Date of Award

5-18-2007

Degree Type

Dissertation

Degree Name

Ph.D.

Degree Program

Conservation Biology

Department

Biological Sciences

Major Professor

Bavister, Barry

Second Advisor

Brenner, Carol

Third Advisor

Kubisch, H. Michael

Fourth Advisor

Lonergan, Thomas

Fifth Advisor

Lynn, John

Abstract

Many primate populations face the threat of extinction due to habitat loss, intensive agriculture, hunting for meat, the pet trade and/or use in traditional medicines. An alternative approach to in situ conservation includes gene banking and the use of assisted reproductive technologies (ART), such as oocyte in vitro maturation (IVM) and in vitro fertilization (IVF). Although many of these 'high-tech' solutions have not yet been proven viable for pragmatic wildlife conservation, basic research and development of these emerging tools can provide necessary information needed to optimize these techniques and institute ART as a routine practice in conservation efforts. A severely limiting factor in the successful application of ARTs is the availability of mature developmentally competent oocytes. Oocyte maturation involves many nuclear and cytoplasmic factors, which can be affected by maturation conditions and female age. In vitro maturation does not have the same success rate across species studied. In primates especially, IVM oocytes exhibit reduced developmental capacity upon fertilization when compared to in vivo matured (IVO) oocytes. This study aimed to investigate possible causes of reduced developmental capacity of primate IVM oocytes using the rhesus macaque (Macaca mulatta) as a model. Research efforts included investigation of ovarian senescence, oocyte karyotype and spindle morphology, and establishment of an optimal sperm cryopreservation protocol for use in IVF. Histological examination of the rhesus ovary demonstrated an age-related pattern of follicle depletion similar to that described in the human ovary. Oocyte karyotype analysis revealed a significant effect of IVM on the frequency of hyperhaploidy. In addition, immunostaining and confocal microscopy demonstrated a significant increase of anomalous chromosome congression on the oocyte metaphase II spindle equator in relation to IVM and donor female age. These results indicate that IVM can produce serious, if not lethal consequences for embryo development. This study presents baseline data on ovarian aging in the rhesus macaque and aspects of nuclear maturation during macaque IVM that may contribute to the design of primate oocyte recovery plans. Implementation of either of two sperm cryopreservation methods originally developed for rhesus and vervet monkeys will aid future investigation of the developmental capacity of IVM oocytes.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS