Date of Award
Summer 8-2012
Degree Type
Dissertation
Degree Name
Ph.D.
Degree Program
Chemistry
Department
Chemistry
Major Professor
Wang, Guijun PhD
Second Advisor
Trudell, Mark PhD
Third Advisor
Wiley, John PhD
Fourth Advisor
Rick, Steven PhD
Abstract
Systems formed by the supramolecular assemblages of organic molecules known as organogelators and hydrogelators are currently, and only recently, a subject of great attention and promise. In this context, low molecular weight gelators (LMWGs) are of particular interest because they provide a bottom-up approach to the formation of supramolecular architectures through self-assembly. Gelator molecules do so via the initial formation of a one-dimensional array of individual molecules bound non-covalently through forces such as: hydrogen bonds, electrostatic forces, Van der Waals interactions, and other weak forces such as π-π interactions. These interactions then lead to secondary structure formation through a similar assembly mechanism. Understanding the gelation process through characterization techniques is critical to the development of a design rationale for gelator molecules. Past and current research performed by the Wang group indicates that analogues of various 4,6-benzylidene acetals form stable gels in organic, aqueous, and organic/aqueous solvents at varying concentrations. The basis of varying the 4,6-protecting groups on glucose and glucosamine derivatives is to discern the relative structure activity relationships of these systems, and as well to fabricate functional systems which respond to external stimulus. Stimuli responsive or trigger release gel systems formed by sugar based low molecular weight gelators (LMWGs) have applications as smart biocompatible materials, and such responsiveness in various media was explored and developed to determine the feasibility of such applications using monosaccharide derivatives.
Recommended Citation
St Martin, Michael J., "Synthesis and Characterization of Sugar Derivatives as Functional Gelators" (2012). University of New Orleans Theses and Dissertations. 1524.
https://scholarworks.uno.edu/td/1524
Rights
The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.