Date of Award

Fall 12-2013

Degree Type

Dissertation

Degree Name

Ph.D.

Degree Program

Chemistry

Department

Chemistry

Major Professor

Mark Trudell

Second Advisor

Branko Jursic

Third Advisor

Edwin Stevens

Fourth Advisor

Dhruva Chakravorty

Abstract

Azetidine is a four-membered nitrogen-containing heterocyclic ring that has recently received a great deal of attention as a molecular scaffold for the design and preparation of biologically active compounds. Structure-activity studies employing functionalized azetidines have led to the development of variety of drug molecules and clinical candidates encompassing a broad spectrum of biological activities.

Herein, the synthesis a novel series of 3-aryl-3-arylmethoxyazetidines is described. Selected 3-aryl-3-arylmethoxyazetidines were evaluated for their binding affinity to multiple monoaminergic transporters for the potential treatment of methamphetamine addiction. It was discovered that this scaffold exhibits high binding affinity (nM) for both the serotonin and dopamine transporters. In addition, a new method was developed for the synthesis of 3,3-diarylazetidines. This new approach provides a facile and efficient method to synthesize a variety of diaryl heterocycles including 3,3-diarylazetidines, 3,3-diarylpyrrolidines, and 4,4-diarylpiperidines in moderate to good yields.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS