Date of Award

Fall 12-17-2011

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Mechanical Engineering

Department

Mechanical Engineering

Major Professor

Akyuzlu, Kazeem

Abstract

Abstract

An experimental study is conducted to determine the velocity fields, from development to steady state, in a square enclosure due to movement of a constant velocity lid using Particle Image Velocitmetry (PIV). Experiments were conducted with water, seeded with hollow glass sphere particles 10 microns in diameter, at three different lid velocities leading to Reynolds numbers in the high laminar to transitional range. Driven Cavity Flow is a classic fluid dynamics case often used for benchmarking of computational codes. Previous work has primarily focused on improving computational codes, experimental work is lacking and focused on obtaining steady state readings. The test cavity is 1 inch (25.4mm) high by 1 inch (25.4 mm) wide leading to an aspect ratio of 1.0. The depth is taken to be 5 (127mm) inches to reduce the three dimensional effects. Readings are taken from development to steady state allowing for a full spectrum of flow characteristics. PIV technique is successful in capturing the development of driven cavity flow. Circulation is shown to increase strength with time and Reynolds number. PIV capture and processing settings are determined.

Keywords: Driven Cavity Flow, Particle Image Velocimeter (PIV)

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS