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Abstract 

 Overwash, shoreface retreat, and barrier migration are common processes occurring in 

transgressive barrier island systems, the scale of which is exacerbated by sea level rise, 

subsidence and the frequency and magnitude of tropical and extratropical storms.  Barrier 

morphology also clearly plays a key role in determining a morphological response to these 

processes.  Using a hydrodynamic and sediment transport model (MIKE21) and selected barrier 

island and shoreface templates, informed by deltaic and coastal plain systems in the northern 

Gulf of Mexico, I performed simulations to determine barrier morphology in response to storms. 

A low dune with a gentle shoreface slope, characteristic of Louisiana deltaic barriers, 

demonstrates the greatest amount of shoreline erosion, dune overwash and barrier migration in 

response to a storm.  Profile evolutions over time demonstrate the wider dune templates respond 

mostly via dune aggradation and barrier rollover whereas the narrow or low templates respond 

via dune overwash and barrier translation.  Determining which barrier templates retain the most 

sediment over time becomes extremely important when planning coastal restoration projects here 

in Louisiana.   

 

 

 

 

Keywords: Shoreface, Overwash 
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Introduction 

Barrier island systems are important coastal landforms that harbor important marine life 

and act as a buffer to coastal ecosystems against storm surge and wave action (Barbier et al., 

2013).  The overall shape and volume of sand within barrier island systems fluctuate over time as 

a response to changes in relative sea level rise, sediment supply, the incidence of storms, and 

proximal substrate composition (Ritchie & Penland, 1988; List et al., 1997).  The Louisiana 

coastline experiences some of the highest rates of wetland loss in the United States (16.57mi² per 

year from 1985 to 2010) due in part to high rates of subsidence, eustatic sea level rise, and a high 

frequency of tropical and extratropical storms (Miner et al., 2009; Couvillion et al., 2011; 

Georgiou et al. 2005).  Currently, barrier islands in Louisiana, characteristic of low barriers with 

gentle shoreface slopes, are in a transgressive phase, undergoing fragmentation due to an 

ongoing rise in sea level and a lack of sediment supply. They are also subjected to frequent 

erosion events from storm-induced transport including overwash and/or lateral transport. (Stone 

et al., 2005; Georgiou et al., 2005; Miner et al., 2009).  Barrier overwash, referred to as 

washover, promotes the cross-shore landward transfer of sediment across the barrier leading to 

migration of a barrier over time (Matias et al., 2009; Lorenzo-Trueba & Ashton, 2014).  The 

variation in barrier response produced by a storm is highly dictated by the morphology of the 

shoreface slope and barrier template (Donnelly, 2007; Lorenzo-Trueba & Ashton, 2014).  The 

goal of this research is to a) explore the relationship between shoreface  morphology and 

overwash volume, leading to the landward migration of such landforms during the ongoing 

transgression b) examine various nourishing templates for barriers to determine which can help 

offset or reduce sediment loss from the system and help maintain subaerial extent for longer 

periods  and c) better constrain morphological response of barriers to overwash events on short-
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term and decadal time-scales through the use of a morphodynamic model called MIKE 21.  

MIKE 21 by DHI is a 2D process based coastal hydrodynamic and morphology model with 

multiple applications and capabilities.  Because Louisiana’s barriers are eroding and 

disappearing at rapid rates, the importance of effective coastal protection grows exponentially 

every day.  Increasing the accuracy of scientific predictions will allow for improved coastal 

planning and management practices. 
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Background and Significance 

Barriers 

The origin of barriers has been proposed and debated by a number of scientists including 

DeBeaumont (1845), Gilbert (1885), McGee (1890), Shepard (1960), Hoyt (1967) and Otvos 

(1970), but Short (1999) building on statements first promulgated by Swift (1975), states there is 

now common agreement that barriers form at sea level on suitable substrates by the action of 

waves and tides and that most modern barriers were established in the late Postglacial marine 

transgression in the mid-to late Holocene.  In fact, Short (1999) states that the only essential 

prerequisites for barrier formation are a) accommodation space, b) ample sediment supply and c) 

waves to transport the sediment offshore into the accommodation space; and that subsequently 

tides, winds and sea level change will rework the sediment creating inlets and backbarrier 

deposits. 

Barriers may exist in different marine settings including a) regressive sea level or 

progradational setting and b) transgressive sea level or retrogradational setting (Riggs, Cleary & 

Snyder, 1995).  Short (1999) established that during a transgressive (rising) sea level setting, four 

barrier types may form depending on the rate of sea level rise, sediment supply and substrate 

slope including 1) prograded barriers and strandplains which prograde due to the landward 

transport of sediment from a local major sediment source, 2) retrogradational barriers which 

occur on coasts experiencing relative sea level rise, 3) retrogradational coastal plains and 4) 

retrogradational attached barriers.  The evolution of the Mississippi River Delta Plain (MRDP) 

creates unique conditions and opportunities for the formation of deltaic barriers through shifting 

depocenters creating delta complexes facilitated by upriver avulsions during the Holocene.  This 

is coupled with spatially variable and differential subsidence driven by various mechanisms 
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including compaction of Holocene sediments (Penland & Boyd, 1981).  Penland and Boyd 

(1981) suggested a cycle by which deltaic barrier islands can be formed and submerged over 

time.  Initially, in the abandonment phase, a delta complex is abandoned and course grained 

sediments from distributary sand bodies are reworked creating an erosional headland with 

flaking barriers.  Second, in the detachment phase, subsidence creates an open water lagoonal 

environment behind the barriers causing a separation from the mainland and creation of a 

transgressive barrier island arc.  During the last phase of barrier formation, the submergence 

phase, continued subsidence and lack of fluvial sediments result in the transformation of barriers 

to inner shelf subaqueous shoals (Penland & Boyd, 1981).  The authors emphasize that unless a 

reoccupation takes place where an active delta can introduce new fluvial sediments to the region, 

the subaqueous shoals will continue to degrade. 

Shoreface  

The shoreface extends from the upper limit of wave runup on the beach seaward to the 

point at which changes to the overall barrier profile are considered negligible, also termed the 

Depth of Closure (DoC) (Short, 1999). When considering morphological effects along a barrier 

island profile (from subaerial dunes to the toe of the shoreface) and the processes associated with 

that profile (e.g., overwash on barrier island systems) it becomes evident that success of the 

analysis will depend on carefully selecting the DoC which is a challenging endeavor due to its 

highly variable nature.  The DoC is a function of the various physical processes occurring along 

the barrier island geometry over time (Nicholls, Birkemeier & Hallermeier, 1996).  Due to the 

difficulty in calculating the DoC, an assumption is often made concerning the exact location of 

this point.  Hallermeier (1981) was one of the firsts to define the DoC using the following 

expression:  
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𝑑1 = 2.28𝐻𝑒 − 68.5 (
𝐻𝑒2

𝑔𝑇𝑒2
)                                                                                                        (1) 

where d1 represents the calculated DoC, He and Te are the local significant wave height and 

wave period exceeding only 12 hours per year (0.137% of the time) and g is the acceleration due 

to gravity (Sabatier, Stive & Pons, 2004).  Despite the presence of this equation, difficulty in 

defining the DoC leads to a difficulty in defining the gradient slope of the shoreface.  The 

significance of the shoreface is in the sediment exchange between the continental shelf (seaward) 

and backshore beach and dunes (Short, 1999).  The rate of sediment supply to the barrier from 

nearby sources on the shelf alters the overall shape and response of a barrier system to physical 

forces and the morphology of the dune restricts the deposition of the overwash volume 

(Donnelly, Kraus & Larson, 2006).  The slope of the shoreface is important in dictating the dune 

crest morphological response during storm events (Short, 1999).   

Niedoroda and Swift (1991) characterized the shoreface as a compound form consisting 

of two concave-up elements separated by an inflection point (upper and lower shoreface).  The 

upper shoreface is defined as the region in which accretion and erosion result in significant (or 

measurable) changes in bed elevation in a given year (Short, 1999).  More specifically, the upper 

shoreface ranges from the beach berm to an inflection point representative of a change in 

shoreface slope and substrate composition.  As change in bed elevation is largest in the vicinity 

of the beach face and decreases progressively offshore, Stive and Vriend (1995) appropriately 

refer to the upper shoreface as the active zone.  The lower shoreface represents a change in slope 

gradient and sediment grain size and extends from the lower limit of the upper shoreface to the 

outer DoC (Figure 1).  The lower shoreface may require millennia to evolve toward equilibrium 

whereas the upper shoreface may adjust toward equilibrium within days to weeks in response to 

fluctuations in wave conditions (Short, 1999). 
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 According to Short (1999), shoreface equilibrium may or may not exist at all considering 

the relative time scale.  On a large enough time scale (>1000 years) shoreface equilibrium 

becomes evident, but on a shorter timescale (<1000 years) changes in equilibrium occur as a 

function of fluctuating sea level.  The shoreface may exhibit a Null-point Equilibrium in which 

there is a balance in forces between waves pushing sediment onshore and gravity pulling 

sediment offshore.  Regardless of the state of equilibrium, the most important pattern as 

identified by Short (1999) is the covariation of shoreface slope and near-bed wave orbital 

velocities as both decrease progressively offshore as the reduction in near-bed wave action is 

attributed to the effect of increasing water depth.  The slope of the shoreface then, inherently, 

becomes important in not only breaking waves and dissipating energy, but defining the barrier 

profile and dictating morphological responses to cross-shore transport.  In fact, beaches and 

barriers will only develop on slope gradients between 0.05 and 0.8 with a predicted optimum 

Figure 1: Barrier Profile modified from Dean and Dalrymple, 2004 and Niederoda and Swift, 1991 
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gradient of 0.1 (Short, 1999).  On gentle sloping shelves (<0.05), frictional wave shoaling 

decreases wave energy progressively landward to the point where wave energy becomes 

incapable of reworking the sediment enough to create a beach or barrier profile whereas on a 

steep sloping shelf (>0.8), sediment may be transported offshore rather than onshore.  

Consequently, the slope of the shoreface exhibits a morphological control on the process of 

overwash and ultimately barrier migration. 

Overwash  

Overwash is an important physical process capable of significantly altering coastal 

morphology on beach and barrier systems.  Overwash is a type of cross-shore sediment transport 

defined by Leatherman (1981) as “the flow of water and sediment over the crest of the beach that 

does not directly return to the water body where it originated”.  This occurs if either wave runup 

level or storm surge level exceeds the beach crest height (Donnelly et al., 2006).  Overwash can 

actually result in increased elevation (height) or width of the subaerial exposure of a barrier 

island through deposition of sediment directly on top of the crest or on the backbarrier 

respectively; but can also result in the formation of washover fans or sheets and ultimately 

leading to landward translation (migration) of a barrier profile (Short, 1999).   

There have been multiple attempts to quantify the effects of overwash in a coastal 

environment including the first estimation by Bruun (1956) termed the Bruun Rule, which 

measured overwash based on simple barrier geometric calculations and an assumption of barrier 

equilibrium via coastal profile translation (List et al., 1997).  The Bruun Rule measures shoreline 

retreat rates based on sea level rise (SLR) and the distance and height of the DoC to the 

shoreface and mean water level respectively. The equation is presented as:  
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𝑠 =
𝑎𝑙

ℎ
                                                                                                                                             (2) 

where ‘s’ is shoreline retreat, ‘a’ is SLR, and ‘l’ and ‘h’ are the length (distance) and height 

offshore to the DoC (List et al., 1997).  Bruun also assumes an equilibrium profile over time that 

is translated vertically upwards and horizontally landwards meaning the volume of barrier 

sediment is maintained during translation (List et al., 1997).  Finally, the biggest shortcoming for 

the Bruun Rule is in assigning a single value to the DoC primarily due to the highly variable 

nature of the DoC (Cooper & Pilkey, 2004). 

Other long-term barrier retreat models have been proposed including Barrier Rollover by 

Swift (1975) and Barrier Overstepping by Dean and Maurmeyer (1983), but these models 

typically represent long-term (thousands of years to geologic scale) evolution of a barrier.  A 

noteworthy attempt to quantify the relationship between barrier morphology and coastal 

processes via short-term evolution (high magnitude events) is Nguyen et al. (2006) who 

established an empirical formula for coastal overwash volume that incorporated three main data 

points 1. Maximum wave height 2. Wave period and 3. Water level during the storm.  Nguyen’s 

equation is based on the assumption that excess runup transports sediment landward the entire 

duration of excess runup and is presented as:  

𝑄 = 0.0011
𝐻𝑐

𝑅
 
𝑡𝐷

𝑇
(𝑅 −  𝐻𝑐)2                                                                                                        (3)  

where ‘Hc’ is the average height of the dune crest, ‘R’ is the wave runup height, ‘T’ is the wave 

period, ‘tD’ is the dune overwash duration and ‘Q’ is the total overwash sediment discharge 

transported landward.   

Coastal overwash is a natural and frequent process but occurs most frequently following 

tropical and extratropical storm events (Donnelly, Kraus & Larson, 2006; Ritchie & Penland, 
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1988).  Van Rijn (2013) demonstrated that during high-energy conditions with breaking waves, 

the mean water level rises due to the combined effects of the tide, wind and wave forces forming 

a wave setup and waves attack the beach (dunes) leading to erosional processes that transport 

sediment offshore.  Whereas during low-energy conditions, onshore transport related to wave 

asymmetry and wave-induced streaming are dominant leading to accretional processes.  

Typically, overwash can occur via two mechanisms, runup and inundation.  Runup overwash 

occurs when wave runup height exceeds the beach or dune crest height depositing sediment 

backshore known as washover (Donnelly, Kraus & Larson, 2006).  Washover is a lower 

magnitude event capable of creating washover fans and terraces (Nguyen et al., 2006; Donnelly, 

Kraus & Larson, 2006; and Rosati et al., 2010).  Runup overwash can be categorized by three 

conditions; (a) relative elevations of water level and the barrier beach, (b) the frequency of waves 

that exceed the barrier beach elevation, and (c) the excess wave runup (∆R) which is the 

quantitative difference between wave runup height, R, added to the storm surge height, S, minus 

the elevation of the dune crest from the mean water level, dc: (Donnelly, Kraus & Larson, 2006) 

𝛥𝑅 = 𝑅 + 𝑆 − 𝑑𝑐                                                                                                                          (4) 

Runup overwash can lead to two alternative effects: 1. crest accumulation (R + S ≈ dc) in 

which few waves overtop the dune, so sediment is deposited either on the dune crest or in the 

throat of an existing washover leading to a raising of the throat and possible halting of further 

overwash and 2. crest lowering (R + S > dc) where waves have enough runup to overtop the 

dunes and therefore sediment is eroded from the face of the dune and deposited backshore 

(Donnelly, Kraus & Larson, 2006).  Runup overwash often leads to the development of 

washover fans, sediment transported through the throat deposited backshore, or even washover 

terraces or aprons (Donnelly et al., 2006; Nguyen et al., 2006; and Donnelly, 2007). 
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Inundation overwash occurs when the water level, as a result of storm surge and wave 

setup, exceeds the beach or dune crest submerging the barrier island (Donnelly, Kraus & Larson, 

2006).  The water and sediment transported landward, sluicing overwash or sheet wash, can lead 

to either minor inundation (S ≈ dc) in which water flows constantly over the beach or dune crest 

causing sediment to erode from the beach face and/or back barrier or complete inundation (S > 

dc) in which the entire barrier becomes submerged causing erosion of the shoreline and 

deposition of large amounts of sediment inland (Donnelly, Kraus & Larson, 2006).  Complete 

inundation can sometimes lead to channeling or temporary breaches or even full breaches in the 

shoreline. 

 Lorenzo-Trueba and Ashton (2014) used a reduced complexity model to demonstrate that 

barrier systems respond to SLR and overwash via four different mechanisms: height drowning, 

width drowning, constant landward retreat, and periodic retreat.  They also reported that 

shoreline (landward) retreat may occur even in the absence of SLR or under constant (non-

accelerating) SLR demonstrating the complexity of barrier morphology.  According to Donnelly, 

(2007) overwash can cause fluctuations in volume of sediment transported alongshore but 

typically, overwash causes seven types of responses (Figure 2): crest accumulation, landward 

translation of dunes/berms, dune lowering, dune destruction, barrier accretion, barrier rollover, 

and barrier disintegration.  Crest accumulation is thought to be caused by deposition of sediment 

from wave run-up as it decelerates up to and on the beach crest; however studies indicate that the 

variation in surge level is the controlling factor for crest accumulation and that crest 

accumulation occurs primarily at low surge levels, but can also occur at higher surge levels 

depending on the width of the crest or if the run-up height is exceeded (Donnelly, Kraus & 

Larson, 2006; and Donnelly, 2007).   
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Very little is known about the mechanisms driving landward translation of dunes or 

berms, however migration is often observed for dunes with higher crests or multiple dune 

systems and dunes that experience low run-up levels.  One hypothesis is that an erosive 

overwash event for a wide range of surge levels causes dune lowering followed by dune 

accumulation landward restoring the dune to its original height (Donnelly, Kraus & Larson, 

2006; and Donnelly, 2007).  Dune lowering and dune destruction generally occur under a 

threshold surge level for low relative dune widths and a wide range of run-up heights, however 

dune volume is a major factor as dunes with lower volumes are more readily destroyed 

Figure 2: Seven barrier responses to overwash as proposed by Donnelly, 2007 
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(Donnelly, Kraus & Larson, 2006).  Still, it remains difficult to determine whether a dune will be 

lowered or destroyed during an overwash event.   

The three barrier responses are characterized by higher surge levels, wider beach crest 

widths, low crest heights, and low foreshore slopes but may occur for a large range of relative 

run-up heights in the absence of a dune (Donnelly, 2007).  Donnelly (2007) proposed that barrier 

rollover occurs for higher surge and run-up levels than barrier accretion because larger flow 

velocities are required to transport sediment into the back barrier bay and barrier disintegration 

occurs for even higher surge and run-up levels (Donnelly, 2007).  In general, overwash and 

windblown sand that is lowered and re-accumulated landward can ultimately result in barrier 

migration (Donnelly, Kraus & Larson, 2006: and Donnelly, 2007).  Donnelly (2007) not only 

demonstrated that morphological responses to overwash can vary as a function of surge height 

and barrier geometry, but also showed the importance of dune width and average slope in 

relation to defining the barrier profile in order to more accurately predict the overwash response 

to a specific event like a hurricane or tropical storm.   

Objective 

The objective of this study is to examine the relationship of both the shoreface and the 

dune morphologies on overwash and barrier landward migration as a result of a tropical storm 

period.  More specifically, I hypothesized that (1) as the shoreface slope increases, the overwash 

and landward translation decrease and (2) as the dune crest width increases, the overwash and 

landward translation decrease.  I intend to show the high degree of morphological responses 

produced by a dynamic environment like a barrier island and that a better understanding of these 

responses will enable coastal researchers to identify more resistant barrier templates that could 

be applicable to barrier restoration. 
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Methods 

Model Setup 

To test my hypotheses, we used a two-dimensional (2D) coastal and sea model called 

MIKE 21 provided by DHI to setup and run simulations of an actual storm period (with time-

dependent water level variations, storm surge, wave height) for a schematized barrier island, 

formulated using various barrier island subaerial templates (eg, low-laying, narrow, wide etc).  

MIKE 21 is a versatile numerical modeling tool often used for coastal modelling worldwide, and 

is capable of simulating physical, chemical and biological processes in coastal or marine settings.  

With a number of benefits, MIKE 21 has a suite of submodels designed to study beach and 

barrier island morphodynamic responses to events as well as decadal scale evolution for deltaic 

barriers in coastal Louisiana, including the following modules specifically used herein: the 

Hydrodynamic (HD), Spectral Wave (SW) and Sand Transport (ST) modules.  The HD module, 

providing the basic computational component of the entire modeling system, can be applied to 

the hydraulic processes occurring in lakes, estuaries, bays, coastal areas and seas. The SW 

module is not only applicable for predication and analysis of waves on local and regional scales, 

but also for the calculation of sediment transport in wave dominated environments.  The ST 

module enables the user to evaluate the erosion, deposition and transport of non-cohesive 

sediment in coastal and offshore environments.   

Boundary Conditions (The Storm) 

To build our storm period, wind and wave data were obtained from the Wave Information 

Study (WIS), an online database containing hourly wind and wave data collected since January 

1
st
, 1980.  An actual winter storm period was found dating from January 13

th
 to 26

th 
2010, a 

twelve-day storm period with maximum wave heights of about 2m from a WIS station 
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approximately 38km offshore at latitude 28.7 longitude -90.8.  Wind (speed and direction) and 

wave (speed, direction and spreading index) data were collected from this period to be used in 

our simulations (Figures 3b and 3c).  Water level data were then collected from the closest 

available Tides and Currents station located near Port Fourchon, LA in order to complete our 

storm profile (Figure 3a).   

   

Figure 3: Time series input files. For the sake of standardizing all of our input files, we arbitrarily made 

December 25
th
, 2016 at 0:00 am the beginning of the simulation period.  Therefore, all of the dates for the 

input files were synced to this date.  
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Barrier Morphology Templates 

The following step was to construct our barrier templates, which in order to standardize 

all templates, the same size domain: 1000m wide by 6500m long.  For each shoreface profile, the 

seaward boundary is defined as the open boundary (or code 3) (Figure 4b) to receive the 

incoming waves and storm surge.  The DoC at the lower shoreface, represented by the open 

boundary, is at a depth of 8m for each profile.  Regardless of the elevation of the DoC, the focus 

of this research was to examine the trends of varying shoreface slopes and dune crest widths in 

response to storm events.  Because our objective is to specifically measure the response of a 

barrier to a storm in terms of dune crest overwash and barrier landward migration, the model 

domain or computational mesh was designed with a higher resolution around the dune crest and 

subaerial portion of the barrier and an increasingly lower resolution moving offshore to the lower 

shoreface and landward to the backbarrier lagoon (Figure 4b).  In order to test the response of 

various barrier templates to storm events, we varied two elements of the barrier template; the 

dune crest width and the shoreface slope.  Both of these elements of the barrier profile are 

thought to be influencing the magnitude of the response among the various barrier templates to 

the same storm. 
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Figure 4: The process of building a bathymetry from the master definition profile (.mdf). 

 

The four templates for the dune crest width profiles include the Narrow Width (NW), 

Intermediate Width (IW), Wide Width (WW) and Low Barrier (LB) in which there is essentially 

a lower dune.  The initial elevation of the dune crest is 1.2m above MSL for NW, IW and WW 

and 0.83m above MSL for LB, a dune crest elevation that is common in deltaic barriers (Figure 

5a).  The templates for the shoreface slope profiles include the Gentle Slope (GS), Intermediate 

Slope (IS), Steep Slope (SS), New Slope (NS), and the Very steep Slope (VS) (Figure 5b).  The 

NS was created after the original set of simulations in order to observe another level of 

sensitivity/variability. 
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Figure 5: a. The dune crest widths are 50m for NW, 120m for IW, 220m for WW and 10m for LB. b. The 

shoreface slope gradients are 0.155 for GS, 0.175 for IS, 0.20 for SS, 0.215 for NS and 0.233 for VS. 
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Experimental Design 

Out of necessity of organizing the number of templates and simulations, a simulation 

matrix is created categorizing a total of twenty six simulations based on barrier morphology, i.e., 

the dune crest widths and shoreface slopes (Table 1).  Because each simulation was run with the 

same twelve day storm period, it was wise to run a sensitivity in order to see the different 

responses. Therefore, this sensitivity was examined by doubling the storm period from twelve to 

twenty four days simply by doubling the water level, wind and wave files.  This was performed 

for GS for each dune crest width as well as VS for LB (Table 1).  Finally, one additional 

sensitivity was examined by varying or doubling the morphological speed up factor.  The 

morphological speed factor re-cycles hydrodynamic and sediment transport information to infer 

bed elevation and morphology changes; an upscaling of ten (10) for example would show barrier 

responses resulting from ten times the forcing period, making a 24 day simulation approximately 

equivalent to a 240 day simulation. 
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Table 1: Simulation Matrix arranged by increasing dune crest width and increasing shoreface slope. 

 

 

Metrics for evaluating barrier response 

Comparisons of profile evolutions over time show when and how the barrier profiles 

respond to the storm.  The shoreline erosion rate (SER) is obtained simply by dividing the total 

retreat of that profile during the simulation by the number of days in the storm period (either 

twelve or twenty four days).   

𝑆𝐸𝑅 (𝑚/𝑑) = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑟𝑒𝑎𝑡/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 

The dune crest migration rate (DCM) is obtained similarly by dividing the total migration 

by the total number of days in the storm period.   
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𝐷𝐶𝑀 (𝑚/𝑑) = 𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 

In order to compute the cumulative change in bed level along a profile, the bed level 

change and integral bed level change along the profile were calculated first.  The change in bed 

level is calculated simply by measuring the difference between the final and initial bed level 

positions at that point along the profile.   

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑏𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 = 𝐹𝑖𝑛𝑎𝑙 𝑏𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 

The integral change along a profile is then measured by multiplying the average of the 

changes in bed level between the first and second point by the distance between the first and 

second point 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑐ℎ𝑎𝑛𝑔𝑒 𝐴 𝑎𝑛𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝐵) ∗ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝐴 𝑡𝑜 𝐵) 

Finally, measuring the cumulative bed level change along a profile is simple.  At the first 

point of the profile, the cumulative and integral are the same because that is the only change that 

has occurred thus far.  At the second point along the profile, the cumulative will be the sum of 

the second integral point and the first cumulative point.  The third cumulative will be the sum of 

the third integral and the second cumulative, and so on and so forth.  For example, 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 #8 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 #8 + 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 #7 

There are three important limitations to this research worth mentioning.  First and 

foremost, the composition of our sediment was 100% sand and therefore lacks the applicability 

to muddy environments. The Mud Transport (MT) module under MIKE 21 was not utilized for 

this particular research as we are mostly concerned with the barrier lithesome response to storms 

which would be comprised of mostly sand anyway (Twichell et al., 2009; Chandeleur Islands).  
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Second, the model only allows for the transport of sediment in the onshore direction neglecting 

the offshore transport of sediment to the lower shoreface.  Although this limitation appears 

restricting, since the focus is on the subaerial barrier, this assumption can still offer good insights 

and usable results. Lastly, the results of these simulations are limited to short-term high 

magnitude events such as tropical and extratropical storms and up to the annual time scale and 

therefore lacks information on the morphological time scale of barriers from effects due to sea 

level rise, sediment supply and other climate driven processes.   
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Results 

Upper Shoreface 

 Gentle shoreface slopes and narrow or low dunes are characteristic of barrier islands in 

Louisiana.  With slopes ranging from 0.155 for the gentle slope to 0.233 for the very steep slope, 

the slopes used in our simulations were considered to be all fairly gentle (much less than 0.8 as 

identified by Short, 1999 as the steepest slope for barrier development), but are common for 

deltaic barriers on low gradient continental shelves (Penland et al., 1988; List et al., 1999).  

Results demonstrate upper shoreface erosion as waves from the storm break close to the 

shoreline reworking the sediment in an onshore direction leading to shoreline erosion.  As a 

result of an incoming wave, the upper shoreface is the first domain of the barrier lithesome to 

respond. 

Results for all shoreface slopes show a fairly uniform change throughout the profile with 

the exception of two specific areas; the upper shoreface and the dune crest (Figure 6 a, b).  

Sediment erosion in all cases occurs at the upper shoreface followed by a distinct deposition of 

sediment on the dune crest and in the back bay (Figure 6a).  For the low barrier template, peak 

changes in erosive processes occur on the upper shoreface (~0.1m) and shoreline (~0.5m), 

whereas peak changes in depositional processes occur at the dune and lagoon, 0.3 m and 0.1 m 

respectively (Figure 6a).  The backbarrier also reflects a depositional change, the volume of 

which, however, is very small.  For the wider barrier template, peak changes in depositional 

processes occur at the front and back side of the dune resulting in dune aggradation and barrier 

rollover and therefore comparatively reduced change occurs in the lagoon (Figure 7a).  In fact, 

the low dune scenario simulations show significant shoreline erosion (between 26m and 37m) 

(Figures 8 and 9; Table 2) and increased dune overwash and dune crest landward migration.  
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Barriers with a low dune and gentle slope (GS-LB) exhibit the greatest amount of shoreline 

erosion (~37m) as expected (Figure 6b), whereas barriers with wider dune crests for the same 

slope (GS-WW) show reduced shoreline erosion (~2m) (Table 2).  This trend is also repeated for 

the steeper slopes where the barrier with a low dune (VS-LB) exhibits similarly large shoreline 

erosion (~26m) compared to the wide dune (VS-WW) scenario (-3.0m) (Table 2).  The landward 

barrier migration trend is similar among the varying shoreface slopes (Figures 6 and 7), but 

variability in the response does exist with varying dune crest widths (Figures 8 and 9).   

 

 

Figure 6: A. Profile change for each shoreface slope on the low barrier dune crest. Negative (-) means 

erosion and positive (+) deposition. B. Initial and final profile for each corresponding profile. 
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Table 2: Shoreline erosion rates at mean sea level (MSL) for each profile. 

 

 

Dune 

 The dune system is subjected to the majority of morphologic change throughout 

the simulation matrix, as it is highly affected by both the initial morphology of the dune crest (in 

terms of both elevation and width) and the shoreface slope.  Dune widths used in our simulations 

vary from 10m for the low barrier dune to 220m for the wide dune crest.  Because no sediment is 

lost offshore, all the sediment eroded from the upper shoreface during the storm is deposited 



25 
 

onshore in the dune and backbarrier (Figure 6b).  The dune morphology then exercises control on 

the amount of washover in the backbarrier and landward translation in the backbarrier lagoon.  

The low dunes experience significant landward translation (Figure 6b), whereas the wider dunes 

experiences less translation, more dune aggradation and thus contributing more to barrier 

rollover (Figure9b).  Barriers with a low dune and gentle shoreface slope (GS-LB) exhibit the 

greatest amount of dune crest migration (~149m) as expected (Figure 6b) whereas barriers with 

wider dune crests for the same shoreface slope (GS-WW) show reduced dune crest migration 

(~96m) (Table 3).  This trend is also repeated for the steeper slopes where the barrier with a low 

dune (VS-LB) exhibits similarly large dune crest migration (~500m) compared to the wider dune 

(VS-WW) scenario which no change was observed.  Even though change in dune crest elevation 

is small (cm scale) and the result of one storm, twenty five of twenty six profiles exhibited dune 

crest aggradation behavior (Figures 9b, Table 3).  According to these results, the intermediate 

slope with an intermediate dune crest width (IS-IW) experienced the largest change in dune crest 

elevation (0.45m).  While there is a high degree of change occurring on the dune crest, there is 

much less change occurring in the backbarrier and lagoon (see section with cumulative sediment 

transport volumes in the backbarrier and lagoon; Figure 7). 

Although the overall change in dune crest elevation is insignificant, the majority of the 

dunes experience aggradation as a result of wave runup landward onto the dune crest.  In terms 

of dune crest migration, about one third (7 of 24) of the simulations experience a progradation 

(seaward movement) of the dune crest while about two thirds (16 of 24) experience dune 

(landward) retreat (Table 3).  The low barriers experience the greatest amounts of dune crest 

migration as a result of dune morphology.  Rosati et al. (2010) showed that dunes with lower 

elevations tend to exhibit higher rates of barrier migration both for stable and compressible 
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substrates.  They also show that for barriers in Louisiana where composition of compressible 

substrates like mud vary, rates of barrier migration are substantially higher (Figures 10, 11).   

Low barriers with gentle shoreface slopes, like those here on the Louisiana coast, have a much 

lower sediment volume and therefore are undoubtedly more easily reworked and eroded. 

 

 

Figure 7: A. Profile change for each shoreface slope on the wide dune crest width. Negative (-) means 

erosion and positive (+) deposition. B. Initial and final profile for each corresponding profile. 
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Table 3: Dune crest migration, elevation and cumulative sediment transport volumes at the shoreface, 

dune, backbarrier and lagoon for each profile. 

 

The narrow dune widths interestingly respond with a seaward translation or accretion of 

the shoreline, likely due to lower wave runup overwash compared to the low dune/barrier 

scenarios.  As the dune crest widens, the resulting effects brought on by a storm decrease (i.e. 

less overwash, migration and backbarrier deposition).  The profile evolutions over time reveal a 

pertubation of the upper shoreface in which first we note a deposition and seaward migration of 

the shoreline followed immediately by erosion and shoreline retreat while at the same time the 

dune experiences crest accumulation contibuting to barrier rollover (Figure 11).  With a total of 

about 26 simulations, about one third (1/3) of them experience a seaward translation of the 

shoreline and the rest retreat.  While the GS profiles exhibit both barrier rollover and landward 

translation of the dune, they also show a variation in response during these processes (changing 

profile shape) that can often lead to temporary seaward movement of the shoreline (Figure 8b).  
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The VS profiles demonstrate a similar pattern where the change on the dune crest resulting in 

barrier rollover and landward translation is dependent upon the initial dune crest morphology 

(Figure 9b).   

 

 

Figure 8: A. Profile change for each dune crest width on the gentle shoreface slope. Negative (-) means 

erosion and positive (+) deposition. B. Initial and final profile for each corresponding profile. 
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Figure 9: A. Profile change for each dune crest width on the very steep shoreface slope. Negative (-) 

means erosion and positive (+) deposition. B. Initial and final profile for each corresponding profile. 

By examining the specific profile evolutions over time, we observe variance in rates of 

change.  The majority of profile change  as a result of the 280 hour storm occurs in the beginning 

of the period before 180 hours as indicated by the blue and green colors (Figures 10 and 11).  For 

the low dune barrier scenario, the first profile response to the storm occuring in the first 24 to 48 

hours is an erosion of the dune (~0.4 m) followed by a washover (~0.25 m thick; 200 m 

penetration) and a small landward translation (~25m) of the backbarrier (Figure 10a).  For the 

wider dune crest scenario, the first profile response to the storm occuring in the first 24 to 48 

hours is an erosion of the front of the dune (~0.1 m) followed by a washover (~0.1 m thick; ~20 

m penetration) and a small landward translation (~1-2m) of the backbarrier (Figure 10b). By 
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hour 130, which is the peak of storm, both scenarios experienced landward dune migration 

ranging from (~148m) for the low dune (GS-LB) to (~96m) for the wide dune (GS-WW). 

(Figures 10b).  

 

       

Figure 10: A. Profile Evolution of GS_LB. B. Profile Evolution of GS_WW. 
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Figure 11: A. Profile Evolution for VS_LB. B. Profile Evolution for VS_WW. 
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Figure 12: A. Profile change for the low barrier and wide dune crest width on the gentle shoreface slope 

for the twelve and twenty-four day periods. Negative (-) means erosion and positive (+) deposition. B. 

Initial and final profile for each corresponding profile. 

We observe an interesting behavior in the change that occurs in the barrier lithesome 

between the twelve and twenty-four day periods.  Due to a morphodynamic upscaling of 10, the 

12 and 24 day storm periods are adjusted to 120 and 240 day periods.  The 240 day period 

exposes the barrier to storm conditions for a longer duration therefore resulting in greater 

amounts of shoreface erosion in turn leading to greater amounts of dune and barrier translation 

landward (Figure12; Table 3). For instance, the low dune barrier with a gentle slope experiences 

dune crest migration ranging from 148 m to 192 m respectively (12 to 24 days), while the gentle 
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shoreface slope wide dune scenario experience lower dune crest migration, ranging from 96 m to 

43m seaward migration (for 12 to 24 days) respectively.  

Backbarrier 

The backbarrier is where overwash is deposited as a result of wave runup onto the dune 

crest depositing sediment landward often in the form on a washover fan or where inundation 

overwash when the dune crest is submerged may occur.  The barriers with a low dune and gentle 

slope (GS-LB) exhibit the greatest volume of dune washover (~30.2 m
3
/m), as expected (Figures 

8b, 12b), whereas barriers with wide dune fields for the same slope (GS-WW) show reduced 

overwash (~5.4 m
3
/m) (Figures 8b, 12b).  This trend was repeated for steeper slopes (Figure 9b) 

where the barrier with a low dune (VS-LB) experiences similarly larger overwash volumes 

(~31.6 m
3
/m) compared to the wide dune (VS-WW) scenario (~3.4 m

3
/m; Figure 9b). 

Backbarrier Lagoon 

The backbarrier lagoon experiences the least amount of change as a result of the storm.  

Deposition rates in the lagoon varied little with respect to shoreface slope, but exhibited 

significant divergence with respect to dune morphology.  The deposition for the barrier with a 

low dune varied from 3.0 m
3
/m for the gentle shoreface slope to 2.9 m

3
/m for the steeper 

shoreface slope.  Contrastingly, the barriers with wide dunes experienced deposition rates of 

approximately 0.2-0.3 m
3
/m regardless of shoreface slope field (Figures 6, 7, 10, 11, Table 3). 
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Discussion 

Upper Shoreface 

Results show that shoreface slope drives morphodynamic change at the shoreline and 

dune of barrier islands during storms.  As hypothesized, steeper shoreface slopes produce less 

overwash compared to gentle shoreface slope systems during storms, with upper shoreface 

erosion being proportional to shoreface slope (Figure 6).  The complexity of the experimental 

design, as expected, shows that erosion and migration rates can be quite variable for the several 

slopes and barrier templates examined (Table 2 and 3) ranging from  -11.2m to 37.3m of 

shoreline erosion and -43m to 500m of dune crest migration. Regardless of this variability, an 

obvious trend emerges where the steeper shoreface produces less shoreline erosion, indicating an 

inverse relationship between shoreface slope and shoreline erosion (Table 2).  At first, this 

response appears counterintuitive, but can be explained by the lack of transfer of material 

offshore as the storm peaks; although this response would be common to all simulations, hence a 

meaningful comparison can still be made between model simulations. With continued erosion of 

the upper shoreface, coupled with lack of wave runup overwash, sediment deposits and helps 

maintain or limit erosion at the shoreline and contributes more to dune aggradation.  

The storm influence of the upper shoreface and dune crest is directly proportional to 

changes in shoreface slope (Figure 6), while in the backbarrier marsh and lagoon, change is 

independent of shoreface slope.  For example, the change in shoreface slope does in fact generate 

a variable response in the backbarrier deposition (leading to dune overwash), but is not 

significant enough to suggest that a dependency exists (Figure 7).  
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A steeper shoreface suggests a larger barrier volume to be eroded to facilitate a change on 

the backbarrier and lagoon.  Aagaard et al. (2004) suggest that for gently sloping shorefaces, 

behavior oriented models predict net onshore sediment translation in the long term and that 

process-based models predict net offshore sediment translation in the long run.  On the contrary, 

MIKE 21 by DHI is a numerical model where we predict a net onshore sediment translation, but 

on an inter-annual time scale.  Our results with respect to shoreline erosion coincide with Short 

(1999) in that an increasing shoreface slope tends to enhance the effect of gravity thereby 

reducing the amount of onshore sand transport.  This implies that while overwash still may 

occur, the rates of overwash and barrier migration are low and independent of shoreface slope. 

The amounts of shoreline erosion, overwash and landward migration are also related to the 

morphology of the backbarrier and the frequency and magnitude of hurricanes and tropical storm 

events. 

There is considerable variation in shoreline erosion rates for each barrier profile; however 

it becomes evident that the low barriers with low dunes experience significantly greater shoreline 

erosion than the wider dune crests (Table 2), regardless of shoreface slope.  This response is 

expected, as low barriers are subjected to higher runup overwash, facilitating the transfer of 

sediment to the back-dune and subsequently, sediment eroded from the shoreline continuously 

supplies the dune with sediment during the storm. Inundation overwash at the peak of the storm 

enhances this response. In the scenario where the dune system is higher, and wider (WW), the 

continued erosion on the upper shoreface, coupled with reduced overwash volumes, supplies the 

berm and dune toe with sediment, which reduces (initially) the shoreline erosion. This behavior, 

however, is restricted to differences in the initial dune morphology, and appears to be 

independent of shoreface slopes examined in this study.  This result is corroborated further by 
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assessing cumulative sediment transport trends across the barrier for the duration of the storm 

(discussed in more detail below), showing clearly that the higher shoreline erosion and dune 

crest migration for the low barriers are attributed to the dune crest morphology.   

Dune 

Barrier island change during storms is also coupled to the dune crest morphology 

controlling the overwash volume in the backbarrier.  Considering dunes are highly dynamic 

environments dependent on the shoreface slope and dune morphology, results demonstrate 

significant changes occurring on the dune as a result of the storm.  Barriers with wide dune fields 

contain more subaerial sediment volume compared to barriers with narrow or low dunes and 

therefore require larger amounts of washover to occur during an event to facilitate a comparable 

translation of the dune and barrier profile.    A low or narrow barrier experiences erosion of the 

upper shoreface and deposition in the backbarrier in the form of an overwash fan or sheet and as 

a result experiences higher rates of landward migration for the same events (Figure 6b).  Instead 

of deposition in the backbarrier, a wider barrier experiences deposition on top of the dune crest 

causing crest accumulation (Figure 7b).  Donnelly (2007) demonstrated that a larger crest width 

restricts more erosive overwash types (Figure 8).  Over time, and after several events, sediment 

begins to deposit in the backbarrier leading to a translation of the barrier (Figures 10, 11).  Thus, 

a wider barrier is more resistant to net sediment loss than a narrow barrier during the same high-

magnitude event. 

Although there appears to be no immediate pattern for the cumulative sediment transport 

volumes occurring at the dune, we do, in fact, note that the values are much higher for the 

twenty-four day periods (83.7m³/m to 103.7m³/m) than the twelve day periods (43.0m³/m to 

66.0m³/m) at the dune (Figure 10, Table 3).  The backbarrier shows a similar pattern where the 
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values for the twenty-four day simulations are much higher than the twelve day simulations.  For 

instance, volume at the dune for the twenty-four day storm for a low barrier with a gentle 

shoreface is 42.7m³/m whereas volume for the twelve day storm for the same template is 

30.2m³/m.  This implies that while there is a high degree of variability in response, a longer 

duration of storm conditions undoubtedly results in higher volumes of dune overwash and 

backbarrier translation.  These variability in results at the dune crest are due, as Short, 1999 

describes, to the greatest profile change occurring in amplitude and frequency at the upper 

shoreface having a morphological control on the response of the dune.  

Backbarrier 

The cumulative sediment transport occurring in the backbarrier is directly proportional to 

the initial morphology of the dune crest and the change, as a result of the storm, is reflective in 

the washover volume deposited in the backbarrier.  Because the dune is both lower in height and 

narrower in width, the low barriers experience the greatest amount of overwash (29.1m³/m to 

31.7m³/m of cumulative sediment transport) whereas wider dune crests experience progressively 

reduced amounts of overwash (3.3m³/m to 5.4m³/m for the wide width dune crest) (Table 3).  

This process is the result of higher dune crest migration rates for the low barriers (Tables 2 and 

3).  The higher dune crest migration rates are a response to higher shoreline erosion rates and 

landward transfer of sediment from the shoreface onto the dune crest after which it becomes 

overwashed.  Wider dune fields experience lower shoreline erosion rates and lower dune crest 

migration rates as a result of shoreface sediment deposited on top of the dune crest leading to 

aggradation instead of rollover or overwash.  As a result, we observe an inverse relationship 

between dune crest width and cumulative sediment transport volumes in the backbarrier leading 

to dune overwash.   
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Backbarrier Lagoon 

The cumulative sediment transport volumes in the lagoon, reflective in the landward 

translation of the backbarrier, display a similar inverse relationship with dune crest width.  Once 

again, the low barriers experience the greatest amounts of lagoon deposition (2.8m³/m to 

3.1m³/m) (Table 3).  Wider crests undergo a similar lagoon transformation to the narrow crest 

and low barrier but at much slower rates (0.2m³/m to 0.3m³/m) (Figures 8, 9; Table 3).  Because 

a higher, wider dune reduces lagoon deposition whereas a low dune narrow barrier maximizes it, 

lagoon deposition is perhaps again directly proportional to the overwash volume, which is 

directly proportional to the dune crest width. 

Profile Evolution 

The profile evolutions over time serve as a useful tool to assess barrier dynamics, as they 

allow for close examination and observation of exactly when, where and how the barrier profile 

responds to the storm.  Profile evolutions, as a result of the twelve day storm, show the majority 

of change occurring within the first 130 hours (a little over 5 days) coinciding with the peak of 

the storm, whereas little change is evident in the remaining period.  For barriers with a low dune 

and gentle shoreface slope, the storm initially generates a destructive phase causing dune 

lowering and landward rollover within the first twenty four hours (Figure 15).  By the second 

day (48 hours), the dune begins to experience a loss in elevation or dune lowering as sediment 

begins to move into the backshore.  By hour seventy-two (Figure 15), the dune experiences a 

total loss in elevation and the shoreline and upper shoreface experience a temporary seaward 

movement, driven likely by combined runup overwash and inundation overwash, and is 

characteristic of dune destruction as identified by Donnelly (2007).  Up to this point in the storm, 

the overall change to the barrier profile has been destructive.  However, at hour 110, a 
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constructive phase of the barrier begins.  The sediment from the upper shoreface is eroded 

generating landward transport initiating construction of a new dune development as a result of 

barrier rollover.  Deposition on the dune begins to occur leading to dune crest aggradation and 

overwash processes.  At this time, the majority of deposition into the lagoon occurs causing 

landward translation of the barrier.  Continued dune aggradation and landward translation occurs 

until about 130 hours at which point very little changes occur for the remainder of the simulation 

period (Figure 15). 

 

 

Figure 13: Profile evolution for a low barrier with a gentle shoreface slope.  Red lines indicate Initial 

and Final profiles. Black line indicates profile at specified time. Color shows change at specific hours. 
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Profile evolution of a barrier with low dunes with a very steep shoreface slope 

demonstrates a similar response at which a destructive phase initiates dune lowering and 

eventually dune destruction.  Second, the storm produces shoreline pertubations resulting in a 

constructive phase where deposition of sediment from the shoreline initiates a new dune 

development landward of the old dune while continually depositing sediment landward into the 

backbarrier and lagoon resulting in migration of the barrier (Figure 16).  In this case however, 

the steeper shoreface slope prevents greater amounts of shoreline erosion, but the morphology of 

the low barrier still allows for considerable dune overwash to occur resulting in barrier migration 

(Figure 16).   
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Figure 14: Profile evolution for a low barrier with a very steep shoreface slope.  Red lines indicate Initial 

and Final profiles. Black line indicates profile at specified time. Color shows change at specific hours. 

  

The profile evolution of the wider dune crest with a gentle slope demonstrates the resistance of a 

wider barrier to a storm through a different response.  Initially, runup of waves onto the dune 

crest causes small amounts of dune scouring leading to a deposition of sediment on top of the 

dune.  Between hours 48 and 72 however, very little change occurs on the shoreface, dune, 

backbarrier or lagoon (Figure 17).  At 110 hours, fluctuation of the shoreline initiates a 

constructive phase causing deposition landward onto the dune crest leading to crest aggradation 
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and dune landward translation leading to barrier rollover (Figure 17).  Overall, little to no change 

occurs in the backbarrier and lagoon as a result of reduced washover volume resulting in lower 

rates of barrier migration, suggesting an inverse relationship between dune crest width and 

backbarrier and lagoon deposition.   

 

  

Figure 15: Profile evolution for a wide dune crest with a gentle shoreface slope.  Red lines indicate Initial 

and Final profiles. Black line indicates profile at specified time. Color shows change at specific hours. 
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Summary and Conclusions 

With a goal to accurately represent deltaic barriers in  Louisiana and coastal plain barriers 

in the rest of the northern Gulf of Mexico, a schematized barrier island system was utilized 

including all sub-environments (e.g., shoreface – various slopes - dunes - various crest widths), 

informed from field data (e.g., Miner et al., 2009) and literature (e.g., Short, 1999).  The 

simulation matrix ranged from environments that included gentle to very steep slopes 

representative of deltaic system, and dune morphology that ranged from low and narrow dune 

fields to high and wide, informed by robust barriers in Louisiana or those produced by barrier 

island restoration projects.  Furthermore, additional templates representing additional restoration 

templates were incorporated and tested (e.g. Campbell 2005). Using observed water levels, wind 

and wave data from an actual storm along the Louisiana coast, MIKE 21 by DHI was used to 

gain a better understanding on the dynamic response of barrier islands during storms.   

The hypothesis, that barrier systems with gentle shoreface slopes and low and narrow 

dune crests are less resistant to storms, and hence  experience greater amounts of upper shoreface 

erosion and dune transgression compared to their steeper slopes and wider dune counterparts, is 

accepted.  The hydrodynamic, spectral wave and sand transport modules offered by MIKE 21 

have provided exceptional data for comparing the response of various barrier templates to low-

frequency high-magnitude events such as tropical and extratropical storms.  Generally, dune 

aggradation in wider dune systems is a constructive process that while initially limits overwash, 

eventually promotes overwash in a high dune setting, whereas in low dune systems, this function 

is lost due to shoreline erosion and significant landward translation.  Results show that the angle 

or morphology of the shoreface slope proportionately determines the amount of shoreline 

erosion; as the shoreface slope increases the shoreline erosion decreases.  Results also show the 
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dune crest morphology (height and width) exerts a first order control on the washover volumes 

during storms, and thus determines the amount of dune overwash, backbarrier deposition and 

lagoon deposition leading to backbarrier migration; as the dune crest width increases, dune 

washover, backbarrier deposition and lagoon deposition decrease.   

Implications for barrier island restoration 

 Our results corroborate results from previous studies (Campbell, 2005; Donnelly, 2007; 

Donnelly et al., 2006; and Lorenzo-Trueba and Ashton, 2014), that barriers with steeper 

shoreface slopes and wider dune crests are more resistant to overwash processes and hence 

backbarrier landward migration, and therefore serve as exemplary nourishing templates for 

barrier island restoration projects.  Having a more detailed understanding of the dynamics of 

barrier systems will provide more appropriate methods for restoring or nourishing barrier islands. 

Our study shows that numerical models can be effectively used to assess and test restoration 

templates further for the specific setting, taking into account other environmental factors at play 

including physical forcing, geomorphology etc.  This becomes extremely important when 

planning coastal restoration projects here in Louisiana as managing our coast during the ongoing 

transgression is becoming increasingly important every day. 
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