Date of Award

Summer 8-2-2012

Degree Type

Thesis-Restricted

Degree Name

M.S.

Degree Program

Applied Physics

Department

Physics

Major Professor

Stokes, Kevin

Second Advisor

Malkinski, Leszek

Third Advisor

Ioup, Juliette

Abstract

An experimental investigation of the electronic transport properties of bismuth telluride nanocomposite materials is presented. The primary transport measurements are electrical conductivity, Seebeck coefficient and Hall effect. An experimental apparatus for measuring Hall effect and electrical conductivity was designed, constructed and tested. Seebeck coefficient measurements were performed on a commercial instrument. The Hall effect and Seebeck coefficient measurements are two of the most important tools for characterizing thermoelectric materials and are widely used in the semiconductor industry for determining carrier types, carrier concentration and mobility. Further, these transport parameters are used to determine the thermal to electrical conversion efficiency of a thermoelectric material. The Boltzmann transport equation was used to analyze the Seebeck coefficient, carrier mobility and electrical conductivity as a function of carrier concentration for eleven samples. The relationship between the electronic transport and material/composite composition is discussed.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS