Date of Award
5-2007
Degree Type
Dissertation
Degree Name
Ph.D.
Degree Program
Engineering and Applied Science
Department
Electrical Engineering
Major Professor
Azzam, Rasheed
Second Advisor
Alsamman, Abdul
Third Advisor
Charalampidis, Dimitrios
Fourth Advisor
Ioup, Juliette
Fifth Advisor
Puri, Ashok
Abstract
The polarization properties of embedded centro-symmetric and periodic multilayer stacks under conditions of frustrated total internal reflection (FTIR) are considered. The centro-symmetric multilayer stack consists of a high-index center layer sandwiched between two identical low-index films and high-index – low-index bilayers repeated on both sides of the central trilayer maintaining the symmetry of the entire stack. The periodic multilayer consists of periodically repeated low-index – high-index bilayers. Each multilayer stack is embedded in a high-index prism. Embedded centro-symmetric multilayer stacks are designed to function as efficient polarizers or polarizing beam splitters (PBSs) under conditions of FTIR over an extended range of incidence angles. For a given set of refractive indices, all possible solutions for the thicknesses of the layers that suppress the reflection of p-polarized light at a specified angle, and the associated reflectance of the system for the orthogonal s polarization, are determined. The angular and spectral sensitivities of polarizing multilayer stacks employing 3, 7, 11, 15 and 19 layers of BaF2 and PbTe thin films embedded in a ZnS prism, operating at ë = 10.6 ìm, are presented. Embedded centro-symmetric multilayer stacks are also designed to function as complete-transmission quarter-wave or half-wave retardation (QWR or HWR) devices under conditions of FTIR. QWR and HWR designs at ë =1.55 mì are presented that employ 11 and 7 layers of Si and SiO2 thin films embedded in GaP and Si cube prisms, respectively. The angular and spectral sensitivities of these devices are also considered. Embedded centro-symmetric multilayer stacks under FTIR conditions are also designed to produce various 50%-50% beam splitters. Embedded periodic multilayer stacks are designed to function as polarizers and PBSs at discrete multiple angles of incidence and wavelengths under condition of FTIR. For a given set of refractive indices, all possible solutions for the thicknesses of the layers that suppress the reflection of p-polarized light at a specified angle, and the associated reflectance of the system for the orthogonal s polarization, are determined. The angular and spectral sensitivities of polarizing multilayer stacks employing 4, 6, 8, 10, 12, 14, 16 and 18 layers of BaF2 and PbTe thin films embedded in a ZnS prism, operating at ë= 10.6 ìm, are presented.
Recommended Citation
Reddy, Perla Siva, "Embedded Multilayer Thin Film Stacks as Polarizing Beam Splitters and Wave Retarders Operating under Condition of Frustrated Total Internal Reflection" (2007). University of New Orleans Theses and Dissertations. 1079.
https://scholarworks.uno.edu/td/1079
Rights
The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.