
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Fall 12-16-2016

Spatial Data Mining Analytical Environment for Large Scale Spatial Data Mining Analytical Environment for Large Scale

Geospatial Data Geospatial Data

Zhao Yang
zyang1@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Databases and Information Systems Commons, Systems Architecture Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Yang, Zhao, "Spatial Data Mining Analytical Environment for Large Scale Geospatial Data" (2016).
University of New Orleans Theses and Dissertations. 2284.
https://scholarworks.uno.edu/td/2284

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uno.edu%2Ftd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uno.edu%2Ftd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.uno.edu%2Ftd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2284?utm_source=scholarworks.uno.edu%2Ftd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Spatial Data Mining Analytical Environment for

Large Scale Geospatial Data

 A Dissertation

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Engineering and Applied Science

Computer Science

by

Zhao Yang

M.S. University of New Orleans, 2012

December 2016

 ii

ACKNOWLEDGEMENT

After an intensive period of four years, today is the day: writing this note of thanks is the

finishing touch on my dissertation. It has been a period of intense learning for me, not

only in the scientific area, but also on a personal level. Writing this thesis has had a big

impact on me. I would like to reflect on the people who have supported and helped me so

much throughout this period.

I would like to express my heartfelt gratitude to my major professor Dr. Mahdi

Abdelguerfi for his belief in me and the support extended by him throughout my work. It

has been a wonderful experience to work under his guidance.

I would like to thank Dr. Shengru Tu who admitted me and taught the “Big Data” course

which is the foundation of my dissertation.

I would like to thank Dr. Elias Ioup. We spent five years to do the research project

together, which will be grateful memory in my life.

I would like to thank Dr. Christopher M. Summa and Dr. Dimitrios Charalampidis for

being my thesis committee members.

Lastly, I would like to thank my cat, my friends and family for their love and support

throughout.

I would also like to thank my family for their wise counsel and sympathetic ear. You are

always there for me. Finally, there are my friends. We were not only able to support each

other by deliberating over our problems and findings, but also happily by talking about

 iii

things other than just our papers.

Thank you very much, everyone!

 iv

Table of Contents

ABSTRACT .. v

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND .. 4

2.1 Big Data and R .. 4

2.2 Panoply, NetCDF and R .. 8

2.3 Hybrid Cloud .. 9

2.4 In-Memory Computing ... 10

2.5 Spatial Data Warehouse and Spatial Data Mining .. 12

2.6 Previous work ... 14

CHAPTER 3 THE FRAMEWORK .. 21

3.1 Framework Overview ... 21

3.2 Bi-Directional Spatial ETL Server .. 24

3.3 In-Memory Spatial Index and Spatial Query .. 27

CHAPTER 4 FRAMEWORK IMPLEMENTATION .. 32

4.1 Framework Structure ... 32

4.2 R with package Spatstat .. 33

4.3 R with Hadoop database (RHbase solution) ... 36

4.4 R with Hadoop database (In-memory extension solution) 40

4.5 R with Map-Reduce .. 46

4.5.1 R with package Plyrmr .. 46

4.5.2 R with package Rmr2 .. 47

4.6 Estimating the System Resource ... 50

CHAPTER 5 APPLICATIONS OF THE FRAMEWORK ... 53

5.1 Spatial data warehouse .. 53

5.2 Spatial data mining case study .. 65

5.3 Random forest method to process large file.. 74

5.4 Shark alert map ... 79

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 85

Bibliography ... 88

Appendix ... 92

VITA ..110

 v

ABSTRACT

We propose a framework for processing and analyzing large-scale geospatial and

environmental data using a “Big Data” infrastructure. Existing Big Data solutions do not

include a specific mechanism to analyze large-scale geospatial data. In this work, we

extend HBase with Spatial Index(R-Tree) and HDFS to support geospatial data and

demonstrate its analytical use with some common geospatial data types and data mining

technology provided by the R language. The resulting framework has a robust capability

to analyze large-scale geospatial data using spatial data mining and making its outputs

available to end users.

Keywords

Big Data,

Hadoop,

Hbase,

MapReduce,

R,

Data Mining,

Geographic Information System

 1

CHAPTER 1 INTRODUCTION

Nowadays, many applications are continuously generating large-scale geospatial data.

For example, vehicle GPS tracking data, aerial surveillance drones, LiDAR (Light

Detection and Ranging), world-wide spatial networks, and high resolution optical or

Synthetic Aperture Radar imagery data all generate a huge amount of geospatial data. For

instance, the geospatial image data generated by a 14-hour flight mission of a General

Atomics MQ-9 reaper drone with a Gorgon Stare sensor system produces over 70

terabytes [1]. However, as data collection increases our ability to process this large-scale

geospatial data in a flexible fashion is still limited.

The ability to analyze large-scale geospatial data is a requirement for many geospatial

intelligence [2] users, but current techniques for analyzing this data are overly specialized

or ad hoc. These techniques are not designed to allow for user defined analytics methods.

Commercial analytical products are incapable of fitting the customer’s special

requirements. GIS users are expected to use raw datasets with unknown statistical

information—the implicit statistics information is insufficient for analytical purposes. In

order to successfully analyze statistics information, users require the various analytical

functions on an integrated environment. In the field of ocean and acoustic modeling,

there is still limited use of data mining measures on geospatial data. Our framework will

provide a new approach for analyzing statistical information and distributions on

 2

large-scale geospatial data. The raw geospatial data with unknown error information and

uncertainty information [3] can be analyzed over a heterogeneous infrastructure in a

well-defined manner.

Existing user-oriented geospatial analytic environments are limited to smaller datasets.

Much of the current work in large scale analytics focus on automating analysis tasks, for

example detecting suspicious activity in wide area motion imagery [4]. Neither approach

provides geospatial analysts with the flexibility to employ creativity and discover new

trends in data while still efficiently operating over extremely large data sets. Currently,

large-scale user defined analytics must be created by users with expertise in distributed

computing frameworks, programming, data processing, and storage in addition to the

geospatial and statistical subject matter. A new approach is necessary which hides the

details of the distributed computing frameworks behind common geospatial analysis tools

while still supporting large-scale analytics.

When undertaking this project, the following factors need be considered. First, raw

geospatial data comes in many forms. Therefore, the framework must be able to represent

all forms of raw data—in a file or in a database, for instance. Second, the language must

support user-defined data mining analysis. Lastly, the data mining functions must be able

to run in parallel. The framework must support complete features with reliability,

availability, and scalability of processing statistical information from end-to-end.

In this project, we have developed a framework to store and process large-scale

geospatial data over a “Big Data” [5] infrastructure while providing users with a common

 3

geospatial analysis front-end that hides these infrastructure details. The geospatial data is

stored in various data stores including file-based HDFS [6] and Hbase [7] (NoSQL

database running on top of HDFS). The spatial data mining function is implemented by

the R system. The framework provides high-performance analytical features. Also the

framework is flexible and easily extendable.

Compared to the SAS [8] system, our framework supports a variety of user generated

geospatial data mining application instead of limited SAS analytical functions. It is

convenient to transform current large-scale geospatial data analytical tasks to our

framework. The framework is being constructed on an open source software platform,

however, use of the framework does not require comprehensive programming skills; the

spatial data mining task is easy to share, access, and visualize.

This paper is organized as follows: Section 2 deals with the background knowledge

necessary to comprehend and undertake the project; the concepts and definitions of

Hadoop, R system, and Hybrid Cloud are presented in this section. Section 3 presents the

framework and its architecture and advantages. The designs of the various components

that make up the framework are presented in detail in Section 4. The implementation of

all the framework components will be discussed in detail in this section. Section 5

presents examples on how to use the framework to analyze large-scale geospatial data

and three such applications are presented. Section 6 discusses the conclusions we have

drawn and future directions for our work.

 4

CHAPTER 2 BACKGROUND

2.1 Big Data and R

In recent years, Big Data has become a hot topic. Big Data deals with large-scale and

complex data more efficiently than traditional database management systems and data

storage tools. Big Data provides various methods to extract, transform, load, manipulate,

share, and analyze large-scale data with high performance. Hadoop [4] is the most

popular solution for distributing and processing large-scale data sets. Hadoop, as data

storage infrastructure, can easily scale up from single node to thousands of nodes. To

design a reliable, scalable infrastructure with high availability, we have chosen the

Apache Hadoop as the data storage layer software in our framework. Here is a sample

structure of a Hadoop cluster:

 5

Figure 2-1. Multi-node Hadoop cluster [9]

A Hadoop cluster allows users to process large-scale data on distributed computing

environments with simple methods, such as the map-reduce model. The Hadoop clusters

may consist of thousands of data nodes. With Hadoop as the data storage infrastructure,

the framework can handle petabyte level data. The Hadoop cluster provides high

availability features including autonomous handling hardware or software failures. It is

proved to be reliable as a high-availability commercial level infrastructure, like Microsoft

Azure and Amazon EC2/S3.

A Hadoop cluster consists of Client nodes, Master nodes, and Slave nodes. The Master

nodes are the management part of Hadoop and the Name nodes are used to manage the

HDFS (Hadoop File System) storage infrastructure. The job tracker, on the other hand, is

used to manage MapReduce tasks which are parallel running. Finally, the Slave nodes are

 6

used to store the data and processing work. Slave nodes consist of Data nodes and a Task

Tracker daemon, and are controlled by Master nodes. The job tracker controls the Task

Tracker daemon and the Name node controls the data node daemon.

Figure 2-2. Hadoop Server Roles [10]

Users can administrate and access the Hadoop cluster through various interfaces and

methods. First, the user can load data into the cluster using shell script commands.

Second, the user can submit Hadoop commands to interact with Hadoop data. Hadoop

supports Java, C++, and Python. The output of a Hadoop command will be downloaded

to the user machine for analytical purposes.

 7

HBase, designed on the basis of Hadoop and ZooKeeper [11], is a centralized service that

provides configuration and communication services between different products. The

framework uses Apache HBase because the system needs random, real-time read/write

access to the geospatial data. This framework will support large-scale geospatial data

from the Hadoop infrastructure.

Figure 2-3. The Hadoop Ecosystem [12]

The Hbase’s design is based on Google’s BigTable [13] model. As the above figure

shows, the Hbase uses HDFS as the data storage layer and provides access to the data

using data structures like the Big Table format. In our framework, Hbase is the NoSQL

DBMS to be used to store and process large-scale geospatial data.

The R software [14] provides functions like SAS and SPSS in the fields of statistical

 8

computing and data analysis. R has become very popular among statistician programmers,

and its software has been developed from the S programming language. The S language

is a statistical programming language designed by John Chambers from Bell Labs[15].

The statistician uses various statistical analysis methods, for instance, linear and

nonlinear modeling, classification, clustering, and graphical procedures. R packages can

be written using C, C++, FORTRAN, Java, and Python. In the R community, many

programmers have developed numerous packages for new functions and extensions.

2.2 Panoply, NetCDF and R

In our framework, we have chosen Panoply [16] as the visualization tool. Panoply can

plot geospatial data in multiple platforms such as MAC, Windows, and Linux. It also

supports multiple source file formats like NetCDF [17], HDF, and GRIB.

NetCDF [17] is used to share large-scale multidimensional data, which includes

bioinformatics data, climate data, and geospatial data. The NetCDF format includes the

metadata of the content in the file—for example; both the coordinate value and the

attribute’s information are stored in the metadata. As a result, a NetCDF file is said to be

self-describing [17]. Additionally, these files can be shared between different platforms

such as Mac, Windows, and Linux. NetCDF is supported by many platforms and features

machine-independence [17], so that data will not be compromised in a shared process.

With the ncdf and ncdf4 packages, R has the capability to read and write the netCDF

 9

source file. The netCDF3 and netCDF4 formats are both widely used; however, the

netCDF4 format has better support for large-scale data and better compression

performance.

2.3 Hybrid Cloud

Hybrid cloud is a mixed concept of public cloud and private cloud. One organization

could use both public cloud and private cloud to integrate a universal cloud service. As a

cloud computing service, private cloud may focus on a specific purpose for departments

while public cloud may focus on efficiency and cost.

The concept of public cloud is not limited to public corporations; it can be corporation

level public cloud, which is still private to the outsider. The hybrid cloud may consist of

heterogeneous architecture and platform.

 10

Figure 2-4. Hybrid Cloud [18]

Figure 2-3 shows a hybrid architecture which is presently being used as commercial

solutions. This hybrid cloud provides a platform as a service (PaaS) ability which allows

a user to run cloud base applications. For large-scale geospatial data, public cloud can be

used as data warehouse while private cloud can be used as department cloud.

2.4 In-Memory Computing

In the era of Big Data, In-Memory Computing has become a popular solution for

processing large amounts of data in a server’s RAM. The purpose of in-memory

computing is to get the fastest speed possible.

 11

Figure 2-5. In-Memory Computing [19]

The traditional way of computing reads and writes database records on the disk, which

means lots of I/O cost. Another approach is to let application programs load the entire

data set into memory. This avoids high I/O cost database access. Multiple concurrent

users and programs can access the data and enhance the performance of query. The

application code and the application data are all in memory. This makes the computation

task run at a faster speed.

 12

Figure 2-6. IBM: What is In-Memory Computing? [20]

In-memory computing provides a real-time response for Big Data applications including

data analytics, business intelligence reporting tasks, etc. [21].

2.5 Spatial Data Warehouse and Spatial Data Mining

Central to a spatial data warehouse system is the effective handling of large-scale

geospatial data. Spatial data warehouse stores large amount of information about the

coordinates of individual spatial objects in space. For OLTP spatial databases, the spatial

computation is expensive. The cost of rendering online processing is not acceptable [22]

 13

for most users. Driven by the Internet Company’s paradigm such as Google, spatial data

warehouses can be a solution to accelerate spatial data mining operations.

Spatial Data Warehouse is so crucial to the enablement of an enterprise system that its

effective usage will be the technical centerpiece of this work. On-Line Transaction

Processing (OLTP) is the traditional model for enterprise data processing. OLTP

databases focus on transactions involving the input, update, and retrieval of data. On-Line

Analytical Processing (OLAP) data warehouses focus on queries that collate, summarize,

and analyze its contents. Sample data mining techniques in OLAP process include

applying statistics, artificial intelligence, and machine learning techniques to find

previously unknown or undiscovered relationships in the data [23]. These methods

provide different perspectives from analytical techniques, in which the goal is to prove or

disprove an existing hypothesis.

Spatial data mining is the process of discovering potentially useful patterns from

large-scale geospatial datasets [24]. Discovering geospatial patterns from geospatial

datasets is more difficult than recognizing the statistical patterns from traditional analysis

object such as numeric and categorical data. The complexity of spatial data types, spatial

relationships, and spatial autocorrelation is still an open problem to be solved.

This work seeks to optimize large-scale geospatial data handling by addressing the

remaining open research problems regarding spatial data warehouse and spatial data

mining that will most likely impact a future, large-scale enterprise system

implementation.

 14

2.6 Previous work

In the paper “From Databases to Dataspaces: A New Abstraction for Information

Management [25],” the author highlights the demands of accessing data from anywhere

and in any format. The author proposes the concept of “data space” to provide universal

API and interface for any kind of data. Their work has inspired the industry’s successive

Big Data concepts.

Figure 2-7. Space Filling Curves [26]

 15

In “Digital halftoning with space filling curves [27],” the author presents a method to

access POIs with space filling curves. However, this method focuses on algorithms in

computing the average intensities of regions and determining the aperiodic dot patterns.

These algorithms provide a solution for handling dispersed dot error. Still, the author has

only scratched the surface of the problem. For example, we cannot yet say definitively

whether space filling curves are better for querying geospatial data, or under what

conditions they are better; nor do we understand the impact of space filling curves on

the process of data mining or decision making.

In the paper “Efficient Spatial Query Processing for Big Data [28]”, the author defines a

lightweight and scalable spatial index on Big Data. The result of this experiment shows

that the index is both effective and efficient. The author defines some spatial Operators

like containing, containedIn, intersects, and withinDistance. Such a system would provide

a possible solution for improving the performance of spatial query on Big Data. In our

framework, we use a similar design of spatial index which is built on Hbase to improve

the performance of spatial query.

In “MAD Skills: New Analysis Practices for Big Data [29],” the authors propose the

Deep data analytic method, referred to as Magnetic, Agile, and Deep (MAD). Their work

is based on the Greenplum parallel database [29]. They provide algorithms that perform

both SQL and MapReduce analysis on Big Data. The paper gives a general direction for

analysis of Big Data. However, Greenplum is built on PostgreSQL which is on the

Relational DBMS model. NoSQL is now the mainstream solution for Big Data analytics.

 16

Their solution is not based on a NoSQL platform, like our solution.

The company Revolution Analytics [30] provides RHadoop project, which is the

mainstream solution for Big Data analytics. The prototypes of current Big Data solutions

like Google, Yahoo, etc. are based on a web system; they use Hadoop to store web pages

and R to analyze customer behavior. Our research object, which is not based on web data

but on geospatial data, is totally different from theirs. To use the R-Hadoop solution, a lot

of customization and optimization work for geospatial data would need to be done. The

RHbase package is also limited by the memory capability of the R client; therefore an

improvement of spatial query for R is definitely needed for geospatial Big Data analytics

to work. The RHbase package is the example of connectivity tools to access HBase

through R. The RHbase is designed for the general type of Big Data not for the best

performance of spatial query. Our work provides optimization for spatial query in R with

HBase connectivity.

In “SpatialHadoop: towards flexible and scalable spatial processing using mapreduce

[31]”, the authors propose the framework combined MapReduce and spatial data. Their

work provides a new language called Pigeon [32] for spatial query and data mining

support on Hadoop. The SpatialHadoop solution requires that the user be a professional

programmer, who ought to know the technical details of MapReduce. The SpatialHadoop

solution defined their own data mining function but missed the well-established R

analysis functions. Our work comparing with SpatialHadoop is different; we chose R,

which is popular for statisticians, as the solution for data mining and as a visualization

 17

tool. The mainstream data analytics solution, like Teradata Corporation Aster Analytics

[33] which is a popular Big Data Analytics solution in the industry, chose a similar

R-Hadoop platform to the one we have used, which has been proven to be robust in a real

industry environment. Moreover, our in-memory spatial query is also designed and

optimized for the R system. In conclusion, our work is designed as a solution with

simplicity, robust and user-friendly for R analyst, business analysts and data scientists.

There is a commercial solution, called the SAS Intelligence Platform architecture [34], to

perform the analytical processing of large-scale data. It also supports concurrent access

by multiple users. However, this commercial solution is based on multi-tier machines and

lacks the flexibility to achieve high-performance as Hadoop solution.

There are four tiers of machines in the SAS approach:


 Data sources -- The storage layer that supports various types of data sources.

 SAS servers -- The SAS server layer that performs the analytical processing.

Each type of workload must map to a different SAS server.

 The middle tier -- The web interface for an analytical job

 The client tier -- The desktop client to generate analysis reports in a web

browser environment.

 18

Figure 2-8. Architecture of the SAS Intelligence Platform [34]

In the SAS approach, the machines perform specific roles at different layers. Each

machine must be installed and configured by the administrator. For large-scale data

analysis, the user should add enough machines to handle the task. In contrast, Hadoop

allows the autonomous management of its nodes. Moreover, a Hadoop cluster will

automatically handle the workload management task. Therefore, the storage support of

SAS approach is not as scalable as the Hadoop cluster.

The SAS solution provides several analytical methods such as the following procedures:

KRIGE2D, SIM2D SPP, and VARIOGRAM for spatial analysis. User defined analytical

packages are hard to add and implement in this commercial platform.

Currently, there are no commercial systems to support spatial data mining over a Big

Data infrastructure. Data providers are mandated to use existing geospatial data systems

such as traditional DBMS. All current systems support sophisticated geospatial and

http://support.sas.com/rnd/app/stat/procedures/SpatialAnalysis.html
http://support.sas.com/rnd/app/stat/procedures/SpatialAnalysis.html
http://support.sas.com/rnd/app/stat/procedures/SpatialAnalysis.html
http://support.sas.com/rnd/app/stat/procedures/SpatialAnalysis.html

 19

environmental constructs, such as Datums, Projections, Topology, and Grids by default.

However, none of these systems support a state-of-the-art Big Data framework.

The RHadoop package, developed by Revolution Analytics, will provide a means to

undertake this kind of analytical task. First, RHadoop provides various data sources such

as file system, HDFS, and traditional DBMS. Second, R is not originally designed for

processing Big Data analytical work. The analytical task of R runs in memory. However,

there is a limit to the amount of memory R can access. RHadoop provides a workaround

that allows R to support parallelism with acceptable performance [35].

Figure 2-9. R and Hadoop [36]

The solution of Big Data Analytics has two advantages other than its analytical

framework. First, they define a simple analytical model on Big Data, which does not fit

 20

the current statistical analysis software. The model also maintains high performance and

accuracy with large-scale data. Second, the solution supports user defined analytical

packages to avoid expensive commercial solutions.

Revolution Analytics provides several R packages for the Big Data analytics solution.

For example, the RHipe package merges the environment of R and Hadoop, which allows

users to divide data into subsets and form multiple divisions. The Rmr package is used to

perform MapReduce [37] tasks between R and the Hadoop environment. The RProtoBuf

package is used to load serialized data from other MapReduce [37] environments and

communicate among different MapReduce jobs.

R is a good choice for Big Data analytical tasks, and Hadoop is a popular solution for Big

Data infrastructure. As a result, in this framework we have chosen R as the spatial data

mining tool to analyze geospatial Big Data.

http://cran.r-project.org/web/packages/RProtoBuf/index.html

 21

CHAPTER 3 THE FRAMEWORK

3.1 Framework Overview

Hadoop has gained significant acceptance in the Big Data user community. However,

none of the existing Big Data frameworks supports spatial data mining over large-scale

geospatial data. In this project, we have developed a method which makes it possible to

integrate spatial data mining technology with geospatial data. We outline the process of

analyzing large-scale geospatial data using the R language. The resulting data is

compatible with existing Big Data solutions and compliant software.

The Hadoop software provides the data storage and access capabilities for the geospatial

data used in this framework. Our primary goal is to support retrieving large-scale

geospatial data. Environmental data is represented as both gridded data and vector data.

The R language provides spatial data mining capabilities for geospatial data as well as

commercial products. As such, it is a perfect solution for the large-scale geospatial data

analytical environment. However, as mentioned above, the current R environment does

not provide any analytical processing method for Big Data due to the limit of R. As a

result, a vital performance issue occurred when using R to load large-scale raw data:

adding large-scale data into R usually results in a system halt or low system performance.

 22

Some of the current open research problems noted by the spatial data warehouse with

spatial data mining tools that are especially relevant to an enterprise system for

large-scale geospatial data are:

 R analytical function runs in memory and has limits for data frame size;

 No spatial index definition on HBase to improve query performance;

 No standard mechanisms to access geospatial grid files stored on the Hadoop

Distributed File System (HDFS);

 No clear understanding of how to run a spatial data mining analytical package

through R to access geospatial data stored on Hadoop;

 No standard representations that support ETL process of homogeneous and

heterogeneous geospatial data across different sources;

 No broadly applicable approaches for dealing with spatial data mining packages.

Substantial work has been done by this work in the large-scale spatial data mining area

that was detailed in the existing work section, as well as developed to show the

methodology selected and technical approach of this work, that builds upon substantial

progress in recent years regarding large-scale spatial data mining.

Our aim is a new approach to the spatial data mining analytic method for large-scale

geospatial data. As discussed above, Hadoop provides a data infrastructure to store and

process geospatial data. Combining Hadoop with the existing R system provides a

comprehensive capability to analyze and share environmental data without removing its

associated variable information. The following objectives are set for our framework:

 23

1. Provide a distributed method to run statistical computation among large-scale

test data;

2. Improve large-scale data querying performance;

3. Extend R application to large-scale data;

4. Provide various data sources and methods for geospatial data analysis；

5. Support a wide variety of data formats from different data sources;

6. Easy to define, control, manipulate, and manage the asymmetrical data;

sources through unique system interface;

7. Provide various analytical methods for a geospatial data analyst, with the

ability to return a visualized analytical result;

8. Efficient data storage management;

9. Provide a reliable, available, and scalable service.

Here is the design of our framework:

 24

Figure 3-1. Geospatial Big Data analytical framework

In this project, we have developed a framework to implement spatial data mining over

Big Data infrastructures.

The next chapter describes the implementation of these capabilities using an analytical

model. We then expand to three use cases and describe our overall environmental data

analytical architecture implementation.

3.2 Bi-Directional Spatial ETL Server

The purpose of this framework is to store and analyze large volumes of geospatial data.

The first analytical step is to store the geospatial data in the spatial data warehouse. The

 25

second analytical step is to run ETL (Extract, Transform and Load) over the raw data.

The third analytical step is to perform analytical functions by spatial online analytical

processing (SOLAP) environment. To design the spatial data warehouse, we built

conceptual physical and logical models, effective spatial indexes, SOLAP, and other

analytical functions.

We used Hadoop as the platform for the data warehouse. The spatial query HPC works as

one component of the ETL server. The basic function of spatial ETL is:

 Use HBase as Spatial Data Warehouse

 Extract geospatial data from different geospatial data sources, especially grid files;

The data maybe in homogeneous or heterogeneous format;

 Transform the geospatial data to a universal format which fits HBase;

 Load the geospatial data into the HBase.

The traditional ETL concept is one-way, which extracts, transforms, and loads data from

the source database to the data warehouse. We designed an infrastructure called

“Bi-Directional ETL” which can perform ETL work between a public cloud and a private

cloud. For instance, The Figure below shows a public cloud for a large corporation and a

private cloud for a specific department within the corporation.

 Public Cloud: Corporation Cloud

 Private Cloud: Ocean Investigation Vessel Cloud

 26

Figure 3-2. Bi-Directional ETL

The ELT process can be Bi-Directional.

 Public to Private: Vessel downloads (ETL) the navigation data for a

specific area to the private cloud

 Private to Public: Vessel uploads (ETL) the ocean investigation data to

the public cloud

Both the Public and Private clouds can utilize the ETL server to process the geospatial

data, which means the ETL process, works bi-directionally.

 27

3.3 In-Memory Spatial Index and Spatial Query

We choose HBase as the platform for the Spatial Data Warehouse. The spatial index is an

efficient method for indexing geospatial data. To ensure the performance of spatial query

we chose to build the spatial index in memory.

