, α2 = 0.5, α3 = -0.5, 

and α4 = -0.5. Therefore, a corner can be represented by the following steerable filter shown in 

Equation 2.12. 

 𝑘(𝑟, 𝜙) = −0.5 + 0.5𝑔1 − 0.5𝑔2 − 0.5𝑔1𝑔2 (2.12) 

Moreover, equation 2.12 is composed of single steerable filters and constants which follow the 

properties of steerable filters explained previously. Therefore, the corner template in equation 2.12 

is also a steerable filter. However, this polynomial method is based in the spatial domain, so it is 

no more efficient than prior approaches in the spatial domain. To design an efficient method for 

obtaining multisteerable filters, the design must be done in the Fourier domain. 

2.4.4 Fourier Implementation of Steerable Filters 

To implement a multisteerable filter in the Fourier domain, the Fourier coefficients of the 

individual single steerable filters must first be found. To do this, each base filter is simply 

multiplied by complex exponentials for each Fourier coefficient. This transform produces a Fourier 

coefficient vector of size 1 by 2p. Transforming these coefficients back to the spatial domain is 

done as shown below in Equation 2.13. 

 𝑔𝛼(𝑟, 𝜙) = 𝑔𝑑𝑖𝑠𝑡(𝑟) ∑ 𝑥𝑝
𝑃
𝑃 𝑒−𝑗𝑝𝛼𝑒−𝑗𝑝𝜙 (2.13) 

Next, if the product of two base filters is computed, the equation shown in Equation 2.14 is 

obtained. 

 𝑔𝛼(𝑟, 𝜙) = 𝑔𝑑𝑖𝑠𝑡
2 (𝑟) ∑ ∑ 𝑎𝑝𝑒−𝑗𝑝𝛼𝑃

𝑞=−𝑃
𝑃
𝑝=−𝑃 𝑏𝑞𝑒−𝑗𝑝𝛽𝑒−𝑗(𝑝+𝑞)𝜙   (2.14) 
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Setting q = s – p, equation 2.14 becomes the equation shown below in equation 2.15. From this 

equation, it is evident that multiplying two image templates in the spatial domain is equivalent to 

convolving their 4P + 1 coefficients. 

 𝑔𝛼(𝑟, 𝜙) = 𝑔𝑑𝑖𝑠𝑡
2 (𝑟) ∑ ∑ (𝑎𝑝𝑒−𝑗𝑝𝛼𝑃

𝑝=−𝑃
2𝑃
𝑠=−2𝑃 𝑏𝑞𝑒−𝑗𝑝𝛽)𝑒−𝑗𝑠𝜙 (2.15) 

 Following the same method, it is known that adding two steerable filters is equivalent to 

adding their Fourier coefficients. Multiplying a steerable filter by a constant is the same as 

multiplying its Fourier coefficients by a constant. Lastly, adding a constant to a steerable filter is 

the same as adding the constant to the 0th Fourier coefficient, which is the DC offset term. Thus, 

all of the operations shown in section 2.4.2 can be implemented efficiently in the Fourier domain. 

Equation 2.12 in the spatial domain becomes Equation 2.16 in the Fourier domain, where a and b 

are the Fourier coefficients of two single steerable edge templates, and �⃗� is a vector of size 4P+1 

whose center point is equal to -0.5 for the DC offset term.  

 𝑘(𝑟, 𝜙) = �⃗� + 𝑔(𝛼) − 0.5𝑔(𝛽) − 0.5𝑔(𝛼) ∗ 𝑔(𝛽)    (2.16) 

2.5 Additional Techniques 

One of the problems with convolving Fourier coefficients is that the convolution operation 

turns two sets of 4P+1 coefficients into an 8P+1 coefficient vector. Therefore, nearly twice as 

many coefficients are obtained than what was started off with. However, if the innermost 4P+1 

coefficients are taken to be result of the convolution, information from higher order Fourier 

coefficients is still included in the multisteerable filter. Furthermore, doing so produces a more 

accurate approximation of the multisteerable filter in the spatial domain than simply convolving 

2P+1 Fourier coefficients [1]. 

However, truncating the Fourier coefficients in this way leads to the Gibbs phenomenon of 

undesirable oscillations [1]. To reduce such oscillations, the technique of windowing is applied to 
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the Fourier coefficients. Windowing is a well-known technique from FIR filter design which 

produces smoother transitions and reduces oscillations. Many different kinds of window functions 

can be used, such as the Hamming window, the Hann window, the Bartlett window, and the 

Blackman window [1]. However, for this thesis, the author chose to use the Hamming window. 

The one disadvantage of windowing is that transitions from black to white are not as sharp. 

However, since the low pass characteristics of an imaging system prevent perfectly sharp 

transitions anyways, approximating the multisteerable filter in this way could actually improve 

performance on real images. 

2.6 Similarity Function 

Lastly, one problem with synthesizing multisteerable filters in this way is that the energy of 

each multisteerable filter is not constant due to interference effects between single steerable filter 

templates [1]. This could lead to problems with determining the optimal pattern match because 

one coefficient may have significantly more energy than the others, which biases this filter to be 

the best fit. The energy of a corner template can be expressed as a function of the difference of 

angles between the two single steerable filters. Therefore, the energy can be precomputed for every 

angle difference, and the multisteerable template can be normalized accordingly for more accurate 

detection. 

In the spatial domain, feature detection can be expressed as maximizing the similarity, Q, 

function shown in equation 2.17, where < 𝑓1, 𝑓2 > is the dot product of two images in the spatial 

domain. 

 𝑄(𝛼, 𝛽) =
<𝐼𝑓𝑒𝑎𝑡𝑢𝑟𝑒,𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒>

√<𝐼𝑓𝑒𝑎𝑡𝑢𝑟𝑒,𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒>√<𝐼𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒,𝐼𝑓𝑒𝑎𝑡𝑢𝑟𝑒>
 (2.17) 

The values of α and β which maximize the similarity function are the angles which best match the 

feature pattern. Therefore, the optimal corner template orientation is given by these two angles. 
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 Similarly, a similarity function can be computed in the Fourier domain. Equation 2.18 

shows the implementation of a similarity function in the Fourier domain. One thing to note is that 

this similarity function can be used for any filter as long as the Fourier coefficients can be found. 

 𝑄′(𝛼, 𝛽) =
<�⃗⃗�𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ,�⃗⃗�𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒>

√<�⃗⃗�𝑓𝑒𝑎𝑡𝑢𝑟𝑒,�⃗⃗�𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒>
 (2.18) 

Therefore, the similarity function can be computed directly from the Fourier domain. An advantage 

to this approach is that computing the similarity function in the Fourier domain is more efficient 

because only the dot product of coefficient vectors of size 4P+1 needs to be computed. In the 

spatial domain, the dot product of the entire feature and image patches needs to be computed, so 

the size of the coefficient vectors can be chosen such that optimizing the similarity function in the 

Fourier domain is always more efficient than doing so in the spatial domain.  

 To prove that the implementation in the Fourier domain from Equation 2.18 is more 

efficient that the implementation in the spatial domain in Figure 2.17, we can compute the number 

of multiplications and additions required for each method. The numerator of the similarity function 

for both equations contains most of the information needed for determining the optimal orientation 

angles, while the denominator is simply for normalization purposes. For this reason, I will analyze 

the number of multiplications and additions by simply considering the numerator. 

 If one considers the radius of the corner feature and image patch in the spatial domain for 

comparison purposes, the number of multiplications and additions required for the spatial domain 

implementation of the similarity function for a single orientation are (2r+1)2 and (2r+1)2-1 

respectively. Thus, the number of multiplications and additions rises exponentially for the spatial 

domain implementation, and has a computational complexity on the order of O(r2). 

 Similarly, if one considers the 4P+1 coefficients for the Fourier domain implementation 

for comparison purposes, the number of multiplications and additions required for the Fourier 
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domain implementation of the similarity function for a single orientation are 4p+1 and 4p 

respectively. Thus, the number of multiplications and additions rises linearly for the Fourier 

domain implementation, and has a computational complexity on the order of O(p). 

 Table 2.1 shows a comparison of the number of Multiplications and Additions for each 

implementation. From empirical evidence based on simulations of the Fourier domain 

implementation, it was determined that fewer than p=9 coefficients are required for very accurate 

results. However, the spatial domain implementation may require a significantly higher value for 

the radius, depending on the scale of the image. 

 

Table 2.1: Comparison of Spatial Domain and Fourier Domain Implementations 

Spatial Domain Fourier Domain 

r Multiplications Additions p Multiplications Additions 

1 9 8 1 5 4 

2 25 24 2 9 8 

4 81 80 4 17 16 

8 289 288 8 33 32 

16 1089 1088 16 65 64 

32 4225 4224 32 129 128 

50 10201 10200 50 201 200 

 

Setting the 4p+1 multiplications required in the Fourier domain equal to the (2r+1)2 

required in the Spatial domain equal when p=9 and solving for r shows that a radius of 2 or less is 

required for the spatial domain implementation to achieve similar computation complexity. 

Furthermore, a radius of 2 or less corresponds to an image size of 5 by 5 or less, which is typically 

not a large enough image patch to be considered a corner. Therefore, as long as the value of p is 

set to 9 or less, the Fourier domain implementation of multisteerable filters can be considered 

much more efficient than the spatial domain implementation. Additionally, the Fourier domain 

implementation allows for an efficient method of reducing large image features to a smaller size  
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CHAPTER 3 

 

Efficient Implementation and Optimization 

 

3.1 Overview 

In this section, we will investigate efficient methods for implementing a corner detection 

algorithm using multisteerable filters. The research presented in this chapter is primarily from the 

work of the author of this thesis. Many image processing techniques involve detecting corners, 

and estimating their orientation. For example, stitching two images of the same scene from 

different viewpoints can be done by detecting corners in each image, estimating their orientation, 

and solving for the homography matrix that best transforms one set of corners into the other set of 

corners.  

Historically, methods for estimating corner orientation have been slow because they were 

based mostly on brute force methods. For single image application, such slow speeds are 

acceptable, but often there are large databases of images for which corners must be detected and 

compared. In this case, there is a desire for a much faster corner pattern detector, and multisteerable 

filters can significantly speed up corner estimation through different optimization techniques. 

3.2 Modifications to Polynomial Method 

Section 2.4.3 shows how a corner template can be synthesized by solving a system of 

polynomial equations for the desired template. However, there is one issue with this approach. 

Namely, the corner templates for α=0°, β=90° and α=90°, β=90 will produce different corner 

templates as shown in Figure 3.1. 
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Figure 3.1: Examples for α=90°, β=0° (left) and α=0°, β=90 (right) 

Similarly, the corner templates for α=180°, β=270° and α=270°, β=180 would also produce the 

same set of corner templates shown in Figure 3.1. This poses a problem because a template can 

have two sets of orientation angles which perfectly characterize the same template. To solve this 

problem simply setting the angle α to be equal to the larger of the two angles before synthesizing 

the corner template, as shown in Equation 3.1, will ensure that only the desired pattern is the one 

that is obtained. 

 (𝛼, 𝛽) =  {
(𝛼, 𝛽)        𝑖𝑓 𝛼 ≥ 𝛽
(𝛽, 𝛼)        𝑖𝑓 𝛽 > 𝛼

 (3.1) 

 

3.3 Storing Coefficients 

Another advantage of implementing an edge filter in the Fourier domain is that the single 

steerable edge templates can be stored directly in memory to be used as inputs to the multisteerable 

filter. This is done by pre-calculating the coefficients for all 360 possible rotations of an edge 

template, incrementing by the desired accuracy. For our simulations, we used an accuracy of 

0.001°.  

Furthermore, the last term in equation 2.16, which is the correlation of the two edge feature 

vectors, can also be pre-computed. This can be done by simply fixing one edge template at a 0° 

rotation, and incrementally increasing the other edge template by the desired accuracy until all 

options are covered. Then this correlation result can be steered to the correct orientation based on 

the values of α and β. However, some care needs to be taken to ensure the correct results. 
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 If the difference angle between α and β in Figure 2.2 is greater than 180°, then the white 

and black areas are reversed. In this case, the angles α and β must be reassigned as shown in Figure 

3.2 to ensure the correct multisteerable filter is generated. Then the coefficients should be steered 

to the magnitude of the difference angle of the new values of α and β. 

 (𝛼, 𝛽) = {
(180° + 𝑚𝑖𝑛(𝛼, 𝛽) , 𝑚𝑎𝑥(𝛼, 𝛽) − 180°)      𝑖𝑓 |𝑎 − 𝑏| ≥ 180°
(𝛼, 𝛽)                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (3.2) 

 Storing the pre-computed computed values for the arguments in Equation 2.16 in this way 

significantly speeds up the process of computing corner templates by around 3 times. However, 

further improvements might be achievable by exploiting the parallelism of Equations 2.15 and 

2.16 by using the Graphics Processor Unit (GPU) to compute and apply corner templates in 

parallel. In this case, the GPU would most likely significantly outperform the method of storing 

coefficients due to the fact that the speed of accessing Random Access Memory (RAM) is slow, 

and often the bottleneck in speed for many applications. 

 

3.4 Corner Detection 

To determine where corners are in an image, first corner detection must be applied to the 

image. The corner detection method used in this thesis is the Harris corner detection algorithm. 

Typically, a Gaussian window is first applied to smooth the image, which makes corners stand out 

more; however, in this case a Gaussian window made the exact point of the corner off by a 

significant amount. If the detected point of the corner is not sufficiently close to the real corner, 

the similarity function will not give accurate results in orientation estimation. 

To determine where corners are located in an image, the Harris corner detection algorithm 

shown in Equation 3.3 was used. The constant k can be any real value between 0.04 and 0.06, but 
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for this thesis the value 0.24 was used. The corners which gave the top 50 responses were then 

selected as corners. 

 𝑅 = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 − 𝑘 ∗ 𝑇𝑟𝑎𝑐𝑒 (3.3) 

 Another Harris corner detection algorithm is to use the determinant divided by the trace as 

a measure of corners. However, in this case, the trace can be 0 which will result in the response 

being infinite. To avoid such issues, the corner detection shown in Equation 3.3 was used. 

3.5 Optimization Methods 

The similarity function from Equation 2.18 can be solved for the orientation angles which 

give the highest response by using different optimization methods. In this thesis, I tried three 

different optimization methods, and compared their results. To compare the results of different 

optimization methods, I used a brute force method to compute the global optimal, and used these 

results as the ground truth. The optimization methods that were tested include gradient descent 

optimization, particle swarm optimization, and Levenberg-Marquardt optimization. The 

Levenberg-Marquardt algorithm was implemented, and subsequently it was found to be an 

ineffective method for this similarity function. This section explains the theory of these different 

optimization methods, as well as specific information on the implementation in this thesis.  

3.5.1 Gradient Descent Optimization 

Gradient descent optimization is an optimization method for finding the minimum of a 

multivariate function by travelling in the gradient direction. As long as the gradient is a non-zero 

vector, the gradient vector will be orthogonal to the tangent vector to a curve going through x0 on 

the level set f(x) = c [14]. Therefore, the direction of maximum increase is in the gradient direction, 

so for minimization problems the minimum is in the negative gradient direction. Equation 3.4 

below shows the equation for updating the coordinate x for a function f(x) by subtracting the 
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gradient. The argument α can be set to some value, or dynamically set to decrease depending on 

the number of iterations. The same principle applies to multivariate functions such as the similarity 

function in Equation 2.18. For maximization problems, the objective function can simply be 

inverted to solve for the minimum. 

 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘) (3.4) 

 The gradient descent method stops updating the value of x once the value of the gradient 

is 0, at which point a local minimum is found. However, in practicality, the stopping criteria for 

updating x can be if the gradient is below some small value. For this thesis, if the value of the 

gradient dropped below the accuracy of the pre-computed single steerable filters, the gradient 

descent method stopped. This means that if the gradient dropped below 0.001, the gradient method 

would stop.  

For the implementation in this thesis, the value of α was initialized to a value of 16, and 

decremented by 1 until it reached a value of 1. Care must be taken to not decrease α too much or 

else the Gradient method may never converge. The value of a was initialized to a larger value at 

the start of the gradient descent method in order to allow the x to incremented in larger steps when 

it is far away from the solution. Furthermore, the value of x is randomly initialized between (0°,0°) 

and (360°,360°), so the current x could be far away from the optimal solution. After a few iterations 

of the gradient descent method, x should be much closer to the optimum, so a can be set to 1 so as 

to not overshoot the correct solution. 

One issue with the gradient descent method is that if a function has local optimum, the 

gradient method can converge to local optima instead of the global optimum. This poses a problem 

in estimating the orientation of a corner. Figure 3.2 below shows one example of a cost function 

with multiple local maxima. In this example, a perfectly synthesized corner with steering angles 
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α=269.1013°, β=328.4598° were used as the feature pattern. Then, a brute force analysis of the 

objective function at every rotation angle was obtained. The areas that are more red in color 

correspond to areas with greater values of the cost function, while areas that are more blue 

correspond lower values. 

 

Figure 3.2: Objective Function with Multiple Local Maxima 

From this graph, it is evident that the objective function has multiple local maxima. The 

global maxima are correctly identified near the correct global maximizer. However, there is also a 

significant local maximum around α=0°, β=360° and α=360°, β=0°. Furthermore, there are many 

local maxima whenever the difference between α and β is around 0°. The gradient descent method 

has trouble converging to the global optimum in these cases unless it is randomly initialized close 

to the global optimum. 
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To explain this phenomenon, we must take a look at the templates generated from these 

orientation angles. The feature oriented at α=269.1013°, β=328.4598°, and an image template 

oriented at α=0°, β=360° are shown in Figure 3.3. From this Figure, it is evident that the local 

optima are present when the template image is completely black. Corners with extremely small 

differences in angles α and β will similarly produce a black template. 

  

Figure 3.3: Comparison of Feature with Template 

Next, we should take a look at how the template looks when difference of the orientation 

angle is decremented or increment. Figure 3.4 shows two templates where the value of α is 

incremented and decremented by 30°. From this Figure, we can now see why a completely black 

template yields a local optimum in the similarity function. The similarity function is a measure of 

how similar one feature vector is to another, and clearly a black template is more similar to the 

feature than the surrounding points. This is because similarity is roughly defined as the number of 

pixels which are the same value between images. 

 

  

Figure 3.4: Decrementing α by 30° (left) and Incrementing α by 30° (right) 

One simple method of solving this problem is to randomly reinitialize α and β when the 

angle difference is extremely small, or close to 360° apart. In this way, we can attempt to force the 

solution to converge near the global optimum. Since these angle pairs correspond to black image 

templates anyways, the template is not a corner, and therefore has no corner orientation. In these 
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cases, it should be obvious that the gradient descent method did not converge to the global 

maximum if the known image feature is known to be a corner. 

However, there are also some situations where other local maximum can be present. In 

these cases, the second local maximum is typically close in value to the true global maximum, but 

significantly far away to pose problems with orientation estimation. Figure 3.5 shows one such 

case.  

 

Figure 3.5: Objective Function with Indistinguishable Local Optimum 

In this example, the true values of α and β are 210.0410° and 7.8983° respectively. One 

local maximum correctly is detected at the global maximum; however, a second local maximum 

is apparent around α=28°, β=185°. While this local maximum is close to the true orientation of the 

corner, this is a significant margin of error. This is one major problem with the gradient descent 

method. 
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In this thesis, instead of computing the gradient directly, an approximation of the gradient 

was obtained by computing the difference in the value of the similarity function at a point very 

close to the current point. This difference is a good approximation for the gradient when a function 

for the gradient is not determined. To approximate the gradient, the value of the similarity function 

is computed for α being incremented by a very small value. The same method is used to find the 

gradient in the β direction.  

3.5.2 Particle Swarm Optimization 

Partical swarm optimization is an optimization method that was introduced by a sociologist 

and engineer working together [14]. The partical swarm algorithm was created as an attempt to 

mimic the social behavior of animals such as bees, birds, and wildebeest [14]. Instead of updating 

a single candidate solution, as in the case of the gradient descent method, partical swarm 

optimization involves updating a set of candidate solutions all at once, called a swarm. 

The basic idea of partical swarm optimization is that some candidate solutions in the set 

will travel toward the global best solution, others will travel towards their local best, and others 

will travel in the same direction they were previously travelling in. This idea based on social 

patterns can be modeled as shown in Equation 3.5.  

 𝑥𝑝+1 = 𝑟1𝑐1𝑉𝑝 + 𝑟2𝑐2(𝑥𝐿 − 𝑥𝑝) + 𝑟3𝑐3(𝑥𝐺 − 𝑥𝑝) (3.5) 

In this equation, r1, r2, and r3 are random numbers in the interval 0 ~ 1. Similarly, c1, c2, and 

c3 are constants in the same interval. Finally, xp is a candidate solution at the pth iteration, xL is the 

local best solution for this partical, and xG is the global best solution for all particles. Finally, Vp 

is the velocity of this candidate particle at the pth iteration. To obtain the initial velocity, two 

random sets of particle swarms are generated, and the velocity is defined as the difference between 



 26 

these particles. For this thesis, the value of r1 was set to always be equal to 1, and all of the constants 

were also set to be equal to 1. Thus, equation 3.5 simplifies into Equation 3.6. 

 𝑥𝑝+1 = 𝑉𝑝 + 𝑟1(𝑥𝐿 − 𝑥𝑝) + 𝑟2(𝑥𝐺 − 𝑥𝑝) (3.6) 

 For this implementation, I initially started off with 50 particles and 50 iterations. The 

solution which yields the largest value for the similarity function in Equation 2.18 is then taken to 

be the orientation of the corner. However, to improve the efficiency of this method, whenever an 

iteration of the partical swarm method did not result in a new global best, the particle which 

corresponded to the lowest value in the similarity function was dropped from the set of particle 

solutions. 

 One advantage the particle swarm method has over the gradient descent method is in 

parallelization. Since the particle swarm method tests many different values for α and β at once, 

all of these multisteerable filters as well as their corresponding values in the similarity function 

can be computed in parallel. The gradient descent method cannot be done in parallel because the 

gradient must be computed before the next candidate point can be determined. 
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CHAPTER 4 

 

SIMULATION AND RESULTS 

1.1  

4.1 Synthesized Corners 

First, perfectly synthesized corners were generated to compare optimization methods under 

ideal conditions. To test the two methods, they were compared with the brute force method being 

considered the ground truth. One thing to consider when comparing methods is that twice as many 

steering operations are needed for the gradient descent method since the steerable filter must be 

steered for α and β being incremented by a small amount in order to obtain an estimation of the 

Gradient. For this reason, a single iteration is defined to be a steering operation that is performed 

for each method. This is the fairest way to compare the two methods directly. For example, for the 

particle swarm method with 50 particles and 50 runs, 2500 iterations will be performed. Similarly, 

for the gradient descent method which converges after calculating the gradient 1250 times, 2500 

iterations will be performed. 

Table 4.1 shows a comparison of the number of iterations required for both the gradient 

descent and particle swarm optimization methods. For this comparison, 100 different simulations 

were run in order to get good idea of which method was more efficient. Most notably, the average 

number of iterations for the gradient descent method was over 4 times greater than the average 

number of iterations for the particle swarm method. Furthermore, the particle swarm method was 

fairly consistent since in the worst case it only needed 23 more iterations than the average number 

of iterations to converge. However, the gradient descent method was wildly inconsistent, requiring 

over 5 times the average number of iterations in the worst case.  
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Table 4.1: Comparison with Ideal Conditions for 100 Trials per Case 

  Trials 
Average 

Iterations 
Worst 
Case 

Local 
Max 

Global 
Max 

Gradient Descent 100 1688.74 8720 13 87 

Particle Swarm 100 419.43 443 0 100 

 

Another thing to note is that the gradient descent method actually converged to a local 

maximum which was near the global maximum, but significantly far away from the global 

maximum, 42 times out of 100. Moreover, the particle swarm method converged to a point very 

close to the global maximum in every case. When the gradient descent method did converge to the 

global maximum, however, it was closer to the results obtained from the brute force method than 

the particle swarm method. This result is to be expected since the particle swarm method is based 

on randomization. However, such accuracy is not possible with this implementation since even the 

global optimum obtained from the brute force method is typically within 2° of error. To explain 

why the particle swarm method is clearly more efficient than the gradient descent method, two 

examples are presented in the following sections 

4.1.1 Example 1 

In this example, the values of α and β were randomly chosen to be 184.6626° and 138.3290° 

respectively. Figure 4.1 shows the generated corner, as well as the detected corner orientations for 

each method. From this Figure, it is evident that both methods converged to the correct solution. 

Table 4.2 provides a more in depth analysis of the accuracy of the results for each method. 

 

Figure 4.1: Comparison of Corner Orientation Estimation Optimization Methods – Example 1 
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Table 4.2: Accuracy Comparison of Optimization Methods 

  
Actual 
Corner 

Brute 
Force 

Gradient 
Descent 

Particle 
Swarm 

Alpha 184.6626 184.422 184.04 183.267 

Error (α) - 0.2406 0.6226 1.3956 

Beta 138.329 138.018 140.403 140.834 

Error (β) - 0.311 2.074 2.505 

 

From Table 4.2, it is evident that the gradient descent method is more accurate than the 

particle swarm method for this example. However, both optimization methods are 2° away from 

the actual corner in the β orientation. Furthermore, neither method converged to a solution as close 

to the actual corner as the brute force method, which is expected. However, the accuracy of these 

methods is most likely suitable for most applications of corner orientation estimation. 

To compare the efficiency of both optimization methods for this example, a graph of the 

number of iterations versus the distance from the global best of the similarity function as 

determined by the brute force method is shown in Figure 4.2. In this case, it is clear why the 

gradient descent method is less efficient than the partical swarm method. The particle swarm 

method converged in only 402 iterations, while the gradient descent method took 1378 iterations 

to converge. The main reason that the gradient descent method is slower than the particle swarm 

method for this example is that the gradient descent method had to reinitialize 4 times for reasons 

explained in section 3.5.1. However, it is clear from this graph that the gradient descent method 

converges at a much slower rate than the particle swarm method.  
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Figure 4.2: Comparison of Iterations Required Between Methods – Example 1 

4.1.2 Example 2 

In this example, the values of α and β were randomly chosen to be 275.4343° and 136.1875° 

respectively. Figure 4.3 shows the generated corner, as well as the detected corner orientations for 

each method. From this Figure, it is evident that both methods converged near the correct solution. 

Table 4.3 provides a more in depth analysis of the accuracy of the results for each method. 

 

Figure 4.3: Graphical Comparison of Corner Orientation Estimation Optimization Methods – Example 2 
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Table 4.3: Gradient Descent Converges to Local Maximum 

  
Actual 
Corner 

Brute 
Force 

Gradient 
Descent 

Particle 
Swarm 

Alpha 275.4343 275.72 318.178 274.831 

Error (α) - 0.2857 42.7437 0.6033 

Beta 136.1875 134.56 95.383 137.44 

Error (β) - 1.6275 40.8045 1.2525 

 

From Table 4.3, it is evident that the gradient descent method converged to a local 

maximum. However, this angle combination produced a corner template that closely matches the 

actual corner in appearance. This is because of the effect caused by the angle difference between 

α and β being greater than 180° mentioned in Section 3.2. Realistically, this is the same corner as 

the others because if one subtracts 180° from α and adds 180° to β for the gradient descent method, 

the corresponding errors are reduced to 0.0513 and 1.9905 respectively. Therefore, the accuracy 

for each optimization method is adequate in this example. 

Figure 4.4 shows a comparison of the number of iterations required for each method in this 

example. In this case, the gradient descent method converged at a much faster rate than normal, 

and even converged faster than the particle swarm method overall. For this example, the gradient 

descent method converged in 398 iterations while the particle swarm method converged in 417 

iterations.  

However, Table 4.1 shows that these results are the exception. On average, the particle 

swarm method outperforms the gradient descent method in terms of efficiency by 4 times. This is 

mainly due to the fact that the gradient descent method has a large variance in the number of 

iterations required to converge, while the particle swarm method has a very small variance. These 

results can be explained by the fact that the gradient descent method must be initialized to a random 

number to begin, which can often be significant far away to the global maximum, or in the worst 

case close to a local maximum that is not the global maximizer. 
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Figure 4.4: Comparison of Iterations Required Between Methods – Example 2 

4.2 Synthesized Corners with Added Noise 

Next, it was desired to test each optimization method under noisy conditions. Since 

imaging systems are not perfect, it is imperative that a corner orientation estimator must be robust 

to noisy conditions. Again, the two methods were compared with the brute force method being 

considered the ground truth. Four different types of noise were tested, which include Gaussian 

noise, Poisson noise, Salt and Pepper noise, and Speckle noise. The Gaussian noise had a mean of 

0 and variance of 0.1, and the Salt & Pepper noise had a 5% noise density.  

Table 4.3 shows a comparison of the number of iterations required for both the gradient 

descent and particle swarm optimization methods under these various noise conditions. For this 

comparison, again 100 different simulations were run in order to get good idea of which method 

was more efficient and more robust to different noisy conditions. Again, the average number of 

iterations for the gradient descent method was much larger than the average number of iterations 

required for the particle swarm method. Moreover, the gradient descent method seems much more 
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prone to converging to a local maximum when noise is present, especially for Poisson, Salt & 

Pepper, and Speckle type noise. 

Table 4.4: Comparison with Noisy Conditions for 100 Trials per Case 

Noise Optimization 
Average 

Iterations 
Worst 
Case 

Local 
Max 

Global 
Max 

Gaussian 
Gradient Descent 2008.5 5272 14 86 

Particle Swarm 420.16 451 0 100 

Poisson 
Gradient Descent 1846.56 6684 27 73 

Particle Swarm 407.29 432 0 100 

Salt & Pepper 
Gradient Descent 3386.28 10000 26 74 

Particle Swarm 418.54 448 0 100 

Speckle 
Gradient Descent 1909.4 5928 58 42 

Particle Swarm 419.68 463 7 93 

 

For Gaussian noise added a synthesized perfect corner, there was no noticeable change in 

the accuracy of either method. The gradient descent method did take slightly longer to converge 

on average; however, the worst case converged significantly faster than when no noise was present. 

No significant change was seen with the particle swarm method when noise was added compared 

to a perfect corner. 

When noise with a Poisson distribution is added to the corner feature, a significant increase 

in the number of times the gradient descent method converged to a local maximum over the global 

maximum occurred. The gradient descent method did converge on average faster than previously, 

but this may be due to the fact that there are more local maxima in the similarity function when 

this type of noise is present. Again, the particle swarm method showed no significant change when 

compared to the results obtained from using a perfect corner. 

Noise of types Salt and Pepper and Speckle were where the biggest decrease in 

performance was noted for the gradient descent method. When Speckle noise was added to the 

corner feature, the gradient descent method converged to a local maximum over half of the time. 
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While the gradient descent method did show a significant statistical increase in the average number 

of iterations required to converge when Salt & Pepper noise was added, this method did not show 

a significant increase when Speckle noise was added. One thing to note about the gradient descent 

method is that it is set to stop running after 10,000 iterations have occurred to prevent the program 

from running indefinitely. Some of the trial runs for the Salt & Pepper method failed to converge 

based on the stopping criteria before 10,000 iterations were performed, which significantly 

impacted the average convergence rate for this method. 

For the case of Salt and Pepper noise, the particle swarm method again showed no 

significant change from the perfect conditions. However, when Speckle noise was added to the 

corner, the particle swarm method did converge to a local maximum 7% of the time. This may be 

due to the fact that the area around the global maximum with values close to the global maximum 

is smaller under these types of noise conditions. Since this method is based on randomization, the 

probability of finding a point near the global maximum when the area surrounding the global 

maximum is smaller goes down. However, the particle swarm method should be more robust to 

noise if more iterations are performed. 

Clearly, the particle swarm method is more robust to noise in the presence of all types of 

noise that were tested for in these trials. This may be due to the fact that there are more local 

maxima in the similarity function when noise is present, which could cause the gradient descent 

to converge to local maxima more often. Since the particle swarm method is based on 

randomization, however, it is less prone to converging to a local maximum. Since in the event 

Speckle noise is present in an image, both methods performed the worst, an example will be shown 

in the following section for this type of noise in order to get a better idea of why both methods are 

converging to local maxima more often.  
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4.2.1 Example 1 – Speckle Noise 

In this example, the values of α and β were randomly chosen to be 221.1638° and 7.2180° 

respectively. Figure 4.5 shows the generated corner with speckle noise added, as well as the 

detected corner orientations for each method. From this Figure, it is evident that the particle swarm 

method converged near the correct solution, but the gradient descent method did not. Table 4.3 

provides a more in depth analysis of the accuracy of the results for each method. In this example, 

the particle swarm method converged in 463 iterations, while the gradient descent method 

converged in 3478 iterations. While the particle swarm method still shows its advantage of being 

able to converge faster, in this example it also shows that it has a greater tendency to converge to 

a global maximum, especially when noise is present. 

 

Figure 4.5: Graphical Comparison of Optimization Methods with Speckle Noise Present 

 

Table 4.5: Accuracy Comparison Under Noisy Conditions 

  
Actual 
Corner 

Brute 
Force 

Gradient 
Descent 

Particle 
Swarm 

Alpha 221.1638 230.616 136.174 226.971 

Error (α) - 9.4522 84.9898 5.8072 

Beta 7.218 3.794 183.178 4.429 

Error (β) - 3.424 175.96 2.789 

 

From Table 4.5, it is evident that the gradient descent method converged to a true local 

maximum. While the gradient descent method converged an orientation that is oriented in a similar 

direction as the actual corner, the overall error is quite large because it did not converge to the 

correct point. A graph of the similarity function for this example is shown in Figure 4.6.  
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Figure 4.6: Similarity Function of Corner with Speckle Noise 

Figure 4.6 shows the similarity function obtained from the brute force method. The local 

maxima were obtained, and plotted as red crosses on the figure. From the figure, we can see that 

there are many local maxima in this image. Figure 4.7 shows the graph in Figure 4.6 zoomed in 

around the point where the gradient descent method converged. While clearly there are larger 

maxima oriented in the -α direction, the point on which the gradient descent method converged is 

a region in the similarity function that is relatively flat. For this reason, the gradient will never be 

large enough to cause a move toward convergence in the direction of the global maximum.  
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Figure 4.7: Similarity Function Zoomed in Around Convergence Point 

 For comparison, Figure 4.8 shows the cost function for an ideal corner with no noise for 

the same values of α and β. Again, the local maxima are plotted on top of the similarity function 

as red crosses. For the ideal corner, there are still local maxima, but they appear at small angle 

differences, which would cause the gradient descent method to reinitialize, but not converge at 

those local maxima. Thus, it is apparently that noisy conditions may cause extraneous local 

maxima to appear in the similar function, which may cause problems for the convergence of the 

gradient descent method to the global maximum. Real images are captured from imaging systems 

that are not perfect, and thus there is noise present in these images. For this reason, an optimization 

method based on randomization such as particle swarm is expected to perform much better on real 

images. 
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Figure 4.8: Similarity Function of Corner with No Noise Added 

 

4.3 Corners in Real Images 

Next, it was desired to test each optimization method using corners from real images. Figure 

4.9 shows 6 different images that were used to test these optimization methods. Some of the images 

contain simple patterns where the corners should be easily apparently, while others are more 

complicated images from the real world. In all of these cases, the images were first converted to 

grayscale images since this method only works on grayscale images. Then the Harris corner 

detection algorithm was used to obtain the coordinates of corners in real images. A window of size 

61 by 61 around the corners was used as input to the orientation detection algorithm. 
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Figure 4.9: Images Used for Real Corners 

4.3.1 Example 1 - Corners in Baboon Image 

In this example, corners were found in the image of the baboon. Figure 4.10 shows the 

corner in the original image as detected by Harris corner detection, as well as the detected corner 

orientations for each method. From this figure, it is evident that all of the optimization methods 

converged to the same solution on this corner from a real image. We can also see from this Figure 

that the corner that was detected is quite different from the types of corners that were synthesized. 

In this case, the orientation of the corner could just have been determined to be shifted 180° from 

what was detected. This problem is caused because of what we consider to be a corner. In reality, 

every pixel in an image could be considered to be a corner, but tradeoffs must be made in order to 

use corners as features in images. Figure 4.11 shows a comparison of the number of iterations 

required for each method. Again, particle swarm converges much faster than the gradient descent 

method. 
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Figure 4.10: Graphical Comparison of Optimization Methods on Baboon Image 

 

 

Figure 4.11: Comparison of Iterations Required Between Methods 
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4.3.2 Example 2 - Corners in Stool Image 

In this example, corners were found in the image of the stool. Figure 4.12 shows the corner 

in the original image as detected by Harris corner detection, as well as the detected corner 

orientations for each method. From this figure, it is evident that all of the optimization methods 

converged to the same solution on this corner from a real image. The detected corners, however, 

closely resemble the corner in the original image. We can see that the left edge of the corner is 

slightly skewed to the left as opposed to the original image, but this is most likely caused by the 

fact that the center of the corner is slightly off. 

 

 

Figure 4.12: Graphical Comparison of Optimization Methods on Stool Image 
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4.3.3 Example 3 – Corners in Cameraman Image 

In this example, corners were found in the image of the cameraman. Figure 4.13 shows the 

corner in the original image as detected by Harris corner detection, as well as the detected corner 

orientations for each method. From this figure, it is evident that all of the optimization methods 

converged to the same solution on this corner from a real image. In this case, it would be very 

difficult for a human to determine that this point is a corner. However, since there is a larger mass 

of white pixels on the left side of the image, the orientation estimator correctly determined that the 

corner was oriented in this direction.  

 

 

Figure 4.13: Graphical Comparison of Optimization Methods on Cameraman Image 
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CHAPTER 5 

 

CONCLUDING REMARKS AND FUTURE WORK 

1.1  

5.1 Concluding Remarks 

The research presented in the thesis provides a practical method for estimating the 

orientation of corners in real images. The journal paper by Muhlich, Friedrich, and Aach presented 

the theory of efficiently implementing multisteerable filters in the Fourier domain, but did not 

show examples of how a corner orientation estimator could be implemented [9]. This research 

focuses on efficiently implementing a multisteerable filter for corner orientation detection. In the 

conclusion of the work by Muhlich, Friedrich, and Aach, they mentioned that further research 

could be done on finding efficient optimization methods for finding the global maximum in the 

similarity function [9]. This research aimed to fill in the missing information with regards to 

efficiently solving for the global maximum in the similarity function for corners. 

To increase the speed of determining the orientation angle of a corner, several methods 

were proposed in this research. The first method involving storing the coefficients in memory. 

Since the coefficients are much smaller than an image, they can easily be stored in memory and 

loaded before attempting to determine the orientation of a corner. Storing the coefficients in this 

way sped up the performance of the corner detection algorithm by around 3 times. However, it 

was noted that further improvements might by implementing the similarity function in parallel. 

For particle swarm method, the calculation of the similarity function for each particle can be done 

in parallel, which should greatly increase the speed of this method. However, the gradient descent 
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method cannot be implemented in parallel because only one point is tested at a time, and the 

gradient must first be calculated to determine the next point to test. 

Several different optimization methods were tested in this research, which include 

Levenberg-Marquardt optimization, gradient descent optimization, and particle swarm 

optimization. It was determined that the Levenberg-Marquardt optimization method was not well 

suited for optimizing the type of similarity function characteristic of corner features. Muhlich, 

Friedrich, and Aach used Levenberg-Marquardt optimization to solve for the global optimum in 

the similarity function; however, none of their examples involved corners and their similarity 

functions were obtained with only one orientation angle [9].  

The gradient descent method performed well on synthesized ideal corners, but took many 

more iterations to converge than the particle swarm method. Moreover, when noise was present, 

as is typical in real images, the gradient descent method had a much larger probability of 

converging to a local maximum. It was shown that the presence of noise in an image can directly 

cause more local optimum to appear in the similarity function. The particle swarm method, 

however, performed much better by not converging to a local maximum except in the case of 

speckle noise. However, even when speckle noise was present in an image, the particle swarm 

method only converged to a local maximum 7% of the time, while the gradient descent method 

converged to a local maximum over 50% of the time.  

Finally, both optimization methods were tested on corners from real images. It was shown 

that all of the optimization methods converged to the global maximum for the examples shown in 

this thesis; however, the particle swarm method still proved to be superior to the gradient descent 

method in terms of number of iterations required to converge. One important note from corners in 

real images is that they do not always appear to be corners to a human being. Moreover, it is often 
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difficult to distinguish by eye the orientation of a corner. However, it is not very important the 

orientation of the angle be determined with extreme accuracy. What is most important for most 

computer vision applications is that a method of determining the orientation of corners remains 

consistent under various homography transformations, and will not converge to local maximum. 

For this reason, the particle swarm optimization method described in this thesis provides a good 

framework for comparing orientation angles of corners in images. 

 

5.2 Future Work 

For future work, other optimization methods could be tested, or modifications to the 

particle swarm method can be implemented to result in greater accuracy for determining the 

orientation angles of corners. In the work by Muhlich, Friedrich, and Aach, they proposed 

windowing the coefficients with a window such as the Hamming window in order to reduce 

oscillations [9]. However, oscillations are similar to noise, and particle swarm optimization method 

proved to be quite robust to noisy conditions, so a windowing function may not be necessary. 

Furthermore, windowing the coefficients in this way reduces the sharpness of the edges that make 

up the corner, which makes it difficult for there to be extremely high precision in determining the 

orientation angle. Further research could be done on implementing multisteerable filters for 

corners without the use of windowing function in order to increase the accuracy of the orientation 

estimator. Lastly, further improvements could be made by exploring a parallel implementation of 

multisteerable filters using the graphics processing unit. 
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