Comparing random read versus sequential read is one way of assessing database query

efficiency. Sequential read allows DBMS to access large amounts of data from adjacent

locations on the physical disk. Random read allows DBMS to access data which can be

accessed in any sequence.

 The read path of HBase is shown in the following figures.

Figure 3-3. HBase Read Path [38]

 28

Figure 3-4. HBase Read Path Detail [39]

HBase has two kinds of caches: memory store and block cache. The performance of

sequential read relies on cache hits ratio. When HBase runs a query it will firstly look at

the block cache or memory store, then HFiles. The block cache or memory stores are all

in the memory cache. During the HBase performance evaluation experiment [40]

sequential read performed better than random read.

We used in-memory spatial index for the spatial data warehouse (HBase). The spatial data

warehouse is designed to store historical data and run read-only analytical functions.

Most administrators of a data warehouse perform “regular” incremental load every one to

 29

three months. Therefore, even if ETL process takes about two or three days which is still

considered acceptable.

Our design has no physical index stored on HBase. The geospatial raw data is stored as a

grid file, and each grid file contains POIs in a specific area. This means the cluster ratio

of the geospatial raw data is very high. The best query performance to access the HBase

record is to use rowkey. The distribution of HBase data is determined by the rowkey

generation function. The hashes as rowkey will ensure the best spread of the data. The

sequential keys as rowkey will ensure the locality of the data. When HBase locates the

first row of geospatial data, the following read has a high chance of being a sequential

read. To get a sequential read in range scan mode, the rowkey of the data must be

sequential. In our use case in chapter 5.1, we chose pre-sorting grid files as data sources.

The generated sequential keys ensure that the range scan of HBase performs as sequential

read. This experiment [40] shows that the performance of sequential read is better than

random read in HBase. So we have chosen to build the spatial index in memory. The

process of spatial query is depicted in the following figure.

 30

Figure 3-5. In-Memory R-Tree & Spatial Query

The first step of spatial query is to filter the spatial data from HBase. Users should assign

four coordinates such as upper left, upper right, lower left, and lower right as boundary

conditions of the spatial query. HBase will retrieve this area of geospatial data as a data

window. The second step is building spatial index in memory. The R-tree is built based

on the data filter from HBase by the boundary conditions at the first step. The last step is

 31

to run spatial query in memory. The spatial query, which can access both the data and

spatial index, can be single or multiple in one process.

The design methods of this framework are a combination of scale-out (horizontal) and

scale-up (vertical). Hadoop, in our solution, works as a scale out storage system: it

expands the scalability of geospatial data storage. Spatial query HPC works as a scale up

computation system: it accelerates the performance of the ETL process. Designing

computer architecture is an art; one must find the balance between cost, speed, and

performance. The basic rule is to save money on the Hadoop data node, which is used as

the storage system. On the other hand, users should invest more on spatial query HPC

because the spatial query task is memory intensive and data intensive.

 32

CHAPTER 4 FRAMEWORK IMPLEMENTATION

4.1 Framework Structure

The Hadoop software provides the core data accessing capabilities for the data used in

this work. Our primary goal is to support accessing large-scale geospatial data.

Geospatial data is represented as both gridded and vector data. The R software product

provides spatial data analytical capabilities for geospatial data as well as the solutions

provided by SAS. As such, it is a perfect solution for large-scale geospatial data in an

analytical environment. However, as mentioned above, it does not provide an analytical

method for Big Data. As a result, a severe performance bottleneck problem occurs when

the R software is used to load large-scale raw data. Adding that large-scale data back into

R usually results into low system performance or even system halt.

We chose various methods to access the data stored in HDFS. The first method is the

spatial data mining package SPATSTAT [41], which can analyze raw geospatial data.

The second method is the package RHbase, which provides a path to access data stored in

the Hadoop database. The third method is R-MapReduce packages. The programmer can

perform MapReduce tasks to HDFS objects directly through the packages Plyrmr or

Rmr2.

 33

Figure 4-1. Analytical environment structure

4.2 R with package Spatstat

We chose Spatstat as the R package to perform statistical analysis, especially for spatial

point patterns. Spatial point patterns can be stored as two-dimensional data formats.

Spatstat packages use various analytical methods to discover useful data patterns in

large-scale spatial data. Compared to common large data, geospatial data is hard to

extract exact patterns from, because of the nature of specific geospatial data sources and

its associated data structures.

The package Spatstat uses real numbers (e.g. geospatial POIs with uncertainty

information), categorical values (e.g. fishery production by species) and logical values

(e.g. saline water/freshwater) to mark the point patterns [41]. These point patterns are

capable of analyzing a huge number of points. The region of spatial data can be a

complicated shape, such as an arbitrary polygon or a binary pixel image mask. The

 34

package Spatstat is capable of analyzing three or more dimensional point pattern datasets.

The following are the data formats which Spatstat can analyze:

 Two dimensional space data regions;

 Pixel images in two-dimensional space;

 Spatial patterns of line segments in two-dimensional space;

 Tessellations in two-dimensional space [41].

The package Spatstat supports a variety of statistical analysis methods such as model

fitting, spatial data sampling, and statistical formulation. The package provides methods

to perform Gibbs point process models, spatial inhomogeneity, and dependence analysis

and Cluster process models.

We can use maximum likelihood or approximations as frequentist statistical methods to

run a point process fit model such as Poisson point process models, Gibbs point process

models, and random cluster process models. Spatial randomness is a Poisson process,

which is measured by the point’s intensity. Random and uniform distribution of points is

called a homogeneous Poisson point process. Unevenly distributed intensity is called an

inhomogeneous Poisson point process. Thus, the spatial model can be spatially

homogeneous or inhomogeneous. The spatial trend is modeled as functions of the

Cartesian coordinates and spatial covariates. Clustering or repulsion interaction can be

included and marked as Gibbs models.

 35

Here is the sample code. The following example covers loading geospatial raw data into

R. The example provides a variety of ways to create a point pattern as the object of

package Spatstat. Chapter 5.1 shows the detail of an analytics function on point patterns.

> library(spatstat)

Here is a simple recipe to create a point pattern(ppp) object from raw

data in R.

#geo_data$"poi_cf:latitude"

#geo_data$"poi_cf:longitude"

#geo_data$"poi_cf:mean"

#geo_data$"poi_cf:standarddeviation"

> east <- geo_data$"poi_cf:latitude"

> north <- geo_data$"poi_cf:longitude"

#create a point pattern from (x, y) and window information

> X <- ppp(east, north, c(-130.0000, -126.0000), c(49.0000, 51.0000))

#print basic description of point pattern X

> X

planar point pattern: 1000 points

window: rectangle = [-130, -126] x [49, 51] units

> df= data.frame(geo_data$"poi_cf:mean",

geo_data$"poi_cf:standarddeviation")

> colnames(df) <- c("mean", "standarddeviation")

Get/> X <- ppp(east, north, c(-130.0000, -126.0000), c(49.0000, 51.0000),

marks=df)

…

 36

4.3 R with Hadoop database (RHbase solution)

We used a method called RHbase to access the Hbase data. The package RHbase

accesses the Hadoop database via the Thrift server. The table stored in HBASE can be

browsed, read, written into, and modified through the RHbase package. Package RHBase,

which works like ODBC and JDBC, allows R to access HBase table. However, the

current RHBase version does not support parallel programming. The ability of an

analytical task is limited by the system resources of R client. In our framework, for

RHbase we put R in a large-memory server to ensure the capability of analytical tasks.

We also provide coding examples in the appendix chapter to show the methods which

permit the writing of multiple spatial queries in one program.

Figure 4-2. R and HBase

The following functions are part of the Hbase package:

 37

Table Manipulation

hb.new.table, hb.delete.table,

hb.describe.table, hb.set.table.mode,

hb.regions.table

Read/Write

hb.insert, hb.get, hb.delete,

hb.insert.data.frame, hb.get.data.frame,

hb.scan, hb.scan.ex

Utility

hb.list.tables

Initialization

hb.defaults, hb.init

In the following example, there are statements that define the connection to HBase

through the RHbase package. So, R can perform spatial analytical functions over data

stored on Hbase.

The approach also contains an example in chapter 5.1 about full table scan and specific

row retrieval. Here is the example to create, insert, delete, and query geospatial data

through the RHbase function.

#rhbase function

hb.new.table hb.insert hb.scan.ex hb.scan

~ R

> library(rhbase)

#initialize hbase connection

> hb.init()

 <pointer: 0x8e548e8>

 attr(,"class")

 [1] "hb.client.connection"

#create new table in hbase

 #>

hb.new.table("geos_rhbase","poi_cf",opts=list(maxversions=5,x=list(maxv

ersions=1L,compression='GZ',inmemory=TRUE)))

 [1] TRUE

> hb.list.tables()

 $student_rhbase

 maxversions compression inmemory bloomfiltertype bloomfiltervecsize

 38

 info: 5 NONE FALSE NONE 0

 bloomfilternbhashes blockcache timetolive

 info: 0 FALSE -1

 > hb.describe.table("geos_test")

 maxversions compression inmemory bloomfiltertype

bloomfiltervecsize

poi_cf: 3 NONE FALSE NONE 0

 bloomfilternbhashes blockcache timetolive

poi_cf: 0 TRUE -1

#insert POI to hbase table

>

hb.insert("geos_test",list(list("row2",c("poi_cf:latitude","poi_cf:long

itude","poi_cf:mean","poi_cf:standarddeviation"),

list(49.0000,130.0000, 2698,26.98))))

 [1] TRUE

> hb.get('geos_test','row2')

[[1]]

[[1]][[1]]

[1] "row2"

[[1]][[2]]

[1] "poi_cf:latitude" "poi_cf:longitude"

[3] "poi_cf:mean" "poi_cf:standarddeviation"

[[1]][[3]]

[[1]][[3]][[1]]

[1] 49

[[1]][[3]][[2]]

[1] 130

[[1]][[3]][[3]]

[1] 2698

[[1]][[3]][[4]]

[1] 26.98

#ONLY If you want to clean the table

> hb.delete.table('geos_test')

 [1] TRUE

scan from beginning

> iter <-

hb.scan("geos_test",startrow="row2",end="row2",colspec="poi_cf")

> while(length(row <- iter$get(1))>0){ print(row)}

> iter$close()

> geos_data <- c()

 39

> iter <- hb.scan("geos_test", startrow="row2",

end="row2",colspec="poi_cf")

> while(length(row <- iter$get(1))>0){data <- c(data, row)}

> iter$close()

get data frame, note the columns have ":" appended

iter <- hb.get.data.frame("geos_test",start="1")

iter()

Uptil penultimate row

iter <- hb.get.data.frame("geos_test",start="1",end="87001")

iter()

get data frame, note the columns have ":" appended

iter <- hb.get.data.frame("geos_test",start="1")

iter()

Uptil penultimate row

iter <- hb.get.data.frame("geos_test",start="1",end="87001")

iter()

scan all data (1-87001)

> iter <- hb.scan("geos_test",startrow="1",end="87001",colspec="poi_cf")

> while(length(row <- iter$get(1))>0){ print(row)}

> iter$close()

load data through RHBASE

source("/home/zyang/rhbase_proj/rhbase_cmd_0804.txt")

#create a dataframe from a scan

hb.scan.data.frame <- function(tablename, startrow, end=NULL,

colspec,sz=hb.defaults("sz"), usz=hb.defaults("usz"),

 hbc=hb.defaults("hbc"))

{

 scn <- hb.scan(tablename, startrow, end, colspec, sz, usz, hbc)

 f <- scn$get()

 get_column_index_values <- function(column_index)

 {

 get_value <- function(row, column_name)

 {

 40

 indices <- which(row[[2]] == column_name)

 index <- ifelse(length(indices) == 1, indices[[1]], 0)

 ifelse(index == 0, NA, row[[3]][[index]])

 }

 column_name <- cols[[column_index]]

 unlist(lapply(f, get_value, column_name))

 }

 #get the vector of columns from the first row

 cols<-f[[1]][[2]]

 df <- as.data.frame(lapply(1:length(cols), get_column_index_values))

 rownames(df) <- unlist(lapply(f, "[[", 1))

 colnames(df) <- cols

 df

}

4.4 R with Hadoop database (In-memory extension

solution)

A distributed database is more user-friendly than a distributed file system. On the

contrary, it may not be as efficient as a distributed file system. If a user wants to perform

global level geospatial computation, a distributed file system (not a database) plus

MapReduce is a better solution. However, for some specific users, for example

meteorologists living in New Orleans, their routine work focuses on localized data. In

this case, the dedicated spatial query server on a distributed database will be the

convenient choice.

 41

HBase has many advantages when dealing with large-scale geospatial data. There are two

features that make the ETL work more efficiently in our framework: one is MapReduce

BulkLoad, the other is In-Memory Spatial Index.

We used these features to serve as the ETL (Extract, Transform and Load) tool.

Figure 4-3. Hbase and BulkLoad[42]

HBase supports BulkLoad, such as Hadoop streaming, which allows the programmer to

write utilities code as mapper/reducer on Hbase. As figure 4-3 shows, the raw data has

been extracted from online sources to HDFS. Then BulkLoad utility uses the MapReduce

task to load the delimiter separated values data to the Hbase table or to the HFiles stored

on parallel regional servers.

 42

Figure 4-4. Hbase and Spatial Index

Hbase, which is a distributed database, provides high performance access method by row

key. For very large data query, range scan by rowkey will be the most effective way [43].

This motivated our decision not to define a global spatial index on Hbase.

 43

Figure 4-5. Hbase and Spatial Index[43]

Geospatial files are loaded as Grid files. The rowkey is generated by the coordinates. In

the grid file POIs are sorted sequentially. That implies if two POIs are adjacent in a map,

their generated rowkey are also adjacent in the key-value pairs list. Hbase scans the table

by rowkey. In this distribution, the data fetch process will be a sequential read in high

performance.

We chose to design an in-memory system to support Spatial Index, Spatial Query, and

Spatial Join features. We used a JSI (Java Spatial Index) [44] library, which allows the

user to create an R-tree spatial index on geospatial data. With the R-tree index, the user

can easily perform customized geospatial queries such as a Boundary query, Range

Query, and kNN(nearest neighbor) Query. In this framework, we also applied the Spatial

 44

Join feature by using Geophile [45], which is a Java implementation of spatial join. The

following figure shows the method of HBase key design.

Figure 4-6. Hbase Rowkey design [46]

In this work, we add in-memory spatial index on Hbase to support Spatial Queries and

Spatial Join capabilities. Our design has no physical index stored on HBase. In our design,

we chose “range scan by rowkey” as the method to query HBase in high performance.

The database administrator chooses a specific function to generate the rowkey by

coordinates of POIs. The HBase user should use the same function to specify the range of

rowkeys to retrieve the data. The range scan allows the HBase to locate the specific range

of rowkeys to avoid a full table scan. Instead, the query will be randomly read if the

 45

HBase user did not use rowkey to retrieve HBase data. The performance of sequential

read in range scan is, therefore, better than random read on HBase. We defined a

geometric bounding box to fetch the geospatial data. Based on the result of bounding box

retrieval on HBase, we chose to build the spatial index in memory on a dedicated spatial

query server. The In-Memory database works as a “Cache” system to ensure the

performance of localized spatial query.

Figure 4-7. Distributed/In-Memory heterogeneous architecture to perform In-Memory spatial Query

 46

Spatial Index, Spatial Query, and Spatial Join features improve the performance of

processing large-scale geospatial data. A detailed use case can be found in chapter 5.1.

4.5 R with Map-Reduce

Package Plyrmr & Rmr2[47] allow R developers to use the MapReduce programming

model, developed as part of the RHadoop project.

4.5.1 R with package Plyrmr

The existing packages Plyr and Reshape2 can perform many common manipulation

operations on very large data sets stored on Hadoop, and they can use the MapReduce

model to perform their tasks. The Plyrmr package also provides a familiar Plyr-like

interface to hide MapReduce details. The Plyrmr package is based on Rmr2 but has a

more convenient, user-friendly interface. The Plyrmr package provides the following

functions.

Transmute Selects all data plus summaries

bind.cols adds new columns

Select select columns

Melt converts

between long and wide data frames

Dcast converts

between long and wide data frames

Gapply takes any function that accepts and

returns data frames

magic.wand gives Hadoop powers to many

functions in dplyr

(table continued)

 47

Group takes an input and a number of

arguments that are evaluated in the

context of the data, exactly like

bind.cols

group.f grouping relative of gapply

gather grouping recursively

4.5.2 R with package Rmr2

The Rmr2 package allows an R programmer to perform statistical analysis via

MapReduce on a Hadoop cluster. For global level geospatial computation, task our

framework puts the grid files on HDFS and uses MapReduce as a programming model.

The Rmr2 packages can perform MapReduce operations on very large data sets stored on

Hadoop. All the nodes should install the Rmr2 package. These packages also provide

familiar functions like the combination of R package lapply and a tapply. The function

lapply will apply a function over a list or vector, and the function tapply will apply a

function over a ragged array.

Here is an example of a MapReduce process:

 small.ints = to.dfs(1:100)

 MapReduce (

 input = small.ints,

 map = function(k, v) cbind(v, v^2))

Figure 4-8.sample MapReduce script [48]

The input statement will put the data to HDFS. The bulk of the data is stored for

MapReduce to manipulate. However, Big Data cannot be written out with to.dfs. We

used to.dfs to put data in the pre-defined or temporary file in HDFS. The to.dfs returns a

 48

Big Data object and can be assigned to variables, Rmr functions, or MapReduce jobs. So,

the user can access Big Data that R cannot handle. R has a memory limit for the data

frame to process. Therefore, using the R-MapReduce function, R can handle Big Data

which exceeds the memory size limit.

The second statement uses MapReduce to replace function lapply. The output of to.dfs

will work as the input variable small.ints, which is data stored in HDFS. The Rmr2

package uses map and reduce functions to apply the MapReduce task. The functions have

pairs of keys and values. The package uses the function keyval to return key value pairs,

which contain vectors, lists, matrices, data frames, or NULL value. Users can also call

the keyval(NULL,x) function to get the return value of x. Users can also use from.dfs to

load large-scale data into memory. It also returns a <key,value> pair as a result.

The function from.dfs is useful to define MapReduce algorithms. It will fit in memory

and pass to the next set of functions. This example, run on Big Data, is equivalent to the

lapply function and performs the map function. The following example performs the

reduce function similarly to function tapply in R.

 groups = rbinom(32, n = 50, prob = 0.4)

print out groups

result = tapply(groups, groups, length)

print out result

Figure 4-9. Sample MapReduce script [48]

This example, which runs in MapReduce format, counts the number of outcomes that

occurred from the binomial:

 49

 groups = to.dfs(groups)

 from.dfs(

 MapReduce (

 input = groups,

 map = function(., v) keyval(v, 1),

 reduce =

 function(k, vv)

 keyval(k, length(vv))))

Figure 4-10. Sample MapReduce script [48]

The first to.dfs statement will move the data into HDFS. The user should specify the

HDFS path of the input data for the MapReduce procedure. In this example, we used the

variable groups which contain a Big Data object as the input parameter. The map

function is implicitly included as function(k,v) keyval(k,v).

The reduce function needs two arguments, first as a key followed by the collection of all

values associated with the key. The return value of the map function can be a vector, list,

data frame, and matrix. When the user returns the values of a specific class, the function

will preserve the values through the shuffle phase. The reduce function can return a

NULL value or a key-value pair, which are generated by the function keyval or object

defined by keyval(NULL,x). The default process of MapReduce is not the reducer

function. The keys will be the realization of the binomial. The values are all 1.

 50

Rmr function Description

"Map" step FUN will apply to the data on the worker node. The

intermediate result will be stored at the storage.

Duplicate data will be eliminated by the master

node

"Shuffle" step The data will be dispatched by the Keys to different

worker nodes. Data on each worker node share a

unique Key.

"Reduce" step The data with unique key will be processed in

parallel by worker nodes

The sample geospatial use case and code are described in chapter 5.

4.6 Estimating the System Resource

We choose to build spatial index in memory to ensure the high performance of spatial

query. However, the memory consumption of spatial index is high, which may deplete the

system resources resulting in system halt or crash.

Since building spatial index is a memory consuming task, we used an empirical formula

to calculate the memory for spatial query.

"The recommended size for this temporary tablespace 【which contains the

R-tree structure】 is 100*n bytes, where n is the number of rows in the table“

 --- https://docs.oracle.com/html/A88805_01/sdo_inde.htm

 51

If the spatial data contains 10^8 POIs, the R-tree size in memory will be 100*10^8=10G

per the formula.

In this framework, the format of geospatial data can be defined as decimal or float. Here

is the sample geospatial data format in Decimal (7, 4):

 Longitude -129.9417 Latitude 50.0333

The length of the Earth’s equator is approximately 6378km in WGS84 system, which

provides about 100 km latitudinal resolution near the Equator [49]. That means POIs,

which using the Decimal (7, 4) format of geospatial data, can provide a level of 10 meters

resolution.

The grid file of 10^8 POIs may cover an area of 10,000 km^2. The area of the New York

Metro is 8683 km^2. R-tree size as big as 1TB memory can result from indexing a grid

file up to 1,000,000 km^2. The area of Texas state is 695,621 km^2.

Another format of geospatial data can be IEEE754 floating point.

Common name Base Digits Decimal digits Exponent bits

Single precision 2 24 7.22 8

Double precision 2 53 15.95 11

The equivalent decimal digits of IEEE754 single precision float point is seven. The

equivalent decimal digits of IEEE754 double precision float point is fifteen. That means

the single precision format of geospatial data can provide half meter level resolution.

 52

The double precision format of geospatial data can provide nanometer 10^
 (-9)

 level

resolution. The complexity of geospatial computation depends on the resolution of the

geospatial data.

 53

CHAPTER 5 APPLICATIONS OF THE FRAMEWORK

The framework provides effective methods to analyze the complex information from the

user data and eases the development of geospatial applications in various fields. As the

example of Hadoop program suggests, we will describe the methods of the framework to

process and analyze gridded geospatial data in this chapter. We will provide examples of

alternative applications for the framework: spatial data mining within geospatial data

with information marks.

5.1 Spatial data warehouse

Our first test data come from the need of ocean investigation task. During ocean

investigation cases, there is a definite need of bathymetry data. This kind of data is

typical spatial statistical analysis type of point patterns. Ocean investigation applications

often require multiple different sources of bathymetry data. R is not capable of handling

spatial analyzing tasks using very large-scale bathymetry data because of its design

limitations. Suppose we have many geospatial data files. Each file may cover a different

area in the grid system, which must be properly shared and combined when the data is

used. All the data is stored in HDFS and users can use RHadoop to access the data. All

the data in these analysis functions are pre-processed at Hbase. Then, we use a spatial

 54

statistics package in R to analyze these geospatial files. The great advantage to using

Hbase in this framework is that it provides features like ETL (Extract, Transform and

Load) as the spatial data warehouse. The first feature is bulk load, such as Hadoop

streaming, which allows the programmer to write utilities running as mapper/reducer on

Hbase.

Here is the example code for bulk load geospatial data to HBase.

#bulk load geospatial data to HBase

hadoop jar /home/zyang/hbase/hbase-0.94.2/hbase-0.94.2.jar importtsv

-Dimporttsv.columns=HBASE_ROW_KEY,poi_cf:longitude,poi_cf:latitude,poi_

cf:mean,poi_cf:standarddeviation geos_test DBDBV_test_tsv

##-Dimporttsv.separator="," use csv format

##-Dimporttsv.bulk.output=/output generate hfile to output

##hadoop jar ~/hbase-0.92.1/hbase-0.94.2.jar completebulkload /output

users load hfile to table users in hbase

#full table scan on the geospatial data

scan 'geos_test'

Our test environment is a DELL Precision T3400 PC with Intel single Core2 2.83GHZ

CPU and 2GB RAM. The operating system is Ubuntu 12.04.4. In our experiment, we

tried to load 2GB geospatial data into Hbase and MySQL. In MySQL, we used the

LOAD DATA INFILE method. In HBase, we used BulkLoad feature to load the 2GB

data.

Our test results show that the BulkLoad feature of Hbase is significantly faster than the

Load feature of MySQL when dealing with large-scale data.

 55

Figure 5-1. Runtime for load task

The experiment shows the advantage of using HBase to store large-scale geospatial data.

The BulkLoad feature will improve the performance when a user loads mass data into the

HBase.

The second extension is JSI (Java Spatial Index) [44], which allows a user to create an

R-tree [51] spatial index on geospatial data. Using the R-tree index, users can easily

perform customized geospatial queries such as Boundary query, Range Query, and Knn

(nearest neighbor) Query. In our framework, this feature will help improve the

performance to query with large-scale geospatial data.

The third extension is Geophile [45], which provides a Java implementation of spatial

join. Users can write code to specify two spatial objects like R and S. The result will be

the overlap of objects R and S.

0

500

1000

1500

2000

2500

3000

3500

MySQL Hbase

t

i

m

e(

s

e

c)

Load Method

 56

Here is part of the example of Range Query based on R-Tree index on geospatial data.

The whole example can be found in the Appendix.

#import JSI(R-Tree index library)

import com.infomatiq.jsi.Rectangle;

import com.infomatiq.jsi.rtree.RTree;

 //boundary query for geo-spatial data

 String cf ="poi_cf";

 String column1 = "longitude";

 String column2 = "latitude";

 String column3 = "mean";

 String column4 = "standarddeviation";

 //set POI boundary

 String long_lower = "-129.9900";

 String lat_lower = "49.0400";

 String long_upper = "-129.9250";

 String lat_upper = "49.0500";

 //set central POI

 String long_central = "-129.9450";

 String lat_central = "49.0450";

 String distance = "0.01";

Here is the performance test result of the spatial index on Hbase. There are 9,000,000

POIs in the test data.

In this figure, the range means the Euclidean distance we chose to calculate the distance

between two POIs.

 57

Figure 5-2. Runtime for Range query

In our test results, the BulkLoad feature of Hbase is significantly faster than the Load

feature of MySQL when dealing with large-scale data.

In this figure, the boundary means the length of the boundary of the rectangle we chose to

select the POIs inside the boundary.

0

50

100

150

200

250

300

350

10 10^2 10^3

t

i

m

e(

s)

range(m)

MySQL

HBase with R-Tree Index

 58

Figure 5-3. Runtime for Boundary query

In this figure, the K means the value of the nearest neighbors we chose to select the POIs.

Figure 5-4. Runtime for Knn query

In this figure, the R and S are two spatial objects which contain a specific number of

POIs.

0

50

100

150

200

250

300

350

400

450

500

10 10^2 10^3

t

i

m

e(

s)

boundary(m)

MySQL

HBase with R-Tree Index

0

100

200

300

400

500

600

700

10 10^2 10^3

t

i

m

e(

s)

k (nearest neighbour)

MySQL

HBase with R-Tree Index

 59

Figure 5-5. Runtime for spatial join query

The following test proceeds with large-scale data on HPC. Our test environment was a

16-Cores AMD Opteron(tm) Processor 4386 3099.94 GHZ CPU and 32GB RAM. The

operating system was Ubuntu 14.04. During our experiment, we tried to run spatial query

on large-scale geospatial data on Hbase and MySQL. In MySQL, we used SQL to

retrieve data. In HBase we used the In-Memory R-Tree feature to test spatial query.

Here is the performance test result of spatial index on Hbase. There are 10^6, 10^7, 10^8

and 10^9 POIs in the test data. In this table, the range means the Euclidean distance we

chose to calculate the distance between two POIs.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10^4 10^5 10^6

t

i

m

e(

s)

Spatial Object R JOIN S(number of POIs)

MySQL

HBase With R-Tree Index

 60

Figure 5-6. Runtime for Large-scale geospatial data Range query

The performance test results of spatial index on Hbase are shown next. There are 10^6,

10^7, 10^8 and 10^9 POIs in the test data. In this table, the boundary means the length of

the boundary of the rectangle we chose to select the POIs inside the boundary.

0

2000

4000

6000

8000

10000

12000

14000

10^6 10^7 10^8

t

i

m

e(

s)

number of POIs for Range Query

MySQL

HBase with R-tree Index

 61

Figure 5-7. Runtime for Large-scale geospatial data Boundary query

Here is the performance test result of spatial index on Hbase. There are 10^6, 10^7, 10^8

and 10^9 POIs in the test data. In this table, the K means the value of the nearest

neighbors we chose to select the POIs.

Figure 5-8. Runtime for Large-scale geospatial data Knn query

0

2000

4000

6000

8000

10000

12000

14000

10^6 10^7 10^8

t

i

m

e(

s)

number of POIs for Boundary Query

MySQL

HBase with R-tree Index

0

2000

4000

6000

8000

10000

12000

14000

10^6 10^7 10^8

t

i

m

e(

s)

number of POIs for KNN query

MySQL

HBase with R-tree Index

 62

Next, we show the test results of spatial index on Hbase. There are 10^6, 10^7, 10^8 and

10^9 POIs in the test data. In this table, the R and S are two spatial objects which contain

a specific number of POIs.

Figure 5-9. Runtime for Large-scale geospatial data Spatial JOIN

Next, we show the test results of Hbase with In-memory system. There are 1G, 10G,

100G size in the test data. In this table, the range means the Euclidean distance we chose

to calculate the distance between two POIs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10^6 10^7 10^8

t

i

m

e(

s)

number of POIs for Spatial JOIN

MySQL

HBase with R-tree Index

 63

Figure 5-10. Runtime for Large data set Range Query

There are 1G, 10G, 100G size in the test data. In this table, the boundary means the

length of the boundary of the rectangle we chose to select the POIs inside the boundary.

Figure 5-11. Runtime for Large data set Boundary Query

There are 1G, 10G, 100G size in the test data. In this table, the K means the value of the

nearest neighbors we chose to select the POIs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 10 100

t

i

m

e(

s)

data set size for Range Query (GB)

MySQL

HBase With In-Memory
System

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 10 100

t

i

m

e(

s)

data set size for Boundary Query(GB)

MySQL

HBase With In-Memory
System

 64

Figure 5-12. Runtime for Large data set KNN Query

There are 1G, 10G, 100G size in the test data. In this table, the R and S are two spatial

objects which contain a specific number of POIs.

Figure 5-13. Runtime for Large data set Spatial JOIN

The spatial query and spatial join based on R-Tree index are significantly faster than the

traditional method. The reason for this is that our spatial index and spatial query/join

0

2000

4000

6000

8000

10000

12000

14000

1 10 100

t

i

m

e(

s)

data set size for KNN query(GB)

MySQL

HBase With In-Memory
System

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 10 100

t

i

m

e(

s)

data set size for Spatial Object R JOIN S(GB)

MySQL

HBase With In-Memory
System

 65

calculation all runs in memory. Another factor is that HBase is column stored NoSQL

DBMS, which makes I/O cost of HBase as fast as the File system. Meanwhile, traditional

DBMS like MySQL take more time to maintain data integrity such as ACID rules.

This means our framework provides an efficient way to do the ETL (Extract, Transform,

and Load) work for geospatial data. In real cases, users sometimes get raw data over a

very large area. With this spatial index on Hbase, the user can easily and efficiently run

spatial query to get the specific set of geospatial data over large-scale raw data.

5.2 Spatial data mining case study

After ETL, users can run an analysis function over the clean data.

In addition to the spatial query (data selection process), users could run an analysis

functions over the clean data. Below is the code to draw a bathymetry data plot.

To have some more flexibility with coloring I use the following, e.g.

with rainbow colors:

col<- rainbow(255,end=5/6)

colid <- function(x, range=NULL, depth=255)

{

 if (is.null(range))

 y <- as.integer(x-min(x))/(max(x)-min(x))*depth+1

 else

 {

 y <- as.integer(x-range[1])/(range[2]-range[1])*depth+1

 y[which(y < range[1])] <- 1

 y[which(y > range[2])] <- depth

 }

 66

 y

}

plot(geo_data$`poi_cf:longitude`,geo_data$`poi_cf:latitude`,col=col[c

olid(geo_data$`poi_cf:mean`)])

<script>

 // This example uses a GroundOverlay to place an image on the map

 var dataOverlay;

 function initMap() {

 var map = new google.maps.Map(document.getElementById('map'), {

 zoom: 7,

 center: {lat: 49.65, lng: -126.65},

 mapTypeId: google.maps.MapTypeId.HYBRID

 });

 var imageBounds = {

 north: 51.,

 south: 49,

 east: -127.,

 west: -130.

 };

 var overlayOpts = {

 opacity:0.5

 }

 dataOverlay = new google.maps.GroundOverlay(

 'path/to/file',

 imageBounds,overlayOpts);

 dataOverlay.setMap(map);

 }

 </script>

The following figures show the Plot using point pattern of the bathymetry data in R.

 67

Figure 5-14. R Plot using bathymetry data point pattern

The bathymetry data was downloaded from website [50]. The point pattern shows the

tracking information of the ocean investigation vessel.

 68

Figure 5-15. Detail of the bathymetry data point pattern

The above figure shows the detail of the tracking point pattern.

Figure 5-16. R Plot using bathymetry data above Google Maps Layer

The bathymetry data was downloaded from website [50]. The bathymetry statistical layer

has been visualized above the satellite image layer. This provides an effective visualized

report to the end-user. This function shows the basic analytical work on the spatial data.

 69

The following code sample shows how to plot the bathymetry data in 3-D.

##select 5000 points as sample

> geo_data_sample <- geo_data[sample(nrow(geo_data), 5000),]

#display points in color

> plot_ly(geo_data_sample, x = longitude, y = latitude, z = depth, type =

"scatter3d", mode = "markers", color=depth)

The following figure shows the same bathymetry data plotted by 3-D analysis function.

Figure 5-17. 3-D Plot using bathymetry data

The Morisita Index is a common method for analyzing spatial patterns. To get the

Morisita index, the function will firstly calculate the quadrat counts of the spatial point

pattern. Then the generated index of spatial aggregation for the previous pattern will be

the Morisita index. The algorithm is to divide the spatial domain to Q quadrat with equal

size and shape. Then the algorithm will count the number of points falling in every

 70

quadrat. Lastly, the n[i] number of points in the i-th quadrat will be counted as the

Morisita Index. The sum number of points is represented as N value.

The point pattern is the analysis class as object. We can also plot the result of this

analysis. The Morisita overlap index can calculate the overlap between samples. The

founder, Massaki Morisita, believes the diversity will be modified when the sample size

is modified. The formula used in the analysis package is

MI = Q * sum(n[i] (n[i]-1))/(N(N-1))

n[i] – points number in the i-th quadrats

n - total number of points [52]

 The sample data we used contained 87000 bathymetry points. The analytical package

uses POIs between the coordinates [-130.0000, -126.0000] x [49.0000, 51.0000] window

to choose the sample of POIs. Here is the code to draw a Morisita index plot:

> miplot Morisita Index plot

> miplot(X)

 71

Figure 5-18: Morisita Index analysis on spatial data

The Morisita index is superior for comparing the similarity between different samples.

The advantage of the Morisita index is that it does not vary with population density. If the

data is mostly in uniformly distributions, the Morisita index value falls between 0 and 1.

However, if the data is in clumped distribution then the Morisita value falls between 1

and n [52].

 72

In this case, we used our framework to get the distribution and spatial pattern of the

large-scale geospatial data. For the most part, the Morisita index values did not fall into 0

to 1, which meant our raw data was not in uniform distribution. Users should check the

raw data to determine if it is bad sampling or not. This example shows the function that

can help users find the distribution of their raw geospatial data.

The second analysis example is the clustering model. The analysis function Kppm can

perform the task in homogeneous or inhomogeneous mode. A user can use the Kppm

function to predict and plot the result model. The Kppm function will analyze the

intensity of the trend argument. If users set trend argument as 1, it will be a homogeneous

model. The function will calculate the intensity of the points inside every area of the

window. If the trend argument is not 1, the function will use the inhomogeneous model.

The fitting process is a Poisson process with intensity.

Here is the sample code. We specify the model as Thomas process which is a Poisson

cluster process.

> kppm(X)

number of data points exceeds 3000 - computing border estimate only

Stationary cluster point process model

Fitted to point pattern dataset ‘X’

Fitted using the K-function

Cluster model: Thomas process

Fitted parameters:

 kappa sigma mu

9.881081e-01 5.192104e-01 1.100588e+04

> kppm_model<-kppm(X)

number of data points exceeds 3000 - computing border estimate only

> kppm_model

 73

Stationary cluster point process model

Fitted to point pattern dataset ‘X’

Fitted using the K-function

Cluster model: Thomas process

Fitted parameters:

 kappa sigma mu

9.881081e-01 5.192104e-01 1.100588e+04

> plot.kppm(kppm_model)

Figure 5-19. Kppm function analysis result

 74

The kppm function fits a Matern clustering model for the cluster point patterns based on

our geospatial data. The plot shows that the estimated model fits the real data well. That

means the raw data is a Poisson distribution.

These two functions show the basic analytical work on the spatial data. As such, we

performed data analytical work on our framework. The framework is a whole process to

run the spatial data mining work. The first step is to use HBase as the ETL (Extract,

Transform, and Load) tool. Then we build a spatial index which may be R-Tree on the

cleaned data. Users can write some Java code to retrieve the data by various methods

such as Boundary query, Range query, Knn (Nearest Neighbor) query, or any other

user-defined geospatial query. After these steps, the raw data has been cleaned and

selected. Users can run the spatial data mining function to find the information behind the

geospatial Big Data. Since we chose HBase as the high performance NoSQL database

and built-in spatial index, the framework has great flexibility. It is easy to write API to

call the spatial index to do the ETL work.

5.3 Random forest method to process large file

When trying to process large files, the users may get the following message:

> data3 <- ncvar_get(ncid,"water_temperature")

Error: cannot allocate vector of size 1.3 Gb

 75

The data objects in R are stored in virtual memory. The user will get error messages if the

system cannot obtain the appropriate memory space when trying to allocate a large size

vector. The limit is not only a question of having the space for the process but also the

limits of the system itself. R also defines the limit of the number of bytes in characters

and the limit on each dimension of an array.

However, in geospatial applications there are, usually, very large data files to process.

One solution for analyzing a large-scale data set is to divide it into several small data

frames. But the problem with this approach is that the user will get different fitted models

because the data set fragments are analyzed in parallel. Since R is unable to fit overly

large geospatial data sets into a single model, one common method for handling this

bottleneck is sampling with replacement. The training set of the Random Forests [53]

algorithm is drawn by sampling with a replacement technique.

The Random Forests method [53] is used to build multiple decision trees to train the

model. The task will get the class models as classification result or predicted mean value

as the regression result for each tree. So, the Random Forests method avoids the

“overfitting” problem inherent in the traditional decision tree method.

We chose Poisson re-sampling as our sampling method. The reason we chose Poisson

sampling is that the sum of multiple Poisson variables is still Poisson. The data sample is

extracted from the input data set based on a Poisson distribution. The sampling task runs

several times. The result of multi-run Poisson distribution is also a Poisson distribution

[54]. The sampling task can be run in parallel by the Map Reduce task, since each

 76

sampling task runs in isolation. The MapReduce process is as follows: the mapper runs

the sampling task on the input data set; the reducer shuffles the samples, and then

performs the model fitting task.

The following is the algorithm [55] to perform the sampling task through MapReduce.

a <- MapReduce (input="~/user/zyang/DM_test_tsv ",

 input.format="text",

 map=poisson.subsample,

 reduce=fit.trees,

 output=NULL)

b <- from.dfs(a)

training.data <- read.table("~/training.csv",

 header=FALSE,

 sep="\t",

 quote=FALSE,

 row.names=NULL,

 col.names=column.names,

 fill=TRUE,

 na.strings=c("NA"),

 colClasses=c(longitude="numeric",

 latitude="numeric",

 mean="numeric",

 stdv="numeric"))

a <- randomForest(formula=model.formula, data=training.data,

na.action=na.roughfix, ntree=10)

With the above approach, the user now has the ability to handle large-scale geospatial

files in R.

The performance test is based on large-scale geospatial data. We chose test set sizes from

10^5 to 10^8 POIs. Current applications, for instance ocean investigation, continuous

 77

climatology data, or vessel GPS tracking always generate large-scale geospatial data. A

normal GPS tracker on a truck will generate almost 10^5 POIs one day if it records

geospatial data every second. However, the UPS Company has 60000 trucks in operation

every day. The total raw data of whole fleet will exceed 10^ 9 POIs.

The following is the sample of the test data.

 poi_cf.longitude poi_cf.latitude poi_cf:mean poi_cf:stdv

-130.0000 49.0000 2698 26.98

-129.9917 49.0000 2678 26.78

-129.9833 49.0000 2657 26.57

-129.9750 49.0000 2637 26.37

-129.9667 49.0000 2639 26.39

The test data is POIs with salinity and temperature marks. Every POI contains the

randomly generated salinity and temperature marks.

number of

POI

runtime in R

(sec)

runtime In

R-MapReduce

(sec)

10^5 1 1

10^6 2 8

10^7 4 8

5*10^7 18 362

10^8

(Cannot allocate memory

due to Limit of R software；

Divide to several files run

sequentially)

1732 924

10^9

(Cannot allocate memory

due to Limit of R software;

Divide to several files run

sequentially)

2869 1328

Table 5-1: runtime for R analytical task

 78

When the data amount is not large enough, the runtime in R is significantly faster than

the task in R-MapReduce. The reason for this is that the R function running in memory

will be faster than multiple MapReduce tasks. MapReduce has a high communication

cost and I/O cost. However, when the size of the data set passes some threshold amount,

R cannot allocate memory for such a huge data analytical task. In the meantime,

R-MapReduce shows its great scalability for processing large-scale data.

Figure 5-20: performance test in small amount of data

As figure 5-16 shows, the traditional R function yielded small runtime compared with the

R-MapReduce task when processing a small amount of data.

0

1

2

3

4

5

6

7

8

9

10^5 10^6 10^7

t

i

m

e(

s

e

c)

number o POIs

runtime in R

runtime in R-Mapreduce

 79

Figure 5-21: performance test in large-scale data

As figure 5-5 shows, the traditional R function cannot handle such large-scale data

because R cannot allocate memory beyond its limit. However, the R-MapReduce task

shows its advantage for handling large-scale data.

5.4 Shark alert map

The goal of this case study is to predict the probability of the appearance of a shark. The

more the shark appears, the greater the number of shark attack news reports and vice

versa. Below is a map that shows the details regarding the number of confirmed shark

attacks near California’s coastline during year 1926-2014. This map is from the Florida

Museum of Natural History. The value is based on real world cases ranging from a high

incidence of attacks, in red, to a low incidence of attacks, in green.

0

500

1000

1500

2000

2500

3000

3500

5*10^7 10^8 10^9

t

i

m

e(

s

e

c)

number of POIs

runtime in R

runtime in R-Mapreduce

 80

Fig 5-22. 1926-2014 Map of California's Confirmed Unprovoked Shark Attacks (N=114) [56]

The movement of a shark is affected by a number of parameters, including water

temperature and salinity. We have already built a simulated physical model to analyze the

relationships between shark attacks and these environmental parameters. The probability

of a shark appearance will be calculated and visualized by our framework.

This case uses HDFS as the only source of data. The first data file contains the

coordinates and the temperature information. The second data file contains the

coordinates and the salinity information. The water temperature of the ocean is usually in

the -2~30 degrees Celsius range. The mean value of the temperature in the Atlantic

Ocean is 16.9 degrees Celsius. Water temperature is also related to the water’s depth. The

average salinity of ocean water is 34.7 degrees.

This is the sample of the temperature and salinity data:

 81

> head(geo_data_temperature)

 poi_cf.longitude poi_cf.latitude poi_cf:temperature

1 -129.9917 49 28.448851

2 -129.9833 49 29.578226

3 -129.9750 49 32.618710

4 -129.9667 49 20.189329

5 -129.9583 49 2.937873

6 -129.9500 49 23.619744

> head(geo_data_salinity)

 poi_cf.longitude poi_cf.latitude poi_cf:salinity

1 -129.9917 49 36.03154

2 -129.9833 49 44.41937

3 -129.9750 49 22.14991

4 -129.9667 49 52.35602

5 -129.9583 49 30.63463

6 -129.9500 49 31.35200

The geospatial data has been divided into different area files. The user calls package

Rmr2 to parallel fit the probability model to calculate the probability of a shark’s

appearance.

library(rmr2)

 X_Probability =

 values(

 from.dfs(

 MapReduce (

 %% X is the data file contains the temperature and salinity values

 input = X,

 map =

 function(., Xi) {

 %%pseudo code to calculate the probability of temperature

 Temperature_probability = cal_prob[Xi[,3]],

 82

 %%pseudo code to calculate the probability of salinity

 Salinity_probability = cal_prob[Xi[,4]]

 %%pseudo code to model the probability of shark

 keyval(1, Temperature_probability * Salinity_probability))},

 reduce = function(., YY)

 keyval(1, list(Reduce('+', YY))),

 combine = TRUE)))[[1]]

This MapReduce work enables the system to handle large data files in parallel mode in an

R system. As shown in the results of this analytic task, the probability data of shark

attacks was obtained. Thereafter, the probability map was extracted by loading the

obtained data into Panoply. The probability map is shown below, with red representing a

high alert area and green representing a low alert area.

Fig 5-23. The probability map of Shark Attack

 83

We ran multiple tests to compare our framework with a traditional analytical job. In this

case the test environment was the same as in the previous case. The test objects are

multiple geospatial data files, which including 20M (1file), 128M (5 files), 460M (20

files), 1200M (60 files) and 2800M (150 files). Using the traditional method, the

analytical task has to be running sequentially in R. Using our framework, the analytical

task can be running in a paralleled task.

This table and chart show the runtime data for the traditional method and in

R-MapReduce.

data size runtime in R(s) runtime In R-MapReduce (s)

20M 15 18

128M 54 71

460M 280 263

1200M 1436 532

2800M 3404 1660

Table 5-2. Runtime for R analytical task

The above table shows that there is only a slight difference in performance when users

analyze a small number of geospatial data files. However, when users analyze a large

amount of geospatial data, R-MapReduce is significantly faster than traditional R

analytical work.

 84

Fig 5-24. Runtime for shark attack analytic task

The results of the performance test show that R-MapReduce has no advantage when

dealing with a small number of geospatial files because R analytical work is designed to

be run in memory. In contrast, The Hadoop has cost for network, job management, and

file read/write. However, when users are dealing with large-scale data—especially multi

files—R must divide into small files and sequentially run the analytical task. Then the R

user should manually combine the results. R-MapReduce shows its great advantage over

using a single R node.

0

500

1000

1500

2000

2500

3000

3500

4000

20M 128M 460M 1200M 2800M

t

i

m

e(

s

e

c)

data file size

runtime in R

runtime In R-mapreduce

 85

CHAPTER 6 CONCLUSION AND FUTURE WORK

When combining strong data processing and analyzing features with Big Data

capabilities supported by Hadoop, it is certainly worth taking a closer look at HBase and

RHadoop’s features. RHadoop includes packages to integrate R with MapReduce, HDFS,

and HBase, the key components of the Hadoop ecosystem. Also, the SPATSTAT

package is very useful for spatial data mining analytical tasks. It is expected that

geographic analysts would most benefit from the applications of large-scale geospatial

data analytic methods because Big Data management and statistical analysis are the two

central activities in geospatial application. In this framework, we have provided several

specific methods to improve the query performance on Hbase. With the BulkLoad feature

of Hbase, users can make the ETL (extract, transform and load) work over geospatial data

more efficiently than by using the traditional solution. Some in-memory spatial indexes

can be built on large-scale geospatial data and thus the spatial index will improve the

performance of ETL work. Users also can write Map/Reduce tasks to run analytical tasks

in parallel mode. The Map/Reduce feature combined with R extends the scalability of R

analytical work. In general, the framework provides a universal solution for spatial

analytical tasks which is needed for statisticians and researchers.

In Section 3, we presented the framework and its objectives and features. The designs of

the various components that make up the framework have been presented in detail in

 86

Section 4. HBase has been customized and optimized as the spatial data warehouse

platform. HDFS plus MapReduce has been implemented as the large-scale geospatial

data mining method. Section 5 presents examples on how to use the framework to

analyze large-scale geospatial data and four such applications have been presented. The

use case of spatial data warehouse gives a sample of high performance geospatial data

query in HBase. The use case of spatial data mining shows the details of geospatial data

analysis in R. The use case of Random Forest demonstrates the sample code of

distributed machine learning in R and Hadoop platform. The use case of Shark Alert Map

presents the method to run statistical computation among large-scale test data.

In this project, a framework that enables programmers and non-programmers to perform

statistical analysis based on large-scale geospatial data has been presented. Four case

studies demonstrating the strength of our framework have been outlined. These case

studies comprise large-scale geospatial data handling, statistical analysis, and software

component (GUI) generation. These examples have highlighted the benefits of utilizing

our framework in terms of reduction in development efforts. In this framework, we have

provided several methods to improve the performance for processing and analyzing

large-scale geospatial data. This framework also has the potential to extend the statistical

supercomputing environment, which will be widely used for various fields such as

weather forecasting, climate research, oil and gas exploration, and physical simulations

(for example airplane and vessel route planning) [57]. Using this framework is more a

https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Climate_research
https://en.wikipedia.org/wiki/Oil_and_gas_exploration

 87

convenient, flexible, and scalable way for data analysts and statisticians to process and

analyze large-scale geospatial data.

 88

Bibliography

1. Abhishek Sharma , Drone Data Adds a New Horizon for Big Data Analytics:

http://www.infoq.com/news/2014/09/drone-data-big-data-analytics

2. Geospatial Intelligence: https://en.wikipedia.org/wiki/Geospatial_intelligence

3. Elias Ioup, Zhao Yang, Brent Barre, John Sample, Kevin B. Shaw, Mahdi

Abdelguerfi, "Annotating Uncertainty in Geospatial and Environmental Data", IEEE

Internet Computing, vol. 19, no. , pp. 18-27, Jan.-Feb. 2015,

doi:10.1109/MIC.2014.39

4. A. W. M. Van Eekeren, J. R. van Huis, P. T. Eendebak, J. Baan, Vehicle tracking in

wide area motion imagery from an airborne platform, Proc. SPIE 9648, p. 96480I,

2015. doi:10.1117/12.2196392

5. Alexandros Labrinidis, H. V. Jagadish: Challenges and Opportunities with Big Data,

Proceedings of the VLDB Endowment VLDB Endowment Hompage archive

Volume 5 Issue 12, August 2012

6. Konstantin Shvachko , Hairong Kuang , Sanjay Radia , Robert Chansler: The

Hadoop Distributed File System, Mass Storage Systems and Technologies (MSST),

2010 IEEE 26th Symposium

7. Tyler Harter, Dhruba Borthakur,Siying Dong,Amitanand Aiyer,Liyin Tang, Andrea

C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau: Analysis of HDFS Under HBase: A

Facebook Messages Case Study, FAST'14 Proceedings of the 12th USENIX

conference on File and Storage Technologies

8. Anylitics, Business Intelligence and Data Management | SAS:

https://www.sas.com/en_us/home.html

9. Michael G.Noll, Running Hadoop On Ubuntu linux multi-node

cluster:http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-mult

i-node-cluster/

10. Brad Hedlund, Understanding Hadoop Clusters and the Network:

http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/

11. Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, Benjamin Reed: ZooKeeper:

Wait-free coordination for Internet-scale systems, USENIXATC'10 Proceedings of

the 2010 USENIX conference on USENIX annual technical conference

12. Gavin Badcock, GOOGLE’S BIGQUERY VS HADOOP: COMPLIMENTORS OR

COMPETITORS? :

https://gavinbadcock.wordpress.com/2013/02/06/googles-bigquery-vs-hadoop-compl

imentors-or-competitors/

13. Fay Chang, Jeffrey Dean,etc: Bigtable: A Distributed Storage System for Structured

Data , ACM Transactions on Computer Systems (TOCS) Volume 26 Issue 2, June

http://www.infoq.com/author/Abhishek-Sharma
http://www.infoq.com/news/2014/09/drone-data-big-data-analytics
https://en.wikipedia.org/wiki/Geospatial_intelligence
http://dx.doi.org/10.1117/12.2196392
http://www.eecs.umich.edu/db/pvldb/
http://dl.acm.org/citation.cfm?id=J1174&picked=prox&cfid=492116073&cftoken=49295262
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5488875
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5488875
https://www.sas.com/en_us/home.html
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
https://gavinbadcock.wordpress.com/2013/02/06/googles-bigquery-vs-hadoop-complimentors-or-competitors/
https://gavinbadcock.wordpress.com/2013/02/06/googles-bigquery-vs-hadoop-complimentors-or-competitors/

 89

2008 Article No. 4

14. Ihaka, Ross; Gentlman, Robert (Sep 1996). "R: A Language for Data Analysis and

Graphics". Journal of Computational and Graphical Statistics (American Statistical

Association) 5 (3): 299–314. doi:10.2307/1390807. Retrieved 12 May 2014.

15. Chambers, John M (1998). Programming with Data: A Guide to the S Language.

Springer. ISBN 978-0-387-98503-9.

16. NASA Goddard Institute for Space Studies (GISS), Panoply netCDF, HDF and

GRIB Data Viewer: http://www.giss.nasa.gov/tools/panoply/

17. Pavel Michna, Milton Woods: RNetCDF – A Package for Reading and Writing

NetCDF Datasets, The R Journal Vol. 5/2, December

18. Cisco-based Hybrid Cloud Storage – Architecture for Trusted Cloud Outsourcing:
http://cloudventures.sys-con.com/node/1555525

19. Why In-Memory Computing Is Cheaper And Changes Everything:

http://timoelliott.com/blog/2013/04/why-in-memory-computing-is-cheaper-and-chan

ges-everything.html

20. In-memory computing, Vijay Seethepalli:

https://www.linkedin.com/pulse/in-memory-computing-vijay-seethepalli

21. IBM:What is In-memory computing?:

www.ibm.com/software/data/what-is-in-memory-computing.htm

22. Dimitris Papadias, Panos Kalnis, Jun Zhang, Yufei Tao: Efficient OLAP Operations

in Spatial Data Warehouses：Advances in Spatial and Temporal Databases Volume

2121 of the series Lecture Notes in Computer Science pp 443-459

23. Marco Morais: Spatial Data Mining：

https://www.gislounge.com/spatial-data-mining/

24. Shashi Shekhar, Yan Huang, Weili Wu, C. T. Lu, S. Chawl：What’s Spatial About

Spatial Data Mining: Three Case Studies，Data Mining for Scientific and

Engineering Applications Volume 2 of the series Massive Computing pp 487-514

25. Michael Franklin, Alon Halevy, David Maier: From Databases to Dataspaces: A

New Abstraction for Information Management, ACM SIGMOD Record Volume 34

Issue 4, December 2005

26. GeoWave Documentation: https://ngageoint.github.io/geowave/documentation.html

27. Luiz Velho, Jonas de Miranda Gomes: Digital halftoning with space filling curves,

ACM SIGGRAPH Computer Graphic Volume 25 Issue 4, July 199

28. Kisung Lee, Raghu K.Ganti, Mudhakar Srivatsa, Ling Liu: Efficient spatial query

processing for Big Data, SIGSPATIAL '14 Proceedings of the 22nd ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems

29. Jeffrey Cohen, Brian Dolan: MAD Skills: New Analysis Practices for Big Data,

Proceedings of the VLDB Endowment, Volume 2 Issue 2, August 2009:

http://pivotal.io/big-data/pivotal-greenplum-database

30. Revolution Analytics, How to program MapReduce jobs in Hadoop with R:

https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf
https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.2307%2F1390807
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-98503-9
http://www.giss.nasa.gov/tools/panoply/
http://cloudventures.sys-con.com/node/1555525
http://timoelliott.com/blog/2013/04/why-in-memory-computing-is-cheaper-and-changes-everything.html
http://timoelliott.com/blog/2013/04/why-in-memory-computing-is-cheaper-and-changes-everything.html
https://www.linkedin.com/pulse/in-memory-computing-vijay-seethepalli
file:///C:/Users/zyang/Documents/My%20Dropbox/SHARE/PhD%20thesis/www.ibm.com/software/data/what-is-in-memory-computing.htm
https://www.gislounge.com/spatial-data-mining/
https://ngageoint.github.io/geowave/documentation.html
http://sigspatial2014.sigspatial.org/
http://pivotal.io/big-data/pivotal-greenplum-database

 90

http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html

31. Ahmed Eldawy and M. F. Mokbel, SpatialHadoop: towards flexible and scalable

spatial processing using mapreduce; SIGMOD'14 PhD Symposium Proceedings of

the 2014 SIGMOD PhD symposium

32. A. Eldawy and M. F. Mokbel. Pigeon: A Spatial MapReduce Language. In ICDE,

2014

33. Teradata Aster R, Scalable Data Science Package for R:

http://www.teradata.com/products-and-services/aster-r

34. Mark Schneider, Donna Bennett, Connie Robison: Understanding the Anatomy of a

SAS® Deployment: What's in My Server Soup?

35. Bill Jacobs, Using Hadoop with R: It Depends.

http://blog.revolutionanalytics.com/2015/06/using-hadoop-with-r-it-depends.html

36. R and Hadoop: http://blog.fens.me/r-hadoop-book-big-data

37. Jeffrey Dean , Sanjay Ghemawat: MapReduce : Simplified Data Processing on Large

Clusters, Communications of the ACM - 50th anniversary issue: 1958 – 2008,

Volume 51 Issue 1, January 2008

38. Spark Streaming with HBase: http://sercanbilgic.com/

39. Adam Muise, HBase a Technical Introduction:

http://www.slideshare.net/adammuise/2013-sept-17thughbasetechnicalintroduction

40. Schubert Zhang, HBase-0.20.0 Performance Evaluation:

http://cloudepr.blogspot.com/2009/08/hbase-0200-performance-evaluation.html

41. A. Baddeley, E. Rubak and R.Turner. Spatial Point Patterns: Methodology and

Applications with R. Chapman and Hall/CRC Press, 2015

42. How to Use Hbase Bulk Loading and Why:

http://blog.cloudera.com/blog/2013/09/how-to-use-hbase-bulk-loading-and-why/

43. HBase and Schema Design,Secondary Indexes and Alternate Query Paths:

http://hbase.apache.org/0.94/book/secondary.indexes.html

44. Java Spatial Index: http://jsi.sourceforge.net/

45. Geophile: https://github.com/geophile/geophile

46. Lars George, Advanced Hbase, Architecture and Schema Design, JAX UK, October

2012: http://www.slideshare.net/jaxlondon2012/hbase-advanced-lars-george

47. Revolution Analytics, RHadoop wiki:

https://github.com/RevolutionAnalytics/RHadoop/wiki

48. Revolution Analytics, MapReduce in R:

https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md

49. World Geodetic System: https://en.wikipedia.org/wiki/World_Geodetic_System

50. Fiseries and Oceans Canada:

http://www.charts.gc.ca/data-gestion/bathy/bathymetri-eng.asp

51. Antonin Guttman: R-Trees - A Dynamic Index Structure for Spatial Searching,

SIGMOD '84 Proceedings of the 1984 ACM SIGMOD international conference on

Management of data

http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://www.teradata.com/products-and-services/aster-r
http://blog.revolutionanalytics.com/2015/06/using-hadoop-with-r-it-depends.html
http://blog.fens.me/r-hadoop-book-big-data
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean_html/index.html
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean_html/index.html
http://sercanbilgic.com/
http://www.slideshare.net/adammuise/2013-sept-17thughbasetechnicalintroduction
https://www.blogger.com/profile/07530469393869595218
http://cloudepr.blogspot.com/2009/08/hbase-0200-performance-evaluation.html
http://blog.cloudera.com/blog/2013/09/how-to-use-hbase-bulk-loading-and-why/
http://hbase.apache.org/0.94/book/secondary.indexes.html
http://jsi.sourceforge.net/
https://github.com/geophile/geophile
http://www.slideshare.net/jaxlondon2012/hbase-advanced-lars-george
https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/rmr2/blob/master/docs/tutorial.md
https://en.wikipedia.org/wiki/World_Geodetic_System
http://www.charts.gc.ca/data-gestion/bathy/bathymetri-eng.asp
http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf

 91

52. Kasper Klitgaard Berthelsen, Abdollah Jalilian, Marie-Colette van Lieshout, Tuomas

Rajala, Dominic Schuhmacher and Rasmus Waagepetersen: Spatstat Quick

Reference guide

53. Ho, Tin Kam (1995). Random Decision Forest (PDF). Proceedings of the 3rd

International Conference on Document Analysis and Recognition, Montreal, QC,

14–16 August 1995. pp. 278–282.

54. Sums of Independent Random Variables:

https://www.stat.wisc.edu/courses/st311-rich/convol.pdf

55. Uri Laserson, How-to: Resample from a Large Data Set in Parallel

56. Florida Museum of Natural History: International Shark Attack File:

http://www.flmnh.ufl.edu/fish/sharks/statistics/gattack/mapca.htm

57. Supercomputer: https://en.wikipedia.org/wiki/Supercomputer

http://cm.bell-labs.com/cm/cs/who/tkh/papers/odt.pdf
https://www.stat.wisc.edu/courses/st311-rich/convol.pdf
http://www.flmnh.ufl.edu/fish/sharks/statistics/gattack/mapca.htm
https://en.wikipedia.org/wiki/Supercomputer

 92

Appendix

A.1 Sample code for range query based on JSI

package hbase_test;

import java.io.IOException;

import java.math.BigDecimal;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.KeyValue;

import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.client.ResultScanner;

import org.apache.hadoop.hbase.client.Scan;

import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;

import org.apache.hadoop.hbase.filter.FilterList;

import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;

import org.apache.hadoop.hbase.util.Bytes;

import java.util.ArrayList;

import java.util.List;

import org.slf4j.*;

import com.infomatiq.jsi.*;

import gnu.trove.*;

import com.infomatiq.jsi.Rectangle;

import com.infomatiq.jsi.rtree.RTree;

public class RangeQuery {

 /**

 93

 * range query by distance

 * @param tablename

 * @param distance

 */

 public static void main(String args[]) throws IOException {

 String tablename = "geos_test";

 Configuration conf = HBaseConfiguration.create();

 HTable table = new HTable(conf, tablename);

 //boundary query for geo-spatial data

 String cf ="poi_cf";

 String column1 = "longitude";

 String column2 = "latitude";

 String column3 = "mean";

 String column4 = "standarddeviation";

 //set POI boundary

 String long_lower = "-129.9900";

 String lat_lower = "49.0400";

 String long_upper = "-129.9250";

 String lat_upper = "49.0500";

 //set central POI

 String long_central = "-129.9450";

 String lat_central = "49.0450";

 String distance = "0.01";

 //convert data for convenience because the longitude is negative value

 String temp = long_lower;

 long_lower = long_upper;

 long_upper = temp;

 Scan s = new Scan();

 s.addFamily(Bytes.toBytes(cf));

 FilterList list = new

FilterList(FilterList.Operator.MUST_PASS_ALL);

 94

 SingleColumnValueFilter filter1 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column1),

 CompareOp.GREATER_OR_EQUAL,

 Bytes.toBytes(long_lower)

);

 filter1.setFilterIfMissing(true);

 list.addFilter(filter1);

 SingleColumnValueFilter filter2 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column2),

 CompareOp.GREATER_OR_EQUAL,

 Bytes.toBytes(lat_lower)

);

 list.addFilter(filter2);

 filter2.setFilterIfMissing(true);

 SingleColumnValueFilter filter3= new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column1),

 CompareOp.LESS_OR_EQUAL,

 Bytes.toBytes(long_upper)

);

 list.addFilter(filter3);

 filter3.setFilterIfMissing(true);

 SingleColumnValueFilter filter4 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column2),

 CompareOp.LESS_OR_EQUAL,

 Bytes.toBytes(lat_upper)

);

 list.addFilter(filter4);

 filter4.setFilterIfMissing(true);

 s.setFilter(list);

 ResultScanner scanner = table.getScanner(s);

 String key = new String("~");

 String keyFlag = new String("~");

 System.out.println("Scanning table... ");

 for (Result result : scanner) {

 95

//System.out.println("getRow:"+Bytes.toString(result.getRow()));

 key = "~";

 int print_flag = 0;

 for (KeyValue kv : result.raw())

 {

 if (key.compareTo(keyFlag)==0)

 {

 key = Bytes.toString(kv.getRow());

 System.out.print("Key: " + key + "\r\n");

 Get g = new Get(Bytes.toBytes(key));

 Result r = table.get(g);

 byte[] lon_value = r.getValue(Bytes.toBytes("poi_cf"),

 Bytes.toBytes("longitude")

);

 byte[] lat_value = r.getValue(Bytes.toBytes("poi_cf"),

 Bytes.toBytes("latitude")

);

 String valueStr_lon = Bytes.toString(lon_value);

 String valueStr_lat = Bytes.toString(lat_value);

// System.out.println("GET longitude value: " +

valueStr_lon + "\r\n");

// System.out.println("GET latitude value: " + valueStr_lat

+ "\r\n");

 BigDecimal lon_c= new BigDecimal(long_central);

 BigDecimal lat_c= new BigDecimal(lat_central);

 BigDecimal dis= new BigDecimal(distance);

 BigDecimal lon_act= new BigDecimal(valueStr_lon);

 BigDecimal lat_act= new BigDecimal(valueStr_lat);

 BigDecimal bigResult = new BigDecimal(4);

 bigResult =

(lon_act.subtract(lon_c)).multiply(lon_act.subtract(lon_c)).add(

(lat_act.subtract(lat_c)).multiply(lat_act.subtract(lat_c)));

 BigDecimal dis_sqr = new BigDecimal(4);

 dis_sqr = dis.multiply(dis);

 96

// System.out.println("GET Euclidean Distance_sqr value: "

+ bigResult + "\r\n");

// System.out.println("GET Radium_sqr value: " + dis_sqr +

"\r\n");

 if (bigResult.compareTo(dis_sqr) !=1)

 {

 System.out.println("Euclidean Distance_sqr " + bigResult

+ " is less than or equal to Radium_sqr " + dis_sqr + "\r\n");

 print_flag = 1;

 } else

 {

 System.out.println("Euclidean Distance_sqr " + bigResult

+ " is greater than Radium_sqr " + dis_sqr + "; This POI skipped\r\n");

 }

 }

 if (print_flag == 1)

 {

 //System.out.print("Family -

"+Bytes.toString(kv.getFamily()));

 //System.out.print(", Buffer -

"+Bytes.toString(kv.getBuffer()));

 //System.out.print(", FamilyOffset - " +

kv.getFamilyOffset());

 System.out.print("POI:

"+Bytes.toString(kv.getFamily())+"."+Bytes.toString(kv.getQualifier()))

;

 System.out.print("=" +Bytes.toString(kv.getValue())+" ");

 }

 }

 System.out.println("");

 System.out.println("-------------------");

 }

 97

 scanner.close();

 System.out.println("Range query Completed\r\n ");

 table.close();

 }

}

 98

A.2 Sample code for range query based on JSI

package hbase_test;

import java.io.IOException;

import java.math.BigDecimal;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.KeyValue;

import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.client.ResultScanner;

import org.apache.hadoop.hbase.client.Scan;

import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;

import org.apache.hadoop.hbase.filter.FilterList;

import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;

import org.apache.hadoop.hbase.util.Bytes;

import java.util.ArrayList;

import java.util.List;

import org.slf4j.*;

import com.infomatiq.jsi.*;

import gnu.trove.*;

import com.infomatiq.jsi.Rectangle;

import com.infomatiq.jsi.rtree.RTree;

public class BoundaryQuery {

 /**

 * find one row

 * @param tablename

 * @param rowkey

 99

 */

 @SuppressWarnings("resource")

 public static void main(String args[]) throws IOException {

 String tablename = "geos_test";

 String rowKey = "732";

 Configuration conf = HBaseConfiguration.create();

 HTable table = new HTable(conf, tablename);

 //retrive row by rowkey

 Get g = new Get(rowKey.getBytes());

 Result rs = table.get(g);

 for (KeyValue kv : rs.raw()) {

 System.out.print(new String(kv.getRow()) + " ");

 System.out.print(new String(kv.getFamily()) + ":");

 System.out.print(new String(kv.getQualifier()) + " ");

 System.out.print(kv.getTimestamp() + " ");

 System.out.println(new String(kv.getValue()));

 }

 //boundary query for geo-spatial data

 String cf ="poi_cf";

 String column1 = "longitude";

 String column2 = "latitude";

 String column3 = "mean";

 String column4 = "standarddeviation";

 //set POI boundary

 String long_lower = "-129.9550";

 String lat_lower = "49.0400";

 String long_upper = "-129.9250";

 String lat_upper = "49.0500";

 //convert data for convenience because the longitude is negative value

 String temp = long_lower;

 long_lower = long_upper;

 long_upper = temp;

 100

 Scan s = new Scan();

 s.addFamily(Bytes.toBytes(cf));

 FilterList list = new

FilterList(FilterList.Operator.MUST_PASS_ALL);

 SingleColumnValueFilter filter1 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column1),

 CompareOp.GREATER_OR_EQUAL,

 Bytes.toBytes(long_lower)

);

 filter1.setFilterIfMissing(true);

 list.addFilter(filter1);

 SingleColumnValueFilter filter2 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column2),

 CompareOp.GREATER_OR_EQUAL,

 Bytes.toBytes(lat_lower)

);

 list.addFilter(filter2);

 filter2.setFilterIfMissing(true);

 SingleColumnValueFilter filter3= new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column1),

 CompareOp.LESS_OR_EQUAL,

 Bytes.toBytes(long_upper)

);

 list.addFilter(filter3);

 filter3.setFilterIfMissing(true);

 SingleColumnValueFilter filter4 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column2),

 CompareOp.LESS_OR_EQUAL,

 Bytes.toBytes(lat_upper)

);

 list.addFilter(filter4);

 filter4.setFilterIfMissing(true);

 s.setFilter(list);

 101

 ResultScanner scanner = table.getScanner(s);

 String key = new String("~");

 String keyFlag = new String("~");

 System.out.println("Scanning table... ");

 for (Result result : scanner) {

//System.out.println("getRow:"+Bytes.toString(result.getRow()));

 key = "~";

 for (KeyValue kv : result.raw()) {

 if (key.compareTo(keyFlag)==0)

 {

 key = Bytes.toString(kv.getRow());

 System.out.print("Key: " + key);

 }

 //System.out.print("Family -

"+Bytes.toString(kv.getFamily()));

 //System.out.print(", Buffer -

"+Bytes.toString(kv.getBuffer()));

 //System.out.print(", FamilyOffset - " +

kv.getFamilyOffset());

 System.out.print(",

"+Bytes.toString(kv.getFamily())+"."+Bytes.toString(kv.getQualifier()))

;

 System.out.print("=" +Bytes.toString(kv.getValue()));

 }

 System.out.println("");

 System.out.println("-------------------");

 }

 scanner.close();

 System.out.println("Boundary query Completed\r\n ");

 //full table scan

 System.out.println("Full table scan query Started ");

 Scan s_full = new Scan();

 s_full.addFamily(Bytes.toBytes("poi_cf"));

 ResultScanner scanner_full = table.getScanner(s_full);

 try {

 for (Result rr : scanner_full) {

 102

 //System.out.println("Found row: " + rr);

 }

 } finally {

 System.out.println("Full table scan query Completed ");

 scanner.close();

 }

 table.close();

 }

}

 103

A.3 Sample code for KNN(nearest neighbor) query based on JSI

package hbase_test;

import java.io.IOException;

import java.math.BigDecimal;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.KeyValue;

import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.client.ResultScanner;

import org.apache.hadoop.hbase.client.Scan;

import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;

import org.apache.hadoop.hbase.filter.FilterList;

import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;

import org.apache.hadoop.hbase.util.Bytes;

import java.util.ArrayList;

import java.util.List;

import org.slf4j.*;

import com.infomatiq.jsi.*;

import gnu.trove.*;

import com.infomatiq.jsi.Rectangle;

import com.infomatiq.jsi.rtree.RTree;

public class KnnQuery {

 /**

 * K-nearest neighbor query

 * @param tablename

 * @param k

 */

 public static void main(String args[]) throws IOException {

 104

 String tablename = "geos_test";

 Configuration conf = HBaseConfiguration.create();

 HTable table = new HTable(conf, tablename);

 //boundary query for geo-spatial data

 String cf ="poi_cf";

 String column1 = "longitude";

 String column2 = "latitude";

 String column3 = "mean";

 String column4 = "standarddeviation";

 //set POI boundary

 String long_lower = "-129.9000";

 String lat_lower = "49.0400";

 String long_upper = "-128.0250";

 String lat_upper = "49.5500";

 //set central POI

 String long_central = "-129.9450";

 String lat_central = "49.0450";

 //set number K

 int k =10;

 //convert data for convenience because the longitude is negative value

 String temp = long_lower;

 long_lower = long_upper;

 long_upper = temp;

 //boundary query to filter data

 Scan s = new Scan();

 s.addFamily(Bytes.toBytes(cf));

 FilterList list = new

FilterList(FilterList.Operator.MUST_PASS_ALL);

 SingleColumnValueFilter filter1 = new SingleColumnValueFilter(

 105

 Bytes.toBytes(cf),

 Bytes.toBytes(column1),

 CompareOp.GREATER_OR_EQUAL,

 Bytes.toBytes(long_lower)

);

 filter1.setFilterIfMissing(true);

 list.addFilter(filter1);

 SingleColumnValueFilter filter2 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column2),

 CompareOp.GREATER_OR_EQUAL,

 Bytes.toBytes(lat_lower)

);

 list.addFilter(filter2);

 filter2.setFilterIfMissing(true);

 SingleColumnValueFilter filter3= new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column1),

 CompareOp.LESS_OR_EQUAL,

 Bytes.toBytes(long_upper)

);

 list.addFilter(filter3);

 filter3.setFilterIfMissing(true);

 SingleColumnValueFilter filter4 = new SingleColumnValueFilter(

 Bytes.toBytes(cf),

 Bytes.toBytes(column2),

 CompareOp.LESS_OR_EQUAL,

 Bytes.toBytes(lat_upper)

);

 list.addFilter(filter4);

 filter4.setFilterIfMissing(true);

 s.setFilter(list);

 BigDecimal array_poi[][];

 array_poi = new BigDecimal[99999][5];

 //get POI data

 ResultScanner scanner = table.getScanner(s);

 String key = new String("~");

 106

 String keyFlag = new String("~");

 System.out.println("Scanning table... ");

 int count_poi=-1;

 for (Result result : scanner) {

 //System.out.println("getRow:"+Bytes.toString(result.getRow()));

 key = "~";

 int print_flag = 0;

 int column = -1;

 for (KeyValue kv : result.raw())

 {

 if (key.compareTo(keyFlag)==0)

 {

 key = Bytes.toString(kv.getRow());

 System.out.print("Key: " + key + "\r\n");

 print_flag=1;

 count_poi++;

 System.out.println("count_poi is: " + count_poi +

"\r\n");

 array_poi[count_poi][0]=new BigDecimal(key);

 column = 1;

 }

 if (print_flag == 1)

 {

 if (column < 5) {

 //System.out.print("Family -

"+Bytes.toString(kv.getFamily()));

 //System.out.print(", Buffer -

"+Bytes.toString(kv.getBuffer()));

 //System.out.print(", FamilyOffset - " +

kv.getFamilyOffset());

 System.out.print("POI:

"+Bytes.toString(kv.getFamily())+"."+Bytes.toString(kv.getQualifier()))

;

 System.out.print("="

 107

+Bytes.toString(kv.getValue())+" ");

 array_poi[count_poi][column]=new

BigDecimal(Bytes.toString(kv.getValue()));

 column ++ ;

 } else {

 column = 1;

 }

 }

 }

 System.out.println("");

 System.out.println("-------------------");

 }

 scanner.close();

 //define R-tree

 int count_real = count_poi+1;

 System.out.println("Boudary query Completed, The number of POIs is:"

+ count_real +" \r\n ");

 System.out.println("Creating rectangles of R-tree \r\n");

 long start,end;

 float offset = 0.0005f;

 final Rectangle[] rects = new Rectangle[count_poi];

 int id = 0;

 for (int i = 0; i < count_poi; i++)

 {

 System.out.print("longitude value: " +

array_poi[i][2].floatValue() + " latitude value: " +

array_poi[i][1].floatValue() + "\r\n");

 rects[id++] = new Rectangle(array_poi[i][2].floatValue(),

array_poi[i][1].floatValue(), array_poi[i][2].floatValue()+ offset,

array_poi[i][1].floatValue() + offset); //

 }

 System.out.print("Indexing " + count_real + " rectangles\r\n");

 start = System.currentTimeMillis();

 SpatialIndex si = new RTree();

 108

 si.init(null);

 for (id=0; id < count_poi; id++) {

 si.add(rects[id], id);

 }

 end = System.currentTimeMillis();

 System.out.print("Average time to index rectangle = " + ((end - start)

/ (count_poi / 1000.0)) + " us\r\n");

 // Run a performance test, find the k nearest rectangles

 float long_central_f = Float.valueOf(long_central);

 float lat_central_f = Float.valueOf(lat_central);

 final Point p = new Point(long_central_f, lat_central_f);

 System.out.print("Querying for the nearest " + k + " rectangles to

" + p + " \r\n");

 si.nearestN(p, new TIntProcedure() {

 public boolean execute(int i) {

 System.out.print("Rectangle " + i + " " + rects[i] + ",

distance=" + rects[i].distance(p)+ " \r\n");

 return true;

 }

 }, k, Float.MAX_VALUE);

 // Run a performance test, find the k nearest rectangles

 final int[] ret = new int[1];

 System.out.print("Running 10000 queries for the nearest " + k + "

rectangles\r\n");

 start = System.currentTimeMillis();

 for (int row = 0; row < 100; row++) {

 for (int column = 0; column < 100; column++) {

 p.x = row + 0.6f;

 p.y = column + 0.7f;

 si.nearestN(p, new TIntProcedure() {

 public boolean execute(int i) {

 ret[0]++;

 return true; // don't do anything with the results,

for a performance test.

 }

 }, k, Float.MAX_VALUE);

 }

 109

 }

 end = System.currentTimeMillis();

 System.out.print("Average time to find nearest " + k + " rectangles

= " + ((end - start) / (10000 / 1000.0)) + " us\r\n");

 System.out.print("total time = " + (end - start) + "ms\r\n");

 System.out.print("total returned = " + ret[0]+ " \r\n");

 table.close();

 }

}

 110

VITA

The author was born in Shanxi, China. He obtained his Bachelor Degree in Computer

Science from Northwestern Polytechnical University, Xi’an China. He received a M.S. in

Computer Science from the University of New Orleans in 2012. He was enrolled in the

graduate program in Computer Science at the University of New Orleans since August

2010.

	Spatial Data Mining Analytical Environment for Large Scale Geospatial Data
	Recommended Citation

	PhD Dissertation

